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Summary 

Over the past decades, the spread of antibiotic resistance among nosocomial bacterial 

pathogens has developed into a global problem. Population bottlenecks are an important factor 

for bacterial evolution. Their influence on antibiotic resistance evolution is however not yet 

fully understood. Bottlenecks are defined as a strong reduction of population size that can lower 

the population‘s genetic diversity drastically. Population bottlenecks frequently occur in nature 

and play a significant role in the evolutionary history of populations. Bacterial populations can 

evolve resistance by various adaptive paths. However, the serial bottlenecks experienced by 

bacteria both in nature and in experimental evolution influence the direction of adaptation. 

After surviving a narrow bottleneck, future adaptation is more likely influenced by selective 

sweeps and periodic selection, rendering the adaptive paths less predictable. In contrast, higher 

degrees of parallel evolution and clonal interference are expected in case of a wider bottleneck, 

as higher genetic diversity is likely maintained. In this thesis, I validated the influence of 

different bottleneck sizes at different levels of selectivity on the evolvability of resistance in 

populations of the pathogenic bacterium Pseudomonas aeruginosa (subclone PA14). Three 

different evolution experiments were performed to simulate single drug treatments with 

carbenicillin (beta-lactam), ciprofloxacin (quinolone) and gentamicin (aminoglycoside) against 

PA14, for approximately 100 generations. While high inhibitory concentrations selected for 

the highest resistance under large transfer sizes, the highest resistance in low inhibitory 

concentrations populations emerged when the transfer size was small. These different 

dynamics are reflected by mutational patterns in the evolving bacterial genomes. Even though 

the total number of mutations per population for each treatment depended on the treatment 

drug, the diversity of the most frequent mutations at the final growth season was higher for 

small transfer sizes than for large transfer sizes. Surprisingly, only few mutations have 

completely fixed by the final transfer. These results may indicate that clonal interference of de 

novo mutations occurs regularly at sub-inhibitory drug concentrations. Overall, my data 

suggests that bottlenecks, in combination with antibiotic-induced selective pressure, can be a 

key determinant of resistance evolution and can shape genetic diversity within and between 

populations. 
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Zusammenfassung 

Im Laufe der letzten Jahrzehnte hat sich die Verbreitung von Antibiotikaresistenzen bei 

humanpathogenen Bakterien zu einem globalen Problem entwickelt. Genetische Flaschenhälse 

beschreiben eine starke Reduktion der Populationsgröße, welche die populationsgenetische 

Vielfalt drastisch vermindern kann. Flaschenhälse treten häufig in der Natur auf und spielen 

eine bedeutsame Rolle für die Evolution von Populationen. Ihr Einfluss auf die Evolution von 

Antibiotikaresistenz ist bislang jedoch noch nicht verstanden. Bakterienpopulationen können 

durch verschiedene adaptive Wege Resistenz entwickeln. Die genetischen Flaschenhälse, 

welche sie sowohl in der Natur als auch in der experimentellen Evolution erfahren, 

beeinflussen hingegen die Richtung der Anpassung. Nach dem Überleben eines engen 

genetischen Flaschenhalses wird die zukünftige Anpassung eher durch selektive Sweeps und 

periodische Selektion beeinflusst, was die adaptiven Pfade weniger vorhersehbar macht. Im 

Gegensatz dazu werden bei einem breiten genetischen Flaschenhals mehr parallele Evolution 

und klonale Interferenzen erwartet, da eine höhere genetische Vielfalt wahrscheinlich erhalten 

bleibt. In dieser Arbeit habe ich den Einfluss verschieden großer Flaschenhälse bei 

unterschiedlichem Selektionsdruck auf die Evolvierbarkeit von Resistenz in Populationen des 

humanpathogenen Bakteriums Pseudomonas aeruginosa (Subklon PA14) untersucht. Drei 

verschiedene Evolutionsexperimente wurden durchgeführt um eine medikamentöse 

Einzelbehandlung mit Carbenicillin (Beta-Lactam), Ciprofloxacin (Chinolon) und Gentamicin 

(Aminoglykosid) gegen PA14 über etwa 100 Generationen zu simulieren. Während sich bei 

hohen Hemmungskonzentrationen die höchste Resistenz unter großen Transfergrößen 

entwickelte, entstand die höchste Resistenz bei niedrigen Hemmungskonzentrationen, wenn 

die Transfergröße klein ist. Diese unterschiedlichen Dynamiken wurden durch entsprechende 

Mutationsmuster in den Genomen der evolvierenden Bakterien bestätigt. Auch wenn die 

Gesamtzahl an Mutationen pro Population für jede Behandlung vom Medikament abhing, war 

die Vielfalt der häufigsten Mutationen bei kleinen Transfergrößen höher als bei großen 

Transfergrößen. Überraschenderweise wurden beim letzten Transfer nur wenige Mutationen 

vollständig fixiert. Diese Ergebnisse kann darauf hindeuten, dass klonale Interferenz zwischen 

De-Novo-Mutationen bei subinhibitorischen Wirkstoffkonzentrationen regelmäßig auftritt. 

Insgesamt deuten meine Daten darauf hin, dass genetische Flaschenhälse in Kombination mit 

antibiotikabedingtem Selektionsdruck ein wichtiger Einflussfaktor für die Resistenz-

entwicklung sein können und die genetische Vielfalt sowohl innerhalb als auch zwischen 

Populationen prägen. 
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Introduction 

Antibiotic resistance as a universal threat 

What are antibiotics? 

In 1906, the German chemist Alfred Bertheim started a test series with more than 600 

synthesized organoarsenic compounds in the lab of Paul Ehrlich 1. Three years later, Ehrlich 

and his colleague Sahachiro Hata identified compound #606 as an effective drug against 

syphilis. After one year of clinical tests, “Ehrlich-Hata 606“ was produced and distributed by 

Hoechst as a syphilis treatment drug under the name Salvarsan, making it the world’s first 

commercial antibiotic 2–4. Salvarsan remained the most prescribed drug until the 1940s, when 

it was replaced by penicillin as the standard drug for syphilis treatment 5. The large-scale 

production of penicillin and streptomycin as the main drugs against tuberculosis eventually 

started the golden era of antibiotics, which was characterized by the identification and 

production of several classes of treatment drugs against bacterial infections 6–8. Before the 

implementation of antibiotics for clinical therapy, bacterial infections were often fatal to those 

harboring the disease. The increased identification and mass production of antibiotics allowed 

physicians to treat otherwise fatal infections 9.  

Antibiotics are competitive molecules that kill or inhibit the growth of bacteria and 

other microorganisms 10. Most antibiotics that are applied for clinical therapy of bacterial 

infections are derived from natural compounds that are produced by bacteria or fungi to inhibit 

the growth of other microbial species in the competition for resources 11,12. Additional 

ecological functions of antibiotics include signaling, quorum sensing and virulence modulation 

13–16. After the successful clinical application of the first antibiotics, dozens of antibiotics that 

target different molecular processes in bacteria have been developed and clinically applied in 

the last 60 years. The most common cellular processes targeted by antibiotics are cell wall 

synthesis (beta-lactam antibiotics), protein synthesis (aminoglycosides, macrolides, 

tetracyclins), DNA or RNA synthesis (quinolones, rifampin) and folate biosynthesis (sulfa-

methoxazole, trimethoprim) 17. In addition, some antibiotic classes, like antimicrobial peptides, 

have multiple target sites 18. 
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What are the consequences of high antibiotic usage? 

Currently, the administration of antibiotics is common procedure not only to treat but 

also to prevent bacterial infections 19. The success rate of common surgeries and organ 

transplantations can be greatly improved by the prophylactic use of antibiotics to prevent 

pathogenic infections 20,21. Antibiotics additionally allow for the successful  treatment of cancer 

patients and other patients with suppressed immune systems 20,21. In addition to clinical 

application, the prophylactic use of antibiotics has also played a key role in the agricultural 

industry in the last couple of decades to improve the growth and overall yield of both farm 

animals and crops 22,23. It had been estimated in 2015 that ~80% of the annual antibiotic usage 

in the US is applied prophylactically to farm animals 24. In addition, antibiotics are distributed 

on crop fields when animal manure is used as a crop fertilizer. Animals previously treated with 

antibiotics excrete trace amounts of the drugs which are then redistributed to the soil when their 

manure is applied to crop fields 25. 

Because of the great success of antibiotics for therapy, their usage has steadily increased 

over the past decades. However, this high usage has also resulted in increased contamination 

of natural environments with antibiotics via wastewater from all fields of antibiotic application 

26,27. The contamination of natural environments selectively favors the spread of antibiotic 

resistance among bacteria. Even the low concentrations of antibiotics often found in wastewater 

can provoke the spread of strong resistance in bacteria and positively select for resistant 

variants 28,29. Over the last decade, scientists and government bodies alike have been warning 

the general public about the risk of entering a “post-antibiotic era”, in which the successful 

treatment of currently treatable infections will be no longer possible because of the high degree 

of antibiotic resistance 19,30,31. Antibiotic misuse by patients contrary to doctor’s recommend-

dation, antibiotics being prescribed by doctors when not necessary and antibiotics release into 

the environment due to excessive use in agriculture and livestock have all certainly contributed 

to the increased spread of resistance 6,9,19. Ultimately, resistance is an evolutionary response: 

When bacteria are consistently challenged with antibiotics in their environment, the most 

resistant phenotypes will be positively selected over time. Antibiotic resistance was present 

long before the man-made discovery and application of antibiotics. For example, resistance 

genes have been found in 30,000-year-old permafrost soil samples 32. This finding indicates 

that natural antibiotics have been a selective agent for microbial adaptation for a long time and 

may help us comprehend why antibiotic resistance can evolve so frequently and rapidly.  
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How is antibiotic resistance conferred? 

Antibiotic resistance is generally conferred by mutations in genes that somehow 

influence the effect of the drug. According to evolutionary theory, randomly occurring 

mutations can increase their frequency in a population if they confer a growth advantage over 

the ancestral genotype 33. To fix in the population, the fitness advantage conferred by the 

mutation must also survive any population bottleneck, an event that results in a rapid decrease 

in size and genetic diversity of a population 33. The selection of resistance-conferring mutations 

is a textbook example of rapid evolutionary adaptation: Antibiotic treatment at dosages that are 

too low to effectively kill bacteria will eventually select for de novo mutations that improve 

the fitness of the pathogen under antibiotic therapy 34. Selection of mutants with increased 

resistance can subsequently enable the resistant variants to increase in frequency and to further 

spread to new environments. The mutation rates of bacteria are commonly about 10‐10 to 10‐9 

mutations per site per generation 35. Antibiotics and other stressors can transiently increase the 

mutation rate of treated bacteria via activation of the SOS response, a global stress response 

cascade in bacteria that results in the arrest of the cell cycle and induction of mutagenesis 36. 

By increasing bacterial mutation rates, the risk of a resistance mutation to emerge in time is 

also increased. In addition, variants with elevated mutation rates (so-called hypermutators) are 

commonly present at low frequencies in bacterial populations 37.  

Resistance due to de novo evolution is often conferred by single base pair mutations, 

either single nucleotide polymorphisms (SNPs) or single nucleotide insertions/deletions 

(Indels) 38–40. Single base pair mutations can cause changes in the encoded protein sequence 

that is transcribed into mRNA, which ultimately results in an altered protein structure or 

premature stop of the translation. If structural alterations caused by the mutation change the 

binding site of the antibiotic, the drug will lose its efficacy. However, mutations can also result 

in a non-functioning regulatory gene, which will confer resistance 41,42. There are four general 

molecular mechanisms by which bacteria commonly resist antimicrobial agents: (1) restricted 

drug uptake, (2) increased drug efflux, (3) enzymatic drug inactivation and (4) alteration of the 

drug targets 40,41,43. In case of resistance by increased drug efflux, single point mutations 

commonly occur in negative regulators of multidrug efflux pumps that remove distinct 

substrates from the cytoplasm 42,44. An inactive regulator can also result in constitutively 

increased efflux pump activity that is causing resistance. Duplication of genes that are 

important for drug resistance will also confirm increased resistance 45,46. A common result of 
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partial genomic duplications is heteroresistance, a mixed resistance profile of bacterial 

populations due to genetic heterogeneity. Heteroresistance is caused by genetically resistant 

variants within the population that occur at low frequencies and express higher resistance than 

the rest of the population 47,48.  

 

Figure 1: Antibiotic modes of action and common resistance mechanisms. The upper half of 

the schematic cell summarizes the target sites and the inhibitory effects of the most prevalent antibiotic 

classes (beta-lactam antibiotics, quinolones, sulfonamides and aminoglycosides). The lower half of the 

schematic cell summarizes the four most common adaptive changes in bacteria that ultimately cause 

antibiotic resistance. (Figure taken from Crofts et al. 2017 49.)  

More than 20,000 different resistance genes with highly diverse functions have thus far 

been identified, demonstrating the substantial adaptive potential of bacteria to overcome 

antibiotic treatment from any class or function 6. To further complicate this matter, horizontal 

gene transfer (HGT) is an additional important route for bacteria to acquire resistance genes 

from extracellular sources 50,51. Resistance can rapidly spread via conjugative plasmids that 

often carry multiple selective resistance-conferring genes 52. In addition, resistance genes can 

be inserted into the bacterial genome by bacteriophages via transduction 53. Effective antibiotic 

therapy can reduce the size of the bacterial population to levels at which the mutation supply 

rate is too low to yield beneficial mutations in time for the population to survive the treatment 

54,55. However, bacteria can also express alternative phenotypic traits that enable them to 

survive the antibiotic treatment and may later contribute to resistance evolution. A common 
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phenomenon of phenotypic heterogeneity in bacterial populations is persistence. Persister cells 

are subpopulations of cells existing in a semi-dormant state with a drastically lower growth rate 

than genetically identical normal growing cells 57,58. The reduced growth rate of persisters 

enables higher survival in stressful environments like high antibiotic concentrations. This is 

because cell division is necessary for many stressors, including antibiotics, to confer damage 

56,57. Non- or slow-growing cells can enable the survival of the population during transient 

stress exposure and may enable resistant mutants to emerge later 58,59.  

The threat of emerging multidrug resistance  

After the 1970s, which marked the end of the golden era of antibiotics, the number of 

multidrug-resistant pathogenic bacterial strains has steadily increased 6,60,61. These strains are 

resistant to the majorority of clinically prescribed antibiotics, rendering successful treatment of 

these strains virtually impossible 62. In addition to the increased spread of multidrug-resistant 

pathogenic strains, the development of novel antibiotics for clinical application has simul-

taneously slowed down drastically over the past decades 63. This is due to both challenges in 

the discovery of new antibiotic compounds and financial unattractiveness: The development of 

new drugs is very expensive and does not promise high profits, as new drugs would likely only 

be applied as a last resort effort to treat an infection 64,65. Most European programs to promote 

new AB discovery and development are therefore funded by public sources and not by 

companies 66. 

Even though the call for new antibiotics has been continuously made public over the 

years, the development of alternative treatment strategies has only recently received more 

attention 67. The ultimate reason for the delayed interest in new treatment strategies is increased 

desperation: With the increasing rate of resistance evolution trumping the limited treatment 

options, the threat of multidrug resistance has been increasing with each year 9,69. However, 

experience has proven that bacteria always evolve ways to antagonize the effects of newly 

introduced treatment drugs within only a couple of years 6,68. Therefore, it is crucial to study 

the evolutionary principles of antibiotic resistance to find new ways to effectively slow down 

resistance evolution with the help of both new and currently still effective drugs. 
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Alternative strategies to combat infections while minimizing antibiotic resistance  

Alternative approaches to combat the evolution and spread of antibiotic-resistant 

bacteria include the application of bacteriophages and antimicrobial peptides as well as the 

development of novel vaccines 70–74. In addition, the rise of CRISPR/Cas-based technologies 

has inspired the development of “sequence-specific antimicrobials” that consist of phages or 

phagemids as delivery vectors for guide RNA that targets either essential or resistance / 

virulence genes of the bacterial genome 75.  

Another promising alternative to conventional antibiotic therapy is using already 

established antibiotics more efficiently by considering research findings on evolutionary 

dynamics of resistance. Particular focus has been put on the application of treatments that make 

use of combined effects of two or more antibiotics to reduce resistance evolution 76. Bacteria 

that evolve resistance against single antibiotics also commonly become collaterally resistant 

against antibiotics of the same class, rendering them ineffective as additional treatment options 

77–80. However, resistance against single antibiotics can also confer collateral sensitivity against 

antibiotics of different classes. In this case, evolving resistance against the main treatment drug 

would turn other drugs into viable treatment options. Thus, switching treatment to said drugs 

would dramatically increase the chance of treatment success 77,81. A common example of this 

pleiotropic effect is collateral sensitivity between aminoglycosides and beta-lactam antibiotics 

78,82,83. Aminoglycoside resistance is commonly conferred by mutations that alter the structure 

of the outer membrane of bacteria 84,85. Aminoglycosides bind to the lipid A of the bacterial 

outer membrane for self-promoted uptake via diffusion 86,87. Mutations that cause lipid A 

modifications can disable aminoglycosides from entering the cells, thereby rendering the cells 

resistant 86,87. However, the structural changes in the outer membrane also confer a decreased 

membrane potential that is an important driver of multidrug efflux pumps 88. As a consequence, 

cells with an altered outer membrane have a reduced efflux rate and a higher susceptibility to 

beta-lactam antibiotics and other drugs for which resistance is mediated by efflux 78.  

A different exploitable aspect of resistance evolution is the metabolic cost that typically 

accompanies resistance mutations 89. As mutations in resistance genes commonly affect key 

mechanisms of cellular metabolism, their alteration most likely results in decreased energy 

efficiency and therefore decreased ability to replicate 38,90. The metabolic fitness cost conferred 

by the mutation decreases the bacteria’s growth and its competitive ability when growing 
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together with its ancestor in a non-stressful environment 38,90. Therefore, the severity of the 

fitness cost of a resistance mutation can have important consequences for its fixation and spread 

38. The lower fitness may cause the resistant variant to be outcompeted by less resistant types 

in nonselective environments and ultimately be lost from the population 90,91. In addition to 

growth, decreased virulence and transmission rate can also occur as means of resistance-

associated fitness cost 92–94. However, the degree to which fitness is compromised by resistance 

mutation varies and largely depends on selective strength, bacterial population size, generation 

time and the number of possible resistance mechanisms 95,96. Compensatory mutations, which 

are secondary mutations that lower the fitness cost without affecting resistance, can occur and 

increase the fitness of the resistant variant 91,97. However, the chance of fitness improvement 

by compensatory mutations greatly depends on the severity of the fitness cost 98. 

 

Using experimental evolution to study the long-term effects of new treatment strategies 

To develop antibiotic treatment strategies that kill bacteria and at the same time reduce 

the chance of multidrug resistance evolution, it is necessary to understand the long-term effects 

of antibiotic treatments on bacteria. Since 24 February 1988, Richard Lenski of Michigan State 

University has been leading a long-term study of 12 initially identical populations of 

Escherichia coli bacteria that has led to key understandings about adaptive dynamics and 

evolution of key innovations 100. The success of Lenski’s long term evolution experiment 

proved that experimental evolution is a promising approach to investigate the long-term 

adaptation of bacterial populations over extended periods of time 101. The experimental 

evolution approach has since been applied to study a variety of scientific problems that involve 

the adaptive processes, including antibiotic resistance 102–104. In contrast to medical in vivo 

studies, in vitro evolution experiments offer long-term perspectives on the effects of treatment 

protocols. This way, experimental evolution can also add to the development of novel treatment 

strategies that might reduce the likelihood of resistance while still being able to minimize 

bacterial growth 82. A common experimental evolution protocol is based on serial transfers. It 

utilizes growth media with defined concentrations of antibiotics that are inoculated with 

bacteria, which are then allowed to grow under ideal conditions for a time period of 12-24 

hours. After this growth period, a small sampling fraction of the culture is transferred to a 
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freshly prepared vessel containing the same medium. This process is continued until a desired 

number of generations has been achieved 83,101,104.  

By withdrawing other selective forces and confronting bacteria only with the antibiotic 

as the single environmental stressor, the adaptation of the bacteria to the antibiotic pressure can 

be studied in a very controlled and detailed manner 82,100,101. With the help of modern molecular 

tools like next-generation sequencing (NGS), the underlying genetic mechanisms of resistance 

evolution can be identified and tracked down 104,105. With NGS, the complete genomes of 

multiple strains from large numbers of evolved populations can be rapidly and economically 

sequenced 106. Due to its high accuracy, NGS is also the most substantial method to detect 

mutations and, therefore, a vital tool to accompany modern-day experimental evolution 102,107. 

Over the last two decades, many studies used experimental evolution to simulate the 

effects that long-term multidrug treatments have on the resistance properties of bacteria. 

Several important observations have been made. In 2007, Perron et al. experimentally 

compared the effects of two antibiotics being applied either simultaneously or separately and 

are switched at every transfer. They identified that sequential treatment has the higher potential 

to slow down antibiotic resistance evolution, depending on the order the drugs are given in 108. 

These findings were later confirmed by Kim et al in 2014 109. In 2008, Hegreness et al. showed 

that adaptation rates are reduced by pairs of two drugs being less effective when applied 

together than alone (antagonism) compared to drug pairs that are more effective when applied 

together than alone (synergism) 110. Building on the findings of potentially slowing down 

resistance evolution with multidrug treatments, Imamovic & Sommer introduced the concept 

of collateral sensitivity cycling in 2013. In this treatment concept, two antibiotics with 

reciprocal collateral sensitivity are deployed cyclically to select against resistance to either drug 

77. In addition, Levin-Reisman et al. presented evidence that antibiotic tolerance can facilitate 

the evolution of resistance in 2017 111.  
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Table 1: Examples of studies on antibiotic resistance that made use of experimental evolution. 

Studied factor  Main finding Bacterium Year Reference 

Antibiotic 

combinations 

Alternating drugs slows the rate of 

resistance evolution compared with 

single-drug treatments 

Staphylococcus 

aureus 

2014 109 

Antibiotic 

combinations 

Synergistic combinations select 

more strongly for resistance than 

single drugs or antagonistic 

combinations 

Escherichia coli 2008 112 

Antibiotic 

landscapes 

Resistant mutants can be spatially 

and temporally outcompeted by 

more sensitive lineages 

Escherichia coli 2015 101 

Antibiotic tolerance Tolerance facilitates the evolution of 

resistance 

Escherichia coli 2017 111 

Collateral sensitivity Aminoglycoside resistance through 

reduction in the proton‐motive force 

diminish the activity of major efflux 

pumps, causing sensitivity 

Escherichia coli 2013 78 

Collateral sensitivity Two antibiotics can be deployed 

cyclically to select against resistance 

to either drug 

Escherichia coli 2013 77 

Immigration under 

multidrug treatment 

Migration into antibiotic 

environments increases the rate of 

resistance evolution and decreases 

the resistance costs, especially under 

cycling therapy  

Pseudomonas 

aeruginosa 

2007 113 

Increasing antibiotic 

concentration 

Ordered adaptive pathways lead to 

strong antibiotic resistance 

Escherichia coli 2012 114 

Low Antibiotic 

concentrations 

Selection of resistant bacteria occurs 

at extremely low antibiotic 

concentrations 

Escherichia coli 

Salmonella 

enterica 

2011 28 

Resistance evolution 

in cystic fibrosis-like 

environment 

Genes and genetic pathways are 

repeatedly involved in adaptation to 

antibiotics and cystic fibrosis-like 

conditions 

Pseudomonas 

aeruginosa 

2012 115 
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Research conducted in our own lab showed that the joint effect of two antibiotics that 

are applied simultaneously usually does not last long. Instead, bacteria regularly adapt quickly 

to the joint selective pressure. However, the evolvability of resistance in combination 

treatments depends on their respective long-term drug interaction properties. If two antibiotics 

maintain a synergistic effect over long time, resistance is less likely to evolve 80,116. In general, 

application of multiple drugs in a rapid cycling regimen shows a high inhibitory potential and 

a low likelihood of long-term adaptation 117. One important reason for the high efficacy of 

switching the treatment drugs every 12 hours is cellular hysteresis. If one drug in the cycling 

regimen can induce change in the bacterial physiology that enhances susceptibility towards the 

following drug, resistance is less likely to evolve. A significant difference in adaptation rates 

was not observed when regular and random temporal drug cycling regimens were compared. 

In addition, cycling with two drugs and cycling with two two-drug combinations also did not 

yield a significant difference in resistance evolution 117. 

Overall, experimental evolution has shown to be a promising approach to test hypo-

theses about evolutionary concepts of multidrug treatment strategies. When applied effectively, 

combinations of antibiotics can slow down the de novo evolution of resistance. Experimental 

validation of promising concepts like collateral sensitivity cycling is essential to make the best 

use of all possible treatment options. As of now, the most precise testing of long-term effects 

of antibiotic therapy is achieved with evolution experiments. 

 

Neglected population properties 

The general interest in bacterial evolution has increased substantially over the last 20 

years. At the same time, the experimental evaluation of long-term effects of antibiotic exposure 

has gained more attention. However, the influence of population biological principles on the 

evolution of antibiotic resistance has so far mainly been approached in a theoretical framework 

93,118–121. Uncovering the population dynamics and their dependence on population biological 

factors remains a crucial challenge to address. This information might help us to make reliable 

predictions about antibiotic resistance evolution. It was demonstrated that bacterial population 

size can impact the outcome of drug cycling treatments because multidrug resistant mutants 

have a higher likelihood to appear in large populations 122. This finding highlights that 
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translation of experimental findings for clinical application can be limited when the potential 

influence of population-related factors on treatment outcome is not sufficiently considered.   

Studies, in which antibiotic resistance is investigated by experimental evolution, 

commonly focus on the characterization of single clonal lineages as study systems. In contrast, 

natural bacterial populations mostly show a high genetic diversity. Populations comprised of a 

single species can consist of several clonal lineages and differ in their genotypes because of 

previously acquired mutations 123–127. The genetic diversity of populations of both hosts and 

parasites plays a key role in determining the spread and evolution of infectious diseases. The 

genetic diversity of host populations can limit the spread of pathogens 128,129 On the other hand, 

the genetic diversity of the parasite increases its adaptability to local hosts 130. Clonal compe-

titions commonly take place in genetically diverse bacterial populations. However, it has also 

been shown that lineages of multi-clonal populations can mutually coexist instead of competing 

against each other 131–133.  

The effect of population size and epistasis on the adaptive path of bacterial populations  

Beneficial mutations that increase the host fitness must not necessarily fix in the 

population. Apart from the fitness effect of the mutation itself, the likelihood of individual 

mutations to be fixed first is affected by the population size, the genetic diversity of the 

population and its mutation rate 134,135. All these factors can drastically change after a 

population bottleneck, an event that is characterized by the sudden, drastic reduction of 

population size 136. Population bottlenecks are common in host-pathogen interactions and can 

strongly reduce the genetic diversity of the antagonist 137,138. Apart from the normal infection 

cycle of a pathogen 139–142, the bottleneck strength can be further increased by clinical 

treatment, as in case of antibiotic therapy 143.  

The adaptive path of a population describes the order by which selected beneficial 

mutations fix in the host’s genome over time. Population size does not solely determine the 

likelihood of an organism to adapt to a stressful environment. However, it does influence the 

degrees of directions that the adaptive path can take because the likelihood of individual 

mutations to occur becomes higher with increasing population size 144–147. It is therefore critical 

not to ignore the influence that population size likely has on the dynamics of resistance 

evolution. Evolutionary theory predicts that the fate of alleles is subjected to genetic drift more 

strongly in small populations 94,148. Thus, small populations are commonly less genetically 
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diverse. Consequently, adaptation is more likely to be shaped by selective sweeps and periodic 

selection rather than by the simultaneous occurrence and establishment of several fit genetic 

variants in the population, also known as the Hill–Robertson effect or clonal interference 

33,92,99,149. Instead, clonal interference is rather expected when the population size is large 

enough and the selective pressure low enough to allow for the simultaneous occurrence and 

selection of several independent beneficial mutations in the ancestral genetic background 150. 

Therefore, clonal interference is more likely to shape the path of adaptation for large popu-

lations 92,151–153. Clonal interference between different beneficial alleles and their respective 

frequencies also affects the dynamics of less beneficial mutations due to strong linkage 

disequilibrium 154,155. Large populations have a higher chance of fixing the mutation that 

confers the highest immediate fitness advantage early than small populations because of their 

higher mutational load 144. In comparison, one would expect a larger diversity in first-step 

mutations when the population size is small 144.  

The effect of a mutation on its host’s fitness can greatly depend on the host’s genetic 

background. Epistatic interactions between individual mutations occur when their combined 

fitness effect is not additive, which can add to the complexity of multi-clonal populations 156–

158. Mutations that are beneficial in one lineage can be deleterious for other lineages of the 

population 159–161. Therefore, the adaptive path of the population can be constrained by the epi-

static interactions of the first selected mutations with any secondary mutation 162–164. As 

effective population size also influences the chance of epistasitic mutations to arise, the adap-

tive path would then also be less predictable for populations of small size than it would be for 

large populations 156,159,160,165.  

The influence of population bottlenecks on fixation probabilities of mutations 

Population bottlenecks have a strong influence on the genetic diversity of bacterial 

populations and consequently on their genome evolution. When the population size is reduced, 

the chance of individual alleles to rapidly change in frequency due to genetic drift is drastically 

increased 166,167. In turn, drift will reduce the genetic diversity of the population because one 

genotype with an increased chance to fix will cause other, less fit variants to be lost from the 

population 168. However, drift effects must not necessarily be entirely random, as the chance of 

an individual to survive a bottleneck event strongly depends on the fitness of its genotype in 

the environment 142,169. Naturally fitter variants will sustain their competitive advantage if the 
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population bottleneck is not too severe to trump natural selection. Persisters, tolerant or 

resistant variants have an increased chance to be fixed under stressful, selective conditions due 

to both drift and natural selection 170. If beneficial mutations occur at high frequencies during 

the bottleneck, they also have a higher likelihood of further increasing in frequency due to drift 

171. In contrast, genetic drift causes low-frequency mutations of small effect to be stochastically 

lost from the population 172.  

Beneficial mutations are more likely to survive in bottlenecked populations than in large 

populations of constant size because the benefits of population growth outweigh the impact of 

the bottleneck on survival 173,174. The overall fixation rate may be increased in bottlenecked 

populations compared to populations of constant size because of sustained periods of expo-

nential growth between bottlenecks 175. Thus, strong bottlenecks are more likely to maintain 

mutations of small or even deleterious effect in the population 176. In contrast, wide bottlenecks 

are expected to maintain a higher rate of adaptation. Under selective conditions, adaptation of 

bacterial populations under clonal interference is driven by highly beneficial mutations 

133,153,177. As the probability of these mutations to occur is high under wide bottlenecks, the 

adaptive process is thus characterized by a high probability of parallel evolution 92,144,147. In 

contrast, adaptive dynamics by clonal interference are less likely to be maintained under strong 

selective bottlenecks, which decreases the chance of parallel evolution 175,178. Thus, population 

bottlenecks can take great influence on adaptive allele dynamics and interfere with the selective 

processes. Both beneficial and deleterious alleles can either be maintained or excluded from 

the population, depending on both bottleneck size and selective strength.  

The influence of population bottlenecks on bacteria in natural populations 

Bottleneck events frequently occur in nature and play a critical role in the evolutionary 

history of bacterial populations. The impact of environmental factors on the size and genetic 

composition of bacterial populations can take place at regular (e.g. seasonal change) or 

irregular (e.g. stochastic perturbance) intervals and therefore take a great influence on the 

adaptive path of the population 92,147,151,152,179–181. Whenever the transfer of a subpopulation 

from an environmental reservoir to a previously uninhabited environmental patch (being it a 

biotic or abiotic environment) takes place, only a fraction of the population will be part of the 

transfer, let alone survive it. This initial stage of new colonization by a small number of 

individuals is described as the founder effect: The genetic architecture of the founding 
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population will restrain the adaptive steps that the population can take via mutations to improve 

its fitness in the new environment 182,183.  

For pathogens, every infection cycle within a new host is accompanied by a strong 

reduction of effective population size, as host immune systems typically select for the survival 

of only few cells 142,169. Once a resistant phenotype has been selected, it is unlikely that another 

variant with a very similar phenotype will be acquired, as the selective pressure of the antibiotic 

decreases in the presence of an already acquired resistance gene 184. Pathogens are subjected to 

severe, successive bottlenecks by the transmission from host to host, but environmental factors 

such as seasonality, resource limitation and disease can impose bottlenecks on any natural 

population 148,164,175–179. However, bottlenecks do not only influence the evolutionary path of 

pathogens. The life history of all of a host‘s microbiome is also shaped by population 

bottlenecks 190,191. Symbiotic and commensal bacteria can be transmitted to new hosts either 

vertically (from the environment) or horizontally (passed on by ancestors). Both routes are 

examples of strong population bottlenecks, as only a small number of bacteria are transferred 

from a larger population to become the founding colonizers of the new host 190,192. After the 

first bacteria colonize the host colonization as founders of the native microbiome, the chance 

of secondary colonizing bacteria to establish themselves as new microbiome members is 

restricted by the fitness and frequency of the first colonizers 193–195. While the transmission of 

commensals is often aided by the host, pathogens are subjected to a strong selection pressure 

by the host’s immune system 193–195. 

The potential influence of population bottlenecks on bacteria in evolution experiments  

The impact of population bottlenecks on resistance evolution has thus far been greatly 

overlooked 151,196. Population bottlenecks are an intrinsic feature of any experimental protocol 

that includes serial transfer of a small fraction of the evolving population to sustain microbial 

populations for hundreds or thousands of generations 100,189. A common bias in most 

experimental protocols has been the relative bottleneck size that bacteria undergo when being 

transferred to new culture medium after each growth period. Populations that already carry a 

beneficial mutation will show higher yield at the end of a growth period than populations in 

which beneficial mutations have not yet been established 151,196,197. In a common evolution 

experiment, the same percentage of each population is transferred to the next growth period at 

the end of every transfer cycle. This means that the number of cells that start the next growth 
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period will be higher for that population that already fixed the beneficial mutation than for the 

population that does not carry the mutation. This potentially provides the population with the 

beneficial mutation an increased chance to acquire additional beneficial mutations even sooner. 

In contrast, if a beneficial mutation has not occurred before the transfer, a small surviving 

population will likely require longer to acquire a beneficial mutation and is instead at higher 

risk of going extinct 113. Even though the relative bottleneck size (percentage of bacteria that 

are transferred) remains the same over the course of the experiment, the absolute bottleneck 

size (number of bacteria that are transferred) is variable 189. Thus, a population bottleneck can 

be severe in either a relative sense, an absolute sense, or both 198. When the absolute bottleneck 

size is extremely small, adaptation is most likely limited if not impossible 175,178,189. In an evo-

lution experiment, the population size is usually at its peak immediately before the transfer 97. 

Since more mutations occur when the population size is large, most beneficial mutations occur 

at late times during a growth period and therefore are unlikely to persist in the population after 

the bottleneck 178. An about fivefold population growth between bottlenecks is predicted to 

optimize the occurrence and survival of beneficial mutations in serial passage experiments 174. 

However, bottlenecks that are more severe than this optimal prediction substantially reduce the 

occurrence and survival of adaptive mutations 174. 

 

Pseudomonas aeruginosa & its role in cystic fibrosis 

The model organism used for this study is the bacterium Pseudomonas aeruginosa 

(PA). It is a ubiquitous Gram-negative gamma-proteobacterium that can inhabit a great variety 

of environments such as plants, soil, freshwater, seawater, sewage and various surfaces 123,199. 

It is a non-fermenter that can utilize a wide range of carbon and energy sources and produce 

numerous competitive molecules such as antibiotics, siderophores including pyocyanin and 

pyoverdine that give the bacterium its characteristic green color, and other virulence factors 

200,201. It has a small cell size (typically 1-3 µm in length), is a strict aerobe, highly motile and 

grows optimally at 37 °C 123,200. It also is an effective biofilm former 202. Its genome is one of 

the largest among bacteria (5.5- to 7.0 Mbp) and includes a high number of regulatory genes 

as well as metabolic features that enable the adaptation to various ecological niches 123,202–204. 

PA is an opportunistic pathogen of mammals, insects and plants 205,206. 
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In humans, PA can infect a multitude of different organs and tissues. Immuno-

compromised patients are especially susceptible to PA infections, making it one of the most 

relevant causes of nosocomial infections. It is particularly notorious for wound and burn 

infections as well as infections after implantation of organs and prostheses but can also play a 

significant role in airway and urinary tract infections 207–209. PA contains a large natural 

resistome to cope with the selective pressure of different antibiotics classes, which is limiting 

treatment options to manage PA infections successfully 202,210. In addition, PA can readily 

evolve resistance by genetic adaptation 211. Its genome contains a broad set of genes that encode 

for various multidrug efflux pumps and deleterious mutations in regulatory genes like efflux 

repressors rapidly lead to multidrug resistance 212,213. Both chromosomal mutations and genes 

acquired by HGT play a critical role in the evolution of antibiotic resistance in PA, to different 

degrees, depending on the clonal variant 96,211. Only in 2017, the World Health Organization 

listed carbapenem-resistant PA in the highest priority class of critical pathogenic bacteria for 

which new antibiotic treatments are urgently needed 209. 

Due to its ubiquitous lifestyle and high adaptability, PA can also colonize the human 

lung and cause pneumonia 214,215. PA lung infections are a common problem for patients 

suffering from cystic fibrosis (CF) 216,217. CF is a hereditary disease that affects the normal 

function of sodium chloride channels in human epithelia. The disease is caused by a loss-of-

function mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene 

on chromosome 7 218,219. CFTR is a transmembrane channel that controls the movement of 

chloride and bicarbonate ions into and out of epithelial cells 220,221. Defects in CFTR lead to 

significantly decreased chloride secretion, increased sodium absorption, excessive movement 

of water into the airway epithelial cells, dehydration of the periciliary matrix and the secretion 

of highly viscous mucus 221,222. In the lung, those hypoxic plugs formed by heavy mucus are a 

suitable environment for the growth of foreign bacteria that can cause severe inflammation, 

which in turn leads to progressive deterioration in lung function 223,224. Bacterial infections are 

the primary cause of death in CF patients. A wide range of microorganisms is associated with 

pulmonary infections in CF 225,226. In addition, the composition of the lung’s microbiome 

changes over the course of a patient’s lifetime 226–228. For most CF patients, PA eventually 

becomes the most abundant pathogen over the course of a patient’s lifetime 226–228.  

PA colonizes about 80% of all CF patients and causes chronic lung infections that 

eventually cause respiratory failure in most cases 229–231. Phenotypic indicators of chronic 
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infections by PA are decreased motility, virulence and quorum sensing, and increased auxo-

trophy, antibiotic resistance and mucoidy 232. Generally, drug-resistant phenotypes with an 

increased ability to form biofilms have the highest ability to colonize the CF airway 233. In 

addition, a large fraction of PA found in CF lungs displays a mucoid phenotype due to increased 

secretion of the exopolysaccharide alginate 232. Because of the increased risk of CF patients to 

become chronically infected by foreign bacteria, CF therapy revolves heavily around 

controlling for pulmonary infections with antibiotic treatment 216,234. However, there is no 

consensus on the best combinations, dosages, or the length of treatment courses 235. Commonly 

applied antibiotics are ciprofloxacin, ceftazidime, meropenem, tobramycin, colistin or 

aztreonam 236. Antibiotic treatments are commonly done at home by inhalation of single drugs 

for 1-4 weeks, depending on the patient’s wellbeing 237,238. In addition to antibiotic therapy at 

home, patients occasionally receive 2‐week courses of rehabilitative therapy that often include 

additional treatment with combinations of two or even more antibiotics 239,240. However, 

constantly being exposed to the selective pressure of antibiotic therapy also drives the adap-

tation of PA clones to the CF lung environment 241,242.  

 

Objectives 

Over the past decades, antibiotic resistance among nosocomial pathogenic bacteria has 

turned into a global health crisis. In order to reduce the spread of multidrug-resistant bacteria, 

new treatment strategies that make effective use of current and future antibiotics need to be 

developed. To identify effective treatment strategies, the complex evolutionary mechanisms by 

which antibiotic resistance evolves in bacterial populations need to be studied in a 

comprehensive way. Experimental evolution is a powerful tool to study how bacteria adapt to 

their environments over extended periods of generations. In the context of antibiotic resistance, 

experimental evolution has served as an important control to verify theoretical concepts about 

bacterial resistance evolution. However, the likely contribution of population biological factors 

like population size and genetic composition to antibiotic resistance evolution has remained 

severely understudied. The influence of population size on the outcome of evolution experi-

ments has likely been underestimated if not even completely ignored in the design and 

discussion of most experimental results. The combined effect of population bottlenecks and 

selective strength on allele frequency dynamics has so far not been quantified. This information 
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is especially important for our understanding of antibiotic resistance evolution, because 

bottlenecks are ubiquitous in natural bacterial populations and influence adaptation of human 

pathogens during infection and transmission processes. Therefore, it is necessary to system-

atically investigate the impact of different population biological factors on the evolution of 

bacteria. The influence of bottleneck size on bacterial adaptation to antibiotic selection has 

been greatly under-estimated for both natural and in vitro experimental populations. In my 

thesis, I thus want to specifically address the influence of bottleneck size on antibiotic 

resistance evolution.  

The main objective of my thesis is to quantify the influence of bottleneck strength on the rate 

of adaptation to the selective pressure of antibiotics. To tackle this challenge, I performed 

evolution experiments for which I manipulated the transfer size of the evolving populations in 

the presence of stable antibiotic concentrations. Instead of relative sampling fractions, I always 

transferred a defined number of cells from the population between two growth periods. In 

addition to different bottleneck sizes, varying levels of selective pressure were applied to 

bacterial populations by exposing them to different antibiotic concentrations. This allowed me 

to quantify the impact of population size on the evolution of resistance. Bacterial populations 

were frozen at different transfers and their DNA was isolated for Whole Genome Sequencing. 

By identifying resistance mutations and the distribution of their respective frequencies over the 

course of the evolution experiment, their rate of adaptation can be determined on the genetic 

level. Theory predicts that the bottleneck strength affects the genetic diversity of the population 

depending on the environmental conditions. Thus, the adaptational process is expected to differ 

between the treatment regimens, with the treatment of the widest bottleneck and the highest 

inhibitory concentration expected to provoke the evolution of the highest resistance.  

In addition, the experiments could help to investigate the impact of population 

composition and genetic diversity on resistance evolution, as population diversification will 

likely be influenced to different degrees in the individual treatment groups. Strong bottleneck 

treatments are expected to produce the highest diversity between different replicate populations 

and wide bottleneck treatments are expected to produce the highest diversity within different 

populations.  
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The following hypotheses are tested: 

H1,1: Wide rather than small bottleneck size reduces treatment efficacy in terms of 

strength and speed of resistance evolution. 

H1,2: High rather than low antibiotic selection strength reduces treatment efficacy in 

terms of strength and speed of resistance evolution. 

H1,3: Small rather than wide bottleneck size increases variation in accumulation of 

selectively favored mutations. 

H1,4: High rather than low antibiotic selection strength increases parallel evolution. 

 

Approach 

The model system for my experimental approach was the bacterium Pseudomonas 

aeruginosa subclone PA14 and a selection of antibiotics that specifically inhibit its growth by 

different mechanisms. PA is a facultative human pathogen with great intrinsic capacity to 

evolve resistance against any clinically relevant antibiotic. It has been established as a model 

organism for infection biology and its mechanisms of resistance evolution are well-studied. 

The antibiotics used in this thesis provide selective pressure with distinct modes of action. 

Carbenicillin is a penicillin targets the bacterial cell wall synthesis. Ciprofloxacin is a fluoro-

quinolone that inhibits the DNA gyrase. Gentamicin is an aminoglycoside that inhibits the 30S 

subunit of the bacterial ribosome. Colistin is a peptide that disrupts the bacterial outer 

membrane.  

The general setup of the evolution experiments was based on previously published 

experimental studies from our lab 80,83,117,243,244. They were carried out in 96-well plates with a 

sample volume of 100 μl per culture. By reducing both the culture volume and the space to 

operate on, experiments could be performed in a semi-high-throughput manner. The 

experiments encompassed serial transfers of distinct cell numbers of bacterial populations after 

growth periods of > 9 hours. The bacteria were challenged against different concentrations of 

antibiotics to identify how populations adapt under different levels of selective strength. In 

addition, bacterial populations not challenged with antibiotics were run as controls for 

uninhibited growth and media adaptation under different bottleneck sizes. For each plate, six 
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wells were neither inoculated with bacteria nor with antibiotics to serve as controls for 

systematic contamination of the experimental setup. I propagated the evolving bacterial 

populations for a total of 15 growth periods, encompassing ~ 100 generations for the 

uninhibited control populations. 

I introduced a new method to the experimental setup that ensured the maintenance of 

the same bottleneck size throughout the evolution experiment. In order to maintain a steady 

number of cells to be transferred between two growth periods, it was critical to quantify the 

actual cell concentration and subsequently calculate the transfer volume necessary to transfer 

the desired number of cells. I achieved this goal by counting the cells in subsamples of every 

replicate population with a flow cytometer before transferring the appropriate cell number to 

the next growth period. Cell counting of an entire 96-well plate was accomplished within < 2 

hours and is much more precise than counting cells in a counting chamber. A small sample 

from each population was quantified in the flow cytometer from which the density of the main 

population was then extrapolated. Based on the approximated cell concentration, I could 

calculate the necessary resuspension volumes and applied them to the cultures to adjust the cell 

concentration before passaging to the next growth period. 

In addition, it was crucial to avoid dilution effects when transferring different culture 

volumes from one experimental plate to the next. If different bacteria cultures grow at 

dissimilar rates, the transfer of the same volume will subsequently result in different nutrient 

availability for the next growth period. For example, in stationary phase, all nutrients in the 

medium have been consumed. In mid-exponential phase, only ~ 50% of the nutrients have been 

consumed. This potential “starvation effect” would develop into a systematic error over the 

course of the evolution experiment because the potential influence of different nutrient supply 

on the adaptive process will remain incomprehensible. Thus, it was essential to replace the old 

medium with fresh growth medium before performing the transfer. I solved this issue by 

separating the cells from the old medium after each growth period via centrifugation and 

subsequently resuspending the cell pellets in fresh medium before performing the transfer. 

To approach the objectives, I ran different sets of evolution experiments. Three different 

bottleneck sizes of PA14 cultures (50,000; 500,000 and 5,000,000 cells) were challenged 

against four different inhibitory concentrations (IC0, IC20, IC50 and IC80) of four antibiotics 

(carbenicillin, ciprofloxacin, colistin and gentamicin) that inhibit yield of PA14 after 12 hours 

of growth by 0%, 20%, 50% or 80%. For each experiment, only a single antibiotic was used. 
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After the experiments, bacteria were frozen and later revived for phenotypic and genetic 

testing. The resistance of the evolved populations against the treatment drug was measured 

with standardized dose response curves. In addition, I obtained growth characteristics of the 

evolved populations in drug-free medium. I extracted DNA from the populations of the last 

growth period and WGS was performed to identify adaptive mutations. Subsequently, popu-

lations from intermediate time points of the experiments were also sequenced to uncover the 

presence, absence and proportion of beneficial mutations at the respective time points of the 

experiment and to identify additional beneficial alleles. This allowed me to trace the history of 

beneficial mutations within the populations over the course of the experiments and to evaluate 

the degree of parallel evolution among the replicate populations. Furthermore, I performed 

competition experiments with defined mutants from the experiment to validate the mutation’s 

adaptive benefit under different bottleneck sizes and selective pressures. Thus, I could study 

the impact of serial bottlenecks on the rate of antibiotic resistance evolution in a detailed and 

comprehensive manner. 
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Material and Methods 

Material 

Laboratory devices 

-20 °C freezer   AEV-TS; Thermo Fisher Scientific Inc., USA  

-80 °C freezer   HFU 400TV; Thermo Fisher Scientific Inc., USA  

Autoclave   Laboklav 135MSL-FA; SHP Steriltechnik AG, Germany 

Centrifuge   Centrifuge 5810 R; Eppendorf AG, Germany 

Clean bench   Biowizard Silver SL-200 Class II; Kojair Tech Oy, Finland 

Flow cytometer   Guava EasyCyte HT Blue‐Green; Merck KGaA, Germany 

Fridge    AEV-TS; Thermo Fisher Scientific Inc., USA  

Fume hood   Abzug NA 1500 EN; Lamed Vertriebs-GmbH, Germany 

Gel photo documentation ChemiDoc Touch; Bio-Rad Laboratories Inc., USA 

Microplate shakers   Titramax 100, 1mm orbital; Heidolph Instruments, Germany 

Multi-channel pipettes Xplorer Plus; Eppendorf AG, Germany 

PCR cycler   Labcycler; SensoQuest GmbH, Germany 

pH meter   HI 221; Hanna Instruments Deutschland GmbH, Germany 

Plate readers    Infinite M200Pro Nanoquant; Tecan Group, Switzerland 

Serological pipette  Easypet 3; Eppendorf AG, Germany 

Shaking incubators  Thermomixer Comfort; Eppendorf AG, Germany 

    Titramax 1000; Heidolph Instruments GmbH & Co. KG 

Single-channel pipettes US-Patent No. 5,531,131; Eppendorf AG, Germany 
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Spectrophotometer   Jenway 6300 ViS; Cole-Parmer Instrument Company LLC, USA 

Standing incubator  Heraeus B12; Thermo Fisher Scientific Inc., USA 

Vortexer   Lab dancer; IKA-Werke GmbH & CO. KG, Germany 

 

Consumables 

96‐well plates    Greiner Bio‐One, Germany; Ref. 655161 

Buffer Chemicals  Carl Roth GmbH; Germany 

Centrifugal filters  Merck Millipore, USA; Ref. UFC505096 

Culture vessels  Sarstedt, Germany; Ref. 62.547.004 

Membrane filter  Sarstedt, Germany; Ref. 83.1826.001  

Microtubes   Eppendorf AG, Germany; Ref. 0030120094 

PCR plates   Sarstedt, Germany; Ref. 72.1978.202 

Petri dish   Sarstedt, Germany; Ref. 82.1473.001 

Pipette tips   Sarstedt, Germany; Ref. 70.765.100 

Plate sealing foil   Sarstedt, Germany; Ref. 95.1994 

Sealing film   Parafilm M (PM-996); Bemis Company Inc., USA 

Serological pipettes  Sarstedt, Germany; Ref. 86.1254.001/ 86.1256.001/ 86.1685.001 

 

Media and buffers  

Bacteria were grown in sterile M9 minimal medium, consisting of 7 g/l K2HPO4, 2 g/l 

KH2PO4, 0.588 g/l trisodium citrate, 1 g/l (NH4)2SO4, 0.1 g/l MgSO4 and supplemented with 

0.2% glucose and casamino acids.  
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For long-time storage, bacterial cultures were supplemented with 30% glycerol before 

freezing at -80 °C. 

For cultivation of bacteria on solid surfaces, M9 medium was supplemented with 15 g/l 

of agar-agar before autoclaving to generate M9 agar.  

Phosphate-buffered saline (PBS) - consisting of 0.2 g/l KCl, 8 g/l NaCl, 1.42 g/l Na2HPO4 and 

0.24 g/l KH2PO4 - was used as a dilution buffer for the cell counting in the flow cytometer to 

prevent both cell growth and cell lysis during the measurements in the flow cytometer. 1.9 mM 

propidium iodide in water was used as a staining solution to identify dead cells during flow 

cytometry.  

CTAB buffer was used for the extraction of DNA from the evolved and ancestral PA14 strains. 

The buffer consists of 2% CTAB (cetyl-trimethyl-ammonium-bromide), 0.1 M Tris-HCL, 0.02 

M EDTA, 1.4 M NaCl. After autoclaving, 0.2% ß-mercaptoethanol is added to the solution.  

 

Kits 

The GeneJET Gel Extraction Kit (Ref. K0691) by Thermo Fisher Scientific Inc., USA was 

used to purify DNA solutions from agarose gel extracts.  

 

Antibiotics 

The antibiotics used for this thesis are bactericidal antibiotics that are specifically used 

for the treatment of infections caused by Pseudomonas aeruginosa and other Gram-negative 

bacteria. They represent four of the major classes of bactericidal antibiotics (β-lactam 

antibiotics, fluoroquinolones, polypeptides and aminoglycosides). 

Carbenicillin (CAR) is a member of the carboxypenicillin subgroup of the penicillins 

(beta-lactam ABs). It targets the bacterial cell wall synthesis by inhibiting DD-transpeptidase. 

It has been discontinued for clinical application in favor of ticarcillin 245. It had previously been 

applied for the intravenous treatment of urinary tract infections because of its broad spectrum 
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against Gram-negative pathogens 245. However, it is inactive against Gram-positive bacteria 

and susceptible to degradation by beta-lactamases.  

Ciprofloxacin (CIP) is a fluoroquinolone that inhibits the ligase activity of the type II 

topoisomerases, gyrase and topoisomerase IV which causes DNA with single and double-

strand breaks that ultimately leads to cell death 246. Because of its broad-spectrum activity 

against both Gram-positive and –negative species and its various possible routes of 

administration (oral, topical, intravenous), it is one of the most widely used antibiotics in clinics 

worldwide 246. Side effects include tendinitis, nervous system defects & diarrhea.  

Gentamicin (GEN) is an aminoglycoside that inhibits protein synthesis by binding to 

the 30S subunit of the bacterial ribosome. It is used for the treatment of respiratory tract 

infections, urinary tract infections, blood, bone and soft tissue infections 247. GEN treatments 

can cause neuropathy, kidney damage as well as inner ear problems 248. Nowadays, it is mostly 

used as a last-resort antibiotic for the treatment of resistant Gram-negative pathogens because 

of its severe side effects. 

Colistin (COL), aka polymyxin E, is a polycationic peptide that disrupts the bacterial 

outer membrane by displacing magnesium and calcium ions in the lipopolysaccharide 249. 

Despite the recent spread of plasmid-borne mcr-1-conferred resistance, clinical resistance 

against colistin is still rarely observed 250. It is thus considered one of the most valuable last-

resort antibiotics against multidrug resistant Pseudomonas aeruginosa, Klebsiella pneumoniae, 

and Acinetobacter baumannii 249. Common side effects include both nephro- and neuro-

toxicity. 

Table 2: Antibiotics used in this thesis. 

Name  Abbr.  Antibiotic class  Distributor MIC  IC80  IC20  

Carbenicillin 

disodium salt 

CAR  β-lactam 

antibiotic 

(Penicillins)  

Roth 

Ref. 6344.2 

35 μg/ml  40 μg/ml  18 μg/ml  

Ciprofloxacin  CIP  Fluoroquinolone  Sigma‐Aldrich 

Ref. 17850‐5G‐F 

60 ng/ml  40 ng/ml  15 ng/ml  

Colistin 

sulfate salt 

COL  Polypeptide  Sigma‐Aldrich 

Ref. C4461-

100MG 

10 μg/ml  6.5 μg/ml  2.5 μg/ml  

Gentamicin  GEN  Aminoglycoside  Roth; 

Ref. HN09.1 

600 

ng/ml  

510 

ng/ml  

380 

ng/ml  
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Bacterial strains 

The Pseudomonas aeruginosa strain UCBPP‐PA14 (from here on referred to as either 

‘PA14’ or as ‘Wt’ to distinguish it from experimentally evolved clones) has been chosen as the 

ancestral strain for my evolution experiments. PA14 is a clinically isolated strain of 

Pseudomonas aeruginosa that shows a particularly high virulence towards animal hosts in 

comparison to the common PA reference strain PAO1 251. Its genome has been fully sequenced 

and annotated 252. PA14 is the most common clonal group of Pseudomonas aeruginosa 

worldwide 253. In the last couple of years, it has been established as a model organism for a 

broad set of experimental evolution studies 254–257. Pipelines for comparative genomics had 

previously been developed for the computer cluster of the lab and well-studied data of the 

model system has been published by other lab members over the last decade 80,83,117,243,244. 

Additional evolved clones were selected for comparative experiments after the evolution 

experiments were run and identification of mutations by population genomic analyses was 

completed. The clones carry single point mutations (either a single nucleotide polymorphism 

(SNP) or a 1-base pair deletion) in either the gene pmrB or ptsP.  

Table 3: Evolved clones used in competition experiments. 

 

 

  

Mutated gene Population Clonality Position of SNV in gene Position in genome 

pmrB D12 mono G239A 5636922 

A5 bi G239A 5636922 

A6 bi T521A 5637204 

ptsP A12 mono Δ274 393042 

B11 mono C1955T 394724 

E7 bi C1480T 394249 
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Software 

Table 4: Software used in this thesis.  

 

Program  Developers / Main authors 

Burrows-Wheeler Aligner 258 Sanger Institute 

FastQC 259 Babraham Institute 

FreeBayes 260 Erik Garrison 

GIMP 2 The GIMP Development Team 

guavaSoft Merck-Millipore 

GrowthRates 261 Barry G Hall 

i-control Tecan 

Inkscape Inkscape Community 

Integrative Genomics Viewer 262 Broad Institute 

Mendeley Mendeley Ltd. 

Microsoft Office Microsoft Corporation 

PinDel 263 Kai Ye 

PuTTy Simon Tatham 

R, RStudio and R packages 264,265 R Core Team 

SAMtools 266 Sanger Institute 

Trimmomatic 0.39 267 Bjoern Usadel 

UGENE 268 Unipro 

VarScan 269 Dan Koboldt 

WinSCP Martin Přikryl 
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Methods 

Bacteria culturing  

Frozen stocks of bacteria cultures were maintained at -80 °C. For experimental work, 

bacteria were reactivated by isolating clones from frozen cultures on M9 agar plates. The 

bacteria were streaked out and incubated at 37 °C for 12-16 hours. Single colonies were freshly 

picked with a sterile loop as inoculums to start liquid cultures of any given population. After 

inoculation of 5 ml M9 liquid medium, the culture vessels were incubated at 37 °C for approx-

imately 6 hours at constant shaking (150 rpm) to achieve mid-exponential growth phase. The 

OD of the culture was measured in a spectrophotometer at 600 nm wavelength. A final OD of 

0.1 was set to ensure an initial population size of 104-105 CFU/ml. If necessary, the OD was 

adjusted by adding sterile M9 medium. The adjusted cultures were subsequently used as 

inoculums for experimental work. 

To prepare new stocks of PA14 or any other bacteria, single colonies were transferred 

to 5 ml M9 liquid medium and incubated for 16-24 hours at 37 °C and constant shaking to 

achieve exponential phase cultures. 1 ml of culture was then mixed with 600 μl 80 % glycerol 

in a cryogenic tube and subsequently stored at -80 °C for extended periods of time. 

 

Flow cytometry 

A Guava easyCyte flow cytometer was used to assess cell counts of bacterial cultures. 

In a flow cytometer, a sample consisting of a cell suspension is carried by sheath fluid into a 

flow cell where the cells are aligned single file. The cells then pass a laser light source at a 

given flow rate. The light deflection caused by the cells is detected by an analogue-to-digital 

conversion system. The detectors measure both forward scattered light (FSC) as a measure of 

cell size and side scattered light (SSC) as a measure of the cell granularity. Additional detectors 

measure fluorescence emitted by the cells that are passing the laser beam. By setting size 

thresholds for the individual detections, cells can be distinguished from particle noise. For flow 

cytometry of Pseudomonas aeruginosa cultures, cells were suspended at an appropriate 

concentration (< 2000 cells/µl) in PBS and injected into the flow cytometer instrument. This 

ensures that one cell at a time passes the laser light source. First, 4 μl of each culture were 

diluted in PBS at a ratio of 1:25, supplemented with 50 μl of propidium iodide to stain dead 

cells. After a second dilution step in PBS for a final dilution of 1:103, the plate was read in the 
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flow cytometer. The machine parameters were set to measure the diluted culture at a flow rate 

of 0.236 µl/s for either 30 seconds or until a total cell count of 5000 cells per sample was 

reached. The total number of cells in the population was calculated for each culture by 

correcting the cell concentration for the number of dead cells, sampling volume and dilution 

factor.  

 

Dose-response curves and IC determinations 

Dose-response Curves (DRCs) describe the effect that differing concentrations of a 

substance have on a set viability parameter of an organism after a certain time of exposure. 

Obtaining DRCs is a common procedure to determine the inhibitory effect that an antibiotic 

has on bacteria. Inhibitory concentrations (ICs) are named depending on the degree of 

inhibition that the respective drug concentration has on the growth of a bacterium in 

comparison to its uninhibited growth. For example, the IC50 is the drug concentration for 

which the growth of the bacterium is inhibited by 50% in comparison to the growth in complete 

absence of the antibiotic. The minimal inhibitory concentration (MIC) is the lowest concen-

tration for which the growth is inhibited by 100% or, put differently, the lowest IC100. In order 

to obtain a DRC, broth microdilution tests were performed. 

Ten different concentrations of the antibiotic in question were prepared as 10X stock 

solutions in M9 medium and added in 1:10 ratios onto a 96-well plate in a fully randomized 

design. For each plate, 8 wells were run as technical replicates for the same concentration, 

along with 8 wells for a no-drug control and 8 wells for which neither the drug nor the bacteria 

are added (from here on referred to as empty wells or ‘E‘). The latter wells served as a control 

for systematic contamination of the setup. The no-drug control wells served as a reference for 

the uninhibited growth. Single colonies of bacteria were transferred from an overnight agar 

culture to 6 ml M9 medium in a 50 ml falcon tube and grown for ~ 6 hours (h) at 37 °C and 

constant shaking (orbital, 150 rpm). The bacteria were then diluted to reach an OD of about 0.1 

at 600 nm to ensure an initial population size of approximately 104-105 CFU/ml. The diluted 

culture was then transferred onto the freshly prepared 96-well plate by adding an appropriate 

volume of the culture to each well (except for the ‘E‘ control wells), adding up to a total volume 

of 100 μl for every well. Inoculum volumes differed for the desired inoculum sizes of 50 000 

(k50), 500 000 (k500) and 5 000 000 (M5) cells. M9-medium, antibiotic and bacteria culture 

were added in the following manner:  
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1. M9: 100 µl to ‘E’ wells, 89.5 µl to k50 wells, 85 µl for k500 wells, 40 µl to M5 

wells and additional 10 µl M9 to every IC0 well 

2. Antibiotic: 10 µl of each antibiotic concentration (10x stocks) 

3. Bacteria culture (OD ≈ 0.1): 50 µl for M5, 5 µl for k500, 0.5 µl for k50 

The plates were then sealed with sterile adhesive foil and incubated for 12 hours at 37 °C under 

constant shaking (double-orbital, 900 rpm) in the Tecan plate readers. Kinetic OD reads were 

performed at 600 nm of the entire 96-well plate at 15-minute intervals. The relative inhibition 

of growth after 12 hours of incubation can be determined for each drug by comparing the 

optical density (OD) of all replicates of the last OD read against that of the no-drug control 

wells.  

 

Figure 2: Example of a dose-response curve (DRC). The concentration of the antibiotic (in this 

case GEN) is given on the X-axis. The optical density (OD) after 12 hours of incubation is given on the 

Y-axis. Black dots represent the means of the obtained OD measurements at the respective 

concentrations. Error bars represent the standard error of the mean (8 replicates). The red line represents 

the model curve calculated in accordance with the obtained measurement results. 
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The lowest antibiotic concentration for which no visible growth was optically 

measurable was accepted as the drug’s MIC. Experiments were performed until the below-MIC 

concentration range was uncovered and the desired ICs for the evolution experiments could be 

reliably identified. The ‘drc’ package for R was used to calculate a model curve of the dose-

response effect based on the real obtained measurements. 

 

Growth curves and inferred fitness parameters 

The continuous OD measurements of cultures grown in the plate readers were used to 

construct growth curves and to infer fitness parameters. The obtained parameters can be used 

to evaluate fitness consequences of acquired mutations. For each individual replicate popu-

lation, the change of the parameters can be monitored in relation to the fitness of the ancestral 

PA14 under the respective treatment conditions. The following fitness parameters were drawn 

from the growth kinetics of the populations: 

o Total yield: The total number of cells in the population by the end of the growth phase. 

It relates to the amount of replication events that have occurred during the period.  

o Maximum growth rate: The largest increase in OD over a few successive time points 

during exponential growth phase. It describes how quickly bacteria reach their optimal 

yield under the respective environmental conditions and, therefore, is a good measure 

of how well the bacteria are adapted to their specific environment. 

o Length of lag phase: The amount of time that surpasses until the bacteria enter their 

exponential growth phase. It describes how well bacteria can utilize the given nutrients 

and, therefore, is another indicator of how well they are adapted to their respective 

environment. 

o Area under the curve (AUC): This measure of average response during the growth 

period multiplied by the length of the growth period can be viewed as a summary of the 

cumulative response of the bacteria to the drug treatment over the observed time and is 

an often used factor to describe drug efficacy. 

Maximum growth rate and length of lag phase were calculated with the software GrowthRates 

v2.1. The AUC was calculated with the cAUC function of the R package ‘growthcurver’. 
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Instead of final OD as a prior for total yield, the flow cytometry results were used to infer 

change in population size.  

Figure 3: Example of a growth curve. The X-axis represents time in minutes. The Y-axis 

represents optical density. Black dots represent OD measurements at the respective time points and the 

black line represents the change in OD between two time points. Growth parameters are annotated in 

different colors. 

 

Design and general setup of evolution experiments 

The setup of the evolution experiment is summarized in Figure 5. The general 

prerequisites for the experiments were the transfer of a distinct number of cells from one growth 

period to the next and the removal of old growth medium and replacement with fresh growth 

medium before the transfer. The cultures were centrifuged after every growth period to discard 

the old medium with minimal loss of cells. The cell pellets were then resuspended in fresh 

medium. The cell concentration of each well was quantified by measuring the cell number in 

subsamples of the cultures in a flow cytometer and the volume that was needed to be transferred 

from the old plate to the new was extrapolated to achieve the distinct cell number for the next 

growth period. 
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Liquid cultures of PA14 were prepared as described before to obtain a culture with an 

OD600 of 0.1 and a concentration of ~ 105 to 106 cells/μl. 4 μl of the culture were then diluted 

at a ratio of 1:1000 in PBS. Cells were counted in a Guava easyCyte flow cytometer and 

volumes were calculated that are needed to achieve a total of 50 000, 500 000, 5 000 000 cells, 

respectively. A 96-well flat bottom plate was prepared, using a systematic randomization of 

treatments as shown in Figure 4. Three different antibiotic concentrations (IC20, IC50 and 

IC80) were applied to every starting population size and seven replicates were run per treatment 

group. The calculated volumes of the PA14 culture were then transferred to the respective wells 

on the plate, with a total volume of 100 μl for each well. The plate was sealed with transparent 

foil and incubated in a plate reader at 37 °C under constant shaking (double-orbital, 900 rpm). 

OD measurements of each culture were taken at 600 nm wavelength every 15 minutes.  

After 9.5 hours of incubation, the 96-well plate was taken out of the plate reader. 4 μl 

were removed from each culture and diluted 1:1000 in PBS in two dilution steps on separate 

96-well plates. The dilutes were subsequently counted in a flow cytometer as previously 

described. Meanwhile, the 96-well plate with the original cultures was centrifuged at 5000 rpm 

for 90 minutes. The supernatant was discarded and replaced with fresh M9 medium. The 

resuspension volumes of fresh M9 were calculated individually based on the flow cytometry 

results. Resuspension volumes were set to achieve a concentration of 5 x 105 cells/μl per 

culture. The plate for the next growth period was prepared accordingly (100 μl per well minus 

the calculated transfer volume) and the respective volumes were then transferred to the new 

plate: 0.1 μl for 50 000 cells, 1 μl for 500 000 cells and 10 μl for 5 000 000 cells. The freshly 

inoculated plate was then sealed and again incubated in the plate reader for 9.5 hours at 37 °C 

with continuous shaking and regular plate reading as described above. This protocol was 

continued for a total of 15 transfers. Bacteria from the evolution experiments were frozen at 

every second transfer by adding 30% glycerol to the culture wells after transfers to the next 

growth period had been performed. The plates were then frozen at -80 °C. 
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Figure 4: Layout design of a 96-well plate for an evolution experiment. Colored wells refer 

to the annotated treatment groups. White and grey wells refer to cultures in antibiotic-free medium 

(controls for uninhibited growth). Black wells refer to wells with only growth medium and neither 

bacteria nor antibiotics present (controls for contamination of the setup). Treatments were 

systematically randomized across the plate. Replicates of the same group are distributed in groups of 

three or four across the plate, thereby reducing the likelihood of pipetting mistakes. 

   

Figure 5: Design of the general experimental setup. Numbers mark the succession of steps taken 

in the protocol. Text in the boxes next to the numbers describe the experimental step. Arrows with black 

fill describe steps that are taken for the original experimental cultures. Arrows with white fill describe 

steps that are taken for subsamples of the experimental cultures. The annotated steps are repeated for a 

total of 15 growth periods. 
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Resistance and fitness assays of evolved populations 

To investigate the resistance that evolved over the course of the evolution experiment 

as well as the change in fitness properties, populations of the last transfer period were 

challenged against different levels of antibiotic concentrations of the treatment drug. By 

exposing the evolved populations to a set of antibiotic concentrations after evolution has taken 

place, the change in relative resistance can be obtained and the effect of the population size on 

evolvability to different levels of resistance could be evaluated. The resistance tests were 

carried out as described for the dose-response curves. However, all cultures were standardized 

to the same population size of 500 000 cells (5 μl inoculum). The antibiotic concentrations used 

for the test are distinct inhibitory concentrations below (IC50, IC80) and above the MIC 

(2xMIC, 4xMIC, 8xMIC and 16xMIC) of the ancestral population. In addition, the endpoint 

populations were also grown in drug-free M9 medium after the experiment. The cost of resis-

tance can be reliably determined by comparing the previously described fitness parameters of 

the endpoint populations of each drug treatment to those of the uninhibited controls. 

 

DNA isolation  

DNA was isolated from populations of the experimentally evolved lineages from 

selected transfers as well as the original starting culture that was used as the starting inoculum 

of the experiment. The DNA was used for whole genome sequencing (WGS) to identify 

mutations that are under positive selection and likely drive the adaptation to the selective 

environment. 50 to 100 μl of frozen cultures were transferred to 2 ml M9 medium and grown 

overnight at 37 °C and constant shaking. The CTAB buffer was used for DNA extraction. 2 ml 

of the overnight culture was transferred to a 2 ml Eppendorf tube. The tubes were centrifuged 

for 5 minutes at 13.000 rpm and the supernatant was subsequently discarded. 400 μl CTAB 

buffer and 2 μl proteinase K (20 mg/ml) were added to the bacteria pellet. The suspension was 

homogenized by mild vortexing and incubated overnight at 50 °C and 850 rpm. The next 

morning, 20 μl RNase A (20 mg/ml) were added to the suspension, which was then vortexed 

and incubated for 30 minutes at room temperature. 800 μl of a chloroform:isoamylalcohol 

(24:1) mix were added and the suspension was vortexed until the liquid was homogenous. After 

centrifugation for 5 minutes at 13,000 rpm, 300 μl of the top phase was transferred into a new 

1.5 ml Eppendorf tube and 200 μl of ice-cold 100 % isopropanol was added. The suspension 
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was mixed by inverting and incubated at 4 °C for at least 60 minutes to precipitate the DNA. 

Samples were centrifuged for 30 minutes at 13.000 rpm. The supernatant was subsequently 

discarded, and the DNA pellet was washed in 1 ml 70 % ethanol and afterwards centrifuged 

for 1 minute at 13.000 rpm. After discarding the supernatant, the DNA pellet was airdried at 

50 °C for 10 minutes and subsequently resuspended in 100 μl TE buffer. In some instances, the 

isolated DNA was concentrated further with the help of Amicon Ultra centrifugal filters. 

 

DNA sequencing and genomics   

Initially, DNA was only extracted from transfers 3 and 15. The DNA samples were 

stored at -20 °C and later sent to the sequencing facility at the Institute of Clinical Molecular 

Biology at the Kiel University Hospital for WGS. 25 μl with a DNA concentration of 20 μg/μl 

were submitted for library preparation. Sequencing libraries were built with the Nextera DNA 

Flex library preparation kit and sequencing was performed on the Illumina HiSeq 4000 

platform using the Illumina paired-end technology with insert sizes of 150 bp and an average 

base coverage of >100 270. In addition, DNA was also extracted from transfers 5, 7, 9, 11 and 

13. Libraries were constructed with Nextera DNA library kit and sequenced on the Illumina 

NextSeq platform at the MPI for Evolutionary Biology in Plön/Germany with insert sizes of 

150 bp and an average base coverage of >40.  

Sequence reads of the WGS project were provided in the fastq format 271. Quality and 

quantity of reads were checked with FastQC 259. The software trimmomatic was used to remove 

sequencing adapters from the Nextera library and to filter out low quality reads 267. High quality 

reads were mapped to the UCBPP_PA14 reference genome with the software bwa 252,258. The 

generated .bam files were scanned for SNPs, insertions and deletions by using the variant 

calling programs FreeBayes, PinDel and VarScan 263,269,272. The resulting output files were 

filtered for duplicates, ancestral variants, and variants found in the evolved controls in R and 

subsequently double-checked by visually inspecting the called genome position provided by 

the .bam file in the IGV genome browser 262. Annotation of the detected alleles was done with 

the help of SnpEff 273 as well as the Pseudomonas database (available at 

http://pseudomonas.com).  
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PCR for Sanger sequencing 

To identify individual clones within multiclonal populations, it is necessary to identify 

the specific SNPs of the selected clones. Therefore, the regions of interest were amplified by 

PCR and sequenced by Sanger sequencing for a set of clones. Sanger sequencing is based on 

the selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase 

during in vitro DNA replication 274,275.   

DNA was extracted by boiling two to three colonies of individual clones in 20 μl 

nuclease-free water for 15 minutes. 1 μl of the supernatant was added to the PCR mix (Table 5). 

The PCR was performed for 30 cycles (Table 6), with hybridization at 60 °C and an elongation 

time according to the length of the amplified region. A gel electrophoresis was performed to 

verify correct amplification. Amplified DNA was sent to the IKMB molecular lab for Sanger 

sequencing. The received reads from the Sanger sequencing platform were aligned to the PA14 

reference genes to identify SNPs 252. 

 

Table 5: PCR mix for one reaction. 1 μl of the lysed colony is added to 19 μl of PCR Mix.   

Volume (μl) Ingredient 

12.3  dH2O 

2  10x DreamTaq Buffer 

2.5  2 mM dNTPs 

1  25 mM forward primer 

1  25 mM reverse primer 

0.2  DreamTaq Polymerase 
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Table 6: PCR protocol. 

Step Temperature Duration  Cycles 

Initial denaturation 95 °C 3 minutes 1 

Denaturation  95 °C 30 seconds 30 

Hybridization Melting temperature  30 seconds 30 

Elongation 72 °C 1 minutes/kb 30 

Elongation 72 °C 10 minutes 1 

Storage 4 °C ∞  

 

Competition assays 

In each experiment of the competition assay, pairs of two strains were competed against 

one another. For this experiment, two resistant strains and PA14 were considered. Each assay 

was performed in a 96-well plate. As a control, each single strain was incubated in individual 

wells under the same conditions on a separate 96-well plate. Firstly, frozen clonal cultures were 

streaked out on M9-agar and incubated at 37 °C for about 20 hours. Liquid cultures were started 

by inoculating 5 ml M9-medium with a single colony of the respective clones. They were then 

incubated at 37 °C for six hours and set to an OD of 0.1. Cultures of competing strains were 

mixed at a 1:1 ratio before inoculation of the competition plate. Single strain cultures were used 

as controls. M9-medium, the antibiotic and the cultures were added following a semi-

randomized plate design (Figure 6): 

o M9: 100 µl to blank wells (E), 89.5 µl to k50 wells, 40 µl to M5 wells and 

additional 10 µl M9 to every IC0 well 

o Antibiotic: 10 µl of each concentration (10x stocks) 

o Bacteria cultures (OD ≈ 0.1): 50 µl for M5, 0.5 µl for k50  

The plates were incubated in a plate reader for 12 hours at 37 °C under constant shaking. OD 

was measured every 15 minutes and results were used to analyze growth kinetics of the single 

strains on the control plate.  
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Figure 6: Systematic randomization of competition treatments on a 96-well plate.  

5 replicates per treatment and a total of six blank wells (E). 

 

Two-step PCR for amplicon sequencing  

A two-step PCR was performed with the DNA obtained from cultures of the 

competition plates to amplify the region of interest and to ligate barcodes to the amplicons. The 

goal of the two-step PCR was to construct a library of DNA amplicons that contained all 

individual competitions. Within this library, every DNA fragment would be tagged with a 

combination of two barcode sequences that are individualized for every competition. By 

pooling all samples, the cost can be drastically reduced for determining clonal frequencies by 

DNA sequencing after competition. 

As a first step, the 96-well competition plate was centrifuged, and the supernatant was 

subsequently discarded. The bacterial pellet was resuspended in 50 μl nuclease-free water, 

transferred onto a PCR plate and boiled for 15 minutes. 1 μl of each lysate was transferred to a 

new PCR plate containing the PCR mix (Table 5) with the sequence-specific overhang primers 

(Table 7). The first PCR was performed with 15 cycles and hybridization at 60 °C (Table 5). 

1 μl of each PCR product was then used as a template for the second PCR plate containing the 

PCR mix (Table 5) with the sequencing primers (Table 8). Combining ten different barcodes 
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of the forward and reverse primers allows for up to 100 combinations to differentiate between 

the samples (Figure 7). The second PCR was performed with 15 cycles and hybridization at 

47 °C (Table 6). A gel electrophoresis was performed to validate a successful PCR ampli-

fication. 

After confirming the amplification, the DNA concentration of every sample was set to 

100 ng/μl and 5 μl of every sample were pooled in a single Eppendorf tube for library 

generation. The library mix was then loaded on a 0.7% agarose gel and run for 1 hour at 120 

mV. The desired fragments of appropriate size were then extracted from the gel by cutting them 

out, freezing them at -80 °C for 15 minutes in parafilm and squeezing out the DNA solution. 

The DNA solution was then purified with the GeneJET gel extraction kit (Thermo Fisher 

Scientific Inc.). Before Illumina sequencing, the DNA concentration was measured, and Sanger 

sequencing was performed to validate the successful amplification of the desired loci. 

 

Table 7: Sequence-specific primers for amplicon sequencing. Names consist of the target gene, the 

position of the SNP in the genome and F or R for forward or reverse primer. The population(s) for 

which the primer amplifies the SNP region are listed. Overhangs of the primers are labelled in black. 

Sequence-specific parts of primers are in labelled in red. 
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Figure 7: Plate design of the second PCR-step with sequencing primers. Combining ten 

different barcodes of the forward primers (F-primer) with ten different barcodes of the reverse primers 

(R-primer) allows to specifically tag up to 100 individual samples. For primer names see table 8. 

 

Table 8: Sequencing primers for amplicon sequencing (second PCR step). Barcodes are labelled in 

blue. Illumina adapters are labelled in black.  
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Analysis of amplicon sequencing   

The reads received from the Illumina Sequencing platform were quality-filtered with 

the software Trimmomatic 0.39 and subsequently aligned to the PA14 reference genome by 

using the Burrows-Wheeler Aligner 252,258,267. SAMtools was used to generate bam-files that 

were evaluated with the Integrative Genomics Viewer 262,266. The strain frequency was calcu-

lated via the SNP counts. Subsequently, the mean frequencies of two strains were calculated 

and plotted for every treatment and competition. 

 

Statistics 

All statistical analyses were performed with the R programming language and the R Studio 

software 264,265. In the upcoming text section of the results, p-values are presented in com-

parison to size thresholds (e.g. > 0.05, < 0.005) instead of absolute values.  

• To test the influence of treatment parameters on adaptive growth dynamics during 

evolution experiments, linear mixed effect models were constructed with yield as the 

response variable and growth period, inhibitory concentration (IC) and transfer size 

(TS) as predictors. Tukey's HSD was calculated for multiple pairwise comparisons of 

the group means to quantify the differences between the groups. 

• Linear models and Tukey’s HSD were also calculated for the influence of both IC and 

TS on evolved resistance. In this case, AUC was used as the resistance parameter. 

• Pearson's product-moment correlation was calculated to test the association between 

individual mutation frequencies and total number of mutations per population.  

• Pairwise t-tests were performed to compare the mean resistance between two groups of 

mutants. The same test was also applied to compare the mean frequencies of different 

genotypes in mixed populations after running competition assays. 

• For the competition assays, one-way ANOVAs were calculated to compare frequencies 

and AUC of the same clonal variant between different treatment conditions. Tukey's 

HSD was calculated for multiple pairwise comparisons of the group means. 
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• Bartlett tests were applied to compare the size of treatment group variance. 

• Shannon’s diversity index H was calculated for each treatment group:  

          s   

H = Σ - (Pi * ln Pi)  
         i=1  

with Pi representing the fraction of the treatment group made up of populations that 

carry mutation i and s representing the number of mutated genes found in each treatment 

group. 

• Fixation indices (FST) were calculated for every treatment group of every sequenced 

transfer. For that, haplotypes were inferred from the frequency distribution of all 

individual mutations over the course of the experiment. Mutations were identified as 

being independent (and therefore representing different haplotypes) when their change 

in frequencies did not overlap over time. Haplotype diversity was calculated as: 

                j   

H = 1- Σ Pi
2  

               i=1  

with Pi representing the fraction of a haplotype in the population and j representing the 

total number of haplotypes. Haplotype diversity was calculated within individual 

populations of the treatment group (HS) and between the different replicates of the 

treatment group (HT). FST was then calculated as: 

FST = 
HT − HS̅̅ ̅̅  

HT
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Results  

In the following sections, the results of the evolution experiments and of the subsequent 

analyses are sorted by the different analytical methods. Dose-response curves were obtained 

for PA14 against all treatment drugs. The individual treatment dosages (IC20, IC50 and IC80 

for all three transfer sizes) as well as the MICs and their multiples are summarized in 

Supplementary Table S4 (page 164). Three separate evolution experiments were carried out 

successfully by applying the described experimental protocol. In all three cases, PA14 was 

challenged against three different ICs of a single antibiotic and for each drug concentration, 

three different transfer sizes were used. The experiments have been run for CAR, CIP and 

GEN. However, the results of the individual experiments for each drug vary in depth:  

• For GEN, evolution experiments were performed, evolved resistance was assessed, the 

evolutionary allele dynamics were uncovered, and clones were selected to model 

specific dynamics in competition experiments. 

• For CIP, evolution experiments were performed, evolved resistance was assessed, and 

the evolutionary allele dynamics were uncovered. 

• For CAR, evolution experiments were performed, and evolved resistance was assessed. 

The experimental complications of colistin will be discussed in greater detail in a separate 

chapter of the discussion. 

To widen the focus on the impact of the parameters on the large number of treatment 

groups, the dataset was reduced to the maximum and minimum parameters of the treatment 

conditions. Therefore, the k500 transfer size and the IC50 drug concentration groups will not 

be discussed in the following sections of the thesis. Summary graphs that include the results of 

the removed treatment groups can be found in the supplementary data. Mean inhibition of all 

treatment groups over the course of the evolution experiments are summarized in Supple-

mentary Figures S1 (CAR, page 148), S2 (CIP, page 149) and S3 (GEN, page 150). Dose 

Response Curves of surviving populations from all treatment groups after the evolution 

experiments are summarized in Supplementary Figures S4 (CAR, page 165), S5 (CIP, page 

166) and S6 (GEN, page 167). 
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Evolutionary growth patterns  

Populations of PA14 were allowed to evolve for a total of 16 growth periods under 

either high or low drug concentrations. At the end of each growth period, distinct numbers of 

cells were transferred. To demonstrate the growth dynamics of the evolving PA14 populations 

throughout the experiments, the cell concentrations obtained from the flow cytometry assays 

were used to calculate the mean yield of the treatment groups relative to the yield of the 

corresponding no-drug control treatment. To investigate to what degree the controlled 

experimental factors affected bacterial growth during the experiment, linear mixed effect 

models were constructed with yield as the response variable and growth period, inhibitory 

concentration (IC) and transfer size (TS) as predictors. Tukey's HSD was calculated for 

multiple pairwise comparisons of the groups means to find out which treatment groups differ 

from each other. A summary of average cell numbers from all treatment groups from all 

transfers can be found in Supplementary Tables S1 (CAR, page 151 ff), S2 (CIP, page 155 ff) 

and S3 (GEN, page 159 ff). 

 

Large TS groups evolve higher yield in GEN evolution experiment 

In the GEN experiment, most populations experienced a substantial decrease in growth 

after the second transfer, after which they rapidly recovered and reached their first fitness 

plateau (Figure 8). This effect occurred independently of both IC and TS. For most populations, 

the yield remained stable for most transfers after the recovery and only increased again towards 

the end of the experiment. While the large TS groups IC20-M5 and IC80-M5 reached the same 

yield as the controls at the end of the experiment, the small TS groups IC20-k50 and IC80-k50 

remained inhibited. All treatment groups maintained variation in yield between their replicates 

throughout the experiment. Both IC and TS, as well as their interaction, showed a significant 

influence on yield (Table 9). Apart from the IC80-M5 and IC20-k50 pair and the IC80-M5 and 

IC80-k50 pair, all other pairs of treatment groups had different responses in overall yield from 

one another (Table 10).  

In summary, all treatment groups adapted to GEN within the first few transfers, 

regardless of treatment regimen. Unlike the large TS groups, the small TS groups remained 

inhibited at the end of the experiment. 



58 

 

 

Figure 8: Large TS groups evolve higher yield in GEN evolution experiment. The X-axis 

represents the time series of the evolution experiment: every point represents the end of a growth period 

before the next transfer. The Y-axis represents the mean yield of the treatments based on the cell 

concentrations obtained from the flow cytometer readouts. Error bars represent standard error of mean 

(8 replicates). Blue: IC20 treatments; Red: IC80 treatments; light colors represent 50k transfers; dark 

colors represent 5M transfers. 

 

Table 9: Yield over time: Linear mixed model results for gentamicin. The model tests the influence 

of IC, TS and time of transfer, as well as their individual interactions, on population yield. Formula: 

Yield ~ IC * TS * Transfer * (1 | Well). Asterisks represent significant difference between two treatment 

groups (* = p < 0.05, *** = p < 0.005, n.s. = p > 0.05). 

 

 

 

 

 

 

Predictor  Chisq  p adj.  Significance  

IC   31.3366  2.170e-08  ***  

TS  17.1945  3.374e-05  ***  

Transfer 21.4627  3.608e-06  ***  

IC:TS  4.4706  0.03448  *  

IC:Transfer 15.3998  8.700e-05  ***  

TS:Transfer 5.97  0.01455  *  

IC:TS:Transfer 0.7331  0.39187  n.s. 
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Table 10: Yield over time: TukeyHSD results for gentamicin. The test compares the difference in 

mean yield between the individual treatment groups. Yield ~ Treatment. Asterisks represent significant 

difference between two treatment groups (* = p < 0.05, *** = p < 0.005, n.s. = p > 0.05). 

 

 

 

 

 

 

Yield improves faster under large TS in CIP evolution experiment 

For the evolution experiment with CIP, a change in yield was observed in all treatment 

groups (Figure 9). For the IC20 treatments, the growth increased by two steps during the 

experiment, first in the beginning of the experiment and again in its second half. For the IC80 

treatments, yield increased stronger and faster than for IC20 in the beginning but then reached 

its equilibrium at transfer four. Extinction events did not occur in populations of the other 

treatment groups, but all replicates but one went extinct for the IC80-k50 treatment. Apart from 

growth period, both IC and TS also showed significant influence on yield (Table 11). IC80-M5 

and IC20-k50 were the only two treatment groups that did not show a significant difference in 

overall yield from one another (Table 12). The results indicate that bacterial populations 

generally adapted faster to CIP when the TS was large but may have adapted at slower rates 

and at a higher risk of extinction when they experienced stronger bottlenecks. Interestingly, the 

two large TS groups showed an even higher yield than the uninhibited controls at the final 

transfer (Figure 9), indicating a higher fitness for samples grown in the presence of CIP.  

 

Comparison   diff  p adj.  Significance 

IC20 M5-IC20 k50  0.19435357  0.0000001  ***  

IC80k50-IC20 k50  -0.11163962  0.0058367  *  

IC80 M5-IC20 k50  -0.05015434  0.4816255  n.s. 

IC80 k50-IC20 M5  -0.30599319  0.0000000  ***  

IC80 M5-IC20 M5  -0.24450791  0.0000000  ***  

IC80 M5-IC80 k50  0.06148528  0.2979427  n.s. 
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Figure 9: Yield improves faster under large TS in CIP evolution experiment. The X-axis 

represents the time series of the evolution experiment: Every point represents the end of a growth period 

before the next transfer. The Y-axis represents the mean yield of the treatments based on the cell 

concentrations obtained from the flow cytometer readouts. Error bars represent standard error of mean 

(8 replicates). Blue: IC20 treatments; Red: IC80 treatments; light colors represent 50k transfers; dark 

colors represent 5M transfers. 

 

Table 11: Yield over time: Linear mixed model results for ciprofloxacin. The model tests the 

influence of IC, TS and time of transfer, as well as their individual interactions, on population yield. 

Formula: Yield ~ IC * TS * Transfer * (1 | Well). Asterisks represent significant difference between 

two treatment groups (* = p < 0.05, *** = p < 0.005, n.s. = p > 0.05). 

 

 

 

 

 

 

Predictor   Chisq  p adj. Significance 

IC   16.0519  6.163e-05  ***  

TS  33.3524  7.688e-09  ***  

Transfer 48.4366  3.411e-12  ***  

IC:TS  1.5364  0.21516  n.s. 

IC:Transfer 5.4547  0.01952  *  

TS:Transfer 2.9815  0.08422  n.s. 

IC:TS:Transfer 2.0076  0.15651  n.s. 
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Table 12: Yield over time: TukeyHSD results for ciprofloxacin. The test compares the difference in 

mean yield between the individual treatment groups. Yield ~ Treatment. Asterisks represent significant 

difference between two treatment groups (* = p < 0.05, *** = p < 0.005, n.s. = p > 0.05). 

 

 

 

 

 

 

All treatment groups adapt gradually in CAR evolution experiment 

In the case of the CAR experiment, all treatments remained inhibited to a certain degree 

over the course of evolution (Figure 10). They did not achieve similar yield like the uninhibited 

control during the experiment, as it was observed for the CIP treatments. However, there was 

a strong and quick increase in yield for the IC80 treatments at the beginning of the experiment 

after which yield fluctuated around its equilibrium. In the IC20 treatments, the k50 group 

showed a higher yield than the M5 group throughout the experiment. In contrast, there did not 

seem to be an influence of TS on yield for the IC80 groups. However, the replicates of the IC80 

groups generally also showed high variance in yield. In contrast to the CIP experiment, the 

influence of the TS on the evolutionary dynamics was small. The linear mixed effect model 

revealed that only transfer and the interaction of transfer and IC were valuable predictors of 

yield, but not TS (Table 13). IC20-50 produced a higher yield than the other groups. No 

difference in yield was found between the remaining groups (Table 14). In general, the 

treatment regimens did not influence the growth of the populations to different degrees. 

 

Comparison   diff  p adj. Significance 

IC20 M5-IC20 k50  0.431779  0.0000021  ***  

IC80k50-IC20 k50  -0.55585  0.0002649  ***  

IC80 M5-IC20 k50  0.154925  0.0974278  n.s. 

IC80 k50-IC20 M5  -0.98763  0.0000000  ***  

IC80 M5-IC20 M5  -0.27686  0.000144  ***  

IC80 M5-IC80 k50  0.710774  0.0000011  n.s. 
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Figure 10: All treatment groups adapt slowly in CAR evolution experiment. The X-axis 

represents the time series of the evolution experiment: Every point represents the end of a growth period 

before the next transfer. The Y-axis represents the mean yield of the treatments based on the cell 

concentrations obtained from the flow cytometer readouts. Error bars represent standard error of mean 

(8 replicates). Blue: IC20 treatments; Red: IC80 treatments; light colors represent 50k transfers; dark 

colors represent 5M transfers. 

 

Table 13: Yield over time: Linear mixed model results for carbenicillin. The model tests the 

influence of IC, TS and time of transfer, as well as their individual interactions, on population yield. 

Formula: Yield ~ IC * TS * Transfer * (1 | Well). Asterisks represent significant difference between 

two treatment groups (*** = p < 0.005, n.s. = p > 0.05). 

 

           

 

 

 

 

Predictor   Chisq  p adj.  Significance 

IC   2.6406   0.104162     n.s. 

TS  0.7848   0.375689     n.s. 

Transfer  61.5023   4.422e-15 ***  

IC:TS  2.3921   0.121949     n.s. 

IC: Transfer 10.4923   0.001199 ***  

TS: Transfer 1.7042   0.191737     n.s.  

IC:TS: Transfer 0.1616   0.687709     n.s. 
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Table 14: Yield over time: TukeyHSD results for carbenicillin. The test compares the difference in 

mean yield between the individual treatment groups. Formula: Yield ~ Treatment. Asterisks represent 

significant difference between two treatment groups (*** = p < 0.005, n.s. = p > 0.05). 

 

 

 

 

 

 

Evolved resistance 

As most populations improved their growth ability over the course of the evolution 

experiments, adaptation was expected to have evolved by the acquisition of resistance 

mutations. To test for evolved resistance, the individual populations that survived the final 

transfer period were challenged against several concentration levels of the applied antibiotic. 

Concentrations above and below the MIC of the wild type were tested to measure the resistance 

properties after evolution under the different treatments. The area under the curve (AUC) was 

calculated for each DRC to quantify resistance. To test the influence of different treatment 

factors on the intensity of resistance, linear mixed effect models were constructed that 

contained AUC as the response variable and IC, TS and their interaction as predictors. In 

addition to the resistance measurements, the endpoint populations were also grown in antibiotic 

free media to further characterize changes in growth behavior relative to the evolved no-drug 

controls. Continuous OD measurements were obtained to calculate the mean length of lag 

phase and mean maximum growth rate of the evolved populations to check for potential fitness 

trade-offs.  

 

IC20-k50 and IC80-M5 evolve the highest resistance in GEN evolution experiment  

In the GEN resistance assays, most treatments (even the low ICs) led to resistance to 

inhibition levels significantly higher than the MIC of the wild type (Figure 11A). However, the 

Comparison   diff  p adj.  Significance 

IC20 M5-IC20 k50  -0.17899935 0.0000363 ***  

IC80k50-IC20 k50  -0.25196649 0.0000000 *** 

IC80 M5-IC20 k50  -0.18731949 0.0000228 *** 

IC80 k50-IC20 M5  -0.07296714 0.3097091 n.s. 

IC80 M5-IC20 M5  -0.00832014 0.9972808 n.s. 

IC80 M5-IC80 k50  0.06464700 0.4374637 n.s. 
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highest resistance at the end of the experiment was observed for the IC20-k50 and the IC80-

M5 treatment groups (Figure 11A). The effect of treatment on evolved resistance became more 

apparent when comparing the AUC of the obtained DRCs (Figure 11B). AUC was then used 

as the response variable for the construction of linear mixed effect models (Table 15). 

For the GEN treatments, the model revealed a significant influence of the interaction 

between IC and TS on evolved GEN resistance (p < 0.005). For the IC20 treatments, 

populations that evolved under large TS acquired the lowest resistance and small TS acquired 

the highest resistance (p < 0.05). The reverse effect was observed for the IC80 treatments, 

although the difference in resistance between the two TS groups was not significant (p = 0.28). 

Variance in resistance was different between small and large TS for IC20 (p < 0.05), but it was 

not for IC80 (p = 0.87, Bartlett test). In all GEN treatments, the variance in OD increased at 

drug concentrations above the MIC of the wild type, indicating diverse adaptive responses 

within the treatment groups that led to different levels of resistance for the individual lineages. 

Interestingly, IC20-k50 lineages evolved as high resistance as the IC80 treatment groups (p > 

0.99, Tukey HSD, Table 16). 

 

Figure 11: IC20-k50 and IC80-M5 evolve the highest resistance in GEN evolution 

experiment. A: The X-axis represents the relative levels of antibiotic concentrations against which 

the evolved PA14 populations were challenged. The Y-axis represents the final OD of the tested 

bacterial populations at a wavelength of 600 nm after 12 hours of incubation in presence of the 

respective drug concentration. Error bars represent standard error of mean (8 replicates). Blue: IC20 

treatments; Red: IC80 treatments; Grey: IC0; Purple: unevolved PA14 control; light colors represent 

50k transfers; dark colors represent 5M transfers. B: The X-axis and colors represent different treatment 

groups. The Y-axis represents AUC as a proxy for resistance to the treatment drug. Asterisks represent 

significant difference between two treatment groups (* = p < 0.05; TukeyHSD). 
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Table 15: Linear mixed effect model results for evolved gentamicin resistance. The model tests the 

influence of IC and TS, as well as their interaction, on evolved resistance (AUC) to the treatment drug. 

Formula: AUC ~ IC * TS. Asterisks represent significant difference between two treatment groups (*** 

= p < 0.005, n.s. = p > 0.05). 

Predictor  Sum Sq  F  p adj.  Significance 

IC   0.2180  0.7051  0.408450 n.s. 

TS  0.2356  0.7622  0.390341 n.s. 

IC:TS  3.5331  11.4288  0.002217  *** 

 

Table 16: TukeyHSD results for evolved gentamicin resistance. The test compares the difference in 

mean resistance (AUC) between the individual treatment groups. Formula: AUC ~ Treatment. Asterisks 

represent significant difference between two treatment groups (* = p < 0.05, n.s. = p > 0.05). 

Comparison   diff  p adj. Significance 

IC20 M5-IC20 k50  -0.82755375  0.0291850  * 

IC80k50-IC20 k50  -0.49102390  0.3109650 n.s. 

IC80 M5-IC20 k50  0.03406569  0.9993913  n.s. 

IC80 k50-IC20 M5  0.33652984  0.6256745 n.s. 

IC80 M5-IC20 M5  0.86161944  0.0280381  * 

IC80 M5-IC80 k50  0.52508959  0.2840705  n.s. 

Growth measurements in drug-free medium revealed that those treatment groups that 

yielded the strongest resistance against the treatment drug also evolved a longer lag phase 

length than the less resistant groups (Figure 12B). All treatments showed great variation in 

maximum growth rate. Most of the populations that evolved a high level of resistance against 

the treatment drug also had a reduced maximum growth rate compared to the Wt (IC20-k50: 

mean = 0.0107, t = -2.292, p = 0.056; IC80-M5: mean = 0.0099, t = -3.2045, p < 0.05; one-

sample t-test; Figure 12A). A negative correlation between resistance and maximum growth 

rate was identified (-0.494 Pearson's product-moment correlation; p < 0.01; see Figure 13). 

However, when considering the influence of treatment group, strong negative correlation 

between resistance and growth rate was only found in the IC80-k50 group (-0.765 Pearson's 

product-moment correlation; p < 0.01), but not in the other treatment groups. In general, 

evolved resistance did not correlate with length of lag phase. 
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Figure 12: The most GEN-resistant group shows the lowest growth in drug-free medium. 

(A) maximum growth rate (OD/min); (B) length of lag phase (min). Measurements taken in absence 

of antibiotics. The X-axes and colors represent different treatment groups. The Y-axes represent the 

growth parameters of the treatment groups after the evolution experiment. 8 biological replicates. Mean 

fitness of control groups is represented by black horizontal lines: (A) dotted line represents both transfer 

sizes; (B) long-dashed line represents M5; short-dashed line represents k50. Asterisks represent 

significant difference of treatment group to control (* = p < 0.05; one-sample t-test). 

 

 

Figure 13: GEN resistance correlates negatively with maximum growth rate. The X-axis 

represents gentamicin resistance of evolved populations based on the AUC of the DRC of the resistance 

assay. The Y-axis represents the populations maximum growth rate (OD/min). Colors refer to different 

treatment groups: Light blue: IC20-k50, Dark blue: IC20-M5, Light red: IC80-k50, Dark red: IC80-M5. 



67 

 

In conclusion, evolved resistance against GEN was highest for the IC80-M5 and IC20-

k50 groups. The resistance observed in the IC80-M5 populations is also associated with a 

decreased growth rate in drug-free medium. 

 

IC20-k50 and IC80-M5 evolve the highest resistance in CIP evolution experiment 

For CIP, no evolved resistance was observed in the IC20-M5 treatment group (dark 

blue line in Figure 14A). All other treatment conditions provoked evolution of resistance as 

high as > 16xMIC of the wild type. The interaction of IC and TS had a significant influence on 

resistance (p < 0.005, LME; Table 17). For the IC20 treatments with CIP, resistance was the 

weakest for the large TS and the strongest for the small TS (p < 0.01, two sample t-test; Figure 

14B; Table 18). The IC80 treatments had contrasting results: The large TS groups evolved a 

higher resistance than the single surviving population of the small TS. Variation in resistance 

was generally greater for small TS than for large TS (p < 0.005 for IC20, Bartlett test).  

 

Figure 14: IC20-k50 and IC80-M5 evolve the highest resistance in CIP evolution 

experiment. A: The X-axis represents the relative levels of antibiotic concentrations against which 

the evolved populations were challenged. The Y-axis represents the final OD of the tested bacterial 

populations after 12 hours of incubation in presence of the respective drug concentration. Error bars 

represent standard error of mean (8 replicates). Blue: IC20 treatments; Red: IC80 treatments; 

Black/Grey: IC0; Purple: unevolved PA14 control; light colors represent 50k transfers; dark colors 

represent 5M transfers. B: The X-axis and colors represent different treatment groups. The Y-axis 

represents AUC as a proxy for resistance to the treatment drug. Asterisks represent significant difference 

between two treatment groups (*** = p < 0.005; TukeyHSD). 
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Table 17: Linear model results for evolved ciprofloxacin resistance. The model tests the influence of 

IC and TS, as well as their interaction, on evolved resistance (AUC) to the treatment drug. Formula: 

AUC ~ IC * TS. Asterisks represent significant difference between two treatment groups (*** = p < 

0.005, n.s. = p > 0.05). 

Predictor  Sum Sq  F  p adj. Significance 

IC   6.3214  32.705  1.122e-05  *** 

TS  0.6435  3.329  0.0823252   n.s. 

IC:TS  3.8414  19.874  0.0002173  *** 

 

Table 18: TukeyHSD results for evolved ciprofloxacin resistance. The test compares the difference 

in mean resistance (AUC) between the individual treatment groups. Formula: AUC ~ Treatment. 

Asterisks represent significant difference between two treatment groups (*** = p < 0.005, n.s. = p > 

0.05). 

Comparison   diff  p adj.  Significance 

IC20 M5-IC20 k50  -0.780653  0.0094321  n.s. 

IC80k50-IC20 k50  -0.691694  0.4646439  n.s. 

IC80 M5-IC20 k50  0.8258906  0.0058931  n.s. 

IC80 k50-IC20 M5  0.0889594  0.9974583  n.s. 

IC80 M5-IC20 M5  1.6065437  0.0000019  *** 

IC80 M5-IC80 k50  1.5175844  0.0183543  n.s. 

 

The endpoint populations were also grown in absence of the antibiotics to calculate the 

mean length of lag phase and mean maximum growth rate of the evolved populations (see 

Figure 15). On average, the different CIP treatment groups showed a higher growth rate and 

shorter lag phase than the ancestor. However, these differences were not statistically signi-

ficant. There did not appear to be an association between maximum growth rate and resistance 

and neither between length of lag phase and resistance.  
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Figure 15: Adaptation to CIP does not affect growth in drug-free medium for all 

treatment groups. (A) maximum growth rate (OD/min); (B) length of lag phase (min). 

Measurements taken in absence of antibiotics. The X-axes and colors represent different treatment 

groups. The Y-axes represent the growth parameters of the treatment groups after the evolution 

experiment. 8 biological replicates for all treatment groups but IC80-k50 (one replicate). Mean fitness 

of control groups is represented by black horizontal lines: (A) dotted line represents both transfer sizes; 

(B) long-dashed line represents M5; short-dashed line represents k50. 

 

In summary, the highest CIP resistance evolved in the IC80-M5 treatment group and the second 

highest in the IC20-k50 treatment group. CIP resistance did not appear to be associated with a 

fitness cost in drug-free medium. 

  

IC80-treated groups evolve highest resistance in CAR evolution experiment 

In case of the CAR resistance properties, the high IC adapted lineages showed a high 

average growth at concentration levels below the MIC but reduced growth at levels above the 

MIC (Figure 16). The low IC adapted lineages did not have higher yield than the evolved no-

drug control lineages. In addition, only IC could be identified as a valuable predictor of 

resistance AUC (p < 0.005), but not TS (p = 0.41, GLMM; see Table 19). This indicates that 

the applied bottleneck sizes did not affect evolvability of resistance differently. Additionally, 

these observations indicate that the bacteria did not acquire mutations that confer high-level 

resistance against CAR but primarily adapted to drug concentrations that they originally en-

countered in the experiment. Otherwise, increased fitness levels would have been expected for 

higher concentrations than those they had been treated with. All treatment groups evolved a 
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slightly, but not significantly lower growth rate compared to the ancestor (Figure 17A). There 

did not seem to be an association between length of lag phase and relative resistance of the 

population (Figure 17B).  

In general, no difference in CAR resistance was observed between the two M5 

treatment groups and the two k50 groups. Higher resistance evolved under IC80 treatment than 

under IC20 treatment, but growth remained limited in all treatment groups at CAR concen-

tration levels > MIC. All treatment groups evolved a slightly lower growth rate in drug-free 

medium compared to the control groups. 

 

 

Figure 16: IC80-treated groups evolved higher resistance than IC20-treated groups in 

CAR evolution experiment. A: The X-axis represents the relative levels of antibiotic concentrations 

against which the evolved PA14 populations were challenged. The Y-axis represents the final OD of 

the tested bacterial populations after 12 hours of incubation in presence of the respective drug 

concentration. Error bars represent standard error of mean (8 replicates). Blue: IC20 treatments; Red: 

IC80 treatments; Grey: IC0; Purple: unevolved PA14 control; light colors represent 50k transfers; dark 

colors represent 5M transfers. B: The X-axis and colors represent different treatment groups. The Y-

axis represents AUC as a proxy for resistance to the treatment drug. Asterisks represent significant 

difference between two treatment groups (* = p < 0.05; TukeyHSD). 
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Table 19: Linear model results for evolved carbenicillin resistance. The model tests the influence of 

IC and TS, as well as their interaction, on evolved resistance (AUC) to the treatment drug. Formula: 

AUC ~ IC * TS. Asterisks represent significant difference between two treatment groups (*** = p < 

0.005, n.s. = p > 0.05). 

Predictor  Sum Sq  F  p adj.  Significance 

IC  0. 71895   10.4350 0.003243 *** 

TS  0. 04688   0.6804 0.416668    n.s. 

IC:TS  0. 04784   0.6944 0.411998    n.s. 

Table 20: TukeyHSD results for evolved carbenicillin resistance. The test compares the difference in 

mean resistance (AUC) between the individual treatment groups. Formula: AUC ~ Treatment. Asterisks 

represent significant difference between two treatment groups (* = p < 0.05, n.s. = p > 0.05). 

Comparison   diff  p adj. Significance 

IC20 M5-IC20 k50  0.153843750 0.6490516 n.s. 

IC80k50-IC20 k50  0.386317411   0.0394518 * 

IC80 M5-IC20 k50  0.382764063   0.0334898 * 

IC80 k50-IC20 M5  0.232473661 0.3376358 n.s. 

IC80 M5-IC20 M5  0.228920313 0.3214733 n.s. 

IC80 M5-IC80 k50  -0.003553348 0.999993 n.s. 

 

 

Figure 17: CAR-adapted lineages have slightly lower growth in drug-free medium. (A) 

maximum growth rate (OD/min); (B) length of lag phase (min). Measurements were taken in 

absence of antibiotics. The X-axes and colors represent different treatment groups. 8 biological 

replicates. The Y-axes represent the growth parameters of the treatment groups after the evolution 

experiment. Mean fitness of control groups is represented by black horizontal lines: (A) dotted line 

represents both transfer sizes; (B) long-dashed line represents M5; short-dashed line represents k50. 
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Evolutionary genomics  

WGS was performed for lineages from the final transfer of the evolution experiments 

to identify mutations that have occurred during the experiment and that may have caused 

changes in fitness and resistance. In addition, DNA was also extracted and sequenced from an 

earlier time point of the evolution experiment, transfer 3. At that time point, the bacteria had 

already overcome the strongest fitness deficit, but fixation of specific beneficial mutations 

would not have been expected yet. The genomic analyses of the additional early time point 

were done to investigate if early adaptation is due to genetic change and – if so – whether early 

adaptation was caused by the same beneficial mutations that can be found at the final time point 

or by different mutations.  

  

Mutations in two-component regulators and ptsP dominate populations of GEN 

evolution experiment  

A detailed summary of all mutations that were found in the endpoint populations of the 

GEN experiment is provided in Supplementary Table S7 (page 179). In the genomic dataset of 

the GEN evolution experiment, an overall high diversity of genes was found to be mutated. 

More than a dozen genes from different classes were found to be mutated, of which the two-

component regulatory systems PmrAB, ParRS and PhoPQ were the most affected genes (see 

Figure 18).  

In the IC20-M5 treatment group, mutations in ptsP were found in all replicate popu-

lations at high frequencies (dark blue box in Figure 18). For IC80-M5, mutations in either pmrB 

(4/7) or ptsP (3/7) were dominant at transfer 16 (dark red box in Figure 18). Interestingly, all 

three replicate populations with mutations in ptsP at transfer 16 showed mutations in pmrB at 

transfer 3. This indicates that pmrB mutations were replaced by more advantageous mutations 

in ptsP over the course of the experiment. This was especially remarkable since populations 

dominated by ptsP mutations showed a lower resistance than populations in which pmrB 

mutations were most frequent (Figure 20). For IC20-k50, a higher mutational diversity was 

observed, with most genes affected by mutations belonging to two-component regulators (light 

blue box in Figure 18). pmrB and parR mutations (each 3/8) were present in several replicates. 

In addition, unique mutations in envZ and the uncharacterized PA14_08640 were found in 

single replicate populations. Single populations of the IC80-k50 treatment also carried unique 
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mutations in fusA1, cysJ and waaL. Again, most mutations in this treatment group also were 

found in two-component regulators (parS 3/8, phoQ 2/8, pmrB 1/8) and ptsP (2/8) (light red 

box in Figure 18).  

 

Figure 18: Most mutations in evolved populations of GEN evolution experiment found in 

two-component regulators and ptsP. The X-axis represents replicate populations. The Y-axis 

represents mutated genes. Dots represent mutations found in respective gene/population. The size of 

dots corresponds with the frequency of mutations within a population. Grey dots represent mutations 

found at transfer 16 of the evolution experiment. Dark dots represent multiple mutations found in the 

same gene at transfer 16. Black boxes represent gene function. Colored boxes represent treatment group 

of populations: Light blue: IC20-k50, Dark blue: IC20-M5, Light red: IC80-k50, Dark red: IC80-M5.  

 

Overall, genetic diversity based on Shannon’s diversity indices was higher in the small 

TS groups than in the large TS groups (see Table 21). Not only were a high number and a high 

diversity of mutated genes found in the GEN dataset, but also multiple mutations in the same 

gene were often found in several replicates. Many mutations occurred at high frequencies. 

However, only two mutations were found at such high frequencies in two respective popu-

lations that they unquestionably qualify as double mutants (A11: ptsP + rbsR; E3: parS + cysJ). 

For most other populations, an increase in the total number of mutations was associated with a 

decrease in frequency of the most dominant mutation (-0.677 Pearson's product-moment 

correlation, p < 0.005; see Figure 19). This result does not prove clonal interference. Never-

theless, this trend indicates that multiple mutations in a population were more likely to occur 

in several different genetic variants than in only one.  
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Table 21: Gentamicin: Shannon’s diversity indices H and Hmax for each treatment group. 

 

Antibiotic Treatment  Shannon’s H  Hmax  

GEN  IC20-k50  3.273  3.459  

GEN  IC20-M5  2.040  2.585  

GEN  IC80-k50  2.855  3  

GEN  IC80-M5  2.046  2.322  

 

 

Figure 19: Frequency of the most common mutation in a population decreases with the 

total number of mutations in GEN evolution experiment. The X-axis represents total number 

of mutations found in each population. The Y-axis represents frequency of most frequent mutation in 

population. Colors refer to different treatment groups: Light blue: IC20-k50, Dark blue: IC20-M5, Light 

red: IC80-k50, Dark red: IC80-M5.  
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As pmrB and ptsP were the most commonly mutated genes across all treatment groups, 

the resistance of the populations dominated by mutations in either gene was compared. Overall, 

populations with dominant mutations in pmrB had higher resistance than populations domi-

nated by ptsP mutations (p < 0.005, Welch’s t-test; see Figure 20). pmrB did not occur in IC20-

M5. Instead, all replicate populations of that group were dominated by ptsP mutations. This 

potentially indicates that ptsP mutants were selectively favored in the IC20-M5 treatment, 

which may have introduced a bias to the statistical test. However, a higher resistance in pmrB 

mutants was also observed in treatment groups where either genetic variant was dominating at 

least one population.  

 

 

Figure 20: Populations with the most frequent mutation in ptsP show lower resistance 

than populations with the most frequent mutation in pmrB. The X-axis represents genes 

affected by most frequent mutations. The Y-axis represents AUC as a proxy for resistance to GEN. 

Colors refer to different treatment groups: Light blue: IC20-k50, Dark blue: IC20-M5, Light red: IC80-

k50, Dark red: IC80-M5. Asterisks represent significant difference between two treatment groups (* = 

p < 0.05; Welch’s t-test). 
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In summary, mutations in either one of two genes dominated populations of large TS: 

pmrB mutants were most common in IC80-M5 populations and ptsP mutants dominated IC20-

M5 populations. Alteration of pmrB seems to be associated with high GEN resistance whereas 

ptsP mutations conferred lower resistance. A higher diversity of genes was affected by 

mutations under strong bottleneck regimens, with most mutated genes being functionally asso-

ciated with two-component regulatory systems. There was only little proof of fixed genotypes 

carrying multiple mutations. 

 

Mutations in multidrug efflux regulators dominate populations of CIP evolution 

experiment  

A detailed summary of all mutations that were found in the endpoint populations of the 

CIP experiment is provided in Supplementary Table S5 (page 169). For CIP, mutations were 

identified primarily in genes that are associated with multidrug efflux pumps, especially 

negative regulators of efflux pumps (Figure 21). Based on population genomics of the 

sequencing data, Shannon’s H was calculated as a measure of genetic diversity within the 

treatment groups (Table 22). Compared to GEN (Table 21), most treatment groups that evolved 

under CIP treatment displayed low genetic diversity, with only IC20-k50 displaying high H by 

the end of the experiment. 

Table 22: Ciprofloxacin: Shannon’s diversity indices H and Hmax for each treatment group. 

 

Antibiotic Treatment  Shannon’s H  Hmax  

CIP  IC20-k50  2.436  2.807  

CIP  IC20-M5  1.585  1.585  

CIP  IC80-k50  1  1  

CIP  IC80-M5  0.971  1  

Highly frequent mutations were not discovered in the IC20-M5 treatment group. This 

was interesting because populations of this group showed a much higher yield than the control 

group at the end of the experiment despite evolving no resistance. Based on the genomic data, 

this response had no genetic foundation. In four IC80-M5 populations, mutations in an uncha-

racterized ABC transporter gene (PA14_09300) were present at transfer 3 at intermediate 
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frequencies. At transfer 16, these mutations were no longer present and instead had been 

replaced by mutations in nfxB (4/8 populations) and mexS (6/8). For IC20-k50, a higher 

mutational diversity (Shannon’s H 2.436) could be observed, with most mutations occurring in 

mexZ (6/8, including 3 with additional mutations in tetR) and mexS (3/8). Mutations in nalC, 

nfxB and PA14_09300 were found in different single populations. For the IC80-k50 treatment, 

only one replicate population survived until the end of the experiment. This population showed 

a mutation in PA14_09300, the same ABC transporter that was found to be mutated at transfer 

3 for some IC80-M5 populations but later outcompeted by mutations in RND efflux systems. 

 

 

Figure 21: Most mutations in evolved populations of CIP evolution experiment found in 

multidrug efflux regulators. The X-axis represents replicate populations. The Y-axis represents 

mutated genes. Dots represent mutations found in respective gene/population. The size of dots 

corresponds with the frequency of mutations within a population. Grey dots represent mutations found 

at transfer 16 of the evolution experiment. Dark dots represent multiple mutations found in the same 

gene at transfer 16. Black boxes represent gene function. Colored boxes represent treatment group of 

populations: Light blue: IC20-k50, Light red: IC80-k50, Dark red: IC80-M5.  
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Figure 22: Frequency of the most common mutation in a population decreases with the 

total number of mutations in CIP evolution experiment. The X-axis represents total number 

of mutations found in each population. The Y-axis represents frequency of most frequent mutation in 

population. Colors refer to different treatment groups: Light blue: IC20-k50, Dark blue: IC20-M5, 

Light red: IC80-k50, Dark red: IC80-M5. 

 

In general, only few mutations were found to have completely fixed by the last growth 

period and most mutations only occur at low frequencies < 50%. This may indicate that fitness 

benefits of the detected mutations were rather small, and that selection of mutated alleles was 

rather weak. In addition, very few mutations were already present at transfer 3. This indicates 

that a phenotypic response to the selective pressure occurred first and that mutants with high 

efflux occurred only at later stages of the experiment. As previously observed in the GEN 

dataset, an increase in the total number of mutations per population was associated with a 

decrease in frequency of the most dominant mutation also in the CIP dataset (Figure 22). 

In conclusion, no resistance mutations could be detected under IC20-M5. In those 

treatment groups that did evolve resistance, all mutated genes were associated with drug efflux. 

A higher diversity of mutated genes was identified for small TS than for large TS, with only 

nfxB and mexS mutants dominating the IC80-M5 treatment. No evidence of double mutants 

could be found. 
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Evolutionary allele dynamics 

To uncover and reconstruct the underlying adaptive dynamics of the evolving popu-

lations over the course of the experiment, frozen populations from intermediate transfer periods 

were regrown in 2 ml M9 and DNA was extracted according to the CTAB protocol. WGS was 

performed and genetic variants were identified with the previously described approach. A 

detailed overview of the frequencies of all high-frequency mutations that were identified in the 

evolution experiments at different transfers is provided in Supplementary Tables S6 (CIP, page 

171 ff) and S8 (GEN, page 182 ff). 

 

Populations adapt faster under large TS in GEN evolution experiment  

The different treatment groups of the GEN evolution experiment are summarized in 

Figures 23-26 and show distinct adaptive allele dynamics. Both small TS groups acquired a 

high variation of mutated genes. However, populations of the IC80 group adapted much faster. 

Mutations first appeared at transfer 3 or 5 and subsequently increased in frequency at a high 

rate (Figure 25). In contrast, populations of the IC20 population adapted slowly. With replicate 

population A6 as the lone exception, first mutations commonly occurred at around transfer 

period 7 or 9 and reached high frequencies only during the second half of the experiment 

(Figure 23). In addition, I observed more competitive dynamics in the IC20 group. In popu-

lations C6, D6, E8 and H8, mutations that were found to dominate the population at an 

intermediate time point decreased in frequency by the end of the experiment while the 

frequencies of other mutations increased (Figure 23). In contrast, single clones dominated the 

allele dynamics in the IC80 group (e.g. replicates A12, B12, D12, E3, F3; figure 25). Mutations 

were selected early and had outcompeted others by the end of the experiment. 

Unlike the small TS populations (k50), populations of the large TS treatment groups 

(M5) showed a clear trend towards few mutated genes. In the IC20-M5 group, all populations 

carried dominant mutations in the gene ptsP, with most populations carrying more than one 

ptsP mutation. In most populations, the first ptsP mutations occured by transfer 5 or 7 and 

slowly took over the population (Figure 24). In the replicates A11, E2 and F2, competitive 

dynamics between ptsP and pmrB mutations took place. In all cases, ptsP won the competition 

and pmrB was lost from the population by transfer 11 (Figure 24). In the IC80-M5 group, 
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mutations in pmrB achieved high frequencies by transfer 3 (Figure 26). In most replicates, the 

frequencies of the early mutations remained on the same level for most transfer periods of the 

evolution experiment. However, in several populations (D5, E7, F7, H7) mutations in ptsP 

occured and rose in frequencies towards the end of the experiment. In all replicates, clonal 

interference was observed between at least two different mutations (Figure 26). 

In conclusion, the antibiotic concentrations primarily seemed to influence the speed of 

adaptation. Mutants took many generations to increase in frequency under low IC regimens. In 

contrast, mutants found in high IC treatments increased in frequency comparatively quickly. 

On the other hand, bottleneck size also influenced the speed of adaptation under high IC but 

primarily influenced which mutants were selected. Under large TS, the dominant mutants of 

pmrB and ptsP were always selected early. In contrast, allele selection was less specific under 

low TS. 
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Figure 23: Complex evolutionary allele dynamics between mutations in various genes 

found in IC20-k50 populations of GEN evolution experiment. Population names are given in 

the boxes right of the graphs. The X-axis represents transfer. The Y-axes represent frequency of 

mutation in population. Colors refer to different genes that the mutations appear in (see legend on right). 

Line annotations refer to the position of the mutation in the PA14 genome. 
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Figure 24: Mutations in ptsP dominate evolutionary allele dynamics in IC20-M5 

populations of GEN evolution experiment. Population names are given in the boxes right of the 

graphs. The X-axis represents transfer. The Y-axes represent frequency of mutation in population. 

Colors refer to different genes that the mutations appear in (see legend on right). Line annotations refer 

to the position of the mutation in the PA14 genome. 
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Figure 25: Single mutations in different genes dominate evolutionary allele dynamics in 

IC80-k50 populations of GEN evolution experiment. Population names are given in the boxes 

right of the graphs. The X-axis represents transfer. The Y-axes represent frequency of mutation in 

population. Colors refer to different genes that the mutations appear in (see legend on right). Line 

annotations refer to the position of the mutation in the PA14 genome. 
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Figure 26: Mutations in pmrB dominate evolutionary allele dynamics in IC80-M5 

populations of GEN evolution experiment. Population names are given in the boxes right of the 

graphs. The X-axis represents transfer. The Y-axes represent frequency of mutation in population. 

Colors refer to different genes that the mutations appear in (see legend on right). Line annotations refer 

to the position of the mutation in the PA14 genome. 
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Increased clonal competition during CIP evolution experiment 

Some aspects of the evolutionary genomics of the CIP-adapted populations were similar 

to the results of the GEN experiment. However, there were also some important differences to 

point out. First, most replicate populations for the IC80-k50 group went extinct early in the 

experiment which did not allow me to quantify aspects of adaptation of that treatment. The 

only surviving population carried a mutation in the ABC transporter gene PA14_09300, which 

also occurred in early transfers of some replicates of other treatment groups. In addition, no 

genetic variants could be detected in the IC20-M5 group at significant frequencies. Potential 

reasons for the deviating evolutionary genomics of these two treatment groups will be 

addressed in the discussion part of the thesis. In the following segment, the results of the 

evolutionary allele dynamics of the IC20-k50 (Figure 27) and the IC80-M5 (Figure 28) groups 

will be presented, as only these groups showed signs of evolutionary adaptation (i.e., 

manifestation and selection of mutations). The two different treatment groups showed different 

adaptive dynamics, with a higher number of mutated genes found in the small TS group. Both 

groups showed a similar degree of clonal interference, with multiple clones arising in most 

populations at the same time. Competitive dynamics were rare in both two groups.   

Populations of the IC20-k50 group adapted slowly (Figure 27). The first mutations 

occurred only after transfer 5 in all populations and – with replicate population G8 as the lone 

exception – did not reach high frequencies of >50% by the end of the experiment. Despite the 

high degree of clonal interference, adding up the frequencies of the individual mutations never 

resulted in a total mutant frequency of 100%, meaning that the Wt was still present by the end 

of the experiment at substantial frequencies. mexZ was the most frequently mutated gene of the 

group (found in 6 out of 8 populations), followed by mexS (5). 

Populations of the IC80-M5 treatment group had only few mutated genes (Figure 28). 

nfxB mutants were the most frequent genotype in 5 out of 8 populations, with mexS dominating 

the remaining three. Four populations (A5, B5, D5, F7) also had two or more mutations in the 

same gene. The first mutations occurred by transfer 5 and subsequently increased in frequency. 

The total mutant frequency was higher than in the IC20-k50 group by the end of the experiment, 

but it never reached 100% either.  
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Figure 27: Clonal interference between mutations in different genes shapes evolutionary 

allele dynamics in IC20-k50 populations of CIP evolution experiment. Population names are 

given in the boxes right of the graphs. The X-axis represents transfer. The Y-axes represent frequency 

of mutation in population. Colors refer to different genes that the mutations appear in (see legend on 

right). Line annotations refer to the position of the mutation in the PA14 genome. 
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Figure 28: Mutations in mexS and nfxB dominate evolutionary allele dynamics in IC80-

M5 populations of CIP evolution experiment. Population names are given in the boxes right of 

the graphs. The X-axis represents transfer. The Y-axes represent frequency of mutation in population. 

Colors refer to different genes that the mutations appear in (see legend on right). Line annotations refer 

to the position of the mutation in the PA14 genome. 
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Fixation indices (FST) 

Treatment groups show unique changes in diversity metrics during the GEN evolution 

experiment 

To evaluate the allele dynamics of the evolving populations statistically, the population 

genomic dataset was used to calculate the fixation index (FST) for each treatment group and 

time point. FST is a commonly used metric to assess genetic differentiation of populations. The 

FST calculations used in this thesis were based on the haplotype diversity within populations 

(HS) and the haplotype diversity between populations (HT). HS was calculated as the mean of 

haplotype diversity of all individual replicate populations in a treatment group. HT was 

calculated by summing up the frequencies of all haplotypes in the entire treatment group.  

HT dynamics could be described by an asymptotic increase in all treatment groups apart 

from IC80-M5 (see Figure 29A). In the beginning, IC80-M5 had the highest HT (~ 0.8) which 

fluctuated slightly but did not substantially change over the course of the experiment. In 

contrast, the other treatment groups had a low initial HT of < 0.4 with IC80-k50 showing the 

highest and IC20-M5 the lowest initial HT. The initial increase of HT was faster in IC80-k50 

and IC20-M5 than in IC20-k50. Eventually, all groups reached very close HT of ~ 0.85 by the 

end of the experiment, with IC80-k50 reaching a slightly higher HT of ~ 0.9. All curves were 

flattening after transfer 9. It is critical to emphasize that HT was calculated based on frequen-

cies of individual SNPs and not their affected genes. All populations of the IC20-M5 group 

carried (often multiple) mutations in ptsP. However, the diversity of the variants was quite 

substantial, with only 5 out of 13 variants occurring more than once in the dataset. This high 

diversity of alleles explains the high HT. 

HS was generally small compared to HT and had very different dynamics (Figure 29B). 

In summary, HS increased initially and decreased again after having reached its maximum. 

IC80-k50, IC20-M5 and IC80-M5 all reached their respective HS maxima by transfer 7 while 

IC20-k50 reached its maximum at the last transfer. Both IC80 groups had much higher initial 

HS at transfer 3 than the IC20 groups. This indicates that the first variants had already occurred 

in the IC80 treatments but not in IC20 treatments. IC80-M5 showed the highest HS over the 

course of the entire experiment with slightly below 0.6. IC80-k50 on the other hand had the 

second-highest HS at the beginning of the experiment but the lowest by its end (~ 0.19), as well 

as the lowest peak of all treatment groups (~ 0.38). IC20-M5 showed the strongest increase of 

all groups with ~ 0.5 between transfer 3 and transfer 7. 
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Figure 29: Treatment groups show unique changes in diversity metrics during the GEN 

evolution experiment. A: HT dynamics (haplotype diversity between populations); B: HS dynamics 

(haplotype diversity within populations); C: FST dynamics (genetic differentiation of populations). The 

X-axis represents transfer. The Y-axes represent the respective diversity metric. Colors refer to different 

treatment groups: Light blue: IC20-k50, Dark blue: IC20-M5, Light red: IC80-k50, Dark red: IC80-M5. 
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Taken together, these results translated to the following dynamics of the FST (Figure 29C): 

Initially, the FST was low in all treatment groups (< 0.4), with IC80-50 being the only 

exception (~ 0.83). The cause for the high initial FST in IC80-50 is the extremely low HS in 

season 3. As a mutation in pmrB was already dominating population A6, HT was substantially 

higher than HS, resulting in a high FST. Thus, the high FST could be explained by a single 

population being substantially different from the others. On the other hand, all populations in 

IC80-M5 had already acquired multiple mutations at increased frequencies by season 3, 

resulting in an intermediate initial FST. After the first couple of transfers, the FST also 

increased in the IC20-M5 and IC80-k50 groups. This was caused by the first couple of 

mutatants establishing themselves in the populations. In both groups, the FST gradually 

increased throughout the experiment, translating to the increasing fixation of different 

mutations in the populations. As the diversity of alleles in the dataset was high and different 

variants became dominant in individual populations, the FST increased. In contrast, the FST in 

the IC20-k50 and IC80-M5 groups leveled off at intermediate values in the second half of the 

experiment. These dynamics underline the clonal interference between different alleles in 

populations of both treatment groups. In IC80-M5, clonal interference between the same alleles 

was observed in several populations. Thus, the overall FST only changed slightly throughout 

the experiment. In IC20-k50 on the other hand, multiple mutations increased to relevant 

frequencies only in the second half of the experiment which translated to an intermediate FST. 

Overall, the FST dynamics further highlight observations made for the allele dynamics data: 

Under large TS, several mutants replaced the Wt quickly, but the population diversified rather 

slowly afterwards. Under IC80-k50, Wt was quickly replaced by a single haplotype. Under 

IC20-k50 on the other hand, Wt was maintained for the longest stretch of the experiment. 

 

Competition Assays 

Growth advantage of ptsP over pmrB decreases under high IC 

Note: The results in this section were obtained in collaboration with Alexandra Tietze as part 

of her BSc thesis. 

The outcome of the evolutionary allele dynamics of the GEN evolution experiment 

showed that ptsP and pmrB are the most commonly mutated genes in the two most selective 

groups of the large TS, IC20-M5 and IC80-M5. Several cases of competitive dynamics between 
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ptsP and pmrB mutants were also found in the allele dynamics dataset. Thus, three evolved 

clones of each genetic variant were selected from different treatment groups to model com-

petitive dynamics of different genotypes under the applied experimental conditions. The 

relative fitness of the selected clones was determined by performing three competition experi-

ments under the same treatment conditions that were applied for the evolution experiment. 

Three sets of pairwise competition experiments were performed, in which evolved clones with 

mutations in either pmrB or ptsP competed against one another or against the ancestral clone 

PA14 (Table 23). After competition, the individual SNP regions were amplified by PCR and 

Illumina sequencing was performed on the amplicons. The obtained Illumina sequencing reads 

were used to calculate the SNP frequencies of the two competing strains after the competition. 

The relative frequencies of the different strains for each treatment condition are summarized in 

Figure 30.  

The first pair of mutants included the clones pmrB-D12 and ptsP-A12 which evolved 

in the IC80-k50 treatment group (Figure 30A). Both clones were the only ptsP and pmrB 

mutants that occurred in this treatment group of the evolution experiment. The second mutant 

pair consisted of clones that evolved in the IC20 treatment groups (Figure 30B). PmrB-A6-6 

evolved under IC20-k50 treatment where low antibiotic concentration and small TS led to 

diverse fixation of mutations. However, no mutations in ptsP were fixed in the IC20-k50 group. 

In contrast, mutations in ptsP were almost exclusively selected in the evolution experiment of 

the IC20-M5 group, with ptsP-B11 being one of the clones. Since pmrB mutants only occurred 

in IC20-k50 and in ptsP mutants only in IC20-M5, clones from both treatment groups were 

combined in the respective competition experiments. The third mutant pair included the clones 

pmrB-A5-4 and ptsP-E7-8 which evolved in the IC80-M5 treatment group of the evolution 

experiment (Figure 30C). 

Table 23: Clones used in the three competition experiments.  

 

Experiment  Previous treatment group pmrB mutant ptsP mutant control 

1 IC80-k50  D12 A12 PA14 

2 IC20 A6-6 (k50) B11 (M5) PA14 

3 IC80-M5 A5-4 E7-8 PA14 
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Figure 30: ptsP shows a growth advantage over pmrB in competitions under low IC. 

Different mutant clones which evolved in the previous serial transfer evolution experiment competed 

against one another. 8 Technical replicates for every treatment condition. A: Clones evolved under high 

GEN treatment and small transfer size (IC80-k50). B: Clones evolved under low GEN concentration 

(IC20-k50 & IC20-M5). C: Clones evolved under high GEN concentration and large transfer size (IC80-

M5). The X-axis represents the different treatment conditions. The Y-axes represent the relative 

frequency of the clones. Colors refer to different clonal variants: Red = Wt, Green = pmrB, Blue = ptsP. 

Error bars represent the standard error based on five technical replicates for each treatment. Asterisks 

represent significant difference in frequency between two strains (* = p < 0.05; two sample t-test). 

A 

C 

B 
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For the competition between the two mutant clones, all three competition experiments 

resulted in a significantly higher frequency of ptsP mutants in the IC0-k50 treatment. In the 

first experiment, the frequency for ptsP mutants was slightly higher in the treatment groups 

IC0-M5, IC20-k50, IC20-M5 and IC80-M5. In the second experiment, ptsP mutant frequency 

was slightly higher in only the IC0-M5 and IC20-k50 treatment. The third experiment led to 

the highest frequency of the ptsP mutant in the IC0-k50 treatment as well as the IC0-M5 

treatment. No significant difference in frequency between pmrB and ptsP mutants was detected 

in the IC80-k50 treatment of all three competition experiments, and neither in the IC80-M5 nor 

the IC20-M5 treatment of the second experiment. The outcome of the third experiment showed 

greater variance under GEN treatment, which did not allow to detect a clear winner of the 

competition.  

When competing against PA14, ptsP mutants displayed about equal frequencies in the 

drug-free environment whereas the frequency of pmrB mutants was lower than the PA14 

frequency. The resistant strains dominated in the treatment groups with antibiotic and always 

outcompeted PA14. The frequencies of the mutant clones were especially high in the k50 

groups. No significant difference in frequency of the resistant mutant was detected between the 

IC20 and IC80 treatment groups.  

Since the general outcome of the three competition experiments was similar, their data 

were combined in one dataset (Figure 31). The competition against PA14 in drug-free environ-

ments showed an equal frequency of ptsP and lower frequency of pmrB compared to the 

ancestor. The resistant strain outcompeted PA14 in the treatment groups with antibiotics. In the 

competition of the two mutated strains, the ptsP frequency was significantly higher in the IC0 

and IC20 treatment groups (Figure 31). No difference in frequency of pmrB and ptsP was 

detected in the IC80 treatment groups. In total, ptsP frequency decreased with increasing 

antibiotic concentration (Figure 32, Table 24, Table 25). 
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Figure 31: Combined results of the three competition experiments. The mean frequencies of 

the three biological replicates (each with 8 technical replicates) are plotted for each treatment condition. 

The X-axis represent the different treatment conditions. The Y-axes represent the relative frequency of 

the clones. Colors refer to different clonal variants: Red = Wt, Green = pmrB, Blue = ptsP. Error bars 

represent the standard error based on three biological replicates for each treatment. Asterisks represent 

significant difference in frequency between two strains (* = p < 0.05; two sample t-test). 

 

Table 24: One-way ANOVA of frequency of ptsP mutants in competition against pmrB mutants 

based on treatment group. Asterisks represent significant difference between two treatment groups (* 

= p < 0.05, *** = p < 0.005). 

Source      Df Sum Sq  Mean Sq  F value p adj.  Significance 

Treatment        5 1.1197 0.2239 11.7633 2.669E-08 *** 

Residuals       83 1.8064 0.0706 

  

 

 

 



95 

 

Table 25: Tukey HSD for multiple pairwise-comparison of frequency of ptsP mutants in 

competition against pmrB mutants and treatment group. Asterisks represent significant difference 

between two treatment groups (* = p < 0.05, *** = p < 0.005, n.s. = p > 0.05). 

Treatment Diff lwr upr p adj. Significance 

IC20-k50-IC0-k50 -0.1871 -0.3488 -0.0255 0.0138 * 

IC80-k50-IC0-k50 -0.3239 -0.4827 -0.1650 0.0000009 *** 

IC20-M5-IC0-M5 -0.0616 -0.2204 0.0973 0.8671 n.s. 

IC80-M5-IC0-M5 -0.1660 -0.3249 -0.0072 0.0352 * 

IC80-k50-IC20-k50 -0.1367 -0.2984 0.0249 0.1457 n.s. 

IC80-M5-IC20-M5 -0.1045 -0.2633 0.0544 0.3983 n.s. 

 

 

Figure 32: Frequencies of ptsP mutants decrease when competing against pmrB mutants 

under high GEN concentrations. The frequencies of 15 technical replicates are plotted for each 

treatment condition. The X-axis represents the different treatment groups. The Y-axis represents ptsP 

frequency in competition. Asterisks represent significant difference between two treatment groups (* = 

p < 0.05, *** = p < 0.005; one-way ANOVA). 
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Growth characteristics under drug-free conditions  

ptsP shows better growth than pmrB under drug-free conditions 

The final OD of the control plates of the GEN competition assays (see previous section) 

was used to infer growth characteristics under drug-free conditions for the single strains as a 

proxy for a possible cost of drug resistance. Linear models were calculated to detect whether a 

growth parameter of the single strains has an influence on the competition outcome (Table 26). 

The competition outcome was compared separately to the following fitness parameters of 

single strain growth: AUC, growth rate, length of lag phase and final OD600. 

25 % of the competition outcome could be explained by AUC alone. Nonetheless, this 

was only true for the competitions that included PA14. No significant influence could be 

detected when the dataset was reduced to the competitions between pmrB and ptsP. There was 

also no correlation between the competition outcome (both with or without PA14) and growth 

rate, length of lag phase or the final OD600 of the single strains (Table 26). Significant difference 

in AUC could be observed between all three clones at all GEN concentrations for k50 (Figure 

33). However, under either GEN concentrations, no difference in AUC was observed between 

pmrB and ptsP for M5 (Figure 34). 

Table 26: Linear models to detect influence of single strain growth characteristics on the 

competition outcome. AUC = area under curve; GR = growth rate; OD = maximum OD; LT = length 

of lag phase. Asterisks represent significant difference between two strains (*** = p < 0.005, n.s. = p > 

0.05; one-way ANOVA). 

 

Source Sum Sq  Mean Sq  F value     p adj. Significance 

all 

competition 

results 

AUC       0.252683 0.252683 18.108900 0.0006 *** 

GR         0.015547 0.015547 1.114200 0.3069 n.s. 

OD       0.001778 0.001778 0.127400 0.7258 n.s. 

LT 0.001300 0.001300 0.093200 0.7641 n.s. 

only          

ptsP vs. 

pmrB 

AUC       0.001880 0.001880 0.142500 0.7119 n.s. 

GR         0.016380 0.016380 1.241900 0.2853 n.s. 

OD         0.000128 0.000128 0.009700 0.9231 n.s. 

LT 0.000078 0.000078 0.005900 0.9400 n.s. 
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Figure 33: AUC of single strain growth (k50). Boxes represent different treatment conditions. 

The X axes represent the different genotypes. The Y axis represents the AUC size. Asterisks represent 

significant difference between two strains (** = p < 0.01, *** = p < 0.005, n.s. = p > 0.05; one-way 

ANOVA). n = 15 

 

Figure 34: AUC of single strain growth (M5). Boxes represent different treatment conditions. 

The X-axis represents the different genotypes. The Y-axis represents the AUC size. Asterisks represent 

significant difference between two strains (* = p < 0.05, *** = p < 0.005; one-way ANOVA). n = 15  
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Discussion 

Over the past decades, the spread of antibiotic resistance among nosocomial bacterial 

pathogens has developed into a global problem 276. It has been prognosed that by 2050, 

infections by antibiotic-resistant bacteria will be the leading cause of death in Africa and Asia 

277. New approaches in the fight against antibiotic resistance are thus desperately needed. 

Experimental evolution has shown to be a promising approach to investigate evolutionary 

dynamics associated with drug resistance and has led to several important discoveries 82. 

However, the influence of population biological factors on drug resistance has been neglected 

for the most part 93. Population bottlenecks play a particularly significant role in the 

evolutionary history of bacterial populations. Bacterial populations can evolve resistance by 

various adaptive paths. The serial bottlenecks that they experience both in nature and in 

experimental evolution have important consequences on their chance to adapt to selective 

environments by certain mutational steps 144,175. The strength of population bottlenecks 

influences the likelihood to acquire specific beneficial mutations and therefore can constrain 

the adaptive path of the population by secondary mutations. In this thesis, I validated the 

influence of different bottleneck sizes at different levels of selective pressure on the 

evolvability of resistance in populations of the Pseudomonas aeruginosa PA14. Three different 

evolution experiments have been successfully completed that simulate single drug treatments 

with CAR (beta-lactam), CIP (quinolone) and GEN (aminoglycoside), for approximately 100 

generations. In the evolution experiments, two population sizes of PA14 (50 000 and 5 000 000 

cells) were transferred between growth periods of 9.5 hours in the presence of the respective 

antibiotics at concentrations that inhibit growth by either 20% or 80%. Based on this experi-

mental design, the influence of serial population bottlenecks on resistance evolution was 

systematically studied and compared to empirical hypotheses.  

For the discussion, I will first summarize, interpret and compare the main results of the 

different evolution experiments and their follow-up analyses. Although the individual drugs 

share certain adaptational patterns, there are also some important differences between the three 

drugs that must be discussed in greater detail. Afterwards, I will compare the main findings of 

my thesis to previously published literature on the issue of population bottlenecks in bacterial 

populations and their influence on adaptive allele dynamics. At last, an outlook of additional 

research will be provided that may advance the insights that have been made so far. 
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Table 27: Summary of results. 

Result Gentamicin Ciprofloxacin Carbenicillin 

Evolutionary 

growth 

patterns 

 

• Large TS groups 

evolved higher yield 

than small TS groups 

• Yield dropped in the 

beginning of the 

experiment, but then 

quickly reached its peak 

in all treatment groups  

 

• Large TS groups 

evolved max. yield 

faster than small TS 

groups 

• All but one replicate 

went extinct under IC80-

k50 

 

• Neither TS nor IC 

influenced yield 

recovery 

• All treatment groups 

remained inhibited 

Evolved 

resistance + 

growth 

 

• Large TS populations 

evolved high resistance 

under high IC 

• Small TS populations 

evolved high resistance 

under low IC 

• All treatment groups 

evolved resistance > 

MIC 

• Most resistant 

populations have 

decreased growth rate 

 

• IC80-M5 populations 

evolved highest 

resistance 

• IC20-M5 populations 

evolved no resistance 

• Small TS populations 

with high variation in 

strength of resistance 

• Growth rate and length 

of lag phase not affected 

by resistance 

 

• High IC populations 

evolved higher 

resistance than low IC 

populations 

• TS had no effect on 

strength of evolved 

resistance 

• Generally, only little 

resistance gained across 

all treatment groups 

• Growth rate and length 

of lag phase not 

compromised 

Evolutionary 

genomics 
• Higher diversity of 

genes affected by 

mutations under large 

TS than under small TS 

treatment 

• Two-component 

regulator sensor kinases 

and ptsP primarily 

affected by mutations 

• Faster occurrence of 

mutants and increase in 

frequency under larger 

TS and higher IC 

• Clonal interference in all 

treatment groups 

 

• Higher diversity of 

genes affected by 

mutations under large 

TS than under small TS 

treatment 

• Multidrug efflux 

regulators primarily 

affected by mutations 

• IC20-M5 populations 

did not acquire 

mutations 

• Faster spread of mutants 

under IC80-M5 than 

under small TS  

• Clonals interference 

common 

 

Clonal 

competition 
• Competitive advantage 

of ptsP over pmrB 

decreases with 

increasing IC 

• Single strain growth not 

a good predictor of 

competition outcome 
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Synthesis of different evolution experiments  

Bottleneck strength and selection strength cause contrasting yield dynamics  

In all evolution experiments, both the IC and the TS had an influence on the evolu-

tionary dynamics of the bacterial populations, albeit to different degrees. In the CIP evolution 

experiment, the TS had a two-fold stronger influence on yield than IC, with large TS groups 

generally growing to a higher yield than small TS groups (Figure 9, page 60). The opposite 

effect was observed for the GEN experiment, where low IC populations reached a higher yield 

than high IC populations towards the end of the experiment (Figure 8, page 58). In the CAR 

experiment, only IC20-k50 achieved a higher yield than the other groups (Figure 10, page 62). 

In either experiment, the combined effect of both factors on yield was either small (GEN) or 

not significant. The effect of bottleneck size on yield was low in the GEN experiment, as all 

treatment groups experienced a strong reduction in yield after the second transfer (Table 9, 

page 58). In the CAR treatment, TS did not affect adaptive dynamics of yield, either (Table 13, 

page 62). For CIP, both strong bottleneck treatments reached their maximum fitness much later 

than the groups with wide bottlenecks, indicating that populations adapt faster when the TS is 

large (Table 11, page 60). In this case, the wide bottleneck potentially allowed for a larger 

variety of mutants to occur in the populations and consequently for selection to act earlier on 

the larger set of mutants 278,279.  

 

Combined effects of bottleneck and selective strength on resistance evolution  

Resistance and growth measurements of the evolved lineages revealed distinct patterns 

for different antibiotics: Populations that experienced large TS during evolution showed high 

levels of resistance when the IC was high, while low levels of resistance evolved when the IC 

was low. However, for the populations that experienced small TS during the experiment, the 

opposite effect occurred: Populations evolved higher resistance at low IC than at high IC. This 

dichotomous combined influence of bottleneck size and selective strength was observed for 

both GEN (Figure 11, page 64) and CIP (Figure 14, page 67). In either case, the largest 

difference in resistance evolved between the two groups that evolved under large TS (wide 

bottleneck).  
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The result for the large TS could be attributed to a larger genetic diversity within the 

populations. This would increase the chance of parallel evolution since the likelihood of the 

most beneficial mutation to occur in every replicate population is high. The selective pressure 

imposed by the drug concentration favors mutations of different fitness properties: Low 

selective pressure (IC20) selects for mutations that confer high fitness under low drug concen-

trations. In contrast, high selective pressure (IC80) is more likely to select for mutations that 

also confer high resistance. Furthermore, genetic drift is expected to play a more pivotal role 

for the fixation of beneficial alleles when the TS is small (strong bottlenecks) 136. Thus, the 

selective strength is expected to have only little influence. Because of the lack of clonal 

competition, any mutation with a beneficial fitness effect will have a stronger fitness advantage 

early on. High resistance was able to evolve under low drug concentration. However, the 

mutations likely fixed due to stochasticity of mutation supply rate and their resistance 

properties were therefore selected randomly 55,279. An alternative explanation would be that 

only high selective pressure causes early selection of random beneficial mutations. In contrast, 

comparatively low selective pressure would allow for clonal competition which eventually 

favors mutations that confer both increased fitness and resistance 280.  

The endpoint populations were grown in the absence of the antibiotics to further 

characterize changes in growth behavior relative to the ancestral PA14 wild type. Continuous 

OD measurements were obtained to calculate the mean length of lag phase and mean maximum 

growth rate of the evolved populations. In general, most evolved populations of all treatment 

types have a slightly shorter lag phase than the ancestor, which is a common signature of media 

adaptation 281. For both GEN and CIP, treatment groups that evolved the highest resistance also 

show the lowest overall fitness in absence of the treatment drug. For the CIP dataset, the most 

resistant treatment groups IC20-k50 and IC80-M5 have a maximum growth rate that is not 

different from the evolved no-drug control (Figure 15, page 69). On the contrary, the least 

resistant treatment group IC20-M5 shows a higher maximum growth rate than the control. For 

the GEN dataset on the other hand, the least resistant treatment groups IC20-M5 and IC80-k50 

do not differ in maximum growth rate from the evolved no-drug controls and the two more 

resistant groups IC20-k50 and IC80-M5 have a lower maximum growth rate (Figure 12, page 

66). For either drug, resistance is strongly associated with a substantial fitness cost 38,90.  

           Contrary to the results of CIP and GEN, bottleneck strength did not influence resistance 

evolution under CAR treatment. The high IC treatment groups evolved higher resistance than 
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the low IC groups. However, there was no difference in resistance between either group of 

pairs of the same IC (Figure 16, page 70). In addition, no difference in maximum growth rate 

and length of lag phase could be found between the different CAR treatment groups (Figure 

17, page 71). The results could indicate that the adaptations observed in the evolutionary data 

are due to mutations of small effect. Alternatively, phenotypic effects rather than genetic 

mutations have been shown to be responsible for the observed adaptive pattern 282. However, 

it must be noted that PA14 is naturally better equipped to withstand high concentrations of 

CAR compared to other PA strains as their AmpC beta-lactamase can hydrolyze beta-lactam 

antibiotics 283. Since multifold concentrations of the MIC are already very high (for 

comparison, the concentrations used for the tests with CIP are 1000-fold lower than for CAR) 

and CAR must be dissolved in ethanol, it is likely that ethanol contributed to increased killing 

at higher concentration levels. More delicate testing for evolved resistance would need to be 

done to provide us with a result that can be interpreted more clearly. 

  

Different treatment groups show distinct genomic signatures 

WGS of entire populations from the last transfer point revealed distinct signatures of 

genetic adaptation for each treatment group. Populations that experienced large TS acquired a 

lower diversity of mutations than populations of small TS. In the IC80-M5 populations of both 

GEN (Figure 18, page 73) and CIP (Figure 21, page 77), mutations were found in only two 

genes among all treatment replicates. In the IC20-M5 populations, all replicates had mutations 

in only one gene (GEN) or no mutations were found (CIP). For individual populations of small 

TS, mutations were also found in genes that did not occur in any other population within the 

dataset. Overall, the genomics of the end point populations confirm my hypothesis that strong 

bottlenecks lead to more variation among replicates. The identified mutations are associated 

with different levels of resistance and fitness effects. In addition, most mutations found in each 

respective dataset are associated with a distinct gene function (CIP: multidrug efflux, GEN: 

two-component regulatory systems). Several populations had acquired more than one mutation 

by the end of the experiment. However, fixation of two mutations in the same background 

could only be confidently identified in two individual cases, hinting at the possibility of 

increased clonal interference. 
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For GEN, mutations in sensor kinases of two-component regulatory systems were most 

commonly selected. Two-component regulatory systems are molecular signal transduction 

systems that sense different environmental stimuli and regulate physiological responses upon 

environmental changes 268-270. They typically consist of two proteins: A membrane-associated 

histidine kinase that senses environmental stimuli and a corresponding response regulator that 

regulates the differential expression of larger sets of target genes of the cellular response. 

Function-altering mutations in the kinase would cause a change in stimulus sensing and conse-

quently also in the expression of environmentally linked genes 269,270. The two-component 

systems found to be affected by mutations in this dataset are PmrAB, ParSR and PhoPQ. 

Among other cellular responses, all three systems regulate LPS modifications of the bacterial 

outer cell membrane, specifically lipid A 284–286. Unlike most other groups of antibiotics, 

aminoglycosides can enter bacterial cells by binding to the negatively charged components of 

the bacterial membrane 287,288. By binding to lipid A, aminoglycosides can influence the 

membrane composition and increase its permeability, therefore also increasing the uptake rate 

of other aminoglycoside molecules 86,247. Modification of lipid A that is conferred by mutations 

in two-component regulatory systems would prevent the self-regulated uptake of amino-

glycosides and therefore increase resistance 84,87,289. Lipid A modification is a commonly cited 

resistance mechanism against polypeptide antibiotics but is also often found in amino-

glycoside-resistant bacteria 211,290. Mutations in pmrB and phoQ are regularly observed as 

adaptational responses that confer resistance against both aminoglycosides and polymyxins 

84,291. ParS/parR mutations have been reported to down-regulate the regulatory gene mexS of 

the mexEF-oprN operon and up-regulate the quorum sensing (QS) genes lasI and rhlI, the main 

regulators of the two QS systems of PA 292. 

Apart from two-component systems, most mutations are found in the gene ptsP. ptsP is 

a phosphoenolpyruvate-dependent phosphotransferase that transfers the phosphoryl group 

from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (NPr) 274. It is known as an 

important player for the nitrogen cycle and glucose transport in bacteria 293,293. Deletions of 

ptsP have previously been described to cause overproduction of pyocyanin in PA, a toxin and 

virulence factor produced by PA to oxidize other molecules 295. However, the role of ptsP in 

aminoglycoside resistance has not yet been characterized properly 296. Previous studies have 

identified an increased resistance of ptsP mutants of E. coli against antimicrobial peptides 297. 

Furthermore, loss of ptsP renders PA susceptible to membrane permeabilization by human 

opsonin SP-A 298. It has also been revealed that the disruption of ptsP causes a significant 
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increase in the expression of the major QS regulators lasI and rhlI 295. QS controls many 

cellular functions like motility, polysaccharide synthesis, biofilm formation and activation of 

virulence factors 88,299. Thus, ptsP may mediate GEN resistance through QS-associated 

adaptation. 

PtsP and pmrB are the two most frequently mutated genes across all treatment groups 

and all replicates with a TS of M5 carry dominant mutations in either ptsP or pmrB. While 5 

of 7 replicates in the IC80-M5 group are dominated by pmrB mutations (the remaining two by 

ptsP mutants), all replicates in the IC20-M5 group carry their dominant mutation in ptsP. This 

agrees with the original expectation that a higher degree of parallel evolution takes place under 

large TS because of the increased likelihood of the fittest mutant to occur 300. Any additional 

dominant mutations that achieve high frequencies within populations were only found once in 

populations of the k50 treatment groups. A mutation in cysJ, a member of the sulfite reductase 

complex, occurs in population IC80-k50-E3 at a frequency of 100% that likely is hitchhiking 

along with the selected ptsP mutation. Mutations in waaL (in population IC80-k50-F3), a ligase 

involved in LPS synthesis 301, and fusA1 (in population IC80-k50-G3), the regulator of 

ribosomal translocation during translation elongation, also dominate single populations 302. The 

resistance tests indicate that only mild resistance is conferred by the latter two mutations. Thus, 

they may have been selected early in the experiment and were able to rise in frequency due to 

the lack of influx of fitter mutations. In addition, a mutation in the yet uncharacterized gene 

PA14_08640 conferred high resistance for population IC20-k50-C6. Gene ontology provides 

a peptidoglycan binding function for the gene. Orthologs found in other Pseudomonas species 

are characterized as sporulation proteins. In addition, no genes involved with multidrug efflux 

systems were found to be mutated in the GEN dataset. This is interesting as overexpression of 

MexXY-OprM is associated with aminoglycoside resistance in clinical PA isolates 69,211. 

Mutations in pmrB and parR of PA14 were also discovered in other evolution experi-

ments that were done in association with different projects of the lab. pmrB and parR mutants 

were among the most commonly selected genotypes in an evolution experiment in which the 

concentration of GEN as the single treatment drug was gradually increased 80. These clones 

evolved resistance against GEN concentrations of ~ 30x the MIC of the ancestor. pmrB mutants 

also established themselves in populations that were treated with GEN for more than 1000 

generations at a constant dose of IC75 or in a cycling treatment of three drugs (including GEN) 

that were switched at every fourth transfer 117. Interestingly, all SNPs or short Indels found in 
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said experiments occurred at different nucleotide positions of pmrB than the variants 

discovered in this thesis. This might provide more evidence that the variants discovered in this 

thesis could have stemmed from standing genetic variation in the original starting culture. ptsP 

mutations were not found in the end point populations of the experiment in which treatment 

concentrations of GEN were increased. This corroborates my finding that ptsP mutations 

confer mild but not high resistance against GEN (Figure 20, page 75). However, ptsP variants 

were identified at high frequencies in two populations of CAR-resistant PA14 clones that were 

treated with GEN at MIC-level concentrations for ~ 300 generations 83. This finding shows that 

PA14 might commonly evolve low-level resistance against GEN by acquiring ptsP mutations. 

For CIP, the mutant distributions are a crucial caveat for the results of the resistance 

assays. In the IC80-k50 treatment group, all but one replicate went extinct. This indicates that 

the combination of selective pressure and bottleneck strength did not allow for the appearance 

of beneficial mutations in time for the populations to survive the treatment conditions and that 

they could neither survive by physiological adaptation alone. In contrast, no mutations were 

observed in the IC20-M5 treatment group. One explanation for this result is that physiological 

adaptation was enough to improve fitness without mutations in regulatory regions providing 

additional fitness benefits. Alternatively, no mutations occurred that improved the fitness of 

the population to levels above the wild type. Ultimately, drift was not strong enough to elevate 

any mutations to relevant frequencies. Therefore, evolutionary genomics and the allele 

dynamics could only be analyzed for the two remaining treatment groups IC20-k50 and IC80-

M5. However, these results provide clear implications for the resistance tests: Resistance 

primarily evolves by acquisition of beneficial mutations and populations go extinct when said 

mutations do not occur in time.  

Most identified mutations were found in negative regulators of efflux pumps. Efflux 

pumps are active transporters localized in the cytoplasmic membrane that remove substances 

like antibiotics, xenobiotics and metal ions from the cytoplasm and periplasm and transport 

them out of the cell 303,304. Efflux pumps affected by mutations in the CIP dataset are MexCD-

OprJ (repressed by nfxB), MexEF-OprN (mexS), MexAB-OprM (nalC) and MexXY-OprM 

(mexZ). All different efflux systems are members of the resistance-nodulation-division (RND) 

superfamily 304,305. Deletion of the repressor compromises the activity of negative regulators. 

The efflux systems would be expressed at a higher rate and thus antibiotics would be removed 

from the cells at an increased frequency 303,305. The most commonly mutated efflux systems in 
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the dataset, MexCD-OprJ and MexEF-OprN, are associated with high clinical resistance to CIP 

and other fluoroquinolones. Mutational overexpression of MexAB-OprM and MexXY-OprM 

on the other hand causes rather modest fluoroquinolone resistance and is a less common 

adaptive response 305,306. In addition to the removal of drug molecules from the cell, multidrug 

efflux pumps are also known to extrude different QS autoinducers 88,299. It has been demon-

strated that overexpression of the MexCD-OprJ multidrug efflux pump represses the QS 

response of PA 307. Furthermore, the expression of QS-regulated genes is impaired, and the 

production of QS-regulated virulence factors strongly decreases when MexEF-OprN is over-

expressed 307. In contrast, the shut-down of MexEF-OprN selects for increased QS cooperation 

in PA 308. Thus, resistance against CIP through the observed pathways likely comes at the cost 

of compromising QS efficiency. 

Mutations for IC80-M5 were primarily found in either nfxB or mexS, two clinically 

relevant genes that confer high CIP resistance 304. A higher diversity of genes was mutated in 

the IC20-k50 group. Missense mutations in the drug targets DNA gyrase and topoisomerase 

IV are commonly associated with high fluoroquinolone resistance in clinical PA isolates 211. 

Mutations in the corresponding genes were not found in the dataset. However, since those 

mutations are commonly associated with high fitness costs, they likely only fix when the 

selective pressure is sufficiently high 306. IC80-k50 was the only treatment group that showed 

significant extinction and may have benefitted the most by mutations that affect the drug target 

sites. Mutations in nfxB and mexS were also found in a different evolution experiment of the 

lab in which CIP was applied as the lone treatment drug against PA14 117. However, at higher 

dosages of CIP, mutations in either gyrA/gyrB or oprD became more significant for the 

evolution of high resistance 80. 

The effects of genetic drift differ substantially between high and low TS and have very 

likely contributed to the outcome of the evolution experiments. However, is important to note 

that the adaptive regimens may also have selected for cell density dependent fitness effects. 

Transferring different cell numbers to the same total volume results in different cell concen-

trations at the beginning of a growth phase. Implicating the possible importance of QS for our 

evolved lineages, mutations that improve growth under low cell densities would likely be 

selected for in the small TS groups. The results of the CIP evolution experiment did not confirm 

this hypothesis, as the affected efflux pump systems commonly also remove QS autoinducers 

at increased rate when upregulated. However, this activity was most likely not under direct 
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selection but rather an evolved trade-off for increased excretion of antibiotics. In the GEN 

dataset, mutations in ptsP and ParR/ParS positively influence QS activity. This finding may 

indicate a potential association between QS activity and GEN resistance. However, its selection 

probability did not depend on cell density, as mutations in ptsP and PaR/ParS occurred and in 

most treatment groups of both small and large TS. PtsP mutants did occur more often under 

large TS than under small TS. Instead, we would have expected ptsP mutations to have an even 

more beneficial effect under small TS than under large TS. Thus, genetic drift rather than cell 

density appears to have played the more pivotal role for the selection of mutations with 

potentially increased QS.  

  

Allele dynamics are influenced by bottleneck strength 

To uncover the evolutionary dynamics of resistance on a genomic level, WGS was 

performed on the populations at intermediate transfer periods of the evolution experiment. For 

the GEN evolution experiment, rates of adaptation differ for the treatment groups (Figures 23-

26, pages 81-84). Unsurprisingly, populations adapt faster under strong selection in both bottle-

neck regimens with beneficial mutations occurring earlier under wide bottlenecks. In contrast, 

low selective pressure allows for more competitive allele dynamics over time, even under 

strong bottlenecks. In addition, clonal interference occurs in every treatment group except for 

IC80-k50. This highlights that drift primarily drives adaptation only under the combination of 

high selective pressure and strong bottlenecks. Surprisingly, populations evolved a higher mean 

resistance under IC20-k50 than under IC80-k50. The allele dynamics offer a potential expla-

nation for this outcome. The diversity of selected mutants between the populations was high in 

both treatment groups, indicating that drift played an important role for the selection of alleles 

under strong bottlenecks. Under strong bottlenecks and high selectivity (IC80-k50), the first 

beneficial variants were selected more rapidly. By season 7, most populations of the IC80-k50 

group had acquired one mutation at elevated frequencies which went on to become fixed. This 

left the populations with a low proportion of Wt cells from which other beneficial mutants 

could arise. In contrast, most populations under low selectivity (IC20-k50) had not acquired a 

single mutation by season 7. The slow rise of mutants under IC20-k50 enabled multiple 

mutations to occur and compete before the fixation of one. The slower selection of beneficial 

variants therefore also increased the likelihood that an even fitter mutation might establish itself 

in the population and confer higher resistance before the first mutation was fixed.  
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Overall, only three different variants of pmrB mutants are found in the entire dataset. 

On the other hand, 15 different ptsP mutants were found. This may indicate that either the few 

pmrB mutations are subjected more strongly to standing genetic variation than the individual 

ptsP mutations or that beneficial phenotypic effects of mutations are restricted to fewer nucleo-

tides in pmrB than for ptsP. To test the latter hypothesis, additional functional genetic tests 

would be necessary. At least two of the three pmrB variants achieve high frequencies by 

transfer three in the IC80-M5 group. In the IC20-M5 treatment, the three pmrB mutations first 

occur simultaneously to the first ptsP variants. Even if the pmrB variants were subjected to 

standing genetic variation, they must occur at such low frequencies in the starting population 

that they are removed from the small TS populations early by dilution during transfers.  

In the CIP evolution experiment, clonal interference took place in most replicates of 

both relevant treatment groups, independent of bottleneck strength. For the IC20-k50 treatment 

group, mutations occurred late in the experiment and some populations evolved only little 

resistance (Figure 27, page 86). But also, in the IC80-M5 treatment group, mutants occurred 

only by transfer 5 and thus required a lot more time to rise to high frequencies than mutations 

in the IC80-M5 populations of the GEN experiment (Figure 28, page 87). The results highlight 

that the first mutants with a fitness advantage required several dozen generations to establish 

themselves in the CIP treated populations and subsequently be selected. Two or more beneficial 

mutations were selected early in the IC80-M5 group and clonal interference took place for most 

of the experiment. For the IC20-k50 group, second mutants occurred only in the second half of 

the evolution experiment after which increased clonal interference could occur. In four IC80-

M5 populations, mutations in an uncharacterized ABC transporter gene (PA14_09300) had 

occurred by transfer 3. ABC transporters can contribute to the removal of antibiotics from the 

cell lumen 309,310. Thus, the identified mutations may have been adaptive, although they went 

on to be outcompeted by likely fitter mutations that modulate RND efflux activity, the more 

significant efflux protein family regarding antibiotic resistance in Pseudomonas aeruginosa 

311–313. Only one mutation in PA14_09300 could be found among IC20-k50 populations. The 

only surviving IC80-k50 population also acquired a mutation in PA14_09300 during the 

second half of the experiment. 
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Clonal competition influenced by selective regimen 

Within the GEN dataset, ptsP and pmrB are the most commonly mutated genes. 

Mutations in either gene dominate the two large TS groups which theoretically allow for the 

highest diversity of mutants to occur. This led me to hypothesize that pmrB and ptsP are the 

mutations with the highest competitive ability under the applied experimental conditions. For 

a simplified model of evolutionary dynamics, competition experiments with mutant clones of 

ptsP and pmrB were designed (Figure 30, page 92). In those experiments, ptsP mutants showed 

a generally but not universally higher competitive ability than pmrB mutants. More 

specifically, the competitive benefit of ptsP mutants was higher under low IC conditions but 

faded under high IC conditions (Figure 32, page 95). The high growth advantage of ptsP 

mutants under low GEN concentration is represented by the competition outcome as well as by 

the evolution experiment. However, the competition experiments could not explain why ptsP 

mutants were able to establish themselves in some replicate populations at late stages of the 

evolution experiment. There does not seem to be a general fitness advantage of these clones. 

pmrB mutants generally dominated in the IC80-M5 group of the evolution experiment but did 

not outcompete ptsP under IC80-M5 conditions in the competition experiment. Large standard 

errors of the competitions indicate a certain stochastic effect of clonal fitness that can allow 

either genetic variant to win the competition.  

The results of the competition assays demonstrate an evolutionary trade-off for pmrB 

mutants, as they carry a higher resistance than ptsP mutants but also a higher fitness cost at low 

GEN concentrations. The decreased growth of pmrB mutants is a fitness disadvantage in drug-

free environments. The less resistant ptsP mutants on the other hand do not show any signi-

ficant fitness cost when competing against the wild type. ptsP is the most dominant mutation 

in the IC20-M5 treatment group because it provides resistance against sufficiently high 

inhibitory levels of the treatment drug. At the same time, ptsP mutants maintain the ancestral 

growth characteristics. Low IC and wide bottleneck do not select for high resistance, because 

only a low fitness burden needs to be overcome, and high resistance is less favorable when it 

is associated with an increased fitness cost. In contrast, ptsP does not have a growth advantage 

over pmrB at IC80. Since pmrB is established as the dominant mutant early in the evolution 

experiment, other factors than resistance must influence the competitive dynamics between 

both mutants. One possible explanation would be that those specific ptsP mutations that arose 
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in the IC80-M5 group at later stages of the evolution experiment confer higher growth benefits 

than other ptsP variants and therefore were able to establish themselves late.  

Findings of the evolution experiment and the summary of the competition treatments 

indicate that the ptsP mutants should outcompete both Wt and the pmrB mutants under all 

experimental conditions. Although pmrB mutations confer a higher resistance, ptsP mutations 

provide a higher growth rate at all treatment concentrations. Thus, the question remains: Why 

does ptsP not dominate all treatments of the main evolution experiments? As previously stated, 

a possible explanation could be that the selected pmrB mutants have already been present at 

very low initial frequencies in the starting culture of the experiment. Early selection of pmrB 

mutants could then have prevented or postponed the establishment of independent ptsP mutants 

in the IC80-M5 populations. WGS of the starting culture could not confirm this hypothesis. 

However, the coverage size of 103 reads for the WGS is drastically lower than the inoculum 

size of 5x106 and any clonal frequency < 1% could easily go undetected. Alternatively, growth 

rate alone might not be the decisive factor for competition outcome but other effects of the 

selected mutations. In this context, the potential upregulation of QS systems in ptsP mutants 

might be a beneficial factor to consider in future functional analyses of the mutants. The 

performed competition experiments ran only for a single growth period, which was not enough 

to comprehend the complex fitness dynamics between ptsP and pmrB under IC80 conditions. 

Thus, additional competition experiments that enable competitive dynamics over longer 

periods of time will likely provide a more in-depth understanding of whether each mutant can 

establish itself in a population that is dominated by the other.  

The growth advantage of the evolved mutant clones over PA14 was remarkably higher 

than expected from the evolution experiment. The mutant clones dominated the competitions 

and grew at a faster pace than they did in the evolution experiment, where it took the mutants 

up to nine transfers to dominate a population. The higher fitness of PA14 in the evolution 

experiment can be explained due to the physiological adaptation to the GEN concentration 

before the mutations emerged 314,315. To control for this effect, PA14 can be incubated in GEN 

medium before the competition to reconstruct the experimental conditions. However, this 

would also risk the emergence of new mutations in the Wt background that could compromise 

the interpretation of competition outcomes. Another explanation for the difference in growth 

of the resistant clones between the evolution experiment and the competition assay is the 

starting populations size. In the evolution experiment, mutations first occurred in single cells 
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and only slowly increased in frequency as the population was dominated by the wild type or 

other variants. In contrast, mutants started the competition experiments at a relative initial 

frequency of 50%, allowing for a faster spread through the population. 

The growth measurements of single strains in drug-free medium did not show signi-

ficant influence on the competition outcome. No influence was found for either the growth rate, 

final OD and length of lag phase. The only significant correlation was obtained for the AUC in 

competitions involving PA14. In those competitions, the mutant strains were highly dominant 

due to their GEN resistance. The smaller growth differences between pmrB and ptsP mutants 

in competition with each other could not be linked to their single strain growth. Those findings 

do not imply a lack of correlation between single strain growth and growth in competition, but 

rather emphasize the difficulties of comparing different growth parameters. Growth character-

istics of individual strains can result in different effects in fitness measurements. Consequently, 

results of competition assays and growth curves cannot be expected to generally show 

correlation 316. 

 

Distinct evolutionary dynamics for individual drugs  

Generally, PA14 shows similar adaptive dynamics to the individual treatment regimens 

across different antibiotics. However, there are also some important differences to point out 

between the experimental datasets. High resistance evolved in all treatment groups of the GEN 

experiment. In contrast, resistance did not evolve in two treatment groups of the CIP experi-

ment. On one hand, the IC20-M5 group could survive without acquiring any mutations at high 

frequencies. On the other hand, the IC80-k50 group almost went completely extinct early in 

the experiment. In addition, resistance only seemed to increase for the high IC groups of the 

CAR experiment, but not for the low IC groups. Apart from different adaptational dynamics, 

resistance to the respective treatment drugs is conferred by modification of target genes of 

different functions. It is therefore essential to discuss the potential influence of pharmaco-

dynamic effects of the individual drugs on adaptive dynamics of the PA14 populations. 

CAR is a carboxypenicillin that inhibits DD-transpeptidase, thereby preventing trans-

peptidation that crosslinks the peptide side chains of peptidoglycan strands 317. Carboxy-

penicillins provide in vitro activity against a variety of Gram-negative bacteria. Their medicinal 
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relevance focusses primarily on their activity against Pseudomonas aeruginosa and some 

proteobacteria 317. Their superior activity against P. aeruginosa may be due to better 

penetration characteristics or greater affinity for penicillin binding proteins. However, strains 

producing elevated amounts of beta-lactamase are commonly resistant against carboxy-

penicillins 318. As PA14 produces the AmpC beta-lactamase and no beta-lactamase blocker like 

tazobactam was added to the treatment, adaptation may likely have been conferred by increased 

expression of AmpC 283. In this case of phenotypic adaptation, the IC of the treatment drug 

would most likely have a stronger influence on expression levels than bottleneck size.  

CIP is a second-generation fluoroquinolone that inhibits the bacterial DNA gyrase and 

topoisomerase IV which eventually causes single and double-strand breaks in the DNA 246. 

Common clinical resistance mechanisms include target-altering mutations and deleterious 

mutations of porins that reduce drug permeability 211. However, the increased drug efflux 

primarily observed in this study has also been commonly described for CIP resistance 304. A 

possible explanation for the increased extinction in the IC80-k50 treatment group could be a 

likely inoculum effect that is further enabled by increased drug efflux 319,320. As 100-fold less 

bacteria are challenged against the same amount of drug molecules in the small TS treatment 

compared to the large TS treatment, the drug-to-cell ratio is larger under small TS. In either 

scenario, cells will take up drug molecules either temporarily (in case of successful efflux) or 

long-term (if the drug binds to its target) during drug exposure. In case of cell death, drug 

molecules would be released by the dead cell and become available again to be taken up by 

other cells 321. However, the selective pressure on individual cells will always be stronger in 

small populations than in larger populations because the number of available drug molecules 

will always be higher 322. Cells with increased drug efflux will thereby increase the selective 

pressure on their neighbouring cells by making secreted molecules available again at a fast rate 

323. On the other hand, increased drug efflux alone may not be enough to resist the high selective 

pressure of available drug molecules in a small population. Consequently, additional mutations 

would be required to either restrict the drug uptake or to reduce the cost of efflux. In contrast 

to the high extinction levels in IC80-k50, the populations evolved under IC20-M5 did not 

acquire any mutations at relevant frequencies. In this case, a large population was used as an 

inoculum against fewer drug molecules. As the amount of available drug molecules would not 

be enough to kill the entire population, the surviving cells likely adapted by increasing their 

fitness when not compromised by ciprofloxacin molecules instead of acquiring costly and 

potentially unnecessary resistance mutations 28,324. 
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The inoculum effect was especially strong in preliminary experiments for MIC 

determination of GEN. Previous tests revealed that drug efficacy is strongly dependent on 

inoculum size. Thus, IC concentrations were adjusted to reach a similar level of inhibition in 

the different treatment groups. As aminoglycosides are very small molecules compared to most 

other antibiotic classes, they do not require porins or other transport channels for uptake. 

Therefore, apart from increased drug efflux and enzymatic deactivation, common resistance 

mechanisms are associated with processes that affect the cell wall as a barrier against drug 

uptake 211. Mutations that appeared under strong bottlenecks did not appear under wide 

bottlenecks. Treatments under both bottleneck sizes primarily selected for mutations in two-

component regulatory systems that cause lipid-A modifications which ultimately change the 

outer membrane structure 84. However, even before the first set of mutants could be identified 

in individual populations, the fitness increased drastically in all treatment groups after the third 

transfer. A possible explanation for the spontaneous spike in population yield would be a 

reduction of membrane potential that reduced the uptake of GEN and thereby drug-induced 

cell death 325,326. In addition, the population size itself also influences the adaptation rate. 

Populations quickly recovered their yield in the GEN experiment and acquired mutations after-

wards. In contrast, the slower, more gradual increase in population yield in the CIP and CAR 

experiments indicate that growth remains limited until the first mutations rise in frequency. 

The early recovery likely contributes to earlier selection of beneficial variants in the GEN 

experiment by allowing more replication events to occur during the early transfer periods 111.  

Overall, the results highlight that the mode of selection is an important factor of 

influence on the evolutionary dynamics of experimental populations. Therefore, the selective 

conditions themselves may have an even greater effect on adaptive dynamics than the absolute 

bottleneck strength. However, bottlenecks may further potentiate selectivity. 
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Revisiting the original hypotheses 

The main conclusions of the work presented in this thesis, related to the objectives and 

hypotheses stated in the first introduction of the thesis, are the following: 

 

H1,1: Wide rather than small bottleneck size reduces treatment efficacy in terms of 

strength and speed of resistance evolution. 

While the bottleneck size must not necessarily have a significant effect on the degree of 

resistance that evolves in the long term (as shown for the CAR data), it certainly affects the 

adaptive dynamics that take place along the way. Resistance alleles required more time to first 

occur in populations of smaller TS than under large TS in all treatments for which allele 

dynamics were investigated. The mean resistance of the IC80 treatments was always higher for 

the large transfer groups than for the small transfer groups. In contrast, the mean evolved 

resistance of the IC20 treatments was higher for the small transfer groups than for the large 

transfer groups for two out of three antibiotics (CIP and GEN). The highest amount of 

extinction events was observed for the high IC and low TS combination of the CIP evolution 

experiment. This indicates that – depending on the treatment drug – populations might struggle 

more to adapt under strong bottlenecks than under weak bottlenecks. 

 

H1,2: High rather than low antibiotic selection strength reduces treatment efficacy in 

terms of strength and speed of resistance evolution. 

When ignoring the influence of TS on resistance evolution, this hypothesis can be accepted for 

both GEN and CIP treatments, as the highest resistance evolved the fastest under high IC 

treatments. However, resistance was higher under low IC treatments when the TS was small, 

but not when it was large. In contrast, high IC treatments produced higher and faster resistance 

for large TS than for small TS. For CAR, however, high IC provoked higher resistance under 

both large and small TS. The selective strength conferred by the antibiotic concentration 

generally had a stronger impact on the speed of resistance evolution than bottleneck size. 

Bacteria always survived high IC treatments by acquiring mutations that confer high resistance, 

regardless of bottleneck size. In contrast, low IC treatments were not always survived due to 

high resistance. Instead, adaptation was often driven by low-resistance mutations or even 
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without mutations. In addition, the first mutants only slowly rose to relevant frequencies under 

low IC treatment, whereas resistance evolved in less than half of the time under high IC. 

 

H1,3: Small rather than wide bottleneck size increases variation in accumulation of 

selectively favored mutations. 

In terms of quantity of beneficial alleles, similar numbers of mutations were able to establish 

themselves in populations of both bottleneck sizes. However, the types of mutations that were 

selected differed substantially between the two groups. A higher redundancy of selected genes 

and a higher degree of parallel evolution were found in the large TS groups than in the small 

TS groups. In addition, clonal interference was more prevalent in large TS groups than in small 

TS groups. In contrast, a larger diversity in affected genes was found for mutants in the small 

TS groups. Furthermore, the allele dynamics of small TS groups rather showed signatures of 

short-term competitions instead of mutual co-existence or clonal interference in the evolving 

populations. 

 

H1,4: High rather than low antibiotic selection strength increases parallel evolution. 

Only the results of the GEN experiment can be used to address this hypothesis, as most 

replicates from all treatment groups survived and evolved in only this experiment. Under high 

IC, a higher degree of parallel evolution took place under large TS than under small TS. All 

surviving populations of large TS acquired mutations in pmrB, whereas selection was more 

random under small TS. The same was true for the low IC treatments, as all populations 

acquired ptsP mutations under large TS, but a much higher variation of genes was under 

selection under small TS. Thus, bottleneck size had a more pronounced influence on parallel 

evolution than selection strength. 
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Figure 35: Schematic interpretation of the results. The four bottles in the upper layer represent 

different populations that undergo either a strong or a weak bottleneck. Blue bottles are treated with 

low IC and red bottles with high IC. Yellow dots represent wild type cells and dots of other colors 

represent different mutants. The lower layers illustrate the distribution of mutants after several rounds 

of cell division. A higher genetic diversity is maintained under weak bottlenecks which leads to 

selection of the fittest variant. Fitness of variants and strength of selection depend on IC: Blue variants 

are favoured under low IC and red variants under high IC. Under strong bottlenecks, lower diversity is 

maintained and selection of first mutants is random. Rapid selection of mutants under high IC might 

prevent the occurrence of even fitter mutations, which is more likely to play out under low IC.  

Note: This graph was designed in collaboration with Heike Mahrt (www.grafikdesign-mahrt.de). 
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Comparing this thesis to the state of the art 

The results demonstrate a strong influence of bottleneck strength on the adaptive 

dynamics of bacterial populations. The combined effect of bottleneck size and selectivity 

provides mutations of certain effect with different likelihoods to occur and to fix in the 

population at high frequencies. In general, the results support the original theoretical predict-

tions that a stronger reduction of the effective population size due to population bottlenecks 

favors the loss of low-frequency beneficial mutations by genetic drift and decreases the chance 

of parallel evolution. To discuss the results of the GEN experiment as a representative, wide 

bottlenecks produced a larger starting population size that increased the probability of multiple 

beneficial mutations being present in each population. This situation enabled the competition 

between independent beneficial mutations in pmrB and ptsP which eventually favored one 

variant over the other, depending on GEN concentration. In contrast, strong bottlenecks were 

less likely to select for one of two variants but enabled additional mutations of lower fitness 

effect to eventually dominate. pmrB and ptsP mutations were also selected in some replicate 

populations under strong bottlenecks. However, the degree of parallel evolution is far lower 

than in the wide bottleneck groups.  

These results contrast with previously published experimental work by Vogwill et al. 

(2016) that reported a high likelihood of parallel evolution under both strong and wide 

bottlenecks 327. However, certain aspects of experimental design need to be considered when 

comparing the results of both studies. First, only a single antibiotic, rifampicin, with a narrow 

resistance spectrum was used at a single, high concentration in the study by Vogwill et al. 

Second, even though the bottleneck sizes are comparable to the experiments performed for this 

thesis, relative bottlenecks were applied rather than absolute bottlenecks. These two factors 

may favor a bias towards a small number of mutations of high fitness effect that enable adap-

tation to the antibiotic of choice. In addition, a higher carrying capacity was used in the study 

by Vogwill et al. which increases the number of generations over the course of a growth period 

and can give preexisting mutations another selective advantage 97,175.  

The results of this thesis agree in principle with previous findings by Lachapelle et al. 

(2015). They found that population size influences the impact of selection, chance and history 

on evolutionary trajectories of algae populations under high salt concentrations 165. Their 

findings indicate that lineages that evolve under strong bottlenecks reach different local fitness 
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peaks while wide bottlenecks lead to increased parallel evolution. They also found that lineages 

were more likely to reach the global fitness peak under wide bottlenecks. Lachapelle et al. used 

a different experimental model for their experiments and maintained relative bottlenecks of 

populations of different end point size. Yet, I can draw the same conclusions from my data as 

the same observations were made for the PA14 lineages that evolved in the GEN and CIP 

experiments. 

In 2020, Garoff et al. published the results of an evolution experiment where popu-

lations of Escherichia coli adapted to increasing concentrations of ciprofloxacin while 

undergoing three different bottleneck sizes (single cells, 3x108 cells and 3x1010 cells) 328. They 

reported that very large bottlenecks (3x1010 cells) led to both highest resistance and highest 

fitness by selectively favoring target-altering mutations. In contrast, the smaller bottlenecks 

also selected for many mutations in genes of different function that conferred low fitness and/or 

resistance. They also found that bottlenecks smaller than the average nucleotide substitution 

rate of E. coli resulted in genotypes that are less similar to genotypes observed in resistant 

clinical isolates. It is important to note the main difference in the experimental approach 

compared to my thesis: Instead of maintaining steady antibiotic concentrations of different size 

< MIC, a single drug concentration was increased at regular intervals to concentration levels 

>> MIC. Although this approach favored different mutations of specific effect, the reported 

results underline the main findings of my thesis: Large bottlenecks maintain a higher genetic 

diversity that maximizes the chance of parallel evolution driven by the fittest mutants. The 

results also highlight that large population sizes should be considered when translation of 

experimental findings to large natural populations of pathogens is desired. 

Furthermore, my findings partially agree with recent findings by Wein & Dagan (2019), 

who found that population bottleneck size impacts genetic diversity regardless of the selective 

pressure of the treatment regimen 198. Although the same observation was made for the GEN 

experiment, it was not for the CIP experiment, highlighting the importance of the spectrum of 

possible adaptive paths under the respective stressor. Wein and Dagan observed the highest 

genetic diversity to evolve under optimal growth conditions. To allow for selection of 

beneficial alleles in the control lineages of this thesis, the number of generations that the 

populations evolved for was ultimately too low. However, Wein & Dagan also reported that 

wide population bottlenecks enabled the highest degree of parallel evolution and that clonal 
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interference was less common under strong bottlenecks and high selectivity. The latter two 

observations could be confirmed in this thesis. 

I also found that multiple variants of pmrB and ptsP mutations are showing clonal 

interference in the wide bottleneck treatment groups. This observation contrasts with 

previously reported findings that mutations of identical effect are less likely to be selected once 

a beneficial variant is established within the population 184. However, a simple explanation 

could be that the natural bottlenecks that occur during an infection of a host are much more 

severe than the wide bottlenecks applied in this thesis. Even stronger bottlenecks would be 

more likely to favor the selection of a single allele 138. 

ptsP mutations show a very low fitness cost in the absence of selective pressure, which 

is especially apparent in the 1:1 competition experiment. Here, ptsP mutants show the same 

fitness as the PA14 Wt under IC0 conditions. There is no difference in exponential growth rate 

and length of lag phase between the two genotypes either, which are common fitness para-

meters under selection in serial transfer experiments. As mutations that confer high fitness and 

low-cost adaptation are positively selected for, their allele dynamics likely mask other low-

frequency variants that emerged during the experiment. In the wide bottleneck treatment 

groups, the selection of fast growing ptsP variants therefore likely reduces the overall genetic 

diversity of the replicate populations. By the end of a growth period, the population bottleneck 

will remove low-frequency variants from the population which further benefits the high-

frequency variants. Thus, my findings support earlier predictions by Wahl et al. (2001) on the 

survival probability of mutations in bacterial populations, which state that mutations that occur 

at an early point in a growth period have a higher chance of being fixed than mutations that 

emerge at a later time point 178. The growth dynamics of the large TS populations are 

characterized by the number of generations of the bottlenecked populations as well as their 

mutational patterns. Therefore, they have different effects on allele fixation probabilities, 

depending on bottleneck strength. These are likely complemented by the effects of genetic 

drift.   

Bacterial populations experience parallel evolution both in natural and laboratory 

environments 92,300,329,330. A commonly cited reason for increased parallel evolution in 

populations of large size is the high chance of clonal interference to occur and to influence 

allele dynamics 133,153. Parallel evolution could be observed in the wide bottleneck populations 

with larger initial population size, but not for strong bottleneck populations. However, it was 
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mainly observed on the gene level and less commonly on the nucleotide level. Apart from a 

small set of pmrB variants in the GEN dataset, there was little to no effect of bottlenecks on 

the frequency of individual SNPs within genes under selection. This implies that SNPs at 

different sites in the gene likely confer a similar fitness effect. Consequently, selection will be 

more evident between genes than within them. However, there can be considerable diversity in 

the phenotypic effects of different single nucleotide variants within the same gene, as it may 

very well be the case for pmrB and ptsP 331,332. 

Overall, I can report that high resistance can evolve even under low IC of antibiotics 

when the bacterial populations are subjected to strong bottlenecks. The GEN evolution 

experiment shows that costly mutations that confer high resistance are less likely to be out-

competed by less costly mutations that confer lower resistance under strong periodic 

bottlenecks. However, low selective pressure also increases the likelihood of genetic diversity 

to be maintained in the population that can give rise to even fitter variants. In contrast, fast 

fixation of single variants is more likely to occur under high selectivity. Strong population 

bottlenecks under high selection favor mutations of high effect, but they simultaneously reduce 

the population’s genetic diversity. This also means that the population’s potential to adapt to 

additional selective stressors and to other environments is limited by the evolved fitness trade-

offs 333. In the context of antibiotic resistance evolution, this may provide a window of 

opportunity for adaptive antibiotic therapy. Collateral sensitivity that has been conferred by the 

acquired resistance mutation could then be exploited by switching the treatment drug 77,80. As 

large populations have a higher chance of parallel evolution, they are also more likely to 

repeatedly evolve the same fitness trade-offs 334. Thus, the efficacy of adaptive therapy may be 

even more predictable in large bacterial populations that undergo strong selection. On the other 

hand, adaptive therapy of small bacterial populations might require a more individualized 

approach as the selection of specific mutations and their associated fitness trade-offs is less 

predictable. 

Some experimental lineages already show complex allele dynamics over a rather short 

evolutionary timescale of about 100 generations. Ultimately, the length of the evolution 

experiments was too short for secondary mutations to establish themselves and further drive 

evolutionary dynamics. Thus, the results are difficult to relate to a clinical setting like the 

adaptation of PA to the CF lung, which takes place over decades of years and tens of thousands 

of generations. The spreading of different PA sub-lineages within the lung is likely 
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accompanied by population bottlenecks of unknown size. The high clonal diversity of PA 

isolates within a patient can either be a result of increased clonal interference (wide bottleneck) 

or of the spread of a clone to a previously uninhabited patch within the lung after a strong 

bottleneck 231,335. However, assumptions about bottleneck strength are impossible to be drawn 

when the spatial structure that is provided by the lung environment is ignored as a factor that 

can contribute to increased clonal diversification. It is therefore crucial not to ignore the 

influence of spatial structure if future experiments were to be desired for greater understanding 

of bacterial adaptation to the CF lung.   

For the experiments, only drug concentrations below the MIC were used. The reasoning 

for this choice was to maintain the relatively low number of replicates of evolving populations 

per treatment group for long periods without risking the extinction of most. Thus, the drug 

efficacy was expected to be insufficient for population eradication by design. Indeed, most 

populations used in this thesis did not only survive but also adapted to their respective 

treatments. However, the high extinction rate in the high IC and low TS treatment of the CIP 

evolution experiment indicates that extinction is possible at sub-MIC concentrations when the 

selective pressure is high and the population size is too small for resistance mutations to occur 

in time. If higher concentrations had been used, it is likely that parallel evolution would have 

been more common across all bottleneck treatments as high antibiotic resistance is commonly 

conferred by large-effect mutations in only few genes 336.  

In addition, the three applied bottleneck intensities represent only a small fraction of 

potential bottleneck sizes which bacteria can experience in natural environments. Thus, even 

the weakest and strongest population bottlenecks applied in this work cannot capture the 

spectrum of naturally occurring population bottlenecks of pathogenic bacteria. Some infecting 

populations can be very large (e.g. ~ 109 CFU/bladder in urinary tract infections), while 

bacterial populations of lung infections tend to divide into very small compartments 96. As the 

extinction levels for the IC80-k50 group of the CIP experiment show, the bottleneck strength 

was already too severe to allow for evolutionary adaptation to take place. Thus, the impact of 

bottleneck strength on evolvability of resistance also depends on the mode of action of the 

applied antibiotic and the mode by which resistance is conferred.  
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Colistin experiments 

In addition to the three completed experiments, test runs have been performed for 

another drug, colistin (also known as polymyxin E). Polymyxins are polypeptides that are used 

as antibiotics for the treatment of Gram-negative bacteria. They disrupt the cell membranes of 

bacteria after binding to lipopolysaccharides of the outer membrane 337. Colistin was commonly 

used in hospitals against PA infections until the 1980s, after which its use was discontinued 

because of strong nephrotoxic side effects. It was later re-introduced in the 1990s as a last resort 

antibiotic after infections caused by multidrug-resistant Gram-negative bacteria had become 

more prevalent in hospitals 337. It has since also been routinely used for the regular treatment 

of CF patients. It has proven to be a valuable treatment drug, as it shows a very high effectivity 

against PA and resistance is observed only rarely in clinical environments 337–339. Resistance 

against colistin and other polymyxins is usually conferred by modifications of lipid A in the 

cell membrane, like most GEN resistance observed in this thesis 340,341. One of the better 

described resistance mutations is mcr-1 (mobilized colistin resistance) which is encoded on a 

plasmid and mediated by acquisition via horizontal gene transfer between different bacterial 

strains 343. Mcr-1 encodes for an enzyme that transfers a phosphoethanolamine residue to the 

lipid A 344,345. Its high clinical relevancy makes colistin an attractive drug to study with my 

experimental system. It is a last resort antibiotic that may become even more important in the 

upcoming decades due to the spread of multidrug resistance among pathogenic bacteria. 

Fortunately, clinical resistance is still rare. However, it is on the rise, as increased transfer of 

mcr-1 between different pathogenic strains and species has been observed globally over the 

last couple of years 346.  

However, due to its properties as a polypeptide, colistin also commonly imposes 

technical difficulties for lab research that make it very challenging to incorporate into my 

evolution experiments 347. Colistin has polycationic features that make it bind to different 

materials, including polystyrene 348. Thus, measurements in commonly used polystyrene plates 

and tubes tend to yield unreliable results. Not only do DRCs in polystyrene plates show high 

variation among technical replicates of the same treatment during one run, but the results of 

one DRC are difficult to reproduce. To be able to run experiments more reliably, the chance of 

colistin randomly binding to surfaces and molecules needs to be reduced. My strategy to 

achieve this goal was to exchange 96-well polystyrene plates with polypropylene or glass-

coated plates which have a lower affinity for colistin than polystyrene. In addition, magnesium 
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was removed from M9 growth medium as colistin has a high affinity to its ions 337. I performed 

trial runs with the altered setup and concluded that exchanging the plates and medium had a 

positive effect on reproducibility of colistin measurements. The DRCs produced smaller 

variation among technical replicates and measurements could be repeated more reliably 

between different dates than it had previously been the case with the original setup. However, 

even though variation could be reduced by removing magnesium from the M9 medium, it could 

not be eliminated. In addition, the absence of magnesium proved to be a stressor that reduced 

the growth rate of PA14 quite substantially. Uninhibited PA14 reached stationary phase within 

12-16 hours in a culture with normal M9 medium, but it did not reach stationary phase after 24 

hours in magnesium depleted M9. Thus, I decided not to continue working with M9 for experi-

ments with colistin but instead continue to look for a different complex medium that works out 

more reliably. A first trial run revealed that LB medium might have a high potential for colistin 

experiments, as DRC measurements could be reproduced more reliably than with MP (see 

Supplementary Figure S7, page 168)  

It is important to note that a different growth medium may likely provoke different 

adaptive patterns and that other medium-specific mutations could occur. If this has any 

implications on potential epistatic effects of beneficial mutations with mutations that confer 

adaptation to the medium remains to be seen. The pending colistin experiment should therefore 

not be directly compared to the other experiments. However, the changes to the setup will most 

likely allow us to study the evolutionary dynamics of colistin adaptation more reliably than it 

would have been possible with the original setup. 

 

Outlook 

Future work will hopefully enable us to measure the intensity of population bottlenecks 

that bacteria experience in vivo due to transmission and host immune responses more precisely 

than before. Immediate steps to follow up on the results of this thesis should rather focus on 

the completion of the current dataset. 

The competition experiments done for individual clones from the GEN dataset 

produced important insights into the competitive dynamics that played out between different 

genetic variants during evolutionary adaptation. However, the time span used in the assays was 

not long enough to uncover definite trends under some experimental conditions. These include 
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the change of competitive dynamics between pmrB and ptsP mutants under high GEN concen-

trations and a stronger, but not significantly different competitive outcome under strong 

bottlenecks compared to wide bottlenecks. Thus, additional competition assays should be 

performed, in which the duration of competition is extended to several transfers to reliably 

determine any real differences in power dynamics under different treatment conditions. In 

addition, the treatment groups should be extended to different starting ratios (e.g. 1:100 and 

100:1 instead of 1:1) to simulate whether one genetic variant is able to establish itself in a 

population dominated by another variant. These conditions would also be closer to and more 

comparable with those that played out during the evolution experiments. 

The insights gained by the improved competition assays would then also be of great use 

to develop population genetic models that simulate allele dynamics of evolving populations 

under different bottleneck strengths. As the data obtained in this thesis is very complex, it 

would be a valuable approach to use mathematical modelling to reduce the complexity of the 

conditions down to the most relevant parameters. By applying mathematical models to 

understand the dynamics observed in the evolution experiments, the effect of other bottleneck 

sizes could ideally also be reliably predicted.  

In addition, a more in-depth functional validation of the ptsP mutants would be an 

important step to better understand the role of ptsP for resistance evolution of GEN. The gene 

is known as an important player in the nitrogen cycle, but it has so far not been studied in detail 

for its role in antibiotic resistance. The conferred resistance against GEN is not particularly 

strong and most likely not clinically relevant. Nevertheless, ptsP likely is an important 

steppingstone for lower levels of resistance and might be an interesting candidate to potentially 

be involved in other types of lower level stress responses. 

Eventually, additional experiments with colistin should be performed with an improved 

experimental setup. Colistin is of great clinical importance for the treatment of CF patients. As 

it remains one of the most valuable last-resort antibiotics, colistin will likely become of even 

greater relevance in the upcoming years after the writing of this thesis. 

Instead of following up on the results of the CAR experiment, I would rather propose 

to repeat the experiment with a more clinically relevant beta-lactam antibiotic and include a 

commonly associated beta-lactamase blocker that forces additional resistance mechanisms to 

evolve. One important candidate would be piperacillin in combination with tazobactam. 
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Supplementary data 

 

Supplementary Figure S1: Graphs of inhibition dynamics for the CAR evolution experiment, 

including the IC50 and k500-TS groups. A: IC20 treatment groups. B: IC50 treatment groups. C: IC80 

treatment groups. The X-axis represents the time series of the evolution experiment: every point represents 

the end of a growth period before the next transfer. The Y-axis represents the mean growth inhibition of 

the populations relative to the evolving no-drug control, based on the cell concentrations. Error bars 

represent standard error of mean (8 replicates). Light squares represent small TS, dark dots represent large 

TS, intermediate rectangles represent intermediate transfer size. 
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Supplementary Figure S2: Graphs of inhibition dynamics for the CIP evolution experiment, 

including the IC50 and k500-TS groups. A: IC20 treatment groups. B: IC50 treatment groups. C: IC80 

treatment groups. The X-axis represents the time series of the evolution experiment: every point represents 

the end of a growth period before the next transfer. The Y-axis represents the mean growth inhibition of 

the populations relative to the evolving no-drug control, based on the cell concentrations. Error bars 

represent standard error of mean (8 replicates). Light squares represent small TS, dark dots represent large 

TS, intermediate rectangles represent intermediate transfer size. 
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Supplementary Figure S3: Graphs of inhibition dynamics for the GEN evolution experiment, 

including the IC50 and k500-TS groups. A: IC20 treatment groups. B: IC50 treatment groups. C: IC80 

treatment groups. The X-axis represents the time series of the evolution experiment: every point represents 

the end of a growth period before the next transfer. The Y-axis represents the mean growth inhibition of 

the populations relative to the evolving no-drug control, based on the cell concentrations. Error bars 

represent standard error of mean (8 replicates). Light colors represent small TS, dark colors represent large 

TS, intermediate colors represent intermediate transfer size. 
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Supplementary Table S1: Cell counts of every transfer obtained from flow cytometry 

for CAR evolution experiment. 

 

Treatment group Transfer Mean Cell Count SD Cell Count 

IC0-k50 1 276.946331 67.3855073 

IC0-k50 2 241.774943 48.7532248 

IC0-k50 3 255.965438 77.4930451 

IC0-k50 4 331.316192 65.4718563 

IC0-k50 5 260.56582 112.646024 

IC0-k50 6 320.488319 57.9876193 

IC0-k50 7 404.768278 139.758822 

IC0-k50 8 289.884155 66.2110298 

IC0-k50 9 285.647322 79.6611377 

IC0-k50 10 360.003891 91.0430213 

IC0-k50 11 256.578168 123.878903 

IC0-k50 12 334.142949 133.533637 

IC0-k50 13 398.032865 48.1718886 

IC0-k50 14 344.958772 103.02192 

IC0-k50 15 249.331345 64.1494956 

IC0-k50 16 356.111328 112.310542 

IC0-k500 1 325.091755 59.683695 

IC0-k500 2 343.400636 142.359096 

IC0-k500 3 221.455803 79.9719516 

IC0-k500 4 379.282177 223.083399 

IC0-k500 5 223.121174 162.841883 

IC0-k500 6 371.891687 68.6805708 

IC0-k500 7 413.039081 38.6490737 

IC0-k500 8 450.286314 215.278455 

IC0-k500 9 353.053462 117.455324 

IC0-k500 10 409.830604 88.6561641 

IC0-k500 11 361.665588 92.307046 

IC0-k500 12 411.285003 128.149442 

IC0-k500 13 347.208577 77.3783727 

IC0-k500 14 400.830396 69.0635877 

IC0-k500 15 395.287221 65.5867353 

IC0-k500 16 366.729478 124.2502 

IC0-M5 1 396.979844 82.3236561 

IC0-M5 2 454.287496 172.314357 

IC0-M5 3 350.101789 163.88227 

IC0-M5 4 323.233959 90.6085925 

IC0-M5 5 423.972066 161.826479 

IC0-M5 6 338.692283 140.851094 

IC0-M5 7 409.014308 177.994499 

IC0-M5 8 281.183635 29.2387344 

IC0-M5 9 358.513255 41.6739956 
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IC0-M5 10 428.645496 144.193091 

IC0-M5 11 624.255813 175.615961 

IC0-M5 12 381.115319 98.1754316 

IC0-M5 13 508.27714 96.1700051 

IC0-M5 14 397.604261 83.1187305 

IC0-M5 15 392.291587 114.557448 

IC0-M5 16 423.278604 116.906284 

IC20-k50 1 142.255152 30.300197 

IC20-k50 2 153.573076 40.0930066 

IC20-k50 3 155.378366 50.1772489 

IC20-k50 4 207.410623 57.4380412 

IC20-k50 5 151.327318 71.6434679 

IC20-k50 6 261.292038 104.489305 

IC20-k50 7 221.351236 65.0766224 

IC20-k50 8 190.314929 40.3539557 

IC20-k50 9 215.175684 50.4875306 

IC20-k50 10 262.426537 76.7036448 

IC20-k50 11 167.033762 38.970924 

IC20-k50 12 234.265217 112.312598 

IC20-k50 13 206.252617 48.8221656 

IC20-k50 14 306.506794 111.334634 

IC20-k50 15 213.799089 65.116553 

IC20-k50 16 282.359315 70.6582316 

IC20-k500 1 163.656814 37.4693712 

IC20-k500 2 156.340169 50.5805748 

IC20-k500 3 117.785409 54.7288558 

IC20-k500 4 173.176283 49.7931592 

IC20-k500 5 169.51824 34.5847782 

IC20-k500 6 321.75357 63.7532786 

IC20-k500 7 188.474696 41.1039199 

IC20-k500 8 197.82816 83.4859902 

IC20-k500 9 181.262419 26.4485926 

IC20-k500 10 237.569379 66.501328 

IC20-k500 11 229.853382 104.683127 

IC20-k500 12 210.314581 86.5121925 

IC20-k500 13 203.90935 41.175698 

IC20-k500 14 239.156797 78.7691597 

IC20-k500 15 126.439018 123.175659 

IC20-k500 16 256.882441 78.347822 

IC20-M5 1 198.121582 58.2976068 

IC20-M5 2 233.829629 42.1168261 

IC20-M5 3 158.285948 36.0845711 

IC20-M5 4 202.259544 59.4463982 

IC20-M5 5 140.073761 21.3861311 

IC20-M5 6 441.034389 124.01756 

IC20-M5 7 156.40565 62.9599894 
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IC20-M5 8 265.50252 51.5880411 

IC20-M5 9 172.175045 30.3754012 

IC20-M5 10 151.832653 29.8658648 

IC20-M5 11 183.593788 47.4754906 

IC20-M5 12 221.623029 153.42486 

IC20-M5 13 167.019852 72.9215213 

IC20-M5 14 203.63278 110.189558 

IC20-M5 15 220.739737 103.795754 

IC20-M5 16 270.061762 115.522535 

IC50-k50 1 61.5562866 37.5001279 

IC50-k50 2 20.6251368 3.10989295 

IC50-k50 3 48.4498632 31.2758885 

IC50-k50 4 167.038319 108.879906 

IC50-k50 5 127.622315 104.882608 

IC50-k50 6 179.105964 94.1199247 

IC50-k50 7 192.467452 126.441288 

IC50-k50 8 234.850113 63.4276188 

IC50-k50 9 189.675602 76.2140753 

IC50-k50 10 361.088027 111.591456 

IC50-k50 11 211.871579 110.159934 

IC50-k50 12 345.127808 151.729801 

IC50-k50 13 288.367936 134.259862 

IC50-k50 14 317.946295 155.531922 

IC50-k50 15 193.992011 68.1430047 

IC50-k50 16 242.544752 79.2556178 

IC50-k500 1 95.0863596 21.6853559 

IC50-k500 2 178.170118 173.48209 

IC50-k500 3 23.3331743 11.8276806 

IC50-k500 4 164.086736 169.363525 

IC50-k500 5 138.940128 116.127617 

IC50-k500 6 203.589308 136.252655 

IC50-k500 7 261.484154 183.875674 

IC50-k500 8 198.144609 51.6562457 

IC50-k500 9 230.554503 29.4762285 

IC50-k500 10 295.480903 94.9621922 

IC50-k500 11 211.414614 65.8487726 

IC50-k500 12 290.522218 147.680011 

IC50-k500 13 259.177188 52.2496128 

IC50-k500 14 193.312609 58.4807319 

IC50-k500 15 309.433575 188.373724 

IC50-k500 16 308.362398 83.2393785 

IC50-M5 1 162.633144 41.521759 

IC50-M5 2 186.902312 169.033245 

IC50-M5 3 53.5770021 16.6411494 

IC50-M5 4 118.282444 83.9852832 

IC50-M5 5 106.152016 46.9053221 
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IC50-M5 6 159.459928 70.1158965 

IC50-M5 7 138.396048 91.6150396 

IC50-M5 8 344.309512 101.485034 

IC50-M5 9 237.173018 43.9606343 

IC50-M5 10 408.838666 158.987442 

IC50-M5 11 265.005671 65.3852712 

IC50-M5 12 310.969734 89.3566199 

IC50-M5 13 279.895628 88.6474846 

IC50-M5 14 290.23342 69.0198818 

IC50-M5 15 276.638591 145.847078 

IC50-M5 16 353.889664 146.492745 

IC80-k50 1 29.8913453 8.33128315 

IC80-k50 2 18.9706495 1.96954026 

IC80-k50 3 58.7970991 107.241534 

IC80-k50 4 102.954762 94.429309 

IC80-k50 5 150.816849 90.1980103 

IC80-k50 6 162.424565 72.192164 

IC80-k50 7 150.468402 127.814197 

IC80-k50 8 125.428045 108.930102 

IC80-k50 9 155.379448 82.4143923 

IC80-k50 10 224.951002 100.386223 

IC80-k50 11 127.955543 84.9913155 

IC80-k50 12 213.75457 150.298481 

IC80-k50 13 140.702171 115.449997 

IC80-k50 14 132.566803 161.238388 

IC80-k50 15 138.091733 145.925848 

IC80-k50 16 218.734839 210.281345 

IC80-k500 1 72.2827118 23.2344513 

IC80-k500 2 19.5529948 3.18907374 

IC80-k500 3 166.293456 58.3715734 

IC80-k500 4 188.322205 37.8477913 

IC80-k500 5 173.968444 29.565075 

IC80-k500 6 177.486823 50.6664431 

IC80-k500 7 166.975472 59.283559 

IC80-k500 8 161.863313 29.2211216 

IC80-k500 9 175.246916 48.1375491 

IC80-k500 10 320.244734 131.278196 

IC80-k500 11 193.498886 48.4542855 

IC80-k500 12 169.676715 47.5010309 

IC80-k500 13 203.965564 40.2674141 

IC80-k500 14 217.121869 42.808901 

IC80-k500 15 260.835357 94.5865603 

IC80-k500 16 224.916838 78.3145096 

IC80-M5 1 146.630707 11.6891872 

IC80-M5 2 64.3802376 15.0898752 

IC80-M5 3 43.0077556 41.9838324 
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IC80-M5 4 246.567352 122.05998 

IC80-M5 5 199.074445 62.9686229 

IC80-M5 6 178.375575 78.8440291 

IC80-M5 7 138.660648 115.710109 

IC80-M5 8 186.036676 100.821523 

IC80-M5 9 172.259728 67.3419251 

IC80-M5 10 252.28489 98.9198712 

IC80-M5 11 201.216989 98.885759 

IC80-M5 12 272.987208 270.851471 

IC80-M5 13 211.233137 145.888746 

IC80-M5 14 238.101548 135.757811 

IC80-M5 15 299.964807 131.110918 

IC80-M5 16 255.789483 102.838198 

  

 

 

 

Supplementary Table S2: Cell counts of every transfer obtained from flow cytometry 

for CIP evolution experiment. 

 

Treatment group Transfer Mean Cell Count   SD Cell Count   

IC0-k50 1 221.914052 28.7119193  

IC0-k50 2 452.151398 61.0461091  

IC0-k50 3 191.366896 43.3002867  

IC0-k50 4 277.995895 54.5824946  

IC0-k50 5 308.624335 80.2204055  

IC0-k50 6 214.807928 64.6156614  

IC0-k50 7 249.454076 61.4705353  

IC0-k50 8 262.271029 51.8089099  

IC0-k50 9 289.259204 59.1879481  

IC0-k50 10 212.416271 56.4138227  

IC0-k50 11 265.883954 49.8632711  

IC0-k50 12 212.764847 64.4683616  

IC0-k50 13 249.789916 53.9890351  

IC0-k50 14 183.80522 38.6572857  

IC0-k50 15 193.316548 43.1123778  

IC0-k500 1 350.469564 48.1663231  

IC0-k500 2 315.132997 66.4194179  

IC0-k500 3 286.018798 36.3845497  

IC0-k500 4 382.037924 54.8865041  

IC0-k500 5 319.574524 28.7184091  

IC0-k500 6 304.730507 70.3408324  

IC0-k500 7 290.821743 40.8371576  



156 

 

IC0-k500 8 265.055615 39.2008753  

IC0-k500 9 283.995988 53.2441438  

IC0-k500 10 197.932522 23.1314597  

IC0-k500 11 287.116864 25.6101288  

IC0-k500 12 275.124906 70.1162753  

IC0-k500 13 266.957703 24.1748102  

IC0-k500 14 300.525595 40.9326487  

IC0-k500 15 250.849014 20.5388647  

IC0-M5 1 389.666705 48.4270561  

IC0-M5 2 384.834151 49.3501285  

IC0-M5 3 237.515844 26.8894859  

IC0-M5 4 351.427027 44.4804723  

IC0-M5 5 261.775561 56.5484192  

IC0-M5 6 295.135711 59.8184447  

IC0-M5 7 319.66524 41.7694561  

IC0-M5 8 281.423398 47.8161692  

IC0-M5 9 393.522814 63.3698222  

IC0-M5 10 286.806574 45.3237608  

IC0-M5 11 291.797326 34.6040311  

IC0-M5 12 289.448374 29.8182872  

IC0-M5 13 307.219202 52.9842819  

IC0-M5 14 277.341543 33.4873395  

IC0-M5 15 320.731587 79.203413  

IC20-k50 1 281.907464 93.5270761  

IC20-k50 2 155.008824 6.54617179  

IC20-k50 3 294.946468 82.2736502  

IC20-k50 4 192.8702 13.5115505  

IC20-k50 5 213.402237 19.0553345  

IC20-k50 6 230.31295 18.0744151  

IC20-k50 7 183.58704 16.4774183  

IC20-k50 8 178.840427 17.5349175  

IC20-k50 9 212.170506 23.5968997  

IC20-k50 10 231.037592 20.6849412  

IC20-k50 11 283.142851 29.3696951  

IC20-k50 12 261.457354 43.754777  

IC20-k50 13 241.593888 37.1990067  

IC20-k50 14 286.919055 37.1843281  

IC20-k50 15 269.466011 41.0604094  

IC20-k500 1 222.399468 21.5090288  

IC20-k500 2 197.337446 16.9887227  

IC20-k500 3 255.400559 36.726021  

IC20-k500 4 318.417329 29.9099487  

IC20-k500 5 288.303191 21.7505144  

IC20-k500 6 266.648204 26.1378801  

IC20-k500 7 196.612062 9.84160607  

IC20-k500 8 219.286644 23.2079554  



157 

 

IC20-k500 9 231.50126 27.8287817  

IC20-k500 10 256.601859 30.5242417  

IC20-k500 11 336.796567 25.62383  

IC20-k500 12 316.246951 30.2541645  

IC20-k500 13 297.933928 29.8586379  

IC20-k500 14 349.435386 34.9153645  

IC20-k500 15 381.985717 60.3598838  

IC20-M5 1 376.561912 22.03499  

IC20-M5 2 591.611558 71.9062446  

IC20-M5 3 370.65747 93.9179431  

IC20-M5 4 409.153933 22.6036035  

IC20-M5 5 413.607303 65.4843949  

IC20-M5 6 333.299437 28.2960622  

IC20-M5 7 390.172352 22.1503297  

IC20-M5 8 338.675544 23.6492933  

IC20-M5 9 341.885529 31.667345  

IC20-M5 10 320.170978 31.0284598  

IC20-M5 11 310.843081 10.8150773  

IC20-M5 12 379.156819 11.8321922  

IC20-M5 13 327.139942 20.4658772  

IC20-M5 14 542.882538 53.5687141  

IC20-M5 15 578.168148 54.4284516  

IC50-k50 1 56.1993707 2.58684057  

IC50-k50 2 33.0932737 0.90735291  

IC50-k50 3 37.7353258 1.57986897  

IC50-k50 4 84.3713472 35.9590599  

IC50-k50 5 108.852124 44.560041  

IC50-k50 6 114.828132 53.6711035  

IC50-k50 7 111.924919 50.2619611  

IC50-k50 8 166.009097 47.9837458  

IC50-k50 9 187.934008 62.6087204  

IC50-k50 10 194.384567 50.4713137  

IC50-k50 11 205.23689 47.3184827  

IC50-k50 12 220.035706 54.3323526  

IC50-k50 13 209.832307 48.1923808  

IC50-k50 14 229.646406 54.7027243  

IC50-k50 15 226.770147 61.4549883  

IC50-k500 1 107.661637 9.02962372  

IC50-k500 2 62.6498253 6.96428465  

IC50-k500 3 91.8084818 15.741342  

IC50-k500 4 301.62813 58.4590967  

IC50-k500 5 376.104717 51.3802552  

IC50-k500 6 411.337375 52.6056157  

IC50-k500 7 355.524406 60.6349727  

IC50-k500 8 432.84662 97.0000264  

IC50-k500 9 306.994748 40.6699212  
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IC50-k500 10 333.05324 46.0205041  

IC50-k500 11 340.525317 34.6839027  

IC50-k500 12 353.996286 30.8938393  

IC50-k500 13 353.37822 46.1482549  

IC50-k500 14 342.906608 40.2800914  

IC50-k500 15 344.784982 37.2362831  

IC50-M5 1 146.943999 16.4461555  

IC50-M5 2 138.149352 15.9653953  

IC50-M5 3 158.28881 11.2510913  

IC50-M5 4 219.45583 21.6600235  

IC50-M5 5 251.76584 27.6292147  

IC50-M5 6 364.65362 122.757482  

IC50-M5 7 202.813218 29.0995073  

IC50-M5 8 263.877701 20.8523075  

IC50-M5 9 470.511335 199.868238  

IC50-M5 10 331.968134 51.8888328  

IC50-M5 11 338.012928 18.9039014  

IC50-M5 12 460.186856 47.7470315  

IC50-M5 13 347.955665 20.0458622  

IC50-M5 14 388.620696 28.8960246  

IC50-M5 15 433.571896 50.1895754  

IC80-k50 1 227.174017 73.7459865  

IC80-k50 2 31.0447649 0.72766911  

IC80-k50 3 36.918216 1.63306323  

IC80-k50 4 43.0084278 1.42020192  

IC80-k50 5 40.4968748 1.55086367  

IC80-k50 6 33.4470077 1.42282901  

IC80-k50 7 31.6830073 1.83697332  

IC80-k50 8 29.9744037 1.52425825  

IC80-k50 9 27.691839 1.44638528  

IC80-k50 10 34.3733835 3.27344373  

IC80-k50 11 57.8060555 18.3338428  

IC80-k50 12 60.5034691 27.3430903  

IC80-k50 13 44.8638317 13.1646096  

IC80-k50 14 49.5289308 16.7905415  

IC80-k50 15 42.3335254 8.32644939  

IC80-k500 1 50.2597459 3.7945767  

IC80-k500 2 35.0788145 0.6327106  

IC80-k500 3 96.0872387 29.2688597  

IC80-k500 4 395.868271 108.689034  

IC80-k500 5 303.639518 41.1419499  

IC80-k500 6 466.424423 55.8510613  

IC80-k500 7 351.483668 35.8488882  

IC80-k500 8 427.70723 128.364935  

IC80-k500 9 473.588789 58.8709582  

IC80-k500 10 355.389357 39.6269202  
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IC80-k500 11 337.408447 38.9038311  

IC80-k500 12 376.22966 36.6566555  

IC80-k500 13 409.604196 73.2074618  

IC80-k500 14 378.294636 35.3314993  

IC80-k500 15 411.024576 48.7187601  

IC80-M5 1 101.606488 14.40877  

IC80-M5 2 75.0149371 6.12729496  

IC80-M5 3 145.755904 18.033484  

IC80-M5 4 328.449124 48.3066298  

IC80-M5 5 296.559448 37.0202957  

IC80-M5 6 504.608488 98.7811211  

IC80-M5 7 370.451854 23.3912873  

IC80-M5 8 391.652948 46.3433754  

IC80-M5 9 433.316582 102.974007  

IC80-M5 10 300.196391 47.1929751  

IC80-M5 11 299.669934 15.2870857  

IC80-M5 12 395.91714 64.3744236  

IC80-M5 13 338.357588 59.4377944  

IC80-M5 14 308.895579 55.9046187  

IC80-M5 15 397.503088 51.6362625  

 

 

 

 

Supplementary Table S3: Cell counts of every transfer obtained from flow cytometry 

for GEN evolution experiment. 

 

Treatment group Transfer Mean Cell Count    SD Cell Count 

IC0-k50 1 225.477276 44.9986345 

IC0-k50 2 372.344918 58.4905965 

IC0-k50 3 272.987813 30.1125126 

IC0-k50 4 242.572895 39.6912698 

IC0-k50 5 260.623676 60.8896978 

IC0-k50 6 402.054419 35.0406552 

IC0-k50 7 239.042974 46.4232176 

IC0-k50 8 261.84903 44.7790678 

IC0-k50 9 261.460818 55.0824994 

IC0-k50 10 215.526544 35.6540515 

IC0-k50 11 336.595085 55.6718814 

IC0-k50 12 258.824261 55.729581 

IC0-k50 13 224.058547 30.3091721 

IC0-k50 14 214.830673 43.0233022 

IC0-k50 15 379.718278 46.3420212 
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IC0-k50 16 458.408147 42.6109627 

IC0-k500 1 444.3051 81.4608759 

IC0-k500 2 350.193409 89.7039963 

IC0-k500 3 249.270298 48.2693095 

IC0-k500 4 337.844211 63.4175733 

IC0-k500 5 264.787101 59.4158145 

IC0-k500 6 208.558127 32.5286666 

IC0-k500 7 223.962592 50.9950493 

IC0-k500 8 246.322402 44.2636605 

IC0-k500 9 237.812711 67.5894444 

IC0-k500 10 269.349657 55.2094523 

IC0-k500 11 333.299641 60.0715061 

IC0-k500 12 234.171938 53.8823726 

IC0-k500 13 197.987841 30.1291832 

IC0-k500 14 208.15973 35.7055604 

IC0-k500 15 302.450678 63.0442122 

IC0-k500 16 355.879894 57.0842803 

IC0-M5 1 300.407321 54.0830383 

IC0-M5 2 277.506002 64.6456889 

IC0-M5 3 345.087392 18.1304887 

IC0-M5 4 187.234516 25.5915175 

IC0-M5 5 330.512643 51.8755533 

IC0-M5 6 228.773456 46.5078105 

IC0-M5 7 365.378229 71.1253402 

IC0-M5 8 330.25843 50.1095085 

IC0-M5 9 241.410796 35.1152419 

IC0-M5 10 258.968157 60.6153398 

IC0-M5 11 179.459216 84.407918 

IC0-M5 12 263.256033 27.9849239 

IC0-M5 13 258.935476 37.0772014 

IC0-M5 14 301.02335 58.724111 

IC0-M5 15 311.119794 37.8417609 

IC0-M5 16 376.751074 35.7497603 

IC20-k50 1 206.104288 21.8102616 

IC20-k50 2 109.789595 27.2531014 

IC20-k50 3 239.358537 25.7098067 

IC20-k50 4 161.65442 22.1207525 

IC20-k50 5 212.286715 31.5903841 

IC20-k50 6 115.188381 34.9182993 

IC20-k50 7 196.320646 31.4863366 

IC20-k50 8 214.694935 8.76086093 

IC20-k50 9 211.190718 21.8718811 

IC20-k50 10 216.171732 11.0396756 

IC20-k50 11 255.817736 37.3987251 

IC20-k50 12 149.531029 7.54677011 

IC20-k50 13 165.392268 11.6479903 
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IC20-k50 14 170.715091 13.6592901 

IC20-k50 15 193.780991 15.6655113 

IC20-k50 16 208.553986 14.8528426 

IC20-k500 1 293.708335 13.6925841 

IC20-k500 2 100.504707 28.9999727 

IC20-k500 3 223.468971 11.6356622 

IC20-k500 4 215.946209 31.293201 

IC20-k500 5 188.915519 27.3104519 

IC20-k500 6 252.769678 35.5232692 

IC20-k500 7 263.111654 20.1599509 

IC20-k500 8 234.396646 16.0088738 

IC20-k500 9 218.87973 21.0253166 

IC20-k500 10 213.470328 15.765291 

IC20-k500 11 257.04446 24.4790919 

IC20-k500 12 179.581949 17.2749717 

IC20-k500 13 188.771984 16.7307901 

IC20-k500 14 192.007694 12.1886732 

IC20-k500 15 240.17372 16.5759137 

IC20-k500 16 269.520408 19.4490831 

IC20-M5 1 402.64974 14.6074259 

IC20-M5 2 190.162963 31.8271616 

IC20-M5 3 274.251941 9.59086761 

IC20-M5 4 316.106135 55.5666744 

IC20-M5 5 300.108018 15.755755 

IC20-M5 6 231.417665 12.5167603 

IC20-M5 7 256.785563 17.16582 

IC20-M5 8 245.496856 17.7274846 

IC20-M5 9 250.473108 10.4299649 

IC20-M5 10 274.999578 13.2493009 

IC20-M5 11 250.650407 18.674871 

IC20-M5 12 246.918688 13.8958235 

IC20-M5 13 255.831092 18.9058124 

IC20-M5 14 252.786158 24.1664842 

IC20-M5 15 352.971222 19.3641889 

IC20-M5 16 301.739371 14.4604923 

IC50-k50 1 126.615949 37.8097801 

IC50-k50 2 117.379258 26.8838199 

IC50-k50 3 161.559533 27.4197629 

IC50-k50 4 173.893362 37.6844726 

IC50-k50 5 184.09743 38.0894761 

IC50-k50 6 133.375376 32.9792673 

IC50-k50 7 167.173793 31.6113096 

IC50-k50 8 183.096967 14.4048892 

IC50-k50 9 210.742147 11.4801499 

IC50-k50 10 196.582295 18.2128487 

IC50-k50 11 198.905868 14.5720453 
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IC50-k50 12 159.705284 9.25855637 

IC50-k50 13 183.126832 12.941289 

IC50-k50 14 201.905958 12.8923158 

IC50-k50 15 196.023216 14.7954088 

IC50-k50 16 224.616179 16.6721932 

IC50-k500 1 161.443433 36.6370629 

IC50-k500 2 121.231526 42.0474564 

IC50-k500 3 142.151803 22.9957077 

IC50-k500 4 163.726303 14.5909508 

IC50-k500 5 183.303701 19.5012755 

IC50-k500 6 168.95844 14.203235 

IC50-k500 7 208.312119 22.5410912 

IC50-k500 8 167.290963 9.63882803 

IC50-k500 9 171.971255 14.851288 

IC50-k500 10 154.828972 17.6859156 

IC50-k500 11 179.653398 28.8482792 

IC50-k500 12 152.59616 15.6780769 

IC50-k500 13 134.326866 11.4902625 

IC50-k500 14 160.667664 19.0927458 

IC50-k500 15 207.707644 15.8241975 

IC50-k500 16 223.425465 15.3466869 

IC50-M5 1 250.336558 27.2383911 

IC50-M5 2 110.796597 36.8427414 

IC50-M5 3 249.817651 18.9779599 

IC50-M5 4 199.334235 25.468553 

IC50-M5 5 242.488027 20.9450338 

IC50-M5 6 201.554615 13.1110279 

IC50-M5 7 190.484767 19.4443336 

IC50-M5 8 206.759315 16.2185672 

IC50-M5 9 197.336213 17.5758222 

IC50-M5 10 249.33679 22.9540567 

IC50-M5 11 211.248921 21.1120359 

IC50-M5 12 202.516304 17.0976643 

IC50-M5 13 224.16511 23.7291589 

IC50-M5 14 243.807213 14.6067135 

IC50-M5 15 292.79641 11.2552936 

IC50-M5 16 329.370632 13.1295305 

IC80-k50 1 69.517246 11.6645995 

IC80-k50 2 82.9326685 37.1832425 

IC80-k50 3 165.533594 22.1133039 

IC80-k50 4 169.474383 7.66081038 

IC80-k50 5 164.730216 25.6180338 

IC80-k50 6 154.31809 23.2060342 

IC80-k50 7 220.557995 18.0012887 

IC80-k50 8 164.57116 15.3584456 

IC80-k50 9 177.854852 21.1804777 
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IC80-k50 10 166.247177 17.8514938 

IC80-k50 11 183.754162 12.3160174 

IC80-k50 12 150.788331 24.8099685 

IC80-k50 13 131.769027 15.2853777 

IC80-k50 14 169.581164 32.6215453 

IC80-k50 15 204.195533 31.4758878 

IC80-k50 16 208.962268 18.7915142 

IC80-k500 1 68.4863425 19.176526 

IC80-k500 2 6.32062673 1.42720366 

IC80-k500 3 110.287873 29.2419452 

IC80-k500 4 128.364052 31.956976 

IC80-k500 5 156.795036 40.084689 

IC80-k500 6 160.259508 26.8375848 

IC80-k500 7 183.469369 28.3861585 

IC80-k500 8 164.515293 21.1754376 

IC80-k500 9 194.077524 24.5690155 

IC80-k500 10 158.99792 24.0360754 

IC80-k500 11 92.7440267 41.1475318 

IC80-k500 12 141.732028 19.2602753 

IC80-k500 13 156.657785 20.8860236 

IC80-k500 14 157.47478 29.1007777 

IC80-k500 15 183.658244 32.1856609 

IC80-k500 16 232.741612 37.9756764 

IC80-M5 1 70.9586259 7.20175156 

IC80-M5 2 51.6492933 11.5261281 

IC80-M5 3 278.639537 20.181287 

IC80-M5 4 177.761326 19.2189745 

IC80-M5 5 190.295179 15.2605293 

IC80-M5 6 178.493653 12.0826955 

IC80-M5 7 185.975008 14.5469704 

IC80-M5 8 193.143444 14.5020189 

IC80-M5 9 225.713872 25.032687 

IC80-M5 10 235.767396 18.718247 

IC80-M5 11 194.473062 26.2374033 

IC80-M5 12 206.576206 12.2253772 

IC80-M5 13 203.514476 29.2015369 

IC80-M5 14 197.513509 14.5998297 

IC80-M5 15 250.154352 18.1634063 

IC80-M5 16 313.072455 30.2423769 
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Supplementary Table S4: Antibiotic concentrations used in resistance assays. All concentrations are 

given in ng/ml. 

 

AB Inoculum 

size 

IC20 IC50 IC80 MIC 2x 

MIC 

4x 

MIC 

8x 

MIC 

16x 

MIC 

CAR all 18000 26500 40000 52000 104000 208000 416000 832000 

CIP all 15 27.5 40 60 120 240 480 960 

GEN k50 300 330 380 440 

k500 380 440 500 600  1200 2400 4800 9600 

M5 480 600 700 830 
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Supplementary Figure S4: Dose Response Curves of evolved populations of CAR 

experiment, including the IC50 and k500-TS groups. A: Evolved no-drug control treatment 

groups (grey). B: IC20 treatment groups (green). C: IC50 treatment groups (blue). D: IC80 

treatment groups (red). The X-axis represents the relative levels of antibiotic concentrations 

against which the evolved PA14 populations were challenged; The Y-axis represents the final 

OD of the tested bacterial populations at a wavelength of 600 nm after 12 hours of incubation 

in presence of the respective drug concentration. Error bars represent standard error of mean 

(8 replicates). Purple: unevolved PA14 control; light colors represent 50k transfers, dark colors 

represent 5M transfers, intermediate colors represent 500k transfers. 
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Supplementary Figure S5: Dose Response Curves of evolved populations of CIP 

experiment, including the IC50 and k500-TS groups. A: Evolved no-drug control treatment 

groups (grey). B: IC20 treatment groups (green). C: IC50 treatment groups (blue). D: IC80 

treatment groups (red). The X-axis represents the relative levels of antibiotic concentrations 

against which the evolved PA14 populations were challenged; The Y-axis represents the final 

OD of the tested bacterial populations at a wavelength of 600 nm after 12 hours of incubation 

in presence of the respective drug concentration. Error bars represent standard error of mean 

(8 replicates). Purple: unevolved PA14 control; light colors represent 50k transfers, dark colors 

represent 5M transfers, intermediate colors represent 500k transfers. 
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Supplementary Figure S6: Dose Response Curves of evolved populations of GEN 

experiment, including the IC50 and k500-TS groups. A: Evolved no-drug control treatment 

groups (grey). B: IC20 treatment groups (green). C: IC50 treatment groups (blue). D: IC80 

treatment groups (red). The X-axis represents the relative levels of antibiotic concentrations 

against which the evolved PA14 populations were challenged; The Y-axis represents the final 

OD of the tested bacterial populations at a wavelength of 600 nm after 12 hours of incubation 

in presence of the respective drug concentration. Error bars represent standard error of mean 

(8 replicates). Purple: unevolved PA14 control; light colors represent 50k transfers, dark colors 

represent 5M transfers, intermediate colors represent 500k transfers. 
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Supplementary Figure S7: Dose Response Curves of PA14 against colistin in different 

growth media. Colistin shows stronger day-to-day variations in efficacy in M9 medium 

than in LB medium. Left: Colistin in M9 medium. Right: Colistin in LB medium. Top row: 

Measurements taken on 3 May 2017. Bottom row: Measurements taken on 5 May 2017. The 

X-axes represent the relative levels of antibiotic concentrations against which the evolved 

PA14 populations were challenged. The Y-axes represent the final OD of the tested bacterial 

populations at a wavelength of 600 nm after 12 hours of incubation in presence of the respective 

drug concentration. Error bars represent standard error of mean (8 replicates). 
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Supplementary Table S5: Mutations identified at transfer 16 of CIP evolution 

experiment. 

 

IC TS Popul

ation 

bp 

position 

Wt 

sequence 

Variant Frequency Annot

ation 

Gene Type Consequence 

IC20 k50 A6 1550968 T */-

CCGCGA

GGAGG

GCTA 

13.71% PA14_

18070 

CopZ deletion gene fusion 

   
1551142 TTGGGG

TCATGC

CCGGA 

T 6.12% PA14_

18080 

TetR deletion frameshift 

   
3420974 TCGTCG

CGCAA

G 

T 28.47% PA14_

38380 

MexZ deletion frameshift 

IC20 k50 B6 2820239 T */+CCCC

GCCCAT

AC 

38.67% PA14_

32420 

MexS insertion inframe 

   
2820772 CGCCAC

T 

C 9.31% PA14_

32420 

MexS deletion inframe 

IC20 k50 C6 2820592 CGAGC

GCTTCA

CCGAG 

C 19.11% PA14_

32420 

MexS deletion inframe 

   
3421061 A G 37.76% PA14_

38380 

MexZ SNP missense 

   
3421100 GATCTG

CCGTCG

GCCGA

AGC 

G 26.37% PA14_

38380 

MexZ deletion frameshift 

IC20 k50 D6 1551138 ATCCTT

GGGGTC

ATGCCC

GGAT 

A 44.52% PA14_

18080 

TetR deletion inframe 

   
3421008 CGCAG

ATGCCG

TCCCAC

A 

C 15.23% PA14_

38380 

MexZ deletion frameshift 

IC20 k50 E8 1391163 T */-GGCA 24.80% PA14_

16280 

NalC deletion frameshift 

IC20 k50 F8 798015 GCGAA

CGCGGC

GGCGG

CCGGAC

CCGGGT

GATCGT

CGCCCA

TCGTCT

GGCCG

AAGTCA

GCGATG

CCGACC

G 19.11% PA14_

09300 

ABC 

transporter 

ATP-

binding 

protein 

deletion inframe 
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TGATCC

TGGTGC

TGGTCG

CTGGCC

GTCTGG

T    
1551156 GGATGC

AGCCGC

AC 

G 8.86% PA14_

18080 

TetR deletion frameshift 

   
3421029 A */-T 24.39% PA14_

38380 

MexZ deletion frameshift 

IC20 k50 G8 3420909 GGTAG

GGAGA

ACTGCG

CA 

G 86.58% PA14_

38380 

MexZ deletion frameshift 

IC20 k50 H8 2820876 T */+CGCC 43.69% PA14_

32420 

MexS deletion frameshift 

   
3420909 GGTAG

GGAGA

ACTGCG

CA 

G 18.54% PA14_

38380 

MexZ deletion frameshift 

   
5428115 T W 24.70% PA14_

60860 

NfxB SNP missense 

IC20 M5 G2 96548 C CTGGCT

G 

5.36% PA14_

00980 

Fha1 insertion inframe 

IC80 k50 F3 796529 C */+GCTG

GCG 

49.35% PA14_

09300 

ABC 

transporter 

ATP-

binding 

protein 

insertion frameshift 

   
5836130 G */+C 8.41% PA14_

65520 

molecular 

chaperone 

insertion frameshift 

IC80 M5 A5 2820025 T */-

GCGAA

GAGCTG

CCGACC

CCG 

14.13% PA14_

32420 

MexS deletion frameshift 

   
2820136 C T 82.26% PA14_

32420 

MexS SNP stop gained 

IC80 M5 B5 2820239 T */+CCCC

GCCCAT

AC 

39.42% PA14_

32420 

MexS insertion inframe 

   
2820772 CGCCAC

T 

C 9.23% PA14_

32420 

MexS deletion inframe 

IC80 M5 C5 PA14_32

420 

diverse 
 

PA14_3242

0 

MexS 
   

IC80 M5 D5 2820416 CCGTGC

TGATCA 

C 11.84% PA14_

32420 

MexS deletion frameshift 

   
2820662 TCGGCG

ATGTCT

C 

T 26.38% PA14_

32420 

MexS deletion inframe 

   
2820852 GCACAT

CGAGC

AA 

G 21.05% PA14_

32420 

MexS deletion inframe 
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IC80 M5 E7 5428583 C */-

CGCGCT

CCTGA 

82.12% PA14_

60860 

NfxB deletion stop lost 

IC80 M5 F7 2820136 C Y 17.48% PA14_

32420 

MexS SNP stop gained 

   
2820239 T TCCCCG

CCCATA

C 

5 PA14_

32420 

MexS insertion inframe 

   
5428133 T Y 35.51% PA14_

60860 

NfxB SNP missense 

   
5428411 C */+GCG

GACAG

CAGA 

5.41% PA14_

60860 

NfxB insertion inframe 

   
5428581 G */-GC 18.89% PA14_

60860 

NfxB deletion frameshift 

IC80 M5 G7 2820787 G A 10.52% PA14_

32420 

MexS SNP missense 

   
5428593 C A 63.00% PA14_

60860 

NfxB SNP stop retained 

IC80 M5 H7 5428115 T A 94.96% PA14_

60860 

NfxB SNP missense 

 

 

 

Supplementary Table S6: Frequencies of all identified mutations during different 

transfers of CIP evolution experiment. 

 

Treatment Population Transfer bp position Gene Frequency 

IC20-k50 A6 3 1550968 CopZ 0 

IC20-k50 A6 5 1550968 CopZ 0 

IC20-k50 A6 7 1550968 CopZ 0 

IC20-k50 A6 9 1550968 CopZ 0.13 

IC20-k50 A6 11 1550968 CopZ 0.16 

IC20-k50 A6 13 1550968 CopZ 0.18 

IC20-k50 A6 15 1550968 CopZ 0.14 

IC20-k50 A6 3 1551142 TetR 0 

IC20-k50 A6 5 1551142 TetR 0 

IC20-k50 A6 7 1551142 TetR 0 

IC20-k50 A6 9 1551142 TetR 0.04 

IC20-k50 A6 11 1551142 TetR 0.07 

IC20-k50 A6 13 1551142 TetR 0.09 

IC20-k50 A6 15 1551142 TetR 0.06 

IC20-k50 A6 3 3420974 MexZ 0 

IC20-k50 A6 5 3420974 MexZ 0 



172 

 

IC20-k50 A6 7 3420974 MexZ 0.02 

IC20-k50 A6 9 3420974 MexZ 0.02 

IC20-k50 A6 11 3420974 MexZ 0.13 

IC20-k50 A6 13 3420974 MexZ 0.15 

IC20-k50 A6 15 3420974 MexZ 0.28 

IC20-k50 B6 3 2818981 MexT 0 

IC20-k50 B6 5 2818981 MexT 0 

IC20-k50 B6 7 2818981 MexT 0.04 

IC20-k50 B6 9 2818981 MexT 0.16 

IC20-k50 B6 13 2818981 MexT 0.11 

IC20-k50 B6 15 2818981 MexT 0 

IC20-k50 B6 3 2820239 MexS 0 

IC20-k50 B6 5 2820239 MexS 0 

IC20-k50 B6 7 2820239 MexS 0 

IC20-k50 B6 9 2820239 MexS 0 

IC20-k50 B6 13 2820239 MexS 0.32 

IC20-k50 B6 15 2820239 MexS 0.39 

IC20-k50 B6 3 2820772 MexS 0 

IC20-k50 B6 5 2820772 MexS 0 

IC20-k50 B6 7 2820772 MexS 0 

IC20-k50 B6 9 2820772 MexS 0 

IC20-k50 B6 13 2820772 MexS 0.08 

IC20-k50 B6 15 2820772 MexS 0.09 

IC20-k50 C6 3 2820592 MexS 0 

IC20-k50 C6 5 2820592 MexS 0 

IC20-k50 C6 7 2820592 MexS 0.09 

IC20-k50 C6 9 2820592 MexS 0.13 

IC20-k50 C6 11 2820592 MexS 0.17 

IC20-k50 C6 13 2820592 MexS 0.21 

IC20-k50 C6 15 2820592 MexS 0.19 

IC20-k50 C6 3 3421061 MexZ 0 

IC20-k50 C6 5 3421061 MexZ 0 

IC20-k50 C6 7 3421061 MexZ 0.1 

IC20-k50 C6 9 3421061 MexZ 0.29 

IC20-k50 C6 11 3421061 MexZ 0.4 

IC20-k50 C6 13 3421061 MexZ 0.52 

IC20-k50 C6 15 3421061 MexZ 0.38 

IC20-k50 C6 3 3421100 MexZ 0 

IC20-k50 C6 5 3421100 MexZ 0.02 

IC20-k50 C6 7 3421100 MexZ 0.07 

IC20-k50 C6 9 3421100 MexZ 0.19 

IC20-k50 C6 11 3421100 MexZ 0.27 

IC20-k50 C6 13 3421100 MexZ 0.27 

IC20-k50 C6 15 3421100 MexZ 0.26 

IC20-k50 D6 3 1551138 TetR 0 

IC20-k50 D6 5 1551138 TetR 0 
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IC20-k50 D6 9 1551138 TetR 0.22 

IC20-k50 D6 11 1551138 TetR 0.4 

IC20-k50 D6 13 1551138 TetR 0.51 

IC20-k50 D6 15 1551138 TetR 0.45 

IC20-k50 D6 3 3421008 MexZ 0 

IC20-k50 D6 5 3421008 MexZ 0 

IC20-k50 D6 9 3421008 MexZ 0.03 

IC20-k50 D6 11 3421008 MexZ 0.05 

IC20-k50 D6 13 3421008 MexZ 0.1 

IC20-k50 D6 15 3421008 MexZ 0.15 

IC20-k50 D6 3 1235724 PepA 0 

IC20-k50 D6 5 1235724 PepA 0 

IC20-k50 D6 9 1235724 PepA 0.07 

IC20-k50 D6 11 1235724 PepA 0.09 

IC20-k50 D6 13 1235724 PepA 0.03 

IC20-k50 D6 15 1235724 PepA 0.02 

IC20-k50 E8 3 1391163 NalC 0 

IC20-k50 E8 5 1391163 NalC 0 

IC20-k50 E8 7 1391163 NalC 0.04 

IC20-k50 E8 13 1391163 NalC 0.31 

IC20-k50 E8 15 1391163 NalC 0.25 

IC20-k50 F8 3 1551156 TetR 0 

IC20-k50 F8 5 1551156 TetR 0 

IC20-k50 F8 7 1551156 TetR 0 

IC20-k50 F8 9 1551156 TetR 0 

IC20-k50 F8 11 1551156 TetR 0.1 

IC20-k50 F8 13 1551156 TetR 0.16 

IC20-k50 F8 15 1551156 TetR 0.09 

IC20-k50 F8 3 3421029 MexZ 0 

IC20-k50 F8 5 3421029 MexZ 0 

IC20-k50 F8 7 3421029 MexZ 0 

IC20-k50 F8 9 3421029 MexZ 0.02 

IC20-k50 F8 11 3421029 MexZ 0.11 

IC20-k50 F8 13 3421029 MexZ 0.4 

IC20-k50 F8 15 3421029 MexZ 0.24 

IC20-k50 F8 3 798015 ABC 

transport 

0 

IC20-k50 F8 5 798015 ABC 

transport 

0 

IC20-k50 F8 7 798015 ABC 

transport 

0 

IC20-k50 F8 9 798015 ABC 

transport 

0 

IC20-k50 F8 11 798015 ABC 

transport 

0 

IC20-k50 F8 13 798015 ABC 

transport 

0 
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IC20-k50 F8 15 798015 ABC 

transport 

0.19 

IC20-k50 G8 3 3420909 MexZ 0 

IC20-k50 G8 5 3420909 MexZ 0 

IC20-k50 G8 7 3420909 MexZ 0 

IC20-k50 G8 9 3420909 MexZ 0.08 

IC20-k50 G8 11 3420909 MexZ 0.39 

IC20-k50 G8 13 3420909 MexZ 0.87 

IC20-k50 G8 15 3420909 MexZ 0.87 

IC20-k50 H8 3 3420909 MexZ 0 

IC20-k50 H8 5 3420909 MexZ 0 

IC20-k50 H8 7 3420909 MexZ 0 

IC20-k50 H8 9 3420909 MexZ 0 

IC20-k50 H8 11 3420909 MexZ 0 

IC20-k50 H8 13 3420909 MexZ 0.18 

IC20-k50 H8 15 3420909 MexZ 0.19 

IC20-k50 H8 3 2820876 MexS 0 

IC20-k50 H8 5 2820876 MexS 0 

IC20-k50 H8 7 2820876 MexS 0 

IC20-k50 H8 9 2820876 MexS 0 

IC20-k50 H8 11 2820876 MexS 0 

IC20-k50 H8 13 2820876 MexS 0.49 

IC20-k50 H8 15 2820876 MexS 0.44 

IC20-k50 H8 3 5428115 NfxB 0 

IC20-k50 H8 5 5428115 NfxB 0.02 

IC20-k50 H8 7 5428115 NfxB 0.42 

IC20-k50 H8 9 5428115 NfxB 0.55 

IC20-k50 H8 11 5428115 NfxB 0.68 

IC20-k50 H8 13 5428115 NfxB 0.22 

IC20-k50 H8 15 5428115 NfxB 0.25 

IC20-k50 H8 3 2819916 intergenic 0 

IC20-k50 H8 5 2819916 intergenic 0 

IC20-k50 H8 7 2819916 intergenic 0.04 

IC20-k50 H8 9 2819916 intergenic 0.06 

IC20-k50 H8 11 2819916 intergenic 0.13 

IC20-k50 H8 13 2819916 intergenic 0.02 

IC20-k50 H8 15 2819916 intergenic 0.04 

IC80-k50 F3 3 796529 ABC 

transport 

0 

IC80-k50 F3 5 796529 ABC 

transport 

0 

IC80-k50 F3 7 796529 ABC 

transport 

0 

IC80-k50 F3 9 796529 ABC 

transport 

0 

IC80-k50 F3 11 796529 ABC 

transport 

0 
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IC80-k50 F3 13 796529 ABC 

transport 

0 

IC80-k50 F3 15 796529 ABC 

transport 

0.47 

IC80-k50 F3 3 6242627 CycB 0 

IC80-k50 F3 5 6242627 CycB 0 

IC80-k50 F3 7 6242627 CycB 0.03 

IC80-k50 F3 9 6242627 CycB 1 

IC80-k50 F3 11 6242627 CycB 1 

IC80-k50 F3 13 6242627 CycB 1 

IC80-k50 F3 15 6242627 CycB 0 

IC80-M5 A5 3 2820025 MexS 0 

IC80-M5 A5 5 2820025 MexS 0.1 

IC80-M5 A5 7 2820025 MexS 0.1 

IC80-M5 A5 9 2820025 MexS 0.08 

IC80-M5 A5 11 2820025 MexS 0.17 

IC80-M5 A5 13 2820025 MexS 0.16 

IC80-M5 A5 15 2820025 MexS 0.14 

IC80-M5 A5 3 2820136 MexS 0 

IC80-M5 A5 5 2820136 MexS 0.4 

IC80-M5 A5 7 2820136 MexS 0.81 

IC80-M5 A5 9 2820136 MexS 0.78 

IC80-M5 A5 11 2820136 MexS 0.85 

IC80-M5 A5 13 2820136 MexS 0.77 

IC80-M5 A5 15 2820136 MexS 0.82 

IC80-M5 B5 3 2820239 MexS 0.15 

IC80-M5 B5 5 2820239 MexS 0.06 

IC80-M5 B5 7 2820239 MexS 0.26 

IC80-M5 B5 9 2820239 MexS 0.3 

IC80-M5 B5 11 2820239 MexS 0.33 

IC80-M5 B5 15 2820239 MexS 0.39 

IC80-M5 B5 3 2820772 MexS 0 

IC80-M5 B5 5 2820772 MexS 0.06 

IC80-M5 B5 7 2820772 MexS 0.07 

IC80-M5 B5 9 2820772 MexS 0.17 

IC80-M5 B5 11 2820772 MexS 0.16 

IC80-M5 B5 15 2820772 MexS 0.09 

IC80-M5 C5 3 796529 ABC 

transport 

0.35 

IC80-M5 C5 5 796529 ABC 

transport 

0.5 

IC80-M5 C5 7 796529 ABC 

transport 

0 

IC80-M5 C5 9 796529 ABC 

transport 

0 

IC80-M5 C5 11 796529 ABC 

transport 

0 
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IC80-M5 C5 13 796529 ABC 

transport 

0 

IC80-M5 C5 15 796529 ABC 

transport 

0 

IC80-M5 C5 3 5428547 NfxB 0.07 

IC80-M5 C5 5 5428547 NfxB 0.14 

IC80-M5 C5 7 5428547 NfxB 0.27 

IC80-M5 C5 9 5428547 NfxB 0.39 

IC80-M5 C5 11 5428547 NfxB 0.64 

IC80-M5 C5 13 5428547 NfxB 0.17 

IC80-M5 C5 15 5428547 NfxB 0.05 

IC80-M5 D5 3 796529 ABC 

transport 

0.29 

IC80-M5 D5 5 796529 ABC 

transport 

0.32 

IC80-M5 D5 7 796529 ABC 

transport 

0.1 

IC80-M5 D5 9 796529 ABC 

transport 

0 

IC80-M5 D5 11 796529 ABC 

transport 

0 

IC80-M5 D5 13 796529 ABC 

transport 

0 

IC80-M5 D5 15 796529 ABC 

transport 

0 

IC80-M5 D5 3 2820416 MexS 0 

IC80-M5 D5 5 2820416 MexS 0 

IC80-M5 D5 7 2820416 MexS 0.03 

IC80-M5 D5 9 2820416 MexS 0.06 

IC80-M5 D5 11 2820416 MexS 0.03 

IC80-M5 D5 13 2820416 MexS 0.11 

IC80-M5 D5 15 2820416 MexS 0.12 

IC80-M5 D5 3 2820662 MexS 0 

IC80-M5 D5 5 2820662 MexS 0.03 

IC80-M5 D5 7 2820662 MexS 0.09 

IC80-M5 D5 9 2820662 MexS 0.14 

IC80-M5 D5 11 2820662 MexS 0.13 

IC80-M5 D5 13 2820662 MexS 0.12 

IC80-M5 D5 15 2820662 MexS 0.26 

IC80-M5 D5 3 2820852 MexS 0 

IC80-M5 D5 5 2820852 MexS 0.19 

IC80-M5 D5 7 2820852 MexS 0.21 

IC80-M5 D5 9 2820852 MexS 0.21 

IC80-M5 D5 11 2820852 MexS 0.23 

IC80-M5 D5 13 2820852 MexS 0.21 

IC80-M5 D5 15 2820852 MexS 0.22 

IC80-M5 E7 3 5428583 NfxB 0 
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IC80-M5 E7 5 5428583 NfxB 0.02 

IC80-M5 E7 9 5428583 NfxB 0.43 

IC80-M5 E7 11 5428583 NfxB 0.58 

IC80-M5 E7 13 5428583 NfxB 0.67 

IC80-M5 E7 15 5428583 NfxB 0.82 

IC80-M5 F7 3 2820136 MexS 0 

IC80-M5 F7 5 2820136 MexS 0.11 

IC80-M5 F7 7 2820136 MexS 0.13 

IC80-M5 F7 9 2820136 MexS 0.1 

IC80-M5 F7 11 2820136 MexS 0.06 

IC80-M5 F7 13 2820136 MexS 0.24 

IC80-M5 F7 15 2820136 MexS 0.17 

IC80-M5 F7 3 5428411 NfxB 0 

IC80-M5 F7 5 5428411 NfxB 0 

IC80-M5 F7 7 5428411 NfxB 0 

IC80-M5 F7 9 5428411 NfxB 0 

IC80-M5 F7 11 5428411 NfxB 0.04 

IC80-M5 F7 13 5428411 NfxB 0.04 

IC80-M5 F7 15 5428411 NfxB 0.09 

IC80-M5 F7 3 5428581 NfxB 0 

IC80-M5 F7 5 5428581 NfxB 0.03 

IC80-M5 F7 7 5428581 NfxB 0.02 

IC80-M5 F7 9 5428581 NfxB 0.12 

IC80-M5 F7 11 5428581 NfxB 0.31 

IC80-M5 F7 13 5428581 NfxB 0.22 

IC80-M5 F7 15 5428581 NfxB 0.25 

IC80-M5 F7 3 5428133 NfxB 0.01 

IC80-M5 F7 5 5428133 NfxB 0.4 

IC80-M5 F7 7 5428133 NfxB 0.51 

IC80-M5 F7 9 5428133 NfxB 0.4 

IC80-M5 F7 11 5428133 NfxB 0.62 

IC80-M5 F7 13 5428133 NfxB 0.33 

IC80-M5 F7 15 5428133 NfxB 0.22 

IC80-M5 F7 3 5428534 NfxB 0.01 

IC80-M5 F7 5 5428534 NfxB 0.06 

IC80-M5 F7 7 5428534 NfxB 0.06 

IC80-M5 F7 9 5428534 NfxB 0.12 

IC80-M5 F7 11 5428534 NfxB 0.13 

IC80-M5 F7 13 5428534 NfxB 0.04 

IC80-M5 F7 15 5428534 NfxB 0.03 

IC80-M5 G7 3 2820787 MexS 0 

IC80-M5 G7 5 2820787 MexS 0 

IC80-M5 G7 7 2820787 MexS 0.1 

IC80-M5 G7 9 2820787 MexS 0.1 

IC80-M5 G7 11 2820787 MexS 0.18 

IC80-M5 G7 15 2820787 MexS 0.11 
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IC80-M5 G7 3 5428593 NfxB 0 

IC80-M5 G7 5 5428593 NfxB 0.1 

IC80-M5 G7 7 5428593 NfxB 0.19 

IC80-M5 G7 9 5428593 NfxB 0.31 

IC80-M5 G7 11 5428593 NfxB 0.49 

IC80-M5 G7 15 5428593 NfxB 0.63 

IC80-M5 G7 3 3421355 MexZ 0 

IC80-M5 G7 5 3421355 MexZ 0.03 

IC80-M5 G7 7 3421355 MexZ 0.04 

IC80-M5 G7 9 3421355 MexZ 0.08 

IC80-M5 G7 11 3421355 MexZ 0.03 

IC80-M5 G7 15 3421355 MexZ 0.02 

IC80-M5 H7 3 5428115 NfxB NA 

IC80-M5 H7 5 5428115 NfxB 0.72 

IC80-M5 H7 7 5428115 NfxB 0.83 

IC80-M5 H7 9 5428115 NfxB 0.88 

IC80-M5 H7 11 5428115 NfxB 0.94 

IC80-M5 H7 13 5428115 NfxB 0.97 

IC80-M5 H7 15 5428115 NfxB 0.95 

IC80-M5 H7 3 2819916 intergenic NA 

IC80-M5 H7 5 2819916 intergenic 0.19 

IC80-M5 H7 7 2819916 intergenic 0.04 

IC80-M5 H7 9 2819916 intergenic 0.02 

IC80-M5 H7 11 2819916 intergenic 0.04 

IC80-M5 H7 13 2819916 intergenic 0.05 

IC80-M5 H7 15 2819916 intergenic 0.03 
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Supplementary Table S7: Mutations identified at transfer 16 of GEN evolution 

experiment. 

 

IC TS Popul

ation 

bp 

position 

Wt 

sequence 

Variant Frequency Annot

ation 

Gene Type Consequence 

IC20 k50 A6 5636922 G R 27.92% PA14_

63160 

PmrB SNP missense 

   
5637204 T W 70.63% PA14_

63160 

PmrB SNP missense 

IC20 k50 B6 5636922 G R 11.19% PA14_

63160 

PmrB SNP missense 

   
5637204 T A 88.36% PA14_

63160 

PmrB SNP missense 

IC20 k50 C6 740293 C -CT/-CT 94.39% PA14_

08640 

sporulation 

domain-

containing 

protein 

deletion frameshift 

IC20 k50 D6 732988 G A 9.09% - 
 

SNP non-genic 
   

3682943 G R 31.51% PA14_

41260 

ParR SNP missense 

   
4369873 A M 54.12% PA14_

49170 

PhoQ SNP missense 

IC20 k50 E8 3682943 G R 28.17% PA14_

41260 

ParR SNP missense 

   
4369873 A M 49.21% PA14_

49170 

ParS SNP missense 

IC20 k50 F8 2587833 T */-C 9.79% PA14_

29880 

NuoL deletion frameshift 

   
3421260 CGCGCA

GGAGG

ATG 

C 14.46% PA14_

38380 

MexZ deletion frameshift 

   
3682943 G R 24.29% PA14_

41260 

ParR SNP missense 

   
5138027 CCCTGG

ACGAA

CAG 

C 22.79% PA14_

57690 

hypothetica

l protein 

deletion frameshift 

IC20 k50 G8 5637204 T A 80.25% PA14_

63160 

PmrB SNP missense 

   
5673078 TGT CGG 13.33% PA14_

63620 

LipC SNP missense 

IC20 k50 H8 393319 G */-C 17.86% PA14_

04410 

PtsP deletion frameshift 

   
6124279 A */+GGC 42.55% PA14_

68680 

EnvZ insertion inframe 

IC20 M5 A11 393335 T -G/-G 94% PA14_

04410 

PtsP deletion frameshift 

   
3499294 G T 97.17% PA14_

39300 

RbsR SNP synonymous 

IC20 M5 B11 394724 C T 87.05% PA14_

04410 

PtsP SNP missense 

IC20 M5 C11 394264 C */-

CACCCG 

72.87% PA14_

04410 

PtsP deletion inframe 
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5159716 G */+C 19.27% PA14_

57980 

phosphocar

rier protein 

HPr 

insertion frameshift 

   
732988 G R 8.76% - 

 
SNP non-genic 

   
4842338 G K 8.70% PA14_

54620 

aldehyde 

dehydrogen

ase 

SNP missense 

IC20 M5 D11 393899 T -G/-G 80.74% PA14_

04410 

PtsP deletion frameshift 

   
5159716 G */+C 14% PA14_

57980 

phosphocar

rier protein 

HPr 

insertion frameshift 

   
3590907 G R 6.85% PA14_

40260 

glycoprotei

n (quorum 

sensing) 

SNP synonymous 

IC20 M5 E2 392322 GCGGG

GCAGG

…. 

G 12.87% PA14_

04390 

YgdP deletion gene fusion 

   
393899 T -G/-G 77.65% PA14_

04410 

PtsP deletion frameshift 

   
2243692 G R 28.33% PA14_

25660 

FabG SNP synonymous 

IC20 M5 F2 394708 T */-ACG 13.84% PA14_

04410 

PtsP deletion inframe 

deletion    
394361 G S 69.36% PA14_

04410 

PtsP SNP missense 

IC20 M5 G2 393319 G */-C 43.56% PA14_

04410 

PtsP deletion frameshift 

   
393335 T */-G 16.43% PA14_

04410 

PtsP deletion frameshift 

   
394708 T */-ACG 6.73% PA14_

04410 

PtsP deletion inframe 

deletion    
394924 C */-G 16.67% PA14_

04410 

PtsP deletion frameshift 

   
3499294 G K 17.48% PA14_

39300 

RbsR SNP synonymous 

   
5452000 G R 7.45% PA14_

61150 

oxidoreduct

ase 

SNP missense 

IC20 M5 H2 393042 CGC CC 100% PA14_

04410 

PtsP deletion frameshift 

IC80 k50 A12 393042 C -G/-G 100% PA14_

04410 

PtsP deletion frameshift 

IC80 k50 B12 3683307 T C 100% PA14_

41270 

ParS SNP missense 

IC80 k50 C12 2591369 C */+CAGC

TGAG 

15.56% PA14_

29930 

NuoH insertion frameshift 

   
3683505 G R 72.83% PA14_

41270 

ParS SNP missense 

IC80 k50 D12 5636922 G A 97.25% PA14_

63160 

PmrB SNP missense 

IC80 k50 E3 3683343 C G 100% PA14_

41270 

ParS SNP missense 

   
5215551 G A 100% PA14_

58560 

PiuB SNP missense 
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IC80 k50 F3 5888350 C T 95.16% PA14_

66100 

WaaL SNP missense 

IC80 k50 G3 757176 G S 61.64% PA14_

08820 

FusA1 SNP missense 

   
4369873 A M 26.02% PA14_

49170 

PhoQ SNP missense 

IC80 k50 H3 394469 T C 76.47% PA14_

04410 

PtsP SNP missense 

   
4370093 A W 24.32% PA14_

49170 

PhoQ SNP missense 

IC80 M5 A5 732988 G A 9.92% - 
 

SNP non-genic 
   

5636922 G A 78.64% PA14_

63160 

PmrB SNP missense 

   
5637204 T W 24.14% PA14_

63160 

PmrB SNP missense 

IC80 M5 B5 3683342 A M 15.69% PA14_

41270 

ParS SNP missense 

   
5636922 G R 23.26% PA14_

63160 

PmrB SNP missense 

   
5637204 T W 43.00% PA14_

63160 

PmrB SNP missense 

IC80 M5 C5 2820052 G GCC 5% PA14_

32420 

MexS insertion frameshift 

   
2820244 G */-C 7.34% PA14_

32420 

MexS deletion frameshift 

   
2820582 CCTGGA

AGTCGA

G 

C 7% PA14_

32420 

MexS deletion inframe 

   
5236486 T */+A 7.88% PA14_

58760 

PilC insertion frameshift 

   
5428547 T */-GGA 43.31% PA14_

60860 

NfxB deletion inframe 

IC80 M5 D5 393324 C */-G 25% PA14_

04410 

PtsP deletion frameshift 

   
3095099 AGGTG

GCGCCG

CTCGAA

GGCGG

CGCCAC

CCC 

A 7% PA14_

34820 

AmbC deletion inframe 

   
5636814 T */-CGA 5% PA14_

63160 

PmrB deletion inframe 

   
5637204 T W 72.18% PA14_

63160 

PmrB SNP missense 

IC80 M5 E7 393899 T */-G 11.99% PA14_

04410 

PtsP deletion frameshift 

   
394249 C Y 68.21% PA14_

04410 

PtsP SNP stop gained 

IC80 M5 F7 393899 T */-G 30.47% PA14_

04410 

PtsP deletion frameshift 

   
3682943 G R 6.10% PA14_

41260 

ParR SNP missense 
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5138027 CCCTGG

ACGAA

CAG 

C 13.25% PA14_

57690 

hypothetica

l protein 

deletion frameshift 

   
5637204 T W 5.05% PA14_

63160 

PmrB SNP missense 

IC80 M5 H7 5428115 T A 95.92% PA14_

60860 

NfxB SNP missense 

 

 

 

Table S8: Frequencies of all identified mutations during different transfers of GEN 

evolution experiment. 

Treatment Population Transfer bp position Gene Frequency 

IC20-k50 A6 3 5637204 PmrB 0.85 

IC20-k50 A6 5 5637204 PmrB 1 

IC20-k50 A6 7 5637204 PmrB 0.38 

IC20-k50 A6 9 5637204 PmrB 0.38 

IC20-k50 A6 11 5637204 PmrB 0.25 

IC20-k50 A6 13 5637204 PmrB 0.53 

IC20-k50 A6 15 5637204 PmrB 0.71 

IC20-k50 A6 3 5636922 PmrB 0 

IC20-k50 A6 5 5636922 PmrB 0 

IC20-k50 A6 7 5636922 PmrB 0.63 

IC20-k50 A6 9 5636922 PmrB 0.61 

IC20-k50 A6 11 5636922 PmrB 0.78 

IC20-k50 A6 13 5636922 PmrB 0.57 

IC20-k50 A6 15 5636922 PmrB 0.28 

IC20-k50 B6 3 5637204 PmrB 0 

IC20-k50 B6 5 5637204 PmrB 0 

IC20-k50 B6 7 5637204 PmrB 0.04 

IC20-k50 B6 9 5637204 PmrB 0.48 

IC20-k50 B6 11 5637204 PmrB 0.98 

IC20-k50 B6 13 5637204 PmrB 1 

IC20-k50 B6 15 5637204 PmrB 0.88 

IC20-k50 B6 3 5636922 PmrB 0 

IC20-k50 B6 5 5636922 PmrB 0 

IC20-k50 B6 7 5636922 PmrB 0 

IC20-k50 B6 9 5636922 PmrB 0 

IC20-k50 B6 11 5636922 PmrB 0 

IC20-k50 B6 13 5636922 PmrB 0 

IC20-k50 B6 15 5636922 PmrB 0.11 

IC20-k50 C6 3 740293 unknown 0 
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IC20-k50 C6 5 740293 unknown NA 

IC20-k50 C6 7 740293 unknown 0 

IC20-k50 C6 9 740293 unknown 0 

IC20-k50 C6 11 740293 unknown 0.15 

IC20-k50 C6 13 740293 unknown 0.74 

IC20-k50 C6 15 740293 unknown 0.94 

IC20-k50 C6 3 2586747 NuoM 0 

IC20-k50 C6 5 2586747 NuoM NA 

IC20-k50 C6 7 2586747 NuoM 0.56 

IC20-k50 C6 9 2586747 NuoM 0.56 

IC20-k50 C6 11 2586747 NuoM 0.49 

IC20-k50 C6 13 2586747 NuoM 0.16 

IC20-k50 C6 15 2586747 NuoM 0 

IC20-k50 D6 3 732988 intergenic 0 

IC20-k50 D6 5 732988 intergenic 0.16 

IC20-k50 D6 9 732988 intergenic 0.38 

IC20-k50 D6 11 732988 intergenic 0.17 

IC20-k50 D6 13 732988 intergenic 0.16 

IC20-k50 D6 15 732988 intergenic 0.09 

IC20-k50 D6 3 2593860 NuoG 0 

IC20-k50 D6 5 2593860 NuoG 0 

IC20-k50 D6 9 2593860 NuoG 0.09 

IC20-k50 D6 11 2593860 NuoG 0.06 

IC20-k50 D6 13 2593860 NuoG 0.16 

IC20-k50 D6 15 2593860 NuoG 0 

IC20-k50 D6 3 2586747 NuoM 0 

IC20-k50 D6 5 2586747 NuoM 0 

IC20-k50 D6 9 2586747 NuoM 0.63 

IC20-k50 D6 11 2586747 NuoM 0.74 

IC20-k50 D6 13 2586747 NuoM 0.61 

IC20-k50 D6 15 2586747 NuoM 0 

IC20-k50 D6 3 3682943 ParR 0 

IC20-k50 D6 5 3682943 ParR 0 

IC20-k50 D6 9 3682943 ParR 0 

IC20-k50 D6 11 3682943 ParR 0 

IC20-k50 D6 13 3682943 ParR 0 

IC20-k50 D6 15 3682943 ParR 0.32 

IC20-k50 D6 3 4369873 PhoQ 0 

IC20-k50 D6 5 4369873 PhoQ 0 

IC20-k50 D6 9 4369873 PhoQ 0 

IC20-k50 D6 11 4369873 PhoQ 0 

IC20-k50 D6 13 4369873 PhoQ 0 

IC20-k50 D6 15 4369873 PhoQ 0.54 

IC20-k50 E8 3 3682943 ParR 0 

IC20-k50 E8 5 3682943 ParR 0 

IC20-k50 E8 7 3682943 ParR 0 
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IC20-k50 E8 9 3682943 ParR 0.02 

IC20-k50 E8 11 3682943 ParR 0.05 

IC20-k50 E8 13 3682943 ParR 0.08 

IC20-k50 E8 15 3682943 ParR 0.28 

IC20-k50 E8 3 4369873 PhoQ 0 

IC20-k50 E8 5 4369873 PhoQ 0 

IC20-k50 E8 7 4369873 PhoQ 0.05 

IC20-k50 E8 9 4369873 PhoQ 0.64 

IC20-k50 E8 11 4369873 PhoQ 0.37 

IC20-k50 E8 13 4369873 PhoQ 0.86 

IC20-k50 E8 15 4369873 PhoQ 0.49 

IC20-k50 F8 3 2587833 NuoL 0 

IC20-k50 F8 5 2587833 NuoL 0 

IC20-k50 F8 7 2587833 NuoL 0.07 

IC20-k50 F8 9 2587833 NuoL 0.2 

IC20-k50 F8 11 2587833 NuoL 0.14 

IC20-k50 F8 13 2587833 NuoL 0.05 

IC20-k50 F8 15 2587833 NuoL 0.1 

IC20-k50 F8 3 3421260 MexZ 0 

IC20-k50 F8 5 3421260 MexZ 0 

IC20-k50 F8 7 3421260 MexZ 0 

IC20-k50 F8 9 3421260 MexZ 0 

IC20-k50 F8 11 3421260 MexZ 0 

IC20-k50 F8 13 3421260 MexZ 0 

IC20-k50 F8 15 3421260 MexZ 0.14 

IC20-k50 F8 3 3682943 ParR 0 

IC20-k50 F8 5 3682943 ParR 0 

IC20-k50 F8 7 3682943 ParR 0 

IC20-k50 F8 9 3682943 ParR 0 

IC20-k50 F8 11 3682943 ParR 0.05 

IC20-k50 F8 13 3682943 ParR 0.05 

IC20-k50 F8 15 3682943 ParR 0.24 

IC20-k50 F8 3 5138027 unknown 0 

IC20-k50 F8 5 5138027 unknown 0 

IC20-k50 F8 7 5138027 unknown 0 

IC20-k50 F8 9 5138027 unknown 0 

IC20-k50 F8 11 5138027 unknown 0.05 

IC20-k50 F8 13 5138027 unknown 0.07 

IC20-k50 F8 15 5138027 unknown 0.23 

IC20-k50 F8 3 4369873 PhoQ 0 

IC20-k50 F8 5 4369873 PhoQ 0.02 

IC20-k50 F8 7 4369873 PhoQ 0.03 

IC20-k50 F8 9 4369873 PhoQ 0.36 

IC20-k50 F8 11 4369873 PhoQ 0.39 

IC20-k50 F8 13 4369873 PhoQ 0.58 

IC20-k50 F8 15 4369873 PhoQ 0 
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IC20-k50 G8 3 5637204 PmrB 0 

IC20-k50 G8 5 5637204 PmrB 0 

IC20-k50 G8 7 5637204 PmrB 0 

IC20-k50 G8 9 5637204 PmrB 0.08 

IC20-k50 G8 11 5637204 PmrB 0.1 

IC20-k50 G8 13 5637204 PmrB 0.4 

IC20-k50 G8 15 5637204 PmrB 0.8 

IC20-k50 G8 3 3421122 MexZ 0 

IC20-k50 G8 5 3421122 MexZ 0 

IC20-k50 G8 7 3421122 MexZ 0 

IC20-k50 G8 9 3421122 MexZ 0.01 

IC20-k50 G8 11 3421122 MexZ 0.05 

IC20-k50 G8 13 3421122 MexZ 0.11 

IC20-k50 G8 15 3421122 MexZ 0.06 

IC20-k50 H8 3 393319 PtsP 0 

IC20-k50 H8 5 393319 PtsP 0 

IC20-k50 H8 7 393319 PtsP 0 

IC20-k50 H8 9 393319 PtsP 0.01 

IC20-k50 H8 11 393319 PtsP 0.01 

IC20-k50 H8 13 393319 PtsP 0.41 

IC20-k50 H8 15 393319 PtsP 0.18 

IC20-k50 H8 3 6124279 EnvZ 0 

IC20-k50 H8 5 6124279 EnvZ 0 

IC20-k50 H8 7 6124279 EnvZ 0 

IC20-k50 H8 9 6124279 EnvZ 0 

IC20-k50 H8 11 6124279 EnvZ 0.04 

IC20-k50 H8 13 6124279 EnvZ 0.12 

IC20-k50 H8 15 6124279 EnvZ 0.43 

IC20-M5 A11 3 5636922 PmrB 0.03 

IC20-M5 A11 5 5636922 PmrB 0.45 

IC20-M5 A11 7 5636922 PmrB 0.16 

IC20-M5 A11 9 5636922 PmrB 0.12 

IC20-M5 A11 11 5636922 PmrB 0.01 

IC20-M5 A11 13 5636922 PmrB 0 

IC20-M5 A11 15 5636922 PmrB 0 

IC20-M5 A11 3 5637204 PmrB 0.02 

IC20-M5 A11 5 5637204 PmrB 0.09 

IC20-M5 A11 7 5637204 PmrB 0.1 

IC20-M5 A11 9 5637204 PmrB 0.1 

IC20-M5 A11 11 5637204 PmrB 0.04 

IC20-M5 A11 13 5637204 PmrB 0 

IC20-M5 A11 15 5637204 PmrB 0 

IC20-M5 A11 3 3683342 ParS 0.09 

IC20-M5 A11 5 3683342 ParS 0.37 

IC20-M5 A11 7 3683342 ParS 0.31 

IC20-M5 A11 9 3683342 ParS 0.19 
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IC20-M5 A11 11 3683342 ParS 0 

IC20-M5 A11 13 3683342 ParS 0 

IC20-M5 A11 15 3683342 ParS 0 

IC20-M5 A11 3 393335 PtsP 0.06 

IC20-M5 A11 5 393335 PtsP 0.09 

IC20-M5 A11 7 393335 PtsP 0.3 

IC20-M5 A11 9 393335 PtsP 0.54 

IC20-M5 A11 11 393335 PtsP 0.93 

IC20-M5 A11 13 393335 PtsP 0.93 

IC20-M5 A11 15 393335 PtsP 0.94 

IC20-M5 A11 3 3499294 RbsR 0 

IC20-M5 A11 5 3499294 RbsR 0.08 

IC20-M5 A11 7 3499294 RbsR 0.34 

IC20-M5 A11 9 3499294 RbsR 0.65 

IC20-M5 A11 11 3499294 RbsR 0.93 

IC20-M5 A11 13 3499294 RbsR 0.97 

IC20-M5 A11 15 3499294 RbsR 0.97 

IC20-M5 B11 3 394724 PtsP 0 

IC20-M5 B11 5 394724 PtsP 0.33 

IC20-M5 B11 7 394724 PtsP 0.73 

IC20-M5 B11 9 394724 PtsP 0.83 

IC20-M5 B11 11 394724 PtsP 0.94 

IC20-M5 B11 13 394724 PtsP 0.85 

IC20-M5 B11 15 394724 PtsP 0.87 

IC20-M5 C11 3 394264 PtsP 0 

IC20-M5 C11 5 394264 PtsP 0.02 

IC20-M5 C11 7 394264 PtsP 0.05 

IC20-M5 C11 9 394264 PtsP 0.35 

IC20-M5 C11 11 394264 PtsP 0.53 

IC20-M5 C11 13 394264 PtsP 0.64 

IC20-M5 C11 15 394264 PtsP 0.73 

IC20-M5 C11 3 5159716 HPr 0 

IC20-M5 C11 5 5159716 HPr 0 

IC20-M5 C11 7 5159716 HPr 0.01 

IC20-M5 C11 9 5159716 HPr 0.08 

IC20-M5 C11 11 5159716 HPr 0.2 

IC20-M5 C11 13 5159716 HPr 0.2 

IC20-M5 C11 15 5159716 HPr 0.19 

IC20-M5 C11 3 732988 intergenic 0.02 

IC20-M5 C11 5 732988 intergenic 0.26 

IC20-M5 C11 7 732988 intergenic 0.3 

IC20-M5 C11 9 732988 intergenic 0.2 

IC20-M5 C11 11 732988 intergenic 0.3 

IC20-M5 C11 13 732988 intergenic 0.23 

IC20-M5 C11 15 732988 intergenic 0.09 

IC20-M5 D11 3 393899 PtsP 0 
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IC20-M5 D11 5 393899 PtsP 0 

IC20-M5 D11 7 393899 PtsP 0 

IC20-M5 D11 9 393899 PtsP 0 

IC20-M5 D11 11 393899 PtsP 0.04 

IC20-M5 D11 13 393899 PtsP 0.13 

IC20-M5 D11 15 393899 PtsP 0.81 

IC20-M5 D11 3 5159716 HPr 0 

IC20-M5 D11 5 5159716 HPr 0 

IC20-M5 D11 7 5159716 HPr 0 

IC20-M5 D11 9 5159716 HPr 0 

IC20-M5 D11 11 5159716 HPr 0.02 

IC20-M5 D11 13 5159716 HPr 0.06 

IC20-M5 D11 15 5159716 HPr 0.14 

IC20-M5 E2 3 5637204 PmrB 0.02 

IC20-M5 E2 5 5637204 PmrB 0.39 

IC20-M5 E2 7 5637204 PmrB 0.25 

IC20-M5 E2 9 5637204 PmrB 0.07 

IC20-M5 E2 11 5637204 PmrB 0.02 

IC20-M5 E2 13 5637204 PmrB 0.02 

IC20-M5 E2 15 5637204 PmrB 0 

IC20-M5 E2 3 393899 PtsP 0 

IC20-M5 E2 5 393899 PtsP 0.25 

IC20-M5 E2 7 393899 PtsP 0.4 

IC20-M5 E2 9 393899 PtsP 0.86 

IC20-M5 E2 11 393899 PtsP 0.85 

IC20-M5 E2 13 393899 PtsP 0.85 

IC20-M5 E2 15 393899 PtsP 0.78 

IC20-M5 E2 3 2243692 FabG 0 

IC20-M5 E2 5 2243692 FabG 0.04 

IC20-M5 E2 7 2243692 FabG 0.09 

IC20-M5 E2 9 2243692 FabG 0.19 

IC20-M5 E2 11 2243692 FabG 0.26 

IC20-M5 E2 13 2243692 FabG 0.2 

IC20-M5 E2 15 2243692 FabG 0.28 

IC20-M5 E2 3 3683396 ParS 0 

IC20-M5 E2 5 3683396 ParS 0.07 

IC20-M5 E2 7 3683396 ParS 0.12 

IC20-M5 E2 9 3683396 ParS 0.06 

IC20-M5 E2 11 3683396 ParS 0 

IC20-M5 E2 13 3683396 ParS 0 

IC20-M5 E2 15 3683396 ParS 0 

IC20-M5 E2 3 392322 YgdP 0 

IC20-M5 E2 5 392322 YgdP 0 

IC20-M5 E2 7 392322 YgdP 0 

IC20-M5 E2 9 392322 YgdP 0 

IC20-M5 E2 11 392322 YgdP 0 



188 

 

IC20-M5 E2 13 392322 YgdP 0.1 

IC20-M5 E2 15 392322 YgdP 0.13 

IC20-M5 F2 3 5637204 PmrB 0 

IC20-M5 F2 5 5637204 PmrB 0.13 

IC20-M5 F2 7 5637204 PmrB 0.02 

IC20-M5 F2 9 5637204 PmrB 0.02 

IC20-M5 F2 13 5637204 PmrB 0.02 

IC20-M5 F2 15 5637204 PmrB 0 

IC20-M5 F2 3 394708 PtsP 0 

IC20-M5 F2 5 394708 PtsP 0.22 

IC20-M5 F2 7 394708 PtsP 0.23 

IC20-M5 F2 9 394708 PtsP 0.39 

IC20-M5 F2 13 394708 PtsP 0.55 

IC20-M5 F2 15 394708 PtsP 0.14 

IC20-M5 F2 3 394361 PtsP 0 

IC20-M5 F2 5 394361 PtsP 0.09 

IC20-M5 F2 7 394361 PtsP 0.34 

IC20-M5 F2 9 394361 PtsP 0.36 

IC20-M5 F2 13 394361 PtsP 0.42 

IC20-M5 F2 15 394361 PtsP 0.69 

IC20-M5 G2 3 5947518 PilQ 0 

IC20-M5 G2 5 5947518 PilQ 0.17 

IC20-M5 G2 7 5947518 PilQ 0.46 

IC20-M5 G2 9 5947518 PilQ 0.24 

IC20-M5 G2 11 5947518 PilQ 0.4 

IC20-M5 G2 13 5947518 PilQ NA 

IC20-M5 G2 15 5947518 PilQ NA 

IC20-M5 G2 3 393899 PtsP 0 

IC20-M5 G2 5 393899 PtsP 0.02 

IC20-M5 G2 7 393899 PtsP 0.17 

IC20-M5 G2 9 393899 PtsP 0.27 

IC20-M5 G2 11 393899 PtsP 0.17 

IC20-M5 G2 13 393899 PtsP NA 

IC20-M5 G2 15 393899 PtsP NA 

IC20-M5 G2 3 393631 PtsP 0 

IC20-M5 G2 5 393631 PtsP 0 

IC20-M5 G2 7 393631 PtsP 0.08 

IC20-M5 G2 9 393631 PtsP 0.13 

IC20-M5 G2 11 393631 PtsP 0.13 

IC20-M5 G2 13 393631 PtsP NA 

IC20-M5 G2 15 393631 PtsP NA 

IC20-M5 H2 3 393319 PtsP NA 

IC20-M5 H2 5 393319 PtsP 0.28 

IC20-M5 H2 7 393319 PtsP 0.31 

IC20-M5 H2 9 393319 PtsP 0.25 

IC20-M5 H2 13 393319 PtsP 0.08 
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IC20-M5 H2 15 393319 PtsP NA 

IC20-M5 H2 3 393335 PtsP NA 

IC20-M5 H2 5 393335 PtsP 0.11 

IC20-M5 H2 7 393335 PtsP 0.15 

IC20-M5 H2 9 393335 PtsP 0.14 

IC20-M5 H2 13 393335 PtsP 0.02 

IC20-M5 H2 15 393335 PtsP NA 

IC20-M5 H2 3 394708 PtsP NA 

IC20-M5 H2 5 394708 PtsP 0.08 

IC20-M5 H2 7 394708 PtsP 0.2 

IC20-M5 H2 9 394708 PtsP 0.17 

IC20-M5 H2 13 394708 PtsP 0.23 

IC20-M5 H2 15 394708 PtsP NA 

IC20-M5 H2 3 394924 PtsP NA 

IC20-M5 H2 5 394924 PtsP 0.15 

IC20-M5 H2 7 394924 PtsP 0.19 

IC20-M5 H2 9 394924 PtsP 0.25 

IC20-M5 H2 13 394924 PtsP 0.01 

IC20-M5 H2 15 394924 PtsP NA 

IC20-M5 H2 3 3499294 RbsR 0 

IC20-M5 H2 5 3499294 RbsR 0.09 

IC20-M5 H2 7 3499294 RbsR 0.09 

IC20-M5 H2 9 3499294 RbsR 0.1 

IC20-M5 H2 13 3499294 RbsR 0 

IC20-M5 H2 15 3499294 RbsR 0 

IC20-M5 H2 3 393631 PtsP NA 

IC20-M5 H2 5 393631 PtsP 0 

IC20-M5 H2 7 393631 PtsP 0 

IC20-M5 H2 9 393631 PtsP 0 

IC20-M5 H2 13 393631 PtsP 0.13 

IC20-M5 H2 15 393631 PtsP NA 

IC80-k50 A12 3 4369523 PhoQ 0.27 

IC80-k50 A12 5 4369523 PhoQ 0.22 

IC80-k50 A12 7 4369523 PhoQ 0.13 

IC80-k50 A12 9 4369523 PhoQ 0.08 

IC80-k50 A12 11 4369523 PhoQ 0 

IC80-k50 A12 13 4369523 PhoQ 0 

IC80-k50 A12 15 4369523 PhoQ 0 

IC80-k50 A12 3 393042 PtsP 0.04 

IC80-k50 A12 5 393042 PtsP 0.43 

IC80-k50 A12 7 393042 PtsP 0.48 

IC80-k50 A12 9 393042 PtsP 0.87 

IC80-k50 A12 11 393042 PtsP 0.94 

IC80-k50 A12 13 393042 PtsP 0.95 

IC80-k50 A12 15 393042 PtsP 1 

IC80-k50 B12 3 3683307 ParS 0 
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IC80-k50 B12 5 3683307 ParS 0.45 

IC80-k50 B12 7 3683307 ParS 0.6 

IC80-k50 B12 9 3683307 ParS 0.75 

IC80-k50 B12 11 3683307 ParS 0.87 

IC80-k50 B12 13 3683307 ParS 0.98 

IC80-k50 B12 15 3683307 ParS 1 

IC80-k50 B12 3 2591369 NuoH 0 

IC80-k50 B12 5 2591369 NuoH 0.09 

IC80-k50 B12 7 2591369 NuoH 0.15 

IC80-k50 B12 9 2591369 NuoH 0.21 

IC80-k50 B12 11 2591369 NuoH 0.1 

IC80-k50 B12 13 2591369 NuoH 0 

IC80-k50 B12 15 2591369 NuoH 0 

IC80-k50 C12 3 2591369 NuoH 0.01 

IC80-k50 C12 5 2591369 NuoH 0.05 

IC80-k50 C12 7 2591369 NuoH 0.26 

IC80-k50 C12 9 2591369 NuoH 0.27 

IC80-k50 C12 13 2591369 NuoH 0.11 

IC80-k50 C12 15 2591369 NuoH 0.16 

IC80-k50 C12 3 2593980 NuoG 0.01 

IC80-k50 C12 5 2593980 NuoG 0.12 

IC80-k50 C12 7 2593980 NuoG 0.27 

IC80-k50 C12 9 2593980 NuoG 0.21 

IC80-k50 C12 13 2593980 NuoG 0.36 

IC80-k50 C12 15 2593980 NuoG 0.14 

IC80-k50 C12 3 3683505 ParS 0 

IC80-k50 C12 5 3683505 ParS 0 

IC80-k50 C12 7 3683505 ParS 0 

IC80-k50 C12 9 3683505 ParS 0 

IC80-k50 C12 13 3683505 ParS 0.55 

IC80-k50 C12 15 3683505 ParS 0.73 

IC80-k50 D12 3 5636922 PmrB 0 

IC80-k50 D12 5 5636922 PmrB 0.16 

IC80-k50 D12 7 5636922 PmrB 0.84 

IC80-k50 D12 9 5636922 PmrB 0.95 

IC80-k50 D12 11 5636922 PmrB 0.99 

IC80-k50 D12 13 5636922 PmrB 0.98 

IC80-k50 D12 15 5636922 PmrB 0.97 

IC80-k50 E3 3 3683343 ParS 0.37 

IC80-k50 E3 5 3683343 ParS 0.8 

IC80-k50 E3 7 3683343 ParS 1 

IC80-k50 E3 9 3683343 ParS 0.98 

IC80-k50 E3 11 3683343 ParS 0.98 

IC80-k50 E3 13 3683343 ParS 0.95 

IC80-k50 E3 15 3683343 ParS 1 

IC80-k50 E3 3 5215551 PiuB 0.43 
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IC80-k50 E3 5 5215551 PiuB 0.87 

IC80-k50 E3 7 5215551 PiuB 1 

IC80-k50 E3 9 5215551 PiuB 1 

IC80-k50 E3 11 5215551 PiuB 1 

IC80-k50 E3 13 5215551 PiuB 0.91 

IC80-k50 E3 15 5215551 PiuB 1 

IC80-k50 F3 3 5888350 WaaL 0.13 

IC80-k50 F3 5 5888350 WaaL 0.89 

IC80-k50 F3 7 5888350 WaaL 0.85 

IC80-k50 F3 9 5888350 WaaL 0.77 

IC80-k50 F3 13 5888350 WaaL 0.87 

IC80-k50 F3 15 5888350 WaaL 0.95 

IC80-k50 F3 3 1974527 TrkH 0.04 

IC80-k50 F3 5 1974527 TrkH 0.04 

IC80-k50 F3 9 1974527 TrkH 0.11 

IC80-k50 F3 13 1974527 TrkH 0.15 

IC80-k50 F3 15 1974527 TrkH 0.05 

IC80-k50 G3 3 757176 FusA1 0.26 

IC80-k50 G3 5 757176 FusA1 0.13 

IC80-k50 G3 7 757176 FusA1 NA 

IC80-k50 G3 9 757176 FusA1 NA 

IC80-k50 G3 11 757176 FusA1 0.6 

IC80-k50 G3 13 757176 FusA1 0.54 

IC80-k50 G3 15 757176 FusA1 0.62 

IC80-k50 G3 3 4369873 PhoQ 0.26 

IC80-k50 G3 5 4369873 PhoQ 0.66 

IC80-k50 G3 7 4369873 PhoQ NA 

IC80-k50 G3 9 4369873 PhoQ NA 

IC80-k50 G3 11 4369873 PhoQ 0.39 

IC80-k50 G3 13 4369873 PhoQ 0.27 

IC80-k50 G3 15 4369873 PhoQ 0.26 

IC80-k50 H3 3 392888 PtsP 0 

IC80-k50 H3 5 392888 PtsP 0.01 

IC80-k50 H3 7 392888 PtsP 0.13 

IC80-k50 H3 9 392888 PtsP 0.2 

IC80-k50 H3 11 392888 PtsP 0.14 

IC80-k50 H3 13 392888 PtsP 0.11 

IC80-k50 H3 15 392888 PtsP 0 

IC80-k50 H3 3 4370093 PhoQ 0 

IC80-k50 H3 5 4370093 PhoQ 0 

IC80-k50 H3 7 4370093 PhoQ 0 

IC80-k50 H3 9 4370093 PhoQ 0.03 

IC80-k50 H3 11 4370093 PhoQ 0.03 

IC80-k50 H3 13 4370093 PhoQ 0.05 

IC80-k50 H3 15 4370093 PhoQ 0.24 

IC80-k50 H3 3 394469 PtsP 0 
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IC80-k50 H3 5 394469 PtsP 0 

IC80-k50 H3 7 394469 PtsP 0 

IC80-k50 H3 9 394469 PtsP 0 

IC80-k50 H3 11 394469 PtsP 0.04 

IC80-k50 H3 13 394469 PtsP 0.65 

IC80-k50 H3 15 394469 PtsP 0.76 

IC80-k50 H3 3 2586747 NuoM 0 

IC80-k50 H3 5 2586747 NuoM 0 

IC80-k50 H3 7 2586747 NuoM 0.07 

IC80-k50 H3 9 2586747 NuoM 0.05 

IC80-k50 H3 11 2586747 NuoM 0.15 

IC80-k50 H3 13 2586747 NuoM 0.01 

IC80-k50 H3 15 2586747 NuoM 0.01 

IC80-M5 A5 3 5637204 PmrB 0.35 

IC80-M5 A5 5 5637204 PmrB 0.2 

IC80-M5 A5 7 5637204 PmrB 0.15 

IC80-M5 A5 9 5637204 PmrB 0.17 

IC80-M5 A5 11 5637204 PmrB 0.27 

IC80-M5 A5 13 5637204 PmrB 0.27 

IC80-M5 A5 15 5637204 PmrB 0.24 

IC80-M5 A5 3 5636922 PmrB 0.65 

IC80-M5 A5 5 5636922 PmrB 0.79 

IC80-M5 A5 7 5636922 PmrB 0.76 

IC80-M5 A5 9 5636922 PmrB 0.78 

IC80-M5 A5 11 5636922 PmrB 0.78 

IC80-M5 A5 13 5636922 PmrB 0.76 

IC80-M5 A5 15 5636922 PmrB 0.76 

IC80-M5 B5 3 5636814 PmrB 0.12 

IC80-M5 B5 5 5636814 PmrB 0.12 

IC80-M5 B5 9 5636814 PmrB 0.13 

IC80-M5 B5 11 5636814 PmrB 0.09 

IC80-M5 B5 15 5636814 PmrB 0 

IC80-M5 B5 3 3683342 ParS 0.17 

IC80-M5 B5 5 3683342 ParS 0.13 

IC80-M5 B5 9 3683342 ParS 0.09 

IC80-M5 B5 11 3683342 ParS 0.12 

IC80-M5 B5 15 3683342 ParS 0.16 

IC80-M5 B5 3 5636922 PmrB 0.22 

IC80-M5 B5 5 5636922 PmrB 0.34 

IC80-M5 B5 9 5636922 PmrB 0.31 

IC80-M5 B5 11 5636922 PmrB 0.21 

IC80-M5 B5 15 5636922 PmrB 0.23 

IC80-M5 B5 3 5637204 PmrB 0.41 

IC80-M5 B5 5 5637204 PmrB 0.47 

IC80-M5 B5 9 5637204 PmrB 0.58 

IC80-M5 B5 11 5637204 PmrB 0.5 
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IC80-M5 B5 15 5637204 PmrB 0.46 

IC80-M5 C5 3 5637204 PmrB 0.3 

IC80-M5 C5 5 5637204 PmrB 0.24 

IC80-M5 C5 7 5637204 PmrB 0.27 

IC80-M5 C5 9 5637204 PmrB 0.29 

IC80-M5 C5 13 5637204 PmrB 0.71 

IC80-M5 C5 15 5637204 PmrB NA 

IC80-M5 C5 3 5636922 PmrB 0.27 

IC80-M5 C5 5 5636922 PmrB 0.42 

IC80-M5 C5 7 5636922 PmrB 0.24 

IC80-M5 C5 9 5636922 PmrB 0.27 

IC80-M5 C5 13 5636922 PmrB 0.16 

IC80-M5 C5 15 5636922 PmrB NA 

IC80-M5 C5 3 4678757 AotJ 0.14 

IC80-M5 C5 5 4678757 AotJ 0.18 

IC80-M5 C5 7 4678757 AotJ 0.23 

IC80-M5 C5 9 4678757 AotJ 0.07 

IC80-M5 C5 13 4678757 AotJ 0.01 

IC80-M5 C5 15 4678757 AotJ NA 

IC80-M5 C5 3 3683342 ParS 0.28 

IC80-M5 C5 5 3683342 ParS 0.14 

IC80-M5 C5 7 3683342 ParS 0.28 

IC80-M5 C5 9 3683342 ParS 0.17 

IC80-M5 C5 13 3683342 ParS 0.15 

IC80-M5 C5 15 3683342 ParS NA 

IC80-M5 D5 3 5636814 PmrB 0.18 

IC80-M5 D5 5 5636814 PmrB 0.09 

IC80-M5 D5 7 5636814 PmrB 0.11 

IC80-M5 D5 9 5636814 PmrB 0.14 

IC80-M5 D5 11 5636814 PmrB 0.09 

IC80-M5 D5 13 5636814 PmrB 0.03 

IC80-M5 D5 15 5636814 PmrB 0.05 

IC80-M5 D5 3 5637204 PmrB 0.77 

IC80-M5 D5 5 5637204 PmrB 0.83 

IC80-M5 D5 7 5637204 PmrB 0.8 

IC80-M5 D5 9 5637204 PmrB 0.85 

IC80-M5 D5 11 5637204 PmrB 0.86 

IC80-M5 D5 13 5637204 PmrB 0.9 

IC80-M5 D5 15 5637204 PmrB 0.72 

IC80-M5 D5 3 393324 PtsP 0 

IC80-M5 D5 5 393324 PtsP 0 

IC80-M5 D5 7 393324 PtsP 0 

IC80-M5 D5 9 393324 PtsP 0 

IC80-M5 D5 11 393324 PtsP 0 

IC80-M5 D5 13 393324 PtsP 0 
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IC80-M5 D5 15 393324 PtsP 0.25 

IC80-M5 E7 3 3684113 ParS 0.21 

IC80-M5 E7 5 3684113 ParS 0.27 

IC80-M5 E7 7 3684113 ParS 0.2 

IC80-M5 E7 9 3684113 ParS 0.15 

IC80-M5 E7 11 3684113 ParS 0.06 

IC80-M5 E7 13 3684113 ParS 0.03 

IC80-M5 E7 15 3684113 ParS 0 

IC80-M5 E7 3 5637204 PmrB 0.61 

IC80-M5 E7 5 5637204 PmrB 0.53 

IC80-M5 E7 7 5637204 PmrB 0.37 

IC80-M5 E7 9 5637204 PmrB 0.47 

IC80-M5 E7 11 5637204 PmrB 0.17 

IC80-M5 E7 13 5637204 PmrB 0.08 

IC80-M5 E7 15 5637204 PmrB 0 

IC80-M5 E7 3 6124605 EnvZ 0.02 

IC80-M5 E7 5 6124605 EnvZ 0.13 

IC80-M5 E7 7 6124605 EnvZ 0.07 

IC80-M5 E7 9 6124605 EnvZ 0.04 

IC80-M5 E7 11 6124605 EnvZ 0 

IC80-M5 E7 13 6124605 EnvZ 0 

IC80-M5 E7 15 6124605 EnvZ 0 

IC80-M5 E7 3 393899 PtsP 0 

IC80-M5 E7 5 393899 PtsP 0 

IC80-M5 E7 7 393899 PtsP 0 

IC80-M5 E7 9 393899 PtsP 0 

IC80-M5 E7 11 393899 PtsP 0 

IC80-M5 E7 13 393899 PtsP 0.01 

IC80-M5 E7 15 393899 PtsP 0.15 

IC80-M5 E7 3 394249 PtsP 0 

IC80-M5 E7 5 394249 PtsP 0 

IC80-M5 E7 7 394249 PtsP 0 

IC80-M5 E7 9 394249 PtsP 0 

IC80-M5 E7 11 394249 PtsP 0 

IC80-M5 E7 13 394249 PtsP 0.01 

IC80-M5 E7 15 394249 PtsP 0.7 

IC80-M5 F7 3 5637204 PmrB 0.9 

IC80-M5 F7 5 5637204 PmrB 0.8 

IC80-M5 F7 9 5637204 PmrB 0.81 

IC80-M5 F7 11 5637204 PmrB 0.72 

IC80-M5 F7 13 5637204 PmrB 0.31 

IC80-M5 F7 15 5637204 PmrB 0.06 

IC80-M5 F7 3 732988 intergenic 0.6 

IC80-M5 F7 5 732988 intergenic 0.38 

IC80-M5 F7 9 732988 intergenic 0.3 

IC80-M5 F7 11 732988 intergenic 0.32 
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IC80-M5 F7 13 732988 intergenic 0.17 

IC80-M5 F7 15 732988 intergenic 0.02 

IC80-M5 F7 3 393899 PtsP 0 

IC80-M5 F7 5 393899 PtsP 0 

IC80-M5 F7 9 393899 PtsP 0.07 

IC80-M5 F7 11 393899 PtsP 0.33 

IC80-M5 F7 13 393899 PtsP 0.3 

IC80-M5 F7 15 393899 PtsP 0.58 

IC80-M5 H7 3 5637204 PmrB 0.02 

IC80-M5 H7 5 5637204 PmrB 0.21 

IC80-M5 H7 7 5637204 PmrB 0.07 

IC80-M5 H7 11 5637204 PmrB 0 

IC80-M5 H7 13 5637204 PmrB 0 

IC80-M5 H7 15 5637204 PmrB NA 

IC80-M5 H7 3 393335 PtsP 0.01 

IC80-M5 H7 5 393335 PtsP 0.21 

IC80-M5 H7 7 393335 PtsP 0.26 

IC80-M5 H7 11 393335 PtsP 0.42 

IC80-M5 H7 13 393335 PtsP 0.34 

IC80-M5 H7 15 393335 PtsP NA 

IC80-M5 H7 3 394924 PtsP 0.01 

IC80-M5 H7 5 394924 PtsP 0.3 

IC80-M5 H7 7 394924 PtsP 0.51 

IC80-M5 H7 11 394924 PtsP 0.57 

IC80-M5 H7 13 394924 PtsP 0.47 

IC80-M5 H7 15 394924 PtsP NA 

IC80-M5 H7 3 3499294 RbsR 0.01 

IC80-M5 H7 5 3499294 RbsR 0.14 

IC80-M5 H7 7 3499294 RbsR 0.44 

IC80-M5 H7 11 3499294 RbsR 0.41 

IC80-M5 H7 13 3499294 RbsR 0.29 

IC80-M5 H7 15 3499294 RbsR NA 

IC80-M5 H7 3 1860256 hypothetical 0.01 

IC80-M5 H7 5 1860256 hypothetical 0.09 

IC80-M5 H7 7 1860256 hypothetical 0.14 

IC80-M5 H7 11 1860256 hypothetical 0.16 

IC80-M5 H7 13 1860256 hypothetical 0.05 

IC80-M5 H7 15 1860256 hypothetical NA 
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