
MODELING HIV-1 INFECTION IN THE BRAIN: THE EFFECT OF THE

BLOOD-BRAIN BARRIER

A DISSERTATION IN
Mathematics

and
Physics

Presented to the Faculty of the University
of Missouri-Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by
COLIN T. BARKER

B.A., Drury University, Springfield, Missouri, 2011
M.S., University of Missouri-Kansas City, 2015

Kansas City, Missouri
2020



© 2020

COLIN T. BARKER

ALL RIGHTS RESERVED



MODELING HIV-1 INFECTION IN THE BRAIN: THE EFFECT OF THE

BLOOD-BRAIN BARRIER

Colin T. Barker, Candidate for the Doctor of Philosophy Degree

University of Missouri-Kansas City, 2020

ABSTRACT

Despite the advancement of antiretroviral therapy (ART), the development of

HIV associated neurocognitive disorders (HAND) remains a major concern among

HIV infected patients. As many ART drugs may fail to penetrate the blood-brain

barrier (BBB), the long-term presence of viral RNA in the brain is considered to

be associated with these disorders, such as early-onset dementia. In vivo study of

HIV infection in the brain is extremely difficult, and thus mathematical modeling

can help to further the analysis of the viral dynamics of HIV in the brain. In this

dissertation we develop a mathematical model to help investigate the viral dynamics

of HIV in the brain. Our model can explain containing viral loads in the plasma and

in the cerebral spinal fluid from SIV-infected macaques. We then extend this model

to study the treatment of HIV in the brain. Furthermore we develop a new stochastic

model to analyze any stochastic effects that may underlie HIV-viral dynamics in the

brain. Using our models, we show that the rate of transport of infected macrophages
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into the brain greatly exceeds the rate of transport out of the brain. We also show

that viral replication occurs in the brain, suggesting that the brain can act as a viral

reservoir. We also show that the basic reproduction number largely depends on the

overall effectiveness of ART, but it is not strongly affected by the rate of drug pene-

tration through the blood-brain barrier. The effectiveness of ART depends on both

pharmacodynamic parameters and a drug’s ability to penetrate through the BBB. In

particular, for drugs with a high dose-response curve, the BBB penetration strongly

affects the post-treatment control of the virus in the brain. Through examination of

the stochastic model we illustrate a prolonged higher likelihood of infection and viral

production in the brain compared to the plasma. Results in this dissertation may be

useful to develop HIV control strategies to target the virus hiding in the brain.
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CHAPTER 1

INTRODUCTION

Human immunodeficiency virus (HIV-1) is one of the most deadly diseases

in the world. According to the CDC [4] roughly 37 million people currently live in

the world with the disease, including 1.8 million new cases in 2017. In 2017, nearly

one million people died of HIV-1 globally. Restricting this to the United States the

numbers remain staggering, with roughly 1.1 million people in the United States

currently live with the disease, and nearly 40,000 new infections occurred in the year

2017.

Typically HIV-1 is transmitted between individuals via sexual intercourse or

via syringe and needle use. Transmission only occurs if contaminated blood (or fluids

such as breast milk, semen, pre-seminal fluid, rectal, and vaginal fluids) comes into

contact with damaged skin or is directly injected into the bloodstream. Once entered

into the system HIV-1 spreads rapidly throughout the body and eventually may lead

to Acquired Immunodeficiency Syndrome (AIDS) [4]. HIV-1 (Figure 1) in the form

of AIDS attacks and weakens the immune system and then may lead to opportunistic

infection of other diseases. Current treatment has progressed enough to allow infected

individuals to maintain an almost full lifespan with HIV-1, however no cure has yet

been found, despite potential recent success via stem-cell transplants [49]. Because

no cure exists, several studies explore methods to optimally control the virus.

A major barrier in the efforts to treat HIV-1 is the existence of viral reservoirs
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Figure 1: Structure of an HIV virion [3].

in many sites such as the gut, liver, reproductive organs, and the brain [24, 27]. HIV

DNA resides latently within a reservoir, develops into virus particles and then leaks

into the plasma and reinfects the bloodstream. While each reservoir merits significant

research, the brain is the least studied reservoir. This is partly because in vivo study

is difficult and expensive, often requiring a spinal tap. As the lifespans of HIV-1

infected individuals has increased, the long-term virus within the brain often leads

to HIV-1 associated neurocognitive diseases (HAND) such as early-onset dementia

and encephalitis [18, 41, 43, 50, 51, 59]. It is thus critical to understand the viral

dynamics of HIV-1 in the brain.

HIV-1 enters the brain by crossing the blood-brain barrier (BBB) which facil-

itates transport of cells between the bloodstream and the brain [9, 12, 53]. Unfortu-

nately, antiretroviral drugs fail to pass through the BBB with the same effectiveness,

allowing the virus to persist in the brain despite ongoing treatment [46]. The virus
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then leaks out [13] again through the BBB back into the bloodstream and produces

more infection throughout the body. Hence, to study the viral dynamics of HIV-1 in

the brain it is paramount to consider the role of the BBB on viral transport.

Although some drugs may struggle to pass through the BBB, the treatment

of HIV-1 still plays a vital role in the control of HIV-1. Several types of drug mech-

anisms exist whose combinations make up what is called highly-active antiretroviral

therapy (HAART). The drugs target inhibiting some stage of the life-cycle of the

virus. Multiple studies [46, 48, 57, 63, 74, 75, 60] offer insight into the mechanisms of

these drugs and their overall effectiveness on HIV-1 control. A study by Letendre [46],

measured the permeability of commonly prescribed ART drugs through the BBB and

found that there are only a few drugs that show a stronger ability to pass through

the BBB. While these drugs often control the virus despite failing to eradicate it from

the system, they are crucial to the evaluation of HIV-1 in the brain.

Mathematical modeling has proven to be a useful tool to aid our understanding

of the viral dynamics of HIV-1 [14, 32, 34, 40, 56, 57]. However, limited studies have

been done which include the brain or the BBB. The goal of this dissertation is to

develop mathematical models that offer insights into the effects of the BBB on the

viral dynamics of HIV-1 in the brain, and on the effectiveness of treatment to control

the virus in the brain.

The dissertation is organized in as follows: In Chapter 2 we provide relevant

background for modeling HIV-1 dynamics as well as important biological information

about HIV-1, the BBB, and antiretroviral therapy. We also present various techniques

for theoretical analysis used in this dissertation.
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In Chapter 3 we develop a nonlinear ordinary differential equation (ODE)

model to study the role of the BBB on the viral dynamics of HIV-1 in the brain. The

model is parameterized using viral load data from macaques infected with a mixture

of simian-immunodeficiency virus (SIV) and simian-human-immunodeficiency virus

(SHIV). We conduct a thorough sensitivity analysis of the model parameters.

In Chapter 4 we develop and analyze an ODE model to examine the effect of

the BBB on the effectiveness of treatment to control HIV-1 in the brain. We also

conduct global stability analysis of the model. Furthermore, we examine the effect of

the drug pharmacodynamics, as well as the drug permeability through the BBB, on

the viral dynamics of HIV1.

In Chapter 5 we develop a stochastic differential equations (SDE) model to

study the impact of the stochastic nature of the virus-cell dynamical system. We com-

pare the simulations of the SDE model with the ODE model and analyze important

state probability distributions and likelihoods of infection events.

Finally, in Chapter 6 we discuss important findings of our study, biological

implications and future directions. We also present the conclusion of the dissertation.
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CHAPTER 2

BACKGROUND INFORMATION

In this chapter we provide a brief literature review of the biological aspects of

HIV as well as of relevant mathematical modeling for HIV viral dynamics. We also

detail some of the methods used in the theoretical analysis of the models developed

in this dissertation.

HIV Life Cycle

In order for HIV to spread, a free HIV virion must infect a cell. The most

common target cells are white blood cells known as helper T cells, specifically CD4+

T cells [2]. These cells play a major role in the immune system which fights against

infection within the body. Typically CD4+ T cells recognize foreign substances within

the body through coreceptors like CCR5 or CXCR4. A free HIV virion attaches to a

CD4+ T cell by binding to these coreceptors. After binding, the viral envelope fuses

with the cell and the viral RNA enters the CD4+ T cell and releases enzymes to begin

viral reproduction. The first enzyme, reverse transcriptase, allows the virus to convert

HIV RNA into HIV DNA, thus allowing HIV to enter the nucleus of the CD4+ T cell.

The second enzyme, integrase, allows the HIV DNA to insert itself into the DNA of

the T cell, and through the normal mitosis process of the T cell, viral HIV DNA is

then replicated. Since HIV is a retrovirus, these replications may not be exact. As

long chains of the HIV RNA are created by this process, they assemble outside of

the nucleus and move toward the surface of the cell. HIV is still non-infectious at
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this stage. The final stage, known as budding, occurs when the newly formed HIV

releases the enzyme protease to break up the long RNA protein chains of HIV into

smaller HIV RNA proteins, which bud off of the CD4+ T cell, and release into the

body [2]. A diagram of this process is provided in Figure 2.

Figure 2: The seven stages of the HIV life cycle [10]

An individual infected by HIV experiences two stages of infection before de-

veloping Acquired Immunodeficiency Syndrome (AIDS): acute infection and chronic

infection. During acute infection the viral load of HIV spikes, then dips to a con-

sistent (chronic) lower level that can maintain for several years. An individual may

express flu-like symptoms during acute infection.
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A CD4+ T cell is not the only target cell for HIV infection. Another cell,

known as a macrophage, is also commonly utilized for viral replication. This was first

discovered in 1986 by Koenig et al [41]. The infection process within macrophages

is similar to that of a CD4+ T cell, although the lifespan of a macrophage is much

longer than that of a CD4+ T cell [53]. Notably macrophages can enter into the brain

(the cerebral spinal fluid, or CSF), whereas a CD4+ T cell typically remains within

the plasma.

HIV Control and Treatment

In an effort to control the HIV replication process, HIV antiretroviral drugs

have been developed. These drugs are classified based on the part of the HIV life

cycle they disrupt. Specifically, the classes of HIV drugs are fusion inhibitors (FIs),

reverse transcriptase inhibitors (these are subclassified as non-nucleotide reverse tran-

scriptase inhibitors, NRTIs, and nucleotide reverse transcriptase inhibitors, NNRTIs,

respectively), integrase inhibitors (IIs), and protease inhibitors (PIs). The stage of the

HIV life-cycle that each class of drug inhibits is also marked in Figure 2. Treatment

plans including any combination of drugs were previously known as highly-active an-

tiretroviral therapy (HAART), although they are more commonly referred to simply

as antiretroviral therapy (ART).

ART treatments currently control HIV well enough such that an infected indi-

vidual currently undergoing ART may live to a normal lifespan. Long-term infection

of HIV has been shown to lead to nuerocognitive disorders like early-onset demen-

tia and encephalitis [42]. These chronic diseases are referred to as HIV-associated

neurocognitive disorders (HAND), and are currently an important area of study.
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Viral Reservoirs

After interruption of ART, HIV-infected individuals experience a rebound of

the virus. This is largely due to latent reservoirs of HIV [54]. A viral reservoir is

a site within the body which harbors viral RNA. Since the latently infected cells

do not produce virus at the current stage, ART fails to clear the virus from these

reservoirs, which allows for later activation after ART is withdrawn. Common HIV

viral reservoirs are the gut, liver, reproductive organs, and the brain [24, 31, 27].

The Brain and the BBB

Although CD4+ T cells rarely enter the brain, viral RNA copies have been

observed in the cerebral-spinal fluid (CSF) in as early as one week post-infection

[35, 51]. The CD4+ T cells fail to enter the brain due to the presence of the blood-

brain barrier (BBB). The BBB consists of a variety of endothelial cells, macrophages,

and astrocytes (see Figure 3), and mitigates transit of cells between the cerebral-

spinal fluid and the bloodstream by phosphorylation initiated by polarization [35].

Not only does the BBB prevent most CD4+ T cells from entering into the brain, but

also there is little evidence to suggest that free HIV-1 virions can pass through the

BBB. Instead, the virus infects immature macrophages (known as monocytes) which

take advantage of macrophage turnover within the BBB, and thus enter the brain.

This method is commonly referred to as the “Trojan-horse” method.

The BBB is a unique feature among the viral reservoirs of HIV, as productive

(rather than latent) free virions exist inside the CSF and reside even throughout

ongoing ART. It is not well understood how HIV acts within the brain, as in vivo study

is difficult. A study by Letendre et al. [46] provided a measure for the effectiveness of
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Figure 3: Schematic diagram of the blood-brain barrier [5]

ART drugs to permeate the BBB. Given the important role of the BBB on the virus

and drug entry, understanding the effect of the BBB on the viral dynamics of HIV

and ART is thus very important.

Viral Dynamics Modeling with a Deterministic Approach

In this section, we present a brief summary of articles that focus on within-host

HIV infection modeling, paying special attention to those related to viral reservoirs

and the brain. We also highlight a few experimental studies that are useful to devel-

oping models.

A deterministic viral dynamics model uses a system of ordinary differential

equations (ODE) that may or may not depend upon each other to represent incre-

mental rates of change. These rates are captured by model parameters and have been

widely useful in understanding natural phenomena.
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Some of the earliest deterministic models of HIV viral dynamics [40, 78] include

three compartments of cells: uninfected CD4+ T cells, T , infected CD4+ T cells, I ,

and free HIV virions, V (Figure 4).

Figure 4: The schematic diagram of the basic model of HIV-1 infection.

In this model the CD4+ T cells are generated at a constant rate λ , and die

at a per capita rate of d . Uninfected target cells become infected at a rate β when

they interact with free virions. These infected cells produce new virions at a rate of

p per infected cell. Infected cells die at a per capita rate δ . Free virions get cleared

at a constant per capita rate of c . Mathematically this model can be described by

the following system of ordinary differential equations (ODEs):
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dT

dt
= λ− βV T − dT,

dI

dt
= βV T − δI,

dV

dt
= pI − cV.

(2.1)

This simple model showed remarkable success at describing the dynamics of

acute HIV infection [32, 57] and initiated the emergence of the field of study of viral

dynamics [55, 73].

Callaway and Perelson [14] extended the basic model (2.1) to consider two

infection compartments. This allowed them to study chronically infected cells, quies-

cent cells, latently infected cells, and even treatment. These models provided insight

into identifying populations of drug-resistant cells, and low steady-state viral loads.

In particular, from these models it was observed that target cells can respond differ-

ently to ART drugs. A major question from this study was whether drugs could be

developed to cross physiological barriers better, in the hopes of completely eradicating

HIV-1 from the human body.

Kim and Perelson [39] created a mathematical model of latent viral reservoirs.

This model describes the stability and decay characteristics of a latent reservoir. They

were able to model the “extremely slow decay” and stability of the latent reservoir due

to ongoing viral replication together with what they called bystander proliferation.

That is, nonstandard virus proliferation, for example, proliferation due to cytokines

in the environment. Their results suggest that even amid ongoing ART, low-level

viremia exists untreated within latent reservoirs. An excellent reference for further

review on mathematical models of latent HIV-1 infection can be found in Rong and
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Perelson [57].

The previous models were very effective in describing viral reservoirs, but

declined to specify the type of reservoir. The BBB’s unique mechanism for prevent-

ing treatment has had very little study by mathematical modeling. Recently Roda

et al. [56] developed a model to explore specifically the viral dynamics within the

brain. They used a simple model with only two compartments–uninfected and in-

fected macrophages. The results of the model suggest that the virus in the brain

can be eradicated depending on the comorbidity in the brain and the macrophage

lifespan.

Shortly after Roda et al. [56] published their study, another study by Huang et

al. [34] developed a model to analyze HIV persistence with regards to the lymphocyte

recirculation network within the CNS. The numerical results of their study illustrated

that plasma viral load data may not accurately reflect the overall viral mechanisms

of HIV within the human body. More research is clearly needed about HIV in the

brain.

Data Fitting

For a given system of Ordinary Differential Equations (ODEs), unknown pa-

rameters can be estimated by fitting a model solution to data. Throughout this

dissertation the ODEs presented are solved numerically using the MATLAB solvers

“ode15s” and “ode45”. For data fitting, the optimization functions “fmincon” and

“fminsearch” are used along with the common technique of the least squares method.

This method minimizes the sum of the squared residuals, that is, the difference be-

tween model predictions and their corresponding experimental data values. The for-
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mula below calculates the sum of the squared residuals.

J =
1

M

M∑
i=1

(y − yi)2 (2.2)

Here M represents the total number of data points considered for fitting and y and

yi represent the values predicted by the model and those from the experimental data,

respectively.

Once the best model parameters are computed from the least squares method,

it is common to further evaluate these parameters by finding confidence intervals

(CIs). CIs are calculated from n replications via bootstrapping the residuals from

the formula (2.2) [11, 23]. We note that this bootstrap method uses sampling with

replacement, so randomly selected data points may be repeated.

The process for generating CIs for estimated parameters by the bootstrapping

method is given as follows:

1) Select a sample of m data points;

2) Re-sample the m data points several times with replacement;

3) Perform a model simulation and calculate the residual error between the simulated

solution and the data point for each data point;

4) From the residual errors in the previous step compute their standard deviation,

σ ;

5) For each data point add a randomly chosen error term to each simulated solution

at that point and call it the new data point. The error is chosen from a normal

distribution with standard deviation σ .

6) Repeat the previous four steps n times;

13



7) Run the model simulations using each of the n bootstrapped data points;

8) Calculate 95% confidence intervals based off the results of these simulations.

Model Comparison

A well-known method to compare the quality of mathematical models rela-

tive to each other is to use the Akaike Information Criterion (AIC). By comparing

computed AIC values, a model is chosen by taking the lowest AIC value calculated

among all models. The AIC is computed using the following formula [6]

AIC = P ln

(
J

P

)
+

2P (Np + 1)

P −Np − 2
, (2.3)

where J is the sum of the squared residuals from formula (2.2), P is the number of

data points used to fit the model, and Np is the number of parameters estimated for

the fitting. Note that ln(x) is meant as the logarithm of x with the natural base e .

The Basic Reproduction Number R0

For within-host models, a critical number that is highly analyzed is the basic

reproduction number, R0 . R0 represents the average number of secondary infections

arising from a single infected cell residing within entirely uninfected cells [22]. The

most common method to compute R0 is the next-generation operator method [22]. In

this method, we consider the equations related to infectious terms compartments and

linearize them about the infection-free equilibrium. Then we introduce two matrices,

the first matrix, denoted F , containing infection terms and the second matrix, V ,

containing the transfer terms. The total new infections can be thus represented by

the product, FV −1 . The basic reproduction number R0 is then taken to be the
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largest eigenvalue of FV −1 . In mathematical notation we consider the two matrices

F =
[
∂Fi(x0)
∂xj

]
, and V =

[
∂Vi(x0)
∂xj

]
, where Fi represents the new infections and Vi

represents the transfer terms. The value x0 represents the infection-free equilibrium

and the basic reproduction number, R0 , is the spectral radius given by ρ(FV −1).

Equilibria, Bifurcation Analysis, and Stability

Mathematical models are most useful in their ability to model and predict

natural behavior and phenomena. Naturally, understanding the stability of system

solutions is necessary to validate the use of such a model. For a deterministic ODE

model an equilibrium solution is a model solution such that each derivative does not

change. This solution can be determined by setting all derivatives equal to zero. In

viral dynamics modeling, it is common to determine the infection-free equilibrium

(IFE). Moreover, equilibria may be stable or unstable depending on several features

of the system. While there are numerous methods to determine stability, one used in

this dissertation is the application of Lyapunov function. Utilizing Lyapunov’s second

method of stability [26] if one can find a Lyapunov function L : Rn → R , defined

to be a scalar function such that 1) L(x) = 0 if and only if x = 0, 2) L(x) > 0 if

and only if x 6= 0, and 3) dL(x)
dt

< 0 for all x 6= 0, then the equilibrium point x0 is

asymptotically stable, where x is the ODE system.

It may be the case that a single solution approaches an equilibrium point

under one set of conditions, yet under different conditions it may tend away from

an equilibrium point. The point in which the solution changes is commonly referred

to as a bifurcation point. Often in disease modeling the basic reproduction number

R0 helps determine such bifurcations. In particular, if the system parameters yield
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a solution that does not tend toward the infection-free equilibrium, by analyzing the

bifurcation it may be determined that viral infection persists.

Viral Dynamics Modeling with a Stochastic Approach

All modeling techniques so far have been deterministic by nature, but many

events including cell-to-cell interaction tends to occur with a degree of randomness

and uncertainty. Models using systems of stochastic differential equations (SDEs)

help capture this randomness by including a term of Brownian motion.

While many deterministic models have been developed to analyze HIV viral

dynamics, there have been far fewer stochastic models. An SDE population dynamic

model by Tuckwell et al. [72] used uninfected cells, infected cells, latently infected

cells, and viral particles to model early HIV infection. Another study by Tan et al.

[69] examined stochastic effects on HIV viral dynamics using Monte Carlo methods.

There are several methods to create SDE models [80, 7, 25], but in this disser-

tation we use a method developed by Cao and Gillespie [15]. This method is known

as the τ -leap method, which approximates a stochastic simulation algorithm (SSA)

by predicting common events and skipping over time differentials, or τ s. This differs

from the method proposed by Gillespie [25] in several ways, for example, the normal

random variables in the Gillespie SSA become Poisson random variables in the τ -leap

method.

A viral dynamics model using an SDE can be derived based upon the ODE

model from system (2.1). We now present an outline of the method. First we de-

termine the number of possible events that could occur in a small time interval and

represent each event with a vector of the state changes for each compartment. For
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example, if the states of each compartment are represented by ~X = [T, I, V ]tr , then

the vector ~X = [−1, 1,−1]tr represents the event that a single target cell becomes

infected. In this case of the basic [T, I, V ] model there are seven possible events,

including the event ~X = [0, 0, 0]tr , in which no change occurs. We then assign a

probability to each event determined by the model. For example, the uninfected T -

cell reaction ~X has a probability of p = dT . Note that the probability in this case is

identical to the rate from the deterministic model, although this is not generally the

case. The probability that no change occurs is simply the complement of the sum of

all events in which a state change takes place. The choice of which event occurs in a

given time interval depends on the probability of each event.
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CHAPTER 3

MODELING THE ROLE OF THE BBB ON THE HIV DYNAMICS IN THE

BRAIN

In this chapter we develop a novel mathematical model to describe the HIV-

1 viral dynamics in the brain. We identify key parameters by fitting our model

to plasma and CSF viral load data from an experiment using rhesus macaques in-

fected with a mixture of Simian Immunodeficiency Virus (SIV) and Simian-Human

Immunodeficiency Virus (SHIV). We consider three variants of the model to analyze

viral replication within the brain. We also explore the long-term stability of HIV-1

predicted by our model and determine its sensitivity to key parameters.

Introduction

The long-term effects of HIV-1 in the brain are devastating. Despite un-

detected viral load in the plasma during HAART, many patients experience HIV

associated neurocognitive disorders (HAND), such as encephalitis and early-onset de-

mentia [41, 46, 48, 63], mostly due to the extended period of infected individuals

carrying the virus supplied from the reservoirs. Among the viral reservoirs the brain

represents the least studied one [12, 13, 18, 24, 27, 46, 50], because of its unique

feature associated with the blood-brain barrier (BBB) and the difficulty of in vivo

study on the brain infection. It is important to get insights into the viral dynamics

in the brain to devise proper HIV-1 control strategies.

Recent studies have considered the virus in the brain as a major obstacle in
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the search for a cure [24, 31]. The brain has been recognized as a viral reservoir,

but it still remains unclear whether or not viral replication occurs within the brain

[27, 48, 57, 59, 63]. Some effort has been made to suppress the virus within the brain,

but the BBB drastically reduces the effectiveness of such treatment, partly because

many drugs cannot cross the BBB [9, 46]. Due to the difficulty in controlling HIV-1 in

the brain as well as potential viral replication inside it, the brain can be an important

reservoir causing an obstacle for a cure [12, 13, 34, 56]. There is a complex interplay

between the viral dynamics of HIV-1 within the brain and within the plasma and

mathematical modeling may be able to uncover new insight.

Materials and Methods

Data

The data used in this study was obtained by digitizing results from published

literature [44, 45]. In the published experiment [44, 45], three male rhesus macaques

(Macacamulatta) were infected intravenously with a mixture of simian-human im-

munodeficiency virus (SHIVKU−1B and SHIV89−6P ) and simian immunodeficiency

virus (SIV17E−Fr ). These animals were monitored for a period of 12 weeks, and lev-

els of circulating CD4+ T cells and viral loads in both the CSF and plasma were

measured as described in Kumar et al. [45].

Mathematical Model

In the circulation, one of the primary target cells of HIV-1 are uninfected

CD4+ T cells (T ). These cells become infected (T ∗ ) by free virions (V ) within the

circulation at a rate β . Infected CD4+ T cells die at a rate δ per day and produce
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virions at a rate of p per day per infected cell [74]. Uninfected T cells die at a rate

d and are generated at a rate λ .

The major cells that HIV-1 infects in the brain are macrophages [18, 32, 42]. To

model this we include an uninfected population of macrophages (M ) in the circulation

that becomes infected (M∗ ) upon interaction with free virus at a rate βM . These

infected macrophages produce free virions at a rate pM per day per infected cell and

die at a rate of δM per day. Uninfected macrophages die at a rate of dM and are

generated at a rate λM . Note that the population of macrophages has been considered

to contribute to viral persistence because of its longer lifespan [18, 24, 27, 31, 41, 43,

28, 57].

In order for a virion to enter the CSF in the brain it must pass through

the BBB. It is not fully understood what factors modulate transit of HIV-1 RNA

through the BBB into the CNS [31]. However studies show that the virus permeates

the integrity of the BBB only via an infected macrophage [9, 42]. We represent the

rate of the macrophage transit through the BBB by ϕ . Macrophages are not known

to generate independently within the brain [53]. The uninfected brain-macrophages

become infected (M∗
B ) by the virus in the brain [12, 43, 50, 53, 59] at a constant

rate βM . These infected brain-macrophages produce free virions within the brain at

a constant rate pM per infected cell per day. The free virions in the brain have been

shown to possess different characteristics than those within the blood [46, 50, 53] and

we classify HIV-1 virions within the brain as VB . We assume that the free virions

V and VB are both cleared at the same per capita rate c . While limited evidence

suggests the possible presence of HIV-1-infected T cells within the CSF [68], because
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the primary targets of HIV-1 within the brain are macrophages [41, 42], we consider

only macrophages within the brain. Macrophages come out of the brain through the

BBB into the bloodstream at a constant rate ψ .

Considerable debate exists regarding whether or not viral replication occurs

within the brain [12, 24, 27, 31, 59]. To perform deeper analysis from the modeling

point of view, we develop three different variations of the model by introducing a

parameter α , which represents the fraction of infectivity (βM ) reduced in the brain

compared to outside of the brain. Model 1 (α = 0) assumes that viral replication

occurs within the brain at the same rate (βM ) as in the bloodstream. Similarly,

model 2 (α = 1) assumes that no viral replication occurs in the brain, and model 3

(0 < α < 1) assumes that the viral replication occurs at a lesser rate than outside of

the brain. Since the CSF viral load is significantly less than the plasma viral load,

we do not consider the case in which α > 1. The schematic diagram of the model is

shown in Fig 5. The model equations we use are as follows.
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dT

dt
= λ− βV T − dT,

dT ∗

dt
= βV T − δT ∗,

dM

dt
= λM + ψMB − βMVM − ϕM − dMM,

dM∗

dt
= βMVM + ψM∗

B − ϕM∗ − δMM∗,

dMB

dt
= ϕM − ψMB − (1− α)βMVBMB − dMMB,

dM∗
B

dt
= (1− α)βMVBMB − ψM∗

B + ϕM∗ − δMM∗
B,

dV

dt
= pT ∗ + pMM

∗ − cV,

dVB
dt

= pMM
∗
B − cVB.

(3.1)

Three variants of the model are Model 1: α = 0; Model 2: α = 1; Model 3:

0 < α < 1.
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Figure 5: The schematic diagram of the model representing HIV-1 infection

in the brain. The boxes represent a cell population, the solid arrows represent

transport from one population to another, and the dashed arrows represent the cause

for the corresponding events.

Parameter Estimation and Data Fitting

We take T0 = 38700 as in Vaidya et al. [73]. From Haney et al. [30] we

estimate M0 = 1463000 and MB0 = 20000. As estimated by Stafford et al. [67], the

average life span of uninfected target T cells is 100 days, which implies d = 0.01 per

day. Macrophages begin their life cycle as monocytes, and there are varying results
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regarding the age of the monocyte/macrophage lifespan ranging from three months

to three years [53]. We take the average lifespan to be approximately 18 months, i.e.

dM ∼ 0.002 per day. As every macaque was uninfected at the beginning of the study,

we take all infected cells to be zero, i.e., T ∗0 = M∗
0 = M∗

B0 = 0 [45]. Chen et al. [16]

estimated the SIV burst size in vivo in rhesus macaques as approximately 5 × 104

virions per infected cell, and the infected cell lives approximately one day, thus we

take p = 50, 000. Assuming a steady state before infection, we use λ = dT0 and

λM = dM(M0 +MB0) to estimate λ and λM . Schwartz et al. [73] estimated the rate

of lentiviral production by an infected macrophage to be approximately 1000 virions

per infected cell per day. Therefore, we set pM = 1000 for our base case computation.

The virion clearance rate during chronic infection in humans varies from 9.1 to 36.0

[54]. Thus we take the average c = 23 per day as the minimal estimate. However, we

acknowledge that this rate may be higher in macaques.

We estimate the remaining parameters β, βM , δ, δM , ϕ, ψ by fitting the model

to the viral load data in the CSF and the plasma. We solve the system of ordinary

differential equations (ODEs) numerically using the “ode15s” solver in MATLAB.

The predicted log10 values were fitted to corresponding log-transformed viral load

data using the nonlinear least square regression, in which the sum of the square

residuals, that is, the difference between the model predictions and the corresponding

experimental data, is minimized. We used the following formula to calculate the sum

of the squared residuals:

J =
1

P

P∑
i=1

(
log10 V (ti)− log10 V̄ (ti)

)2
+

1

N

N∑
i=1

(
log10 VB(ti)− log10 V̄B(ti)

)2
, (3.2)
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where P and N represent the total number of data points in the plasma and in

the brain, respectively. V and V̄ , represent the virus concentrations in the plasma

predicted by the model and those measured in the experimental data, respectively,

while VB and V̄B represent the virus concentrations in CSF predicted by the model

and those measured in the experimental data, respectively. For each best fit parameter

estimate, we provide 95% confidence intervals (CI), which were computed from 500

replicates by bootstrapping the residuals [11, 23].

Results

Model Selection

We fit the model to the data containing plasma viral load and the CSF viral

load for each of the three monkeys. To compare models we used the Akaike informa-

tion criterion (AIC) described by the following formula [6].

AIC = n log

(
J

n

)
+

2n(Np + 1)

n−Np − 2
, (3.3)

where n = P + N represents the total number of data points considered, J is the

sum of the squared residuals (SSR), and Np represents the number of parameters

estimated through data-fitting. The SSR and the AIC values for each of the model

1, model 2, and model 3 are given in Table 1. Note that the lower the AIC value, the

better the model fit.

There is no significant difference in the AIC or SSR value between Model 1

and Model 2, but Model 3 has the highest AIC values (Table 1). This indicates that

Model 3 does not explain the data well compared to the other models. While we

acknowledge that the AIC values do not significantly differ between Model 1 and
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Table 1: SSR and AIC values for each of the model 1 (α = 0), model 2 (α = 1), and

the model 3 (0 < α < 1) fitted to each of the three monkeys.

Model 1 (α = 0) Model 2 (α = 1) Model 3 (0 < α < 1)

SSR AIC SSR AIC SSR AIC

Monkey 1 4.6235 17.1562 4.4903 16.7469 3.8943 26.8866

Monkey 2 2.4144 55.788 2.4163 55.7966 2.4159 145.7951

Monkey 3 4.9797 18.1952 4.9758 18.1841 4.9781 30.3239

Model 2, Model 1 is supported by the previous study by Schnell [59], in which the

rate of infectivity for macrophages in the brain is the same as that outside the brain.

Therefore, we select the model 1 to present the subsequent results in the sections to

follow.

The prediction of the selected model, i.e. Model 1, along with the data for

each of the three monkeys are shown in Fig. 6. Our model agrees well with the data

(Fig. 2). The estimated parameters are given in Table 2.

Rates of Infection and Cell Death

We estimated that the rate, β , at which the virus infects CD4+ T cells,

ranges between 2.58×10−8 and 4.40×10−8 viral RNA copies per ml per day. These

estimates are consistent with the previous estimates [74]. The infection rate estimated

for macrophages, βM , ranges between 4.01×10−11 and 1.00× 10−9 viral RNA copies

per ml per day, implying that macrophages are less susceptible to viral infection

than CD4+ T cells. Similarly, we found that the death rate of infected macrophage
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Figure 6: Model fit to the data. Plasma viral load (solid line) and CSF viral

load (dashed line) predicted by the selected model, i.e. Model 1, along with the

experimental data (filled circle: plasma viral load; filled triangle: CSF viral load)

from three monkeys [44, 45].

(median δM ∼ 0.21 per day) is significantly lower than the death rate of infected

CD4+ T cells (median δ ∼ 1.61 per day). Thus our model suggests that infected

macrophages persist with the virus far longer than infected T cells, which is consistent

with findings from previous experiments [43, 51, 53].

Reproduction Number

The basic reproduction number (R0 ) is defined as the average number of

secondary infected cells produced by a single infected cell when there is no target cell

limitation [76]. In viral dynamics, the basic reproduction number is an important

threshold that can determine whether infection occurs. Specifically, if R0 < 1 the

infection dies out, and if R0 > 1 the infection occurs [76]. For our model we use the

next-generation method [22, 76] to compute R0 .

Our model possesses a unique infection-free equilibrium (IFE), given by

(T∗, 0,M∗, 0,MB∗, 0, 0, 0),
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where

T∗ =
λ

d
,

M∗ =
λM(ψ + dM)

(ϕ+ dM)(ψ + dM)− ψϕ
, and

MB∗ =
λMϕ

(ϕ+ dM)(ψ + dM)− ψϕ
.

Following the next generation matrix method, we linearize the five model equations

corresponding to infection classes, i.e. , T ∗ , M∗ , M∗
B , V , and VB , about the IFE and

introduce the following matrices:

F =



0 0 0 βλ
d

0

0 0 0 βMλM (ψ+dM )
(ϕ+dM )(ψ+dM )−ψϕ 0

0 0 0 0 βMλMϕ
(ϕ+dM )(ψ+dM )−ψϕ

p pM 0 0 0

0 0 pM 0 0


,

and

V =



δ 0 0 0 0

0 ϕ+ δM −ψ 0 0

0 −ϕ ψ + δM 0 0

0 0 0 c 0

0 0 0 0 c


,

where F represents a matrix of new infections and/or viral production in the lin-

earized system and V represents a matrix of the transfer of cell or virus into and out

of the compartment. The basic reproduction number is then given by the spectral
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radius of FV −1 . That is,

R0 =
1

2ϕψAD
·

[
√

2

√
ϕψAD

(
AB + CE +

√
(AB)2 +HC2 + C(B + C)G+BCΨ

)]
,

where

A =
ϕ2 + δMϕ+ dMϕ+ 2ϕψ + ψ2 + δMψ + dMψ + dMδM

ϕψ
, B = pβλδMdMϕψ,

C = pMβMλMδdϕψ, D = dMcδdδM , E = ϕ2 + 2δMϕ+ ϕψ + dMψ + dMδM ,

G =
ϕ4 + (ϕψ)2 + 2dMψ(ϕ2 + δMϕ+ dMδM)

(ϕψ)2
, H =

1 + ψ2 − 2dMδMϕ
2 + 2dMϕψ

2

(ϕψ)2
,

and

Ψ =
1

(ϕψ)2

(
−3ϕ4 − 2ϕ2ψ + (dM + δM)(−2ϕ3 + 2dMψ(ψ + δM))

+2(ϕ+ dM)(ψ3 + dMδM) + (ϕψ)2 + 2dMδM(ψ2 + dMδM)
)
.

We now use the parameters estimated above to obtain the basic reproduction number

for each monkey. We found that R0 ranges from 1.33 to 1.55. Note that R0 > 1 in

each case as expected because the experimental data show that the infection persists

in each monkey. We further perform the sensitivity analysis to identify how sensitive

the value of R0 is to each parameter. To quantify the sensitivity we considered the

sensitivity index Sx [58], given by

Sx =

(
X

R0

)(
∂R0

∂X

)
,

where X is a parameter whose sensitivity is sought. Based on the Sx values (Fig.

7), we identified that the parameters d, β, p, c, δ , and λ have the greatest influence

on R0 , whereas ϕ, ψ, dM , βM , pM , δM , λM have much less effect. We observe that the
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Figure 7: Sensitivity of Parameter Estimations to R0

parameters greatly influencing R0 are mostly T cell related. Thus the T cell and

related parameters are primary contributors to the initial establishment of the viral

infection.

Transport Through the BBB

Regarding infection in the brain, the transport of virus through BBB plays a

critical role. These mechanisms can be studied through the parameters ϕ and ψ of

our model. Our estimates show that the per capita rate of macrophage entry into the

brain, ϕ ∼ 0.29 per day, is significantly less than the per capita rate of macrophage

exit from the brain, ψ ∼ 9.41 per day (Table 2). This implies that the transport

of virus out of the brain via infected macrophages can be greater than the transport

of virus into the brain. As a result, the amount of virus, which replicates inside the

brain and then exits into the bloodstream through the BBB, can be significantly high.

Thus the brain may act as an HIV-1 reservoir supplying HIV-1 into the bloodstream

causing the persistent infection despite control of virus in the bloodstream through

successful treatment.
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Because of potential selection imposed by the BBB, especially for the entry

of virus into the brain, we ask a question whether inflow of virus into the brain is

constant and thus the brain compartment can be studied in isolation as done in some

previous study [56]. To analyze viral entry into the brain we calculated the rate of

number of infected macrophages (ϕM∗ ) entered into the brain over time for 100 days

post-infection (Fig. 8). The model prediction suggests that infected macrophages

enter the brain through the BBB at time-varying rate, depending upon the infection

outside the brain. This indicates that the brain and the plasma must be considered

as one coupled system rather than two separate ones to accurately predict the viral

dynamics in the brain, at least during the acute phase of infection.

Figure 8: Incoming infected macrophages entering the brain (ϕM∗). Model

simulations of the total count of infected macrophages (ϕM∗ ) entering the brain for

100 days post-infection.
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Cell and Virus Dynamics

We first used our model to study the acute phase dynamics of macrophages

(Fig. 9). The infected macrophages in the plasma and the brain both reach a peak at

approximately 18 days post-infection, and then decline steadily over the next three

weeks, eventually reaching a set point level. The dynamics of infected macrophages

in the brain is similar to that of the infected macrophages in the plasma, however the

amount of infected macrophages in the brain is significantly lower (peak at ≈ 170

per µL) than the infected macrophages in the plasma (peak at ≈ 40, 000 per µL).

This small amount of infected macrophages hiding inside the brain may explain the

low level of viral persistence during the treatment of infected patients as many drugs

cannot enter the brain through the BBB [46]. The uninfected macrophages, both in

the brain and in the plasma, decline rapidly (by ≈ 6%) of their initial amounts.

We also studied a long-term dynamics by performing model simulations for

1000 days (approximately 3 years). After approximately 200 days the CD4+ T cell

count, the infected macrophages in the brain and the plasma, and the viral RNA

copies in the brain and the plasma all reach a steady state (Fig 10). The steady state

level of the infected macrophages in the brain is roughly one fourth of that outside the

brain (200 per µL outside vs 50 per µL inside the brain). Similarly, the steady-state

level of viral RNA in the brain is nearly threefold less than that in the plasma (≈ 103

vRNA copies in the brain vs. ≈ 106 vRNA copies in the plasma), consistent with

the experimental results [45]. The CD4+ count drops rapidly and levels off at 400

shortly after day 200.
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Figure 9: Simulations of macrophages in the plasma and the CSF. Model

simulations over 100 days post-infection of infected macrophages (top row) and unin-

fected macrophages (bottom row) in the plasma (left column) and in the brain (right

column).

Sensitivity Analysis

Sensitivity of data-fitting estimates on the fixed parameters. Our

data-fitting estimates were based on the fixed values of parameters M0 , MB0 , dM ,

and pM . While we estimated values of these parameters from the literature, there is

uncertainty with these values. Therefore, we performed the sensitivity of the data-

fitting parameter estimates to the choice of the initial conditions M0 and MB0 (Fig.

11) and the choice of dM and pM (Fig. 12).

First, we performed 200 different data fittings using M0 and MB0 values cho-

sen randomly from the uniform distribution between 10% less and 10% more values

than the base value. We observed that the median change in the estimated parame-
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Figure 10: Long-term model simulations. Viral load (top left) for the plasma

(solid line) and the brain (dashed line) along with the CD4+ T cell count (top right)

and the total infected macrophages (bottom row) in the brain (bottom left) and in

the plasma (bottom right).

ters remained below 10% for each parameter and for each monkey except for βM in

Monkey 2 (22% change) (Fig. 11). This high sensitivity of βM for Monkey 2 is likely

due to the lack of enough data points in the brain for this monkey. The overall mean

change of each estimated parameter also remained less than 10% from the base case

estimate, suggesting our estimates were robust within these ranges of M0 and MB0 .

Then, we also performed 200 data fittings using dM and pM values sampled

randomly from the values between 10% less and 10% more than the base values. In

this case, we observed that both the median and the mean change in the estimated

parameters never exceeded more than 8% for each parameter for each monkey. This
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suggests that our parameter estimates for dM and pM were also robust within these

ranges for dM and pM .

Sensitivity of model dynamics on the general parameter space. Given

the limited number of data sets and extreme complications for the study of brain

virus, the results based on the model dynamics from our limited estimates require

further analysis on a wider parameter space. To examine the robustness of our model

dynamics we performed 200 simulations using a Latin hypercube sampling (LHS) of

nine parameters (δM , ψ , ϕ , βM , β , MB0 , M0 , pM , and dM ). The box-plots and

partial rank correlation coefficients of this sensitivity analysis is shown in Fig. 13 and

14, respectively. The dynamics from the data fitting estimates (solid lines) are clearly

captured within the boxes of the LHS results. Predicted dynamics are more sensitive

to the parameters during early part of the infection. Variation of the viral dynamics

in the brain is much wider than that in the plasma (Fig. 13).

We calculated PRCC values at weeks one, two, three, and 26, corresponding to

the timings for pre-peak, peak, post-peak, and set point viral load, respectively (Fig.

14). The computed partial rank correlation coefficients indicate that, parameters, in

general, have stronger correlation to the viral load in the CSF compared to that in

the plasma. Both plasma and CSF viral load are most correlated with parameters

related to infection rates, βM and β , and macrophage life-span, δM . In addition,

the CSF viral load is highly correlated with the BBB related parameter, ϕ . These

parameters, except δM , mainly have larger effect on early viral load than in the late

viral load. Both plasma and CSF viral loads are positively impacted by βM and β ,

and negatively impacted by δM , while ϕ has positive impact on CSF viral load and
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Table 2: Parameter estimates through data fitting. Estimated parameters from

fitting the selected model, i.e. Model 1, to each of the three monkey’s data. Paired

values in parentheses represent 95% confidence intervals.

δ δM ϕ ψ β βM

day−1 day−1 day−1 day−1 ml/day ml/day

Monkey 1
1.7319

(0.5555,1.8049)
0.2067

(0.1405,0.4141)
0.0117

(0.00220,0.22342)
9.4052

(8.2458,10.8779)
3.7332E-8

(1.9456E-8,7.4280E-8)
1.0018E-9

(9.9297E-10,1.0000E-9)

Monkey 2
1.6129

(0.8940,1.8214)
0.0673

(0.0234,0.1256)
0.78565

(0.33675,2.3305)
15.0023

(14.4669,15.2483)
4.4009E-8

(3.5322E-8,7.3811E-8)
4.0068E-11

(1.0000E-11,4.0119-11)

Monkey 3
1.0766

(0.5941,1.1664)
0.2127

(0.1550,0.2797)
0.29149

(0.08801,0.91395)
8.8010

(8.6176,9.0556)
2.5809E-8

(1.8701E-8,2.6271E-8)
6.9003E-10

(3.5739E-10,9.3840E-10)

Figure 11: Box-plots of the parameter estimates from 200 data-fittings with

values of M0 and MB0 selected randomly from ±10% of the base values.

Each subfigure represents the result for one of the parameters estimated.
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Figure 12: Box-plots of the parameter estimates from 200 data-fittings with

values of dM and pM selected randomly from ±10% of the base values.

Each subfigure represents the result for one of the parameters estimated.

negative impact (but with smaller magnitude) on the plasma viral load.
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Figure 13: Box-plots of the results of 200 simulations of the Model from

Latin hypercube sampling. The sensitivity of the dynamics of plasma viral load

(top) and the CSF viral load (bottom) based on 200 Latin Hypercube sampling. The

black sold line represents the viral dynamics predicted by the model with median

parameters estimated from three monkey data.
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Figure 14: Partial rank correlation coefficients from the Latin hypercube

sampling method. PRCC values of the plasma (top) and the CSF (bottom) viral

loads at weeks 1 (pre-peak), 2 (peak), 3 (post-peak), and 26 (set-point) post infection.
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CHAPTER 4

EFFECTS OF THE BLOOD-BRAIN BARRIER ON THE TREATMENT OF

HIV-INFECTION IN THE BRAIN

In this chapter we develop a mathematical model to analyze the effect of the

BBB on the overall treatment of HIV in the brain. We consider ART by varying

key drug parameters such as the CPE score, the slope of the dose-response curve,

and the initial treatment date. We also analyze the model to establish the local and

global properties of the infection dynamics. We show how varying the slope of the

dose-response curve, the CPE score, and the time of treatment initiation affects the

viral loads in the plasma and in the brain, and the time that viral loads become

undetectable.

Introduction

In Chapter 3, we developed a model that adequately described the viral dy-

namics of HIV-1 in the brain. We obtained interesting results that suggested new

parameters to measure the transport of macrophages through the BBB. These results

provided the need to examine the effect of the BBB on the treatment of HIV-1. Cur-

rent ART drugs fail to fully penetrate through the BBB, resulting in reduced efficacy

in the brain. Thus it is important to study what effects this reduced drug efficacy in

the brain may impose on the overall treatment of HIV-1.
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Model

Model Development

We develop a model with treatment by incorporating treatment terms into the

model previously developed in Chapter 3. We describe the viral dynamics using the

following differential equations, and a schematic diagram of the model is presented in

Figure 15. All parameter values are given in Table 3.

dT

dt
= λ−

n∏
i=1

(1− εi)βV T − dT,

dT ∗

dt
=

n∏
i=1

(1− εi)βV T − δT ∗,

dM

dt
= λM −

n∏
i=1

(1− εi)βMVM − ϕM + ψMB − dMM,

dM∗

dt
=

n∏
i=1

(1− εi)βMVM + ψM∗
B − ϕM∗ − δMM∗,

dMB

dt
= ϕM − ψMB −

n∏
i=1

(1− επi)βMVBMB − dMMB,

dM∗
B

dt
=

n∏
i=1

(1− επi)βMVBMB − ψM∗
B + ϕM∗ − δMM∗

B,

dV

dt
=
∏
i=1

(1− εPIi) pT ∗ +
∏
i=1

(1− εPIi) pMM∗ − cV,

dVB
dt

=
∏
i=1

(1− επPIi) pMM∗
B − cVB.

(4.1)
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Figure 15: Schematics for model with treatment

Currently there are five available classes of ART drugs: Fusion Inhibitors

(FIs), Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside reverse

transcriptase inhibitors (NNRTIs), Integrase inhibitors (IIs), and Protease inhibitors

(PIs) [4]. The efficacy of each drug, ε , can be calculated by the formula [75]:

ε = 1−

 1

1 +
(

D
ED50

)m
 ,

where m is Hill’s coefficient, D is the amount of drug concentration present, and

ED50 represents the concentration of drugs required to obtain 50% of the maximal
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effect. Note that Hill’s coefficient is also considered to be the slope of the dose-

response curve of a given drug. ART drugs reduce the respective viral production

rates p , and pM to (1 − εPIi)p and (1 − εPIi)pM , in the case of PIs, or reduce the

infection rates β , and βM to (1 − εi)β and (1 − εi)βM , respectively, for other drug

classes. When multiple drugs are used in treatment, the net reduction is given by the

product of drug effectiveness values, that is, for FIs, IIs, and RTIs, the infection rates

are reduced to
n∏
i=1

(1− εi)β and
n∏
i=1

(1− εi)βM , and for PIs the viral production rates

are reduced to
n∏
i=1

(1− εPIi)p and
n∏
i=1

(1− εPIi)pM .

The BBB reduces the net effectiveness of ART drugs by limiting the amount

of concentration into the CSF. A study by Letendre et al. [46] examined the viral

loads in the CSF in the presence of ART drugs and created a standard measure (CNS

penetration effectiveness score, or CPE-score) for the effectiveness of an ART drug at

entering the brain. Based on this study, we construct the parameter, π , to represent

this dampening effect as follows:

π =
CPE Score

5
,

where the CPE score (or CNS penetration effectiveness score) ranges from zero to

five. In particular, for drugs crossing the BBB we have

επ = 1−

 1

1 +
(

πD
ED50

)m
 .

Here a lower CPE score implies a lower concentration of the ART drug in the CSF.

For our purposes we consider a score of five to means that a drug maintains an equal

effectiveness in the brain as it does in the plasma. Similarly, a minimum score of zero
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implies that the drug cannot penetrate through the BBB.

Model Analysis

For ease of notation we now define the following variables:

Φb =
n∏
i=1

(1− εi) , Φp =
n∏
i=1

(1− εPIi), and

Φπb =
n∏
i=1

(1− επi), Φπp =
n∏
i=1

(1− επPIi).

Model Feasibility

In view of [65, Theorem 5.2.1], it follows that for any

(T0, T
∗
0 ,M0,M

∗
0 ,MB0,M

∗
B0, V0, VB0) ∈ R8

+,

system (4.1) has a unique local nonnegative solution

(T (t), T ∗(t),M(t),M∗(t),MB(t),M∗
B(t), V (t), VB(t)) ∈ R8

+

through the initial value:

(T (0), T ∗(0),M(0),M∗(0),MB(0),M∗
B(0), V (0), VB(0))

= (T0, T
∗
0 ,M0,M

∗
0 ,MB0,M

∗
B0, V0, VB0).

Substituting

N(t) = T (t) + T ∗(t) +M(t) +M∗(t) +MB(t) +M∗
B(t) (4.2)

into system (4.1), leading to the following inequality
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dN

dt
= λ− (dT + δT ∗) + λM − dM(M +MB)− δM(M∗ +M∗

B)

≤ λ+ λM − dmin(T + T ∗ +M +M∗ +MB +M∗
B)

= λ+ λM − dminN,

where dmin := min{d, δ, dM , δM} , and hence,

lim
t→∞

N(t) ≤ λ+ λM
dmin

. (4.3)

This implies that N(t) is ultimately bounded, so are T (t), T ∗(t), M(t), M∗(t),

MB(t) and M∗
B(t), due to (4.2) and the positivity of solutions. Then there exist

t0 > 0 and Λ > 0 such that

ΦppT
∗(t) + ΦppMM

∗(t) ≤ Λ and ΦπppMM
∗
B(t) ≤ Λ, ∀ t ≥ t0.

From the seventh and eighth equations of (4.1), we see that

dV

dt
≤ Λ− cV, ∀ t ≥ t0,

and

dVB
dt
≤ Λ− cVB, ∀ t ≥ t0.

Thus,

lim
t→∞

V (t) ≤ Λ

c
, and lim

t→∞
VB(t) ≤ Λ

c
,

that is, we have shown that V (t) and VB(t) are ultimately bounded.

From the above discussion and Theorem 3.4.8 in [29], we have the following

result:
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Theorem 1. R8
+ is positively invariant for system (4.1) and system (4.1) admits

a unique and bounded solution with the initial value in R8
+ . Further, system (4.1)

admits a connected global attractor on R8
+ which attracts all positive orbits in R8

+ .

Basic Reproduction Number

We first determine the infection-free equilibrium, E0 , of system (4.1). To this

end, we substitute T ∗ = M∗ = M∗
B = 0 into system (4.1), and we have V = VB = 0.

Furthermore, we arrive at the following systems:

dT

dt
= λ− dT, (4.4)

and 
dM
dt

= λM − (ϕ+ dM)M + ψMB,

dMB

dt
= ϕM − (ψ + dM)MB.

(4.5)

It is easy to see that system (4.4) admits a unique positive equilibrium T̂ := λ
d

, which

is globally attractive in R+ . We also see that

(M̂, M̂B) =

(
λMa

dM
,
λM(1− a)

dM

)
(4.6)

is the unique positive equilibrium of system (4.5), where a = ψ+dM
ϕ+ψ+dM

. Since sys-

tem (4.5) is cooperative (see, e.g., [65]) and it admits a unique positive equilibrium

(M̂, M̂B), we can show the global stability of (M̂, M̂B) (see, e.g., [36]). The following

results are concerned with the dynamics of systems (4.4) and (4.5).

Lemma 1. The following statements are valid.

(i) System (4.4) admits a unique positive equilibrium T̂ := λ
d

, which is globally

attractive in R+ .;
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(ii) System (4.5) admits a unique positive equilibrium (M̂, M̂B) which is globally

attractive in R2
+ , that is, for any (M(0),MB(0)) ∈ R2

+ , we have

lim
t→∞

(M(t),MB(t)) = (M̂, M̂B).

From the above discussions, the infection-free equilibrium of system (4.1) takes

the form

E0 = (T, T ∗,M,M∗,MB,M
∗
B, V, VB) = (T̂ , 0, M̂ , 0, M̂B, 0, 0, 0).

The equations for the infected cells and free virions in the plasma and the brain of

the linearized system at the infection-free equilibrium, E0 , take the form

dT ∗

dt
= ΦbβT̂V − δT ∗,

dM∗

dt
= ΦbβMM̂V + ψM∗

B − (ϕ+ δM)M∗,

dM∗
B

dt
= ΦπbβMM̂BVB + ϕM∗ − (ψ + δM)M∗

B,

dV
dt

= ΦppT
∗ + ΦppMM

∗ − cV,

dVB
dt

= ΦπppMM
∗
B − cVB.

(4.7)

The spectral bound or the stability modulus of an n×n matrix M , denoted by s(M),

is defined by

s(M) := max{Re(λ) : λ is an eigenvalue of M}.

Motivated by (4.7), we define the following matrix:
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J =



−δ 0 0 ΦbβT̂ 0

0 −(ϕ+ δM) ψ ΦbβMM̂ 0

0 ϕ −(ψ + δM) 0 ΦπbβMM̂B

Φpp ΦppM 0 −c 0

0 0 ΦπppM 0 −c


. (4.8)

Clearly, J has non-negative off-diagonal elements, and J is irreducible (see a simple

test on page 256 of [66]). Then s(J) is a simple eigenvalue of J with a positive

eigenvector (see, e.g., [66, Theorem A.5]).

We now use the next generation matrix method [76] to compute the basic

reproduction number, R0 . We introduce the following matrices:

F =



0 0 0 ΦbβT̂ 0

0 0 0 ΦbβMM̂ 0

0 0 0 0 ΦπbβMM̂B

Φpp ΦppM 0 0 0

0 0 ΦπppM 0 0


, (4.9)

and

V =



δ 0 0 0 0

0 ϕ+ δM −ψ 0 0

0 −ϕ ψ + δM 0 0

0 0 0 c 0

0 0 0 0 c


. (4.10)

Note that J = F − V . The basic reproductive number corresponds to the spectral
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radius of FV −1 ,

R0 = ρ(FV −1).

The following is a general result showing that the local stability of the disease-free

equilibrium, E0 , is determined by R0 (see, e.g. [76, Theorem 2]):

Lemma 2. The following statements hold.

(i) R0 = 1 if and only if s(J) = 0;

(ii) R0 > 1 if and only if s(J) > 0;

(iii) R0 < 1 if and only if s(J) < 0.

Thus, the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1, and

unstable if R0 > 1.

Clearly the reproduction number is a function of the treatment effectiveness

parameters, εi and εPIi . In Figure 16 we show the change in R0 based on these

parameters as well as the total region in which R0 ≥ 1 depending on the drug

efficacies of ART drugs.
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Figure 16: Graph of the reproduction number R0 (left) and the region in which

R0 > 1 (right). We plot R0 (z -axis) compared to the effectiveness of PIs (x-axis)

and RIIs (y -axis). The horizontal plane represents when R0 = 1.

Threshold Dynamics

This subsection is devoted to the study of the threshold dynamics of system

(4.1). Let

X0 = {(T0, T
∗
0 ,M0,M

∗
0 ,MB0,M

∗
B0, V0, VB0) ∈ R8

+ : T ∗0 > 0, M∗
0 > 0, M∗

B0 > 0,

V0 > 0, VB0 > 0},

and

∂X0 := R8
+\X0 = {(T0, T

∗
0 ,M0,M

∗
0 ,MB0,M

∗
B0, V0, VB0) ∈ R8

+ :

T ∗0 = 0 or M∗
0 = 0 or M∗

B0 = 0 or V0 = 0 or VB0 = 0}.

Lemma 3. Assume that
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(T (t), T ∗(t),M(t),M∗(t),MB(t),M∗
B(t), V (t), VB(t))

is a solution of the system (4.1) with initial value

(T (0), T ∗(0),M(0),M∗(0),MB(0),M∗
B(0), V (0), VB(0)) ∈ X0.

Then

(T (t), T ∗(t),M(t),M∗(t),MB(t),M∗
B(t), V (t), VB(t))� 0, ∀ t > 0.

PROOF. In view of the first equation of system (4.1), it follows that

T (t) = e−
∫ t
0 b1(s1)ds1

[∫ t

0

λe
∫ s2
0 b1(s1)ds1ds2 + T (0)

]
,

where

b1(t) := d+ ΦbβV (t).

Thus, T (t) > 0, ∀ t > 0. From the third equation of system (4.1), it follows that

M(t) = e−
∫ t
0 b2(s1)ds1

[∫ t

0

e
∫ s2
0 b2(s1)ds1a2(s2)ds2 +M(0)

]
,

where

a2(t) := λM + ψMB(t) ≥ λM ,

and

b2(t) := ΦbβMV (t) + ϕ+ dM .

Thus, M(t) > 0, ∀ t > 0. From the fifth equation of system (4.1), it follows that

MB(t) = e−
∫ t
0 b3(s1)ds1

[∫ t

0

e
∫ s2
0 b3(s1)ds1a3(s2)ds2 +MB(0)

]
,

where
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a3(t) := ϕM(t) > 0,

and

b3(t) := ψ + ΦπbβMVB(t) + dM ≥ ψ + dM .

Thus, M(t) > 0, ∀ t > 0. Next, we regard Theorem 4.1.1 of [65] as a generalized

version to nonautonomous systems, and the irreducibility of the cooperative matrix

−δ 0 0 ΦbβT (t) 0

0 −(ϕ+ δM) ψ ΦbβMM(t) 0

0 ϕ −(ψ + δM) 0 ΦπbβMMB(t)

Φpp ΦppM 0 −c 0

0 0 ΦπppM 0 −c


(4.11)

implies that

(T ∗(t),M∗(t),M∗
B(t), V (t), VB(t))� 0, ∀ t > 0.

This completes the proof. tu

Theorem 2. The following statements hold.

(i) If R0 < 1, then the disease-free equilibrium E0 is globally attractive in R8
+

for (4.1);

(ii) If R0 > 1, then system (4.1) is uniformly persistent with respect to (X0, ∂X0)

in the sense that there is a positive constant ζ > 0 such that every solution

(T (t), T ∗(t),M(t),M∗(t),MB(t),M∗
B(t), V (t), VB(t))

of (4.1) with

(T (0), T ∗(0),M(0),M∗(0),MB(0),M∗
B(0), V (0), VB(0)) ∈ X0
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satisfies

lim inf
t→∞

u(t) ≥ ζ, ∀ u = T ∗, M∗, M∗
B, V, VB. (4.12)

Furthermore, system (4.1) admits at least one (componentwise) positive equi-

librium.

PROOF. Part (i). Assume that R0 < 1. It then follows from Lemma 2 (iii)

that s(J) < 0. Thus, there exists a sufficiently small positive number ρ0 such that

s(Jρ0) < 0 (see, e.g., [38, Section II.5.8]), where

Jρ0 =



−δ 0 0 Φbβ(T̂ + ρ0) 0

0 −(ϕ+ δM) ψ ΦbβM(M̂ + ρ0) 0

0 ϕ −(ψ + δM) 0 ΦπbβM(M̂B + ρ0)

Φpp ΦppM 0 −c 0

0 0 ΦπppM 0 −c


has non-negative off-diagonal elements, and Jρ0 is irreducible. From the first, third,

and fifth equations of system (4.1), together with positivity of solutions, it follows

that

dT

dt
≤ λ− dT, (4.13)

and 
dM
dt
≤ λM − (ϕ+ dM)M + ψMB,

dMB

dt
≤ ϕM − (ψ + dM)MB.

(4.14)

By the comparison principle and Lemma 1, we see that

lim sup
t→∞

T (t) ≤ T̂ , lim sup
t→∞

(M(t),MB(t)) ≤ (M̂, M̂B).
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It follows that there is a t1 > 0 such that

T (t) ≤ T̂ + ρ0, M(t) ≤ M̂ + ρ0, MB(t) ≤ M̂B + ρ0, ∀ t ≥ t1. (4.15)

In view of (4.15) and system (4.1), we see that

dT ∗

dt
≤ Φbβ(T̂ + ρ0)V − δT ∗, ∀ t ≥ t1,

dM∗

dt
≤ ΦbβM(M̂ + ρ0)V + ψM∗

B − (ϕ+ δM)M∗, ∀ t ≥ t1,

dM∗
B

dt
≤ ΦπbβM(M̂B + ρ0)VB + ϕM∗ − (ψ + δM)M∗

B, ∀ t ≥ t1,

dV
dt

= ΦppT
∗ + ΦppMM

∗ − cV, ∀ t ≥ t1,

dVB
dt

= ΦπppMM
∗
B − cVB, ∀ t ≥ t1.

(4.16)

Consider the following auxiliary system

dT ∗

dt
= Φbβ(T̂ + ρ0)V − δT ∗, ∀ t ≥ t1,

dM∗

dt
= ΦbβM(M̂ + ρ0)V + ψM∗

B − (ϕ+ δM)M∗, ∀ t ≥ t1,

dM∗
B

dt
= ΦπbβM(M̂B + ρ0)VB + ϕM∗ − (ψ + δM)M∗

B, ∀ t ≥ t1,

dV
dt

= ΦppT
∗ + ΦppMM

∗ − cV, ∀ t ≥ t1,

dVB
dt

= ΦπppMM
∗
B − cVB, ∀ t ≥ t1.

(4.17)

Since Jρ0 has non-negative off-diagonal elements and Jρ0 is irreducible, it follows that

s(Jρ0) is simple and associates a strongly positive eigenvector ṽ ∈ R5 (see, e.g., [66,

Theorem A.5]). For any solution (T (t), T ∗(t),M(t),M∗(t),MB(t),M∗
B(t), V (t), VB(t))

of (4.1) with nonnegative initial value

(T (0), T ∗(0),M(0),M∗(0),MB(0),M∗
B(0), V (0), VB(0)),

54



there is a sufficiently large b > 0 such that

(T ∗(t1),M∗(t1),M∗
B(t1), V (t1), VB(t1)) ≤ bṽ

holds. It is easy to see that U(t) := bes(J
0
ρ0

)(t−t1)ṽ is a solution of (4.17) with U(t1) :=

bṽ . By the comparison principle [66, Theorem B.1], it follows that

(T ∗(t),M∗(t),M∗
B(t), V (t), VB(t)) ≤ bes(Jρ0 )(t−t1)ṽ, ∀ t ≥ t1.

Since s(Jρ0) < 0, it follows that

lim
t→∞

(T ∗(t),M∗(t),M∗
B(t), V (t), VB(t)) = (0, 0, 0, 0, 0).

It then follows that the equations for T (t) and (M(t),MB(t)) in (4.1) are

asymptotic to (4.4) and (4.5), respectively. By the theory for asymptotically au-

tonomous semiflows (see, e.g., [70, Corollary 4.3]) and Lemma 1, it follows that

lim
t→∞

T (t) = T̂ , lim
t→∞

(M(t),MB(t)) = (M̂, M̂B).

Part (i) is proved.

Part (ii). Assume that R0 > 1. It then follows from Lemma 2 (ii) that

s(J) > 0. Suppose Π(t)P is the solution maps generated by system (4.1) with initial

value P . By Theorem 1, we see that system {Π(t)}t≥0 admits a global attractor in

R8
+ . Now we prove that {Π(t)}t≥0 is uniformly persistent with respect to (X0, ∂X0).

By Lemma 3, it follows that both R8
+ and X0 are positively invariant. Clearly, ∂X0

is relatively closed in R8
+ .

Let M∂ := {P ∈ ∂X0 : Π(t)P ∈ ∂X0, ∀ t ≥ 0} and ω(P ) be the omega limit

set of the orbit O+(P ) := {Π(t)P : t ≥ 0} . We next prove the following claims.
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Claim 1: ω(P ) = {E0}, ∀ P ∈M∂ .

Since P ∈M∂ , we have Π(t)P ∈M∂, ∀ t ≥ 0. Next, we show that

(T ∗(t),M∗(t),M∗
B(t), V (t), VB(t)) = (0, 0, 0, 0, 0), ∀ t > 0. (4.18)

Assume that (4.18) is not true. Then there exists τ0 > 0 such that

(T ∗(τ0),M∗(τ0),M∗
B(τ0), V (τ0), VB(τ0)) 6= (0, 0, 0, 0, 0).

Then the irreducibility of the cooperative matrix (4.11) implies that

(T ∗(t),M∗(t),M∗
B(t), V (t), VB(t))� 0, ∀ t > τ0,

which contradicts the fact that Π(t)P ∈ M∂, ∀ t ≥ 0, and hence, (4.18) is true. By

(4.18), it follows that the equations for T (t) and (M(t),MB(t)) in (4.1) satisfies (4.4)

and (4.5), respectively. By Lemma 1, it follows that

lim
t→∞

T (t) = T̂ , lim
t→∞

(M(t),MB(t)) = (M̂, M̂B).

Claim 1 is proved.

Since s(J) > 0, there exists a sufficiently small positive number σ0 such that

s(Jσ0) > 0 (see, e.g., [38, Section II.5.8]), where

Jσ0 =



−δ 0 0 Φbβ(T̂ − σ0) 0

0 −(ϕ+ δM) ψ ΦbβM(M̂ − σ0) 0

0 ϕ −(ψ + δM) 0 ΦπbβM(M̂B − σ0)

Φpp ΦppM 0 −c 0

0 0 ΦπppM 0 −c


has non-negative off-diagonal elements and Jσ0 is irreducible.
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Claim 2: E0 is a uniform weak repeller for Π(t) in the sense that

lim sup
t→∞

‖Π(t)P − E0‖ ≥ σ0, ∀ P ∈ X0.

Suppose, by contradiction, there exists P0 ∈ X0 such that

lim sup
t→∞

‖Π(t)P0 − E0‖ < σ0.

Thus, there exists t2 > 0 such that

T (t) ≥ T̂ − σ0, M(t) ≥ M̂ − σ0, MB(t) ≥ M̂B − σ0, ∀ t ≥ t2. (4.19)

In view of (4.19) and system (4.1), we see that

dT ∗

dt
≥ Φbβ(T̂ − σ0)V − δT ∗, ∀ t ≥ t2,

dM∗

dt
≥ ΦbβM(M̂ − σ0)V + ψM∗

B − (ϕ+ δM)M∗, ∀ t ≥ t2,

dM∗
B

dt
≥ ΦπbβM(M̂B − σ0)VB + ϕM∗ − (ψ + δM)M∗

B, ∀ t ≥ t2,

dV
dt

= ΦppT
∗ + ΦppMM

∗ − cV, ∀ t ≥ t2,

dVB
dt

= ΦπppMM
∗
B − cVB, ∀ t ≥ t2.

(4.20)

Consider the following auxiliary system

dT ∗

dt
= Φbβ(T̂ − σ0)V − δT ∗, ∀ t ≥ t2,

dM∗

dt
= ΦbβM(M̂ − σ0)V + ψM∗

B − (ϕ+ δM)M∗, ∀ t ≥ t2,

dM∗
B

dt
= ΦπbβM(M̂B − σ0)VB + ϕM∗ − (ψ + δM)M∗

B, ∀ t ≥ t2,

dV
dt

= ΦppT
∗ + ΦppMM

∗ − cV, ∀ t ≥ t2,

dVB
dt

= ΦπppMM
∗
B − cVB, ∀ t ≥ t2.

(4.21)

Since Jσ0 is irreducible and has non-negative off-diagonal elements, it follows that
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s(Jσ0) is simple and associates a strongly positive eigenvector ũ ∈ R5 (see, e.g., [66,

Theorem A.5]). By Lemma 3, it follows that

(T ∗(t2),M∗(t2),M∗
B(t2), V (t2), VB(t2))� 0.

Thus, there is a positive number ς > 0 such that

(T ∗(t2),M∗(t2),M∗
B(t2), V (t2), VB(t2)) ≥ ςũ

holds. It is easy to see that W (t) := ςes(Jσ0 )(t−t2)ũ is a solution of (4.21) with

W (t2) := ςũ . By the comparison principle [66, Theorem B.1], it follows that

(T ∗(t),M∗(t),M∗
B(t), V (t), VB(t)) ≥ ςes(Jσ0 )(t−t2)ũ, ∀ t ≥ t2.

Since s(Jσ0) > 0, it follows that

lim
t→∞

T ∗(t) = lim
t→∞

M∗(t) = lim
t→∞

M∗
B(t) = lim

t→∞
V (t) = lim

t→∞
VB(t) =∞.

This contradiction proves the claim 2.

From the above claims, it follows that any forward orbit of Π(t) in M∂ con-

verges to E0 which is isolated in R8
+ and W s(E0) ∩ X0 = ∅ , where W s(E0) is the

stable set of E0 (see [64]). It is obvious that there is no cycle in M∂ from E0 to E0 .

By [71, Theorem 4.6] (see also [82, Theorem 1.3.1] and [33, Theorem 4.3 and Remark

4.3]), we conclude that system (4.1) is uniformly persistent with respect to (X0, ∂X0)

in the sense that there is a positive constant ζ > 0 such that (4.12) holds.

By [81, Theorem 2.4] (see also [82, Theorem 1.3.7]), system (4.1) has at least

one equilibrium

(Ť , Ť ∗, M̌ , M̌∗, M̌B, M̌
∗
B, V̌ , V̌B) ∈ X0,
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and hence, Ť ∗ > 0, M̌∗ > 0, M̌∗
B > 0, V̌ > 0, and V̌B > 0. Furthermore, we see

that

Ť =
λ

ΦbβV̌ + d
,

and (M̌, M̌B) satisfies
λM − ΦbβM V̌ M − ϕM + ψMB − dMM = 0,

ϕM − ψMB − ΦπbβM V̌BMB − dMMB = 0,

(4.22)

From (4.22), it is not hard to see that M̌ > 0 and M̌B > 0. Thus,

(Ť , Ť ∗, M̌ , M̌∗, M̌B, M̌
∗
B, V̌ , V̌B)

is a (componentwise) positive equilibrium of system (4.1). This completes the proof

of Part (ii). tu

Numerical Simulations

In the following sections we show the numerical simulations of the plasma

viral load (PVL) and the brain viral load (BVL) under different treatment protocols.

We consider how the different protocols affect the time the viral loads take to reach

undetectable levels. We first examine whether the CPE score reduces treatment time

in the plasma and what effect it has on the reduction time for the brain viral load.

Next, we explore how the slope of the dose-response curve affects the date of viral

undetectability. Then, we analyze the effect of larger numbers of drugs in a given

ART regimen, and finally we examine if the initial treatment day affects the average

day the PVL and BVL clear below measurable levels. For all simulations we consider

a detected viral load to be fifty copies of viral RNA per µL , which is the standard
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lower limit to measure HIV according to current assays [1].

Effect of the CPE Score

To better understand the effect of the CPE score on the overall treatment

of HIV, we considered its effect on the time that the PVL and the BVL reduce to

undetected levels in the presence of constant treatment. In Figure 17 we show the

average time the viral loads in the brain and the plasma take to become undetectable

depending on the CPE score of an ART regimen with a single drug. Treatment was

assumed to begin after a steady-state viral load was achieved (∼250 dpi) and we

considered a single RTI and a single PI.

Figure 17: The average time the viral loads in the plasma (blue) and the brain (green)

become undetectable depending on the mean CPE score of the ART regimen with

either a single RTI (left) or PI (right).
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We clearly observe that the CPE score has no effect on the plasma viral load,

as the average number of days for the PVL to become undetectable remains constant

despite the CPE score or the drug type (RTI or PI). However, even with one drug

present, we observe that the CPE score affects the number of days to viral unde-

tectability for a PI differently than it does for an RTI. In particular, as the CPE

score increases for a PI, the number of days for the BVL to reach undetectable levels

decrease (≈ 10 days to ≈ 3 days). There is no observed effect of the CPE score on

the BVL if an ART protocol includes a only a single RTI. Hence, the BBB affects

single-drug protocols with PIs more than RTIs.

To analyze this effect further we considered ART with two drugs. We present

the model simulations of the number of days to viral undetectability in the PVL and

BVL in Figure 18. Treatment was initiated after steady-state infection had occurred

(250 dpi) and we considered two PIs, 2 RTIs, and a combination of one PI and one

RTI.
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Figure 18: Average days to viral undetectability in the PVL (left column) and BVL

(right column) depending on the CPE scores for two PIs (top row), two RTIs (bottom

row) and one RTI and one PI (middle row).
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Similar to the treatments with a single drug we see no discernible effect of

the CPE score on the PVL with two drugs. However, we observe a strong effect of

the CPE score on the days for the BVL to become undetectable in the presence of

constant treatment with two drugs. For ART with two PIs we observe that as CPE

increases for either drug, the days for the virus to become undetected decreases (≈ 9

days v. ≈ 1 day). Furthermore, if ART includes an RTI and a PI we note that

as the CPE score increase for the PI, the days to an undetectable BVL decreases,

however the CPE score for the RTI shows no effect on the days to undetectability in

the BVL. In fact, if treatment includes only two RTIs we do not observe an effect

of the CPE score on the overall time to viral undetectability. This suggests that

protease inhibitors with higher CPE scores should be considered more than RTIs to

better control HIV in the brain.

Effect of the Slope of the dose-response Curve

Since the CPE score was more effective for PIs, which generally possess higher

slopes of the dose-response curve than RTIs, in this section we used our model (4.1)

to explore the influence of the slope of the dose-response curve on the date viral RNA

becomes undetectable. We first considered constant treatment with exactly one drug.

In Figure 19 we plotted the average date the virus in the plasma and the brain takes to

become undetectable depending on the slope of the dose-response curve. Treatment

was set to begin after a steady-state viral load was achieved in the brain and the

plasma (250 dpi), and we varied slopes between zero and 5. As per experimental

evidence [61], we considered any drug whose slope, m , is greater than 1.9 to be a

protease inhibitor, and a drug with m ≤ 1.9 is considered to be an RTI (see Table 4).
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A single-drug ART protocol was considered with a low CPE score and a high CPE

score (CPE= 1 vs. CPE= 4).

We observe that if m ≤ 1.9 (RTI) then the PVL becomes undetectable after

at least 40 days, whereas if m > 1.9 (PI) then the PVL reaches undetectable levels

within a single day. The number of days the BVL takes to reach undetectable levels

also decreases as the slope of the dose-response curve increases, however this reduction

is significantly less than that observed in the PVL (≈ 40 days less compared to ≈ 6

days less). Interestingly, for low slopes corresponding to an RTI, we note that the

PVL becomes undetectable several weeks after the BVL becomes undetectable, and

that this behavior switches for the slope corresponding to a protease inhibitor. This

switch occurs regardless of the CPE score of the drug, reinforcing the observation

from the previous section that RTIs are less effective against the PVL.
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Figure 19: Model simulations of the total time it takes the viral load in the plasma

to become undetectable depending on the slope of the dose-response curve. If the

slope, m , was greater than 1.9 that drug was taken to be a PI, whereas if m ≤ 1.9

we considered that drug an RTI.

To examine the effect of the dose-response curve slope further we considered

ART that included both an RTI and a PI. RTIs and PIs were considered with high

and low CPE scores each and we predicted the total days to viral undetectability

in the PVL and the BVL in Figures 20 and 21, respectively. We note that in all

cases the BVL and the PVL measured little to no difference in the number of days

before they become undetectable, suggesting that once multiple drugs are present in

ART, the slope of the dose-response curve does not change the total number of days

to viral undetectability. However, for ART with two drugs, even if the slopes of the

dose-response curves are low, the average number of days to viral undetectability is

much less (≈ 10 days compared to ≈ 40 days). In particular we observe that if both

65



an RTI and a PI are present in ART, the BVL reaches undetected levels at least three

days after the PVL becomes undetectable.
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Figure 20: The total days to viral undetectability in the PVL depending on the slopes

of the dose-response curve of both an RTI and a PI. PIs with a CPE score of one (top

row) and four (bottom row) were considered with RTIs with a CPE score of one (left

column) and four (right column).
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Figure 21: The total days to viral undetectability in the PVL depending on the slopes

of the dose-response curve of both an RTI and a PI. PIs with a CPE score of one (top

row) and four (bottom row) were considered with RTIs with a CPE score of one (left

column) and four (right column).
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Table 3: Fixed parameters for all monkeys, arithmetic mean data, median data, and

geometric mean data.

Model Values

Initial Values

Name Symbol Value Source

Initial uninfected T-cells T0 38700 Vaidya et al. [73]

Initial infected T-cells T ∗
0 0 Kumar et al. [45]

Initial uninfected plasma Macrophages M0 1463000 Haney et al. [30]

Initial infected plasma Macrophages M∗
0 0 Kumar et al. [45]

Initial uninfected CSF Macrophages MB0 20000 Haney et al. [30]

Initial infected CSF Macrophages MB0 0 Kumar et al. [45]

Initial plasma free Virions V0 200 Kumar et al. [45]

Initial CSF free Virions VB0 0 Kumar et al. [45]

Parameter Values

Name Symbol Value Source

Death rate for uninfected T-cells d 0.01 (day−1) Stafford et al. [67]

Death rate for uninfected Macrophages dM 0.00185 (day−1) Prinz et al. [53]

Recruitment rate for T-cells λ 387 (day−1) Calculated

Recruitment rate for Macrophages λM 2743.55 (day−1) Calculated

Viral production from infected T-cells p 50000 (day−1) Chen et al. [16]

Viral production from infected macrophages pM 1000 (day−1) Schwartz et al. [60]

Viral clearance rate c 23 (day−1) Ramratnam et al. [54]

T-cell infection rate β 3.5830E-8 (ml/day) Estimated

Death rate for infected T-cells δ 1.4551 (day−1) Estimated

Macrophage infection rate βM 8.653E-10 (ml/day) Estimated

Death rate for infected macrophages δM 0.2060 (day−1) Estimated

Rate of macrophage entry into the brain ϕ 0.03876 (day−1) Estimated

Rate of macrophage exit from the brain ψ 8.9953 (day−1) Estimated
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Table 4: Chart of drugs Emacs score and CPE scores.
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Effect of Multiple Drugs

In the previous section our model predictions showed that more drugs in a

cART regimen led to less time for the virus to become undetectable. However, it is

unclear whether this correlation is stronger for the brain or for the plasma. To better

understand this we examined the effect of ART with three or more drugs on the days

to viral undetectability in the CSF and the plasma. Random slopes between 0 and 5

were taken and paired with random CPE scores between 0 and 5. Drug types were

categorized by the slope of the dose-response curve (RTI if m ≤ 1.9, PI if m > 1.9).

Treatment was assumed to be constant and initiated after the viral loads reached a

steady-state (≈ 250 dpi). In Figure 22 we present the boxplots of the days for the

PVL and BVL to reach undetectable levels after simulations of 15,000 random drug

combinations of at least three drugs.

In all cases we observe that ART with multiple drugs reduces the PVL to

undetectable levels before the BVL becomes undetectable. However, we note about a

large number of outliers among the PVL implying some uncertainties. This is likely

because we chose uniformly distributed random slopes between 0 and 5, which has a

greater likelihood of selecting slopes corresponding to PIs (m > 1.9).

We note that the number of drugs in a treatment protocol affects the reduction

time of the BVL. Specifically, the median days for the BVL to become undetectible

decreases (≈ 7 dpi v. ≈ 0.5 dpi) as the number of drugs in a treatment protocol

increases from three to five. We also observe that for drug regimens with a higher

number of drugs, viral suppression in the plasma may not indicate viral suppression

in the brain. This implies that the BBB potentially poses a stronger effect on multiple
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Figure 22: Mean time for the virus to become undetectable (in days) depending on

the number of drugs in an ART regimen.

drugs protocols than on smaller combinations of ART.

Effect of Treatment Initiation Time

In Figure 23 we present the predicted time in days post-infection that the

plasma viral load and the brain viral load achieve undetectable levels depending on

the initial time of treatment. Treatment was assumed to be constant and includes a

single RTI or PI with a corresponding CPE score of either one or four. The time of
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treatment initiation varied between one and 300 days post-infection (dpi).

Figure 23: The average time (in days) it takes for viral RNA copies to become

undetectable (< 50 copies per µL [1]) in the plasma (blue) and the brain (green) in

the presence of constant treatment from one RTI (top row) or from a PI (bottom row)

with a low CPE score (left column) and high CPE score (right column), depending

on the initial date of treatment.

We observe that if treatment does not begin after steady-state infection, it is

clear that the earliest initiated treatment (< 3 dpi) is ideal as it can prevent infection

from reach detectable levels in the brain. This is consistent with previous studies
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[17, 75]. Furthermore, our simulations suggest that outside of early treatment, in

general, the time for the PVL and BVL to reach undetectable levels varies significantly

within the first 100 days post-infection. For instance, if treatment begins during the

second week post-infection we observe that the virus is detectable in both the plasma

and the brain for longer (15 − 20 dpi) than for any other initial treatment time.

If constant ART is initiated between eight and ten weeks post-infection, the total

time before viral undetectability is significantly less than any other time of treatment

initiation (<5 dpi in the brain, ≈ 8 dpi in the plasma). Treatment initiation after a

viral steady-state has been achieved were not observed to significantly affect the time

for the virus to attain undetectable levels.

When we compare ART with PIs and RTIs by varying the time of treatment

initiation we observe similar dynamics from the previous sections. Specifically, we

note that treatment with a PI is extremely effective at reducing the PVL, but less

effective at reducing the BVL, whereas ART with an RTI reduces the BVL consis-

tently more efficiently than the PVL. We note that in some cases if the CPE score is

high then the time of treatment initiation affects whether the BVL or PVL becomes

undetectable first. We do not observe this behavior when varying treatment initiation

time for drugs associated with low CPE scores.
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CHAPTER 5

STOCHASTIC MODEL OF HIV INFECTION IN THE BRAIN

In this chapter we develop a stochastic model to analyze stochastic effects

on the viral dynamics of HIV-1 in the brain. We also compare the predictions of

our model to those of our deterministic model. We then examine the computed

reaction propensity functions which indicate likely infection behavior. Furthermore,

we analyze the overall probability distributions during the most likely infection time

predicted by our model.

Introduction

The models developed in chapters 3 and 4 are deterministic models to study

the effect of the brain on the comprehensive viral dynamics of HIV-1. Both models

illustrated some uncertainty. This uncertainty and the randomness found in biological

events suggested a need to develop stochastic model of HIV-1 in the brain. Many

stochastic models have been developed to study HIV [80, 20, 37, 47, 52, 69, 72], but

these focus on early viral dynamics within the plasma. None consider the brain in

their models. There is clearly a need to examine the stochastic effect of the BBB on

the viral dynamics of HIV in the brain.
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Model Development

Choice of stochastic modeling technique

There are several methods for deriving a stochastic model from a determinis-

tic one. Some of the earliest numerical approximation methods were introduced by

Gillespie in 2001 [25], and improved upon later by introducing a faster method for

simulations. Methods used to study HIV-1 stochastically range from introducing a

random perturbation into any number of parameters [20], complex networking [62],

and most commonly a drift function proposed by Allen et al. [80]. For any of the

latter methods one must prove the non-negativity of the solutions. However, it was

observed by Cresson and Sonner [19] that there are some characteristics of deter-

ministic models that cannot be proven to achieve full non-negativity of solutions. In

particular, from the system (3.1) we observe that the interaction function

d

dT
= λ− βV T − dT,

contains a constant term. It follows from Corollary 3.1 of [19] that any stochas-

tic model derived from this system using the method in [80] fails to preserve non-

negativity. Thus, we attempted the algorithm defined in [25], but due to the large

volume of cells in the macrophage population we observed extremely small time-steps,

demanding too large a computer cost for practical use. In order to capture the near-

est approximate biological phenomenon, we used the τ -leap method from [15] which

uses Poisson random variables to approximate large enough time-steps for a 100 day

simulation to occur in a reasonable computation time.
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Stochastic Model

To formulate the stochastic model we represent each cell and virus compart-

ments from the deterministic model described in Chapter 3 as a continuous random

variable. We then let ~X = [T, T ∗,M,M∗,MB,M
∗
B, V, VB]tr be a continuous ran-

dom vector such that for a sufficiently small change in time (∆t), the possible state

changes, ∆~X = ~X(t + ∆t) − ~X(t), are based on the deterministic model 3.1. As an

example, the state change vector ∆~X8 = [−1, 0, 0, 0, 0, 0, 0, 0, 0]tr represents the death

of an uninfected CD4+ T cell. The state changes (called reactions) for the stochastic

model can be differentiated into four categories: cell births (Ri for i = 1, . . . , 4),

deaths (Ri for i = 5, . . . , 12), infections (Ri for i = 13, 14, 15), and transports

through the blood-brain barrier (Ri for i = 16, . . . , 19). There are 19 reactions in all

and the rates and state change vectors are given in Table 5. A schematic diagram of

the model is present in Figure 24. 500 model simulations for 100 days post-infection

were performed using Python 3.5.2, and the Stochpy package. All parameter values

are positive and the rates are given in Table 6.
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Figure 24: Schematics for the stochastic model.

Results

In the following sections we show the results of 500 numerical simulations for

100 days for each cell type. We first show the computer average trajectories and their

respective calculated deterministic predictions. We next examine the average propen-

sity functions for each possible reaction. Finally, we show the average distribution

for each cell.
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Table 5: Possible state changes during ∆t .

Category Ri State change vector (∆~Xtr
i ) Probability Description

Births

1 [1,0,0,0,0,0,0,0] λ Birth of a CD4+ T cell

2 [0,0,1,0,0,0,0,0] λM Birth of a plasma macrophage

3 [0,0,0,0,0,0,1,0] p+ pM Production of a free plasma virion

4 [0,0,0,0,0,0,0,1] pM Production of a free brain virion

Deaths

5 [-1,0,0,0,0,0,0,0] d Uninfected CD4+ T cell

6 [0,-1,0,0,0,0,0,0] δ Infected CD4+ T cell death

7 [0,0,-1,0,0,0,0,0] dM Uninfected plasma macrophage death

8 [0,0,0,-1,0,0,0,0] δM Infected plasma macrophage death

9 [0,0,0,0,-1,0,0,0] dM Uninfected brain macrophage death

10 [0,0,0,0,0,-1,0,0] δM Infected brain macrophage death

11 [0,0,0,0,0,0,-1,0] c Clearance of free plasma virion

12 [0,0,0,0,0,0,0,-1] c Clearance of free brain virion

BBB
Infections

13 [-1,1,0,0,0,0,-1,0] βV T Infection of a target CD4+ T cell

14 [0,0,-1,1,0,0,-1,0] βMVM Infection of a plasma macrophage

15 [0,0,0,0,-1,1,0,-1] βVBMB Infection of a brain macrophage

BBB
Transits

16 [0,0,-1,0,1,0,0,0] ϕ Uninfected macrophage transport into the CSF

17 [0,0,1,0,-1,0,0,0] ψ Uninfected macrophage transport into the plasma

18 [0,0,0,-1,0,1,0,0] ϕ Infected macrophage transport into the CSF

19 [0,0,0,1,0,-1,0,0] ψ Infected macrophage transport into the plasma
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Table 6: Parameter values for deterministic model.

Model Values

Initial Values

Name Symbol Value Source

Initial uninfected T-cells T0 38700 Vaidya et al. [73]

Initial infected T-cells T ∗
0 0 Kumar et al. [45]

Initial uninfected plasma Macrophages M0 1463000 Haney et al. [30]

Initial infected plasma Macrophages M∗
0 0 Kumar et al. [45]

Initial uninfected CSF Macrophages MB0 20000 Haney et al. [30]

Initial infected CSF Macrophages M∗
B0 0 Kumar et al. [45]

Initial plasma free Virions V0 200 Kumar et al. [45]

Initial CSF free Virions VB0 0 Kumar et al. [45]

Parameter Values

Name Symbol Value Source

Death rate for uninfected T-cells d 0.01 (day−1) Stafford et al. [67]

Death rate for uninfected Macrophages dM 0.00185 (day−1) Prinz et al. [53]

Recruitment rate for T-cells λ 387 (day−1) Calculated

Recruitment rate for Macrophages λM 2743.55 (day−1) Calculated

Viral production from infected T-cells p 50000 (day−1) Chen et al. [16]

Viral production from infected macrophages pM 1000 (day−1) Schwartz et al. [60]

Viral clearance rate c 23 (day−1) Ramratnam et al. [54]

T-cell infection rate β 3.5830E-8 (ml/day) Estimated

Death rate for infected T-cells δ 1.4551 (day−1) Estimated

Macrophage infection rate βM 8.653E-10 (ml/day) Estimated

Death rate for infected macrophages δM 0.2060 (day−1) Estimated

Rate of macrophage entry into the brain ϕ 0.03876 (day−1) Estimated

Rate of macrophage exit from the brain ψ 8.9953 (day−1) Estimated
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Comparison to deterministic model

In this section we used the stochastic model to compare the solutions from the

described deterministic model (3.1). In Figure 25 we present the average trajectories

for all eight cell types studied. Error bars of one standard deviation from the mean

trajectories are shown and the predicted deterministic model values are superimposed

on each graph. We observe that except for the uninfected brain macrophages that

each predicted trajectory from the deterministic cell values lies within one standard

deviation of the average stochastic simulated trajectories, suggesting the stochastic

simulations capture the deterministic model. Hence the proposed stochastic model is

valid and reasonable.
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Figure 25: Average trajectories predicted by the stochastic (SDE) model (solid line)

compared to the predicted trajectories from the deterministic (ODE) model (dashed

line) with error bars of one standard deviation.
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Propensity Functions

In the following subsections, we analyze the calculated average daily propen-

sity values for each reaction. Gillespie [25] defines, for a well-stirred system, the

probability that a reaction Ri fires in the next time step, dt , to be ai(~x) dt , where

ai(~x) is the propensity function. Thus, a propensity function is closely related to

the probability of a reaction firing. In the τ -leap stochastic simulation algorithm, a

propensity function measures how many reactions will likely occur over a given time

interval. It is important to note that a propensity value is not a probability, but as

a general rule the higher the propensity value, the likelier that reaction will occur.

By analyzing propensity values we can predict when specific reactions, such as new

brain macrophage infections, are most likely to fire. Since propensity functions are

defined based on cell populations the absolute value of a propensity function is less

informative than the day the max value occurs and the length of time a propensity

functions remains near a peak value. That is, the shape of a propensity function does

not depend on cell populations, thus qualitative results drawn from the shape of a

propensity curve provide more information than exact function values.

Infection Reactions

In Figure 26 we plot the mean propensity values at a given time t of the

infection reactions (Ri for i = 5, 6, 7) from 500 simulations.
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Figure 26: Predicted per day average propensity values for the reactions of CD4+ T

cell infections (left), infection of macrophages in the plasma (center), and infection

of macrophages in the brain (right).

Each reaction propensity function follows a similar curve, but it is clear that

the most likely time for new cell infection is early (∼ 2 weeks post-infection), as the

propensity functions for the reactions involving new infections peak within the first

two weeks. However, it does not appear that a large number of infection reactions

are particularly likely outside of the first two weeks, which suggests that new viral

infections may not be as high as the first two weeks.

To better understand which infection reactions maintain their highest likeli-

hood longer, we calculated the number of days a reaction’s propensity function was

within 80% of its peak value and plotted the results in Figure 27. We observe that

the infection of plasma cells (T and M ) reach their highest likelihoods first before

the brain infection reactions become most likely (6-8 dpi vs. 10-14 dpi). This sug-

gests that viral infection in the brain depends on viral infection transporting from

the plasma, which is consistent with findings from previous studies [50, 51, 59, 79].

Furthermore we observe that the infection reaction in the brain sustains its high like-
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lihood for at least twice as long (4 days vs. 1-2 days) as infection reactions in the

plasma. Thus there is a greater window of high infection probability in the brain

compared to that in the plasma.
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Figure 27: The days in which the reaction propensity functions are within 80% of

their max values for infections of uninfected cells.

Viral Production

In this subsection we consider the reaction propensity functions for the pro-

duction of free virions in the plasma (R3 ) and in the brain (R4 ). We plot the average

propensity functions in Figure 28. We first note that the likelihood of production of

free virions in both the brain and the plasma vary considerably depending on time,

and in a similar manner as the propensity functions for infections varies. There is a

maximum likelihood that occurs during early infection (around the first two weeks).

We also note that the plasma viral production reaction has low propensity values for

84



much of the infection time, whereas the likelihood that free virions are produced in

the brain appears for a longer duration.
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Figure 28: Predicted per day average propensity values for reactions involving pro-

duction of free virions in the plasma (left) and in the CSF (right).
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Figure 29: The days in which the reaction propensity functions are within 80% of

their max values for the production of free virions in the plasma (V ) and in the CSF

(VB ).

To analyze this apparent sustained higher probability we plot the number of

days that the reactions of viral production in the plasma and the brain maintain at

least 80% of their peak propensity values in Figure 29. We observe that the reaction

of viral production in the brain reaches its max propensity later (10 dpi vs. 6 dpi)

and sustains near-max likelihood longer (4 dpi vs. 2 dpi) than the reaction of viral

production in the plasma. This suggests that similar to viral infection reactions, there

is a larger time interval for which the virus brain is likely to replicate compared to

that in the plasma.

Most Likely Reactions

Although propensity functions are defined based on cell populations, the high-

est propensity value across the entire set of reactions implies that more firings of
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that reaction are likely to occur in a given time interval. Thus we can analyze the

most likely reaction at a given time for the entire system. We present the most likely

reactions to fire in Table 7 defined by the maximum propensity value at a given time,

t . We observe that the highest propensity values revolve around only three reactions:

initial transfer of macrophages into the brain, the production of plasma viruses, and

the clearance of plasma virions. Specifically, plasma viral clearance becomes more

probable a reaction after the first week, but during the seventh week post infection

we observe a greater likelihood of viral infection. This is immediately followed by

a brief period of more likely viral clearance, and then another month which viral

production again is most likely of all reactions. This suggests that most of the cell

reactions that occur during infection are the production and clearance of free virions

in the plasma. Since there is a significantly higher amount of infected cells producing

free virions in the plasma compared to infected cells in the brain, this reaction may

be expected.

87



Table 7: Predicted likeliest reaction to occur at any given time t .

Highest Average Propensity Value

t in days post-infection Reaction

0-2 Macrophage transit into the CSF

2-6 Production of plasma free virions

8-52 Clearance of plasma free virions

52-54 Production of plasma free virions

56-58 Clearance of plasma free virions

60-92 Production of plasma free virions

94-100 Clearance of plasma free virions

Average State Distributions

Since propensity functions are strongly related to cell populations, in this sec-

tion we considered the distributions of cell populations during the days the infection

and viral production reactions are most likely to occur. Normal curve fittings to the

state probability distributions of infected CD4+ T cells, infected macrophages in the

plasma and the brain, and free virions in the plasma and in the brain for 6, 8, and

12 days post-infection are shown in Figure 30. To better analyze these distributions

we charted the respective variances of each distribution in Table 8.

We observe that for infected CD4+ T cells there is more stochastic fluctuation

(Var ∼ 4 × 105 vs. Var ∼ 1 × 105 ) when T cell infection is likeliest (6 dpi) than

afterwards (12 dpi). A similar phenomenon was observed for free virions in the plasma
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(Var ∼ 2× 1012 at 6 dpi vs. Var ∼ 7× 1011 at 12 dpi). These findings are consistent

with results from stochastic models presented by Allen et al. [80].

For infected macrophages we observe that the stochastic variance is greater

(∼ 87% more) during the second week (12 dpi) compared to the first week (6 dpi).

This effect is independent of whether the infected macrophages reside in the brain or

in the plasma. We note that the free virions in the brain also have a wider distribution

(Var ∼ 1.5× 107 vs. Var ∼ 1.7× 106 ) at 12 days post-infection compared to 6 days

post-infection. This suggests that the stochastic fluctuation experienced in the brain

is primarily related to the infected macrophages. In fact, the days in which the

infection reaction propensity functions are near max values correspond to the days

that the stochastic fluctuation is greatest for infected cells and free virions.
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Figure 30: Normal curve fittings to approximate distributions for infected T cells

(top row), infected macrophages in the plasma (second row, left column) and in the

brain (second row, right column), as well as free virions in the plasma (bottom row,

left column) and in the brain (bottom row, right column) for days 6, 8, and 12 post-

infection.
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Table 8: Table of variances of the state probability distributions for infected cells and

free virions on days 6, 8, and 12 post-infection.

Distribution Variances

Cell Type 6 DPI 8 DPI 12 DPI

T ∗ 3.9291×105 4.98×105 1.2248×105

M∗ 2.440×106 1.5325×107 1.7015×107

M∗
B 996.65 6.43×103 7.8889×103

V 1.9437×1012 2.7885×1012 6.9649×1011

VB 1.722×106 1.2024×107 1.4719×107
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

HIV-1 remains a major public health challenge and one of the leading causes of

death worldwide [4]. While HIV-1 is one of the most studied diseases, viral dynamics

in the brain remains one of the least studied aspects of the disease. In particular,

the transport of the virus through BBB, the presence of ongoing viral replication

in the brain, and the lack of transport of ART drugs through the BBB are poorly

understood. In this dissertation, we develop models to address these issues.

The model we developed in chapter 3 can explain the experimental viral load

data in the plasma and the CSF from SIV/SHIV infected macaques. Using our

model and experimental data we estimated key parameters, including those related

to the BBB. In addition, we performed thorough sensitivity analysis, including the

one using Latin hypercube sampling technique, to examine the robustness of the

dynamics described by our model.

Our model predicts that the entry of HIV virus and/or viral protein via

macrophages crossing the BBB is time-varying in nature and the rate of entry may

depend on the virus dynamics outside the brain. This shows that while the chronic

phase HIV dynamics in the brain may be studied with the brain compartment in

isolation as done in some previous studies [56], the modeling study for acute phase

HIV-1 dynamics should include both the brain and the plasma as one coupled system.

This underscores the importance of getting deeper insights into the BBB and viral
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transport across it.

In addition to the virus entering into the brain from outside, our model com-

parison on the basis of AIC values reveals that there may be ongoing viral replica-

tions and production of new virus inside the brain. However, the infection rate of

macrophages, the major target cells for viral replication inside the brain, is signifi-

cantly smaller than that of CD4+ T cells. This implies that macrophages are less

susceptible than CD4+ T cells to HIV-1, but once infected, they remain so for a much

longer time as indicated by our estimate of a significantly lower death rate of infected

macrophages than infected CD4+ T cells. As a result of these infections outside and

inside the brain, our model predicts that in the long run the virus in the brain reaches

a steady-state nearly three-fold lower than the virus in the plasma. Similarly, there

can be a persistence of infected macrophages in the brain with a steady state level

significantly lower than the infected cells in the plasma. This indicates that without

treatment the virus maintains infectiousness throughout an individual’s lifetime not

only in the plasma, but also in the brain. This long-term persistence of the virus inside

the brain is likely linked to HAND including early-onset dementia and encephalitis

[31, 41, 46, 48, 50].

Importantly, our estimates show that the rate of viral exit from the brain, ψ , is

significantly higher than the rate of viral entry into the brain, ϕ . This rate combined

with persistent low level ongoing viral replication inside the brain indicates that the

brain can be an important reservoir supplying virus into the bloodstream. Since many

antiretroviral drug molecules can not enter the brain through the BBB [46], viral

replication can continue in the brain despite suppression of virus to undetected levels
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in the plasma, thereby causing an obstacle to the cure of HIV through treatment.

Upon treatment interruption, the virus produced in the brain may contribute to

the further replication outside the brain resulting in the viral rebounds. Therefore,

antiretroviral agents that can obstruct the replication inside the brain are necessary

for successful control of virus infection.

We also computed the basic reproduction number, R0 , for each monkey, and

found that the value of R0 (1.33 to 1.55) is consistent with the previous estimates

[74]. Furthermore, we performed a sensitivity analysis to identify the parameters

most affecting R0 . Our results show that those parameters related closely to T cells

are the most impactful for determining the value of R0 , and thus best characterize

the initial infection. This suggests that the brain has minimal effect on the initial

infectiousness of HIV-1. This result is consistent with the facts that the infection

initiates outside the brain first, and it takes some time for the virus to penetrate the

BBB and enter the brain [31].

To understand the effects of the blood-brain barrier on the treatment of HIV-1,

we extended the basic model (from chapter 3) to the model with treatment terms. In

the extended model, we considered two pharmacodynamic terms, namely, the slope

of the dose-response curve, and a CPE score. One important finding from the model

simulations is that the CPE score plays a significant role on the viral suppression

in the brain for drugs with higher slopes (m > 1.9), compared to drugs with low

slopes (m < 1.89). Generally, ART drugs with larger slopes (m > 1.89) tend to be

protease inhibitors [1] (see Table 4). While our predictions suggest that changing the

CPE score does not affect the time that the plasma viral load becomes undetectable
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for either drug type, the CPE score of ART can significantly impact the average

time for the BVL to reach undetectable levels. In particular, for PIs, a higher CPE

score corresponds to a shorter time for the virus to become undetectable in the brain.

However, our simulations did not support a relationship between the CPE score and

the time to viral undetectability in the brain if ART had a drug with a low slope. A

similar phenomena was observed when we included ART with two drugs. Specifically,

for two ART drugs with high slopes, the CPE score per drug affected the days to viral

undetectability in the CSF, however, if ART included a drug with a low slope and a

drug with a high slope, only the CPE score for the drug with a higher slope reduced the

days before the BVL became undetectable. In general, for a PI, a higher CPE score

implies a higher percentage of a drug that reaches the brain, and thus a lower time to

viral undetectability. Hence, our simulations support the results from Letendre [46]

for PIs, which illustrates the impact of the BBB on the potential treatment of HIV

in the brain.

We further considered the effect the BBB has on drug regimens with higher

dose-response curve slopes compared to those with lower slopes. In this case we

found that the PVL reached undetectable levels in significantly less time (≈ 50 days

vs. ≈ 1 day) if the slope of the dose-response curve of a drug measured over 1.9,

independent of the CPE score. This drastic difference in viral reduction time for

PIs was not, observed in the BVL. However, for ART with lower slopes the BVL

becomes undetectable roughly three weeks before the PVL does, unlike the results

from ART with higher slopes. Furthermore, our simulations suggest that the BBB

reduces the effect of ART on HIV in the CSF, especially for drugs with higher slopes.
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Therefore depending on the slope of the dose-response curves, control of the PVL

may not necessarily indicate control of the BVL. For ART protocols with more than

two drugs, viral suppression in the plasma also does not imply viral suppression in

the brain. However, the median days to viral undetectability in the CSF is less if the

number of drugs in an ART protocol is higher. Furthermore, for ART regimens with

higher drug totals, a measure of the plasma viral load may not accurately reflect the

total viral load in the body as viral RNA may still be present in the brain.

The total time viral RNA takes to reach undetectable levels can be quite

different depending on the time of treatment initiation. Although early treatment

may prevent the establishment of a viral reservoir [8], our model simulations suggest

that treatment initiated after 3 dpi, early ART may not always be better. We found

that treatment initiated during the second week post-infection (10-14 dpi) may take

up to 50% more days on average to reduce viral loads to undetectable levels than ART

begun at roughly 9 weeks (60 dpi) post-infection (see Figure 23). Thus, the impact

of the BBB may be limited if treatment begins near the ninth week post-infection.

Furthermore, initiating treatment during the first few weeks of infection may result

in longer periods of high viral loads.

We again computed the viral reproduction number, R0 in the present of ART,

and observed a dependence of R0 on ART effectiveness. It is worth noting that any

combination of ART drugs that satisfies εi+1.78(εPIi)
2 ≥ 0.14εPIi+0.52 will prevent

infection according to this model.

To explore the stochastic effect on the viral dynamics of HIV1 in the brain we

developed a stochastic model and examined the uncertainty that randomness causes
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on the viral dynamics of HIV-1 in the brain as well as the plasma. We note that

our stochastic model captured the average behavior predicted by the deterministic

model. Furthermore, by measuring propensity functions we observed a longer near-

peak infection reaction for both viral infection and viral production in the brain

compared to those in the plasma, suggesting a longer persistence of viral replication

within the brain. This is consistent with findings from several studies [12, 18]. Based

on the reaction propensity values we also note that the reaction with the highest

likelihood varied between plasma viral production and plasma viral clearance. While

results from the deterministic model show a simple decline in virions in the plasma

from the peak (∼ 14 dpi) until day 60, our stochastic model suggests that there are a

few days in week seven in which infection becomes more likely. While the early viral

production reaction suggests early treatment, which supports findings from several

studies [8, 17, 75], treatment during the seventh and eighth week may prove beneficial

to prevent any re-establishment of peak infection, which supports findings from the

model studied in chapter 4.

In order to better understand the stochastic effect of infection, we examined

the probability distributions for each infected cells and free virions during peak in-

fection likelihood. The main observation from these distributions was that there are

significantly more reactions occurring amid early stages of infection compared with

later stages based on distribution variances, which confirms findings from Allen et al.

[80]. However, outside of peak infection time the stochastic effect is lessened signif-

icantly. Furthermore, based off these distribution variances, we observed that viral

infection in the plasma is more controlled by CD4+ T cells, and infected macrophages
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affect the dynamics in the brain. Thus treatment protocols targeting macrophages

may have a greater effect on controlling HIV infection in the brain.

We acknowledge several limitations of this study. We considered only macrophages

as targets of HIV-1 inside the brain. However, brain macrophages may differentiate

into microglia. Also, small amount of CD4+ T cells may exists within the brain [68]

and other cells such as astrocytes may be HIV-1 targets. We did not consider the im-

mune responses, which might be particularly important for the long-term dynamics.

We only studied constant treatment, which in turn, often led to viral eradication. In

fact, constant treatment is unrealistic. The recent study by Vaidya et al. [75] suggests

that the pharmacodynamics of each drug play a large role in latent infection. That

study also found that the basic reproduction number may not be the most reasonable

indicator of infection persistence, suggesting the new threshold called the infection

invasion threshold. We did not take into account drug resistance, nor the potential

for viral mutation, which could result in viral rebound even amid treatment. Some

studies [59, 68] have found that astrocytes and T cells may also transit viral RNA

into the brain, but we only considered macrophages in the brain. While these theo-

retical results offer insight to potential ART treatment improvements, they must be

tested by in vitro and in vivo experiments before any recommendations can be of-

fered in practice. Recent advances have been made in eliminating HIV DNA through

CRISPR technology [21], however we considered only viral RNA. Our model does not

incorporate mutated virus strands which have been known to evade treatment [77].

Future goals stemming from this dissertation include the need to develop and

analyze a model that incorporates a time-varying treatment concentrations to study
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the HIV-infection dynamics in the brain as drug concentrations decay. Also, addi-

tional work is needed to conduct model analysis and the long-term effects of uncer-

tainty (i.e., global analysis for the stochastic model) discussed in chapter 5. Other

areas which could be of interest include: development of a model that can help in

understanding the effects of drugs of abuse on HIV-infection dynamics in the brain,

analysis of multiple virus types–specifically drug-resistant strands of HIV. Further-

more, we could conduct a study that incorporates both the stochastic uncertainty

and time-dependent treatment to extend knowledge on the dynamics of HIV in the

brain.

In summary, we developed models to examine the role of the brain and the BBB

on the viral dynamics of HIV. Our model predictions suggest that the brain may act

as a reservoir of HIV. Furthermore, certain ART drug pharmacodynamic properties

may affect the time for the virus to become undetectable. Since infection reactions

in the brain maintain their peak likelihoods for longer than infection reactions in the

plasma, HIV control strategies that target macrophages that enter the brain may

control HIV are recommended.
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