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The independent predictions of edge ferromagnetism and the quantum spin Hall phase in graphene have
inspired the quest of other two-dimensional honeycomb systems, such as silicene, germanene, stanene,
iridates, and organometallic lattices, as well as artificial superlattices, all of them with electronic properties
analogous to those of graphene, but a larger spin-orbit coupling. Here, we study the interplay of
ferromagnetic order and spin-orbit interactions at the zigzag edges of these graphenelike systems. We find
an in-plane magnetic anisotropy that opens a gap in the otherwise conducting edge channels that should
result in large changes of electronic properties upon rotation of the magnetization.
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Magnetic anisotropy, a technologically crucial property,
is driven by spin-orbit interaction, which is normally the
underdog in the competition with the other two terms that
control ferromagnetism, namely, kinetic and Coulomb
energy [1]. As a result, magnetic anisotropy energy in
conventional ferromagnets is at least 2 orders of magnitude
smaller than the Curie temperature and the Fermi energies
(or the band gap, in the case of insulators). For the same
reason, transport properties in ferromagnetic metals are
only weakly dependent on the magnetic orientation, and
typical values for the anisotropic magnetoresistance are
below 3% [1].
Here, we study magnetic anisotropy in a class of systems

for which the balance between these three energy scales is
very different from the usual, which leads to two dramatic
consequences, very different from conventional ferromag-
netism. First, the conducting properties change from metal
to insulator, depending on the magnetization orientation, an
effect that, to the best of our knowledge, has never been
reported. Second, the magnetic moment magnitude
depends strongly on the magnetic orientation, and it can
change or even vanish in some directions, a phenomenon
dubbed colossal magnetic anisotropy [2,3]. The class of
systems in question is the zigzag edges of two-dimensional
honeycomb crystals [4] whose electronic properties can be
described with a tight-binding model with a single orbital
per site and Kane-Mele spin-orbit interactions [5]. This
includes several materials, such as group IV two-dimen-
sional crystals (graphene [5], silicene [6–8], germanene [9],
and stanene [10]), the double layer perovskite iridates
[11,12], and metal organic frameworks (MOFs) [13]. In
addition, given that the existence of nondispersive edge
states occurs at the zigzag edge of any system described
with the Dirac equation [14], the results discussed here
should also be valid for the so-called designer Dirac
fermions formed in “artificial graphene” formed by the
decoration of two-dimensional electron gases with honey-
comb arrangements [15,16].

Ignoring spin-orbit and Coulomb interactions altogether,
these 2D crystals are zero band-gap semiconductors with
Dirac-like dispersion close to the Fermi energy. Zigzag
edges in these systems are known to host localized edge
states that, when both Coulomb and spin-orbit coupling are
neglected, are nondispersive, sublattice polarized, and lie
precisely at the Fermi energy, at half-filling [4]. The
ensuing large density of states results in a Stoner instability
that leads to ferromagnetic order at the edge [17–20].
On the other hand, Kane-Mele spin-orbit interaction, a

second-neighbor spin-dependent hopping that conserves
the spin component sz perpendicular to the two-dimen-
sional crystal [5], has dramatic consequences in these
honeycomb crystals. It opens a topologically nontrivial
gap in bulk and the emergence of in-gap spin-filtered
dispersive edge states: for a given spin projection sz,
electrons propagate along one direction only, preventing
backscattering even in the presence of time-reversal sym-
metric disorder. Importantly, the slope of the edge bands is
proportional to the Kane-Mele spin-orbit coupling, which
controls thereby the density of states at the Fermi energy.
The interplay of spin-orbit and Coulomb repulsion on the
otherwise nondispersive edge states leads to the strong
magnetic anisotropy effects anticipated above.
To model this kind of system, we use the so-called Kane-

Mele-Hubbard Hamiltonian [21,22], which provides a
minimal model to study the effect of the Coulomb
interactions on the topologically protected edge states:

H ¼
X

hiji;σ
tc†iσcjσ þ

X

hhijii;σ
itSOσνijc

†
iσcjσ þHint; ð1Þ

where σ ¼ �1 are the spin projections of the spin along the
axis perpendicular to the two-dimensional crystal, the
single angled brackets stand for first neighbor and double
angled brackets for second, and νij ¼ �1 for clockwise or
anticlockwise second-neighbor hopping [5,23].
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For simplicity, we neglect the Rashba coupling [24,25].
In the case of planar honeycomb systems, such as graphene,
the Rashba term is null. For buckled group IV crystals, such
as silicene, germanene, and stanene, the magnitude of the
Rashba is 1 order of magnitude lower than the pure spin
orbit [26].
The Hubbard term reads

Hint ¼ U
X

i

ni↑ni↓; ð2Þ

where ni↑ ¼ c†i↑ci↑ denotes the occupation operator of site i
with spin ↑ along an arbitrary quantization axis. We treat
the Hubbard interaction in the collinear mean field approxi-
mation, enforcing the magnetization to lie along the axis
~Ω ¼ ðsin α; 0; cos αÞ that we take as the quantization axis
[see Fig. 2(a)]. This approach permits us to study solutions
with different α and compare their properties. Rotations in
the xy plane leave the results invariant, due to the symmetry
of the Kane-Mele spin-orbit coupling. In general, the
Coulomb interaction term evaluated in the mean field
approximation leads to two self-consistent potential terms,
direct and exchange. In the case of the Hubbard model in
the collinear approximation, only the direct term survives:

HMF ¼ U½hni↑ðαÞini↓ðαÞ þ ni↑ðαÞhni↓ðαÞi − hni↑ðαÞihni↓ðαÞi�;
ð3Þ

where the notation explicitly shows that the spin quantiza-
tion axis is taken along ~ΩðαÞ and hni↑ðαÞi stand for the
average of the occupation operator calculated within the
ground state of the mean field Hamiltonian:

H ¼ H0 þHMF. ð4Þ
As usual, this defines a self-consistent problem that we
solve by iteration. Because of the spin-orbit Kane-Mele
term in H0, mean field solutions with different α are not
equivalent. Notice as well that theHMF term is nondiagonal
when represented in the basis of eigenstates of Sz and
α ≠ 0 [27].
We pay special attention to the atomic magnetization,

along the ~ΩðαÞ in site i:

miðαÞ ¼ gμB
½hni↑ðαÞi − hni↓ðαÞi�

2
; ð5Þ

and we take g ¼ 2.
In order to study the zigzag edges, it is convenient to

study ribbons that define a one-dimensional crystal (see
Fig. 1) with two edges. A given unit cell of the one-
dimensional crystal is formed by N units of four atoms. In
the following, we characterize the width of the ribbons by
N. For finite U, and as long as tSO=U is not too large, we
find solutions with ferromagnetic order at the edges.
The magnetic moment calculated self-consistently is

non-negligible only at the edge atoms. Attending to their
mutual magnetization orientation, ribbons yield two types
of solutions with ferromagnetic edges: parallel [ferromag-
netic (FM)] and antiparallel [antiferromagnetic (AF)]. For
sufficiently wide ribbons, the interedge coupling is negli-
gible and both solutions have identical properties.
The first important result of the paper is shown in Fig. 1.

Whereas off-plane magnetization (α ¼ 0) leads to a con-
ducting solution, found in previous works [22], the in-plane
magnetization opens a gap. Therefore, transport properties
of zigzag edges will change dramatically upon rotation of
the magnetization direction, in contrast with conventional
metallic ferromagnets. This metal-insulator transition is
developed as well in chiral edge ribbons [27], which have
been widely reported [33,34].

FIG. 1 (color online). Four different ferromagnetic configura-
tions, either in or off plane and parallel (FM) or antiparallel
(AF) edge magnetization, together with their band structures
calculated within the mean field Kane-Mele-Hubbard model.
(a),(b) Off plane and conducting (both for FM and AF
arrangements). (c),(d) In-plane and insulating parallel (both
FM and AF) magnetizations. Calculations are done with
U ¼ t and tSO ¼ 0.02t.
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The second important result of the manuscript is shown
in Fig. 2(b). The ground state energy EðαÞ is minimal for
α ¼ π=2, i.e., for in-plane magnetization, which means that
spontaneous magnetic order in this system leads to insu-
lating behavior.
The results of Fig. 1 can be understood as follows. In the

absence of magnetic order, two spin-filtered in-gap edge
states with opposite velocities exist at each edge [5],
resulting in a twofold degeneracy (not shown).
Ferromagnetic order with ~Ω ¼ ẑ breaks time-reversal
symmetry but does not mix spins. Thus, magnetic order
merely yields a spin-dependent shift that breaks the twofold
degeneracy, as seen in Fig. 1(a), for the FM case. For the
AF configuration, there is an extra symmetry that restores
the double degeneracy: the combined action of spatial
inversion, which results in an exchange of the atoms of the
two interpenetrating triangular sublattices A and B that
form the honeycomb, and time reversal, which exchanges ↑

and ↓, leaves the system invariant. Thus, the spin ↑ band
localized at the A-type edge is degenerate with the spin ↓
band localized in the opposite edge.
The situation is radically different when the magnetiza-

tion lies in plane. Representing the self-content potential in
the basis of the U ¼ 0 spin-filtered edge states, with spin
quantized along the ẑ axis, the effect of the in-plane
magnetization is to mix bands with opposite spins. As a
result, a band gap opens at the k point where the non-
interacting edge bands cross. The evolution of the bands as
the magnetization is rotated from almost off plane (left) to
almost in plane (right) is shown in Figs. 2(e) and 2(f). It is
apparent that the band gap [Fig. 2(c)] is maximal for in-
plane magnetization (α ¼ π=2) and null for off plane
α ¼ 0. The preference for in-plane magnetization can also
be connected with the variation of the magnitude of the
edge magnetic moment with α [Fig. 2(d)]. These two
results naturally explain the fact that the ground state
energy is minimal for in-plane magnetization. At half-
filling, all the valence bands are occupied and the con-
duction bands are empty. Therefore, increasing the band
gap decreases the total energy.
The gap opening as long as magnetization is not off

plane will certainly have dramatic consequences on the
transport properties along the edges. A result similar to this
has been obtained recently [35], using a Kane-Mele model
where magnetic order is externally driven and modeled by a
magnetic exchange potential that arises from proximity
rather than spontaneity, as discussed here.
The results of Figs. 1 and 2 are, for a specific choice of

U=t ¼ 1 and tSO=t ¼ 0.02, and, for a ribbon with N ¼ 30
sites, wide enough to decouple the two edges. We now
discuss how the results depend, quantitatively, on the
specific values of the spin-orbit coupling, ribbon width,
andU. The evolution of several energy differences between
AF and FM and in-plane–off-plane configurations, as a
function of the ribbon width N, is shown in Fig. 3(a). For
large N, it is apparent that FM and AF have the same
ground state and anisotropy energy. In addition, the edge
gap [Fig. 3(b)] also becomes independent on the magnetic
configuration at large width.
In Figs. 3(c) and 3(e), we plot the dependence of the

magnetic anisotropy and magnetic moment (both in and off
plane) on the magnitude of the spin-orbit coupling tSO=t,

FIG. 2 (color online). Evolution of electronic properties for the
FM ribbon as a function of the magnetization direction
~Ω ¼ ðsin α; 0; cos αÞ. (a) Scheme of the edge magnetization for
two different angles 0 and α. Ground state (b) total energy (per
unit cell, with two magnetic atoms per cell), (c) gap, and
(d) magnetization as a function of α. (e),(f) Evolution of the
band structure for different values of α for the (e) FM and (f) AF
configurations. N ¼ 30, U ¼ t, and tSO ¼ 0.02t.

TABLE I. Energy scales for different graphenelike honeycomb
materials.

Material tSO t Reference

Graphene 0.1–5.0 μeV 2.7 eV [29–31]
Silicene 0.16 meV 1.5 eV [26,32]
Germanene 2.5 meV 1.4 eV [26,32]
Stanene 8–30 meV 1.3 eV [10,26]
MOF 1 meV 0.3 eV [13]
Double perovskite 1 meV 0.1 eV [12]
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for two different values of U. Attending to the difference
between the magnitude of the magnetic moment in the off-
plane and in-plane cases [Fig. 3(e)], three different regions
are found. For very small tSO=t, the magnetic moment is the
same for out-of-plane and in-plane magnetization and the
magnetic anisotropy energy depends quadratically on
tSO=t. From this standpoint, the behavior of the zigzag
edge is similar to conventional magnets, although it is a
small gap, open for in-plane magnetization. For wide
enough ribbons, the value of this gap is given by
min ðΔ2D; UmedgeÞ, where Δ2D ¼ 6

ffiffiffi
3

p
tSO is the bulk gap

opened by spin-orbit interaction and Umedge is the
exchange splitting gap, which is a decreasing function of
tSO, giving rise to the curve seen in Fig. 3(d).
For intermediate values of tSO=t, it is apparent that the

magnetic moment magnitude is different for in-plane and
off-plane orientations, but in both cases, it is finite. In this
region, the anisotropy energy scales approximately linearly
with tSO=t and the band gap of in-plane magnetization is
still a linear function of tSO=t. Finally, above a given critical
value tSO ≃ 0.02t (0.04t) for U ¼ 0.5t (U ¼ t), the system

enters in the so-called colossal [2,3] magnetic anisotropy
regime, for which magnetic order is only possible in plane
and the magnetic solutions off plane do not exist.
Increasing spin-orbit coupling beyond this point starts to
reduce the band gap and the magnetic order altogether,
which leads to a reduction of the magnetic anisotropy
energy [Fig. 3(e)].
We thereby expect that graphene, silicene, and germa-

nene are in the small tSO=t region, the MOF is in the
intermediate region, and the stanene zigzag edge could
show the colossal magnetic anisotropy effect (see Table I).
Notice that in the intermediate region, the magnetic
anisotropy energy per magnetic atom can be extremely
large. For instance, for stanene, taking U ¼ t, intermediate
tSO ≃ 8 meV, and t≃ 1.3 eV, we obtain ΔE≃ 4 meV,
significantly larger than record materials such as YCo5 [1].
Na2IrO3 and related systems [11,12] also offer a fascinating
possibility of real tuning of the effective tSO by strain [12],
which would make it possible to build devices with strain-
tunable anisotropy.
Given the spread of estimates of the actual values of U

for a given material, as well as the fact that different
substrates can result in different values ofU, we address the
question of how the results above depend on the strength of
the on-site Coulomb repulsion U. At finite tSO, there is a
critical Uc1 below which the edges are nonmagnetic [22]
and a secondUc2 above which the entire honeycomb lattice
becomes antiferromagnetic [17]. For Uc1 < U < Uc2, only
the edge is magnetic, and its magnetic anisotropy energy is
a nonmonotonic function of U. It increases first, reflecting
the increase of the magnetic moment, and then it decreases
slightly, reflecting the reduction of the ratio tSO=U. As U
approaches U ≃ 2.2t, the magnetic anisotropy overshoots
because the bulk becomes magnetic as well.
We now discuss the physical effects not covered within

our two main approximations, namely, treating the inter-
actions at the mean field level and ignoring the Rashba
spin-orbit term. In one dimension, collective spin fluctua-
tions are expected to destroy the infinitely long-range order
described by mean field theory. Still, for ribbons shorter
than the spin correlation length ξðTÞ, the mean field theory
provides a fair description, very much like density func-
tional theory describes properly the magnetization of
clusters and nanomagnets. The spin correlation length
ξðTÞ in graphene edges, calculated within the spin wave
approximation and ignoring spin-orbit coupling [36], is ξ≃
40 Å for T ¼ 75 K. The magnetic anisotropy barrier to
rotate the spins out of plane for the approximately
15 tin atoms of a zigzag stanene edge that long would
be Δ≃ 60 meV.
Inclusion of the Rashba coupling would have two

consequences. First, lack of inversion symmetry would
split the bands in the case of AF configurations. Second, it
would break the in-plane xy magnetic symmetry at
the edges.

FIG. 3 (color online). (a) Evolution of the energy differences
between the in-plane vs off-plane as well as the FM vs AF
configurations (four cases) as a function of ribbon width N.
(b) Gap, for the in-plane magnetization solution, for FM and AF
solutions, as a function of N. (c)–(e) Evolution with the strength
of the spin-orbit coupling tSO: (c) anisotropy energy, (d) gap, and
(e) edge magnetization. (f) Anisotropy energy with the on-site
Hubbard interaction. In (a) and (b), U ¼ t and tSO ¼ 0.02t. In (c)
and (d), N ¼ 30.
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In conclusion, we have studied the magnetic aniso-
tropy of the ferromagnetic phase of the zigzag edges
of graphene and graphenelike systems that can be
described with a single orbital Hubbard model on a
honeycomb lattice with spin-orbit coupling described with
the Kane-Mele Hamiltonian. This includes a large class of
two-dimensional crystals, such as silicene [6–8], germa-
nene [9], stanene [10], iridates [11,12], and metal organic
frameworks [13]. Since the electronic dispersion of the
noninteracting edge states is fully determined by the spin-
orbit coupling, the resulting magnetic anisotropy effects,
computed within a mean field approximation, turn out to be
very strong: the system undergoes a metal-to-insulator
transition when the magnetization is rotated out of the
normal, and, for large values of tSO, the magnetic solutions
are only stable for in-plane magnetization. For all values of
the spin-orbit interaction, we find that the ground state
energy occurs for in-plane magnetization and the edge
states are gapped.
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