
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Dissertations Theses and Dissertations 

1998 

Adaptation of the Freshwater Benthic Diatom Achanthidium Adaptation of the Freshwater Benthic Diatom Achanthidium 

Rostratum to Resource Limitation Rostratum to Resource Limitation 

Patrick Daniel Donovan 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_diss 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Donovan, Patrick Daniel, "Adaptation of the Freshwater Benthic Diatom Achanthidium Rostratum to 
Resource Limitation" (1998). Dissertations. 3749. 
https://ecommons.luc.edu/luc_diss/3749 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. 
It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 1998 Patrick Daniel Donovan 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/323272278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_diss
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_diss?utm_source=ecommons.luc.edu%2Fluc_diss%2F3749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ecommons.luc.edu%2Fluc_diss%2F3749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_diss/3749?utm_source=ecommons.luc.edu%2Fluc_diss%2F3749&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


LOYOLA UNIVERSITY CHICAGO 

ADAPTATION OF THE FRESHWATER BENTHIC DIATOM ACHNANTHIDIUM 

ROSTRA TUM TO RESOURCE LIMITATION 

A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN 

CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF BIOLOGY 

BY 

PATRICK DANIEL DONOVAN 

CHICAGO, ILLINOIS 

MAY 1998 



Copyright by Patrick Daniel Donovan, 1998 

All rights reserved. 



ACKNOWLEDGEMENTS 

I would like to thank my committee members, Dr. Nancy Tuchman, Dr. John Smarrelli 

and Dr. Christopher Peterson for their enthusiastic support and guidance, as well as there 

friendship. I would also like to acknowledge Dr. Howard Laten, Phyllis Paulo, John 

Quinn, Joe Schleup and the rest of my many friends who have made life at Loyola an 

enjoyable experience that I will always cherish. 

iii 



This thesis is dedicated to my mother and father whose love and guidance have always 
been my inspiration 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................... iii 

LIST OF FIGURES.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

LIST OF TABLES ..................................................... viii 

ABSTRACT . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

CHAPTER 

I. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

II. INTRODUCTION ....................................... 11 

ill. MATERIALS AND METHODS ........................... 14 
Culture Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Biochemical and Physiological Analyses .................. 16 

Photosynthetic Activity .......................... 16 
Reillumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Glucose Uptake ................................ 20 
Chlorophyll a Analysis .......................... 20 
Neutral Lipid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Total Protein Analysis ........................... 21 

Statistical Analyses ................................... 22 

IV. RESULTS ............................................. 24 
Nutrient and Light Effects on Growth . . . . . . . . . . . . . . . . . . . . 24 
Cell Condition ....................................... 33 
Photosynthetic Activity ................................ 33 

Reillumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Glucose Uptake ...................................... 44 
Chlorophyll a Concentrations ........................... 49 
Neutral Lipid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Protein Levels ....................................... 53 

V. DISCUSSION .......................................... 62 

LITERATURE CITED .................................................. 74 

VITA ................................................................ 82 

V 



Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

LIST OF FIGURES 

Page 

Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Growth curves of log transformed mean cell densities of A. rostratum 
comparing nutrient effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Growth curves of A. rostratum comparing within nutrient treatments ..... 31 

Mean live versus dead cell densities of dark-grown cultures under both 
nutrient-replenished (NR) and nutrient-depleted (ND) conditions ..... 34 

Achnanthidium rostratum (xl0OO) grown under high light conditions in 
nutrient-replenished and nutrient-depleted media .................. 36 

Achnanthidium rostratum (xlO00) grown under low light conditions in 
nutrient-replenished and nutrient-depleted media .................. 37 

Achnanthidium rostratum (xl000) grown under dark conditions in 
nutrient-replenished and nutrient-depleted media .................. 40 

Photosynthetic activity of A. rostratum cultures in nutrient-replenished 
and-depleted media under high, low and dark illumination . . . . . . . . . . 42 

Effect of reillumination to high light on nutrient-replenished cultures 
grown under high, low and dark illumination ..................... 45 

Glucose uptake by A. rostratum in nutrient-replenished and -depleted 
cultures under high, low and dark illumination ................... 47 

Comparison of photosynthetic activity and glucose uptake of 
A. rostratum cultures over time under all growth conditions ......... 50 

Chlorophyll a concentrations of A. rostratum grown in nutrient-
replenished media under high, low and dark illumination . . . . . . . . . . . 52 

vi 



Figure 

13. 

14. 

15. 

16. 

Relative cell-specific neutral lipid levels of A. rostratum in 
nutrient-replenished and -depleted cultures under high, low and 

Page 

dark illumination ........................................... 55 

Relationship between cell density and cell-specific neutral lipid levels 
in nutrient-replenished A. rostratum cultures ..................... 57 

Relationship between cell density and cell-specific neutral lipid levels 
in nutrient-depleted A. rostratum cultures . . . . . . . . . . . . . . . . . . . . . . . 59 

Cell-specific total protein concentrations in nutrient-replenished 
A. rostratum cultures ....................................... 61 

vii 



Table 

1. 

LIST OF TABLES 

Page 

Two-way ANOV A results on cultures of A. rostratum for all 
treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

2. Growth rates of A. rostratum cultures for all treatments ............... 29 

3. Neutral lipid depletion rates of A. rostratum cultures for all treatments ... 54 

viii 



ABSTRACT 

In aquatic ecosystems, colonization of a substratum by periphyton and other benthic 

organisms often leads to development of a multi-tiered algal assemblage ( or mat). 

Resource gradients within these assemblages frequently result in nutrient and/or light 

limitation for lower-tier cells. Survival of species at the base of well-developed algal 

mats may involve dormancy (spore formation), acclimation to reduced resources, or 

reliance on alternative energy sources including heterotrophic metabolism. In this study, 

we investigated the physiological condition of Achnanthidium rostratum (0estrup ), a 

freshwater benthic diatom whose genus is commonly found at the base of developed algal 

mats, under reduced light and nutrient levels. Cell survival for up to 25 days in total 

darkness was confirmed through microscopic examination of cultures. A resumption of 

photosynthetic activity (measured as NaH14C03 incorporation) following reintroduction 

to high illumination also reveals that these cells maintained photosynthetic capacity 

throughout the experiment. Cell-specific 14C-glucose uptake appears to be up-regulated 

in the dark, indicating utilization of organics as an alternative energy source in the dark. 

Neutral lipid levels declined over time presumably due to a dilution effect in rapidly 

dividing cells, however, in resource limited cells, lipid oxidation may also account for 

declines observed. Similar cell growth among low- and high-light grown cultures 

indicates this species is also shade adapted. Increased chlorophyll a concentrations 
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observed under low light conditions may be one way cells adapt to reduced light 

intensities. 
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CHAPTER I 

LITERATURE REVIEW 

Benthic algae are an integral constituent of aquatic food webs due, in part, to their 

high biomass and ubiquity in aquatic systems. This, in tum, supports their roles in 

primary production and nutrient-cycling. Because of their ability to attach to essentially 

any submerged surface, benthic algae tend to be the major primary producers in many 

lotic systems (Lamberti 1996). In a relatively dynamic system, such as a swiftly flowing 

stream, attached benthic algae can be a consistent food source for consumers, as opposed 

to more transient sources such as and allochthonous organic material. However, benthic 

algal assemblages are not immune to loss of biomass by frequent external disturbances, 

often induced by grazers and spates, or by internal sloughing of senescent cells. As a 

result, the biomass and taxonomic structure of these assemblages can vary over space and 

time (Peterson 1996a). Algal cells that can withstand disturbances via adherence to the 

substratum may have selective advantages over detached cells, allowing them to 

recolonize the substratum unhindered by spatial and/or other resource constraints that 

commonly arise in highly developed mats. 

In an aquatic environment, colonization of a solid substratum by microorganisms may 
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2 
progress toward the development of a multi-layered periphyton mat. In lentic systems, 

microbial colonization frequently involves an initial accumulation of organic molecules 

followed soon after by the attachment of bacteria and fungi (Hoagland et al. 1982, Hudon 

and Bourget 1981, Korte and Blinn 1983). Following bacterial colonization, low profile 

opportunistic diatoms typically attach to the substratum via mucilage (Hoagland et al. 

1982, Hoagland 1983, Hudon and Bourget 1981, Roemer et al. 1984). A relatively dense 

film of diatoms can develop on new substrata within one week (Tuchman and Blinn 

1979). After initial proliferation of mostly adnate species over the mat surface, a new 

vertical dimension arises, characterized by apically arranged diatoms which include 

rosette/mucilagenous-pad forming Fragilaria vaucheriae and Synedra acus and stalk 

formers such as Achnanthidium minutissimum, ( observed by Oppenheim and Paterson 

(1990) in both apical and adnate attachment), Gomphonema olivaceum, and Cymbella 

affinis (Hoagland et al. 1982, Roemer et al. 1984). In later successional stages of mat 

development, green and bluegreen filamentous algae often dominate the canopy 

(Tuchman and Stevenson 1991, Johnson 1996). This seemingly predictable order of mat 

development has been referred to as "microsuccession" (Hoagland et al. 1982) based on 

parallels to terrestrial plant succession. 

In dynamic systems such as lotic environments, however, the distinct successional 

stages described above may be obscured. The "obligatory" organic/bacterial stage may 

not always be present (Hamilton and Duthie 1984). Also, non-mucilage producing algal 

species have been observed as early colonists (lightly-silicified Nitzschia spp.)of substrata 

within 1-2 days following substratum-mobilizing spates (Peterson 1996b). Moreover, 



3 
Steinman and McIntire (1986) observed early colonization by rosette-forming Synedra 

spp. followed by development of an understory of Achnanthidium spp. in a laboratory 

stream. In short, succession in benthic-epilithic periphyton may lead to a "climax" stage, 

but the successional pathways leading to the "climax" stage may vary depending on both 

chemical and physical traits, as well as species composition of the pool of available 

colonists in an environment (Steinman and McIntire 1986). 

Pianka (1970) described two theoretical competitive strategies (r- and K- selection, 

terms coined by MacArthur and Wilson 1967) adopted by species that proliferate during 

different stages of community development. R-strategists are opportunistic species that 

quickly colonize sparsely populated habitats, expending most of their energy on 

reproduction as a means of competing for resources (hence reproductive competition as a 

means of sustainability). In contrast, K-strategists prevail in high-density habitats and 

expend more energy on resource competition and growth than reproduction. K-strategists 

are typically associated with the later stages of community development (Cambridge 

Dictionary of Biology 1989). 

The model of r- and K- selection may be applied to benthic algal microsuccession. 

Adnate diatoms (r-strategists) that have the ability to detach from densely populated 

substrata may do so in order to escape resource limitations; and, as early colonizers of 

downstream substrata, would be the recipients of abundant resources (Stevenson 1990). 

This may be a likely strategy employed by various species of Nitzschia and Synedra 

which tend to proliferate rapidly when cell densities are low (Peterson et al. 1990, 

Stevenson et al. 1991 ). An alternative to this strategy may be one where cells unable to 



4 
detach from the base of substrata are capable of surviving resource limitations until a 

disturbance removes the canopy layer, hence, returning these cells to resource abundant 

conditions. This may be the case for certain nonmotile-adnate diatom taxa (Johnson et al. 

1997, Steinman and McIntire 1986). K-strategists ("late-succession species" e.g. apically 

attached, rosette, stalk, and filament formers), associated with the canopy layers are better 

competitors for limited resources due to their physical characteristics. Yodzis (1978) 

referred to dominance-controlled shifts in population growth strategies when certain algae 

(i.e. apically attaching) use their capacity for vertical growth as a means of out-competing 

colonizer species for resources. 

The progression of a periphyton community towards the development of an 

overstory (canopy) often leads to establishment of vertical resource gradients (i.e. light, 

nutrients, 0 2, and CO2) producing stratification within the mat (Burkholder et al. 1990, 

Hoagland 1983, Hudon and Bourget 1981, JfZSrgensen and Revsbech 1983, Karlstrom 

1978, Nicholson et al. 1987, Stevenson and Glover 1993, Tuchman 1996, Yodzis 1978). 

An in-situ study by Hoagland (1983) of diatom mats grown on glass slides in a reservoir, 

demonstrated a decrease of approximately 45% of maximum light transmittance from the 

canopy to the basal cells after 8 days of community development. Johnson (1996) 

measured greater than 92% reduction in ambient light at the base of algal mats in an 

artificial stream system after 48 days of periphyton development. Similarly, Stock and 

Ward ( 1991) observed algal cells at the base of a lotic blue-green algal mat consisting 

primarily of Oscillatoria submembranacea were light limited and that >98% of the 

photosynthetic activity in these mats occurred in the top 1/3 of the mat. 



The physical positioning of a species within an algal assemblage is often associated 

with nutrient availability and hence a cells' nutrient uptake capacity. Lower uptake rates 

of 33P04 were observed in adnate microalgae ( diatoms, blue-greens, and green algae) 

growing at the base of developed epiphyton assemblages compared to loosely or apically 

attached algae in the canopy of these assemblages (Burkholder et al. 1990). Riber and 

Wetzel ( 1987) found that diffusion of nutrients from the water column into periphyton 

mats decreases as mats become thicker and that the delivery of nutrients to basal cells is 

further diminished in oligotrophic systems (see also Stevenson and Glover 1993). 

5 

The development of vertical resource gradients as benthic algal communities grow can 

create a limiting environment for those cells located at the base of these communities. 

Stresses involving minimal diffusion of nutrients to the lower tiers of an algal mat can be 

alleviated to an extent by internal recycling of nutrients, although exponential growth may 

still be nutrient limited (Mulholland 1996). Some species avoid resource-limiting 

conditions by apical attachment on substrata and subsequent formation of mucilagenous 

stalks or by true filamentous growth that elevates these cells into the resource-rich canopy 

(Hoagland et al. 1982). Alternatively, some species are capable of detachment and 

emigration out of an overcrowded mat. For example, the diatoms Hannaea arcus and 

Diatoma tenue can avoid prolonged exposure to darkness by internal regulation of 

bouyancy, and subsequently, detach from substrata under adverse conditions (Bothwell et 

al. 1989). Many pennate species of diatoms are motile, relying on mucilagenous 

secretions through slits (raphes) along their frustules, which may enable these species to 

escape from light limitation and other inclement chemical conditions found at the base of 
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algal mats (Round and Palmer 1966, Cohn and Disparti 1994 ). 

Cells incapable of physical "escape" from resource-limiting conditions at the base of a 

well developed mat must rely on physiological means for survival. Survival during 

prolonged exposure to aphotic or anoxic conditions have been documented in both 

benthic and planktonic algal species (Moss 1977, Poulickova 1987, Wasmund 1989). 

Many diatom taxa form resting spores to survive prolonged exposure to resource-poor 

conditions. This phenomenon has been documented in the marine diatom, Leptocylindrus 

danicus under conditions of nitrogen depletion (Davis et al. 1980), and in freshwater 

planktonic diatom genera such as Achnanthidium, Navicula, Nitzschia, Fragilaria, 

Aulacosira, and Stephanodiscus in Great Lakes sediments under conditions of low 

temperature and darkness (Sicko-Goad et al. 1989). 

As an alternative to "resting states", certain algal species employ facultative 

heterotrophy to procure energy (Lewin and Hellebust 1970, 1978, Hellebust and Lewin 

1972, Rippka 1972, White 197 4, Berman et al. 1977, Darley et al. 1979, Saks 1983, 

Bollman and Robinson 1985, Rivkin and Putt 1987). A facultative heterotroph 

(chemoorganotroph) has the ability to obtain energy from exogenous pre-formed organic 

compounds, or through normal photoautotrophic fixation of atmospheric CO2 (see 

Tuchman 1996). Facultative heterotrophic ability is typically associated with benthic 

pennate diatoms such as Amphora sp. and Nitzschia sp., but has also been noted in- some 

planktonic centric species (Hellebust and Lewin 1977). Among facultatively 

heterotrophic species, chemoorganotrophy appears to be a mode of nutrition secondary to 

photoautotrophy, and used mainly as a survival mechanism, with the more metabolically 
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efficient photoautotrophy preferred (Lewitus and Kana 1994, Tuchman 1996). 

Hellebust and Lewin (1977) identified numerous centric and pennate diatom species 

that possess transport mechanisms for the uptake of several different exogenous organic 

compounds. Schollett ( 1998) demonstrated that up to 96 different organic compounds, 

including carbohydrates, amino acids, nucleic acids, esters, and carboxylic acids can be 

metabolized by 8 benthic diatom species including Nitzschia palea, Achnanthidium 

minutissimum, and A. rostratum. While some algal populations may sustain their 

densities in darkness (Panella 1994 ), many are incapable of cell division in such 

conditions (Hellebust and Lewin 1977). Species capable of sustenance and/or growth in 

the dark have a distinct advantage under conditions of prolonged exposure to darkness 

( e.g. positioned at the base of a thick periphyton mat or prolonged burial in sediments). 

Low profile species able to survive the limiting conditions found in mature benthic algal 

mats have initial access to resources made available upon disturbance and removal of the 

overlying canopy (see Johnson et al. 1997). 

14C-labeled organic carbon compounds (i.e. glucose, glutamate, lactate, etc.) have 

often been used to test the ability of cells to grow in the dark on organic supplements 

(White 1974, Lewin and Hellebust 1975, Lewin and Hellebust 1978). Uptake of radio

labeled organics can infer the presence of an organic transport system in the cells, as well 

as delineate which populations can grow and which merely sustain their numbers through 

heterotrophic mechanisms. With this technique, one can determine those species that can 

supplement their nutrient requirements with an alternative energy source in conditions of 

lower light or inorganic nutrient supply. Hellebust and Lewin ( 1977) reported the 



presence of organic transport systems in many diatom species, although few of these 

species were actually able to grow on organic molecules in the dark. 

The facility for photosynthetic activity within periphyton mats is often gauged by 

measuring uptake of labeled 14C-sodium bicarbonate (NaH14CO3) (Hellebust 1971, 

Mouget et al. 1993, Saks 1983) to determine if decreased CO2 uptake rates are associated 

with decreased light levels. Measures of chlorophyll a pigment concentrations are also 

used to document algal response to reduced light, with per-cell increases in chlorophyll a 

levels often associated with reductions in light availability (Falkowski and Owens 1980, 

Geider et al. 1986, Neale and Melis 1986). By increasing chlorophyll a concentrations, 

cells in the lower tiers of a benthic mat may be able to sequester more light. Examining 

chlorophyll a levels along with CO2 uptake in cells may, therefore, be useful in 

determining critical light thresholds in algal cultures. 

8 

Microalgae have been observed to accumulate neutral lipids under stressful conditions, 

such as nitrogen or phosphorous limitation (Ben-Amotz et al. 1985, Fogg 1956, Livne 

and Sukenik 1992, Reitan et al. 1994), silicate deficiency (Taguchi et al. 1987) and high 

pH (Guckert and Cooksey 1990). Unlike polar lipids, such as phospho- and glycolipids 

which are structural components of cell membranes and pigments, neutral or nonpolar 

lipids, composed of esterified saturated or mono-unsaturated fatty acids, are used as 

energy stores (Guckert and Cooksey 1990, Napolitano 1994). These substances, 

therefore, may be tapped by cells under stressful conditions to increase their probability 

of survival. Polar lipids tend to remain stable under varying environmental conditions. 

Levels of neutral lipids, in contrast, often fluctuate and, therefore, may be used as an 
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indication of the physiological condition of the cell. Cells depleted of essential nutrients 

or stressed by other environmental conditions often cannot divide because certain 

"building block" compounds are lacking, which may lead to inhibition of the cell cycle. 

Under such conditions, however, production of photosynthates continues and this 

material is used to synthesize neutral lipids (triglycerides) (Guckert and Cooksey 1990, 

Sicko-Goad et al. 1988). In the diatom Cyclotella cryptica, for example, the onset of 

silicate starvation induces cessation of cell division and a doubling of neutral lipids 

(Shifrin and Chisholm, 1981). Shifrin and Chisholm (1981) also revealed that the 

increase in the lipid fraction was not due to cell synchrony (i.e. cell growth stopped at 

lipid-rich stage of cell cycle) since, under optimal growth conditions, lipid fractions ( of 

total cell mass) remained stable and independent of cell division. Upon resumption of 

favorable growth conditions (i.e. sufficient nutrient supply, etc.) neutral lipid levels 

declined proportionally with a rise in cell numbers, indicating a dilution or depletion in 

stored lipid quantities during cell division. Neutral lipid levels appear to be highest just 

prior to cellular division under ambient conditions, suggesting their use as an energy 

source for this process (Sicko-Goad et al. 1988). In addition, neutral lipid levels in algal 

cells appear to follow a 24-hour cycle, with high neutral lipid levels present at the onset 

of darkness and the lowest levels measured just prior to reillumination. This may indicate 

use of neutral lipids in place of photosynthetic energy for cellular activity in the dark. 

Diatoms can oxidize a substantial volume of neutral storage lipids during cell division 

or during periods of darkness (Fisher and Schwarzenbach 1978, Otsuka and Morimura 

1966). Two clones of the marine centric diatom Thalassiosira pseudonana, grown under 
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constant light, maintained growth rates when transferred to dark and incubated for 24 

hours, but showed a marked decrease of C 16:0 and C 16: 1 fatty acids (long chain 

saturated- and monounsaturated fatty acids respectively, stored as neutral lipid) during 

dark incubation (Fisher and Schwarzenbach 1978). However, in senescent (non-dividing) 

cells grown in the light, C16:0 and C16: 1 fatty acids increased significantly, indicating 

synthesis of these fatty acids in the light (under optimal conditions) and, subsequently, 

utilization under sub-optimal conditions (i.e. in the dark) (Brown et al. 1996, Fisher and 

Swarzenbach 1978). The diatom Nitzschia closterium also has been shown to produce 

significantly higher concentrations of 16:0 and 16: 1 fatty acids under high-light versus 

low-light conditions; presumably as a high-energy storage product (Orcutt and Patterson 

1974). 

In summary, adaptations of benthic algae to resource-limiting conditions that often 

exist in dense periphyton mats are complex and not well understood. Survival at the base 

of a dense periphyton assemblage could involve physically altering cell position through 

stalk or filament formation or by motility. Those cells unable to relocate from the base of 

the mat may employ physiological adaptations such as increasing chlorophy 11 a 

concentration, use of neutral lipid stores, or use exogenous organic compounds via 

heterotrophic metabolism. To assess the physiological status of those cells found at the 

base of an algal mat, various molecular techniques need to be employed to determine the 

survivability and overall fitness of the cells. 



CHAPTER II 

INTRODUCTION 

Primary production in lotic systems may be supplied in part by macrophytic and 

allochthonous sources as well as by periphyton (benthic algae). Contributions of 

periphyton to primary production in lotic systems, once thought to be minimal, now are 

deemed significant, particularly in streams with relatively open canopies (Lamberti 1996, 

Minshall 1988). Energy input to midorder streams is thought to be supplied heavily from 

benthic algae (Vannote et al. 1980). Further studies of benthic algal survival strategies 

will help us better understand the ubiquitous nature of periphyton and their role as 

primary producers. 

Development of a benthic algal assemblage may progress from an initial 2-

dimensional framework to one of 3-dimensional physical stature (Hoagland et al. 1982). 

Initially, exposed substrata may provide abundant space and access to resources for 

colonizing species, permitting rapid reproduction and the eventual creation of a dense 

low-profile community. Once available substratum is covered, the accompanying spatial 

constraints create an environment conducive to species capable of apical (or vertical) 

growth, such as alga that form stalks or filaments. Over time a thick canopy can form 

creating vertical resource gradients within the mat where light and nutrient levels 

decrease from the upper story to the base of the mat (Hudon and Bourget 1981, 

11 
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Burkholder et al. 1990, Stevenson and Glover 1993, Johnson et al. 1997). 

The ability of cells in the lower tiers of an epilithic periphyton mat to survive resource

limiting conditions may depend on physical and or physiological adaptations. To alter 

their position within a mat to "escape" detrimental conditions, algal cells may employ 

stalk formation, detachment and emigration, or motility. Those low-profile cells unable 

to alter their position within a mat may employ physiological mechanisms for survival 

such as: entering a state of dormancy (resting state, spore formation) by reduction of 

metabolic rates, or by using alternative energy sources such as nutrient recycling, lipid 

oxidation, or heterotrophic metabolism. Under conditions of very low light, algal cells 

may elevate their chlorophyll 'a concentrations to sequester additional photons needed to 

maintain metabolism. 

In this study, I investigated the physiological condition under different nutrient and 

light regimes of Achnanthidium rostratum, an adnate, monoraphid, non-motile diatom 

species within a genus that typically occurs in the lower tiers of natural freshwater benthic 

algal mats (Steinman et al. 1987, Tuchman and Stevenson 1991). Specifically, I wanted 

to determine if viability and metabolic-activity levels of A. rostratum changed with 

variations in light availability (light and dark) and nutrient regime (nutrient-replenished 

and non-replenished media). My specific objectives were to determine: 1) the ability of 

A. rostratum to survive and/or reproduce in the dark, 2) whether A. rostratum cells 

grown in the dark compensate for lack of light by depleting their energy stores of neutral 

lipids and/or increasing chlorophyll a concentrations, and 3) the ability of A. rostratum 

cells under light-limiting conditions to resume photosynthetic activity within 30 hours 
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after reintroduction to high light levels. 



CHAPTER III 

MATERIALS AND METHODS 

Maintaining Culture Conditions 

Cultures of Achnanthidium rostratum (strain L588, Loras College live diatom 

herbarium, Dubuque, Iowa) in a soil-extract medium (CRl) consisting of one ml soil to 

10 ml deionized water containing 0.5 mg/ml MgCO3 (Nichols 1973) were obtained twice 

from the collection over a one and a half year period. Initial cultivation of the two stock 

cultures was identical; cultures were first transferred to fifteen 125-ml erlenmeyer flasks 

(plugged with sterilized soft foam stoppers allowing for air exchange) containing 75 ml 

Bold's Basal Medium (Nichols 1973) made with bottled spring water with the addition of 

l .25x 10-5 M silicon. Cell cultures were grown without media replenishment in a 

greenhouse (light levels varied depending on cloud cover from 100-1000 + µmol quanta• 

m-2•sec-1
) on a shaker table (100 rpm) to simulate a moderately turbulent system. After 

approximately 3-4 weeks, diatoms within each flask were detached with a rubber 

policeman, transferred to a single beaker to form an initial stock culture, and 

homogenized with a hand-held mixer (Braun® Drink Master). Triplicate aliquots of each 

stock culture were permanently mounted in Taft's syrup medium (Stevenson 1984) for 

initial live and dead cell enumeration (Nomarski optics-lOOOx magnification). The 
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homogenous stock cultures were then divided evenly into two sets of seventy-two 50-ml 

erlenmeyer flasks and each was diluted to 40 ml with fresh, axenically prepared Bold's 

medium (Bold's media in nutrient-replenished cultures contained organic supplements as 

described below). Cultures within each nutrient treatment were exposed to three light 

levels: High Light (HL = 221-445 µmol quanta•m-2•s-1
), Low Light (LL= 12-25 µmol 

quanta•m-2•s-1) and Dark (D = 0 µmol quanta•m-2•s-1
). The first set of flasks were grown 

in Bold's media without replenishment of media (Nutrient-Deplete), and were grown in a 

greenhouse (Loyola University of Chicago, Darnen Hall, during July, Temp.= 17±5°C). 

The second set of flasks containing cultures obtained at a later date (Nutrient-Replete) 

were replenished 5 days prior to the start of the experiment with 30ml Bold's media 

supplemented with one mM concentrations of glucose, sodium acetate, and casamino 

acids (see Panella 1994) and were grown in an environmental chamber (Percival, Temp.= 

20±3°C). Media in both the 72 nutrient-depleted and 72 nutrient-replenished flasks were 

initially diluted approximately 1.55:1 and 1.75:1 respectively with fresh Bold's medium to 

bring each flask to 40 ml total volume. Subsequent replenishment of nutrient-replete 

cultures with 15 ml aliquots of organic nutrient-enriched Bold's media were made on 

days 8, 11, 15, 19, and 23 to maintain high nutrient levels throughout the experiment. 

Flasks exposed to the low light (LL) treatment were covered with a wooden framed box 

wrapped in shading cloth to decrease light penetration (Panella 1994). Flasks comprising 

the dark (D) treatment were covered with aluminum foil to block all light penetration. 

Illumination intensity was quantified at a level parallel with the top of the shaker table 

with a Licor Quantum/Radiometer/Photometer. Fitness and viability of cells under each 
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set of conditions were compared using parameters outlined in Figure 1. Cultures were 

sampled at the same time each sampling day to avoid cellular variations affected by 

diurnal rhythms. Upon collection, cells from each treatment (3 replicates taken for each 

analysis) were transferred to test tubes (under minimal light for LL and D samples), and a 

subsample from each flask was centrifuged at setting # 8 for 20 min in a Centrific® 

centrifuge (Fisher Scientific, Pittsburgh, PA). The resulting pellet of cells was frozen 

with liquid N2, and placed immediately in a freezer at -80°C for later analyses for neutral 

lipids, chlorophyll a, and total protein. An aliquot (1 ml) was also removed for cell 

counts and general microscopic examination of cultures. The remaining cells in each 

flask were incubated with 14C at their respective light levels to quantify photosynthetic 

activity via 14CO2 uptake and fixation, and heterotrophic activity via 14C-labeled glucose 

incorporation into cellular carbohydrates. 

Analyses performed on cultures in both experiments were the same except where 

noted (Figure 1). Additional analyses in the second experiment (nutrient-replenished 

cultures) were not intentionally left out of the first experiment, but were added to help 

gain a better understanding of A. rostratum survival strategies. 

Biochemical and Physiological Analyses 

Total Photosynthetic Activity 

Photosynthetic activity of diatoms at different light and nutrient levels was monitored 

by measuring cell incorporation of 14C-labeled sodium bicarbonate (NaH14CO3) (NEN 

Research Products) to determine the effects of diminished light on CO2 uptake. For 



Figure 1. Experimental design outlining procedures used for analysis of Achnanthidium 
rostratum cultures grown in nutrient-depleted and nutrient-replenished media conducive 
to both photoautotrophic and heterotrophic growth conditions. 
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Experimental Design 

Nutrient-Deplete Experiment: 

July, 1992 
(72)40ml flasks of A. rostratum were grown in Bold's 
media without replenishment in greenhouse at 17 ± 5°C 
for 25 days. 

Treatments: 
Photoperiod follows summer hours 
1) High Light (HL): 333 ± 112 umol quanta m -2 s 1 

2) Low Light (LL): 20 ± 5 umol quanta m-2 s-1 

3) Dark (D): 0 umol quanta m-2 s-1 

Analyses: 
Triplicate flasks from each light treatment were sampled 
for testing on days 2,4,6,8,10,15,20, and 25 except for 
analyses involving 14C incorporation which were 
sampled every other day. 

1) Photosynthetic Activity: Na 14CO3 incorporation 
2) 14C-glucose incorporation 
3)Neutral lipid levels 
4) Live/dead cell enumeration (by presence/absence of 
protoplast) 

Nutrient-Replete Experiment: 

February, 1994 
(72)40ml flasks of A. rostratum were grown in 
organic/inorganic nutrient supplemented Bold's media 
with replenishment on days 8,11,15,19,23 in an 
environmental chamber at 20 ± 3°C for 25 days. 

Treatments: 
12:12 photoperiod 
1) HL: 255 ± 10 umol quanta m -2 s -1 

2) LL: 12 umol quanta m -2 s -1 

3) D: 0 umol quanta m -2 s -1 

Analyses: 
Triplicate flasks from each light treatment were sampled 
for testing on days 2,4,6,8,10,15,20, and 25 except for 
analyses involving 14C incorporation which were 
sampled every other day. 

1) Photosynthetic Activity: Na 14CO3 incorporation 
2) Na14CO3 incorporation of LL and D cells after 
reillumination to HL for 30 h 
3) 14C-glucose incorporation 
4) Chlorophyll a levels 
5) Neutral lipid levels 
6) Total protein levels 
7) Live/dead cell enumeration (by presence/absence of 
protoplast) 
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nutrient-depleted cultures, triplicate 10-ml aliquots from each flask were transferred to 

test tubes on sample days 2, 6, 10, 15, 20, and 25, and incubated with 1 µl of 1.0 µCi 

NaH14CO3 for 30 min on a shaker table (lO0rpm) under their respective light levels, and 

then pelleted and washed with 2 ml of unlabeled IM glucose ("cold" glucose used on day 

2 only; "cold" NaHCO3 was used on remaining days) to remove exogenous and non

specifically bound 14C. The samples were again spun down, frozen with liquid N2, and 

placed in a -80°C freezer until analyzed. Upon analysis, each pellet was resuspended in 

10 ml Aquasol scintillation cocktail and the amount of 14C incorporated into 

photosynthate was measured using a Beckman LS Scintillation counter. Results of cell 

enumeration were then used to calculate live-cell specific relative photosynthetic activity 

by dividing relative cpm per ml by cells per ml. For nutrient-replenished cultures, 5 ml 

portions from each flask (3 replicates per treatment) was sampled and processed as 

described above. 

Reillumination Experiment 

In nutrient-replenished cultures, cells grown under dark, low, and high (used as 

control) illumination for 2, 6, 10, 15, 20, and 25 days were reintroduced to high light 

levels for 30 hours to assess the ability of A. rostratum to "recover" from prolonged 

exposures to darkness or low light intensity. Following 30 h of reillumination, triplicate

samples were incubated with one µl of 1.0 µCi NaH14CO3 for an additional 30 min under 

identical conditions, pelleted, washed, and analyzed as described above to quantify rates 

of photosynthetic carbon fixation. 
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Glucose Uptake 

Triplicate ten-ml samples obtained from each light treatment on days 2, 6, 10, 15, 20, 

and 25 were incubated with one µl (0.1 µCi) 14C-glucose (NEN Research Products) for 30 

min on a shaker table ( 1 00rpm) under experimental light levels to assess the ability of A 

rostratum to incorporate glucose under different light and nutrient regimes. After 

incubation, the cells were pelleted, washed once with 2 ml of lM unlabeled glucose to 

remove exogenous non-specifically bound 14C, then repelleted and frozen as previously 

described. Upon analysis, the cells were resuspended in 10 ml Aquasol scintillation 

cocktail and radioactive incorporation was determined using a Beckman LS 7000 

Scintillation counter, yielding live-cell specific relative incorporation of glucose. 

Chlorophyll a 

Chlorophyll a levels were measured in nutrient-replenished cultures to determine 

whether cells grown under low illumination compensated by increasing chlorophyll a 

concentrations. In nutrient-replete cultures, triplicate-frozen cell pellets (covered in foil 

to prevent chlorophyll a degradation) from each light treatment on days 2, 4, 6, 8, 10, 15, 

20, and 25 were resuspended in 5 ml of 90% ethanol and boiled at 78°C for 5 min in a 

water bath (Sartory and Grobbelaar 1984). The samples were held in a refrigerator (5°C) 

overnight, then centrifuged (6,000 rpm) for 10 minutes. The supernatant poured into a 1-

cm cuvette, and the absorbance was read at 665 and 750 nm on a Beckman DU-64 

Spectrophotometer. Triplicate-samples were then acidified to convert chlorophyll a to 

phaeophytin a using 100µ1 of 0.3 M HCl, and allowed to incubate at room temperature in 

darkness for 30 minutes prior to reading absorbance again at 665 and 7 50 nm. 



Chlorophyll a values were calculated using the method of Lorenzen (1967) with a 

chlorophyll a coefficient by Sartory (1982), and expressed as µg chlorophyll a per cell. 

Neutral Lipid Analysis 
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Analysis of intracellular lipid stores of Achnanthidium rostratum cultures were 

assessed by spectrofluorometry according to Cooksey et al. ( 1987) to determine the effect 

of light and nutrient limitations on lipid levels. Previously frozen cell pellets were 

resuspended in 5 ml Bald's medium, homogenized (vortex), and divided into two 2.5 ml 

samples. The fluorophore dye, Nile Red (9-diethylamino-5H-benzo(a)phenoxazine-5-

one) dissolved in acetone (250 µg/ml), was used to quantify the lipids. Ten µl of Nile 

Red solution was added to each sample and mixed for 30 seconds on a vortex prior to 

measurement on a Turner Model 430 Spectra Fluorometer with excitation and emission 

wavelengths set at 525 and 580, respectively. Lipid quantity was expressed as relative 

fluorescence per cell. 

Protein Concentrations 

Total protein quantities were measured on nutrient-replenished cultures to determine 

whether cellular protein levels changed under different light regimes. Protein 

concentration was quantified in an aliquot (5-10 ml) of A. rostratum cells from each light 

treatment using a modified Lowry Assay (Markwell et al. 1981, Bensadoun and 

Weinstein 1976). Cell pellets were resuspended in 100 µl of 1:1 ratio ddH20 to 2x 

treatment buffer [0.125 M Tris-base pH 6.8, 4% (w/v) sodium dodecyl sulfate (SDS), 

20% (v/v) glycerol, 10% (v/v) 2-mercaptoethanol, and 0.1 % (v/v) bromophenol blue]. 

Proteins extracted in this manner were transferred to 1.5 ml Eppendorf microfuge tubes 
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and denatured in a water bath for 5 min at 100°C. At this stage samples could be frozen 

at -20°C until further analysis was performed. Ten µl aliquots were mixed with 50 µl of 

1.3% sodium deoxycholate and incubated at room temperature for 5 min. Samples were 

diluted to 750 µl by the addition of dH2O and the proteins precipitated by the addition of 

25% trichloro-acetic acid (TCA) and incubated on ice for 10 min. The samples were then 

pelleted in a microcentrifuge for 10 minutes, the supernatant discarded, and the pellet 

resuspended in 250 µl 0.1 N NaOH. Standards were prepared using Bovine serum 

albumen (BSA) at concentrations of O µg/ml to 120 µg/ml in 0.1 N NaOH. Protein 

samples and standards were diluted with 750 µl of copper reagent (2% Na2CO3, 0.4% 

N aOH, 0.16% sodium potassium tartrate, 1.0% SDS, mixed 100: 1 with 4% CuSO4, 96% 

dH2O), and incubated at room temperature for 10 minutes. After incubation, 75 µl 

(diluted 1:1 in dH2O) of Folin - Ciocalteu's Phenol Reagent was added, mixed 

immediately, and incubated 45 minutes to allow for color development. A Bausch and 

Lomb spectrophotometer 21 was used to measure the absorbance of the samples and 

standards at 710 nm. Simple linear regression generated by the BSA standards was used 

to estimate protein concentrations of the unknown samples based on their respective 

absorbances at 710 nm. Protein concentrations were expressed as µg total protein per 

cell. 

Statistical Analyses 

Statistical analyses of the data were performed using Quattro Pro 6.0 for Windows 

(1994 Novell, Inc.) and Excel 7.0 for Windows 95 (1985-1995 Microsoft Corporation). 

Cell-density data were natural-log transformed to standardize variance. Net rates of cell 
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accrual and neutral-lipid depletion were determined by calculating the slope of the line 

(defining change in cell densities/neutral lipid over time) via simple linear regression. 

Data for analyses ( chlorophyll a, protein, 14C glucose uptake, 14CO2 incorporation, and 

neutral lipid content) were standardized on a per cell basis. Two-way ANOVAs (cell 

condition x time) were performed to compare mean live-cell densities versus mean dead

cell densities within the same treatment over time. Two-way ANOV As were also 

performed to compare light effects on cell-density within each experiment and 

experimental effects within each light level over time. One-way ANOV As were 

performed to test differences in light level (and live- vs. dead-cell densities within the 

same light treatment) within each experiment on individual sample dates. Correlation 

Coefficients were run on cell densities versus relative neutral lipid levels over time and p

values were also calculated (t-tests: (Rosner 1990)). 



CHAPTER IV 

RESULTS 

Nutrient and Light Effects on Growth Rates and Cell Densities 

Conditions between experimental cultures (Nutrient-Replenished and Nutrient

Depleted) varied sufficiently to reveal distinct culture responses. Nutrient-replenished 

cultures of Achnanthidium rostratum had significantly higher mean-cell densities than 

nutrient-depleted cultures under all light regimes throughout the experiment ( except on 

days 6 and 8 in dark-grown cultures; one-way ANOV A; p>0.05), (two-way ANOV A; 

nutrient p<0.05, time p<0.05; Table 1, Figure 2). The differences observed may result 

from nutrient levels employed, however, other factors may be influential, such as 

variations in light intensity and temperature between experimental location (greenhouse 

vs. environmental chamber), as well as potential differences in bacterial contamination 

from initial stock cultures. Mean cell-accrual rates were also consistently higher in 

nutrient-replenished cultures, although, due to a high degree of variability in cell counts, 

were not significantly different from those in nutrient-depleted cultures for any light 

regime (slope of log-transformed linear regression± S.E.; Table 2). 

Light-level effects were most evident between dark-grown and illuminated cultures, 

but ambiguous when comparing between high-light and low-light cultures. Regardless of 
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Table 1. Two-way ANOV A results on log-transformed A. rostratum cell densities over 
time; between high light (HL), low light (LL), and dark (D) treatments, and between 
experiments (Exp.): ND= nutrient depleted (no nutrient supplementation), and NR = 
nutrient replenished (replenishment with lmM glucose, sodium acetate, and caseine 
amino acids in a modified Bold's medium). (N.S.) indicates no significant difference,(*) 
indicates a significant difference (p<0.05), with (i) designating culture with higher cell 
density. Shaded regions indicate irrelevant comparisons. (n=3) 



26 

Table 1. 

TREATMENT Time Exp. Light Light Exp. 
level vs. vs. 

Time Time 

ND (HL vs. LL) * 
ND (tHL vs. D) * 
ND (tLL vs. D) * 

ND (HL) vs. tNR * 
(HL) 

ND (LL) vs. tNR * 
(LL) 

ND (D) vs. tNR N.S. 
(D) 

NR (HL vs. LL) * 
NR (tHL vs. D) * 
NR (tLL vs. D) * 
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Figure 2. Growth curves of log transformed mean cell densities(± S.E.) of A. rostratum 
cultures between experiments: nutrient-replenished (NR) and nutrient-depleted (ND) 
cultures under high light (HL), low light (LL), and dark (D) illumination. (n = 3) 
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Table 2. Growth rates of A. rostratum over time based on the slope of log transformed 
linear regression ± S.E. Comparisons of both nutrient-replenished and nutrient-depleted 
cultures under high light, low light and dark conditions. (n=3) 

Treatment Nutrient- ±S.E. Nutrient- ±S.E. 
Replenished Depleted 

High Light 0.024 0.008 0.013 0.010 
Low Light 0.041 0.010 0.021 0.012 
Dark 0.009 0.002 0.007 0.007 
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nutrient level, cell cultures incubated in the dark had significantly lower cell densities 

than illuminated cultures (two-way ANOVA; light p<0.05, time p<0.05; Table 1, Figure 

3). However, differences in growth rate between illuminated and dark-grown cultures 

were magnified under nutrient supplementation. Nutrient-replenished cultures grown in 

the dark had significantly lower cell-accrual rates than their illuminated counterparts, 

although in nutrient-depleted cultures, rates did not significantly differ among light 

treatments (slope of log-transformed linear regression± S.E.; Table 2). This suggests a 

divergence in the primary "limiting" resource between experiments; with light primarily 

limiting growth in nutrient-replenished cultures and nutrient levels controlling growth in 

nutrient-depleted cultures. Growth rates and mean cell densities did not differ between 

low and high-light levels, regardless of nutrient regime, indicating A. rostratum may be 

adapted to low light conditions (slope of log-transformed linear regression± S.E.; two

way ANOV A; light p<0.05, time p<0.05; Table 2, Figure 3). 

Growth rates within cultures incubated in darkness, while very low, were significantly 

greater than zero in nutrient-replenished cultures, whereas nutrient-depleted cultures 

maintained stable cell densities, but accrual rates were not greater than zero (slope of log

transformed linear regression± S.E.; Table 2). Mean live-cell densities exceeded dead

cell densities in nutrient-replenished cultures and on the majority of days in nutrient

depleted cultures (except days 4, 10, and 15: one-way ANOVA; p>0.05), (two-way 

ANOV A; viability p<0.05, time p>0.05). Live cells accounted for approximately 67% of 

all cells enumerated throughout the experiment (mean percentage over 25 days: nutrient

replenished (NR), mean= 67.28 ± 1.13 S.E.; nutrient-depleted (ND), mean= 67.19 ± 



Figure 3. Growth curves of mean cell densities (± S.E.) of A. rostratum cultures over 
time, grown under high light (HL), low light (LL), and dark (D) conditions in: nutrient
replenished (NR) and nutrient-depleted media (ND). (n = 3) 
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2.50 S.E.; Figure 4). 

Cell Condition 

33 

Microscopic examination (lOOOx mag.) of cultures revealed differences in cell 

condition between experimental settings, most notably between experiments (Figures 5, 6 

and 7). Cells within nutrient-depleted cultures contained large vacuoles under all light 

levels, indicating potential build-up of cellular storage products. In contrast, cells in 

nutrient-replenished cultures contained few vacuoles, and subjectively appeared less 

transparent and darker green in color than nutrient-depleted cultures. The condensed 

protoplasm observed in nutrient-replenished dark-grown cultures may be indicative of 

cells in a maintenance or resting state. 

Photosynthetic Activity 

Photosynthetic activity, measured as uptake of 14C-labelled sodium bicarbonate, was 

higher in illuminated A. rostratum cultures than in the dark. Cell-specific uptake of 

14CO2 in the dark was significantly lower than that of cultures exposed to high light for all 

sample days in nutrient-replenished cultures (two-way ANOV A; light p<0.05, time 

p<0.05; Figure 8) and for all but days 20 and 25 in nutrient-depleted cultures (one-way 

ANOVA; p>0.05), (two-way ANOVA; light p<0.05, time p<0.05; Figure 8). Low-light 

cultures also had significantly higher uptake rates than dark grown cultures on all sample 

days except day 25 in nutrient-replenished media (one-way ANOVA; p>0.05), (two-way 

ANOV A; light p<0.05, time p<0.05). In nutrient-depleted cultures, photosynthetic 

activity was significantly lower in high-light treatment than under low-light for all but the 

last sample day (one-way ANOVA; p>0.05), (two-way ANOV A; light p<0.05, time 
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Figure 4. Mean live and dead cell densities of cultures incubated over 25 days in the dark 
under both replenished (NR) and depleted (ND) nutrient regimes. (n=3) 
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Figure 5. Achnanthidium rostratum cultures (xlOOO) grown under high light in nutrient
replenished (top) and nutrient-depleted (bottom) media. 
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Figure 6. Achnanthidium rostratum cultures (x 1000) grown under low light in nutrient
replenished (top) and nutrient-depleted (bottom) media. 
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Figure 7. Achnanthidium rostratum cultures (xl0OO) grown in the dark in nutrient
replenished (top) and nutrient-depleted (bottom) media. 
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Figure 8. Mean photosynthetic activity of A. rostratum measured as cell-specific 14CO2 

uptake(± S.E.) over a 25 day period under high light (HL), low light (LL), and dark (D) 
illumination in: nutrient replenished media (NR) and nutrient depleted media (ND). 
(n=3) 
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p<0.05). In contrast, photosynthetic activity in nutrient-replenished media was 

significantly greater under high illumination than low illumination (two-way ANOV A; 

light p<0.05, time p<0.05; Figure 8). 

Reillumination 
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Nutrient-replenished cultures grown in the dark responded positively to reillumination 

when transferred to high-light intensities for 30 hours. Reilluminated dark-grown 

cultures incorporated 14CO2 at significantly higher rates than under previous dark 

conditions throughout the 25 day experiment, exhibiting 14CO2 assimilation rates similar 

to those of high-light grown cultures (two-way ANOV A; light p<0.05, time p<0.05; 

Figure 9). As expected, high-light cultures did not respond to reillumination (except day 

2 which showed an unexplained negative response to reillumination), and in low-light 

cultures, response to reillumination was transient, with elevated response to increased 

light noted within the first 6 days of reillumination only ( one-way ANOV A p>0.05). 

Glucose Uptake 

Uptake of 14C-glucose in Achnanthidium rostratum cultures was enhanced in the dark, 

perhaps indicating heterotrophic metabolism. Cells incubated in nutrient-replenished 

media had significantly higher glucose uptake rates when grown in the dark than under 

either low or high illumination (2 x two-way ANOV A comparing Dark vs. High light and 

Dark vs. Low light cultures; light p<0.05, time p<0.05; Figure 10). A similar trend was 

observed in nutrient-depleted cultures, but was not significant (two-way ANOVA; light 

p>0.05, time p>0.05; Figure 10). Cell-specific glucose uptake did not differ between 

high- and low-light cultures in either nutrient condition (two-way ANOV A; light p>0.05, 
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Figure 9. Effects of exposure to high-light on photosynthetic activity measured as 
NaH14CO3 incorporation in A. rostratum cells(± S.E.) grown in nutrient-replenished 
cultures (NR): A) CO2 uptake for high light (HL) vs. reilluminated* HL (control), B) CO2 

uptake for low light (LL) vs. reilluminated* LL, and C) CO2 uptake for dark (D) vs. 
reilluminated* D. (n = 3) 
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Figure 10. Cell-specific glucose uptake(± S.E.) by A. rostratum over a 25 day period 
under high light (HL), low light (LL), and dark (D) conditions in: nutrient-replenished 
(NR), and nutrient-depleted media (ND). (n = 3) 
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time p>0.05). Illuminated cultures grown in non-replenished media had significantly 

higher 14C-glucose uptake than illuminated cultures in nutrient-replenished media, 

suggesting retention of a glucose-uptake mechanism in the absence of glucose, however, 

other factors may have influenced uptake rates, such as potential variations in bacteria 

levels (i.e. affecting glucose uptake) between experiments (two-way ANOVA; nutrient 

p<0.05, time p<0.05). Figure 11 depicts the relationship of photosynthetic activity to 

glucose uptake. As stated earlier, in nutrient-replenished cultures, 14CO2 incorporation (a 

measure of photosynthetic activity) was significantly greater in high-light than dark

grown cultures, and the opposite was true with 14C-glucose uptake, indicating up

regulation of glucose in the dark (two-way ANOV A; nutrient p<0.05, time p<0.05). 

Chlorophyll a 

Chlorophyll a concentrations were measured in nutrient-replenished cultures to 

determine whether varied light intensity affects cell-specific chlorophyll a levels. Cells 

grown under reduced light levels may increase their chlorophyll a concentrations to 

sequester additional photons necessary to maintain metabolism. Cultures grown under 

low illumination exhibited significantly greater concentrations of chlorophyll a per cell 

than either high-light or dark-grown cultures on days 2, 6, 8, 15, and 25 (one-way 

ANOV A; p<0.05; Figure 12). Chlorophyll a levels per cell were not significantly 

different between high-light and dark-grown cultures (two-way ANOVA; light p<0.05, 

time p<0.05; Figure 12). 

Neutral Lipid Analysis 

Relative cell-specific neutral lipid stores declined over time in all cultures. Depletion 



50 

Figure 11. Side by side comparison of 14CO2 and 14C-glucose uptake over 25 days in both 
nutrient-replenished (NR) and nutrient-depleted media (ND) under the following 
illumination: High Light (HL), Low Light (LL), and Dark (D). Values are the average 
cell-specific uptake of 5 sample days with the standard error designated in parentheses 
above each treatment bar. ( n = 3) 
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Figure 12. Cell-specific chlorophyll a concentrations(± S.E.) of A. rostratum over a 25 
day period under high light (HL), low light (LL), and dark (D) illumination, grown in 
nutrient-replenished cultures (NR). (n = 3) 
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rates were more substantial in nutrient-depleted cultures, although only between dark-

grown cultures was there a significant difference (log-transformed linear regression; 95% 

confidence interval; Table 3). Nutrient-replenished cultures grown in the dark had 

significantly higher relative-lipid levels per cell compared to their illuminated 

counterparts (two-way ANOV A; light p<0.05, time p<0.05; Figure 13). Strong negative 

correlations were measured between cell density and relative-lipid level per cell in all 

treatment groups, although nutrient-replenished cultures grown in the dark exhibited 

positive lipid accumulation up to day 10, independent of the cell growth rates which were 

near zero during this same period. After day 10, however, a similar inverse trend was 

observed as cell growth began to rise with a corresponding decrease in lipid levels 

(Figures 14 and 15). 

Protein Levels 

Protein concentrations were measured to examine effects of reduced illumination on 

cultures. Nutrient-replenished cultures incubated in the dark for 25 days maintained 

significantly greater total protein concentrations per cell than illuminated cultures, both of 

which exhibited similar cell-specific protein concentrations (two-way ANOVA; light 

p<0.05, time p<0.05; Figure 16). 
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Table 3. Neutral lipid depletion rates of A. rostratum over time based on the slope of log 
transformed linear regression ± S.E. Comparisons of both nutrient-replenished and 
nutrient-depleted cultures under high light, low light and dark conditions. (n = 3) 

Treatment Nutrient- ±S.E. Nutrient- ±S.E. 
Replenished Depleted 

High Light -2.32E-06 4.21E-08 -6.l lE-06 l.86E-07 
Low Light -2.64E-06 8.82E-08 -l.18E-05 l.l0E-06 
Dark -1.53E-06 5.68E-07 -8.69E-06 8.8E-07 
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Figure 13. Relative cell-specific neutral lipid levels ( ± S.E.) of A. rostratum cell cultures 
over a 25 day period under high light (HL), low light (LL), and dark (D) conditions in: 
nutrient-replenished (NR) and nutrient-depleted (ND) cultures. (n = 3) 
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Figure 14. Relationship between cell density and cell-specific relative neutral lipid levels 
over time. Cultures grown in nutrient-replenished media (NR) under High Light (HL), 
Low Light (LL), and Dark (D). Where CC= Correlation Coefficient and p-values were 
calculated from t-tests. (± S.E.). (n = 3) 
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Figure 15. Relationship between cell density and cell-specific relative neutral lipid levels 
over time. Cultures grown in nutrient-depleted media (ND) under High Light (HL), Low 
Light (LL), and Dark (D). Where CC= Correlation Coefficient and p-values were 
calculated from t-tests.(± S.E.). (n = 3) 
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Figure 16. Cell-specific total protein concentrations(± S.E.) of A. rostratum over a 25 
day period under high light (HL), low light (LL), and dark (D) illumination, grown in 
nutrient-replenished cultures (NR). (n = 3) 
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CHAPTERV 

DISCUSSION 

Freshwater periphyton are known to play an important role as primary producers in 

aquatic food webs (Lamberti 1996, Minshall 1988). In lotic systems, the ability of 

benthic algae to attach to different types of substrata and reproduce rapidly helps create a 

consistent energy source for consumers, as opposed to more transient input of 

allochthonous organic matter. Densely packed algal assemblages support the energy 

needs and nutrient cycling processes of their surroundings and also act as "seeds" for 

colonization down stream following their detachment (via disturbances) from substrata. 

Accrual of algal biomass on substrata often progresses towards development of multi

tiered algal assemblages (or mats) (Hoagland et al. 1982). Numerous studies have shown 

that vertical growth of algal assemblages creates resource gradients within the mat 

(Burkholder et al. 1990, Hoagland 1983, Hudon and Bourget 1981, forgensen and 

Revsbech 1983, Karlstrom 1978, Nicholson et al. 1987, Stevenson and Glover 1993, 

Tuchman 1996, Y odzis 1978). Species inhabiting algal mats, therefore, may differ in 

autecological characteristics depending on their tendency for early or late colonization, or 

correlating to their position within the mat. Early colonizing species may benefit from 
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abundant resources initially, however, progression towards a mature algal mat tends to 

deplete essential nutrients and light reaching lower tier cells. 
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Both the persistence of algal assemblages and the speed with which they recover 

following sloughing events may be partly reliant on survival of basal species (see 

Peterson 1996a). Live cells at the base of mats help secure canopy layers to the 

substratum by means of mucilagenous secretions (Hoagland et al. 1982). Further, viable 

cells retained on the substratum following sloughing events may speed recovery rates 

through reproduction. Also, affixed cells and detrital material may also aid in the 

attachment of other species, thus accelerating recovery (Korte and Blinn 1983). The 

mechanisms responsible for lower-tier species survival under both light- and nutrient

limited conditions are not well understood. Early successional species that are unable to 

physically escape high density/low resource conditions may resort to various survival 

strategies including: dormancy (resting states, spore formation), heterotrophic 

metabolism, or maintenance via tolerance or acclimation to low resource conditions. My 

research reveals potential survival strategies for a particular species of diatom whose 

genus is associated with the base of developed algal mats. 

Results from my study demonstrate that Achnanthidium rostratum can survive at least 

25 days in complete darkness under both nutrient-depleted and nutrient-replenished 

conditions. Approximately 67% of all cells in dark-grown cultures in both nutrient 

regimes maintained viability (i.e. contained cellular material) over the 25-day period 

indicating that, although populations were not increasing at a significant rate, no increases 

in death rates occurred. Survival in the dark has been noted in other studies on planktonic 
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algal species (Sicko-Goad et al. 1989, Wasmund 1989) and polar sea-ice diatoms 

(Palmisano and Sullivan 1982). Adverse growth conditions often induce "resting" states 

in cells characterized by either physical modification of cells, including increased 

silicification of cell walls (to form spores), or by physiological changes, such as 

condensed cytoplasm or enlarged vacuoles (Palmisano and Sullivan 1983). Light

microscopic examination of my cultures revealed no evidence of spore formation. 

However, enlarged vacuoles were observed in all nutrient-depleted cultures, suggesting 

accumulation of a storage material such as neutral lipids. In nutrient-depleted cultures, 

production of neutral lipids may result from nitrogen and/or phosphorous limitation (Ben

Amotz et al. 1985, Livne and Sukenik 1992), or silicate deficiency (Taguchi et al.1987). 

Nutrient-replenished cultures grown in the dark exhibited condensed protoplasts, a 

possible indication of the onset of a resting state. 

The ability of Achnanthidium rostratum cultures to survive extended periods of 

darkness, and to exhibit relatively high growth rates under low-light conditions was 

confirmed through various means. Algae typically rely on photoautotrophic metabolism 

for energy procurement. However, under light-limited conditions, photoautotrophic 

capability may be severely restricted or nonexistent and cells must rely on other means for 

survival, including utilization of alternative energy resources. Dark-grown cultures of A. 

rostratum in my study, not surprisingly, exhibited minimal photoautotrophic metabolism 

(measured as cell-specific 14CO2 incorporation) when compared with cultures grown in 

the light. Consequently these cultures exhibited minimal growth rates. Upon 

reintroduction to high-light conditions, however, dark-grown cultures responded with a 
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sharp increase in 14CO2 incorporation within 30 hours. These data are consistent with 

results of Panella (1994) where dark-grown cultures of A. rostratum resumed exponential 

growth after a 6 day lag period following reillumination. It appears that cells grown in 

the dark are not only alive, but also equipped or "primed" for rapid resumption of 

photoautotrophic activity even after extended periods of darkness. 

Nutrient replenished cultures responded positively to illumination via elevated growth 

rates. The corresponding low growth rates observed in dark-grown cultures suggests light 

as the primary limiting factor in this experiment, and that these cells are not capable of 

fully utilizing heterotrophic metabolism for growth, but actually enter a "maintenance 

mode" when subjected to darkness. Nutrient-depleted cultures did not respond 

significantly to illumination indicating that additional factors ( depleted nutrient supply or 

other experiment-specific affects) may be limiting growth. 

Stable cell densities observed in dark-grown nutrient-replenished cultures over time 

may have resulted from increased glucose uptake rates, an indication of their ability to use 

exogenous organic carbon as a supplemental energy source. Glucose uptake has been 

shown to be up-regulated in the dark in the diatom Cyclotella cryptica (Hellebust 1971 ), 

possibly allowing cells to reallocate cellular resources from photosynthetic pathways to 

more functional alternative mechanisms such as organic-nutrient uptake. As observed by 

Schollett ( 1998), the benthic diatom species: Achnanthidium rostratum, A. minutissimum, 

Encyonema minutum, E. minutum var. pseudogracilis, Gomphonema accuminatum, 

Navicula trivialis, Nitzshia linearis, and N. palea increase incorporation rates of 

numerous exogenous organic compounds (including glucose in A. rostratum) in the dark. 
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However, many algal species capable of active uptake of organic molecules in the dark 

cannot reproduce under these conditions (Hellebust and Lewin 1977). Similar growth 

rates between dark-grown cultures grown in nutrient-replenished versus nutrient-depleted 

media in my study may imply that nutrient supplementation only aids in maintenance of 

cells, or possibly, that cells require a "lag" period longer than 25 days to activate an 

efficient metabolic pathway for use of exogenous organic molecules. Admiraal and 

Peletier ( 1979) observed heterotrophic growth in the dark in the estuarine benthic diatom 

Stauroneis constricta following a lag period of 20 days after transfer to organic

supplemented media. The positive growth trends observed in nutrient-replenished 

cultures suggests cells may require a longer lag period prior to achieving heterotrophic 

growth. 

Despite evidence of glucose uptake in A. rostratum (Schollett 1998), glucose uptake 

rates measured in this study may be inaccurately estimated because of the potential 

unaccounted for effects of bacterial activity on uptake rates. However, assuming there is 

no light effect on bacterial activity, glucose uptake by bacteria should be the same in all 

light treatments. Therefore under this assumption, cell-specific glucose uptake observed 

in my experiments may be high but relative trends between light treatments should be the 

same as if tested axenically. A further issue may involve the effects of illumination on 

algal uptake of glucose. Potential up-regulation of glucose in the dark (Hellebust 1971) 

by algal species may lead to increased bacterial uptake of glucose at higher illumination 

as a result of less algal competition for the available organic supply. Schollett ( 1998) also 

showed higher uptake of glucose in the dark compared to high light in A. rostratum 
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cultures, suggesting glucose uptake in the light may be disproportionately high as a result 

of bacterial activity. 

Algal species may need organic concentrations as high as 300µg/l ( 180-200µg/l 

glucose in present study) to compete effectively with bacteria for available organic 

material (Cavari and Hadas 1979). These concentrations are much higher than would 

typically be found in situ (Cavari and Hadas 1979). Therefore, active uptake of organics 

by algal species in nature may be limited by ambient concentrations. Bacteria, in 

contrast, are capable of fulfilling their metabolic needs at much lower organic 

concentrations (Wetzel 1983). Species capable of facultative heterotrophy in nature may 

therefore rely on uptake of organic molecules as a supplement to photoautotrophy. 

The ability of A. rostratum cultures to assimilate glucose may be the result of a 

specific active-transport mechanism in the cell. Glucose uptake measured in both 

nutrient-replenished and nutrient-depleted experiments suggests this is an inherent 

mechanism that does not require previous exposure to glucose in the media (Hellebust 

1971, Admiraal and Peletier 1979). Also, the higher glucose-uptake rates observed in 

dark-grown cultures implies increased activation of uptake mechanisms in the absence of 

light. 

In nutrient-replenished cultures, total protein levels within dark-grown cells were 

higher than in either illuminated culture on all but the first sample day. Increased total 

protein under extended periods of darkness may result from activation of specific 

transport mechanisms responsible for organic (glucose) nutrient uptake, however, 

research corroborating this phenomenon has not been found. These results differ, 



68 
however, from those obtained by Panella ( 1994) for A. rostratum cultures, A discrepancy 

possibly attributable to the limited number of sample days used by Panella (2 vs. 8 test 

dates in my study). 

Evidence indicates that the high glucose concentrations taken up by dark-grown cells 

were incorporated into a number of metabolic pathways. Cultures grown under darkness 

in nutrient-replenished media had significantly higher cell-specific neutral lipid levels (in 

the form of triglycerides) than their illuminated counterparts. Inhibition of cell division 

induced by resource limitation often leads to accumulation of neutral lipids in algal 

cultures (Guckert and Cooksey 1990, Larson and Rees 1996, Reitan et al. 1994). 

Production of neutral lipid relies on photoautotrophic metabolism (sunlight energy+ 

inorganic carbon source). Hence, in theory, cultures grown in the dark would not have 

the energy needed to produce (neutral) lipids. However, my observations of elevated cell

specific lipid levels in conjunction with increased glucose uptake in the dark suggests 

conversion of exogenous organic carbon into lipids. In a resource-limited environment, it 

may be feasible to convert organic carbon into a less complex energy form (hence a more 

efficient use of energy), which would be the most practical metabolic mechanism to use 

until favorable growing conditions resume (Napolitano 1994, Orcutt and Patterson 1974). 

Potentially, lipids may be converted via the Glyoxylate Cycle back to glucose for the 

energy needed for survival. Use (via oxidation) of storage products, such as neutral 

lipids, as an energy source in algal cells during cell division in the dark has been 

documented by Fisher and Schwarzenbach (1978) and Otsuka and Morimura (1966). 

Declines in neutral lipid levels for all cultures over time may have resulted from both 
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dilution effects and oxidation. It is plausible that higher neutral lipid levels at the start of 

all treatments may be the result of slow growth from the initial lag period following 

inoculation and transfer to individual test flasks. Rapid cell division ( observed in 

illuminated nutrient-replenished cultures) most likely depleted neutral lipid levels through 

dilution and less from oxidation. Neutral lipids are high energy sources, though not 

readily metabolized, therefore, under optimal growth conditions cells may rely on 

photosynthates for rapid reproduction, leaving accumulated lipids to dilute out over time. 

In contrast, declines in lipid levels in nutrient-depleted cultures exhibiting minimal 

growth, likely result from lipid oxidation for cell maintenance. 

Increased relative cell-specific neutral lipid levels observed from days 2 through 10 in 

dark-grown nutrient-replenished cultures suggest an exogenous-organic carbon source 

(glucose) was used to manufacture triglycerides in the dark. Following day 10, these 

cultures resumed trends similar to those observed in illuminated cultures (i.e. steady cell 

growth with corresponding lipid dilution), perhaps indicating the onset of heterotrophic 

growth. 

Benthic periphyton trapped at the base of well-developed algal assemblages are likely 

subjected to extremely low irradiances (Johnson 1996, Stock and Ward 1991) rather than 

total darkness, and can be exposed to extreme light fluctuations if canopy layers are 

disrupted. Many algal species can adapt to such low-light conditions (Geider et al. 1986, 

Johnson 1996, Palmisano et al. 1985). Shade-tolerant species are able to maintain their 

viability and positioning within algal mats and, therefore, remain competitive upon 

eventual removal of the canopy layer. In my study, cultures grown under low-light 
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conditions in both nutrient regimes exhibited similar growth rates and cell densities as 

their high-light counterparts. This may be an indication that the maximum light levels 

employed were not sufficient to stimulate growth (i.e. light saturation point was not 

reached). More likely, these data suggest that A. rostratum is adapted ( or can acclimate 

itself) to reduced light levels. The longer lag period prior to exponential growth observed 

under low light (8 days vs. 4 days in high-light cultures) may indicate cells require time to 

acclimate to reduced illumination. Algal species may adapt to reduced light availability 

by increasing cell-specific chlorophyll a levels to sequester more photons (Falkowski and 

Owens 1980, Geider et al. 1986, Neale and Melis 1986). Higher cell-specific chlorophyll 

a levels were measured in A. rostratum cultures under low light (12 µmol quanta•m-2 

•sec-1
) for most sample days. This corresponds with subjective light-microscopic (xlO00) 

observations which revealed characteristic dark green appearances for low-light cells, in 

contrast to brown coloration observed in high-light grown cultures. However, 

photosynthetic rates (measured as 14C02 uptake) increased from low to high-light levels, 

indicating that elevated chlorophyll a levels under low light did not assist in sequestering 

as many photons for photosynthesis as in high-light A. rostratum cultures. Also, all other 

parameters measured between illuminated cultures revealed no differences. It may, 

therefore, be feasible that A. rostratum is light saturated at 12 µmol quanta•m-2•sec-1
, or 

that some other cellular mechanism not revealed in this study is compensating for low 

illumination. Light compensation points (light level at which respiration is just balanced 

by gross photosynthesis) less than 1 µmol quanta•m-2•sec-1 have been recorded for the 
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marine diatom Phaeodactylum tricomutum (Geider et al. 1986). Further, certain species 

of sea ice diatoms are light saturated at 11 µmol quanta•m-2•sec-1 (Palmisano et al. 1985), 

indicating A. rostratum may very well be light saturated at 12 µmol quanta•m-2•sec-1
• 

The ability of dark-grown Achnanthidium rostratum cultures to subsist in a 

maintenance mode for at least 25 days provides further evidence that this species is 

adapted to potentially severe light-limited environments common at the base of benthic 

algal assemblages. Shaded cultures appeared to be illuminated at a level which does not 

limit growth, indicating potential low-light tolerance. Evidence of Achnanthidium spp. 

associated with the lower tiers of benthic algal assemblages (see Steinman and McIntire 

1987, Tuchman and Stevenson 1991) indicates the likelihood of their shade adaptability, 

although the hypothesized mechanism (i.e. maintaining optimum photosynthetic activity 

via increased chlorophyll a levels) (Falkowski and Owens 1980, Geider et al. 1986, Neale 

and Melis 1986) responsible for their adaptability was not conclusive in this study. 

Survival of periphyton in a fluctuating environment depends on individual species 

adaptability. Algal species rely on various survival strategies ranging from physically 

altering their position within a mat to physiologically altering cellular functions. The 

ability of some species to survive in resource-limited conditions encountered at the base 

of mature benthic-algal mats would convey individual advantages, which, in tum, 

enhances the overall fitness of the community. Eventual detachment of the canopy layer 

allows those remaining attached algae access to resources previously unavailable and, 

therefore, an opportunity to rapidly recolonize the available substratum. Further, it has 



been hypothesized that viable cells capable of withstanding sloughing events will help 

accelerate the recovery of the substratum, thus renewing successional patterns (Peterson 

1996a). 
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Survival of Achnanthidium rostratum cultures under various resource limiting 

conditions has been shown by both Panella ( 1994) and by my results. Relatively minimal 

growth rates in dark-grown cultures indicate cells may be in a maintenance mode, 

however, a longer-term study might reveal that cells require more than 25 days under dark 

conditions to implement heterotrophic growth. Increased cell growth in nutrient

replenished dark cultures after day 10, along with corresponding declines in neutral lipid 

levels, point in this direction. Likewise, steady levels of glucose uptake throughout the 

experiment indicate that these cells maintained a functional glucose-transport mechanism 

over an extended period of darkness. Study of axenically-grown cultures would provide a 

more accurate assessment of organic-carbon uptake rates in this diatom species, allowing 

for comparisons with other species that may compete for the same resources in situ. 

Also, by varying organic concentrations in the media we may be able to determine 

optimal levels necessary for survival and or growth as well as better understand their 

actual organic uptake abilities (i.e. active- or passive-uptake capacities). 

Further research on the response of A rostratum to varying illumination may help 

determine levels at which this species becomes light limited and light saturated. Growth 

rate similarities between both high-light and low-light cultures implies that these cells are 

shade adapted, however, elevated chlorophyll a levels did not correspond with increases 

in photosynthetic rates, leading one to believe that these cells may be light saturated at 



73 

levels close to 12 µmol quanta•m-2•sec-1
• 
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