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CHAPTER I 

INTRODUCTION 

1.1 Spectrin Overview 

Spectrin is a major component of the erythroid membrane skeleton, a dense two dimensional 

meshwork of proteins underlying the cytoplasmic surface of the erythrocyte membrane (Marchesi 

and Steers, 1968; Branton et al., 1981; Bennett, 1982; Gratzer, 1983; Goodman et al., 1983; 

Gratzer, 1984; Marchesi, 1985; Bennett, 1989; 1990). The erythrocyte skeleton controls the lateral 

mobility of integral membrane proteins hence influencing erythrocyte surface topography ( Goodman 

and Branton, 1978). More significantly, the erythrocyte skeleton provides support to the lipid 

bilayer and maintains the shape of the red cell. Therefore the skeleton is essential for the prolonged 

survival of the erythrocyte in the high shear environment of the vascular system (Lux, 1979; Lux 

and Glader, 1981; Marchesi, 1985; Elgsaeter et al., 1986; Stokke et al., 1986; Elgsaeter and 

Mikkelson, 1991). 

Spectrin was first isolated from low-ionic-strength extracts of erythrocyte membranes 

(Marchesi and Steers, 1968; Marchesi et al., 1970). Spectrin consists of two similar but 

nonidentical subunits with apparent molecular masses of 260 kD (a) and 225 kD ((3) on sodium 

dodecyl sulfate (SOS) polyacrylamide gel. The two subunits have been referred to as bands 1 and 

2 (Steck, 1974) in some of the early studies. The gene for the spectrin a-subunit is located on 

chromosome 1 (Huebner et al., 1985), while the {3-subunit gene is on chromosome 14 (Prchal et al., 

1987; Winkelmann et al., 1988). Spectrin a- and {3-subunits associate side-to-side in an 
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antiparallel orientation (Speicher et al., 1982) by an initial interaction between the aV domain at 

the C-terminal end of a-subunit and the {3IV domain at the N-terminal end of {3-subunit, the so­

called nucleation site (Speicher et al., 1992), and by contacts at multiple sites along the length of 

the dimer (Shotton et al., 1979; Tyler et al., 1979; Morrow et al., 1980). Spectrin dimers can 

further associate head-to-head to form tetramers (Kam et al., 1977; Ungewickell and Gratzer, 1978; 

Shotton et al., 1979). This head-to-head assembly of tetramers involves association of the N­

terminal region of the a-subunit with the C-terminal region of the {3-subunit (Morris and Ralston, 

1989; DeSilva et al., 1992; Speicher et al., 1993). Higher order oligomers form at high 

concentration in solution (Morrow and Marchesi, 1981), although the predominant form of spectrin 

on the membrane appears to be the tetramer (Byers and Branton, 1985; Liu et al., 1987; Vertessy 

and Steck, 1989). The head-to-head binding site is suggested to play a critical role in maintaining 

the architecture and therefore the integrity of the red cell membrane. Many hereditary hemolytic 

anemias involve spectrin mutations that destabilize tetramer formation (Marchesi et al., 1987; 

McGuire and Agre, 1988; Marchesi, 1989; Coetzer et al., 1990; Garbarz et al., 1990; Palek and 

Lambert, 1990; Delaunay and Dhermy, 1993). 

Over the years, continuous efforts have been made toward understanding the physical­

chemical properties, structure, and dynamics of spectrin in order to fully comprehend the function 

of this protein in the erythrocyte membrane skeleton. The shape and the size of isolated spectrin 

molecules have been determined by electron microscopy (EM) (Shotton et al., 1979) as well as by 

a number of other techniques, including gel filtration chromatography (Ralston, 1976; Kam et al., 

1977, LaBrake, 1993), sedimentation velocity (Ralston and Dunbar, 1979), light scattering 

(Elgsaeter, 1978; Reich et al., 1982), electrically induced birefringence relaxation (Mikkelson and 

Elgsaeter, 1978; 1981) and viscometry (Stokke and Elgsaeter, 1981; Stokke et al., 1985). These 

studies reveal that the spectrin heterodimer is a long, rod-shaped molecule about 100 nm in length 
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and 4-6 nm in diameter. The secondary structure of spectrin is largely composed of a-helix (60 -

75 % ) according to the circular dichroism (CD) measurements (Ralston, 1979; Calvert et al., 1980) 

and Fourier transform infrared results (LaBrake and Fung, 1993). 

The dynamic aspects of the molecule have also been extensively investigated. Nuclear 

magnetic resonance (NMR) of spectrin in aqueous solution displayed sharp proton resonances 

(Calvert et al., 1980; Fung et al., 1986; 1989). Spin-labeling electron paramagnetic resonance 

(EPR) detected multiple classes of motion in spectrin (Cassoly et al., 1980; Lemaigre-Dubreuil et 

al., 1980; Dubreuil and Cassoly, 1983; Streichman et al., 1991; Jozwiak et al., 1993; Hensley et 

al., 1993), and the combination of conventional and saturation transfer EPR studies resolved these 

motions into time ranges of 10-9 s, 10-7 to 10-6 sand 10-3 s (Fung et al., 1979; Fung and Johnson, 

1983). Time-resolved phosphorescence anisotropy (Learmonth et al., 1989) obtained rotational 

correlation times reflecting not only axial rotation but also faster motions such as intramolecular 

bending and torsional distortion. Light scattering studies (Budzynski et al., 1992) measured 

fluctuational segmental motions of spectrin tetramers over a distance of 20-30 nm with relaxation 

times equal or less than 23 µs. Taken together, these studies demonstrate that spectrin is, a highly 

flexible molecule possessing considerable internal motions. Intuitively, the long flexible morphology 

of spectrin would seem ideally suited to its role as the major interconnecting component of the 

membrane skeleton. 

In addition to the internal flexibility, spectrin also appears to be highly elastic. The 

molecule undergoes reversible extension and condensation in response to the change of the ionic 

strength of the buffer as indicated by measurements of viscosity (Stokke and Elgsaeter, 1981), 

sedimentation coefficient (Ralston and Dunbar, 1979), light scattering (Elgsaeter, 1978) and 

hydrodynamic properties (LaBrake, 1993). Recent studies of negatively stained spectrin in the 

partially expanded membrane skeleton suggest that the a- and ,8-subunits of spectrin twist about each 

other forming a two-strand helix (McGough and Josephs, 1990). Spectrin is shown to exist in a 
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continuum of lengths with the pitch of the two-strand helix ranging from 104 A - 166 A, the 

diameter varying from 52 A - 36 A and the number of turns remaining constant. It is proposed, 

based on this observation, that the origin of elastic properties of spectrin is the reversible 

deformation of a well defined quaternary structure. The ability of spectrin to adopt different shapes 

and to undergo reversible deformation may have physiological significance since it may be related 

to the deformability and elasticity of the erythrocyte. 

The topology of the spectrin molecule has been probed by mild protease cleavage, 

monoclonal antibodies and spin labels. Limited digestion of purified spectrin with trypsin at O °C 

defines five unique proteolysis-resistant domains within the a-subunit and four domains within the 

,B-subunit. A series of nine monoclonal antibodies recognizing a unique set of subdomain peptides 

have been used to demonstrate that each proteolysis-resistant domain of the a-subunit is antigenically 

unique (Yurchenco et al., 1982). Spin-labeling EPR studies recognize hydrophobic regions that are 

potential membrane binding sites on the surface of the molecule (Streichman et al., 1991). 

Using recombinant DNA techniques, the exact locations of several functional sites of 

spectrin including the calmodulin binding site, the calcium binding site (Dubreuil et al., 1991) and 

the ankyrin binding site (Kennedy et al., 1991), have been identified. Recently, the SH3 domain 

of chicken brain spectrin has been cloned, expressed and crystallized (Musacchio et al., 1992). The 

three dimensional structure of this 64-amino acid domain has been determined as a ,8-barrel made 

of five antiparallel ,8-strands. 

Although significant progress has been made, detailed information regarding the structure 

of the majority of spectrin remains unknown. The major difficulties encountered during structural 

studies of spectrin are largely attributable to the high molecular weight and the elongated shape of 

the molecule. The two most powerful structural techniques, NMR and x-ray crystallography, can 

not be applied to the intact molecule due to the large size and unfavorable shape of spectrin. 

Unveiling the structure-function relationship of spectrin remains a challenge to the scientific 
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community. 

1.2 Overview of Spectrin Repeats 

Ever since the discovery of spectrin, some investigators have suggested that spectrin, as a 

large molecule, might contain repeated sequences. Current notions of molecular evolution 

(Doolittle, 1981; Keim et al., 1981; Pink, 1981; Li, 1983) indicate that the size of a protein 

increases by two mechanisms, either through fusion of two dissimilar genes to produce a large 

hybrid product, or through duplication and fusion of a single gene to produce a large product with 

internal repetitive sequences. Spectrin repeat units of approximately 80 kD and 50 kD were first 

hypothesized based on the sizes of the peptide fragments produced by mild protease cleavage. 

However, peptide maps of the fragments from the mild protease cleavage of spectrin failed to detect 

conserved or repetitive elements. The determination of the amino acid sequence of the 80 kD a-I 

domain of spectrin provided the first solid evidence that spectrin contains a repetitive structure 

(Speicher et al., 1983a; Speicher et al., 1983b; Speicher and Marchesi, 1984). The availability of 

the cDNA sequences of both a- and J3-spectrin (Curtis et al., 1985; Sahr et al.1990; Winkelmann 

et al., 1990) reveals that the primary structure of spectrin is dominated by tandem, homologous 

motifs of about 106-amino acid residues that are referred to as repeating units. It has been well 

established that sequence homology reflects conformational similarity (Schulz and Schirmner, 1979; 

Doolittle, 1981; Keim et al., 1981; Arnheim, 1983). Each homologous spectrin repeat unit thus has 

been suggested to represent an independent domain whose conformation is conserved among the 

repeats. The nearly universal presence of the 106-residue repetitive structure in the spectrin 

heterodimer makes this unit the most important substructural feature of the entire molecule. 

Essentially, the repetitive structure makes a very large, complex protein much simpler. 

Although it is the general consensus in the field that each spectrin repetitive motif folds into 

a closely packed unit, this structure has not been experimentally proven. A structural model for the 
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folding of spectrin polypeptides into a series of short a-helical segments, each comprised of three 

helices, was first proposed by Marchesi and co-workers (Speicher and Marchesi, 1984) based on 

the following information: 1) spectrin contains approximately 60-75% a-helix based on 

measurements of circular dichroism, 2) the length of spectrin subunits of 100 nm is approximately 

1/3 of the length of an extended a-helix of 2000 amino acids, 3) the amino and carboxyl termini of 

the subunits are located at opposite ends of the molecule in solution, 4) spectrin is more flexible in 

solution than rigid coiled-coil a-helical proteins such as myosin and tropomyosin. A series of triple 

helical units would account for the reduced length and increased flexibility of spectrin compared 

with other coiled-coil a-helical proteins and for the fact that ends of the polypeptide chains are 

located at opposite ends of the spectrin molecule. 

Using various prediction methods, a number of modified models were later proposed for 

the 106-residue homologous sequence repeat, suggesting slightly different amounts of secondary 

structural elements and somewhat different arrangements of the secondary structural elements 

(Davison et al., 1989; Xu et al., 1990). Models advanced to date can be generally classified into 

two categories. For one type of the models (Davison et al., 1989; Xu et al., 1990), the phasing of 

the structural units coincides with the phasing of the sequence motifs according to Speicher and 

Marchesi's convention (Speicher and Marchesi, 1984). For the second type of the models (Speicher 

and Marchesi, 1984; Keonig et al., 1988; Dubreuil et al., 1989, Parry and Cohen, 1991; Parry et 

al., 1992), the phasing of the structural units is somewhat staggered relative to the phasing of the 

sequence motifs. Because the 106-residue motif is generally repeated without interruptions, the 

residue that corresponds to the beginning or end of a structural unit is not self-evident. Consider, 

for example, the repetitive sequence of letters ABCDABCDABCDABCD. To produce a 4-letter 

segment of the sequence that can form a structural unit, it is essential to know whether the structure 

is ABCD, BCDA, CDAB, or DABC. 

The first experimental evidence relating the boundaries of the folded, conformational units 
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to the chemical sequence of repeating motifs was provided by Winograd and co-workers (1991) for 

Drosophila a:-spectrin. They have shown that the single repetitive unit and pairs of units can fold 

into stable conformations similar to that of native spectrin when their N-terminal ends are 26 

residues downstream of the beginnings of the sequence motifs. And they also have shown that 

similarly sized polypeptides with other phasings do not fold into stable structures. 

A recent attractive model proposed by Parry and Cohen (Parry and Cohen, 1991 ; Parry et 

al., 1992) employed structural constraints imposed by both the structural features of spectrin and 

the a-helical coiled-coil-like packing. A specific three-helix motif is identified from each sequence 

repeat consisting of one long helix followed by a ,8-turn, followed by a short helix and another .S­

turn. A three-helix structural unit is then generated from this arrangement by each structural motif 

incorporating part of the long helix from the successive repeat. The N-terminal ends of these three­

helix units are 23 residues downstream of the first residues in the conventional sequence motifs. 

A slightly different phasing has been proposed by another group (Speicher et al., 1993). According 

to this model, the N-terminal ends of the conformational units reside at 31 amino acids down stream 

of the N-terminal ends of the sequence motifs. 

For human erythrocyte spectrin, the phasing of the conformational units relative to the 

phasing of the sequence motifs is still not clear. The structure of the conformational units, the 

structural properties of repeating units in relation with each other and with those of the intact 

spectrin are yet to be characterized. 

In this study, we have expressed seven different spectrin fragments with different lengths 

corresponding to the phasing of the sequence motifs or the hypothesized phasing of the structural 

units. Structural features of the two relatively stable fragments have been explored. The 

environment of the cysteine (cys) residues, the thermotropic properties, the response of the proteins 

to the ionic strength, and the reversibility of the conformational changes have been compared 

between the two fragments and compared with those of intact spectrin. The results have provided 



8 

evidence supporting the hypothesis that spectrin consists of individually folded conformational units. 

We have demonstrated that the general properties of one unit are not drastically affected by the 

addition of another unit and that small fragments of spectrin bear structural similarities to intact 

spectrin, although the overall folding of larger fragments appears to be more compact than that of 

smaller fragments. 



CHAPTER II 

MATERIALS AND METHODS 

2.1 Chemicals 

All general chemicals were reagent grade and were purchased from Fisher Scientific 

(Pittsburgh, PA), Sigma Chemical Company (St. Louis, MO) or Aldrich Chemical Company, Inc. 

(Milwaukee, WI). 5,5'dithio-bis(2-nitrobenzoic acid) (DTNB) was obtained from CalBiochem (San 

Diego, CA); 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (Ma16) from Aldrich Chemical 

Company Inc. (Milwaukee, WI); glutathione Sepharose 4B resin, ampicillin and bovine serum 

albumin (BSA) protein standard from Pharmacia LKB Biotechnology (Piscataway, NJ); dye reagent 

for protein assay from Bio-Rad (Richmond, CA); tryptone, yeast extract and Bacto-agar from Curtin 

Metheson Scientific, Inc. (Wooddale, IL); glycine, agarose and protein low molecular weight 

standards from Gibco BRL Life Technologies Inc. (Gaithersburg, MD); 2-nitro-5-thiocyanobenzoic 

acid (TNB-CN), protein high molecular weight standards, glutathione (reduced form, GSH) and 

glutathione agarose resin from Sigma Chemical Company (St. Louis, MO); isopropyl-B-D-thio­

galactoside (IPTG) from Promega Company (Madison, WI). 

2.2 Oligonucleotides and Enzymes 

All oligonucleotide primers for the polymerase chain reaction (PCR) were synthesized by 

National Biosciences (Hamel, MN). EcoRI linker (CGGAATTCCG) was purchased from 

Amersham Company (Arlington Heights, IL); XbaI linker with nonsense codons in all three reading 

9 
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frames (CTAGTCTAGACTAG) from New England BioLabs (Beverly, MA). 

Restriction endonucleases were obtained from either International Biotechnology, Inc. (New 

Haven, CT) or Gibco BRL Life Technologies Inc. (Gaithersburg, MD); T4 DNA ligase from Bio­

Rad (Richmond, CA); Klenow fragment from International Biotechnology, Inc. (New Haven, CT); 

thrombin and RNAse A from Sigma Chemical Company (St. louis, MO); DNA sequenase version 

2.0 from United States Biochemical Company (Cleveland, OH). 

2.3 Bacterial Strains and Plasmids 

E. coli strains HB101 and NM522 were obtained from Dr. Mark Kelley of Loyola 

University Medical Center; MC1022 (Cheah et al., 1988; Warburton and Boseley, 1983) from Dr. 

N. Warburton of Searle Research and Development (High Wycombe, UK). Plasmid pJF18EH 

(Furste et al., 1986; Persico et al., 1989) was a generous gift from Dr. Michael Bagdasarian of 

Michigan Biotechnology Institute (Lansing, MI); pWR 590 series, pBluescript and pBR322 from Dr. 

Mark Kelley; pKCC 100 (Cheah et al., 1988 ; Warburton and Boseley, 1983) from Dr. N. 

Warburton; pTTQ181 (Stark, 1987) from Dr. Michael Stark of University of Leicester (Leicester, 

UK); pTTQ18 (Stark, 1987) from Amersham Company (Arlington Heights, IL); pET-3a (Studier 

et al., 1990; Rosenberg et al., 1987) from Novergen (Madison, WI); pGEX-3x (Smith and Johnson, 

1988) from Pharmacia LKB Biotechnology (Piscataway, NJ). Competent E. coli HB101 cells were 

either purchased from Gibco BRL Life Technologies Inc. (Gaithersburg, MD) or home made 

according to Chung etal. (1989). E. coli strains MC1022 and NM522 were used in the preliminary 

studies. 

2.4 DNA Manipulations 

2.4.1 Plasmid DNA Preparation 

Plasmid DNAs were prepared by the mini-plasmid alkaline lysis procedure either as 
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described in Current Protocols in Molecular Biology (Ausubel et al., 1990) or as described in the 

instruction menu of mini plasmid preparation kit from Qiagen (Studio City, CA). 

2.4.2 DNA Digestion 

Digestion reactions of DNA with restriction endonucleases were carried out in buffers 

provided by the manufacturer of each enzyme and under reaction conditions recommended. 

Reaction mixtures were run on 0.7% agarose gels, as described in section 2.4.5 below, from which 

purified DNA fragments were extracted. 

2.4.3 DNA Ligation 

One unit of T4 DNA ligase was added to each ligation mixture. The ligation buffer 

provided by Gibco BRL Life Technologies Inc. was used. Ligation reactions were allowed to 

proceed at 15 °C overnight. T4 DNA ligase was heat inactivated at 70 °C before transformation. 

2.4.4 DNA Transformation 

For transformation, a 100 µI aliquot of competent cells was measured into a cold micro 

centrifuge tube containing DNA. The cell/DNA suspension was mixed gently and incubated at 4 

°C for 5 - 60 min. A 200 µI aliquot of TSS (0.5% sodium chloride, 1 % tryptone, 0.5% yeast 

extract (LB broth), 10% PEG, 5% DMSO and 50 mM magnesium chloride) was added. The 

suspension was incubated for 1 h at 37 °C with shaking (225 rpm) to allow expression of the 

antibiotic-resistant gene before it was plated onto a LB plate containing ampicillin (100 mg/I). 

Transformants were selected by standard methods described in Molecular Cloning (Sambrook et al. , 

1989) 

2.4.5 DNA Agarose Gel Electrophoresis 
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DNA fragments were separated on 0.7% (w/v) agarose gels. 0.35 g of agarose was 

dissolved in 50 ml of TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA) by boiling. The 

agarose solution was cooled to approximately 60 °C by gentle stirring at room temperature before 

ethidium bromide (EtBr) was added to a final concentration of 1 µg/ml. The mixture was stirred 

gently for another minute before it was poured into a horizontal gel casting tray. The gel was 

allowed to solidify at room temperature for 15 - 20 min prior to being transferred to an 

electrophoresis chamber filled with TBE buffer. DNA samples containing tracing dye (orange G 

in 2.5% ficoll) were loaded into the sample wells of the gel and the electrophoresis was run under 

constant voltage of 40 V until the dye front migrated to the bottom of the gel. Lambda DNA 

cleaved with HindJ.11/EcoRI endonucleases was run simultaneously to serve as the molecular weight 

standard. DNA bands were viewed on an IBI (International Biotechnologies, Inc., New Haven, CT) 

ultra violet light table. 

2.5 Synthesis of Spectrin cDNA Fragments by PCR Amplification. 

Primers a and b were two sense oligonucleotides (synthesized by National Biosciences, 

Hamel, MN). Their sequences were as follows: 

Primer a: (5 ' - CGGGAA TTCACTGGTTCCGCGT ATGGAGCAA TTTCCCAAGGAAACCGTT -3 '), 

Primer b: (5 ' - CGGGAA TTCACTGGTTCCGCGTCGGGTTGCTGAGAGGGGTCAGAAGCTT -3 '). 

They contained an EcoRI restriction endonuclease site (underlined), a 12-base sequence 

corresponding to the thrombin recognition/cleavage site with an amino acid sequence of L VPR 

(double underlined), and the sequences corresponding to amino acid residues l through 9 and 41 

through 49 of the N-terminus of a-spectrin (amino acids 1 - 9 and 41 - 49), in a sense orientation 

(bold). 

Six anti-sense oligonucleotides, Primers A, B, C, D, E and F as follows, were also 

synthesized: 



Primer A: 5'- TAGTCTAGAGGGATCCCTATTCTTCGTGGGCAGAATGACCCAT -3', 

Primer B: 5'- TAGTCTAGAGGGATCCCTAACACTCCTGTACATACTGCTGGAA -3', 

Primer C: 5'- TAGTCTAGAGGGATCCCTACACATCCCTTTTGAATCGTTGTAA -3', 

Primer D: 5'-TAGTCTAGAGGGATCCCTATAAGGGTAGGTCAGGATGGTTTTC -3', 

Primer E: 5 ' - T AGTCTAGAGGGATCCCTA CTGAGGTGCATCTGAAGGATGGGA -3', 

Primer F: 5'- TAGTCTAGAGGGATCCCTATTCATCAGAGGCTTCATGATTGGC -3'. 
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Primers A, B, C, D , E and F contained the sequences corresponding to amino acids 121 - 128, 160 

- 167, 266 - 273, 227 - 234, 333 - 340 and 439 - 446 of a spectrin, respectively (bold). The 

primers also included a stop codon (italic), a BamHI site (double underlined) and an XbaI site 

(underlined) at the 5' end. 

The cDNA clone of spectrin, a3 (Sahr et al., 1990), a generous gift from Dr. B. Forget 

of Yale University (New Haven, CT), was linearized by Saeli and used as the template. A reaction 

mixture (150 µl) was prepared containing 15 µl of the concentrated reaction buffer supplied by 

Gibco BRL Life Technologies Inc., 1.5 µl of 10 mM dNTP, 1.5 µl of either primer a (20 pmol/µl) 

paired with Primer A, B, C, D, E or F (20 pmol/µl) or Primer b (20 pmol/µl) paired with primer 

B or C (20 pmol/µl), 1 ng of template, 128 µl of H20 and 1 µl of Taq polymerase (2 U/µl). This 

mixture was overlaid with 100 µl of mineral oil and subjected to 30 rounds of temperature cycling: 

95 °C, 30 s (denaturation); 55 °C, 2 min (annealing); 72 °C, 2 min (elongation) and a final 

incubation for 7 min at 72 °C in a thermal cycler (Eppendorf Microcycler) to give ETbSpal-

128BX, ETbSpal-167BX, ETbSpal-234BX, ETbSpal-340BX, ETbSpal-446BX, ETbSpa41-

167BX or ETbSpa41-273BX. The molecular masses (MWs) of the synthesized DNA fragments 

were found to match the calculated sizes. 

2.6 Construction of Expression Vectors 

Spectrin fusion protein expression vectors were constructed as shown in Fig. 1. The initial 

expression vector was pGEX-3x (Pharmacia, Piscataway, NJ) (Smith and Johnson, 1988), a 



Figure 1 

14 

Construction of GST:Spam-n fusion protein expression vectors. Details are 

provided in text. The top line on the left represents the a3 cDNA clone of 

spectrin. Each numbered section corresponds to a conventional 106 amino-acid 

homologous sequence motif. PCRproducts, ETbSpal-128BX, ETbSpa41-167BX, 

ETbSpal-167BX, ETbSpa41-273BX, ETbSpal-234BX, ETbSpal-340BX and 

ETbSpal-446BX, are depicted below the a3 cDNA clone. Specific sites included 

in the primers are indicated by symbols: □ = EcoRI; 0 = thrombin cleavage site; 

• = TAG stop codon; .A = BamHI.; ■ = XbaI. The gene coding for 

glutathione-S-transferase fragment in the expression vector is indicated by GST. 

The amino acid sequence of the factor Xa cleavage site is displayed as single 

letters. The initial expression vector pGEX-3x was modified to give pGEX-x. 

Spectrin cDNA fragments were cloned into pGEX-x to give pGEX-x-m-n, where 

m and n were 1 and 128, 41 and 167, 1 and 167, 41 and 273, 1 and 234, 1 and 

340, and 1 and 446, respectively. 
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glutathione S-transferase (GST) expression vector, which contained the coding sequence of the 

Fai.:tor Xa cleavage site followed by multiple cloning sites of Bamlll, SmaI and EcoRI. This 

expression vector was linearized by AatII and blunt ended with dNTP and Kienow fragment. A non­

phosphorylated Xbal linker (New England Biolabs, Beverly, MA) with stop codons (TAG) in all 

three reading frames was ligated into it to give the modified expression vector, pGEX-x. pGEX-x 

was digested with EcoRI and Xbal and dephosphorylated, then a PCR amplified spectrin cDNA 

fragment (ETbSpal-128BX, ETbSpa41-167BX, ETbSpal-167BX, ETbSpa41-273BX, ETbSpal-

234BX, ETbSpa 1-340BX or ETbSpa l-446BX) previously digested with EcoRI and Xbal was ligated 

to it, resulting in the pGEX-x-m-n spectrin fusion protein expression vector, where m and n were 

1 and 128, 41 and 167, 1 and 167, 41 and 273, 1 and 234, 1 and 340 or 1 and 446, respectively. 

All the synthesized DNA fragments contained anEcoRI site followed by the sequence coding 

for the thrombin cleavage site at the 5' end, a stop codon, a Bamlll site, and an Xbal site at 3' end 

to allow the amplified spectrin fragments to be cloned into several different vectors that we were 

working on. By including the thrombin recognition/cleavage site, digestion of fusion proteins with 

thrombin would occur exactly before the first amino acid residue of spectrin. 

2.7 Expression of Spectrin Fragments as Cleavable Fusion Proteins with GST 

An overnight culture of E. coli HB 101 transformed with one of the fusion protein expression 

vectors was diluted twenty fold in fresh LB broth with an ampicillin concentration of 100 mg/1 and 

was allowed to grow for about 2 h at 37 °C. When the mid-log phase (OD600 = 0.6 - 1) was 

reached, expression of the corresponding spectrin fusion protein was induced by adding IPTG to a 

final concentration of 0.1 mM. Induced cells were allowed to grow at 37 °C for another 4 - 6 h 

before being harvested by centrifugation at 5000 x g in a Sorvall RB-5C refrigerated centrifuge (Du 

Pont Company, Wilmington, DE). The supernatant was aspirated and, if necessary, the cell pellet 

was stored at -20 °C. The amount of fusion proteins was estimated, by densitometer scanning, to 
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comprise approximately 15 % of the total E. coli soluble proteins. The pGEX-x expression vector 

.:ontained the laclq gene which allowed fusion proteins to be expressed at high levels upon IPTG 

induction regardless of the host stain used. Similar methods have been used to prepare other 

spectrin fragments (Dubreuil et al., 1991; Kennedy et al., 1991). 

The apparent molecular masses of the fusion proteins were estimated from their band 

positions on a SDS electrophoresis gel, using molecular mass standards as references (described in 

section 2.12.2). The estimated MWs of the spectrin fragments were calculated from their amino 

acid sequences. 

2.8 Purification of Fusion Proteins 

Packed cells from one volume of culture were resuspended in 1/50 volume of 5 mM sodium 

phosphate, 150 mM sodium chloride, 1% Triton X-100, pH 7.4 and lysed by mild sonication on ice 

prior to centrifugation at 10,000 x g for 5 min at 4 °C. The supernatant was filtered through a 0.45 

µm filter and loaded onto a glutathione affinity column (GSH-Sepharose 4B from Pharmacia LKB 

Biotechnology, Piscataway, NJ or S-linker agarose from Sigma Chemical Company, St. Louis, 

MO), pre-equilibrated with 5 mM sodium phosphate, 150 mM sodium chloride, pH 7.4. The 

column with one of the fusion proteins bound was washed with IO volumes of the same buffer, 

followed by elution of the fusion protein with 50 mM Tris, 5 mM glutathione at pH 8. 

2.9 Thrombin Cleavage of Fusion Proteins 

The protein concentration of purified fusion proteins was adjusted to about I mg/ml. The 

salt concentration of the protein samples was adjusted to 200 mM by 2 M sodium chloride stock 

solution. Thrombin (Sigma Chemical Company, St. Louis, MO) was added at an enzyme to 

substrate (E:S) molar ratio of either 1:500 or I: 1000. Cleavage reactions were carried out at room 

temperature for a set amount of time and cleavage results were evaluated by SDS gel 
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electrophoresis. 

2.10 Purification of Spa41-273 and Spal-446 

The 8 h thrombin cleavage reaction mixture of Spa41-273 or Spal-446 was loaded onto a 

glutathione affinity column pre-equilibrated with 5 mM sodium phosphate, 150 mM sodium chloride, 

pH 7.4. The protein was eluted at a flow rate of 40 ml/h. GST and the uncleaved fusion protein 

were absorbed by the column and the cleaved Spa41-273 or Spal-446 was eluted. Protein fractions 

were pooled. 

2.11 Removal of GSH 

GSH in purified Spa41-273 and Spal-446 was either free in solution or bound to sulthydryl 

groups of spectrin fragments. Two different procedures were followed to remove the free and 

bound GSH. To remove the free GSH, a purified spectrin fragment was loaded directly onto a 

Sephadex G-25 (Pharmacia LKB Biotechnology, Piscataway, NJ) column pre-equilibrated with either 

5 mM sodium phosphate, pH 7.4 (low salt buffer) or 5 mM sodium phosphate, 150 mM sodium 

phosphate, pH 7.4 (high salt buffer). Elution of the protein was carried out at a flow rate of 40 

ml/h with the same buffer and protein fractions were pooled. To remove the bound GSH, /3-

mercaptoethanol (/3-ME) at a final concentration of 45 mM was added to a purified spectrin fragment 

to reduce the bound GSH. The reaction was allowed to incubate on ice for 30 min prior to loading 

onto a Sephadex G-25 column pre-equilibrated with either the low salt or high salt buffer. The 

protein was eluted with the same buffer and fractions of the reduced protein were pooled. 

2.12 

2.12.1 

Analysis of Proteins 

Protein Concentration Assay 

Protein concentrations were determined by a dye binding assay (Bradford, 1976) using the 
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assay kit provided by Bio-Rad (Richmond, CA). One volume of the dye reagent was diluted by four 

volumes of deionized H20 and filtered through a Whatman filter paper prior to use. A series of 

BSA solutions with concentration of 0.2, 0.4, 0.6, 0.8 and 1 mg/ml were prepared as protein 

concentration standards. 5 ml of diluted reagent was added to a 100 µl aliquot of each of the above 

BSA standards and protein samples for which concentrations were to be determined. Assay reaction 

mixtures were incubated at room temperature for 5 min and absorbances were measured at 595 nm 

using the diluted reagent as the blank. A 595 measurements of protein standards were plotted against 

their concentrations. The least squares linear fit of the data points was obtained as the calibration 

curve from which concentrations of unknown samples were obtained. 

2.12.2 Protein SDS Polyacrylamide Gel Electrophoresis 

The SDS polyacrylamide gel electrophoresis was carried out according to method of 

Laemmli with modifications (Laemmli, 1970). The electrophoresis sample was prepared by mixing 

equal volumes of protein solution with SOS sample loading buffer containing 100 mM tris acid, pH 

6.8, 2% ,8-mercaptoethanol, 4% SOS, 0.2% bromophenol blue, 20% glycerol. The separating gel 

was made of 12-16% (w/v) acrylamide, 0.35-0.43% (w/v) N,N'-methylene bisacrylamide, 375 mM 

Tris (pH 8.8), 0.1 % (w/v) SDS, 0.03% (w/v)ammonium persulfate, 0.07% (v/v) TEMED. The 

stacking gel was made of 3.8% (w/v) acrylamide, 0.1 % (w/v) bisacrylamide, 125 mM Tris (pH 

6.6), 0.05% (w/v) ammonium persulfate, 0.5% (v/v) TEMED. The electrophoresis was run in a 

Bio-Rad (Richmond, CA) mini-protein II electrophoresis cell under a constant voltage of 150 V. 

The gel was stained with a solution containing 0.25% (w/v) Coomassie Blue R-250, 40% (v/v) 

methanol, 7% (v/v) acetic acid, and subsequently destained with a solution containing 40% methanol 

and 10% acetic acid. The destained gels were shaken in 5% acetic acid for 30 min before being 

dried in a Bio-Rad model 543 gel dryer. Selected bands were scanned on an Isco model 1312 gel 

scanner and analyzed by a commercially available software (Chemresearch Chromatographic Data 
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Management Software from Isco, Lincoln, Nebraska). 

Apparent MWs of proteins were estimated from the band positions on SDS polyacrylamide 

gels based on the relationship: 

d =a+ blog MW 

where d was the distant from the gel top to the middle of a protein band, a and b were constants 

obtained from the standard curve as discussed below, and MW was the apparent molecular weight 

of the protein. d values of protein standards were plotted against their log MW values and the linear 

fit of the data was used as a standard curve to give a and b values. 

2.13 Spin Labeling 

2.13.1 Native Samples 

The nitroxide spin label Mal6 is a widely used sultbydryl-specific spin label (Sandberg et 

al., 1969; Schneider and Smith, 1970; Yu et al., 1977; Fung and Simpson, 1979; Fung, 1981; Lai 

et al., 1984; Kemple et al., 1984). It can be attached selectively to free cys residues of a protein 

through covalent bonding to "report" detailed information on the local molecular environments of 

the labeling sites (Fig. 2a). 

Mal6 was purchased from Aldrich Chemical Company, Inc. (Milwaukee, WI) and used 

without further purification. A 10-2 M Mal6 stock solution was prepared by dissolving 12.5 mg of 

Mal6 in 5 ml of acetonitrile. An aliquot of the Mal6 stock solution was measured into a vial and 

a very gentle stream of N2 gas was applied to dry the spin labels as a thin film onto the wall of the 

vial in the dark. N2 was continuously blown for another 20 min after the spin labels were dried. 

1.5 mg of protein was then added to the vial. The labeling reaction was allowed to proceed at 4 

~C for a desired amount of time with gentle stirring. Upon completion of the reaction, excess spin 

labels were removed with a Sephadex G-25 column equilibrated with either 5 mM sodium phosphate 

(pH 7.4) or 5 mM sodium phosphate, 150 mM sodium chloride (pH 7.4). The spin-labeled protein 
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A schematic representation of Mal6 and DTNB reactions. a, reaction of Mal6 

(Sandberg et al., 1969; Schneider and Smith, 1970; Yu et al., 1977; Fung and 

Simpson, 1979; Fung, 1981; Lai et al., 1984; Kemple et al., 1984) with spectrin 

fragments (p-SH). b, reaction of DTNB with spectrin fragments (Ellman, 1959). 
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sample of about 5 ml was then concentrated in a centricon-30 micro concentrator (Amicon, 

Lexington, Mass) to a final concentration of approximately 10 mg/ml by centrifugation (Sorvall 

SS34 rotor, 5000 rpm). Typically, an aliquot of 20 µl of spin-labeled sample was taken for EPR 

measurements, another aliquot of 5 µl sample was diluted 40 fold by 5 mM phosphate buffer (pH 

7.4) for protein concentration assay and gel electrophoresis, and the remaining sample was frozen 

at -20 °C for future use. 

To achieve selective labeling of specific cys residues to a specific extent, several conditions 

involving different Mal6/Sp ratios (µl of 10-2 M Mal6 stock solution per mg of spectrin) and 

different lengths of labeling time were used in this study. The three most frequently used conditions 

were as follows: Mal6/Sp ratio of 40 µl/mg for I h (the low spin label concentration and short time 

labeling condition); Mal6/Sp ratio of 40 µl/mg for 16 h (the low spin label concentration and 

overnight labeling condition); Mal6/Sp ratio of 200 µl/mg for 16 h ( the high spin label concentration 

and overnight labeling condition). 

2.13.2 Samples in Urea 

Urea was added to Mal6-labeled protein samples in 5 mM sodium phosphate at pH 7.4 until 

final urea concentrations of 2, 3, 4, 5, or 6 M were obtained, respectively. 

2.13.3 Urea-Treated Samples 

The Mal6 labeling of urea-treated samples was performed according to two different 

procedures with a slightly different order of reaction steps. 

In Procedure 1, Mal 6 labeling was performed in the presence of urea. Urea was added to 

2 mg of protein (0.5 - 2 mg/ml) in 5 mM sodium phosphate buffer, pH 7.4, to yield a final urea 

concentration of 8 M. The spectrin fragment in 8 M urea was labeled by Mal6 according to the 

procedure previously described. The reaction mixture was dialyzed twice against 1 liter of 5 mM 
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sodium phosphate buffer at pH 7.4 for 1 h. The dialyzed sample was then eluted through a 

Sephadex G-25 column pre-equilibrated ,,vith the same buffer to ensure the complete removal of urea 

and excess spin labels. Pooled protein fractions were then concentrated to approximately 10 mg/ml, 

for which EPR measurements were taken. 

In Procedure 2, Mal6 labeling was performed after the removal of urea. Urea was added 

to 2 mg of protein (0.5 - 2 mg/ml) to yield a final urea concentration of 8 M and incubated 

overnight. The urea was then removed by two runs of 1 h dialysis against 1 liter of 5 mM sodium 

phosphate buffer at pH 7.4 and subsequent elution of the dialyzed sample through a Sephadex G-25 

column pre-equilibrated with the same buffer. Protein fractions were then pooled and labeled by 

Mal6 according to the procedure described above. 

2.14 TNB-CN Cleavage Reaction 

TNB-CN is a sulthydryl specific reagent (Catsimpoolas and Wood, 1966; Degani et al., 

1970; Jacobson et al., 1973). It is capable of converting free cys residues in proteins to S­

cyanocysteines. Cleavage of the amino peptide bond of the S-cyanocysteine residue is obtained upon 

its exposure to a basic pH at 37°C. The steps that are involved in modification and cleavage 

reactions are summarized in Fig. 3. Free and bound cys residues can be differentiated in a TNB-CN 

reaction based on the fact that the peptide bond next to a free cys residue can be cleaved in a TNB­

CN reaction whereas the peptide bond next to a bound cys residue cannot be cleaved (Jacobson et 

al., 1973). 

The published procedure (Jacobson et al., 1973) was followed to perform the TNB-CN 

cleavage reaction. Spectrin was either lyophilized or concentrated extensively to approximately 10 

mg/ml. A portion of the either lyophilized or concentrated sample was dissolved in a solution of 

8 M urea, 0.2 M tris acetate, 4 x 10-4 M ,B-ME at pH 8.5 to give a final protein concentration of 

1.5 mg/ml and incubated at room temperature for 30 min. An aliquot of this mixture was set aside 
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A flow chart of the TNB-CN modification and cleavage reaction (Jacobson et 

al., 1973). 
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as a control sample. To the remainder, a 0.233 M (50 mg/ml) TNB-CN stock solution was added 

to yidd a final TNB-CN concentration of 5 .8 mM. Since the volume of the TNB-CN stock solution 

added was relatively small, the protein concentration in the reaction mixture was assumed to remain 

unchanged. The pH was re-adjusted to 8.5 using 1 M sodium hydroxide. All samples were 

incubated at room temperature for 15 min. The pH of the reaction mixture as well as that of the 

control sample were readjusted to 7.5 by addition of acetic acid. The cleavage reaction was carried 

out at 37°C for 48 h. At the end of the reaction an equal volume of SDS sample loading buffer 

containing 2% SDS and 1 % /3-ME was added to the TNB-CN reaction mixture. /3-ME was used 

to quench the reaction. The samples were boiled and analyzed by SDS polyacrylamide gel 

electrophoresis. 

2.15 DTNB Assay 

The published procedure of the DTNB reaction (Ellman, 1959) (Fig. 2b) was followed. A 

2 mM stock solution of GSH was freshly made by dissolving 15 .4 mg of GSH in 25 ml H20 

immediately before the assay. Dilutions were made with 5 mM sodium phosphate (pH 7.4) to give 

10, 20, 40, 60, 80, 120 and 160 µ,M GSH standard solutions. A 2 mM DTNB stock solution was 

prepared by dissolving 0.198 g of DTNB in 250 ml of 5 mM phosphate buffer, pH 7.4. Equal 

volumes of a GSH standard solution and 2 mM DTNB stock solution were mixed and then incubated 

at room temperature for 2 min. Absorbances of reaction mixtures at 412 nm were measured using 

the mixture of 2 mM DTNB stock solution and buffer as the blank and plotted against GSH 

concentrations ([GSH]). The linear least squares fit of the data points was obtained as a calibration 

curve and the molar extinction coefficient of the yellow anion at 412 nm (e412) was read from the 

slope. 

To determine the reactive sulfhydryl content in Spcx41-273 and Spcxl-446, nine volumes of 

a protein (0.5-1 mg/ml) were mixed with one volume of DTNB stock solution. The mixture was 
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incubated at room temperature for I hand its absorbance at 412 nm (Arxn) was taken using a mixture 

uf nine volumes of buffer and one volume of DTNB as the blank. To subtract away the contribution 

of the absorbance of the protein at 412 nm from the total absorption at 412 nm, A.rotein was also 

obtained. A.rotein was the absorbance of a mixture of nine volumes of protein with one volume of 

buffer at 412 nm. The absorbance of the reaction mixture at 412 nm contributed by the yellow 

anion resulted from the reaction (A412) was calculated as: 

A412 = ~ - A.rotein · 

The concentration of the sulthydryl in protein that was reactive to DTNB ([SH]) was calculated 

according to the formula: 

[SH] = A412/e412_ 

The number of reactive sulthydryls per protein fragment (SH/Sp ratio) was calculated from the 

concentration of the reactive sulthydryl ([SH]) and the concentration of the protein ([Sp]) as: 

SH/Sp = [SH]/[Sp]. 

2.16 Combination of Mal6 and DTNB Reactions 

The 2 mM DTNB stock solution was added to a spectrin sample (0.5-1 mg/ml) to give a 

final DTNB concentration of 0.2 mM. The reaction was allowed to proceed at 4 °C for 4 h. The 

reaction mixture was eluted through a Sephadex G-25 column pre-equilibrated with 5 mM sodium 

phosphate buffer and pH 7.4 at a flow rate of 40 ml/h. Protein fractions were pooled and the 

protein concentration was determined. 1.5 mg of this DTNB-reacted protein (0.2-0. 75 mg/ml) was 

then spin labeled by Mal6 according to the procedure described in section 2.13.1. 

2.17 EPR Measurements 

EPR measurements were taken on a Varian E-109 EPR spectrometer. A scientific program, 

ASYST (MacMillan Software), modified for EPR operation was used for data acquisition and data 
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analysis on a Zenith personal computer. The usual EPR instrumental parameters were: incident 

microwave power, I mW; center of the field, 3250 gauss; scan range, 100 gauss; modulation 

amplitude, 1 gauss; time constant, 0.128; receiver gain, 10 x 103
; scan time, 60 sec. 

All the EPR measurements were taken either at room temperature (about 21 °C) or at 

specified temperatures. The cavity temperature was controlled by an IBM variable temperature 

control unit. The actual temperature of the cavity was monitored by a digital thermometer with a 

thermocouple immersed into the silicon fluid of the quartz tube within the cavity. Simultaneously, 

a water bath was pre-warmed to 2 °C below the cavity temperature upon heating or 2 °C above the 

cavity temperature upon cooling. The spin-labeled sample was incubated in the water bath while 

the temperature of the cavity was being adjusted. Once the cavity reached the set temperature, the 

spin-labeled sample was placed into the quartz tube. 1 min of incubation was allowed for the 

temperature of the sample to reach an equilibrium with the temperature of the cavity before an EPR 

spectrum was recorded. 

Approximately 20 µl of EPR sample contained in a glass capillary tube was placed into the 

cavity with a standard quartz tube half filled with silicon fluid. 

2.18 

2.18.1 

EPR Data Analysis 

SL/Sp ratio 

Spin label concentrations ([SL]) were determined from double integration of the EPR spectra 

of spin-labeled samples. Protein concentrations ([Sp]) were determined as described previously. 

Number of spin labels bound per spectrin molecule (SL/Sp ratio) was calculated as: 

SL/Sp = [SL]/[Sp]. 

2 .18. 2 Spectral Parameters 

An EPR spectrum (see Fig. 14, section 3.3.1.2.1) was analyzed by measuring the outer 
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hyperfine extrema (2Au), sensitive to the motion and environment of the labeling sites, and the peak 

height of the high field weakly immobilized signal (W'), sensitive to the percentage of the weakly 

immobilized component in the system. Widths of the low field and high field weakly immobilized 

signals, LlHpp and LlHpp' were also measured for spin-labeled Spa41-273 at different temperatures 

to determine the rotational motions of the weakly immobilized component as a function of 

temperature. Spin label concentrations of spin-labeled samples were obtained from double 

integration of the first derivative EPR spectra. 

2.18.3 Spectral Addition 

EPR spectra of singly-labeled Spal-446 (labeled at site l) and DTNB-treated Spal-446 

(labeled at site 2) were added digitally using the modified ASYST software to construct a composite 

EPR spectrum. An example of spectral addition is given as follows. A was an EPR spectrum of 

Spal-446 in 5 mM sodium phosphate, pH 7.4, with a SL/Sp ratio of0.82. B was an EPR spectrum 

of DTNB-treated Spal-446 in 5 mM sodium phosphate, pH 7.4, with an SL/Sp ratio of 0.88. C 

was an EPR spectrum of Spal-446 labeled at both site 1 and site 2 with an SL/Sp ratio of 1.3. To 

construct C', the composite EPR spectrum of Spa 1-446 with an SL/Sp ratio of 1. 3, A and B were 

both normalized to the amplitude of C by the central peak. Assuming that one label of the total 1. 3 

labels on each Spal-446 was associated with site 1 and the remaining 0.3 label was associated site 

2, A was multiplied by a factor of 1/1.3 = 0. 77 and B was multiplied by a factor of 0.3/1.3 = 0.23 

before the two spectra were added. 

2.18.4 Spectral Subtraction 

Spectral subtraction was performed for EPR samples of Spa41-273 according to Fung and 

Johnson (1983) using the modified ASYST program. 

An EPR spectrum of Spa41-273 in 5 mM sodium phosphate at pH 7.4 treated with 5 M 
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urea was used to remove the weakly immobilized component in an EPR spectrum of Spa41-273 in 

5 ITu\1 sodium phosphate, pH 7.4. The EPR spectrum of Spa41-273 in 5 M urea was normalized 

to the amplitude of the EPR spectrum Spa41-273 in 5 mM sodium phosphate at pH 7.4 by the 

central peak. The normalized EPR spectrum of Spa41-273 in 5 M urea was multiplied by a scaling 

factor such that, after the subtraction, the weakly immobilized component of the EPR spectrum of 

Spa41-273 in 5 mM sodium phosphate at pH 7.4 was subtracted completely. 

The spin label concentration was calculated from the double integration of the EPR 

spectrum. If the spin label concentration obtained from an EPR spectrum of Spa41-273 in 5 mM 

sodium phosphate (pH 7.4) was a and the spin label concentration of the resulting EPR spectrum 

of the strongly immobilized component is b, the percentage of the strongly immobilized component 

was calculated as b/a. The percentage of the weakly immobilized component was calculated as l­

b/a. 

2.19 Stokes Radius Determination 

2.19.1 Native Samples 

The Stokes radii (R.) of native Spa41-273 and Spa 1-446 in low salt buffer (5 mM sodium 

phosphate, pH 7.4) and high salt buffer (5 mM sodium phosphate, 150 mM sodium chloride, pH 

7.4) were estimated using a 1.5 cm x 80 cm Sepharose 4B column. The column was equilibrated 

with high salt buffer and calibrated by thyroglobulin (669 kD, 85.0 A), ferritin (440 kD, 61.0 A), 

catalase (232 kD, 52.2 A), BSA (67 kD, 35.5 A) and hemoglobin (64 kD, 31.0 A) (LaBrake, 1993). 

The partition coefficient (K,.v) of each protein was calculated as K,.v = (Ve-V0)/(VcV0 ), where Ve = 

the elution volume of the solute, V0 = the void volume and Vt = the total bed volume (Ackers, 

1964; Laurent and Killander, 1964). VO was determined by elution of blue Dextran ( average MW 

2,000,000) through the column. Partition coefficients of the protein standards were plotted against 

their log(R,.) values. The regression line, log(R,.) = 2.56 - 1.29 K,.v, was used as the calibration 
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curve to calculate the Stokes radii of spectrin fragments under different conditions. Normally, l ml 

of 1 mg/ml protein in low salt or high salt buffer was loaded onto the Sepharose 4B column pre~ 

equilibrated with the same buffer. The protein was eluted at a speed of 23 ml/h. 

2.19.2 Urea Treatment 

Urea was added to protein samples in 5 mM sodium phosphate buffer, pH 7.4, to give a 

final urea concentration of 8 Mand incubated at 4 cc overnight. Urea was then removed by three 

runs of 8 h dialysis (molecular porous membrane tubing 2, Spectrum, Los Angeles, CA) against I 

liter of the same buffer (urea-treated samples). The Stokes radii of the urea-treated samples in low 

salt buffer were estimated under similar setting as described in section 2.19.1. 

2.19.3 Heat Treatment 

Boiled protein samples in 5 mM sodium phosphate buffer, pH 7. 4, were heated in a I 00 c C 

water bath for 5 - 10 min. Temperature-cycled samples were heated gradually to approximately 80 

cc at 2 - 10 cc temperature intervals (2 - 5 min) followed by gradual cooling to room temperature 

at similar intervals. The Stokes radii of the boiled and heat-treated samples in low salt buffer were 

estimated under similar setting as described in section 2.19.1. 



CHAPTER III 

RESULTS 

3 .1 Spectrin Fragments Expression and Purification 

3.1.1 Expression of Spectrin Fragments as Fusion Proteins with GST 

The seven cDNA fragments, ETbSpal-128BX, ETbspa41-167BX, ETbspal-167BX, 

ETbspa41-273BX, ETbSpal-234BX, ETbSpal-340BX, and ETbSpal-446BX (Fig. 1), 

corresponding to spectrin a-subunit amino acid residues 1 to 128, 41 to 167, 1 to 167, 41 to 273, 

1 to 234, 1 to 340, and 1 to 446, respectively, were synthesized by PCR. These seven cDNA 

fragments were successfully cloned into the GST fusion protein expression vector pGEX-x. 

Fusion proteins, GST:Spal-128, GST:Spa41-167, GST:Spal-167, GST:Spa41-273, 

GST:Spal-234, GST:Spal-340 and GST:Spal-446, were expressed and SOS electrophoresis data 

are shown in Fig. 4. Lanes 1 of Fig. 4a (12% gel) and 4b (15% gel) are high molecular weight and 

low molecular weight protein standards, respectively. The whole cell extract of E. coli HB101 

transformed with the expression vector pGEX-x is as shown in lanes 2 of Fig. 4a and 2b. Major 

bands (indicated by *) with apparent MWs of 25 and 26 kD were observed, suggesting that these 

were GST bands since the estimated MW of GST is 26 kD (Smith and Johnson, 1986). The whole 

cell extracts of E. coli HB101 transformed with spectrin fusion expression vectors pGEX-x-1-128, 

pGEX-x-1-234, pGEX-x-1-340, pGEX-x-1-446, pGEX-x-1-167, pGEX-x-41-167 and pGEX-x-41-

273 are shown in lanes 3 - 6 of Fig. 4a and lanes 3 - 5 of Fig. 4b, respectively. Major bands 

(indicated by-+) with apparent MWs of 40, 52, 64, 77, 43, 39 and 49 kD were observed in the 
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SDS polyacrylamide electrophoresis gels (12 % for a and 15 % for b) stained 

with 0.25 % Coomassie brilliant blue R. These gels (0.5 mm thick) were run for 

about 40 min under a constant voltage of 150 V. a, lane I: high molecular weight 

protein standards (kD); lanes 2, 3, 4, 5 and 6: total cell extracts of E. coli HB101 

harbored withpGEX-x, pGEX-x-1-128, pGEX-x-1-234, pGEX-x-1-340 andpGEX­

x-1-446, respectively; lanes 7, 8, 9 and 10: purified fusion proteins GST:Spal-128, 

GST:Spal-234, GST:Spal-340 and GST:Spal-446, respectively. b, lane 1: low 

molecular weight protein standards (kD); lanes 2, 3, 4 and 5: total cell extracts of 

E. coli HB101 harbored with pGEX-x, pGEX-x-1-167, pGEX-x-41-167 and pGEX­

x-41-273, respectively; lanes 6, 7 and 8: purified fusion proteins GST:Spal-167, 

GST:Spa41-167 and GST:Spa41-273, respectively. The positions of the GST 

bands are indicated by * and those of fusion protein bands by-+, 
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corresponding lanes. The estimated MWs of GST:Spal-128, GST:Sal-234, GST:Sal-340, 

GST:So:1-446, GST:So:1-167, GST:So:41-167 and GST:So:41-273 are 41.1, 53.5, 65.4, 74.6, 45.9, 

41.1 and 53.3 kD, respectively. Apparent MWs of the fusion proteins were shown to match their 

estimated values to within 5 kD, suggesting that the desired fusion proteins were obtained. A 

summary of the apparent and estimated MWs of the fusion proteins is shown in Tables la and lb. 

3.1.2 Fusion Protein Purification 

Using the procedure described in section 2.8, approximately 3 -25 mg of fusion protein was 

purified from each liter of E.coli cell culture as shown in Table la. Lanes 7 - 10 of Fig. 4a and 

lanes 6- 8 of Fig. 4b contained purified fusion proteins GST:Spal-128, GST:Spal-234, GST:Spal-

340, GST:Spal-446, GST:Spal-167, GST:Spa41-167 and GST:Spa41-273, respectively. Major 

bands (indicated by-+) were considered as those of the fusion proteins. Their estimated MWs were 

determined to be 40, 52, 64, 77, 43, 39 and 49 kD, respectively. Relatively pure fusion proteins 

were obtained for GST:Spal-167 (lane 6, Fig. 4b), GST:Spal-234 (lane 8, Fig. 4a), GST:Spal-340 

(lane 9, Fig. 4a) and GST:Spal-446 (lane 10, Fig. 4a). Several other bands, mostly light bands 

with MWs lower than those of the fusion proteins, were observed in addition to the major fusion 

protein bands for GST:Spal-128 (lane 7, Fig. 4a), GST:Spa41-167 (lane 7, Fig. 4b) and 

GST:Spa41-273 (lane 8, Fig. 4b), to a lesser degree, GST:Spal-167 (lane 6, Fig. 4b ), GST:Spal-

234 (lane 8, Fig. 4a) and GST:Spal-340 (lane 9, Fig. 4a). Those light bands were presumably 

degradation products of the fusion proteins generated during the process of purification. The yield 

of a fusion protein appeared to correlate with its size (Table la). 

3.1.3 Thrombin Cleavage of Fusion Proteins 

SOS electrophoresis results of thrombin cleavage of fusion proteins are shown in Fig. 5. 



Table la Estimated and Apparent Molecular Masses of Fusion Proteins of Spectrin fragments with GST 

Protein Estimated MW (kD) Apparent MW (kD) Yield 

Fig. 4a Fig. 4b Fig. Sa Fig. Sb (mg Protein/I of Cell) 

GST:Spal-128 41.1 40 40 3 ± 0 (n=2) 

GST:Spa41-167 41.1 39 40 5 ± 0 (n=2) 

GST:Spal-167 45.9 43 44 13 ± 3 (n=2) 

GST:Spa41-273 53.3 49 50 24 ± 3 (n=S) 

GST:Spal-234 53.5 52 50 10 ± 1 (n=2) 

GST:Spal-340 65.4 64 68 10 ± 4 (n=2) 

GST:Spal-446 74.6 77 76 21 ± 6 (n=2) 

GST 25 26 25 27 



Table lb Estimated and Apparent Molecular Masses of Spectrin fragments and GST 

Protein Estimated MW (kD) Apparent MW (kD) 

Fig. 5a Fig. 5b Fig. 6 

Spal-128 15.1 17 

Spa41-167 15.1 16 

Spal-167 19.9 21 

Spa41-273 27.3 31 30 

Spal-234 27.5 31 

Spal-340 39.4 40 

Spal-446 51.6 50 52 

GST 26 25 27 
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SDS polyacrylamide electrophoresis gels (12% for a and 15 % for b) stained 

with 0.25 % Coomassie brilliant blue R. These gels (0.5 mm thick) were run for 

about 40 min under a constant voltage of 150 V. Lanes I in a and b are low 

molecular weight standards (k.D). GST:Spal-128, GST:Spal-234, GST:Spal-340, 

GST:Spal-446, GST:Spal-167, GST:Spa41-167 and GST:Spa41-273 incubated 

for 24 h in the reaction buffer are shown in a, lanes 2, 3, 4 and 5 & b, lanes 2, 3 

and 4, respectively. Their 24-hour thrombin reaction mixtures with an enzyme to 

substrate molar ratio of 1:500 are shown in a, lanes 6, 7 and 8 and 9 & b, lanes 5, 

6 and 7, respectively. The positions of the fusion protein bands are indicated by 

-+, those of GST bands by * and those of the cleaved spectrin bands by ==>. 
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Lanes 1 of Fig. Sa (12% gel) and Sb (15% gel) are high molecular weight and low molecular weight 

protein standards, r~spectivdy. Fusion proteins, GST:Spal-128, GST:Spal-234, GST:Spal-340, 

GST:Spal-446, GST:Spal-167, GST:Spa41-167 and GST:Spa41-273, incubated in the thrombin 

reaction buffer without thrombin for 24 h are shown in lanes 2 - 5 of Fig. Sa and lanes 2 - 4 of Fig. 

Sb, respectively. Major bands with MWs of 40, 50, 68, 76, 44, 40 and 50 were observed and 

assigned to be fusion proteins, suggesting that, after 24 h of incubation in the reaction buffer without 

thrombin, fusion proteins stayed mostly intact. The 24-hour thrombin cleavage reaction mixtures 

of fusion proteins, GST:Spal-128, GST:Spal-234, GST:Spal-340, GST:Spal-446, GST:Spal-167, 

GST:Spa41-167 and GST:Spa41-273, are shown in lanes 6 - 9 of Fig. Sa and lanes 5 - 7 of Fig. 

Sb, respectively, exhibiting the cleavage of fusion proteins by thrombin released spectrin fragments 

from the GST carrier. A relatively clean thrombin cleavage of GST:Spal-167 (lane 5, Fig. Sb), 

GST:Spa41-167 (lane 6, Fig. Sb), GST:Spa41-273 (lane 7, Fig. Sb) and GST:Spal-446 was 

obtained (lane 9, Fig. Sa), resulting in two bands in each lane. Bands with apparent MWs of 25 

kD (indicated by*) were assigned to be GST and bands with an apparent MWs of 21, 16, 31 and 

50 kD (indicated by ~)were assigned to be spectrin fragments. The estimated MWs of Spal-167, 

Spa41-167, Spa41-273 and Spal-446 are 19.9, 15.1, 27.3 and 51.6 kD, respectively. 

However, the cleavage of GST:Spal-128 (lane 6, Fig. Sa), GST:Spal-234 (lane 7, Fig. Sa) 

and GST:Spal-340 (lane 8, Fig. Sa) by thrombin under the same condition resulted in single-band 

GST (indicated by *) and multiple-band cleavage products (lanes 6 - 8, Fig. Sa, respectively). 

Apparent MWs of the top cleavage bands (indicated by~) in the above lanes were 17, 31 and 40 

kD, respectively, matching the estimated MWs of Spal-128 (15.1 kD), Spal-234 (27.5 kD) and 

Spal-340 (39.4 kD) quite well. Those bands with apparent MWs lower than 17, 31 and 40 kD in 

lanes 6 - 8 of Fig. Sa, respectively, were presumably the non-specific degradation products of Spa 1-

128, Spal-234 and Spal-340. The apparent and estimated MWs of spectrin fragments are 

summarized in Table lb. 
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3.1.4 Spa41-273 and Spal-446 Purification 

Fig. 6 shows a typical SDS polyacrylamide electrophoresis gel ( 15 % ) of the purified Spa41-

273 (lane 2) and Spal-446 (lane 3) with molecular weight standards (lane 1). Apparent MWs of 

purified Spa41-273 and Spal-446 were 30 and 52 kD, respectively (Table lb). While a single band 

was observed for Spa41-273 (lane 2, Fig. 6), two additional minor bands with apparent MWs of 

49 kD and 47 kD were observed for Spal-446 (lane 3, Fig. 6). Densitometer tracing of gels of two 

typical Spal-446 preparations showed an average intensity of 93.4% ± 3.2% (n = 2) for the 52 

kD band. The two minor bands were assumed to be partial degradation products of Spal-446. 

3.2 

3.2.1 

3.2.1.1 

Accessibility of Sulthydryl Groups in Spa4 l-273 and Spa 1-446 

Spin Labeling 

Number of Labeling Sites in Native Samples 

The amino acid sequence of a-spectrin reveals that cysteines are at positions 167, 224 and 

324. Thus there are two cys residues in Spa41-273 sequence and there are three cys residues in 

Spa 1-446 sequence. The accessibility of these cys residues was probed by Mal6 (Sandberg et al. , 

1969; Schneider and Smith, 1970; Yu et al., 1977; Fung and Simpson, 1979; Fung, 1981; Lai et 

al., 1984; Kemple et al., 1984) (Fig. 2a). 

Maximal SL/Sp ratios of 0.94 ± 0.04 (n = 4) for Spa41-273 and 2.04 ± 0.10 (n = 4) for 

Spa 1-446 were obtained when 1 mg of spectrin was allowed to react with 200 µl of 10-2 M Mal6 

(corresponding to a Mal6 to spectrin molar ratio of 54: 1) at 4 °C for longer than 12 h in 5 mM 

sodium phosphate (pH 7.4). 

Before the maximal SL/Sp ratio was reached, the SL/Sp ratio of Spa41-273 was shown to 

increase with both the Mal6/Sp ratio and labeling time. Fig. 7 shows the relationship between the 



Figure 6 

43 

SDS polyacrylamide electrophoresis gels (15 %) stained with 0.25 % Coomassie 

brilliant blue R. The gel (0.5 mm thick) was run for about 40 min under a 

constant voltage of 150 V. lane 1: low molecular weight protein standards (kD); 

lane 2: purified Spa41-273; lane 3: purified Spal-446. The positions of the 

spectrin bands are indicated by =>. 
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Relationship between Mal6/Sp ratio and the SL/Sp ratio of Spa41-273. 

Samples were labeled at varying Mal6/Sp ratios for about 16 h. 
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Mal6/Sp ratio and the SL/Sp ratio of Spa41-273. Samples were labeled at varying Mal6/Sp ratios 

for about 16 h. The average SL/Sp ratio was shown to initially increase with the Mal6/Sp ratio and 

then level off when a Mal6/Sp ratio of greater than 90 µ.llmg ( corresponding to a Mal6 to spectrin 

molar ratio of 25: 1) was used. Fig. 8 shows the relationship between labeling time and the SL/Sp 

ratio of Spa41-273. Samples were labeled for varying amounts of time at a Mal6/Sp ratio of 120 -

150 µ1/mg (corresponding to a Mal6 to spectrin molar ratio of 33 - 41). The average SL/Sp ratio 

was shown to initially increase with labeling time and then level off when longer than 36 h labeling 

was applied. Increase in both the Ma16/Sp ratio and the labeling time were not able to bring the 

SL/Sp ratio of Spa41-273 to higher than 1. A similar saturation behavior was observed for Spal-

446 at a SL/Sp ratio of around 2. 

The above results suggested that there was one cys residue in Spa41-273 accessible to Mal6 

and that there were two cys residues in Spa 1-446 accessible to Mal6 under the same labeling 

condition. 

3.2.1.2 Number of Labeling Sites in the Presence of Urea 

In order to verify that there were indeed two cys residues in the Spa41-273 and three cys 

residues in the Spal-446, we carried out the spin-labeling studies of Spa41-273 and Spal-446 in 

the presence of urea. The rationale is that, if not all the cys residues are available for labeling 

owing to the folding and if urea unfolds proteins, as a protein denaturant, all the cys residues of 

Spa41-273 and Spal-446 should be readily accessible when they are labeled in the presence of urea. 

Mal6-labeling was performed in 8 molar urea according to Procedure 1 in section 2.13.3. 

An average SL/Sp ratio of 1.8 ± 0.1 (n = 4) was obtained for Spa41-273 in the presence of 8 M 

urea when varying Mal6/Sp ratios of 40 - 120 ul/mg ( corresponding to Ma16 to spectrin molar ratios 

of 8 - 33) were used. An increase of the Mal6/Sp ratio from 40 to 120 ul/mg did not appear to 

bring about further increase of the SL/Sp ratio. The results suggested that there were, at maximum, 
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Relationship between labeling time and the SL/Sp ratio of Spa41-273. Samples 

were labeled for varying amounts of time at a Mal6/Sp ratio of 120 - 150 µJ/mg 

( corresponding to a Mal6 to spectrin molar ratio of 33 - 41). 
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two cys residues in Spa41-273 available for labeling, which was coherent with what was learned 

from the sequence information. 

Meantime, an average SL/Sp ratio of 2.0 ± 0.2 (n = 3) was obtained for Spal-446 in the 

presence of 8 M urea when a Mal6/Sp ratio of 40 ul/mg ( corresponding to a Mal6 to spectrin molar 

ratio of 21) was used. There could be several possible explanations for the fact that the average 

SL/Sp ratio obtained for Spal-446, under the specified experimental condition, was less than 3. 

First, the reaction condition was not optimized so that a maximal SL/Sp ratio was not obtained. 

Second, urea was not able to unfold Spa 1-446 completely so that certain cys residues were still not 

accessible to Mal6. Third, there could be only two cys residues in Spal-446 due to possible 

mutations occurred during the process of PCR synthesis or protein expression. 

3.2.1.3 Identification of the Labeling Sites 

The SL/Sp ratio obtained from spin-labeling of Spa41-273 and Spal-446 in 5 mM sodium 

phosphate at pH 7.4 suggests that there is one cys residue in Spa41-273 accessible to Mal6 and there 

are two cys residues in Spa 1-446 accessible to Mal6 under the same labeling condition. In order 

to assign the Mal6 accessibility of the two spectrin fragments to specific cys residues, the TNB-CN 

cleavage reaction (Jacobson et al., 1973) (Fig. 3) was performed on Spa41-273 and Spal-446. 

3.2.1.3.1 Spa41-273 

Assuming TNB-CN cleaves the peptide bond next to free cys residues (Jacobson et al., 

1973), potential TNB-CN cleavage products of Spa41-273 (27.3 kD) are shown in Fig. 9a. The 

five possible cleaved fragments of Spa41-273 are Spa41-223 (21.6 kD), Spa41-166 (15.0 

kD),Spa167-273 (12.3 kD), Spa167-223 (6.6 kD) and Spa224-273 (5.7 kD). Assuming that TNB-
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Schematic presentation of possible TNB-CN cleavage products of Spa41-273 

with no or one spin label. a, TNB-CN cleavage products of Spa41-273 without 

spin label. b, TNB-CN cleavage of Spa41-273 spin labeled at cys167 or cys224. 

Positions of the free cys groups are indicated by x and positions of the Mal6-labeled 

cys residues are indicated by O . 
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a. No spin label 

41 167 224 273 

41-166 (15.0 kD) 167-223 (6.6 kD) 224-273 (5.7 kD~ - .. 
41-223 (21.6 kD) 

167-273 (12.3 kD) 

b. Spin labeled at cysl67 

41 167 224 273 

41-223 (21.6 kD) 224-273 (5.7 kD) 

Spin labeled at cys224 

41 167 224 273 

41-166 (15.0 kD) 167-273 (12.3 kD) 
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CN does not cleave spin-labeled cys, a complete cleavage of Spa41-273 labeled at cysl67 will result 

in two fragments, Spa41-223 (21.6 kD) and Spa224-273 (5.7 kD) (Fig. 9b). When cys224 is 

labeled, complete cleavage of Spa41-273 will result in two different fragments, Spa41-166 (15.0 

kD) and Spa167-273 (12.3 kD) (Fig. 9b). 

A typical SDS polyacrylamide electrophoresis gel (16%) of the TNB-CN cleavage reactions 

of Spa41-273 is shown in Fig. 10. Spa41-273 (27.3 kD) incubated for 48 h in the reaction buffer 

with no TNB-CN added is shown as a control sample in lane 2 of Fig. 10. A major band 

corresponding to an apparent MW of 31 kD was observed, indicating that no cleavage occurred. 

The 48-hour TNB-CN reaction mixture of Spa41-273 without spin labels (lane 3, Fig. 10) showed 

four bands with apparent MWs of 31, 25, 15 and 5 kD. The percentage areas of 31, 25, and 15 

kD bands were 64 % , 8 % , and 28 % , respectively. The intensity of the 5 kD band was relatively 

low to allow an accurate estimation of its percentage area, however this band was consistently 

present on gels of similar samples. The probable assignment of the bands is as follows: the 31 kD 

band was the uncleaved Spa41-273 (27.3 kD); the 25 kD band was Spa41-223 (21.6 kD); the 15 

kD band contained Spa41-166 (15.0 kD) and Spal67-273 (12.3 kD), whose apparent MWs were 

too close to be resolved; the 5 kD band was the mixture of Spa167-223 (6.6 kD) and Spa224-273 

(5.7 kD). 

SDS polyacrylamide electrophoresis of the 48-hour TNB-CN reaction of the spin-labeled 

Spa41-273 sample with a SL/Sp ratio of 0.98 (lane 4, Fig. 10) showed that the 25 and 5 kD bands 

essentially disappeared from the gel while the intensities of the 31 and 15 kD bands remained high. 

The percentage areas of the bands occurring around the 31 and 15 kD were 73 % and 27 % , 

respectively. According to the above assignment, the 31 kD band was the uncleaved Spa41-273 and 

the 15 kD band was the combination of fragments Spa41-166 (15.0 kD) and Spa167-273 (12.3 kD). 

Fig. 9b showed that when cys224 was labeled, cleavage of Spa41-273 would result in Spa41-166 

(15.0 kD) and Spa167-273 (12.3 kD). The TNB-CN cleavage reaction thus suggested that cys224 
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SDS polyacrylamide electrophoresis gels (16 % ) stained with 0.25 % Coomassie 

brilliant blue R. The gel (0.5 mm thick) was run for about 40 min under a 

constant voltage of 150 V. Lane 1: low molecular weight protein standards (kD); 

lane 2: 48-hour control sample (Spa41-273 in the reaction buffer with no TNB-CN 

added); lane 3: 48-hour TNB-CN reaction of Spa41-273 without spin labels; lane 

4: 48-hour TNB-CN reaction of Spa41-273 with a SL/Sp ratio of 0.98. 
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was the cys residue in Spa41-273 labeled by Mal6 and that cys167 was not accessible under the 

same condition. 

3.2.1.3.2 Spal-446 

Assuming TNB-CN cleaves the peptide bond next to free cys residues (Jacobson et al., 

1973), potential TNB-CN cleavage products of Spal-446 (51.6 kD) are shown in Fig. lla. Nine 

possible cleaved fragments including Spal-323 (37.7 kD), Spa167-446 (32.0 kD), Spal-223 (26.3 

kD), Spa224-446 (25.4 kD), Spal-166 (19.8 kD), Spal67-323 (18.0 kD), Spa324-446 (14.1 kD), 

Spa224-323 (11.4 kD), and Spa167-223 (6.6 kD) can be generated from the TNB-CN reaction if 

Spa 1-446 is free of spin label as shown in Fig. 1 la. When any two cys residues are labeled, instead 

of giving nine fragments, cleavage will give rise to only two fragments. Probable combinations are 

depicted in Fig. llb. When cys167 and cys224 of Spal-446 are labeled, the TNB-CN cleavage of 

the protein will result in fragments Spal-323 (37.7 kD) and Spa324-446 (14.1 kD). When cys167 

and cys324 are labeled, cleavage of Spal-446 will yield fragments Spal-223 (26.3 kD) and Spa224-

446 (25.4 kD). When cys224 and cys324 are labeled, cleavage of Spal-446 will give fragments 

Spal67-446 (32.0 kD) and Spal-166 (19.8 kD). 

A typical SDS polyacrylamide electrophoresis gel ( 16 % ) of the TNB-CN cleavage reaction 

mixtures is shown in Fig. 12. Spal-446 (51.6 kD) incubated for 48 h in the reaction buffer with 

no TNB-CN added is shown as a control sample in lane 2 of Fig. 12. A major band corresponding 

to an apparent MW of 51 kD was observed with several light bands underneath, indicating that no 

cleavage occurred in the control sample since the minor bands were typically seen in purified Spa 1-

446 sample (for example, see lane 3 of Fig. 6). The 48-hour TNB-CN reaction mixture of Spal-

446 without spin labels (lane 3, Fig. 12) showed eight bands corresponding to apparent MWs of 51, 

42, 39, 31, 22, 19, 14 and 4 kD. The percentage areas of the 51, 42, 39, 31, and 22 kD bands 

were 35 % , 16 % , 9 % , 15 % and 25 % , respectively. The intensities of the 19, 14, 4 kD bands were 
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Schematic presentation of possible TNB-CN cleavage products of Spal-446 with 

no or two spin labels. a, TNB-CN cleavage products of Spa 1-446 without spin 

label. b, TNB-CN cleavage of Spal-446 spin labeled at cys167 and cys224, 

cysl67 and cys324 or cys224 and cys324. Positions of the free cys residues are 

indicated by x and positions of the Ma16-labeled cys residues are indicated by O. 
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a. No spin label 
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1-166 (19.8 kD) ~7-223 (6.6kD~ 224-323 (11.4 kD) .. 324-446 (14. I kD) .. 
1-223 (26.3 kD) 

167-323 (18.0 kD) 

224-446 (25.4 kD) 

1-323 (37.7kD) 

167-446 (32.0 kD) 

b. Spin labeled at cys167, cys224 

167 224 324 446 

1-323 (37.7 kD) 324-446 (14.1 kD) 

Spin labeled at cys167, cys324 

167 224 324 446 

1-223 (26.3 kD) 224-446 (25.4 kD) 

Spin labeled at cys224, cys324 

167 224 324 446 

1-166 (19.8 kD) 167-446 (32.0 kD) 
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SDS polyacrylamide electrophoresis gels (16 % ) stained with 0.25 % Coomassie 

brilliant blue R. The gel (0.5 mm thick) was run for about 40 min under a 

constant voltage of 150 V. Lane 1: low molecular weight protein standards (kD); 

lane 2: 48-hour control sample (Spa 1-446 in the reaction buffer with no TNB-CN 

added); lane 3: 48-hour TNB-CN reaction of Spal-446 without spin labels; lane 4: 

48-hour TNB-CN reaction of Spal-446 with a SL/Sp ratio of 2.03. 
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relatively low to allow an accurate estimation of their percentage areas, however these bands were 

consistently present on gels of similar samples. It was noted that there were several light bands 

underneath the 51 kD bands similar to what was observed in lane 2 of Fig. 12 and the 19 kD band 

appeared to consist of three closely-spaced bands that were recognized as a single band by 

densitometer tracing. The probable assignment of these bands is as follows: the 51 kD band was 

the uncleaved Spal-446 (51.6 kD); the 42 kD band corresponded to Spal-323 (37.7 kD); the 39 

kD band corresponded to Spa167-446 (32.0kD); the 31 kD band contained the mixture ofSpal-223 

(26.3 kD) and Spa224-446 (25.4 kD), whose MWs were too close to be resolved; the 22 kD band 

corresponded to Spal-166 (19.8 kD); the 19 kD corresponded to Spal67-323 (18.0 kD); the 14 kD 

band contained Spa224-323 (11.4 kD) and Spcd24-446 (14.1 kD); the 4 kD band corresponded to 

Spal67-223 (6.6 kD). 

SOS polyacrylamide electrophoresis of the 48-hour TNB-CN reaction of a fully-labeled 

Spal-446 sample witli SL/Sp = 2.03 (lane 4, Fig. 12) showed that the intensity of the 42 kD band 

was greatly reduced and the 31, 19, 14 and 4 kD bands essentially disappeared while the intensities 

of the 51, 39 and 22 kD bands remained high. The percentage areas of the 51, 39, and 22 kD bands 

were 65%, 19%, and 16%, respectively. According to the above assignment, the 51 kD band was 

the uncleaved Spal-446, the 39 kD band corresponded to Spa167-446 (32.0 kD) and the 22 kD 

band corresponded to Spal-166 (19.8 kD). Fig. llb showed that only when cys224 and cys324 

were both labeled, TNB-CN cleavage of Spa 1-446 would result in the combination of fragments 

Spal67-446 (32.0 kD) and Spal-166 (19.8 kD). The TNB-CN cleavage reaction suggested that 

cys224 and cys324 were the two cys residues in Spcd-446 labeled by Ma16 and cys167 was not 

accessible under the same condition. 

In summary, the TNB-CN reaction revealed that cys167 of both Spa41-273 and Spal-446 

were not accessible to Mal6, cys224 of both Spa41-273 and Spal-446 were accessible to Mal6, and 

cys324 in Spal-446 was also accessible to Ma16. The accessibility of cys167 and cys224 to Ma16 
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remained unchanged from Spa41-273 to Spal-446. 

3.2.2 DTNB Assay 

The accessibility of cys groups in Spa41-273 and Spal-446 was also evaluated by the 

DTNB reaction (Ellman, 1959) (Fig. 2b). An average molar extinction coefficient (e412) of 13000 

± 400 M-1 cm-1 (n = 4) was obtained for the yellow anion using a series of GSH solutions with the 

concentrations ranging from 5 to 80 µMas standards (Fig. 13). This value is in good agreement 

with the published value of 13600 (Ellman, 1959). Using this extinction coefficient, average SH/Sp 

ratios of Spa41-273 and Spal-446 in 5 mM sodium phosphate buffer (pH 7.4) at room temperature 

were found to be 0.01 ± 0.01 (n = 3) and 0.95 ± 0.08 (n = 5), respectively. Prolonged 

incubation of Spa4l-273 and Spal-446 with DTNB did not result in higher SH/Sp ratios (data not 

shown). The results suggested that, under the above condition, there was no cys in Spa41-273 and 

there was one cys in Spal-446 accessible to DTNB. Since cys324 is present in Spal-446 but not 

in Spa41-273, it is likely that cys324 was the one that reacted with DTNB in Spal-446. Both 

cys167 and cys224 seemed to be inaccessible to DTNB in Spa41-273 and Spal-446. Thus the 

accessibility of cys167 and cys224 to DTNB remained unchanged from Spa41-273 to Spal-446. 

3.2.3 Combination of Mal6 and DTNB Reactions 

Based on the above observations, Mal6 and DTNB were used in combination to further 

characterize the reactivity of individual sulthydryl groups in Spa41-273 and Spal-446. 

When Spa41-273 and Spa 1-446 were labeled for 1 h at a Mal6/Sp ratio of 40 µl/mg 

( corresponding to a Mal6 to spectrin molar ratio of 11: 1) (low spin label concentration and short 

time labeling condition), a SL/Sp ratio of 0.06 (n = 1) for Spa41-273 and an average SL/Sp ratio 

of 0.83 ± 0.04 (n = 3) for Spal-446 was obtained (Table 2). It was found, however, for Spal-

446 samples previously reacted with DTNB, the SL/Sp ratio decreased from an average value of 
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A typical calibration curve of the DTNB assay using GSH solutions of known 

concentration as standards. A series of GSH standard solutions with 

concentrations of 10, 20, 40, 60, 80, 120 and 160 µM were prepared. One volume 

of each GSH standard solution was added to one volume of the 2 mM DTNB stock 

solution and then incubated at room temperature for 2 min. The absorbance at 412 

nm was measured and plotted against the concentration of the GSH standard 

solution. The linear regression line of the data points was used as a calibration 

curve. The molar extinction coefficient at 412 nm was read from the slope of the 

calibration curve. 
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Condition 1: 
Condition 2: 
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SL/Sp Ratios of Spa41-273 and Spal-446 Determined under Three 

Different Labeling Conditions 

SL/Sp Ratio 

Spal-446 Spa41-273 

without DTNB treatment with DTNB treatment without DTNB Treatment 

0.83 ± 0.04 (n=3) 

1.25 ± 0.27 (n=5) 

2.06 ± 0.04 (n=2) 

0.08 (n= 1) 

0.45 ± 0.32 (n=5) 

0.95 ± 0.10 (n=2) 

0.06 (n= 1) 

0.46 ± 0.01 (n=2) 

0.95 ± 0.04 (n=3) 

low spin label concentration and short time labeling condition. 
low spin label concentration and overnight labeling condition. 
high spin label concentration and overnight labeling condition. 
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0.83 (n=3) to 0.08 (n = 1) under labeling condition 1. These results suggested that the cys in 

Spa 1-446 fully labeled by Ma16 under low spin label concentration and short time labeling_ condition 

was also the cys that reacted to DTNB. 

When Spal-446 was labeled for a long time (about 16 h) at a Mal6/Sp ratio of 40 µ,I/mg 

(low spin label concentration and overnight labeling condition), an average SL/Sp ratio of 1.25 ± 

0.27 (n = 5) was obtained. The results suggested that there were more than one cys residues in 

Spa 1-446 accessible to Mal6 under low spin label concentration and overnight labeling condition. 

Under the same condition, DTNB-treated Spal-446 exhibited an average SL/Sp ratio of 0.45 ± 

0.32 (n = 5). The SL/Sp ratio for Spa41-273 without previous DTNB treatment was 0.46 ± 0.01 

(n = 5) (Table 2). 

When Spal-446 was labeled for about 16 h at a high Ma16/Sp ratio (200 µ,I/mg, 

corresponding to a Mal6 to spectrin molar ratio of 54: 1) (high spin label concentration and overnight 

labeling condition), an average SL/Sp ratio of 2.06 ± 0.04 (n = 2) was obtained. These results 

suggested that the reactivity of the two sites toward Mal6 in Spa 1-446 could be very different, 

although both were accessible. Site 1 in Spa 1-446 was able to be fully labeled in 1 h at a Mal6/Sp 

ratio of 40 µ,I/mg while site 2 was not able to be completely labeled unless a Mal6/Sp ratio of 200 

µ,I/mg and 16 h labeling were applied. When Spal-446 was treated with DTNB, the SL/Sp ratio 

obtained for Spal-446 was 0.95 ± 0.10 (n = 2). The SL/Sp ratio of Spa41-273 labeled under the 

same condition without DTNB treatment was 0.95 ± 0.04 (n = 3) (Table 2). The similar labeling 

behavior of the DTNB-treated Spa 1-446 and Spa41-273 without DTNB treatment suggested that the 

reactivity of the labeling site in Spa41-273 was similar to that of site 2 in Spal-446. 

DTNB reaction suggested that cys324 was the only cys residues reactive to DTNB in Spa 1-

446. TNB-CN reaction indicated that cys224 and cys324 of Spa 1-446 and cys224 of Spa41-273 

were accessible to Mal6. The assignment can be made, based on the combination of spin labeling 

and DTNB reactions results, that site 1 was cys324, the highly reactive cys, and site 2 was the 



67 

cys224, the less reactive cys in Spal-446. Furthermore, the reactivity of cys224 appeared to remain 

unchanged from Spa41-273 to Spal-446, since the labeling behavior of Spal-446 became similar 

to that of Spa41-273 once cys324 of Spal-446 was blocked by DTNB. 

3.3 

3.3.1 

3.3.1.1 

3.3.1.1.1 

Studies of Spin-Labeled Spa41-273 and Spal-446 

Spectral Properties at Room Temperature 

Hyperfine Separation Measurements 

Au, of the Singly-Labeled Spa41-273 and Spal-446 

EPR lineshape can be interpreted in terms of molecular dynamics to yield information on 

the nature of the local molecular environment (Goldman et al., 1975; Fung and Johnson, 1984). 

One useful parameter of describing the EPR spectra is Au (Fig. 14), defined as half of the outer 

hyperfine extrema (Goldman et al., 1975). Au is sensitive to mobility of the spin label, polarity of 

the labeling site and other factors such as temperature. 

An average Au, of 31.8 ± 0.2 G (n = 3) was obtained from room temperature EPR spectra 

of Spa41-273 with an average SL/Sp ratio of 0.59 ± 0.14 (n = 3) in 5 mM sodium phosphate, pH 

7.4. Au, values were shown to remain constant for DTNB-treated Spal-446 with SL/Sp ratios 

ranging from 0.18 to 0.91 (32.2 - 32.3 G). Au values of the DTNB-treated Spal-446 were similar 

(only about 0.5 G difference) to that of Spa41-273. Since cys224 was singly-labeled by Ma16 in 

Spa4 l-273 and DTNB-treated Spa 1-446 according to the combination of DTNB and Mal6 reactions, 

the above results suggested that spin labels attached to cys224 of Spa41-273 and Spal-446 

experienced similar motions and local environments. 

The average Au value of Spal-446 without prior DTNB treatment, with SL/Sp of 0.85 ± 

0.04 (n = 2) in 5 mM sodium phosphate at pH 7.4, was 29.5 ± 0.0 G (n = 2). Since cys324 of 

Spal-446 was suggested to be singly-labeled by Ma16 under this condition, the 2.8 G difference in 

Au values of Spal-446 with and without treatment with DTNB suggested that spin labels attached 
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to cys224 and cys324 of Spal-446 experienced different motions or local environments. The larger 

Azz value of cys224 indicated that the spin label at cys224 was either experiencing slower motion 

or higher polarity as compared to cys324. A summary of Au, of the singly-labeled Spa41-273 and 

Spal-446 is given in Table 3. 

3.3.1.1.2 Au, of the Doubly-Labeled Spal-446 

Meanwhile, the Au values of Spal-446 doubly-labeled at cys224 and cys324 were measured 

and compared with the Au, values of the composite spectra resulted from the addition of the spectra 

of Spal-446 singly-labeled at cys224 or cys324. When the SL/Sp ratio of Spal-446 samples in 5 

mM sodium phosphate at pH 7.4 was 1.30, 1.52, 1.65, 1.90, 2.03, 2.09 or 2.13, Au value was 

29.8, 30.4, 30.7, 31.1, 31.1, 31.2, or 31.1, respectively (Table 4). The Au, values increased with 

SL/Sp ratios when SL/Sp ratios were greater than 1. Assuming that the labeling of the second cys 

in Spal-446 did not occur until the first cys was completely labeled by Mal6, the EPR spectrum of 

Spa 1-446 with SL/Sp ratio greater than 1 would be a composite one of the singly-labeled Spa 1-446 

(labeled at site 1) and of the DTNB-treated Spal-446 (labeled at site 2). The Au, values of the 

composite EPR spectra resulted from spectral addition of EPR spectra of the singly-labeled Spa 1-

446 and of the DTNB-treated Spal-446 were 30.2, 30.5, 30.6, 31.0, 31.0, 31.0 and 31.0, 

respectively (Table 4). These values matched Au values of the doubly-labeled Spal-446 spectra. 

This confirmed not only that Spal-446 consisted of two different labeling sites (cys224 and cys324) 

with cys224 being less reactive and cys324 being more reactive, but also that the Au, value of Spa 1-

446 labeled at cys224 was larger than that of Spal-446 labeled at cys324, since the additional 

spectral contribution from labels at cys224 gave rise to an increase in the Au, value. 

3.3.1.2 

3.3.1.2.1 

Weakly and Strongly Immobilized Components 

Spa41-273 in the Native Condition 



Table 3 ~ Values of the Singly-Labeled Spa41-273 and Spal-446 

Protein 

Spa41-273 

DTNB-Treated 

Spal-446 

Singly-Labeled 

Spal-446 

SL/Sp 

0.75 

0.52 

0.50 

0.18 

1.02 

~(G) 

31.7 

31.7 

32.0 

32.3 

32.3 

0.45 32.3 

0.88 32.2 

0.91 

0.82 

0.88 

32.2 

29.5 

29.5 

Avg Azz (G) 

31.8 ± 0.2 (n=3) 

32.3 ± 0.1 (n=5) 

29.5 ± 0.0 (n=2) 
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Au Values of the Measured and Composite EPR Spectra of the Doubly­

Labeled Spa 1-446 

SL/Sp Au (G) Azz (G) 

(Measured Spectrum) (Composite Spectrum) 

1.30 29.8 30.2 

1.52 30.4 30.5 

1.65 30.7 30.6 

1.90 31.1 31.0 

2.03 31.1 31.0 

2.09 31.2 31.0 

2.13 31.1 31.0 
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Fig. 14 shows a typical conventional EPR spectrum of the singly-labeled Spo41-273 

(SL/Sp= 0.79) in 5 mM sodium phosphate buffer, pH 7.4, at room temperature. The spectrum 

contained two major components reflecting two different degrees of spin label immobilization, 

namely a strongly immobilized component (or a slow motion component with a rotational correlation 

time of about 10-7 s) and a weakly immobilized component (or a fast motion component with a 

rotational correlation time of about 10·10 s). The strongly immobilized component gave three 

broader signals and the weakly immobilized component gave three sharper signals. The central 

peaks from both components overlapped with each other. The amplitudes of the low field and high 

field signals of the strongly and weakly immobilized components were defined as S, S', Wand W' 

as shown in Fig. 14. The signal intensity of each component depended on the percentage of the 

corresponding motion in the system. 

3.3.1.2.2 Spa41-273 in Urea 

Fig. 15 shows a series of spectra of Mal6-labeled Spa41-273 in 5 mM sodium phosphate, 

pH 7.4, with 0, 2, 3, 4, 5 and 6 M urea. It was observed that, upon increasing urea concentration, 

the signal amplitude of the strongly immobilized component (S, S ') decreased and the signal 

amplitude of the weakly immobilized component (W, W') increased. The strongly immobilized 

component was apparently converted gradually to the weakly immobilized component. At 4 M urea 

concentration, the strongly immobilized signals were not detectable, and the amplitudes of the 

weakly immobilized signals reached their maximal values (with W' = 4.5 cm). An increase in urea 

concentration above 4 M brought no further increase in the amplitudes of the weakly immobilized 

signals. 

Since urea is generally considered as a protein denaturant which induces unfolding of 

peptides (Tanford, 1968; Pace, 1975; 1986; 1990), the motional conversion observed in the EPR 



Figure 14 

72 

A typical conventional EPR spectrum of Ma16-labeled Spa41-273 in 5 mM 

sodium phosphate buffer at pH 7.4 and room temperature. The spectrum is 

composed of weakly (W, W') and strongly (S, S ') immobilized components. Outer 

hyperfine extrema are indicated by 2~. EPR spectral parameters: field set, 3250 

gauss; scan range, 100 gauss; receiver gain, 10 x 103
; modulation amplitude, 1 

gauss; modulation frequency, 100 kHz; microwave power, 2 mW; frequency, 8.95 

GHz; time constant, 1.28 sec; scan time, 1 min. 
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Figure 15 
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Effects of urea on the Mal6-labeled Spa41-273. Urea was added to Mal6-labeled 

Spa41-273 in 5 mM sodium phosphate at pH 7.4 until the final urea concentrations 

of 2, 3, 4, 5 and 6 M were obtained, respectively. EPR spectra were taken at 

room temperature. EPR settings are as described in the legend of Figure 14. Note 

that the sizes of the EPR spectra shown in this figure are about 46 % of those of the 

original printouts. 
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spectra of Spa41-273 solutions containing varying urea concentrations presumably reflected the 

unfolding of the protein during this process. The single component of the weakly immobilized 

motion associated with the EPR spectra of Spa41-273 at urea concentrations above 4 M was 

considered to be a signature of Spa41-273 in a denatured state. 

3.3.1.2.3 Spectral Subtraction 

The EPR spectrum of Spa41-273 in 5 mM sodium phosphate buffer, pH 7.4, with 5 M urea 

(Fig. 16b) was used to remove the weakly immobilized component from the EPR spectrum of native 

Spa41-273 in 5 mM sodium phosphate buffer, pH 7.4 (Fig. 16a). The resulting spectrum resembled 

that of a single-component system with strongly immobilized motion (Fig. 16c). The strongly 

immobilized component of a series of Spa41-273 samples in 5 mM sodium phosphate, pH 7.4, with 

SL/Sp of 0. 78 ± 0.22 (n = 4) was estimated to contribute an average of 84 ± 4% (n = 4) of the 

total motion in Spa41-273 (Fig. 17). The weakly immobilized component was estimated to 

contribute an average of 16 ± 4% (n = 4) of the total motion. The samples were digested for 8 

h and labeled for 16 h subsequently. When the thrombin digestion time during the sample 

preparation was increased to 10, 16 or 18 h, with spin-labeling time remained at 16 h, the weakly 

immobilized component in the system was found to be 26% (SL/Sp= 0.70), 31 % (SL/Sp= 0.69) 

and 33% (SL/Sp = 0.61), respectively (Fig. 17). The percentage of the weakly immobilized 

component in these samples increased with the thrombin digestion time. 

The samples discussed above were labeled for a constant amount of time (16 h). When the 

thrombin digestion time remained constant at 8 h and the spin labeling-time varied, the percentage 

of the weakly immobilized component in the system changed. For samples obtained from the same 

protein preparation, 14, 15, 16, 26, or 38 h oflabeling time led to 3% (SL/Sp = 0.52), 6% (SL/Sp 

= 0.77), 8% (SL/Sp = 0.76), 10% (SL/Sp = 0.77), or 14% (SL/Sp = 0.91), respectively (Fig. 

18). The percentage of the weakly immobilized component in these samples increased also with the 
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Subtraction of the weakly immobilized component from the EPR spectrum of 

Mal6-labeled Spa41-273. a, EPR spectrum of Mal6-labeled Spa41-273 in 5 mM 

sodium phosphate, pH 7.4. b, EPR spectrum of Mal6-labeled Spa41-273 in 5 mM 

sodium phosphate, pH 7.4, with 5 M urea. c, EPR spectrum of the single 

component of strongly immobilized motion resulting from spectral subtraction of 

b from a. Note that the sizes of the EPR spectra shown in this figure are about 

38% of those of the original printouts. 
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Figure 17 
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Effects of thrombin digestion time on the percentage of the weakly immobilized 

component in Spa41-273. EPR samples were labeled in 5 mM sodium phosphate 

buffer at pH 7.4 for 16 hand EPR spectra were taken in the same buffer at room 

temperature. Four samples digested by thrombin for 8 h (SL/Sp = 0.78 ± 0.22) 

are shown in • with an error bar. Three other samples were digested by thrombin 

for 10 h (SL/Sp = 0.70), 16 h (SL/Sp = 0.69) and 18 h (SL/Sp = 0.61). The 

percentage of the weakly immobilized component of the samples was obtained from 

the spectral subtraction and the double integration of the resulting spectra. 
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Effects of Mal6-labeling time on the percentage of the weakly immobilized 

component in Spa41-273. EPR samples were labeled in 5 mM sodium phosphate 

buffer at pH 7.4 and EPR spectra were taken in the same buffer at room 

temperature. One preparation of the Spa41-273 sample which was digested with 

thrombin for 8 h and labeled by Mal6 for 14 h (SL/Sp = 0.52), 15 h (SL/Sp = 

0.77), 16 h (SL/Sp = 0.76), 26 h (SL/Sp = 0.77), and 38 h (SL/Sp = 0.91) is 

shown in • without error bars. Four other preparations of Spa41-273, obtained 

three months later, were digested with thrombin for 8 h and labeled by Mal6 for 

16 hare shown in • with an error bar. The percentage of the weakly immobilized 

component of the samples was obtained from the spectral subtraction and double 

integration of the resulting spectra. 
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spin-labeling time. The 16-hour labeling data shown with the error bar were obtained about 3 

months later. The higher percentage of the weakly immobilized component associated with the latter 

samples was suggested to be a result of the older age of the glutathione column from which samples 

were prepared (see below). 

The storage time of samples at 4 °C and the age of the glutathione affinity column used for 

sample preparations also appeared to have some effects on the percentage of the weakly immobilized 

component in the system. The longer the period that the sample was stored at 4 °C, the higher the 

percentage of the weakly immobilized component appeared to be in the system (data not shown). 

Also, it was noticed the older the age of the glutathione affinity column, the higher the percentage 

of the weakly immobilized component of the sample prepared, with other conditions remaining the 

same. 

3.3.1.3 

3.3.1.3.1 

Urea-Treated Samples 

Spa41-273 

A typical EPR spectrum of Spa41-273 previously treated with urea (Procedure 1 or 

Procedure 2 in section 2.13.3) was obtained in 5 mM sodium phosphate (pH 7.4) (Fig. 19c or Fig. 

19d, respectively). A small amount of strongly immobilized signals and a large amount of weakly 

immobilized signals were observed on both spectra. 

To compare the motional features of samples in different conditions, W' was determined 

as a measure of the amount of weakly immobilized motion in the system. An average W' obtained 

for native Spa41-273 (samples derived from 8 h thrombin cleavage and 16 h labeling in 5 mM 

sodiumphosphateatpH7.4)withanaverageSL/Spratioof0.77 ± 0.17(Fig. 19a)was2.6 ± 0.3 

cm (n = 6). An average W' of the denatured Spa41-273 (sample in 5 mM sodium phosphate with 

urea concentration of higher than 4 M) (Fig. 19b) was 4.5 ± 0.0 cm (n = 2). An average value 

of W' of urea-treated Spa41-273, with Procedure 1 (labeled in the presence of urea) (Fig. 19c) or 
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Reversibility of the conformational changes of Spa41-273 and Spal-446 

induced by urea. a, EPR spectrum of Spa41-273 in 5 mM sodium phosphate, pH 

7.4. b, EPR spectrum of Spa41-273 in 5 mM sodium phosphate, pH 7.4, with 

over 4 M urea. c, EPR spectrum of urea-treated Spa41-273 (Procedure 1). d, 

EPR spectrum of urea-treated Spa4 l-273 (Procedure 2). e, EPR spectrum of urea­

treated Spal-446 (Procedure 1). Note that the sizes of the EPR spectra shown in 

this figure are about 39% of those of the original printouts. 
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Procedure 2 (labeled after the removal of urea) (Fig. 19d), was 3.9 ± 0.3 cm (n = 2) or 4.2 cm 

(n = 1), respectively. 

3.3.1.3.2 Spal-446 

A small amount of strongly immobilized signals was also observed from the room 

temperature EPR spectra of urea-treated Spal-446 (Procedure 1, labeled in the presence of urea) 

in 5 mM sodium phosphate, pH 7.4. An average W' obtained for urea-treated Spal-446 (Procedure 

1) with an average SL/Sp ratio of 1.85 ± 0.02 (Fig. 19e) was 3.0 ± 0.5 cm (n = 2), whereas an 

average W' obtained for native Spal-446 (8 h thrombin digestion and 16 h labeling in 5 mM sodium 

phosphate, pH 7.4) with SL/Sp ratios of 0.88 and 2.03 was of 1.1 ± 0.3 cm (n = 2). 

3.3.2 Spectral Properties at High Temperatures 

In Fig. 20, the line widths of the low field and high field weakly immobilized signals, ~HPP 

and ~HP/, of the spectrum of a Spa41-273 sample in 5 mM sodium phosphate, pH 7.4, with an 

SL/Sp ratio of 0. 76 were plotted against temperature. A flat featureless line was observed for both 

~HPP and ~8i,/ throughout the temperature range of 26.4 - 50.4 °C, indicating that the line widths 

of the weakly immobilized signals were not a function of temperature. As a result, the percentage 

of the weakly immobilized component in the system should correlate directly with the amplitudes 

(W, W') of the weakly immobilized signals at different temperatures. W' was chosen to be 

measured as a convenient spectral parameter to follow the motional transition during the heat 

denaturation process. 

Since W' varied as a function of temperature not only due to the conversion of the strongly 

immobilized component to the weakly immobilized component in the system at higher temperatures, 

but also due to the fact that the motion in the protein at higher temperatures became faster. The 

change of W' per unit change of temperature, dW' /dt, was calculated (Fig. 21). 



Figure 20 
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Effects of temperature on the widths of the low field and high field weakly 

immobilized signals. EPR spectra were obtained for Mal6-labeled Spa4 l-273 in 

5 mM sodium phosphate (pH 7.4) at a series of temperatures, from which the 

widths of the low field and high field weakly immobilized signals were measured. 

The width of the low field weakly immobilized signal (.11~P) is represented by 0 

and the width of the high field weakly immobilized signal (.11HPP ') by • . 
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Figure 21 
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Effect of temperature on Mal6-labeled Spa41-273 and Spal-446. a, Spo'.41-273 

in 5 mM sodium phosphate at pH 7.4 with 4 M urea. b, Spa41-273 in 5 mM 

sodium phosphate at pH 7.4 (low salt buffer). c, Spa41-273 in 5 mM sodium 

phosphate, 150 mM sodium chloride at pH 7.4 (high salt buffer). d, Spal-446 

labeled at cys224 in 5 mM sodium phosphate, pH 7.4. e, Spal-446 labeled at 

cys324 in 5 mM sodium phosphate, pH 7.4. Data points obtained from different 

samples runs were represented O , • , □ and ■ , respectively. 
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A flat baseline throughout the temperature range of 20 - 70 °C was observed for Spa41-273 

in 5 mM sodium phosphate (pH 7.4) with 5 M urea (Fig. 21a), indicating that no conversion 

between the motional components occurred upon heating of the presumably fully denatured Spa41-

273 in 5 M urea. 

However, the dW' /dt plot of Spa41-273 in low salt buffer (5 mM sodium phosphate buffer, 

pH 7.4) varied as a function of temperature. The collective data points from four different sample 

runs smoothed by Lowess algorithm showed a peak centered around 41 °C (Fig. 21b). The average 

peak temperature determined from individual runs was 42 ± 1 °C (n=4). The data pooling and 

smoothing were employed to average out the data fluctuations from run to run and point to point, 

which appeared to be successful since the peak temperature obtained from the smooth plot of the 

collective data was within 1 °C difference from the average value of individual runs. A Student's 

t-test showed that, at the 95 % significance limit, the smoothed peak temperature ( 41 °C) was 

statistically not different from the average peak temperature (42 °C) of individual runs. 

Additionally, the smoothing operation did not seem to be biased by a single outlying value, since 

removal of the largest dW' /dt value did not change the overall shape of the smoothed curve. 

The collective dW' /dt plot of Spa41-273 in high salt buffer (5 mM sodium phosphate, 150 

mM sodium chloride, pH 7.4) exhibited a peak centered at 39°C (Fig. 21c). A single peak at 45 

°C (Fig. 21d) or 51 °C (Fig. 2le) was observed for the collective dW' /dt plot of Spal-446 labeled 

at cys224 or cys324 in low salt buffer, respectively. The average peak temperature determined from 

individual runs was 40 ± 1 °C (n=3), 45 ± 3 °C (n=2), or 51 ± 1 °c (n=2) for Spa41-273 in 

high salt buffer, Spa 1-446 labeled at cys224 or cys324 in low salt buffer, respectively. Student's 

t-tests showed that, at the 95% significance limit, the smoothed peak temperature (39, 45, or 51 °C) 

was statistically not different from the average peak temperature (40, 45, or 51 °C) of individual 

runs. 

The reversibility of the motional conversion induced by heat was also followed by W' 
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measurements. Fig. 22a is a W' versus temperature plot of Spa41-273 (SL/Sp = 0.79) in 5 mM 

sodium phosphate (pH 7.4) upon gradual heating from room temperature (22 °C) to 75.6 °C and 

subsequent cooling back to room temperature. W' values on the cooling curve were always higher 

than those on the heating curve, showing the hysteresis behavior. A similar observation was 

obtained for Spal-446 labeled at site 2 (SL/Sp= 0.88) in 5 mM sodium phosphate at pH 7.4 (Fig. 

22b). The higher W' values of the heat-treated samples of Spa41-273 and Spal-446 suggested that 

the motions of the two proteins around the labeling site at the same temperature before and after 

heating were not the same. 

3.4 Stokes Radii of Spa41-273 and Spal-446 

The Stokes radii of native Spa41-273 and Spal-446 were determined in both low salt (5 

mM sodium phosphate, pH 7.4) and high salt (5 mM sodium phosphate, 150 mM sodium chloride, 

pH 7.4) buffers. The Stokes radius of Spa41-273 was observed to increase from 33.2 ± 2.8 A (n 

= 2) in high salt buffer to 55.8 ± 2.7 A (n = 4) in low salt buffer at 4 °C (Table 5). The Stokes 

radius of Spal-446 increased from 35.6 ± 3.3 A (n = 3) in high salt buffer to 56.0 ± 7.7 A (n 

= 3) in low salt buffer (Table 6). The Stokes radius of urea-treated Spa41-273 in low salt buffer 

was 52.3 A (n = 1) (Table 5). The average Stokes radius of Spa41-273 that was boiled at 100 °C 

for 5 min in low salt buffer was 52.3 ± 3.2 A (n = 2) (Table 5). Spa41-273 that was heated from 

room temperature to 80 °C at 10 °C intervals and cooled down to room temperature similarly at 

10 °C intervals in low salt buffer exhibited an average Stokes radius of 56.4 ± 5.0 A (n = 2) 

(Table 5). 



Figure 22 
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Reversibility of the conformational changes induced by heat in Spa41-273 and 

Spal-446. Spa41-273 and Spa 1-446 were heated gradually from room temperature 

to approximately 70 °C and cooled subsequently to room temperature and EPR 

spectra were taken at various temperature intervals during both the heating and the 

cooling processes. a, Spa41-273 in 5 mM sodium phosphate, pH 7.4. b, Spal-

446 in sodium phosphate, pH 7.4. W' values of Spa41-273 and Spal-446 upon 

heating are represented by O and W' values of Spa41-273 upon cooling are 

represented by • . 
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Table 5 Stokes Radii of Spa41-273 in Low Salt and High Salt Buffers 

Protein Salt condition Rs(A) Average Rs (A) 

Native Low Salt 52.1 

58.6 

55.8 

56.7 55.8 ± 2.7 (n=4) 

High Salt 31.2 

35.2 33.2 ± 2.8 (n=2) 

Urea-Treated Low Salt 52.3 52.3 (n= 1) 

Boiled Low Salt 50.0 

54.6 52.3 ± 3.2 (n=2) 

Temperature-Cycled Low Salt 53.1 

59.6 56.4 ± 5.0 (n=2) 



Table 6 Stokes Radii of Spa 1-446 in Low Salt and High Salt Buffers 

Salt condition 

Low Salt 

High Salt 

Rs(A) 

47.3 

61.7 

Average Rs (A) 

59.9 56.0 ± 7.7 (n=3) 

39.2 

32.6 

35.0 35.6 ± 3.3 (n=3) 
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CHAPTERIV 

DISCUSSION 

4.1 Folding of Spectrin Fragments Implied by the Thrombin Cleavage Reaction 

The amino acid and cDNA sequences of a and ,8-subunits of spectrin reveal the universal 

presence of a single type of repetitive structure with a periodicity of 106 amino acid residues 

(Speicher et al., 1983a; Speicher et al., 1983b; Speicher and Marchesi, 1984; Curtis et al., 1985; 

Sahr et al., 1990; Winkelmann et al., 1990). The sequence homology is suggested to reflect 

conformational similarity (Schulz and Schirmner, 1979; Doolittle, 1981; Keim et al., 1981; 

Arnheim, 1983). If indeed the repetitive sequence is indicative of the repetitive structure, 

recombinant spectrin fragments encoded by sequences of one or more repetitive motifs should 

express the corresponding structure of these units and therefore should bear structural similarity to 

each other and to intact spectrin. According to Winograd et al. (1991), N-terminal ends of 

conformational units are 26 residues downstream of the beginnings of the sequence motifs. They 

have shown that a spectrin fragment containing more than one but less than three spectrin sequence 

repeats could fold as one complete, stably-folded unit with unstably-folded or "floppy", protease 

sensitive ends (Winograd et al., 1991). Proteins containing "floppy" ends are susceptible to 

proteolysis and give rise to partially degraded products with smaller molecular weights. 

In an attempt to experimentally test the hypothesis of the individual folding of erythrocyte 

spectrin repeats and to investigate the structure of these repeats in relationship to that of the intact 

spectrin, seven spectrin fragments have been expressed as GST fusion proteins. Four of the spectrin 
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fragments, Spcd-128, Spal-234, Spal-340 and Spal-446, consist of N-terminal 23 amino-acid non-

repeating region followed by the first one, two, three and four sequence motifs of a:-spectrin, 

respectively. Three of the spectrin fragments, Spal-167, Spa41-167, and Spa41-273, follow the 

phasing of the conformational units proposed by Winograd et al. (1991) instead of the sequence 

motifs, with several extra amino acids at both ends. Spal-167, Spa41-167, and Spa41-273 consist 

of sequences covering the first conformational repeat of a-spectrin with the N-terminal end, without 

the N-terminal end, and the first two conformational units of a-spectrin without the N-terminal end, 

respectively. 

We have shown specific cleavage of the fusion proteins, Spa41-167, Spal-167, Spa41-273 

and Spal-446, by thrombin at the designated thrombin recognition/cleavage site under our 

experimental condition, resulting in single-band spectrin fragments and single-band GST carrier on 

SDS polyacrylamide electrophoresis gels. Similarly, specific cleavage of Spal-128, Spal-234 and 

Spal-340 by thrombin was also obtained. However, in addition to the specific cleavage, nonspecific 

partial degradation of Spal-128, Spal-234 and Spal-340 was also observed, as indicated by 

multiple-band spectrin fragments and single-band GST carrier on SDS polyacrylamide 

electrophoresis gels (see Fig. 5, section 3.1.3). 

Spa41-273 and Spa 1-446 were further purified as nonfusion proteins. Although both stayed 

intact after a 24-hour thrombin cleavage reaction, they displayed different stability after further 

purification: Spa41-273 remained intact as a single band and Spal-446 was partially degraded as 

revealed by several minor bands with MWs lower than that of intact Spal-446 on SDS gel (see Fig. 

6, section 3.1.4). The minor degradation observed for the purified Spal-446 is considered an 

extension of the nonspecific degradation occurring during the thrombin cleavage reaction, since a 

similar buffer condition and thrombin concentration were maintained in protein samples throughout 

the process of removing GST. 

The nonspecific degradation of Spal-128, Spal-234, Spal-340 and Spal-446 is suggested 
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to reflect the existence of loose folding at the ends of these proteins. Amino acid sequencing of the 

N-terminal end of Spcd-234 resulted from the 24 h thrombin cleavage reaction showed that no 

degradation occurred at the N-terminal end of the protein. This leads to the assignment that Spa 1-

128, Spal-234, Spal-340 and Spal-446 may contain loose folding at the C-terminal ends where 

the nonspecific degradation may actually take place. Since Spal-128, Spal-234, Spal-340 and 

Spal-446 each ends at the end of a 106-residue sequence motif of human erythrocyte spectrin 

according to Speicher and Marchesi's convention (1984), such a motif therefore may not correspond 

to a stably-folded, conformational unit. On the other hand, the lack of partial degradation of Spa 1-

167, Spa41-167 and Spa41-273 upon or after the thrombin cleavage, suggests that these three 

fragments contain little or no "floppy ends". Our results indicate that the phasing of the structural 

units proposed by Winograd et al. (1991) may be very close to the phasing of the real 

conformational repeats of human erythrocyte spectrin. 

In addition to the difference in the numbers of thrombin cleavage bands observed for 

different spectrin fragments, the intensities of the cleaved spectrin bands were also different. The 

intensities of the smaller fragments (for example Spal-128 and Spa41-167) were much lower than 

those of the larger fragments (for example Spa41-273 and Spal-446), suggesting that, for proteins 

with similar phasing, the overall stabilities of the smaller fragments are lower than those of the 

larger fragments. Differences in stability of the spectrin fragments with different sizes may be due 

to, for example,: 1) the larger fragments may contain one or more protease resistant, stable units 

whereas the smaller fragments may not; 2) the larger fragments may enjoy more compact folding 

than the smaller units, since more interactions could exist between repeats in the larger fragments 

than in the smaller units. 

The nonspecific degradation of the spectrin fragments occurring during the thrombin 

cleavage reaction is probably due to either the contamination of other proteases in thrombin or to 

the nonspecific recognition/cleavage reaction of thrombin itself. An accurate assessment of the 



100 

thrombin cleavage specificity cannot be made until the purity of thrombin is known and a better 

understanding of its substrate recognition mechanism is obtained. 

The selection of the proteins for spin-labeling and other structural studies were based on two 

criteria, the stability of the spectrin fragments and the presence of cys residues in the sequence. The 

stability was required by the relatively lengthy process of spin-labeling and the presence of cys was 

required since a cys-specific spin label was selected for this study. Among the seven spectrin 

fragments expressed, the four fragments containing at least one cys residue are Spal-167, Spa41-

167, Spa41-273, and Spal-446. However, the only cys residue present in Spal-167 and Spa41-167 

is cys167, which is the last amino acid in the sequence. To avoid possible complications due to the 

loose folding at the ends of the fragments (Winograd et al., 1991), Spa41-167 and Spal-167 were 

not considered for spin-labeling and other studies. Instead, Spa41-273 and Spal-446, which also 

demonstrated relatively high stability in the thrombin cleavage reaction, were chosen for further 

purification and structural characterization. 

4.2 Environment of the Cys Residues in Spa41-273 and Spal-446 

In the absence of a crystal structure, amino acid side chains modification reactions in 

conjunction with spectroscopic techniques may yield valuable information on protein conformations. 

Cys residues are often the first target for such approaches for a number of reasons. First, the 

cysteine content of most proteins is relatively low ( < 3 mol % ) , allowing easier discrimination and 

identification. Second, partly owing to their reactivity, cys residues are often implicated in the 

function of proteins. Third, there are a large variety of cys specific ( or actually sulfhydryl specific) 

reagents available, including compounds that introduce reporter groups for spectrophotometric, EPR, 

NMR, fluorometric, and biochemical analysis (Grip and Daemen, 1982). 

Reactions of cys residues of spectrin, isolated or in membrane, have been examined by a 

number of studies. Some of the early spin labeling EPR studies have attempted to address the issue 
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of the mobility and the chemical environments of the cys residues (Chapman et al., 1969; Sandberg 

et al., 1969; Schneider and Smith, 1970; Berger et al., 1971; Adams et al., 1976; Butterfield 1977; 

Fung et al., 1979; Fung and Simpson, 1979; Fung, 1981; 1983; Fung and Johnson, 1983). 

Conventional EPR spectra provided information about molecular motions in the fast time range of 

10-11 
- 10-1 s (Chapman et al., 1969; Sandberg et al., 1969; Schneider and Smith, 1970; Berger et 

al., 1971; Adams et al., 1976; Fung and Simpson, 1979; Fung, 1983) while saturation transfer EPR 

recorded relatively slower motions in the range of 10-1 
- 10-3 s (Fung et al., 1979; Fung and 

Simpson, 1979; Fung, 1981; Fung and Johnson, 1983). The combination of these two techniques 

have allowed detection of a wide range of molecular events occurring in the close vicinity of the 

spin labeled cys residues in spectrin. However, at the time these studies were conducted, there was 

very limited information regarding the structure of spectrin and the membrane. It was difficult to 

relate the motional information to the molecular topology of spectrin, particularly to the molecular 

environments of the cys residues. 

Another area of the spectrin research related to the chemistry of cys residues is the oxidation 

study. It has been used to illustrate the interactions of the different membrane elements and the role 

of the cys residues of spectrin in maintaining the integrity of erythrocytes. It has been shown that 

the oxidation induced by agents such as diamide and sodium tetrathionate was associated with the 

formation of disulfide bonds that cross link spectrin and other membrane proteins (Haest et al. , 

1977). Consequently, these agents led to membrane leakiness (Deuticke et al., 1983), membrane 

stiffness (Fischer et al., 1978) and abolishment of the phospholipid asymmetry normally existing in 

the erythrocyte membrane. On the other hand, sole blockage of sulfhydryl groups by oxidation 

reagents such as N-ethylmaleimide induced thermal instability and skeletal mechanical fragility. It 

has been proposed that the decrease of association of spectrin dimers and increase of the dissociation 

of spectrin tetramers were responsible for the destablization of erythrocyte membranes (Streichman 

et al., 1988). 
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With the availability of the spectrin sequence and the capability of expressing small spectrin 

fragments, in this study, we have investigated the accessibility and reactivity of three individual cys 

residues in two spectrin fragments, Spa41-273 and Spal-446. The TNB-CN reaction revealed that 

cysl67 of both Spa41-273 and Spal-446 were not accessible to Mal6, cys224 of both Spa41-273 

and Spal-446 were accessible to Ma16, and cys324 in Spal-446 was also accessible to Mal6. The 

inaccessibility of cys167 and accessibility of cys224 to Mal6 remained unchanged from Spa41-273 

to Spal-446. DTNB reaction indicated that both cys167 and cys224 of both Spa41-273 and Spal-

446 were not accessible to DTNB, although cys324 of Spa 1-446 was accessible. The inaccessibility 

of cys167 and cys224 to DTNB remained unchanged from Spa41-273 to Spal-446. Additionally, 

the combination of spin-labeling and DTNB reactions showed that cys224 and cys324 of Spa 1-446 

displayed different reactivity toward Mal6 and that cys224 of Spa41-273 and Spal-446 displayed 

similar reactivity toward Mal6. The reactivity of cys224 appeared to remain unchanged from 

Spa41-273 to Spal-446. Furthermore, Spa41-273 and Spal-446 labeled at cys224 showed similar 

A,;,. values whereas Spal-446 labeled at cys224 and cys324 showed different ~ values. This 

suggested that spin labels attached to cys224 of Spa41-273 and Spa 1-446 experienced similar 

motions and local environments whereas spin labels attached to cys224 and cys324 of Spa 1-446 

experienced different motions or local environments. 

In summary, we have demonstrated that the chemical environments of the two common cys 

residues (cys167 and cys224) were kept the alike in Spa41-273 and Spal-446. Apparently, the 

additional sequence introduced to Spa41-273 to give Spal-446 did not introduce conformational 

changes around cys167 and cys224 that would affect their accessibility and reactivity to Mal6 and 

DTNB. One can infer that spectrin repeats are individually folded so that folding of one repeat is 

not affected by the existence of another repeat. 

The implication of different accessibility and reactivity of the three cys residues on the local 

environments of these cys residues is considered. Cys167 is distinguished from the other two cys 
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residues. The inaccessibility of cys167 to both Mal6 and DTNB is suggested to reflect a relatively 

closed local environment of cysl67. It is likely to be buried inside the protein, therefore, beyond 

the reach of Mal6 and DTNB. Cys324 differs from cys224 not only in its accessibility to DTNB, 

but also in its higher reactivity to Mal6. It is probable that cys324 is positioned on the surface of 

the protein, therefore, readily accessible to Mal6 and DTNB. The inaccessibility of cys224 to 

DTNB and its lower reactivity to Mal6 are suggested to indicate a negatively charged and partially 

buried location of cys224, since DTNB and Mal6 are both two-ring compounds and the difference 

between the two probes lies mainly in the difference of their charges. DTNB contains two carboxyl 

groups that are largely dissociated in aqueous solution giving two negative charges to the molecule, 

whereas Mal6 is essentially uncharged. It is likely that DTNB is prevented from reaching cys224 

as a result of the charge repulsion and that Mal6 reacts slowly with cys224 due to the steric 

hindrance encountered. 

Our speculation on the environments of the three cys residues is supported by the triple-helix 

model of spectrin repeats (Fig. 23a) proposed by Parry and Cohen (Parry and Cohen, 1991; Parry 

et al., 1992). In their model, cys167 is located in the middle of a helix B, cys224 is located in the 

middle of a random-coil loop region between a helix C and A', and cys324 is located at the end of 

a helix C. Analysis of the amino acid sequence of the loop region where cys224 is located reveals 

that, within the neighborhood of five amino acids, there are 3 negatively charged residues. 

Considering that the loop region is where the two triple-helix units join together, one would 

anticipate this area being partially buried and yet bearing a certain degree of flexibility. Thus, 

according to the Parry and Cohen's model cys224 is indeed positioned in a negatively charged, 

partially buried location. Helical projections of the six helices composing the second and third 

conformational units of a-spectrin showed that these six helices displayed amphipathic distribution 

of amino acid residues, with hydrophobic residues clustering on one side of the wheel and 
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Models of spectrin repeats. a, presentation of spatial arrangements of B, C, and 

A' helices that form the three-helix motif in the Parry and Cohen's model (Parry 

and Cohen, 1991; Parry et al. , 1992). b, schematic presentation of the first 

conformational unit of the Speicher et al. 's model (1993). 
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hydrophilic residues on the other side. Such distribution is suggested to reflect a close association 

of these helices with one another along the hydrophobic faces (Speicher et al., 1993). Since cysl67 

is found on the hydrophobic face of the helix B where helix-helix interaction is suggested to take 

place, it is conceivable that it is buried inside of the hydrophobic core of the triple-helix cluster. 

On the contrary, cys324 appears to be exposed on the surface of the molecule since it is found on 

the hydrophilic face of the helix C where the interaction with the solvent is suggested to take place. 

Taken together, the locations of the cys residues in the Parry and Cohen's model fit well with the 

postulated environment of each residue based on our experiments. It explains the inaccessibility of 

cysl67 to both DTNB and Mal6, the inaccessibility of cys224 to the negatively charged DTNB and 

the low reactivity to Mal6 as well as the high accessibility and reactivity of cys324 to both Mal6 and 

DTNB. 

Recently, a modified triple-helix model (Fig. 23b) with slightly different phasing and 

secondary structure has been proposed by Speicher et al. (1993). In this model, cysl67 is on the 

hydrophobic face of the helix 1 while cys224 and cys324 are both on the hydrophilic face of the 

helix 2 according to the helical wheel projection. This suggests that cysl67 is buried inside the 

molecule while cys224 and cys324 are both exposed on the surface of the molecule. The similar 

environments of cysl67 and cys224 in Spa41-273 and Spal-446, respectively, implied by this model 

cannot explain the difference in accessibility and reactivity observed for the two cys residues in our 

experiments. Some additional interactions, for example the dimerization of spectrin repeats, are 

required for this model to account for the distinct chemical environments of cys224 and cys324. 

4.3 Thermotropic Properties of Spa4 l-273 and Spa 1-446 

Because of the proposed role of spectrin in maintaining the shape of the erythrocyte and in 

providing the stability to the erythrocyte membrane, the stability of spectrin in relationship to the 

stability of the erythrocyte membrane is of significance. Effects of temperature on spectrin, whether 
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bound to the membrane or isolated, have been studied by many investigators with a variety of 

techniques such as CD, scanning calorimetry (Brandts et al., 1977), optical rotatory dispersion 

(ORD) (Ralston and Dunbar, 1979), light scattering (Boe et al., 1979), trypsin susceptibility 

(Speicher et al., 1980; 1983a), fluorescence polarization (Yoshino and Marchesi, 1984), and spin­

labeling EPR (Cassoley et al., 1980; Minetti et al., 1986). 

Although most of these studies observed a clear transition around 49 cc, transitions at other 

temperatures were also observed depending on the buffer condition of the samples, the nature of the 

probes employed and methods used to determine transition temperatures. For example, Minetti et 

al. (1986) used both CD and spin-labeling EPR to study the thermotropic properties of spectrin. 

CD detected a structural transition around 48 cc and EPR detected a transition around 40 cc. It 

was hypothesized that different techniques could detect thermotropic properties of different folding 

domains (Minetti et al. , 1986). However, experimentally, this hypothesis was not tested, because 

the techniques then did not allow the selective probing of a specific domain. 

The availability of small fragments of spectrin and our ability to selectively label a specific 

cys residue have provided us with a more definitive approach to study the thermotropic properties 

of spectrin. 

Spa41-273 and Spal-446 labeled at cys224 in 5 mM sodium phosphate, pH 7.4, displayed 

transitions around 41 cc and 45 cc, respectively. The higher transition temperature of Spal-446 

suggests that, although the local conformation of cys224 does not change from Spa41-273 to Spa 1-

446, the overall stability of Spal-446 may be higher than that of Spa41-273. When cys324 instead 

of cys224 was labeled, the transition temperature of Spal-446 increased from 45 cc to 51 cc. The 

difference in the transition temperatures of cys324 and cys224 can be explained by their distinct 

"domain" locations in the molecule. As suggested above that in the Parry and Cohen's model, 

cys324 is part of the helix C while cys224 is part of the random-coil loop region connecting the 

helix C and A'. It is conceivable that cys324 senses the unfolding of secondary structure which 
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takes place at higher temperature while cys224 senses the unfolding of the tertiary structure which 

takes place at lower temperature. Recent studies on protein folding have shown that although 

protein folding/unfolding is generally a highly cooperative process, a folding intermediate known 

as "molten globule" (Kim and Baldwin, 1982; 1990; Baum et al., 1989; Hughson et al., 1990; 

Christensen and Pain, 1991; Ewbank and Creighton, 1991) is often observed. The molten globule 

intermediates of different proteins appear to have some common features, primarily a native-like 

secondary structure and a disrupted tertiary structure (Ohgushi and Wada, 1983; Ptitsyn, 1987). 

It is possible that the 40 °C transition observed by EPR and the 49 °C transition observed by CD 

for intact spectrin may represent the unfolding of the tertiary structure and secondary structure of 

spectrin, respectively. These two transitions, thus, may actually correspond to the 41 - 45 °C and 

51 °C transitions observed for Spa41-273 and Spal-446 labeled at cys224 and for Spal-446 labeled 

at cys324. In this respect, the thermotropic properties of spectrin fragments share similarity to those 

of intact spectrin. However, caution should be taken in comparing the thermotropic properties of 

the spectrin fragments with those of intact spectrin, since the thermotropic properties of intact 

spectrin are often collective or averaged properties contributed by several probes at several different 

locations while the thermotropic properties of a selectively-labeled spectrin fragment are 

individualized ones unique to the particular local environment. 

The transition temperature of Spa41-273 labeled at cys224 in 5 mM sodium phosphate at 

pH 7.4 with 150 mM sodium chloride was around 39 ° C. It differed slightly from the transition 

temperature of Spa41-273 labeled at cys224 in 5 mM sodium phosphate at pH 7.4 (41 °C). The 

result suggests that molecular interactions occurring around cys224 of Spa41-273 under the two 

buffer conditions may differ slightly. 

4.4 The Response of Spa41-273 and Spal-446 to Ionic Strength 

The erythrocyte membrane skeleton contracts or expands in response to the increase or 
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decrease of ionic strength of the buffer (Shen et al., 1986). Purified spectrin exhibits similar 

behavior (Ralston, 1976; LaBrake, 1993). The response of spectrin to ionic strength is a unique 

feature of this protein and is considered to be the structural basis of the elasticity of the erythrocyte 

membrane. 

The Stokes radius of a molecule is defined as its effective hydrated radius (Cantor and 

Schimmel, 1980). It is a convenient parameter for measuring the dimension of a protein. The 

Stokes radii of spectrin in different ionic strengths have been determined (Ralston, 1976; Kam et 

al., 1977; LaBrake, 1993). The Stokes radius of spectrin dimers is reported to increase from 124 

A in 5 mM sodium phosphate, 150 mM sodium chloride, pH 7.4 (high salt buffer) to 178 A in 5 

mM sodium phosphate, pH 7.4 (low salt buffer). The Stokes radius of spectrin tetramers is reported 

to increase from 250 A in high salt buffer to 330 A in low salt buffer (LaBrake, 1993). In order 

to compare the effect of ionic strength on the spectrin fragments to that on intact spectrin, the Stokes 

radii of Spa41-273 and Spal-446 were determined in both low salt and high salt buffers. The 

Stokes radius of Spa41-273 was found to increase from 33.2 A in high salt buffer to 55.8 A in low 

salt buffer. The Stokes radius of Spal-446 was found to increase from 35.6 A in high salt buffer 

to 56.0 A in low salt buffer. Although much smaller in size, Spa41-273 and Spal-446 share the 

similar characteristic as intact spectrin and are more condensed in high salt buffer and more 

extended in low salt buffer. Our results support the hypothesis that spectrin is composed of 

individually folded units of similar conformations. 

It should also be pointed out that Spa4 l-273 and Spa 1-446 had similar Stokes radius values 

under the similar salt condition despite the fact that the molecular weight of Spa 1-446 is larger than 

that of Spa41-273. It is possible that the overall folding of Spal-446 may be more compact than 

that of Spa41-273. It is also possible that the small difference between the dimensions of Spa41-

273 and Spal-446 was not able to be resolved by Stokes radius measurements. 
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4.5 The Reversibility of Conformational Changes of Spa41-273 and Spa 1-446 

It is reported by Yoshino and Marchesi (Yoshino and Marchesi, 1984) that, after removal 

of urea, spectrin a- and /j-subunits prepared in 3 M urea regain their a-helical content when 

analyzed by CD. Such preparation of a- and /j-subunits can be reconstituted into dimers that appear 

essentially the same as native spectrin. However, both subunits displayed other features that 

distinguished themselves from native spectrin including abnormal mobility on nondenaturing 

polyacrylamide gel electrophoresis, intrinsic tryptophan fluorescence and anisotropy. 

It is reported by Brandts and coworkers (Brandts et al., 1977) as well as by Ralston and 

Dunbar (1979) that heating of spectrin above its transition temperature produces conformational 

changes that are irreversible. Studies by Yoshino and Minari (1987) come to essentially the same 

conclusion. 

The reversibility of the conformational changes induced by heat and urea in Spa41-273 and 

Spa 1-446 has been investigated using Stokes radius measurements and spin-labeling EPR. We 

showed that the Stokes radius of urea-treated, boiled or temperature-cycled Spa41-273 in 5 mM 

sodium phosphate buffer at pH 7.4 was 52.3 A, 52.3 A or 56.4 A, respectively, indicating no 

difference from that of native Spa41-273 (55.8 A) within the limit of experimental errors. Thus, 

conformational changes induced by urea or heat are not detectable by the Stokes radius 

measurements. 

On the other hand, EPR spectra of urea- and heat-treated Spa41-273 and Spal-446 

displayed features distinct from those of native samples and samples in urea (section 3.3.1.3, Fig. 

19). The amount of the weakly immobilized component in urea-treated samples, as measured by 

W', fell between those of the native samples and samples in urea, implying that the conformational 

changes induced in Spa41-273 and Spal-446 by urea are not completely reversible. In order to 

eliminate the possibility that the proper refolding spectrin fragments after removal of urea was 

impeded as a result of the steric hindrance of the incorporated spin labels, urea-treated Spa41-273 
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samples were prepared by two different procedures, Procedure 1 (labeled in the presence of urea) 

and Procedure 2 (labeled after the removal of urea). Similar results were obtained from the two 

procedures, confirming that the presence of spin labels is not the factor that perturbed the 

renaturation. The W' values of Spa41-273 and Spal-446 before and after the heat treatment were 

also significantly different (section 3.3.2, Fig. 22), suggesting that conformational changes induced 

by heat are not reversible. 

Therefore, depending on the sensitivity of a technique to a particular conformational change, 

different measures ofreversibility are observed for Spa41-273 and Spal-446. Generally speaking, 

similar to intact spectrin, urea- and heat-treated Spa41-273 and Spal-446 are able to reverse their 

conformation to certain degree but not to completion. 

4.6 Conclusions 

Seven spectrin fragments with different lengths have been expressed as fusion proteins with 

GST. Different stabilities were observed for the different fragments following thrombin cleavage. 

Spal-128, Spal-234, Spal-340 and Spal-446 constructed based on the phasing of the conventional 

sequence motifs suffered different extents of nonspecific degradation while Spa41-167, Spa 1-167 

and Spa41-273 constructed based on the hypothesized phasing of the structural units showed little 

or no nonspecific degradation. The results imply that the hypothesized phasing of the structural 

units may be very close to the actual phasing of the conformational units. 

Structural features of two of the relatively stable spectrin fragments, Spa41-273 and Spa 1-

446, have been studied. The chemical environments of the common cys residues (cys167 and 

cys224) were kept the same in Spa41-273 and Spal-446. The dimensions of Spa41-273 and Spal-

446, as measured by Stokes radii, responded to the change of ionic strength in a similar fashion as 

intact spectrin, being more extended in low salt buffer and more condensed in high salt buffer. 

Structural transitions of Spa41-273 and Spal-446 occurring around similar temperature ranges as 
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those of intact spectrin were detected by spin-labeling EPR. After urea and heat denaturation, 

Spa4 l -273 and Spa 1-446 were able to partially reverse their conformation as if they were intact 

molecules. These results suggest that the folding of one unit is not affected by the existence of 

another unit and that small spectrin fragments bear structural similarity to each other and to intact 

spectrin. 

On the other hand, the Spa41-273 and Spa 1-446 exhibited essentially the same Stokes radii 

despite the fact that the molecular weight of Spa 1-446 is larger. A higher transition temperature 

was observed for Spal-446 than for Spa41-273 when they were labeled at the same site. For 

spectrin fragments with the similar phasing, the larger ones displayed higher stability in the thrombin 

cleavage reaction. These results appear to infer that, although the individual folding of each unit 

remains unaffected by the addition of a neighboring unit, the structure of the resulting fragment may 

not equal to the simple addition of the two smaller units. There could be additional interactions 

between the units giving rise to the additional compactness of the larger fragments. 

The data presented in this dissertation provided evidence supporting the hypothesis that 

spectrin consists of individually folded conformational units. 
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A collective secondary structure prediction for the human erythrocyte spectrin 106-residue 
repeat segment is developed. based on the sequences of nine segments that have been reported 
in the literature. utilizing a consensus of several secondary structure prediction methods for 
locating turn regions. The analysis predicts a five-fold structure. with three a-helices and two 
~-strand regions. and differs from previous models on the lengths of the helices and the exis­
tence of ~-strand structure. We also demonstrate that this structural motif can he folded into 
tertiary structures that satisfy the experimental spectrin data and several general principles of 
protein organization. 

Introduction 

Spectrin is a major protein in the human erythrocyte membrane skeleton that plays 
an important role in determining the mechanical properties and the unique biconcave 
shape of the erythrocyte ( 1-3). and consists of a (Mr=240.000) and~ (Mr=220.000) 
subunits. The two subunits associate side-to-side in an anti parallel orientation (4) to 
give a flexible rod approximately 1.000 A long. as visualized by electron microscopy 
(EM) (5). Circular dichroism (CD) measurements indicate 65-70% a-helical content 
(6). Amino acid sequence and cDNA sequence analyses (7-9) reveal that about 90% 
of spectrin. by mass. is comprised of repetitive structural units of 106 amino acid 
residues. Other spectrin-like proteins. including brain spectrin ( 10). dystrophin 
(11.12). and a-actinin (13) also have similar repetitive units. From EM data (5) and 
the numbe; of repeat units (7-9). the 106-residue segment must have dimensions of 
~ 55 X 30 A similar to the dimensions of other globular proteins. 

*Author to whom correspondence should be addressed. 
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A triple helical model has been suggested for the 106-amino acid segment based on 
Chou-Fasman analysis (14). This model is simple and attractive. with the unit 
length matching the expected 55 A linear length (5). However. the triple helical 
model somewhat over-predicts ( ~80-85%) the overall a-helix content the helical 
length is unusually large (55 A) for globular domains. the number of secondary 
structure elements is low for a globular domain of this size (15.16). the lack of any~ 
structure is somewhat unusual. and the simple antiparallel packing of helices of 
roughly equal length is more common for transmembrane protein domains than 
for cytoplasmic globular protein domains. An alternative f9ur-helix model has also 
recently been developed by Davison and coworkers ( 13). based on multiple secondary 
structure predictions of aligned a-actinin and spectrin sequences. However. their 
model includes one helix that is longer than the domain length. and there does not 
appear to be a good folding pattern that will permit the segment to form a repeating 
structural unit. 

In this study. we develop a detailed secondary structure prediction for the 106-
residue segment of spectrin by combining sequence information from all of the 
sequenced segments. A model for possible tertiary structure arrangement of the five 
major secondary structure regions is then developed. using data derived from EM 
and CD as additional constraints. A five-fold structural pattern is obtained that can 
be folded to give tertiary structures with features that satisfy both the experimental 
spectrin data. and several general principles of protein organization. This folded 
model can also be docked in antiparallel arrangement to provide a possible arrange­
ment for the dimer unit. 

Methods 

Secondary Structure Assignments. The complete sequences for nine of the thirty-six 
106-residue segments. al. a2. a3. a4. a5. a8. al 5. al 6. and ~18. have been published 
(8.9,14). Sequence homology implies conformational conservation. and all nine 
106-residue segments should have similar secondary and tertiary structures. Thus 
we used a collective secondary structure prediction method (17) to improve the 
reliability of our predicted secondary structure. since the summation will average 
out the differences in prediction pattern from one repeat to another. In analyzing 
secondary structure. we have used a unitary alignment since the 106-residue length 
is highly conserved (4). The "phase" of the 106-residue segment may be somewhat 
uncertain (4.14). but the uncertainty is probably no more than five residues. so we 
have used the published positioning for the segments. We evaluated the occurrence 
of each predicted structural pattern ( a-helix. ~-sheet and tum) in the nine segments 
to identify similarities in pattern predictions. 

In our analysis we have first determined the most probable tum locations using a 
combination of Chou-Fasman secondary structure prediction methods (CF) (18). 
minima in hydrophobicity plots and the pattern recognition methods of Cohen and 
coworkers (15). followed by CF secondary structure prediction of the regions between 
turns. Minima in hydrophobicity plots have been shown to correspond to turn 
regions. while broad maxima correspond to interior secondary structure regions 
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(helix and sheet), with helices often beginning at hydrophobic cente.rs ( 19). Thus. 
the collective hydrophobicity plot was evaluated for turn and helix/sheet positioning 
and compared with the CF prediction. The turn panerns predicted by CF and hydro­
phobicity were then compared with Cohen's panern recognition predictions (15). 
which have shown success rates of90-95% for turn prediction in homologous proteins. 
Since the repeat segments are assumed to be structurally homologous. a secondary 
structure prediction was then developed specifically for the a2 segment as an example 
of the collective prediction. and as the first step toward generation of a tertiary structure 
model. This segment was selected. rather than al or~ 18. for example. to avoid possible 
irregularities due to the dimer binding site(s) in the terminal ends of the spectrin 
monomers. 

Teniary Structure Model. The initial secondary structure elements were built using 
the molecular design package SYBYL. The graphics package FRODO was then 
used to build the monomer and dimer structures. Backbone dihedral angles were 
confined within allowed (!).\V regions. The CHARMM molecular mechanics program 
was used to anneal the structures and calculate structural parameters. 

Folding of secondary structures is the least developed aspect of protein folding 
schemes (20). There is no specific algorithm available for folding the secondary 
structural units of a protein to its tertiary structure. However. a number of principles 
for protein organization such as average helix length. the stability of helical struc­
tures in relation to their dipole arrangements. burial of~-sheets. higher stability of 
antiparallel ~-sheet in comparison with parallel ~-sheet. and the occurrence of~­
sheet in a right-handed orientation have been deduced (21 ). and were utilized in the 
construction of a tertiary model for the 106-residue segment. The distance between 
Co. atoms ofadjacent helices was kept greater than about 6.5 A (22). Structural motifs 
for connecting secondary structure elements in model construction were obtained 
from a/a and a/~ protein crystal structures in the Brookhaven Protein Data Bank 
(23). (See Richardson (21) for definitions of protein classification.) van der Waals 
contacts and ionic bonds between the charged residues were maximized to facilitate 
monomer to dimer formation. 

After folding the three dimensional models. they were subjected to 1.000 steps of 
conjugate gradient energy minimization. followed by 2.000 steps of molecular 
dynamics at 1,000 K. then cooled by 1.000 steps of steepest descent minimization. 
Accessibility calculations utilizing a 1.4 A radius probe were performed to measure 
surface exposure area. hydrophobic binding energy and the ratio of polar and non­
polar surface area. 

The number of van der Waals contacts. the physical contacts between monomers in 
the dimer form. the number of hydrogen bonds. conformational energy. accessible 
surface area. and polar/non-polar surface area ratios were calculated for the dimer 
and the two monomers. one of which is perturbed slightly in docking. to evaluate the 
models. The radius of gyration. Rg. and the three axial parameters (a. b. c) along the 
three orthogonal axes were also obtained. 
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Figure l: Collective and a2 individual Chou-Fasman and hydropathy analyses for the nine 106-residue 
segments of spectrin whose sequences have been reported. The solid line histograms represent the number 
of amino acids predicted to be in (a) helical. (b) ~-sheet or (c) tum structures at each position in the 
sequence. Thresholds for each of the structure types are shown as horizontal lines for the collective pre­
dictions. Based on the CD measurement of 65-70"/o a-helix. 6 was used as the threshold for occurrence of 
a-helix: a turn threshold of 5 was used. corresponding to more than half of the residues being predicted as 
turn residues within the nine segments. Values greaterthan the threshold represent higher probability for 
the individual structures. The dashed line histograms represent the predictions for the a2 sequence. The 
hydropathy plot(d) uses a normalized linear version (24)ofthe Kyte and Doolinle (25) hydropathy scale. 
with positive values for hydrophobic residues. negative values for hydrophilic residues. and a span sening of 
7; values shown are the average for the nine segments. Regions of minima for potential turn positioning 
are marked at the bonom of the plot. (e) Schematic representation of the secondary structure predicted in 
this work. 
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Results and Discussion 

Secondary Srrucrure Predicrion. In developing a secondary structure prediction. we 
have followed the basic strategy described by Cohen and coworkers ( 15.16) of first 
determining the most probable tum positions. and then assigning secondary structure 
between high probability turns. The CF tum prediction for both the o.2 and the collective 
sequence are shown in Figure le. CF turns were considered possible if a sequence of 
at least 4 residues appeared as turn residues in either the collective prediction (at or 
above the threshold. as indicated in the figure). or in the a2 individual prediction. 
CF turn positions were then compared with regions of minima in the hydropathy 
plot( 19) as noted in Figure Id: turns not at minima were eliminated. The remaining 
possible turns were then evaluated by the pattern recognition algorithms of Cohen 
and coworkers ( 15.16) as being high probability (T) or moderate to low probability 
(t) turns. CF predictions for a-helix or ~-sheet (Figures 1 a and I b) were then incor­
porated into the sequence. with the requirement that there be a span of at least 10 
residues (a-helix) or 8 residues (~-sheet) from one turn to the next. 

The resulting secondary structure scheme consists of three major a-helices. two~­
strands. four high probability and two moderate probability turn elements. in the 
sequence: a 1 (residues 1-21). T 1 (22-25). ~ 1 (26-35). T 2 (36-39). a 2 (40-58). T 3 (59-62). a 3 
(63-80), T 4 (81-84). ~2 (85-91), t5 (92-95)_a4 (96-100) and t6 (101-106). These 12 fragments 
can be arranged into a 5-fold pattern. with Region I beinga1 + T1• Region II beingT1 + 
~ 1 + T2, Region III beingT2 + a 2 + T3, Region IV beingT3 + a 3 + T4, and Region V 
being T4 + ~2 + t5. The C-terminal region is probably the most flexible part. with a 
possible one-tum a-helix (aJ and two adjacent turns (t5 and tJ forming a connecting 
link between segments. The structure is shown schematically in Figure le. and 
clearly indicates the existence of a more complicated secondary structure scheme 
then a simple triple helical structure. At least four turns and two ~-sheet regions of 
fairly high probability are predicted in addition to the three helix regions. 

An alternative strategy of first fixing the positions of high probability a-helices 
(Figure la) and ~-strands (Figure 1 b). and then positioning turns at the highest pro­
bability turn positions between these secondary structure elements yields essen­
tially equivalent results. Likewise. the use of other secondary prediction methods 
yield similar results for the prediction of a-helix and ~-strand. with the methods of 
Garnier(26) predicting 80% a-helix and 10% ~-strand. and those of Nagano (27) pre­
dicting 60% a-helix and 10% ~-strand. Thus. there is reasonable confidence in the 
amount and positioning of all of the secondary structure elements. 

The average lengths of the predicted a and~ elements are 19.3 and 8.5 residues. res­
pectively. which is within the range observed by Cohen and co-workers ( 16) for a/a 
and a/~ proteins of similar size: the predicted helices are all shorter than 55 A ( ~ 35 
residues). the linear length of a simple triple helix ( L 14). The predicted helical content 
of 62 % is also in good agreement with the published CD measurements of 65-70% 
(6). Comparison of our five-fold secondary structure model of the spectrin repeat 
with the triple helical model ( 14) indicates some similarities. but also significant dif­
ferences. Both models agree on the approximate position of helical regions. but differ 
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in helix lengths. Our model also predicts the existence of a couple short ~-strand 
segments. not seen in the triple helix model. The correlation of this model with that 
of Davison and coworkers ( 13) is comparable: positioning of high probability helical 
segments is similar. and some of the turns coincide fairly closely. but no ~-strand 
structure is predicted in their model. 

Tertiary Structure Model. In developing a tertiary structure model. we concentrate on 
packing the five secondary structure elements within the constraints of experimental 
data and general principles of protein folding (21). We constructed several three 
dimensional models for the a2 monomer. and a dimer consisting of two a2 monomers 
docked in an anti parallel arrangement. Two different types of models were con­
structed. based on their inter-subunit arrangements: interdigitated models. and 
side-by-side models. The monomer for the interdigitated model was constructed 
with a fairly open inter-subunit contact surface. with the ~-strands having a left­
handed twist. The dimer was formed with tight packing. resulting in significant per­
turbation of the monomer structures after molecular dynamics annealing of the 
dimer structure. The model is quite stable. and would probably require denaturing 
conditions to separate the two monomers. but the number of physical contacts between 
monomers and the number of ~ydrogen bonds appear to be unreasonably high. 
suggesting that this type of model is probably not feasible. 

The most probable a2 model was developed by association of the helical segments 
around the ~-sheets. This secondary structure arrangement has analogies in known 
globular proteins. The a 1 - ~ 1 segment resembles a similar segment in flavodoxin 
residues 90-120 (28): the a 2- a 3 arrangement resembles the G H helix region of deoxy 
hemoglobin (29). while the ~1 - a2 segment resembles flavodoxin residues 1-15 (26). 
the a 3 - ~ 2 arrangement resembles residues 135-149 of subtilisin (30). and the C­
terminal connecting region resembles the Ribonuclease AN-terminal (31 ). but in 
reversed order (~a. rather than a~). The alignment of ~-sheets to form a right­
handed anti parallel ~-sheet surrounded by three linear helices leads to an energetically 
stable monomer that is consistent with the experimentally observed linear dimensions 
and a-helical content. The two antiparallel a helices ( Ui· a:i) are then ideally positioned 
to form dimer contacts with the opposite pair of helical strands of a neighboring 
monomer unit. This approach was extended by docking two monomers to form a 
dimer. Stereo ribbon plots for the Ca backbone of two monomers docked to form a 
dimer are shown in Figure 2. In building the dimer. our primary concern was to 
accommodate van der Waals interactions between the monomers. No specific 
attempt was made to form salt bridges between monomers in our dimer model. 
although antiparallel a-helices with high contents of charged residues should form 
stable dimers by means of salt bridges. 

The model dimensions are ~49 X 33 X 29 A. in good agreement with EM data. We have 
measured both the hydrophilic and hydrophobic forces in the formation of dimers. 
There are about 60 hydrogen bonds within the a2 monomer. and eight hydrogen 
bonds between the two monomers. indicating fairly specific hydrophilic bonding 
between the monomers. The hydrophobic energy. as calculated from solvent access­
ibility. shows that dimer formation produces burial of non-polar residues from solvent. 
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Figure 2: Stereo ribbon plot of the tertiary structure model. with two 106-residue segments docked in an 
antiparallel arrangement as a model for the possible dimer arrangement. The plot was generated using 
the INSIGHT molecular graphics program (Biosym Technologies). 

The model is stabilized about equally by hydrophobic and hydrophilic forces. We 
have also verified that a2 monomers can be connected sequentially in extended 
repeats to form a linear molecule with appropriate linear dimensions. At the same 
time. it is to be emphasized that this is a single tertiary structure model that has been 
constructed from predicted seconda·ry structure elements. using principles of pro­
tein architecture (21) as a guide. but no detailed analysis of folding possibilities (22) 
has been done. Thus. the tertiary model should be taken as a demonstration that the 
predicted secondary structure elements can be folded into a reasonable tertiary 
structure to meet the constraints of known experimental data: it is not intended to 
provide detailed structural information. 

Summary 

We have shown that the triple helical model suggested for the spectrin 106-residue 
segment is probably over-simplified. A combination of hydropathy analysis. the 
pattern recognition methods of Cohen and coworkers (15.16). and Chou-Fasman 
analysis predict the existence of at least four high probability turns within the 
sequence at positions incompatible with an extended antiparallel triple helix. The 
existence oflimited ~-strand segments is also predicted with reasonable probability. 
Based on our secondary structure analysis. we propose a five-fold globular confor­
mation for the 106-residue segment. with the tertiary structure model shown in 
Figure 2 being one possible model. Experimental approaches to evaluate and refine 
this model are under development. 
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