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CHAPTER! 

INTRODUCTION 

Embryonic and fetal development of the heart is a unique process 

when compared to the development of other muscle tissue in that the 

dividing muscle cells, or cardiomyocytes, are highly differentiated and 

exhibit coordinated, contractile activity. However, these cardiomyocytes 

lose their capacity to divide, and therefore, embryonic and fetal heart 

development are the primary periods of active myocyte proliferation. 

During the perinatal period of rat heart development, a rapid "transition" 

occurs in the ventricle which involves the cessation of proliferation of the 

cardiomyocytes. In this same perinatal transition period, the 

cardiomyocyte undergoes a maturation process in which a change in 

expression of individual isoforms of several contractile proteins occurs that 

affects its contractile activity. Additionally, remodeling of the ventricle 

occurs during the late fetal and early neonatal periods of development 

involving both cardiomyocyte and non-cardiomyocyte populations. We have 

hypothesized that the transforming growth factor-B (TGF-B) family of 

receptors and ligands plays an integral role in these different processes of 

the perinatal "transition" due to their characteristic anti-proliferative 

activities as well as their ability to influence the expression of numerous 

genes associated with ventricular remodeling. 
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TGF-B ligands (TGF-B1_3) transduce their actions through a 

heterodimeric receptor complex containing the Type I and Type II TGF-B 

serine/threonine kinase receptors (BRI and BRII, respectively). While BRI 

appears to be constituitively expressed, we have shown by Northern blot 

analyses that TGF-B1, TGF-B3, and BRII expression in the rat ventricle is 

low-to-undetectable during fetal development and increase dramatically at

or-around birth. These patterns are temporally coordinated with the 

cellular and extracellular changes that occur during the perinatal 

transition period. These changes include the cessation of cardiomyocyte 

proliferation, the isoform switch of several members of the contractile 

machinery within the cardiomyocyte, the increase in extracellular matrix 

accumulation, and an increase in angiogenesis, or blood vessel formation, 

in the ventricle. Therefore, we would like to determine the direct roles 

TGF-B may have in these developmental processes. 

It is widely accepted that both TGF-B receptors are necessary for 

most, if not all, actions of TGF-B signal transduction. BRII is the primary 

ligand binding receptor and initiator of the TGF-B signaling cascade. It 

has been shown that ablation of BRII kinase function is an effective way to 

study the effects TGF-B has on cellular functions, and several of these types 

of studies have been utilized to study the effects ofTGF-B on cardiomyocyte 

growth and maturation. These studies have utilized a dominant negative 

methodology in which an inactive BRII, either by eliminating the kinase 

domain or through specific inactivating point mutations, was introduced 

into the cell. When overexpressed, this mutant receptor interferes with the 



endogenous wild type BRII's function by limiting or eliminating its access 

to bioactive ligand as well as available BRI, resulting in a blunted and/or 

ablated response to TGF-B as the signal transduction pathway cannot be 

activated by the truncated receptor. 

3 

This dominant-negative methodology was chosen to study the effects 

of TGF-B in cardiomyocyte and ventricular development and provide a 

system in which the roles of each receptor in cardiomyocyte development 

can be elucidated. While the use of primary cardiomyocytes would be the 

ideal cell type for such studies as they would be expected to closely reflect 

events which occur in vivo, their lack of proliferative activity in vitro and 

low receptivity to experimental manipulation have made them a non

tenable methodology. Therefore, the model system chosen to study these 

effects of TGF-B on a cardiomyocyte-like cell type was the use of two rat, 

fetal ventricular myocyte-derived cell lines, BWEM and CLEM. To enable 

us to evaluate the direct effects TGF-B may have on the cardiomyocyte, we 

utilized the dominant negative methodology to eliminate the TGF-B 

response in these cell lines. To do this, truncated, kinase-deficient human 

BRII was stably expressed in the BWEM and CLEM rat myocyte-like cell 

lines to create two clonal mutant cell lines, BW-Hl and CL-B5, with reduced 

or absent BRII function. 

Each of these cell lines, BWEM, CLEM, BW-Hl, and CL-B5, as well 

as primary cultures of 18 day fetal cardiomyocytes were then used to study 

the direct effects TGF-B may have on the myocyte population during 

ventricular development. The goal of this dissertation project was to 



establish the role(s) TGF-B plays in modifying myocyte proliferation and 

differentiation during the perinatal transition period. In addition to the 

creation and characterization of the BRII dominant negative cell lines, the 

data collected for this dissertation address the following questions: 

(1) Does TGF-B inhibit cardiomyocyte proliferation? 

(2) Does TGF-B play a direct role in cardiomyocyte differentiation by 

inducing the "adult" isoforms of three contractile proteins, Troponin C, 

Troponin I, and Troponin T? 

(3) Does TGF-B promote ECM accumulation and angiogenesis 

through the upregulation of cardiomyocyte produced PAI-1 and SPARC 

peptides? 

4 



CHAPTER2 

REVIEW OF THE LITERATURE 

One of the most effective means of controlling tissue formation and 

cellular function is the production of stimuli from cells which either act on 

the cells themselves in a feedback mechanism (autocrine stimuli) or on 

neighboring cells (paracrine stimuli). Growth factors are one type of 

stimuli, and therefore, determining the role of growth factors in embryonic 

and fetal development is an area of ongoing study. Changes in proliferative 

activity, differentiation, cell shape, migration, cell adhesion, and cell death 

are examples of the effects growth factors may elicit (Simmen and Simmen, 

1991; Adamson 1993). Growth factors are important in such activities as 

embryonic implantation (Simmen and Simmen, 1991), determining 

dorsal/ventral patterning in the early embryo (Slack 1990; Christian and 

Moon, 1993; Nusslein-Volhard 1991; de Vries et al., 1996), regulating 

homeobox gene expression (Dawid et al., 1992), influencing proper limb 

development (Fallon et al., 1994), and regulating cell growth and/or 

differentiation (Adamson 1993; Murphy and Barron, 1993). The use of gene 

ablations has provided examples of the importance of growth factors such 

as the transforming growth factor-betas (Proetzel et al., 1995; Boivin et al., 

5 



1995; Kaartinen et al., 1995) and fibroblast growth factors (Amaya et al., 

1991; Ueno et al., 1992; Feldman et al., 1995) in development. 

6 

Development of the heart, like many other organs and systems, 

appears to be under partial control by several growth factors which work in 

an autocrine or paracrine manner. The presence of growth factors and 

their receptors in the developing heart appears to be differentially regulated 

in that they are expressed in both temporally and spatially discrete times 

and sites. These growth factors are believed to be involved in several 

separate, yet inter-related, processes: 1) cardiomyocyte proliferation and 

differentiation, 2) the formation of biomechanical structures such as the 

valves, 3) vasculogenesis; capillary angiogenesis and neovascularization, 

and 4) non-muscle cell-produced extracellular matrix (ECM) formation. 

Review of TGF-Bs 

Identification of Ligands and Receptors 

Among an expanding list of growth factors that appear to have an 

active part in heart development are members of the transforming growth 

factor-beta (TGF-B) superfamily. TGF-B is the prototypic member of this 

large peptide growth factor family that includes the TGF-Bs, activins, 

inhibins, bone morphogenetic proteins, mullerian inhibiting substance, 

and products of the decapentaplegic (Drosophila) and Vgl (Xenopus) genes 

(Massague 1990; Kingsley 1994). To date, five isoforms ofTGF-B have been 

identified: TGF-B1_3 (mammalian), TGF-B4 (avian), and TGF-B5 
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(amphibian) (Massague 1990). Although originally established as a novel 

isoform, TGF-B4 has been shown to be the avian TGF-B1 (Burt and Paton, 

1992). Each of the three mammalian isoforms have nearly perfect amino 

acid identity across species, and all five TGF-B isoforms have been highly 

conserved throughout evolution, suggesting specific roles for each. In 

addition, each TGF-B isoform shares a high degree of amino acid sequence 

homology with each other in their mature, bioactive domain. In contrast, 

each TGF-B isoform is associated and secreted with a large latency 

associated protein (LAP) as well as a latent TGF-B binding protein 

(Miyazono et al., 1988; Miyazono et al., 1990; Miller et al., 1992; MacKay et 

al., 1992). These proteins are unique to each TGF-B isoform. In order for 

"latent" TGF-B to be activated, these latency proteins must be released from 

the bioactive TGF-B homodimer by processes that remain to be identified in 

vivo, yet in vitro acidification, heat, or proteolytic cleavage has been shown 

to be effective (Massague 1990; Ghosh and Brauer, 1996). Lastly, multiple 

members of the TGF-B family are often co-expressed and co-localized, and 

they generally elicit similar mechanisms of action on cells in culture. 

While almost all TGF-B peptides identified exist as homodimers, limited 

examples of TGF-B112 heterodimers have also been identified in platelets and 

bone (Cheifetz et al., 1987; Ogawa et al., 1992). 

As with most, if not all, growth factors and cytokines, TGF-Bs exert 

their effects through cell surface receptors. To date, nine distinct proteins 

have been identified on the cell surfaces of a diverse array of cell types 

which bind the TGF-Bs (Massague 1987; Sporn and Roberts, 1992). Three of 
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these proteins in mammalian cells are classified as functional TGF-B 

receptors: Type I (BRI), Type II (BRII), and Type III (BRiii). BRiii, 

otherwise known as betaglycan, has been cloned from rat, chicken, human, 

and porcine cells (Lopez-Casillas et al., 1991; Wang et al., 1991; Moren et 

al., 1992; Barnett et al., 1994), and varies in size from 200-400 kD, dependent 

on the level of glycosylation. However, the core protein is approximately 110 

kD in size and is moderately conserved across species, having a 70-80% 

identity at the amino acid level. This receptor appears to bind each of the 

different TGF-B isoforms with a high affinity (Kd of 50-200 pM for B1_3, 

Miyazono et al., 1994) and is expressed in and found on the surfaces of 

virtually all cell types. However, this receptor is not a "classical" receptor 

in that it does not have a intracellular signaling domain, and as such, its 

exact role in TGF-B signal transduction has yet to be fully elucidated (see 

below). 

BRI and BRII have also been cloned from a variety of species and are 

the prototypes of an ever growing family of serine/threonine (SIT) kinase 

receptors. BRII has been cloned recently from cDNA libraries derived from 

human, porcine, mink, rat, chicken, and mouse cell lines (Lin et al., 1992; 

Wrana et al., 1992; Tsuchida et al., 1993; Lawler et al., 1994). Immediately 

following the cloning of BRII, Type I receptor genes were cloned through 

cDNA library screens utilizing sequences obtained from the kinase domain 

of BRII. These screens have identified numerous genes which fall into the 

Type I "family", but their exact identities were harder to determine due to 

their promiscuous ligand binding abilities in concert with BRII (example: 
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Ebner et al., 1993). However, a physiologically relevant, true BRI has been 

identified from human (ALK-5), rat (R4), and murine (ESK2/mTFR40) 

systems (Franzen et al., 1993; He et al., 1993; Suzuki et al., 1994b; Tomoda et 

al., 1994). 

The bulk of BRII can be divided into two domains: the extracellular 

(EC) domain and the intracellular (IC) domain (Figure 1). While the TGF-B 

ligands are almost perfectly conserved across species, the ligand-binding, 

EC domain of BRII has only 80-85% amino acid sequence identity across 

species, with the divergent areas considered not to be involved in ligand 

binding activity. In contrast, the IC domain, of which the bulk is the SIT 

kinase domain, is 96-100% identical across species at the amino acid level. 

While the general structure of BRII is highly conserved, two variants have 

been identified to date in human and murine cells. One contains a 25 

amino acid insert in the EC domain (Suzuki et al., 1994a; Hirai and Fujita, 

1996), while the other has an extended IC tail of -400 amino acids 

(compared to 30 a.a. for its "normal" human counterpart; Kawabata et al., 

1995a). 

Like BRII, BRI receptors are highly conserved with 100% amino acid 

identity within the IC-SIT kinase domain and 90-97% overall sequence 

identity (Figure 1). Contrasting with this high level of interspecies 

conservation seen in the domains of BRI, the kinase domain of different 

members of the type I family of receptors within the TGF-B superfamily 

(aka type I activin receptors, type I BMP receptors, etc.) are less conserved 

at the amino acid level (-65%), and interestingly, have relatively low amino 
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acid homology to the BRII kinase domain (-40%) (Tomoda et al., 1994). 

These low homologies imply that the type I and type II receptors have 

distinct functions within the signaling cascade, and that the different type I 

receptors activate distinct pathways I downstream effectors. 

.... JC 

TGF-BRJ -53kD ~~ llJ I 
..... JC 

501 aa 

TGF-BRII -75kD ~~- I 
homology (human:rat) 82% 

~ Signal Sequence 

Im Extracellular Ligand-binding domain 

• Transmembrane Domain 
Im ml GS Domain 

• Serine/Threonine Kinase Domain 

Figure 1: Schematic Diagrams of BRI and BRII 

98% 567 aa 

Diagrams of each TGF-B receptor and the major functional domains 
are depicted. Arrows indicate full intracellular (IC) domain, a majority of 
which is the kinase domain, but also including activation domains such as 
the well conserved GS domain in the type I receptors. Amino acid 
homologies between the extracellular domain and kinase domains are 
given for BRII. 
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General Functions of TGF-B 

The general biological functions of TGF-B can be broadly grouped into 

three major, albeit overlapping, categories: 1) actions which affect cellular 

proliferation and migration; 2) actions involved in cell adhesion and ECM 

formation; and 3) actions that affect a cell's phenotype (Massague 1990; 

Roberts and Sporn, 1992a). In general, all of these activities can be 

mediated by any of the five TGF-B isoforms known to date. 

Cellular Proliferation 

While TGF-B is able to stimulate cell division in a distinct and limited 

subset of cell types (Anchan and Reh, 1995, and references therein; Zhao 

and Young, 1996), the TGF-B's have significant anti-proliferative activities 

on almost all cell types in culture (Massague 1990; Sporn and Roberts, 

1992). While such studies continue, the effects of TGF-B on cellular 

proliferation appear to involve the regulation of the synthesis and/or 

activities of proteins involved in the normal progression through the cell 

cycle. For example, the retinoblastoma (Rb) gene is a critical cell cycle 

regulatory protein which is inactivated by phosphorylation in late G1, and 

this inactivation is necessary for entry into S phase and DNA replication 

(Laiho et al., 1990). TGF-B1 has been found to maintain Rb in its 

unphosphorylated state leading to G1 arrest (Laiho et al., 1990). Addition of 

TGF-B1 at the mid-to-late G1 stage of the cell cycle did not have any effect on 

the Rb which was already phosphorylated, but inhibited further 



phosphorylation, thus regulating the phosphorylation and not the 

dephosphorylation of Rb (Laiho et al., 1990). 
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Of growing importance in the study of TGF-B's anti-proliferative 

effects is the understanding of the multifaceted regulatory role TGF-B has 

in regards to the many proteins which are involved in the cell cycle. TGF-B1 

has been found to regulate cyclin/cdk activities, one of which mediates Rb 

phosphorylation (Lafon et al., 1995), which is needed during G1 to S phase 

transitions. While cyclin D mRNA levels appear unchanged in response to 

TGF-B1, the mRNA levels of two other G1 cyclins, cyclin E and cyclin A, are 

reduced to almost undetectable levels in cells treated with TGF-B1 (Geng 

and Weinberg, 1993). The lower levels of cyclin A can be attributed to a 

direct downregulation of mRNA synthesis by TGF-B (Feng et al., 1995). In 

addition to cyclin synthesis, synthesis of the cyclin EID co-activator, cyclin 

dependent kinase (cdk) 4, is suppressed by TGF-B1 in a post-transcriptional 

manner (Ewen et al., 1993; Ravitz et al., 1995). This suppression appears to 

be critical in preventing the formation of active cyclin E/cdk4 complexes in 

cells treated with TGF-B1• Inhibitors of cdk2 (cyclin A-associated) and cdk4 

such as p27/Kipl and p21/Cipl/WAF-1 were identified as proteins which 

were in excess in contact-inhibited or TGF-B1 treated cells (Polyak et al., 

1994a; Polyak et al., 1994b; Toyoshima and Hunter, 1994). In mink lung 

cells, WAF-1 synthesis was induced by TGF-B1 (Raynal and Lawrence, 

1995). However, excess Kipl was not caused by increased production of the 

protein itself, but by decreased competition for binding from cyclin D/cdk4 

complexes which resulted from down-regulated cdk4 synthesis in response 



to TGF-B
1

• Additionally, another inhibitor of cdk4, pl51
NK

48
, was identified 

which inhibits cdk4 and cdk6 (Hannon and Beach, 1994). pl51
NK

4
B is 
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induced approximately 30-fold in response to TGF-B1, and while it may not 

result in the release of Kipl from cyclin D/cdk4 complexes, it inhibits cyclin 

activity needed for progression through G1. Additionally, it has been shown 

that TGF-B1 induction of Cipl and p151
NK

4
B relies on Spl consensus binding 

sites within their respective promoters, indicating that the activity of the Sp 

family of transcription factors are also regulated by TGF-B1 (Li et al., 1995; 

Datto et al., 1995). 

Cellular Differentiation 

As cellular differentiation is usually coupled to the cell's withdrawal 

from the cell cycle, TGF-B is a prime candidate when studying 

differentiation factors. While inhibition of proliferation is not sufficient for 

bronchial epithelial cells to undergo squamous differentiation, TGF-B was 

identified as the serum factor that induced this differentiation, which 

included decreased proliferation accompanied by morphological changes 

(Masui et al., 1986). Similarly, TGF-B induces the differentiation of 

endothelial cells in vitro into cells that appeared indistinguishable from 

smooth muscle cells and expressed a-smooth muscle actin, a state which 

was irreversible after prolonged exposure to TGF-B1 (Arciniegas et al., 

1992). As TGF-B1 can induce myocyte-like characteristics in endothelial 

cells (Arciniegas et al., 1992), pericytes (Verbeek et al., 1994), epithelial cells 

(Kurodaka et al., 1995), and fibroblasts (Ronnov-Jessen and Petersen, 1993), 



it is no surprise that TGF-B has been postulated to play a role in muscle 

development. 
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In skeletal muscle development, progenitor cells proliferate as non

differentiated myoblasts which do not express muscle-specific genes and 

have no or limited contractile ability. Upon withdraw! from the cell cycle, 

these cells terminally differentiate and fuse to form contractile myofibers. 

This differentiation process can be triggered in vitro by maintaining the 

cells in a low serum media. TGF-B1 appears to be necessary for 

differentiation as mutant myoblasts which are unable to respond to TGF-B1 

do not undergo differentiation under low serum conditions (Filvaroff et al., 

1994). This is in contrast to most of the previous studies relating TGF-B1 

activity to myoblast differentiation. In myoblasts treated with TGF-B1 under 

low serum conditions, the muscle-specific transcription factors MyoDl and 

myogenin were inhibited or not expressed, which blocked contractile 

protein expression and myoblast fusion into myotubes (Massague et al., 

1986; Olson et al., 1986; Florini et al., 1986; Vaidya et al., 1989; Brennan et 

al., 1991). However, in vivo, differentiation occurs where mitogens, or 

positive stimuli, are potentially high. Therefore, addition of TGF-B1 to 

myoblasts maintained in high serum (or mitogen enriched) media is also 

able to induce myoblast differentiation (Zentella and Massague, 1992). This 

mechanism(s) involved the inhibition of proliferation (one aspect being 

downregulation of c-myc) and decreasing the levels of the myogenic 

inhibitor of differentiation, Id. While the anti-proliferative activity of TGF

B1 aides in the induction of differentiation, overexpression of MyoD alone 
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releases the cells from their dependence on TGF-B1 to differentiate (Filvaroff 

et al., 1994). 

ECM Formation. Cell Adhesion. and Angiogenesis 

One of the classic effects ofTGF-B stimulation is the regulation of 

ECM deposition. This regulation involves the stimulation of ECM protein 

production and secretion, inhibition of protease synthesis and increasing 

synthesis of protease inhibitors, and stimulation of integrin receptor 

production which enhances the cell's ability to interact with the ECM and 

surrounding cells (Roberts and Sporn, 1992a). Two classic ECM promoting 

factors which are responsive to TGF-B actions are an ECM protein, 

fibronectin, and a protease inhibitor, plasminogen activator inhibitor-1 

(PAI-1). Increases in expression or promoter activity of the these two 

genes, in addition to growth inhibition, are standards used to determine a 

cell's ability to respond to TGF-B (e.g. Massague 1990; Chen et al., 1993; 

Brand et al., 1993; Attisano et al., 1994; Reed et al., 1994). Other ECM 

genes/proteins or ECM promoting factors which are induced by TGF-B 

include the proal and proa2 chains of type I collagen, and tissue inhibitor 

of metalloproteinases (TIMP) (Laiho et al., 1986; Ignotz et al., 1987; Wrana 

et al., 1988; Overall et al., 1989; Reed et al., 1994). In addition to promoting 

expression of "positive" factors of ECM biosynthesis, TG F-B inhibits or 

decreases expression of factors associated with ECM degradation such as 

collagenase, plasminogen activator, and stromelysin/transin (Laiho et al., 

1986; Edwards et al., 1987; Kerr et al., 1988). 
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While most effects of the TGF-B1 are transcriptional, post

transcriptional regulation such as increasing mRNA stability of collagen 

and fibronectin has also been demonstrated (Wrana et al., 1991). 

Specifically, regulation of Type I collagen expression demonstrates the 

ability of TGF-B1 to regulate both transcription and translation (Fine and 

Goldstein, 1993). Type I collagen is made up of two subunits, al(I) and 

a2(I). Upon TGF-B1 treatment, al(I) mRNA levels increase resulting in 

increased collagen protein production. This increase in al(I) is attributed, 

at least in part, to increased protein binding to a TGF-B1 activating element 

within the al(I) promoter (Ritzenthaler et al., 1993). In contrast, a2(I) 

mRNA levels are unchanged; by an as yet unknown mechanism, TGF-B1 

induces and/or increases translation from the "basal level" of this specific 

mRNA resulting in an equal increase in both Type I collagen protein 

subunits (Fine and Goldstein, 1993). 

In addition to promoting ECM accumulation, TGF-B also promotes 

cell adhesion to the ECM through the induction of several members of a 

family of receptors called integrins which function as ECM receptors 

(Ignotz and Massague, 1987; Heino and Massague, 1989; Wahl et al., 1993). 

These ECM-binding integrins are responsible for transmitting signals from 

the ECM into the cell and are thought to be expressed before the ECM 

proteins are laid down, especially in fetal development (Borg et al., 1990). 

Integrins are composed of one a and one B subunit, with the a subunit 

specifying the particular ECM protein to which the receptor binds. 

Depending on cell type, TGF-B can change a cell's affinity for different ECM 
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proteins (e.g. increase a 2, a 5 , and B1 while decreasing a 3 in osteosarcoma 

cells) (Heino and Massague, 1989), or increase a cell's affinity for ECM in 

general (monocytes and thymocytes) (Ignotz and Massague, 1987; Wahl et 

al., 1993). Similar to the regulation of collagen synthesis, this upregulation 

of mRNA and protein levels of the integrin subunits has a dual level of 

control: increasing transcription rates and increasing the rate at which the 

protein is processed and expressed at the cell surface (Ignotz and 

Massague, 1987). 

In contrast to these ECM promoting factors, in processes such as 

tissue remodeling and wound repair, TGF-B exerts opposing effects. While 

TGF-B1 usually induces ECM accumulation, it can also transiently induce 

degradation of ECM components by increasing the production of 

proteinases such as type IV collagenase (Overall et al., 1991; Wahl et al., 

1993). This degradation allows cell detachment from and migration 

through the ECM (Overall et al., 1991; Salo et al., 1991). The actions of type 

IV collagenase are also limited by TGF-B1 as it co-induces its inhibitor, 

TIMP, to a greater degree, but at a slower rate, thus allowing detachment 

and migration of cells and then promoting their reattachment and ECM 

accumulation (Overall et al., 1991). TGF-B's ability to promote cell 

migration is also one method in which TGF-B controls angiogenesis, or 

formation of blood vessels. TGF-B1 is able to stimulate an angiogenic 

response when injected into chicken chorioallantoic membrane or 

subcutaneously, with the new capillary cords growing toward the site of 

TGF-B1 injection (Roberts et al., 1986; Yang and Moses, 1990). This activity 
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is similar to wound healing in that TGF-B1 induces cell migration (possibly 

having a chemotaxic role) and changes in ECM composition. Similar to the 

negative control demonstrated with TIMP, TGF-B also limits angiogenesis 

after promoting it by upregulating PAI-1, which inhibits plasmin, an 

important enzyme in angiogenesis (MacGregor et al., 1995). 

In addition to its ability to control angiogenesis through ECM 

turnover, it has been proposed that TGF-B may also promote angiogenesis 

by inducing cells to produce angiogenic factors (Roberts et al., 1986). One of 

these factors is SPARC (§.ecreted nrotein that is ftCidic and r.ich in gysteine), 

osteonectin, or BM-40. SPARC has been associated with tumor metastasis 

and with tissues undergoing morphogenetic processes, particularly cells 

undergoing proliferation, migration, and detachment from the ECM 

(Mason et al., 1986; Sage et al., 1989; Wrana et al., 1991; Iruela-Arispe et al., 

1991a; Reed and Sage, 1996; Sage 1997). The effects SPARC is able to elicit in 

these processes are broad, encompassing cellular proliferation (negative), 

cytoskeletal rearrangements, cell adhesion, cell migration, and ECM 

turnover (Sage 1997). As most of these processes are involved in the 

formation of blood vessels, it is not surprising that SPARC has been found 

to be actively synthesized by endothelial cells undergoing angiogenesis 

(lruela-Arispe et al., 1991b; Lane et al., 1992). Therefore, TGF-B may 

promote morphogenesis and angiogenesis through its ability to induce the 

expression of SPARC in both fibroblasts and endothelial cells (Wrana et al., 

1988; Wrana et al., 1991; Reed et al., 1994), and this induction may be at the 

transcriptional and/or post-transcriptional level (Wrana et al., 1991; Iruela-
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Arispe et al., 1995). Interestingly, intact SPARC has been found to have no 

angiogenic activity on its own, but a cleavage product of SP ARC as a result 

of digestion with plasmin induces angiogenesis in vivo (Iruela-Arispe et 

al., 1995). Therefore SPARC, as well as TGF-B, also limits its own 

angiogenic activity as it has been found to increase PAI-1, an inhibitor of 

plasmin activation (Reed and Sage, 1996). 

TGF-B Signal Transduction Pathway 

As previously mentioned, three receptors for TGF-B have been 

identified to date, BRI, BRII, and BRIII. The cloning of these receptors has 

provided a molecular and cellular means by which to study the interactions 

and specific roles each plays in TGF-B signaling. While it appears that all 

three mammalian isoforms of TGF-B ligands mediate their responses 

through their interactions with BRI and BRII, the exact function of BRIII 

in these processes is unclear. BRIII is able to bind all three isoforms of 

TGF-B as well as members of another family of growth factors, fibroblast 

growth factors (Andres et al., 1992), but as it does not have an intracellular 

signaling domain, its actions remain unclear. Membrane bound BRIII 

has been postulated to be involved in TGF-B ligand presentation to BRII 

(particularly for TGF- B2) or ligand sequestration (Lopez-Casillas et al., 

1993; Lopez-Casillas et al., 1994). To support its role in ligand presentation, 

BRIII has been shown to form hetero-oligomeric complexes with BRII 

when TGF-B1 is present (Moustakas et al., 1993; Henis et al., 1994), and 



increases cells' responsiveness to TGF-B1 (Lopez-Casillas et al., 1993). This 

hetero-oligomeric complex may be disrupted upon ligand binding to BRll, 

with BRiii being displaced by BRI. (Henis et al., 1994). Additionally, a non

membrane bound form of BRiii has been found to be an antagonist to TGF

B1 signaling as it binds extracellular ligand and does not allow subsequent 

binding to cell surface BRll (Lopez-Casillas et al., 1994). 

Nevertheless, most, if not all, actions of TGF-B are mediated through 

BRI and BRll, which are the receptors containing the functional SIT kinase 

domain. While BRI cannot bind TGF-B on its own, BRll binds TGF-B 

ligands with varying affinities (Ka of 5-50 pM for B1 and B3, Ka of 500 mM for 

B2, Miyazono et al., 1994). Therefore, BRll binds TGF-B and complexes with 

BRI to initiate the signaling cascade (Wrana et al., 1992). This is clearly 

demonstrated in cells resistant to TGF-B actions in that many do not 

express one of these two receptors, and can be rescued by transfection with 

expression vectors encoding for the missing receptor (Laiho et al., 1991; 

Wrana et al., 1992; Markowitz et al., 1995). In addition, the kinase domain 

of BRll is constitutively active and autophosphorylates its IC domain in a 

ligand independent manner (Wrana et al., 1994a). This 

autophosphorylating activity is independent of its ability to phosphorylate 

BRI as mutants have been identified which can phosphorylate themselves 

but not BRI (Carcamo et al., 1995). Additionally, BRll is also 

phosphorylated by cellular kinases as a kinase defective BRll has also been 

found to be phosphorylated, yet to a lesser degree than its active form 

(Wrana et al., 1994a). Because BRll exists at the cell surface as homomeric 



complexes in a ligand independent manner (Chen and Derynck, 1994), 

cross-phosphorylation of BRII may also occur. 
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It appears that the sole purpose of TGF-B1 binding to BRII is the 

recruitment of BRI. Upon ligand binding to BRII, BRI is recruited to the 

complex, and is directly phosphorylated by BRII in the GS domain (Wrana 

et al., 1994a; Ventura et al., 1994; Vivien and Wrana, 1995). This domain is 

a highly conserved, 30 amino acid domain found in most type I TGF-B 

receptors (Wrana et al., 1994b ). It contains seven serine and threonine 

residues, of which deletion or mutation of more than one results in an 

inactive receptor (Wieser et al., 1995). As BRII exists in the cells as 

homomeric complexes, it is no surprise that hetero-oligomeric complexes 

containing two or more of each, BRI and BRII, have been found and are 

thought to mediate TGF-B signaling (Bassing et al., 1994; Yamashita et al., 

1994). It is interesting to note that this complex formation and subsequent 

phosphorylation of BRI is not dependent on ligand binding to BRI itself 

(Vivien and Wrana, 1995). It has been shown that the intracellular 

domains of BRI and BRII directly interact upon ligand binding to BRII, and 

that this interaction is sufficient for BRI phosphorylation by BRII (Ventura 

et al., 1994; Chen et al., 1995a; Feng and Derynck, 1996). The functionality 

of the interaction between the intracellular domains is complex as an 

activation-defective BRI and a kinase-defective BRI are able to 

complement/rescue each other's defect when co-expressed and assembled 

into a single complex with active BRII (Weis-Garcia and Massague, 1996). 



2'2 

A simple, multi-step mechanism of TGF-B receptor activation has 

been proposed by Wrana et al. (1994a). In this four step process, any of the 

TGF-B ligands binds to a pre-phosphorylated BRII, BRI is recruited into 

this complex, BRI is phosphorylated by BRII and thus activated, and then 

BRI is able to phosphorylate downstream effectors which mediate the 

different responses to TGF-B (Figure 2). 

...... ............. ...... 

II II I 

A B c D 

Figure 2: Postulated TGF-B Receptor Activation Sequence 
TGF-B3 binds to BRII (A), resulting in the recruitment of BRI (B). 

Once the BRII-BRI complex is formed, BRII phosphorylates BRI in the GS 
domain (C), which activates BRI resulting in activation of downstream 
effectors (D). 

In support of the 4-step hypothesis for TGF-B receptor activation 

diagrammed in figure 2, a point mutation in the kinase domain of BRII has 

been identified which results in BRII being unable to phosphorylate BRI, 

while being able to autophosphorylate itself (Carcamo et al., 1995). The 

inability of BRII to phosphorylate BRI results in a complete loss of TGF-B1 
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responsiveness and indicates that transphosphorylation of BRI by BRII is 

essential for signal transduction. However, as illustrated above and 

described previously, this mechanism of receptor activation is not as simple 

as first anticipated. In addition to the complex interactions of the 

intercellular domains of the two receptors, it is becoming apparent that the 

different responses that can be elicited by TGF-B are determined by BRI and 

the signal transduction pathway it activates. Deletion analyses have 

determined that the juxtamembrane domain preceding the GS domain in 

BRI is responsible for growth inhibition, but not the induction of ECM

promoting genes, PAI-1 and fibronectin (Saitoh et al., 1996), while deletion 

of the juxtamembrane region preceding the kinase domain in BRII is 

essential for all functions (Feng et al., 1995). Additionally, uncoupling of 

growth inhibition and gene transcription can be demonstrated in cell lines 

which have undetectable BRII or which express a kinase deficient BRII 

(Chen et al., 1993; Lafon et al., 1995). In these cells, addition of TGF-B1 does 

not inhibit cellular proliferation, but does induce genes such as PAI-1, c

jun, and TGF-B1• These results suggest that BRI is able to activate some 

pathways without phosphorylation by BRII, but this issue remains 

controversial. 

While the "beginning'' or activation of the TGF-B signal transduction 

pathway has been examined extensively, the events occurring between 

ligand binding to the cell surface receptors and the cellular response are 

only beginning to be understood through the discovery of proteins that act 

downstream of or are physically associated with BRI or BRII. Two proteins 
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have been identified by their association with the receptors themselves: 

Farnesyl-protein transferase-a (FT-a) and TRIP-1 (Chen et al., 1995b; 

Ventura et al., 1996). FT-a associates with BRI, is phosphorylated by BRI in 

vitro (Kawabata et al., 1995b), yet appears unnecessary for TGF-B activity 

(Ventura et al., 1996). Therefore, the role for FT-a and BRI interaction 

remains unknown. Similarly, data has been collected which supports the 

hypothesis that TRIP-1 may be involved in the TGF-B1 signaling pathway 

(Chen et al., 1995b). The TRIP-1 protein associates with BRII, but not other 

type II SIT kinase receptors, in a ligand-independent fashion, and is 

phosphorylated on threonine and serine residues, potentially by either, or 

both, BRII or BRI. However, while the available TRIP-1 clues to 

intracellular pathways, no mutants or knockout studies have been 

performed to directly demonstrate its involvement in a TGF-B signaling 

pathway. 

In the world of tyrosine kinase receptors, the Ras-MAP (mitogen

activated protein) kinase signaling cascades are integral components of the 

cell's intracellular responses to extracellular signals. Similarly, members 

of these families of kinases are being identified as components of the 

"downstream" TGF-B signal transduction pathway(s). Rae, a small GTP

binding protein assumed to be near the beginning of the cascade, exhibited 

a 3.7-fold increase in activity after exposure to TGF-B, which led to 

increased transcription from the PAI-1 promoter (Mucsi et al., 1996). 

Additionally, activity of extracellular signal-regulated kinase-I (ERKl) was 

also increased 4.5-fold after TGF-B1 treatment, whereas other proteins such 



as Ras, Rho, and MAP kinases such as Jun kinase (JNK) are not involved 

(Mucsi et al., I996). While Rae and ERKI are activated by a wide variety of 

signals, other members of the MAP kinase cascade have been identified 

which appear to be more closely associated with signal transduction from 

the receptors of the TGF-B superfamily. TAKI (TGF-B-activated kinase) is a 

MAP kinase kinase kinase whose activity was stimulated in response to 

TGF-B1 and another TGF-B family member, BMP-4, resulting in increased 

PAI-I promoter activity (Yamaguchi et al., I995). Additionally, another 

protein, TABI (TAKI binding protein) was subsequently identified which 

interacts with TAKI and may activate it by binding to its catalytic domain 

(Shibuya et al., I996). The importance of TABI in the TGF-B signaling 

cascade was demonstrated by the creation of a dominant negative TABI 

mutant which was able to inhibit PAI-I promoter activity in response to 

TGF-B1 (Shibuya et al., I996). 

While MAP kinase signal transduction cascades are a rapidly 

expanding area of study in growth factor and cytokine actions, other signal 

transduction pathways appear to be involved in some manner in TGF-B's 

activity. The G-protein Gial was found to be necessary for cytoskeletal 

reorganization in fibroblasts which occurs in response to TGF-B1' although 

the exact mechanism of activation remains unknown (Kataoka et al., I993). 

Two other common signaling molecules have also been associated with 

TGF-B's activation of gene expression in human lung carcinoma cells: 

phosphatidylcholine-phospholipase C (PC-PLC) and protein kinase C (PKC) 

(Halstead et al., I995). When these proteins are inhibited by specific toxins, 
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steady state mRNA levels of PAI-1 and fibronectin were not increased in 

response to TGF-B1 as was seen in untreated cells. In support of the 

involvement of PKC in the increased mRNA levels of PAl-1 in response to 

TGF-B
1

, inhibition of PKC also eliminated the increase in PAI-1 promoter 

activity in response to TGF-B1 which was detected in control cells (Halstead 

et al., 1995). While it appears that TGF-B1 can activate transcription from 

the PAI-1 promoter through several pathways, caution must be used in 

these interpretations as it has been strongly implicated that PKC may act 

upstream of MAP kinase (Blumer et al., 1994). 

Most significantly, nuclear proteins which may mediate TGF-B's 

ability to alter gene expression have also been discovered. Among the 

transcription factors which appear to be regulated by TGF-B1 are the 

oncogenes c-jun,junB, c-fos, and c-myc (Coffey et al., 1988; Pertovaara et 

al., 1989; Li et al., 1990; de Groot and Kruijer, 1990; Pietenpol et al., 1990). 

WhilejunB and c-fos are significantly induced within 1-2 hours of TGF-B1 

treatment in all cell lines tested, changes in c-jun expression in response to 

TGF-B1 is cell type dependent (Pertovaara et al., 1989; Li et al., 1990; de 

Groot and Kruijer, 1990). In contrast, c-myc expression is downregulated 

in response to TGF-B1 at the transcriptional level, a process, unlikejun and 

fos induction, which requires protein synthesis (Coffey et al., 1988; 

Pietenpol et al., 1990). This suggests that TGF-B1 triggers the synthesis or 

modification of a transcriptional inhibitor for the c-myc gene. It is of 

interest to note that induction of jun and fos and the inhibition of c-myc 

expression reflect TGF-B's ability to activate ECM gene transcription and 



inhibit cell proliferation. Additionally, the induction of these immediate 

early genes appears to occur through different pathways, as depletion of 

PKC activity within a breast carcinoma cell line eliminates TGF-.81 

induction of c-fos, but not c-jun (Lafon et al., 1995). 

In addition to these "traditional" transcription factors, a family of 

proteins is beginning to be defined which are transcriptional activators 

specific to the TGF-B superfamily signaling pathway(s): Dwarfins. 

Members of this family of cytoplasmic proteins have been identified from 

Drosophila, C. elegans, human, and murine cells and appear to be involved 

in the signaling pathways of the different members of the TGF-B 

superfamily (Liu et al., 1996; Massague 1996; Savage et al., 1996; Yingling 

et al., 1996; Hahn et al., 1996; Zhang et al., 1996; Lechleider et al., 1996). 

This family of proteins contain DHl and DH2 (dwarfin homology 1 and 2) 

regions which are homologous in function to SH2 and SH3 domains (Savage 

et al., 1996; Yingling et al., 1996). These SH2 I SH3 are common in effector 

proteins associated with tyrosine kinase-mediated signal transduction 

pathways, and these domains along with the DHl I DH2 domains are 

believed to be involved in protein-protein interactions that are often 

regulated by phosphorylation. Different members within the dwarfin 

family appear to mediate the effects from the different ligands and 

receptors within the TGF-B superfamily. As the "prototype" member of this 

family, Mad (Mothers against decapentaplegic) proteins and Mad-related 

(MADR) proteins have been found to be important in BMP I dpp signaling 

from mammals to drosophila (Liu et al., 1996; Newfeld et al., 1996; 



Wiersdorff et al., 1996; Hoodless et al., 1996). Similarly, human and 

murine Mad and MADR homologues have been identified which appear to 

play direct roles in TGF-B signaling pathways (Yingling et al., 1996; 

Lechleider et al., 1996; Zhang et al., 1996; Eppert et al., 1996). In murine 

cells, Dwarfins A and C are phosphorylated in response to TGF-B1, but 

neither is phosphorylated directly by BRI or BRII, thus appearing to act 

further downstream in the pathway (Yingling et al., 1996). Similarly, 

human Mad proteins, Bsp-1, DPC4, and h-MAD4, are also phosphorylated 

in response to TGF-B1, but are not associated with TGF-B receptors 

(Lechleider et al., 1996; Zhang et al., 1996). However, h-MAD3 and MADR2 

have been found to associate with BRI and be phosphorylated by BRI in vitro 

(Zhang et al., 1996; Macias-Silva et al., 1996). To further support their roles 

in TGF-B signaling, overexpression of Dwarfins A or C in 16 rat skeletal 

muscle fibroblasts causes growth arrest and induction of PAI-1 (Yingling 

et al., 1996), and deletion of Dwarfin A or mutation of MADR2 activity have 

been demonstrated to block TGF-B1 signaling (Zhang et al., 1996; Yingling 

et al., 1996; Eppert et al., 1996). 

Clearly, a significant amount of progress has been made in the 

identification of several components of the TGF-B signal transduction 

pathway, from the receptors on the cell surface to proteins within the 

nucleus. In concert with their identification, examination of the function of 

each protein in the pathway and the direct effects TGF-B exhibits in a 

variety of cell types has been an area of ongoing study. While many of these 

functions, such as its antiproliferative activity, are common to many cell 
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types, several examples have been cited here where these effects are cell 

type specific. Therefore, the role of TGF-B in processes such as organ 

development is now being examined in vitro through the use of specific cell 

types found within that organ as well as in vivo utilizing transgenic mice 

which overexpress or do not express members of the TGF-B signal 

transduction pathway. One organ system in which these types of 

experiments are being utilized is the development of the heart. 

TGF-B and Heart Development 

Expression Patterns 

TGF-B Ligands in the Heart 

While most of what is known about the TGF-B ligands has been 

ascertained from their genetic organization derived from their cloning, 

biosynthesis, and pleiotrophic actions in vitro, determination of their 

spatial and temporal patterns of expression in vivo is critical to elucidate 

their functions in development. Expression patterns for the TGF-B ligands 

during heart development have been best studied in rodent and avian 

systems. These expression patterns, in general, are similar, but some 

significant differences between species have been found. Expression 

patterns of the three TGF-B ligands are very distinct, both temporally and 

spatially, suggesting that while they have similar effects in vitro, they may 

play very specific roles in vivo. 



TGF-B1 expression was originally undetected in the chicken 

embryonic heart or cultured myocytes obtained from embryonic hearts 

(Jakowlew et al., 1991; Runyan et al., 1992), but these results are 
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misleading given the fact that TGF-B4 is the chicken isoform of TGF-B1 

(Burt and Paton, 1992). TGF-B4 can be localized to myocytes within the atria 

and ventricles of the developing avian heart from as early as stage 22 (day 4) 

through adulthood, with ligand expression increasing as the chick 

matures (Jakowlew et al., 1991; Jakowlew et al., 1992). TGF-B1 expression 

during rodent heart development is better defined. The earliest expression 

of TGF-B1 mRNA is in cardiac precursor cells within the splancnic 

mesoderm (Schneider and Parker, 1991). However, defined expression 

patterns of TGF-B1 later in heart development have also been documented 

(Schneider and Parker, 1991; Roberts and Sporn, 1992a; Engelmann et al., 

1992). At 9 days post-coitum (dpc), TGF-B1 is strongly localized to those 

tissues which are undergoing epithelial to mesenchymal (e-m) 

transformation, a phenomenon which occurs during the formation of the 

heart valves (Schneider and Parker, 1991; Roberts and Sporn, 1992a). At 11-

12 dpc, TGF-B1 can be detected in the ventricular myocardium in a uniform 

manner with TGF-B1 being localized to the myocytes themselves (Schneider 

and Parker, 1991; Roberts and Sporn, 1992a; Engelmann et al., 1992). The 

expression levels of TGF-B1 increase significantly in the late fetal (18 dpc), 

early neonate, and remain elevated in the mature rat heart (Engelmann et 

al., 1992). 
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TGF-B2 expression patterns suggest that it may play an important 

role in heart development in chickens as well as rodents. However, these 

expression patterns deviate markedly from one another. In the murine 

heart, TGF-B2 is expressed at 9.5-10.5 dpc in both the atrioventricular (AV) 

region and in the pre-valvular myocardium (Schneider and Parker, 1991; 

Akhurst et al., 1992). However, by 12.5 dpc, TGF-B2 expression cannot be 

detected in the myocardium, yet is still highly expressed in the AV region, 

particularly in the valves (Schneider and Parker, 1991; Akhurst et al., 

1992). In contrast to the distinct temporal and regional changes in TGF-B2 

expression in the mouse, TGF-B2 expression in the developing chicken 

heart appears to be in both heart regions at Hamilton-Hamburger stages 15-

20 (this corresponds to the time in which differences were seen in mice) 

(Jakowlew et al., 1991; Runyan et al., 1992) and decreases with age after 

stage 29 (Jakowlew et al., 1994). 

TGF-B3 expression appears to be the most limited of the three 

primary TGF-B isoforms. In the chicken, TGF-B3 has a distinct localization 

to the AV canal and has been implicated to be critical in the epithelial

mesenchymal (e-m) transition associated with valve formation (see below) 

(Runyan et al., 1992). Interestingly, TGF-B3 cannot be detected in the early 

mouse heart at similar stages (Runyan et al., 1992; Akhurst et al., 1992) 

suggesting a different isoform or family member may be involved in the e-m 

transition I valve formation. TGF-B1 and TGF-B2 expression patterns 

suggest they may "substitute" or compensate for TGF-B3 in the mouse. 

Later in heart development (11.5-16.5 dpc) TGF-B3 can be detected in the 



ECM and mesenchyme of the valves as well as the atrial and ventricular 

myocardium (Schneider and Parker, 1991; Burton et al., 1993) and 

continues to be expressed at relatively high levels in the ventricular 

myocardium in the immediate postnatal period and through weaning 

where the expression levels drop off markedly (Engelmann 1993). 

TGF-B Receptors in the Heart 
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While expression patterns of the TGF-B ligands indicate where they 

may be important for various developmental processes, an understanding 

of the expression patterns of the TGF-B receptors is also necessary to fully 

appreciate the role(s) TGF-B plays in development. The expression of the 

three primary TGF-B receptors has been studied to varying degrees in 

chicken (Barnett et al., 1994), murine (Lawler et al., 1994; Roelen et al., 

1994), and rat (Engelmann and Grutkoski, 1994) systems. In general, the 

expression patterns observed in these three systems are similar within the 

heart. While data are limited for early heart development, neither BRI nor 

BRII could be detected by PCR analysis at 6.5-7.5 dpc. in the three mouse 

embryo germ layers, but could be detected by 14 dpc through adulthood 

(Lawler et al., 1994; Roelen et al., 1994). Similarly, expression of BRII and 

BRIII can be detected in the chicken heart at low levels in the Stage 26 

embryo in atrial and ventricular cells (Barnett et al., 1994). This expression 

significantly increases between stage 26, day 6, and day 10, and greatly 

increases upon hatching. It is interesting to note that in the fetal avian 

heart, the protein levels of all three receptors (determined by receptor 
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crosslinking) is approximately 10-fold higher in the atria than in the 

ventricles, suggesting that TGF-B plays a significantly different or more 

prominent role in the development of the atria than the ventricles in the 

avian heart (Barnett et al., 1994). Expression of the three receptors was 

studied extensively in the rat from the late fetal stage through adulthood, 

and these results support and extend those obtained in the mouse and 

chicken (Engelmann and Grutkoski, 1994). BRI and BRiii mRNA levels 

were readily detected in total RNA from ventricular tissue of 18 dpc through 

9-week postnatal animals, with only a modest age-related increase in 

transcript abundance. However, BRII expression was age-restricted with 

low-to-undetectable levels in the late fetal periods, but transcript levels 

increased markedly at-or-around birth and increased through the 

postnatal-to-mature stages of development (Engelmann and Grutkoski, 

1994). Immunolocalization of BRII within the ventricle was primarily in 

the cardiomyocytes, but surrounding non-myocytes also expressed the 

receptor (Engelmann and Grutkoski, 1994). Additionally, there were no 

significant differences in steady state transcript abundance between the 

different regions of the mature heart (right ventricle, left ventricle, and 

septum) (Engelmann and Grutkoski, 1994). Studies in the rat did not 

address the expression of the TGF-B receptors in the atria, however it is 

expected that mRNA patterns for the three isoforms would resemble those 

seen in other rodents such as the mouse. 
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TGF-B Effector Protein - Cardiac Expression in vivo 

As important as it is for the ligands and receptors to be present in 

order for a cell to respond to TGF-B, the factors that act downstream of the 

receptors must also be present. To date, limited developmental or in vivo 

expression data are available for the recently identified downstream 

effectors of TGF-B signal transduction. Nonetheless, it has been found that 

TRIP-1 is expressed in the heart, and that TRIP-1 expression in mouse 

embryos and human fetal tissue samples correlates with BRII expression 

(Chen et al., 1995b). This supports the postulated functional role it may 

have in the TGF-B signaling pathway as well as the ability of the cells in 

developing tissues to respond to TGF-B1• Developmental data on many of 

the other postulated TGF-B effector proteins are not yet available. However, 

of interest to our studies, it has been demonstrated that TAKl and TABl 

transcripts are found in adult mouse and human heart RNA samples, 

although not yet localized to the cardiomyocyte population (Yamaguchi et 

al., 1995; Shibuya et al., 1996). Transcripts for the MAD proteins, in 

general, are expressed ubiquitously in adult rat and human tissues, 

including the heart (Yingling et al., 1996; Lechleider et al., 1996), and 

steady-state Bsp-1 transcript levels in adult human tissues are highest in 

heart and skeletal muscle, two non-mitotic, fully differentiated tissues 

(Lechleider et al., 1996). Developmental expression data for the MAD 

family of proteins appears to be limited to studies in Xenopus where Xmad 

is uniformly expressed from fertilization through the tadpole stage, 
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suggesting that it is not the limiting factor for BMP-2/4 mesoderm-inducing 

activity in the developing embryo (Graff et al., 1996). 

Regulation of TGF-B ligand and receptor expression 

The distinct temporal and spatial expression patterns observed for 

both TGF-B ligands and receptors suggest that each is regulated in an 

independent manner that may occasionally overlap. Regulation of both 

ligands and receptors may occur at both the transcriptional and post

transcriptional levels through the use of different promoters, regulatory 

transcription factors, untranslated regions (UTRs), as well as post

translational processing and protein turnover or "latency" of the ligands. 

These regulatory mechanisms may respond to humoral, neurohumoral 

and mechanical stimuli differently, supporting the hypothesis that each 

TGF-B ligand and receptor may have distinct physiological and 

development functions. 

The production of mRNAs and proteins for TGF-B1_3 and their 

receptors is influenced by many diverse factors. One of these factors may be 

the TGF-B ligand itself. In cardiac myocytes isolated from 10 day chicken 

embryos, addition of TGF-B1_3 results in an increase in steady state 

expression levels of TGF-B314 , but not of TGF-B2 (Jakowlew et al, 1992). 

Autoinduction of TGF-B1 is also seen in primary cultures of rat neonatal 

ventricular myocytes after treatment with exogenous TGF-B1 (MacLellan et 

al., 1993; Flanders et al., 1995). Similarly, expression of BRI has also been 

shown to be induced by TGF-B1 in human lung fibroblasts and smooth 
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muscle cells (Bloom et al., 1996). However, while several factors have been 

identified that can downregulate BRII, the effects of TGF-B on expression of 

BRII has yet to be determined. Autoregulation of TGF-B1 activity through 

the regulation of TGF-B1 ligand and TGF-B receptor expression is just one 

level of control. Another regulatory feedback loop can be demonstrated with 

ECM proteins. Mammary epithelial cells plated on ECM have a much 

lower level of TGF-B1 transcripts than those plated on plastic, while TGF-B2 

expression appears unaffected (Streuli et al., 1993). These data suggest a 

mechanistic, positive feedback loop wherein low levels of ECM stimulate 

TGF-B1 expression which in return may stimulate ECM production. Once 

ECM concentrations reach a critical level, they may downregulate TGF-B1 

gene expression; thereby downregulating ECM production and completing 

the regulatory loop. Other factors that have been found to regulate TGF-B1 

gene expression in myocytes are retinoic acid, calcium, oestradiol, phorbol 

esters, cAMP, and steroids (Burt et al., 1991; Roberts and Sporn, 1992b). 

The role of these inducers, whether direct or indirect, and the signaling 

pathways relevant to cardiomyocytes and heart development are still under 

investigation. 
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Roles for TGF-B in Heart Development 

The roles that the TGF-Bs are thought to play in the development of 

the heart, as mentioned above, involve three important aspects: 1) cellular 

differentiation, 2) ECM deposition and tissue remodeling, and 3) cellular 

proliferation. Limited studies have been performed on ventricular 

cardiomyocytes in vitro which address each of these. However, a 

significant amount of data have been collected on the role of TGF-B in valve 

formation in the chicken, and gross anatomical effects of TGF-B on 

development inferred through the use of knockout mice. 

Epithelial-Mesenchymal (e-m) Transformation 

The formation of mesenchymal tissue from an epithelial sheet is a 

developmentally significant event and often is mediated by ECM proteins 

(Huang et al., 1995). This phenomenon of the transformation of epithelial 

cells to mesenchymal cells (e-m transformation) is especially important in 

heart development since the valves and membranous portions of the atrial 

and ventricular septum are derived from cells which are endothelial in 

origin. This type of transformation is regionally specific within the heart 

and occurs only in the atrioventricular (AV) canal. This process of e-m 

transformation in the heart, as well as similar transformations earlier in 

embryonic development, have been recently reviewed (Huang et al., 1995). 

In order to study the e-m transformation in the heart, a collagen gel culture 

system is employed in which explants (AV canal explants which contain 
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myocardium and endothelium) from the embryonic heart can be cultured 

and allowed to grow and differentiate in a 3-D system (Runyan et al., 1992). 

In these cultures, the myocardium aggregates into a beating myoball, the 

endothelium expands across the gel surface, and the mesenchymal cells 

can migrate into the matrix of collagen. It is these migrating cells which 

are the products of the e-m transformation. 

As mentioned above, TGF-B1 is expressed in the AV canal in the 

chicken embryo at the time of the e-m transformation. A series of 

experiments have determined that TGF-B1 plays a role in this 

transformation. In the first set of experiments, stage 14 AV canal explants 

were cultured in the presence of TGF-B1 and TGF-B2 +/-either b-FGF or 

EGF (Potts and Runyan, 1989). However, when the "AV myoball" was 

replaced with ventricular myocardium, e-m transitions occurred, while the 

myocardium itself could not induce the transformation. Additionally, an 

antibody immunoreactive against all three forms of TGF-B was added to the 

cultures and was able to block the transformation (Potts and Runyan, 1989). 

This suggested that a TGF-B family member along with a ventricularly 

produced co-factor could induce the e-m transformation. 

Since exogenous TGF-Bs are able to elicit similar functions when 

added to cells in vitro, an alternative method was used to determine which 

TGF-B isoform(s) is important for the e-m transformation. In this 

approach, oligonucleotides complementary to the non-conserved 5'-ends of 

the TGF-B ligand mRNA transcripts were used to block production of 

endogenous TGF-Bs (Potts et al., 1991). These oligonucleotides were 
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topically applied to the explants twelve hours after cultures were started, 

after which the explants were allowed to "grow" for 12-18 hours when e-m 

transformations normally occur. It was demonstrated that only the 

oligonucleotides specific for TGF-B3 were able to inhibit transformation by 

BO%, whereas oligonucleotides to TGF-B1 and TGF-B2 mRNA had no effect. 

These data suggested that "only" TGF-B3 is essential for the e-m 

transformation in the chicken heart as judged by the appearance and 

migration of mesenchymal cells into the collagen matrix. The data further 

demonstrated that even though an added substance can elicit a certain 

function in vitro, it may not truly reflect what actually occurs in vivo. 

To further support the importance of TGF-B's in chick heart valve 

formation, similar studies were performed using antibodies to BRII (Brown 

et al, 1996). Through the use of antibodies in the same explant system, it 

was shown that TGF-B plays two distinct roles in valve formation: inducing 

e-m transformation and controlling the migration of the newly transformed 

mesenchymal cells. BRII antibodies added to explants from different 

staged embryos (14-18) inhibited e-m transformation at least 50%. Those 

that underwent transformation were thought to have been activated prior to 

explant, and these transformed cells, while expressing mesenchymal 

markers, migrate at a slower rate (approximately 50% of control cells). 

Therefore, the role of TGF-B in valve formation in the chicken is two-fold: 1) 

to induce transformation, and 2) to promote migration of the newly formed 

cells. It would be of interest to use this system on mammalian models as 



the specific roles for each TGF-B isoform in heart development do not 

completely coincide across species. 

TGF-B Ligand and Receptor Knockouts and Developing Hearts 
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As the expression pattern for each TGF-B isoform is distinct, each 

ligand appears to have a distinct role in heart development. Due to the 

ability of each TGF-B isoform to mediate similar effects in vitro, data collect 

from in vitro models or systems can give an unrealistic picture of what may 

actually occur during in vivo heart development. Therefore, in vivo studies 

are necessary to elucidate the distinct role each TGF-B isoform may have on 

heart development, as well as those that may overlap with other isoforms or 

TGF-B family members. Targeted overexpression of TGF-B1 in transgenic 

mice has allowed the examination of the role TGF-B1 has in mammary 

development (Arteaga et al., 1996), lung morphogenesis (Zhou et al., 1996), 

renal disease (Kopp et al., 1996), skin tumor development (Cui et al., 1996), 

and central nervous system development (Galbreath et al., 1995), but none 

of these studies has addressed cardiac development. 

Another method in which to study in vivo roles of TGF-B is through 

the use of knockout mice. These in vivo gene knockout models have been 

reported for TGF-B1 and TGF-B3 • In these murine models, TGF-B1 and -B3 

deficient mice were created by knocking out a TGF-B allele by homologous 

recombination in embryonic stem cells (Shull et al., 1992; Kulkarni et al., 

1993; Kulkarni et al., 1995; Kaartinen et al., 1995; Proetzel et al., 1995). For 



both isoforms, heterozygous animals were phenotypically normal and 

fertile, and thus were crossed to obtain homozygous null mutants(-/-). 
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While not all of the TGF-B1 (-/-)mice were born (only 40-50%), those 

that made it to term were indistinguishable from littermates and had no 

gross developmental abnormalities upon external anatomical examination. 

However, these animals developed a wasting syndrome and ultimately died 

within the first three weeks due to cardiopulmonary failure. Upon more 

detailed histological examination, it was noted that the primary cause of 

death was a dysfunctional immune response system which is normally 

held in check, at least in part, by TGF-B. Between 7-20 days after birth, 

mononuclear inflammatory cells infiltrated the lungs and heart, both the 

myocardium and pericardium, resulting in lesions, myocyte lysis, and 

tissue necrosis. 

While it appeared that TGF-B1 was not essential for embryonic or 

fetal heart development, this conclusion is premature as TGF-B1 has been 

proposed to be supplied by the mother through the placenta during fetal 

development and breast milk during neonatal development (Letterio et al., 

1994). However, one observation was made in the myocytes of the-/- pups 

which reflected one of the characteristic effects of TGF-B in general: 

inhibition of proliferation. Several myocytes from a 5-day old "TGF-B1 null" 

mouse were found to have mitochondrial changes which were 

characterized as being enlarged and having a decreased number of cristae, 

suggesting extended proliferation in the absence of TGF-B1 (Boivin et al., 

1995). Additionally, in animals in which the inflammatory response was 
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pharmacologically suppressed, nuclear labeling (by bromodeoxyuridine) 

indicated hyperplasia in cardiac tissue isolated from 5 week old animals 

(Diebold et al., 1995). However, in TGF-B1 null mice devoid oflymphocytes 

(backcrossed onto a SCID background), any evidence of postnatal myocyte 

proliferation was not seen (Diebold et al., 1995). This suggests that it is not 

the absence of TGF-B1 but the absence of lymphocytes, by a mechanism as 

yet unknown, that has an effect on the extended proliferation of postnatal 

cardiac myocytes (Diebold et al., 1995). 

Like the TGF-B1 null mice, TGF-B3-null animals exhibited no gross 

abnormalities in the heart (Proetzel et al., 1995; Kaartinen et al., 1995). 

Nevertheless, these animals died within 24 hours after birth due to their 

inability to breathe properly or suckle as a result of improper formation of 

their cleft palate and abnormal development of their lungs. Therefore, 

possible roles of TGF-B3 in early neonatal and adult development could not 

be analyzed. 

The importance of either TGF-B isoform in heart development 

appears to be minimal according to the data from these transgenic murine 

models, which is rather unexpected given the importance of TGF-B in valve 

formation in the chicken. While it does not appear that the expression 

patterns of the non-ablated TGF-B ligands change in the knockout models 

(Proetzel et al., 1995), we can not rule out the apparent "rescue" effect other 

TGF-B isoforms or TGF-B family members may have in compensating for 

the missing isoform. Ideally, TGF-B receptor knockout models would 

resolve this possible rescue by other isoforms. However, BRII knockout 
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mice have been created, but provide no additional information about the 

roles of TGF-B in heart development as this knockout is embryonic lethal at 

10.5 dpc (Oshima et al., 1996). This embryonic lethality is not due, however, 

to cardiac malfunction, which is consistent with the fact that BRII is not 

expressed in the heart at these early timepoints. Conditional, tissue

specific TGF-B receptor knockout or dominant negative studies have 

recently been initiated. Targeted expression of a truncated BRII to 

epidermal cells have demonstrated the need for TGF-B to maintain the 

proper proliferation rates important for skin development (Wang et al., 

1997). Similar studies using targeted expression of a dominant negative 

BRII in the heart may better address the role TGF-B plays as a whole in 

heart development, as well as cardiac structure-function relationships, but 

would not address the importance of each individual ligand. 

Coordinate Changes in Ventricular Development 

The onset of TGF-B1, TGF-B3, and BRII expression in the ventricle 

during the late fetal period of development and their subsequent increase in 

steady-state transcript levels in the neonatal period temporally correlates 

with several developmental phenomena critical to the formation of the 

heart: 1) regulation of cardiomyocyte proliferation and differentiation, 2) the 

formation of biomechanical structures such as the valves, 3) 

vasculogenesis; capillary angiogenesis and neovascularization, and 4) non

muscle cell-produced extracellular matrix (ECM) formation. While it has 
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been determined that TGF-B1 may regulate cardiomyocyte gene expression 

through a signaling pathway that involves the activation of ras and 

immediate early genes such as c-fos and c-jun (MacLellan et al., 1993), 

other pathways also involved and their regulatory roles, if any, remain to be 

fully elucidated. However, no matter what the pathway or mechanism of 

action, the TGF-Bs are able to mediate changes in cardiomyocyte gene 

expression, mRNA translation, and protein production. 

Cellular Proliferation 

It is a well established fact that the increase in ventricular size 

during fetal development is due primarily to cellular proliferation 

(hyperplasia), while the increase in size seen throughout the rest of the 

organism's life is through the increase in mass of each individual 

cardiomyocyte (hypertrophy) in concert with the proliferation and 

migration of non-myocyte populations as ventricular remodeling occurs. 

While ventricular myocytes divide during fetal development, the rate of 

division falls off dramatically during the late fetal period, resulting in only 

1-2% of the myocytes still dividing at birth (Zak 1973; Bugaisky et al., 1992). 

While nuclear division occurs, as each myocyte in the rat heart generally 

becomes binuclear and/or polyploid, the mitotic division rate continues to 

decrease until all myocyte division ceases by 3-4 weeks postnatal (Zak 1973; 

Bugaisky et al., 1992). This rapid decline in myocyte division in the late 

fetal and early neonate temporally correlates well with the heightened 

expression of the TGF-B ligands and BRII. 
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As discussed previously, TGF-B has significant anti-proliferative 

activities on most cell types in culture. It is important to note that studies 

on cell cycle times and specific cell cycle components have not been 

rigorously done in cardiomyocytes. Therefore, the role that TGF-B may play 

in the regulation of cardiomyocyte proliferation at the level of specific cell 

cycle-related proteins is speculative. However, TGF-B1 has been shown to 

have antiproliferative activities in neonatal cardiomyocytes (Kardami 1990; 

Engelmann et al., 1992; Nair et al., 1995). These antiproliferative activities 

utilize an alternative/complementary method than that described 

previously involving specific components of the cell cycle: TGF-B is able to 

interrupt the stimulation of proliferation by other growth promoting 

stimuli. 

Epidermal growth factor (EGF), acidic and basic fibroblast growth 

factor (a-/b-FGF), and the insulin-like growth factors (IGF) -I and -II are 

five "mitogenic" growth factors which are found within the heart at various 

developmental stages, particularly during embryonic and fetal development 

when most of the proliferative expansion of the cardiomyocyte population 

occurs. Co-stimulation of embryonic chicken cardiomyocytes with TGF-B1 

and the mitogens b-FGF or IGF-II decreased or canceled out, respectively, 

their stimulatory effects on subsequent DNA synthesis and cell division 

<Kardami 1990). Downregulation of the expression of the receptors for b

FGF by TGF-B1 has been hypothesized to play a role in this inhibition. This 

is supported by the finding that the FGF receptor, Flg, is expressed fetally, 

but decreases to low/undetectable levels just after birth (Engelmann et al., 
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1993a), an expression pattern that correlates well with the increases in 

TGF-B ligand and BRII expression. Results similar to those observed for 

FGF in culture were seen in rat cardiomyocytes, both fetal and neonatal, 

treated with IGF-1 or IGF-11 and TGF-B1 (Engelmann et al., 1992). These 

results demonstrate that one of the anti proliferative activities of TGF-B1 

involves interfering with other proliferative stimuli commonly found in the 

developing heart. Another example of TGF-B modulating the activity of 

another growth factor is that seen in co-treatment of neonatal rat 

cardiomyocytes with TGF-B1 and EGF (Nair et al., 1995). TGF-B1 has the 

ability to decrease the cAMP elevation resulting from EGF stimulation in a 

time and dose-dependent manner. This decrease is bi-functional with TGF

B1 decreasing the EGF receptor's kinase function as well as altering the 

activity of the catalytic subunit of adenylyl cyclase (Nair et al., 1995). 

Differentiation 

In rodents, many muscle-specific, contract-!le proteins undergo an 

isoform switch during the fetal-to-neonatal-to-adult transition period, and 

for several of these proteins, this switch involves the replacement of a 

skeletal muscle isoform with a cardiac form of the protein. Among the 

proteins that have been shown to undergo isoform switching are myosin 

heavy chain (MHC), actin, tropomyosin, troponin I (TNI), and troponin T 

(TNT), and creatine kinase (Table 1). 
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Table 1: Protein Isoform Switch in the Rodent Ventricle 

Fetal Isoform Adult Isoform 

B-Myosin Heavy (B-MHC) a-Myosin Heavy (a-MHC) 
Chain Chain 

a-Skeletal Actin ( aSk-actin) a-Cardiac Actin (aCa-actin) 

Skeletal (sTNI) Cardiac (cTNI) 
Troponin I Troponin I 

Fetal Cardiac (ITNT) Adult Cardiac (a TNT) 
Troponin T Troponin T 

Muscle Creatine (MCK-B) Muscle Creatine (MCK-M) 
Kinase- Brain Kinase - Muscle 

MHC has two isoforms in the rat heart: the fetal isoform, B-MHC, 

and the adult isoform, a-MHC. B-MHC is the predominant isoform in the 

embryonic and fetal heart, with a-MHC appearing later in gestation 

(Lompre et al., 1991; Shwartz et al., 1992). Just after birth, a-MHC becomes 

the predominant isoform with B-MHC not being detected by three weeks of 

age. Similarly, two isoforms of actin are found developmentally in the 

heart: a-skeletal actin (aSk-actin) and a-cardiac actin (aCa-actin). Both 

isoforms are expressed in the fetal heart, but just after birth, aSk-actin is 

downregulated so that by one week of age, it comprises only 30-40% of the 

total actin in the ventricle, and continues to decrease until it represents 

<5% of the total actin mRNA by two months of age (Zak et al., 1990; Lompre 

et al., 1991; Shwartz et al., 1992). 

TNC is the thin filament subunit which confers Ca++ sensitivity to the 

myofibrils (Lompre et al., 1991). Two isoforms have been identified to date: 
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fast skeletal TNC (sTNC) and cardiac/slow skeletal TNC (cTNC) (Parmacek 

and Leiden, 1989; Parmacek et al., 1990). Similar to other contractile 

proteins, this family undergoes an isoform switch as skeletal muscle 

matures (Dhoot and Perry, 1979). Originally it was thought that fast 

skeletal TNC was present in the embryonic heart (Gahlmann et al., 1988), 

however low stringency washes led to the questioning of these results. 

Similarly another skeletal isoform was identified in the heart (Dhoot and 

Perry, 1979), but the cloning of TNC from cardiac muscle indicated that the 

skeletal isoform detected was identical to cardiac TNC (Wilkinson 1980). 

Subsequent studies have failed to locate sTNC in the heart at any age in 

murine, avian, and rabbit systems, being expressed exclusively in skeletal 

muscle (Toyota and Shimada, 1981; Gahlmann et al., 1988; Parmacek et al., 

1990). Not unexpectedly, cTNC has been found to be expressed at a low level 

in the embryonic heart in chicken and mice (Toyota and Shimada, 1981; 

Parmacek and Leiden, 1989; Parmacek et al., 1992). While a fetal isoform 

has not yet been identified for cTNC, its expression appears to be regulated 

developmentally as cTNC is upregulated within the heart during the 

perinatal period. 

TNI is the thin filament subunit which is a specific inhibitor of Mg++ -

stimulated ATPase of actomyosin (Lompre et al., 1991). TNI exists in three 

isoforms, fast skeletal (fTNI), slow skeletal (sTNI), and cardiac (cTNI). In 

mice, fTNI is expressed very early in heart development and is completely 

absent by 16dpc (Zhu et al., 1995). However in the rat, the expression 

patterns of sTNI and cTNI are more defined. sTNI appears to be the only 
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isoform detected at lOdpc (Gorza et al., 1993). By lldpc mRNA for cTNI can 

be detected, however cTNI protein could not be detected until 16-18dpc, 

suggesting transcriptional and translational regulation of TNI isoform 

expression (Ausoni et al., 1991; Gorza et al., 1993). After birth, cTNI 

increases dramatically, being easily detected in 1-2 day neonatal hearts, 

and by the third week of life, is the only isoform detected (Saggin et al., 1989; 

L'Ecuyer et al., 1991; Ausoni et al., 1991; Murphy et al., 1991). Profiles of 

TNI expression in human hearts are similar to those of rat (Bhavsar et al., 

1991; Hunkeler et al., 1991; Sasse et al., 1993). 

Cardiac TNT is the thin filament subunit which binds directly to 

tropomyosin (Lompre et al., 1991). It has two isoforms simply labeled as the 

fetal cTNT (fTNT) and adult cTNT (aTNT). Unlike its thin filament 

counterparts, the TNT isoform switch does not occur through the 

differential expression of two separate genes. Cloning of each isoform 

mRNA from rat, chicken, rabbit, and bovine cells reveal that the two 

isoforms differed only in a 30bp insert present in the embryonic form 

(Cooper and Ordahl, 1985; Jin and Lin, 1989). Genomic cloning confirmed 

that the two isoforms were the result of a developmentally regulated 

alternative splicing event of a singe exon, therefore each isoform comes 

from the same primary transcript (Cooper and Ordahl, 1985; Jin et al., 

1992). While the mechanism by which this occurs is still unknown, the 

developmental profile of the isoform switch in the rat has been well 

established. The profile is similar to that for MHC and actin: fTNT being 

expressed in the fetal heart with trace levels of aTNT, aTNT increasing 



dramatically after birth with a concominant decrease in fTNT, and aTNT 

as the sole isoform by 2-3 weeks of age (Saggin et al., 1988; Jin et al., 1990; 

L'Ecuyer et al., 1991). 
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These changes in isoform expression coordinate well with the onset 

of TGF-B113 and BRII, but any direct correlation has yet to be made. 

However, it has been shown that several additional factors can influence 

the expression of a few of these genes. Thyroid hormone has been found to 

affect the expression of cardiac genes such as MHC and the TNis, with the 

isoform switching of the latter being delayed in hypothyroid rats (Lompre et 

al., 1991; Bugaisky et al., 1992; Avery-Fullard et al., 1994). The mitotic 

growth factors aFGF and bFGF are able to induce the fetal isoform of MHC 

as well as sacroplasmic reticulum calcium ATPase (Sr-Ca++_ATPase), 

while having opposing effects of aSk-actin and aCa-actin in cultured 

neonatal rat cardiomyocytes (Parker et al., 1990a). Similarly, TGF-B1 

treatment of neonatal rat cardiomyocytes decreases the expression of a

MHC and SR Ca++_ATPase, increases B-MHC and aSk-actin, while having 

no effect on aCa-actin (Parker et al, 1990b; MacLellan et al., 1993). Whether 

TGF-B1 has these same effects on fetal myocytes has yet to be completely 

determined. 

Angiogenesis and ECM Biosynthesis 

The fetal to neonatal to adult transition period is a time when the 

ventricle undergoes significant remodeling, a process which involves the 

migration of non-muscle cells into the ventricular wall, an increase in 
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ECM formation and reorganization, and angiogenesis (Engelmann 1993). 

As described previously, TGF-B, directly or indirectly, can influence each of 

these processes. It has been shown that TGF-B receptor and ligand 

expression coordinate well, both temporally and spatially, with changes in 

ECM production (e.g. the collagens) and expression of the ECM receptors, 

the integrins, during several morphological changes (Borg et al., 1990; 

Engelmann 1993; Carver et al., 1994). Similarly, the increase in formation 

of new blood vessels, as well as expanding those vessels which already 

exist, are temporally correlated with TGF-B1 expression (Sage et al., 1989). 

As noted earlier, SPARC may play an integral role in each of these 

processes (migration, ECM reorganization, and angiogenesis). To support 

this hypothesis, SPARC, both protein and transcripts, have been localized to 

organs or tissues undergoing morphogenesis, including the fetal and 

neonatal (but not adult) heart (Sage et al., 1989; Reed and Sage, 1994). 

Ventricular expression of SPARC has been determined developmentally, 

and increases dramatically around the same time in which TGF-B113 and 

BRII appear (Engelmann 1993). However, whether these correlative 

expression patterns have functional significance has not been determined. 

It is important to note that the cellular migration, ECM formation, 

and angiogenesis which occurs in ventricular development does not 

directly involve the cardiomyocyte population. Most of the effects TGF-B 

may have in this aspect of ventricular remodeling involve the migration of 

fibroblasts and endothelial cells and induction of ECM protein expression in 

fibroblasts and other non-myocyte cell types. However, TGF-B may play a 
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role in cardiomyocyte regulation of these processes. While exogenous 

SPARC has been shown to affect ECM interactions as well as induce 

endothelial cells to undergo angiogenesis, it is probable that increases in 

cardiomyocyte-produced SPARC in response to cardiomyocyte-produced 

TGF-B would promote angiogenesis and other morphogenetic processes. 

Similarly, it has been proposed that cardiomyocytes may be able to regulate 

angiogenesis and cellular migration through the production of inhibitors of 

ECM degradation enzymes, such as PAI-1, which are necessary for 

migration and angiogenesis (MacGregor et al., 1995). Therefore, the 

autocrine actions of TGF-B induced PAI-1 from cardiomyocytes may play a 

dual paracrine role in the surrounding non-myocyte cell types: 1) by 

promoting ECM accumulation by inhibiting its degradation, and 2) by 

regulating cellular migration and capillary angiogenesis. 
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Introduction of Cell Lines and Dominant Negative Mutants 

Dominant negative (DN) mutants are defined as mutant polypeptides 

which when overexpressed disrupt the activity of the wild-type (wt) gene 

product (Herskowitz 1987). These DN mutants can disrupt function, in 

general, in one of three ways: 1) DN can compete with wt for a rate-limiting 

substrate, 2) DN can compete with wt for regulatory molecules or 

transactivating molecules, and 3) DN can form inactive dimers or 

oligomers with wt (Sheppard 1994). While several examples can be cited in 

nature, DN mutants are becoming a widely used research tool which has 

the advantage that one can study the function, or loss of function, of a 

particular gene/gene product without having to inactivate each of its alleles 

within the genome (Herskowitz 1987). Studies examining p21Ras function 

have utilized the DN approach in C. elegans, Xenopus, and mammals (Han 

and Sternberg, 1991; Whitman and Melton, 1992; Abdellatif et al., 1994). 

These mutants disrupted vulval formation in response to EGF in C. 

elegans, mesoderm formation in response to FGF in Xenopus, and gene 

transcription in response to TGF-B1 in mammals. Additionally, DN models 

of two other cellular proteins, p53 and the estrogen receptor, have been 

identified and studied (Unger et al., 1993; Ince et al., 1993). These mutants 

are able to be activated or bind ligand, respectively, and dimerize with wt 

partners, yet these resulting dimers do not contain their normal 

transcriptional transactivating activities. 
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An increasing use of the DN approach can be seen in the study of 

tyrosine kinase-receptor activation and identification of its signal 

transduction pathway components. In general, tyrosine kinase receptors 

form homo-dimers or -oligomers upon ligand binding, auto- or trans

phosphorylate their intercellular domains, and transduce their signal(s). 

The most frequent type of DN receptor mutation is a receptor with its kinase 

domain deleted by truncation; however, point mutations which render the 

receptor inactive have also been produced. Truncations of the receptors for 

EGF, ANF, and IGF-1 have been shown to dimerize with their wt 

counterparts, and the resulting dimers are unable to respond to growth 

factor stimulation as no cross-phosphorylation and activation of the 

receptors occurs (Kashles et al., 1991; Chinkers and Wilson, 1992; Prager et 

al., 1992). Inactivation of the kinase domain in the insulin receptor was 

found not only to interrupt signaling by insulin, but was also able to 

interrupt the cells' response to IGF-1, which clearly demonstrated that 

some responses to IGF-1 can be mediated through hybrids of IGF-1 

receptors and insulin receptors (Frattali et al., 1992). In vivo studies 

utilizing DN receptors have demonstrated the particular receptor's 

importance in development. One naturally occurring DN mutation in the 

c-kit gene, whose product binds Steel factor, has been identified in mice and 

humans which results in anemia, sterility, and hypopigmentation 

(Fleischman 1992). Deletion of the kinase domain of FGFRl abolishes all 

FGF receptor function within the cell, and this mutant was used to 

demonstrate the role of FGFs in mesoderm induction in Xenopus embryos 



(Amaya et al., 1991; Ueno et al., 1992) and keratinocyte organization and 

differentiation in transgenic mice (Werner et al., 1993). 

Following in the tradition of using kinase deficient or inactive 

tyrosine kinase receptors, the DN approach is now being utilized to study 

the serine/threonine kinase receptors in the TGF-B superfamily. Just as a 

truncated FGF receptor blocked mesoderm induction in Xenopus embryos, 

a truncated, kinase deficient activin type II receptor (ActRII) was also used 

to determine its role in mesoderm induction. These data showed that 

activin is required for induction of mesoderm as well as anterior-posterior 

and dorsal-ventral body patterns (Hemmati-Brivanlou and Melton, 1992). 

In addition to ActRII, DN mutants of the type I receptors (ActRI and 

ActRIB) have also been used to elucidate the signaling mechanism used by 

activins. In these studies, a kinase deficient ActRIB receptor blocked 

activin-induced transcription, while a kinase deficient ActRI did not have 

any effect, demonstrating that these two receptors are functionally distinct 

(Tsuchida et al., 1995). Similarly, kinase deficient type I and type II BMP 

receptors have been used in vivo to demonstrate that BMPs are involved in 

the induction of axial mesoderm and hematopoietic tissue in Xenopus 

embryos (Ishikawa et al., 1995; Maeno et al., 1996) as well as mediating 

interdigital cell death in embryonic chicken limbs (Zou and Niswander, 

1996). 

While in vivo data on TGF-B activities utilizing the DN approach are 

limited to epidermal development (Wang et al., 1997), numerous studies in 

vitro have used non-functional BRI and BRII to examine the mechanism of 



signaling as well as effects TGF-B has on cellular functions. In an attempt 

to uncouple the different effects of TGF-B signaling at the level of the 

receptors, overexpression of a kinase deficient, dominant negative BRII 

(BRII-DN) has been utilized. Since effects on cellular proliferation are a 

hallmark of TGF-B activity, overexpression of BRII-DN in lung fibroblasts 

was able to block TGF-B induced proliferative activities ( + in adult, - in fetal) 

(Zhao and Young, 1996). In mink lung epithelial (MvlLu) cells, BRil-DN 

expression resulted in an block in the anti-proliferative activity of TGF-B, 

but not transcriptional upregulation of PAI-1 and fibronectin, suggesting 

that there are BRI and BRII specific responses (Chen et al., 1993). 

However, similar studies in primary cultures of neonatal cardiomyocytes 

alongside MvlLu cells demonstrated that BRII-DN blocked the TGF-B 

induction of skeletal a-actin and PAI-1 promoter activity in addition to TGF-

B's inhibition of a-myosin heavy chain transcription, suggesting that all 

TGF-B effects are mediated through BRII (Brand et al., 1993; Brand and 

Schneider, 1995). Finally, BRII-DN has also been utilized to study 

developmental events such as capillary morphogenesis and myoblast 

differentiation. In each case, interference with TGF-B signaling through 

BRil-DN was able to disrupt processes such as apoptosis and capillary 

morphogenesis in rat glomular capillary endothelial cells (Choi and 

Ballermann, 1995) and myoblast differentiation and fusion into myotubes 

(Filvaroff et al., 1994). 

Although the TGF-B knockout studies indicate no gross 

abnormalities in the hearts of the null mutants, the distinct expression 
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patterns for the TGF-B ligands and receptors suggest a defined role each of 

the TGF-B isoforms in development. Although compensation for missing 

ligands in the knockout mice is possible, it is also possible that the roles the 

TGF-Bs play in the heart are more subtle, affecting changes at the 

molecular and cellular level. The onset of expression of TGF-B ligands and 

BRII temporally correlates with the transition the mammalian heart goes 

through as it progresses from its fetal-to-neonatal-to-adult stages of 

maturation with regard to myocyte proliferation, myocyte differentiation, 

and ECM formation/angiogenesis. Due to TGF-B's established anti

proliferative activity and ability to influence ECM biosynthesis and 

angiogenesis, we have postulated that ventricular TGF-Bs participate in the 

three major developmental events ongoing during the neonatal ventricular 

transition period: (1) inhibits cardiomyocyte proliferation in an autocrine 

manner in the newborn, (2) influences differentiation of the cardiomyocyte 

in an autocrine manner in the late fetal/early neonatal stages, and (3) 

stimulates non-myocyte ECM biosynthesis/deposition and angiogenesis in 

the postnatal period in a paracrine manner. 

Because BRI and BRII are needed for most, if not all, actions of the 

TGF-Bs, receptor manipulation appears to be the method of choice to define 

the role(s) TGF-B may play in regulating myocyte proliferation and 

influencing their differentiation and paracrine mechanisms of action. 

Results from the DN TGF-B studies described above indicate that TGF-B 

may be directly involved in several processes (proliferation, muscle protein 

isoform expression, ECM biogenesis) which occur in or are associated with 



the cardiomyocyte population during heart development. However, due to 

variability in responses between different cell types, only tenuous 

relationships can be made as to TGF-B's direct effects on ventricular 

development in vivo. 
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To begin to address the role(s) of TGF-B in ventricular development, 

we have chosen to use the BRII-DN approach to evaluate changes that 

occur in myocytes in response to TGF-B stimulation. While primary 

cardiomyocyte cultures would be the cell culture system most applicable to 

the in vivo situation, their general lack of proliferative activity, 

heterogeneity, and transfection efficiency limit their in vitro utility. Two 

ventricular myocyte-derived cell lines, BWEM and CLEM, are available in 

which to study the aspects of TGF-B signaling in a myocyte background. 

These cell lines were formed from 16dpc rat ventricular myocytes by 

retroviral transformation with v-myc (Engelmann et al., 1993b). Unlike 

their primary counterparts, these cell lines are non-contractile, which is 

reflective of their lack of organized sarcomere-like structures. However, 

these lines have maintained the expression of several genes which are 

known to be expressed in embryonic and fetal cardiomyocytes: cTNC, a

cardiac actin, early growth response-1, creatine kinase-B, connexin-43, 

myosin light chain-2v, and several muscle-specific transcription factors 

(Engelmann et al., 1993b; Engelmann et al., 1996). These cell lines have 

been used to create mutant myocyte lines with reduced or absent BRII 

function in which the direct effects of TGF-B can be uncoupled and 

evaluated in a myocyte background. Data are presented here on the 



creation and receptor expression/function in each of the parental and 

mutant myocyte-like cell lines. Data are then presented in which these 

lines were used to study the TGF-B signal transduction pathway and test 

these hypotheses: 

(1) TGF-B inhibits cardiomyocyte proliferation 

(2) TGF-B plays a direct role in cardiomyocyte differentiation by inducing 

the "adult" isoforms of three contractile proteins: TNC, TNI, and TNT. 

(3) TGF-B promotes ECM accumulation and angiogenesis through the 

upregulation of cardiomyocyte produced PAI-1 and SPARC peptides. 
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CHAPTER3 

MATERIALS AND METHODS 

Culturing of Cell Lines: BWEM and CLEM are myocyte cell lines derived 

from 16-day fetal rat ventricular myocytes by v-myc transformation 

(Engelmann et al., 1993b). Cells were maintained in 4% Fetal Clone Serum 

(FCS-I, a bovine serum product, Hyclone Laboratories, Inc., Logan, UT) in 

Dulbecco's Modified Eagle's Medium Nutrient Mixture F-12 Ham (DME/F-

12, Sigma Chemical Co., St. Louis, MO). Cells were passaged or split for 

subsequent use by trypsinization (Trypsin-EDTA, Gibco-BRL, Grand 

Island, NY). 

Primary Fetal Cultures: 18 day gestation cardiomyocytes were obtained 

from time-pregnant Sprague-Dawley rats (Zivic-Miller, Portersville, PA) as 

previously described (Engelmann et al., 1990). Cells were plated on 

collagen coated tissue culture plates and allowed to attach overnight in a 1:1 

dilution of PC-1 (Ventrex, Portland, Maine):DME/F-12. After plating, 

media was changed to a 1:2 dilution PC-l:DME/F-12, and timepoints and/or 

transfections (see below) were started. 
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Establishment of Stably Transformed Clonal Cell Lines: BWEM and CLEM 

parental cell lines were transformed with pRSV2Neo (5 µg) (American Type 

Culture Collection (ATCC), Rockville, MD) and the plasmid phBRIIDN 

(Chen et al., 1993), which encodes a truncated, human BRII (25 µg). Both 

parental lines were electroporated at 280 m V with a capacitance extender 

option (BioRad, Hercules, CA), allowed to sit on ice 15 minutes, and plated 

in 4% FCS-I for 14-16 hours (overnight). Resulting transformants were 

then selected for with the antibiotic geneticin (400 µg/mL active G418, Gibco

BRL). After the fifth passage, transformed lines were considered "stable" 

and G418 was reduced to 200 µg/mL of active G418 for maintenance. After 

20-25 passages, cells were collected from each set of transformants by 

trypsinization, pelleted, and resuspended in Hank's balanced salt solution 

(HBSS, Sigma Chemical Co.). Cells were stained with Hoechst dye and 

single, G0 cells were sorted using pulse-processing to exclude doublets and 

collected into 96-well plates by fluorescence activated cell sorter analyses 

(FACS, FACStar Plus, Becton-Dickenson, Mountainview, CA). Each well 

contained 50% conditioned media from the parental line of origin to 

facilitate their attachment and growth. All resulting single cell clones 

were then expanded into full colonies. >50 of these colonies were screened 

by Northern and Southern blot analyses, and a select group were 

characterized in greater detail and contrasted to their parental sources. 

One BWEM-derived clone, BW-Hl, and one CLEM-derived clone, CL-B5 

were chosen for these more extensive and detailed studies. 



Southern Blot Analysis: Genomic DNA was obtained from each myocyte 

cell line or clone as previously described (Laird et al., 1991). DNA was 

subjected to HindIII, Apal, or BamHI digestion, extracted twice with 

phenol:chloroform, precipitated with isopropanol, resuspended in TE 

(lOmM Tris-HCl, pH 8.0, lmM EDTA), and quantitated by ultraviolet (UV) 

absorbance at 260 and 280 nm (U-2000 Double-Beam UVNis 

Spectrophotometer, Hitachi Instruments, Inc., Danbury, CT). Equal 

amounts of genomic DNA (25 µg) were loaded and electrophoresed on 0.6% 

agarose TBE gels. After DNA was depurinated in 0.25M HCl for 15 

minutes, DNA was denatured in 0.5N NaOH/ l.5M NaCl. The gel was then 

neutralized in 0.5M Tris-HCl, pH 8.0/l.5M NaCl and transferred to nylon 

membranes (Duralon-UV, Stratagene, La Jolla, CA) by overnight capillary 

transfer. DNA was UV-crosslinked to the membranes after transfer (UV 

Stratalinker, Stratagene) and used for hybridization analysis. Membranes 

were blocked for 2 hours with cDNA hybridization buffer (50% formamide, 

10% dextran sulfate, 1 % sodium dodecyl sulfate (SDS), 1 M NaCl, 100 

µg./mL herring sperm DNA) at 42°C in a Hybridization Incubator (Robbins 

Scientific, Sunnyvale, CA). A cDNA probe specific for the CMV promoter 

was obtained from the phBRIIDN plasmid by restriction digestion with Bgl 

II and Hind III and isolation in low melt agarose, and labeled by random 

prime labeling (Decaprime II Labeling Kit, Ambion, Austin, TX). The 

probe was boiled in cDNA hybridization buffer for ten minutes just prior to 

addition to hybridization tubes. After overnight hybridization at 42°C, blots 
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were washed twice in 2X SSC, 0.5% SDS at room temperature for 20 

minutes, followed by 10 minutes washes in O.lX SSC, 0.1 % SDS at 50-65°C in 

5° increments. X-ray film (Biomar Blue Sensitive Autoradiographic film, 

MARSH Biomedical Products, Inc., Rochester, NY) exposures were done at 

-80°C for 24 hours. 

TGF-B2 Treatments: Treatments with or without TGF-B3 were begun after 

suspended cells resulting from splitting and/or electroporation were 

allowed to settle and reattach to the cell cultures plates 14-16 hours 

(overnight). Plating media and dead cells were removed, and plates were 

washed twice with HBSS. Unless otherwise indicated, 4% FCS-I (cell lines) 

or 1:2 PC-l:DME/F-12 (fetal) media± TGF-B3 (Ken Iwata, Oncogene Science, 

Uniondale, NY) was added to each plate and incubated at 37°C, 5% C02• 

Media was changed daily (mRNA/protein collection- cell lines) or spiked 

with additional TGF-B3 (CAT assays, all fetal experiments) every 24 hours. 

Cells were then washed twice with HBSS and samples collected. 

Northern Blot Analysis: Total RNA from cell cultures was obtained by 

scraping cell monlayers in guanidine isothiocyanate, the resulting 

homogenate was then phenol/chloroform extracted, precipitated with 

isopropanol, and the final RNA pellet was resuspended in formamide 

(Chomczynski and Sacchi, 1987). Samples were quantified by UV 

absorbance at 260 and 280 nm. Equal amounts of total RNA were loaded 

and electrophoresed on denaturing 1.2% agarose gels. Separated RNA was 
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hydrolyzed in dilute alkali, UV-crosslinked to nylon membranes after 

overnight capillary transfer, and used for hybridization analysis. Probes 

used for hybridization analyses were 32P-labeled using random prime 

labeling of cDNA probes (Decaprime II Labeling Kit, Ambion) and terminal 

deoxynucleotidyl transferase (Pharmacia Biotech, Piscataway, NJ) labeling 

of oligonucleotide probes. Membranes were blocked in cDNA hybridization 

buffer (see Southern blot analysis) or oligo hybridization buffer (6X SSC, IX 

Denhardt's, 0.1 % SDS, 0.05% Na-pyrophosphate, and 100 µg/mL herring 

sperm DNA) for 2 hours. Overnight hybridizations were performed at 42°C 

for cDNA probes or at 51°C for oligo probes. Blots having cDNA probes were 

washed as described for Southern blots. Blots hybridized with 

oligonucleotide probes were washed 4x 10 minutes in 6X SSC, 0.1 % SDS at 

room temperature, and twice at 50°C in the same solution. mRNA levels 

were quantitated by phosphoimager analysis (lnstantlmager, Packard 

Instrument Co., Meridan, CT). X-ray film exposures were done at -80°C for 

the indicated times for each blot. Loading and RNA transfer equivalencies 

were assessed by hybridizations with an 18S or 28S rRNA oligonucleotide 

probe as previously described (Engelmann et al., 1989, Samarel and 

Engelmann, 1991). 



cDNA Probes: inserts isolated from plasmids containing cDNAs for: 

rat TGF-BRI (R4) 3'UTR (He et al., 1993) 

rat TGF-BRII (prBRII, extracellular domain) 

(Tsuchida et al., 1993) 

human hBRIIDN (extracellular domain) 

cardiac Troponin C (cTNC, full length probe) 

(Parmacek and Leiden, 1989) 

murine skeletal Troponin C (sTNC, full length probe) 

(Parmacek et al., 1990) 

skeletal Troponin I (sTNI, full length probe) 

(Murphy et al., 1991) 

cardiac Troponin I (cTNI, full length probe) 

(Murphy et al., 1991) 

SPARC (full length probe, Mason et al., 1986). 

Oligo Probes: 

adult/fetal Troponin T, recognizes nt 942-974 (3'coding region) 

(CCAR, Jin and Lin, 1989) 

5' GGCAAGACCTAGAGCTGGGATTCACAGGGCAAG 3' 

fetal Troponin T, recognizes exon 4 (PE4, Jin and Lin, 1989) 

5' GGAAGACTGGAGCGAAGAAGAAGAAGACG3' 

188 and 288 rRNA (25 nt) (Yu et al., 1992) 

188 5' TCACCTCTAGCGGCGCAATACGAAT 3' 

288 5' ACCTTTTCTGGGGTCTGATGAGCGT 3' 
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£rotein Collection: Full cell extracts (FCE) were obtained from tissue 

culture plates by scraping directly into freshly prepared 250 mM Tris-HCl, 

pH 7.5, containing 3% sodium dodecyl sulfate (SDS), 1 mM sodium fluoride 

(NaF), 1 mM sodium vanadate (NaV04), and 1 mM phenylmethylsulfonyl 

fluoride (PMSF) (Tris-SDS solution). Conditioned media were collected 

from tissue culture plates at indicated times and dead cells/debris were 

removed by centrifugation at 2000 rpm for 5 minutes. Media proteins were 

precipitated with 10% TCA, washed 4 times with ice cold acetone, and 

allowed to dry. Proteins were resuspended in the Tris-SDS solution 

described above. All samples (FCE and media) were boiled for six minutes 

and allowed to return to room temperature. Samples were quantitated by a 

standard BCA assay (Pierce, Rockford, IL). Samples were stored at -20°C 

between uses. To avoid protein degradation, large sample volumes were 

divided into several tubes to prevent repeated freeze-thaw cycles. 

Western Blot Analyses: Samples were diluted in 250 mM Tris-HCl, pH 7.5, 

containing 3% SDS. 5X dye solution (20% B-mercaptoethanol, 80% glycerol, 

bromphenol blue) was added to each and heated at 65°C for 10 minutes. 

Biotinylated standards (broad range, BioRad) were used at 1 µL per lane. 

Samples were then loaded on a 10 or 12% SDS-PAGE gel and run for -2 

hours at 105 volts at room temperature on a Mini-PROTEIN II Slab gel 

apparatus (BioRad) according to manufacturer's protocol. Proteins were 

transferred to nitrocellulose (BioRad) in transfer buffer containing 20% 

methanol for 1.5 hours at 105 volts with the Mini Trans-Blot system 



(BioRad) according to manufacturer's instructions. Membranes were then 

washed with TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween-

2o) and used for western blot analysis. Membranes were blocked in TBST 

containing 10% normal goat serum (NGS, Sigma Chemical Co.) and 2% 

bovine serum albumin (BSA, Sigma Chemical Co.) for 2 hours at room 

temperature (RT). Primary antisera (a.-SPARC,#5944, 1:5000 dilution, Sage 

et al., 1989; a.-BRI, 1:1000 dilution, Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA) was added to the membranes (diluted in blocking buffer) and 

incubated overnight at 4°C. Membranes were then washed 3 times at RT 

with TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween-20). 

Standard lanes were cut off from the remaining blot for separate 2° antibody 

treatment. Alkaline phosphatase (AP) conjugated secondary antibody (a-

rabbit or a-mouse, Santa Cruz Biotechnology, Inc.) was added to each 

membrane and incubated at RT for 1 hour. Standard lanes were incubated 

with streptavidin conjugated AP (BioRad). Membranes were then washed 

at RT twice (5 minutes each) with TBST and twice (5 minutes each) with 

deionized H20. Blots were developed with the 5-bromo-4-chloro-3-indolyl

phosphate/p-nitro blue tetrazolium choloride color development system 

(BCIP/NBT, 5 Prime--> 3 Prime, Inc., Boulder, CO) for 5-15 minutes. 

Development was stopped by washing the blots with deionized H20 and 

blotting dry. 
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Receptor-Ligand Crosslinking: TGF-B1 crosslinking was performed as 

previously described (Massague, 1987) with minor alterations. Cells were 

plated at 1-2xl05 cells per 12-well or 35mm plate and allowed to incubate for 

approximately 48 hours. As a control, 3-day old neonatal cardiomyocytes 

were isolated by sequential collagenase digestions as previously described 

in detail (Engelmann et al., 1990). lOOpM of 1251-TGF-B1 (Biomedical 

Technologies, Inc., Stoughton, MA) was added to each dish in cold binding 

buffer (128 mM NaCl, 5 mM KCl, 5 mM MgS04, lmM CaCl2, 50 mM 

HEPES, pH 7.4, and 0.2% BSA) and incubated at 4°C for 4 hours. Receptor 

bound ligand was then crosslinked with Disuccinimidyl glutarate (4.4 

mg/mL in dimethyl sulfoxide) (Pierce, Rockford, IL) for 15 minutes at room 

temperature. The crosslinking reaction was stopped by washing 4 times 

with PBS (10 mM H2NaP04, pH 7.25, 150 mM NaCl). 

Identification of TGF-B Binding Proteins/Receptors: Full cell extracts of 

1251-TGF-B crosslinked samples were collected directly into Laemmeli SDS

PAGE buffer containing lmM DTT and boiled for 5 minutes. Fractions of 

each sample were taken to quantify available radioactivity (COBRA II Auto

Gamma, Packard Instrument Co., Meridan, CT). Equal counts of 

radioactivity for each sample were loaded and run on 10-12% SDS-PAGE 

gels. The gels were dried and exposed to X-ray film at -80°C for 3-5 weeks. 

Kaleidoscope standards (BioRad) were run on each gel for size 

determination. 



Identification of Receptors/Receptor Complexes: To more clearly observe 

.BRII-DN and possibly provide evidence for BRII-DN:BRI association, 

immunoprecipitations (IPs) were performed on 1251-TGF-B crosslinked 

samples. Samples were collected into PBSTDS (10 mM Na2HP04' 150 mM 

NaCl, 1%Triton-X100, 0.1 % SDS, 1 mM NaF, 10 mM Na-deoxycholate, and 

30 mM Na-azide) and immunoprecipitated (IP) with M2 a.FLAG 

monoclonal antibody (M2) (Sigma, St. Louis) or a-BRI and Protein G 

Plus/Protein A Agarose (Oncogene Sciences, Manhasset, NY). Final IP 

pellets were resuspended in Laemmeli buffer containing 1 mM DTT and 

equal volumes were loaded on 10-12% SDS-PAGE gels. Gels were dried and 

exposed to X-ray film for 5 weeks at -80°C. Kaleidoscope standards (BioRad) 

were run on each gel for size determination. 

Growth Assays: 2-2.5xl05 cells were plated on 35 mm plates in 2% FCS and 

allowed to settle and reattach for 4-5 hours. The cells were then washed 

twice with HBSS and refed with media containing 0.5% FCS with 0-10 

ng/mL TGF-B3• The number of attached cells was determined from nuclei 

counts of these mononuclear cells at this time (T=O) for plating efficiency 

(Engelmann and Gerrity, 1988). After 48 hours of continuous exposure 

(without additional TGF-B3 being added at 24 hours), nuclei were isolated 

and counted (T=48). Duplicate plates were counted for each data point. The 

data are expressed as the relative percentage of cell proliferation compared 

to control cultures not exposed to exogenous TGF-B3• 
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Luciferase Assays: 2-2.5xl06 cells were used for each electroporation. Cells 

were collected by trypsinization, counted, pelleted, and resuspended in 

electroporation buffer (20 mM HEPES, pH 7.05, 137 mM NaCl, 5 mM KCl, 

0.7 mM Na2HP04' 6 mM glucose). 25 µg p3TP-Lux (PAI-1, Wrana et al., 

1992) or BW147 (sTNI, Corin et al., 1994; Corin et al., 1995) and 5 µg pRSVZ 

(ATCC) plasmid DNAs were added to the cells in a total volume of 800 µl for 

each electroporation. Cells were electroporated at 240 m V with a 

capacitance extender option (BioRad), allowed to sit on ice for 15 minutes 

and then replated. Cells were allowed to recover/attach for 4-6 hours after 

which the plates were washed with HBSS and refed with fresh media 

containing 0-10 ng/mL TGF-B3. After an additional 36 hours, luciferase 

activity was measured from the cell lysates according to the 

manufacturer's instructions (Enhanced Luciferase Assay Kit, Analytical 

Luminescence Lab., Ann Arbor, MI). Data were normalized for 

electroporation efficiency by determining B-galactosidase activity from each 

sample and expressed as fold changes relative to untreated (O ng/mL TGF

B3) controls. 

CAT Assays: 4.5-5xl06 cells were used per poration. Cells were collected by 

trypsinization, counted, pelleted, and resuspended in 800 µL electroporation 

buffer. 25 µg reporter plasmid [cTNC (p-124SVOCAT, Parmacek et al., 

1994), sTNC (1.7/900-CAT, Parmacek et al., 1990), SPARC (639-SPARC, 

McVey et al, 1988), TNT (303-CAT, Wang et al., 1994)] and 5 µg pRSVZ 
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(ATCC) were used for each poration. Cells were electroporated at 240 m V, 

allowed to sit on ice for 15 minutes and plated. Cells were allowed to 

recover/attach overnight after which dead cells were washed off and 

treatments were started. After 48-72 hours, proteins were collected, 

quantitated by BCA, and CAT assays were performed using 150 µg protein 

(cell line) or 40-70 µg protein (fetal) (Gorman et al., 1982). CAT activity was 

quantitated by phosphoimager analysis (lnstant/mager, Packard 

Instrument Co.). Data were normalized for poration efficiency by 

determining B-galactosidase activity for each sample utilizing equal 

amounts of cellular protein. 

Transfection and Reporter Assays Utilizing Primary Fetal Myocytes: 

Primary fetal cultures were transfected as previously described using 

Lipofectin (Gibco-BRL) (Engelmann et al., 1990; Ciccarone and Hawley

Nelson, 1995). Briefly: 24 µg Lipofectin/mL final volume 1:2 dil. PC

l:DME/F-12 was used for each transfection. Lipofectin and media were 

combined and allowed to incubate at RT for -1 hour. Reporter plasmid (25 

µg, BW147, 180-CAT, 1.7/900-CAT, 303-CAT, 639-SPARC) and pRSVZ (5 µg) 

were mixed with lipofectin/media mixture and allowed to incubate at RT for 

30 minutes. The resulting mixture was then added to plates and allowed to 

incubate at 37°C, 5% C02 overnight. Lipofectin-media-plasmid mixture was 

then removed, plates washed 3 times with HBSS, and TGF-B3 treatments 

started. After 36 (luciferase) or 48 (CAT) hours, samples were collected and 

activities were assayed as described above. 
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Statistics: Using InStat Software and a P value of <0.05 as an index of 

achieving statistical significance, Northern blot and luciferase data from 

each parental line and mutant clone was analyzed using one way analysis 

of variance (ANOVA) followed by Tukey-Kramer multiple comparisons test. 

Unpaired T-tests were performed on all fetal data, and on cell line data 

obtained from the CAT assays. Comparisons between parental cell lines 

and their mutant clones at each dose ofTGF-B3 were evaluated by one-way 

ANOV A. Comparisons of the dose curves between each parental line and 

its respective mutant were evaluated by two way ANOV As using 

SUPERANOVA software. 



CHAPTER4 

RESULTS 

Creation and Initial Characterization of Cell Lines 

Creation of Dominant Negative Cell Lines 

As a model system for the study of the effects of TGF-B in ventricular 

development, the BWEM and CLEM myocyte-like cell lines not only provide 

a means to directly examine changes TGF-B may elicit, but also to examine 

the mechanisms or pathways which mediate these effects. To more clearly 

define the direct roles TGF-B may have in ventricular development and to 

examine the specific roles of the Type I and Type II TGF-B receptors, we 

chose to knock out BRII function in each of the myocyte cell lines utilizing 

the dominant negative approach. 

In order to create cell lines in which a response to TGF-B could be 

abrogated, the expression plasmid phBRIIDN was introduced into the 

BWEM and CLEM cell lines by electroporation. This plasmid contains a 

cDNA encoding a truncated, kinase-deficient human BRII (see Figure 3) 

whose expression is under the control of the cytomegalovirus (CMV) 

promoter. As this plasmid did not contain a eukaryotic selection marker, 
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pRSV2neo expression plasmid conferring genestine (G418) resistance was 

co-transfected. After G418 selection was maintained through 5-7 passages, 

four stable, clonal lines were established; two BWEM derived, BDN and 

BDNT, and two CLEM derived, CDN and CDNT. Because G418 resistance 

alone does not guarantee stable integration of phBRIIDN, the polyclonal 

nature of these lines made interpretation of the resulting data (not shown) 

troublesome. Therefore, single cell derived clonal sublines were 

established by fluorescence activated cell sorting (F ACS) from each of the 

four polyclonal populations. To ensure each subline was derived from a 

single cell (clonal), each well of the 96-well plate was screened within 24 

hours of FACS sorting to select/verify those wells which contained a single 

cell. Greater than 50 clonal cell lines were screened by Southern and 

Northern blot analyses for phBRIIDN integration and BRII-DN expression, 

respectively (e.g. Figure 4). From these analyses, four clones were selected 

based on indices of high expression of the estimated 1 kb transcript for the 

truncated receptor and were further characterized: BDNT 96 F8, BDNT 296 

Hl, CDNT 296 B5, and CDNT 96 F5 (indicated by ** , Figure 4). These four 

clonal lines (two from each parental line) are referred to as BW-F8, BW-Hl, 

CL-B5, and CL-F5 from here on. 
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Figure 3: Diagram of Wild Type and Mutant TGF-BRII 
Schematic of the protein domains found in the wild type TGF-BRII 

and the truncation mutant present in the phBRIIDN expression vector used, 
to create the DN cell lines. 

SS: Signal Sequence 
TM: Transmembrane domain 
F: FLAG Epitope tag. 

EC: Extracellular domain 
IC: Intracellular domain 
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Figure 4: Screen of Clonal BRII-DN Mutants 
Examples of Northern Blot analyses used to choose mutant cell lines 

which incorporated phBRIIDN and expressed the BRII-DN transcript. 
Arrow indicates expected size (-1 kb) for the BRII-DN transcript. 
**Indicates those DN lines which were chosen for further study. 25 µg 
total RNA loaded for each sample. Results shown are from 24 hr. exposure 
to film at -80°C. Bars on right indicate migration of 288 and 188 rRNA 
markers. 
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Expression and Ligand Binding of Endogenous and Mutant Receptors 

As previously described, BRI and BRII are necessary for most, if not 

all, TGF-B-mediated responses. Therefore, expression and ligand-binding 

ability of each receptor, in all of the cell lines is of utmost importance. 

While the expression of the endogenous TGF-B receptors was not expected 

to be affected by the transformation, we chose to verify their expression in 

each of the mutant lines as well as their parental cell lines. Additionally, to 

verify the stable integration and expression of BRII-DN after multiple 

passages (>20), expression and ligand-binding ability of BRII-DN was 

verified in the mutant cell lines. 

To verify expression of BRI in the parental and mutant cell lines, 

Northern blot and Western blot analyses for the endogenous BRI were 

performed on RNA and protein, respectively, isolated from the mutant 

clones as well as the parental cell lines (Figure 5 and 6 ). As expected, 

transcript levels for BRI (-6 kb) were not affected by the transformation, nor 

did they differ significantly between parental lines or clones (Figure 5). 

Similar results were seen with Western blot analyses for BRI protein, 

which has an estimated size of 53 kD (Figure 6). Therefore, since it appears 

that BRI is avidly expressed in each of the cell lines, any lack of response to 

TGF-B observed in the mutant cells should not be attributed to abnormal, 

cell surface expression of BRI. 
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288* 

Figure 5: Analysis of Endogenous BRI Expression 
Northern blot hybridization analysis was performed to verify 

expression of the endogenous rat Type I TGF-B receptor utilizing the rat 
BRI (R4) cDNA insert as the probe. Bars represent migration markers of 
288 and 188 rRNA. Results shown are from 24 hour exposure to film at 
-80°C. 288 rRNA hybridization is shown. 

Lane 1: BWEM Lane 2: BW-F8 
Lane 4: CLEM Lane 5: CL-B5 

*Each lane contained 25 µg of total RNA 

Lane 3: BW-Hl 
Lane 6: CL-F5 
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kD 

- 45 

- 31 

Figure 6: BRI Western Blot Analysis 
Total cellular proteins from cell cultures of each cell line were run on 

10% SDS-PAGE gels and used for Western blot analyses. 25 µg of protein 
was loaded per lane. Markers on right indicate size in kilodaltons as 
determined by co-running biotinylated standards on the gel. Staining of gel 
indicated that protein loading was consistent (data not shown). 

Lane 1: BWEM Lane 2: BW-F8 Lane 3: BW-Hl 
Lane 4: CLEM Lane 5: CL-B5 Lane 6: CL-F5 
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Expression of the endogenous BRII in each of the cell lines was also 

verified by Northern blot analyses. As mentioned previously, the 

extracellular domain is less conserved across species (see figure 1, Chapter 

2). This reduced homology results in low cross-reactivity between human 

and rat. Therefore, using a probe corresponding to the extracellular 

domain of rat BRII, Northern blot analyses were performed to verify 

expression of the endogenous BRII. As expected, expression of the rat BRII 

transcript (-5.2 kb) was detected in each of the cell lines (Figure 7). Due to 

the low amino acid homology between the extracellular domains of BRII 

across species (e.g. 82% between human and rat), most available antisera 

for BRII are made against peptides found within the conserved kinase 

domain using the published human sequence. However, detection of the 

endogenous rat BRII by Wes tern blot analyses was not successful, as these 

antisera identified multiple bands, none of which were prominent and at 

the expected size of -75 kD (data not shown). 
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Figure 7: Analysis of Endogenous BRII Expression 
Northern blot hybridization analysis was performed to verify 

expression of the endogenous rat Type II TGF-B receptor utilizing the rat 
BRII cDNA insert as the probe. Bars represent migration markers of 288 
and 188 rRNA. Results shown are from 24 hour exposure to film at -80°C. 
288 rRNA hybridization is shown. 

Lane 1: BWEM Lane 2: BW-F8 
Lane 4: CLEM Lane 5: CL-B5 

*Each lane contained 25 µg of total RNA 

Lane 3: BW-Hl 
Lane 6: CL-F5 
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While the mutant cell lines were selected because of their high 

transcript level for BRII-DN (Figure 4), the stable integration of and 

expression from the BRIIDN plasmid was verified after multiple (>20) 

passages in all four mutant clones by Southern (Figure Sa) and Northern 

(Figure Sb) blot analyses, respectively. In addition to transcript size 

differences between the endogenous rat (-5.2 kb) and mutant human BRII 
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(-1 kb) gene products, the relatively low level of homology (at the cDNA 

level) of the extracellular domains of BRII across species allowed us to 

easily distinguish between the endogenous rat and mutant human 

receptors. As expected, results were negative for both the Southern and 

Northern blot analyses of the parental cell lines (CLEM Southern data not 

shown). Similar to the results obtained from Northern blot analyses 

performed on RNA obtained from the mutant lines at an early passage , the 

-1 kb human BRII-DN transcript was readily detected in each of the 

mutant cell lines (Figure S). A larger (-5 kb) band is consistently detected 

in the BWEM derived lines (both early and later passages). As these bands 

coincide with the size of the endogenous rat BRII, crossreactivity was 

considered to explain the bands. However, since this band does not appear 

in the parental BWEM line, this does not appear to be the case. Therefore, 

the larger bands have been hypothesized to be the result of improper read

through of the plasmid during transcription or tandem integration of 

plasmids in the genome. These hypothesis have not been tested further. 
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Since the available antisera for BRII are made against peptides 

derived from the kinase domain, detection of BRII-DN with these antisera 

was impossible as these peptide sequences are deleted during truncation. 

However, to aid in its detection, BRII-DN was constructed with an epitope 

tag, FLAG. Western blot analyses utilizing antisera against this epitope 

from several independent sources were attempted, but each epitope-directed 

antisera detected several protein bands in the protein samples, none of 

which was unique to the DN lines (data not shown). However, this antibody 

proved to be useful for immunoprecipitations (see receptor-ligand 

crosslinking). 



Figure 8: Integration of and Expression from phBRIIDN Vector 

A: Integration of phBRIIDN 

BWEM BW-F8 BW-Hl CL-B5 CL-F5 

B: Expression of BRII-DN 
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-
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Figure 8: Integration of and Expression from phBRIIDN Vector 
(A) Southern Blot hybridization analysis of genomic DNA (30 

µg/lane) after HindIII digestion. The CMV promoter fragment from the 
phBRIIDN vector was utilized as a probe. Results shown are from a 24 
hour exposure to film at -80°C. 
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(B) Northern Blot hybridization analysis for expression of the mutant 
human Type II receptor utilizing the entire coding region (primarily the 
extracellular domain) from phBRIIDN as a probe. Results shown are from 
24 hour exposure to film at -80°C. Bars represent migration markers of 288 
and 188 rRNA. 288 rRNA hybridization is shown for the Northern blot. 

Lane 1: BWEM Lane 2: BW-F8 Lane 3: BW-Hl 
Lane 4: CLEM Lane 5: CL-B5 Lane 6: CL-F5 

*Each lane contained 25 µg of total RNA 
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Cell surface expression and ligand binding abilities of the 

endogenous and mutant TGF-B receptor proteins were confirmed by 125I

TGF-B1 crosslinking. Although Northern and Western blot analyses 

detected the expression of the TGF-B receptor transcripts and proteins, 

these analyses did not verify ligand binding capabilities. Based on the 

mRNA studies, endogenous protein levels for each rat TGF-B receptor did 

not vary significantly between the cell lines or clones. To verify that these 

proteins were functional, their ligand binding capabilities were determined 

by standard ligand-receptor crosslinking methodologies. As shown in 

figure 9a, crosslinking with 125I-TGF-B1 showed the presence and ligand 

binding capabilities of the endogenous rat Type I (53 kD) and Type II (75 kD) 

TGF-B receptors as well as the truncated, human Type II (-40 kD) TGF-B 

receptor. In addition to the cell lines, results from a primary culture of two 

day neonatal cardiomyocytes was included for comparison. Duplicate, 125I

TGF-B1 crosslinked samples were used for immunoprecipitation (IP) with 

the M2 antibody against the FLAG epitope on BRII-DN to more precisely 

evaluate expression of this receptor. In correlation with the mRNA 

studies, the mutant, human BRII receptor, estimated to be -40 kD, was the 

only receptor-ligand band immunoprecipitated with the M2 a-FLAG 

antibody from lysates of the four mutant clones (overexposure of film shows 

weak band in CL-F5 sample), while none were detected using lysates from 

the parental cell line (Figure 9b). 
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Figure 9: 1251-TG F-B1 Receptor-Ligand Cross linking 
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1251-TGF-B1 (100 pM) was crosslinked to cell monolayers of each cell 
line to determine cell surface receptor expression and ligand binding 
capability. 

(A) Full cell extracts were collected directly into Laemmeli buffer 
and run on 12% SDS-PAGE gels. Results shown are from a 3-week 
exposure to film at -80°C. 
Lane 1: Primary neonatal rat cardiomyocytes Lane 2: BWEM 
Lane 3: CLEM Lane 4: BW-F8 Lane 5: BW-Hl Lane 6: CL-F5. 
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(B) Cell lysates were immunoprecipitated with M2 a.FLAG with all of 
the IP-materials loaded and run on 12% SDS-PAGE gels. Results shown 
are from a 5-week exposure to film at -80°C. 
Lane 1: BWEM Lane 2: BW-F8 Lane 3: BW-Hl 
Lane 4: CL-B5 Lane 5: CL-F5. 
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In.itial Characterization of the Response to TGF-B 

To initiate the characterization of each of the parental lines and 

clones to TGF-B responses, we analyzed two "standard" effects that have 

been shown to be elicited by all three mammalian isoforms of TGF-B in 

other well characterized cell lines (such as MvlLu): 1) inhibition of 

proliferation and 2) induction of transcription from the p3TP-Lux reporter 

construct derived from the promoter region of the PAI-1 gene. In addition 

to being standard TGF-B effects, the characterization of these responses to 

TGF-B3 in each cell line also provided data which addresses two parts of our 

hypothesis: 1) TGF-B3 can directly inhibit cardiomyocyte proliferation and 

2) TGF-B3 can influence ventricular remodeling by supporting ECM 

accumulation. As these effects are standard indicators of TGF-B 

responsiveness, the BWEM and CLEM cell lines are expected to exhibit 

significant changes in proliferation and PAI-1 induction after TGF-B3 

treatment. In contrast, the established expression of BRII-DN in the 

mutant cell lines should result in the elimination of TGF-B3 

responsiveness, and therefore, the elimination of any changes in 

proliferation or PAI-1 expression after TGF-B3 treatment. 

Growth assays were performed on each cell line using 0-10 ng/mL 

TGF-B3• The parental cell lines BWEM and CLEM each demonstrated 

maximum inhibition of proliferation at 1 ng/mL TGF-B3 (Figure 10). 

Highlighting the individual nature of the two parental lines, the levels of 

TGF-B inhibition differed between these two lines. At 1 ng/mL TGF-B3, 
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growth of the CLEM line was inhibited approximately 80% while growth of 

the BWEM line was inhibited only about 50%. These levels of inhibition are 

similar to those previously obtained in fibroblasts (-70%, Zhao and Young, 

1996), capillary endothelial cells (-65%, Choi and Ballerman, 1995), and 

mink lung epithelial cells (-90%, Chen et al., 1993). 

Similar growth assays were performed on each of the dominant 

negative cell clones. Two of these clones, BW-Hl and CL-B5, had a 

significantly reduced sensitivity to TGF-B3-mediated growth inhibition 

(Figure 10, Table 2). The BW-Hl clone's sensitivity to TGF-B3-mediated 

growth inhibition was such that the dose necessary to reach the 50% 

inhibition seen in its parental BWEM line at 1 ng/mL TGF-B3 was 

approximately lOX higher (i.e. 10 ng/mL TGF-B3). In contrast, growth of 

the CL-B5 clone was only modestly inhibited (approximately 20%) at 1-10 

ng/mL TGF-B3 • The results for CL-B5 reflect those obtained in mink lung 

epithelial cells where expression of the BRII-DN reduced proliferation only 

10% compared to the 90% reduction observed in the parental cells (Chen et 

al., 1993). These results indicate that expression of the human BRII-DN is 

successfully competing out the endogenous rat BRII for available rat BRI 

and reducing or virtually eliminating the growth inhibitory activities of 

biologically active, recombinant TGF-B3• 
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Figure 10: 48 Hour Growth Assays 
48 hour growth curves for the BWEM parental and mutant clone 

BW-Hl (A) and CLEM parental and mutant clone CL-B5 (B) in the presence 
of 0-10 ng/mL of recombinant TGF-B3 are shown. Mean data shown are 
from 4-6 individual assays performed in duplicate and the error bars 
represent SEM. "Control" refers to those cultures seeing no exogenous 
TGF-B3• 

* significantly different from parental line (see Table 1) 

Table 2: Statistical Analysis of 48 hr. Growth Assay 
One way ANOV A was used to determine significance between the 

percent growth for each parental cell line and its respective mutant at each 
dose of TGF-133• Data are presented as mean± SEM. 

ng/mL Parental* Mutant* n value 
BW's 0.1 89.8± 15.3 87.8±1.8 0.897 
BW's 1.0 51.0± 3.9 86.8± 1.9 0.0002 
BW's 10 57.0 ± 4.4 48.8±4.9 0.251 

CL's 0.1 59.0±7.6 92.8±3.l 0.004 
CL's 1.0 22.8±7.6 85.4± 6.9 0.0002 
CL's 10 26.7±13.4 78.8± 7.9 0.011 

*Percent Growth Vs. Control (0 ng/mL TGF-B3, control=lOO) 
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As a second TGF-B response index evaluated in the clones, we 

measured the ability of exogenous TGF-B3 to induce transcription of a well 

established TGF-B-responsive gene, PAI-1. Expression from the luciferase 

reporter construct p3TP-Lux (Figure lla), which contains three TPA 

responsive elements (TRE) and a portion of the PAI-1 promoter, was 

determined. As expected, TGF-B3 significantly induced luciferase activity 

in a dose dependent manner in the two parental lines (Figure llb and llc, 

Table 3). Interestingly, even though the BWEM line appeared less sensitive 

than CLEM to TGF-B3's growth inhibition, they showed a greater fold 

induction of transcription from this promoter: 5.4 ± 0.4X induction for 

BWEM vs. 3.9 ± 0.6X induction for CLEM at 10 ng/mL TGF-B3, although this 

variation is statistically non-significant (Table 4). While this level of 

induction is dramatically lower than those observed in epithelial cells (20-

40-fold, Wrana et al., 1992; Carcamo et al., 1995; Brand and Schneider, 

1995), it is similar to those obtained in fibroblastic cell lines (5-6-fold, 

Carcamo et al., 1995). The level of induction (fold induction) seen in the 

parental lines is comparable to the 4.8 ± 0.002X induction seen with 

primary fetal cultures (Figure llb), but it appears that the activities 

measured in the parental lines are higher than the fetal myocytes, but only 

the difference between the fetal myocytes and BWEM cell line achieved 

statistical significance (Figure llc, Table 4). 

Similar luciferase assays performed on the BW-Hl and CL-B5 clones 

showed a markedly decreased sensitivity to TGF-B3 induction of PAI-1 
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promoter activity. At 10 ng/mL TGF-B3, there was only a 2.3 ± 0.3X 

induction of PAI activity in the BW-Hl clone and only a 1.6 ± 0.2 X induction 

of PAI-1 activity in the CL-B5 clone. These values are significantly different 

(Table 5) from their respective parental lines at equivalent ligand 

concentrations. Similar to what was seen in the BW-Hl growth assay, PAI-

1 reporter activity in the two DN clones at 10 ng/mL TGF-B3 were not 

significantly different from the level of induction seen with only 1 ng/mL 

TGF-B3 in their respective parental lines. This -50% reduction in TGF-B-

responsiveness at 10 ng/mL TGF-B3 is less prominent as similar 

experiments in mink lung epithelial cells where expression of BRII-DN 

resulted in an approximate 75% reduction in P AI-1 induction (Brand and 

Schneider, 1995, Carcamo et al., 1995). However, these data substantiate 

the postulate that the levels of BRII-DN expressed by these mutant clones 

are rendering them approximately lOX less sensitive than their parental 

lines to changes mediated by TGF-B3 induced signal transduction 

pathways. 

Table 3: Statistical Analysis of TGF-B3 Dose Response Curves of PAI-1 
Induction 

One way AN OVA was used to determine significance of the dose 
response curve of PAI-1 promoter activity. 

Cell Type 
Fetal 
BWEM 
BW-Hl 
CLEM 
CL-B5 

p-value 
(fold induction) 

0.0031 
<0.0001 
<0.0001 
<0.0001 
<0.0001 

p-value 
(raw) 

0.0004 
<0.0001 
0.0991 
0.1424 
0.1428 
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Figure 11: PAI-1 Promoter Assays 
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Figure 11: TGF-B3 I-?~uced Changes in Plasminogen Activator Inhibitor-1 
(PAl-1) Promoter Activity 

(A) p3TP-Lux reporter construct. This construct contains 3 TPA 
responsive elements (TRE) and the PAI-1 promoter region upstream of the 
Iuciferase gene. 

(B & C) 36-hr. luciferase assays. 18 dpc primary fetal myocyte 
cultures (fetal), each parental line (BWEM and CLEM) and their respective 
mutant clones (BW-Hl and CL-B5) were transfected with the p3TP-Lux 
reporter plasmid and treated with 0-10 ng/mL of recombinant TGF-B3 for 36 
hours after which luciferase activity was assessed as described Chapter 3. 
Lucif~rase data were normalized with B-galactosidase activity. Data for the 
cell lines represent the mean value from 3-4 individual assays and the error 
bars represent SEM. Data for the fetal cardiomyocytes represent the mean 
value from 2 individual assays and the error bars represent SD. 

(B) Relative changes in activity are presented as fold increases 
when compared to untreated (O ng/mL B3) samples. 

(C) Relative luciferase units are presented for each cell line to 
demonstrate individual expression levels in the different cell lines. 

Significance: * p:::; 0.05, **:::; 0.01, *** p:::; 0.001 

Table 4: Statistical Analysis of Fetal and Parental PAI-1 Induction 
Unpaired t-test was used to determine significance between results 

obtained from the different cell types in the PAI-1 promoter assay. 

p-value p-value p-value 
(RLU-02 (RLU-102 (fold induction} 

Fetal vs. BWEM 0.052 0.012 0.320 
Fetal vs. CLEM 0.345 0.354 0.424 
BWEM vs. CLEM 0.805 0.592 0.090 
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Table 5: Statistical Analysis of PAI-1 Induction - Parental vs. Mutant 
One way ANOVA was used to determine significance between the 

PAI-1 induction for each parental cell line and its respective mutant at 
each dose ofTGF-133• Data are presented as mean± SEM. 

ng/mL Parental* Mutant* 12 value 
BW's 0.1 1.06±0.11 0.85±0.01 0.160 

BW's 1.0 2.42 ±0.40 0.81±0.12 0.021 

BW's 10 5.39±0.37 2.25±0.34 0.002 

CL's 0.1 0.92±0.06 0.76±0.04 0.054 

CL's 1.0 1.92 ±0.17 0.77±0.03 0.0002 

CL's 10 3.93±0.63 1.64±0.17 0.006 

*Fold Induction Above Control (O ng/mL TGF-B3 , control = 1.00) 
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Effects of TGF-B:a on Gene and/or Protein Expression 

Having established that the two mutant cell lines BW-Hl and CL-B5 

are approximately 10-fold less responsive to TGF-B3-mediated changes in 

cellular proliferation and PAI-1 transcriptional induction, these mutant 

lines were used, alongside their respective parental lines and primary 

cultures of fetal cardiomyocytes, to identify the direct effects TGF-B may 

have on ventricular myocyte development and on their paracrine-mediated 

promotion of angiogenesis. To test the hypothesis that TGF-B promotes the 

maturation and differentiation of the cardiomyocyte during the perinatal 

transition period, the ability of TGF-B3 to influence the expression, at pre

translational levels, of three contractile proteins, troponin C (TNC), 

troponin I (TNI), and troponin T (TNT), were determined. As maintaining 

receptor expression levels are important for TGF-B to mediate its effects 

during this differentiation process, TGF-B3-mediated changes in TGF-B 

receptor expression were also examined. Finally, the ability of TGF-B3 to 

influence the production of the angiogenesis-related protein SPARC was 

examined to address the third and final hypothesis that TGF-B promotes 

angiogenesis in the ventricle . 

Effect ofTGF-B:a on TNC Isoform Expression 

As stated previously, two isoforms ofTNC have been identified to 

date, skeletal (sTNC) and cardiac (cTNC). While sTNC has not been found 

in the heart at any stage, cTNC can be detected in the heart throughout 
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development. Unlike the other members of the troponin complex, no fetal 

isoform of cTNC has been identified. However, while expression of cTNC is 

low in the fetal heart, its transcript levels increase around birth, in concert 

with the increase in expression of the TGF-B ligands and BRII. Therefore, 

we hypothesized that TGF-B enhances the expression of cTNC in the late 

fetal cardiomyocyte by upregulating transcription from this gene. 

Additionally, to verify that the myocyte-like cell lines have maintained their 

cardiac background and thus support their use as a model system, sTNC 

expression was examined in the lines as well as primary fetal 

cardiomyocytes. Therefore, expression of sTNC is expected to be low-to

undetectable in these cells. In contrast, cTNC transcripts are expected to be 

readily detected and increase significantly in response to TGF-B3 in a dose 

dependent manner in each of the parental cell lines. Companion promoter 

assays are expected to reflect these changes. As the mutant cell lines were 

found to be 10-fold less responsive to TGF-B3 in the transcriptional, PAI-1 

promoter assay, it is expected that the induction of cTNC in these mutant 

lines would be significantly less than their respective parental lines. 

The two isoforms of TNC, sTNC and cTNC, are derived from separate 

genes and are moderately homologous (-70%) to each other at the amino 

acid level (Parmacek et al., 1990). The divergence can be found in three 

separate domains and allows for discrimination between isoforms by 

Northern blot analyses using isoform-specific cDNA probes. Total RNA 

was collected from cultures of each cell type which were treated for 48-72 

hours with TGF-B3 and was used for Northern blot analyses. As expected, 
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TGF-133 treatment resulted in an increase in the steady state level of the 712 

bp cTNC transcript in each of the cell lines, both parental and mutant, in a 

time and dose dependent manner (Figures 12 and 13). However, there 

appeared to be no difference in the level of induction at the transcript level 

between the parental lines and their respective mutant clones (Figure 12, 

Table 6). This was not expected as the mutants appeared to be 10-fold less 

sensitive to TGF-133-mediated changes in transcription observed in the PAI-

1 reporter assay (see Chap. 5 for further discussion). In all four cell lines, 

increases in steady state cTNC transcript levels were detected at 48 hours, 

and reached an approximate 2-2.5-fold induction after 72 hours of TGF-133 

(10 ng/mL). It can also be noted that inherent differences in the expression 

levels of cTNC can be seen among the cell lines (Figure 13). 

Table 6: Statistical Analysis ofTGF-133 Dose Response Curves of cTNC 
Northern Blot Analyses 

One way ANOV A was used to determine significance of the dose 
response curves of cTNC steady state transcript levels for each cell type. 
Two way ANOVA was used to determine differences between dose curves of 
each parental cell line and its respective mutant. 

Cell Type p-value (48hr.) 
Fetal 

BWEM 
BW-Hl 
BWvs.BW-Hl 

CLEM 
CL-B5 
CL vs. CL-B5 

0.229 

<0.0001 
0.003 
0.863 

0.059 
0.001 
0.034 

p-value (72hr.) 
0.023 

0.144 
0.167 
0.749 

0.429 
0.005 
0.966 



Figure 12: cTNC Northern Blot Analyses 
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Figure 12: TGF-B3 Induced Changes in Steady State cTNC Transcript 
Levels 

100 

Cultures of all four cell lines and primary cultures of 18 dpc 
ventricular myocytes were treated with 0-10 ng/mL TGF-B3 for 48 (A) and 72 
(B) hours. Northern blots were hybridized with a cDNA probe for cTNC. 
Fold induction of steady state transcript levels as compared to untreated 
controls is shown. Results shown are from 3-4 individual assays. 
Expression data were normalized to 18S rRNA oligo hybridizations. Error 
bars represent SEM. 



Figure 13: Northern Blot Analyses of cTNC 
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Figure 13: Northern Blot Analyses of cTNC 
Primary cultures of 18 dpc ventricular myocytes and cultures of each 

of the cell lines were treated with 0- 10 ng/mL TGF-Ba for 48-72 hours. 
Northern blots were hybridized the cDNA probe for cTNC. Bars indicate 
188 and 288 rRNA bands. Blots shown are from 24 hr. exposure to film at 
-B0°C. 188 rRNA hybridizations shown below each blot. 

(A) 18 dpc Fetal RNA. 3 µg total RNA loaded for each sample. 
Lane 1: 48 hr. Control Lane 2: 48 hr. +TGF-Ba 
Lane 3: 72 hr. Control Lane 4: 72 hr. +TGF-Ba 

(B) Total RNA from each of the cell lines treated with or without 10 
ng/mL TGF-Ba· 30 µg loaded for each sample as indicated. 

(C) CLEM and CL-B5 RNA. Representative blot of dose response to 
TGF-Ba· 30 µg total RNA loaded for each sample. 

Lane 1: CLEM Control Lane 2: CLEM 0.1 ng/mL Ba 
Lane 3: CLEM 1 ng/mL Ba Lane 4: CLEM 10 ng/mL Ba 
Lane 5: CL-B5 Control Lane 6: CL-B5 0.1 ng/mL Ba 
Lane 7: CL-B5 1 ng/mL Ba Lane 8: CL-B5 10 ng/mL Ba 



103 

To determine if these changes in cTNC transcript levels involved 

transcriptional upregulation, cTNC-CAT promoter assays were performed 

after treatment with TGF-B3 for 48 (Figure 14) and 72 hours (data not 

shown). Based on the results obtained from the Northern blot analyses, we 

expected cTNC promoter activity to increase in response to TGF-B3• 

However, cTNC promoter activity in the parental lines significantly 

decreased by -40-50% at both 48 and 72 hours in response to exogenous TGF

B3 treatment (Figure 14, Table 7). Similar to the PAI-1 promoter assays, the 

negative transcriptional regulation of the cTNC promoter by TGF-B3 

appeared to be inhibited in the DN mutant lines as no significant difference 

in promoter activity was observed in BW-Hl and CL-B5 in response to TGF

B3 (Figure 14, Table 7). However, similar to the Northern blot analyses, the 

cTNC promoter results obtained for the mutants and their respective 

parental lines were not significantly different (Table 7). These data suggest 

a complex, multi-level mechanism(s) wherein TGF-B regulates cTNC 

production in the cell lines by both positive and negative influences. 

However, these phenomena appear to be a characteristic of the cell lines as 

the changes in promoter activity and transcript levels in primary fetal 

cultures do not exhibit these same effects after TGF-B3 treatment, having 

very little, or no response to exogenous TGF-B3 (Figures 12 and 14). 



Figure 14: cTNC Promoter Assays 
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Figure 14: TGF-B3 Induced Changes in Cardiac Troponin C (cTNC) 
Promoter Activity 
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(A) p-124SVOCAT reporter construct. This construct contains 124 bp 
of the cTNC 5' flanking region plus 32 bp of the first exon upstream of the 
CAT gene. Within this segment are 5 cardiac-specific binding elements: 
GATA-4 binding site, cardiac enhancer factor-2 (CEF-2), and three cardiac 
promoter factors (CPF-1-3). 

(B & C) 48 hour CAT Assays. 18 dpc primary myocyte cultures 
(fetal), each parental line (BWEM and CLEM) and their respective mutant 
clones (BW-Hl and CL-B5) were transfected with the p-124SVOCAT reporter 
plasmid and treated with 0 or 10 ng/mL of recombinant TGF-B3 for 48 
hours. Samples of each were assessed for CAT activity as described in 
Chapter 3. Data were normalized with B-galactosidase activity. Data 
represent the mean value from 3 individual assays and the error bars 
represent SEM. 

(B) Relative changes in activity are presented as fold increases 
when compared to untreated (O ng/mL B3). 

(C) Raw data are presented as the per cent conversion of 14C
chloramphenicol per lOµg protein (fetal) or 150 µg protein (cell lines). 

Significance: * p:::;; 0.05, ** p:::;; 0.01 

Table 7: Statistical Analysis of cTNC Promoter Assays 
Unpaired t-tests were used to determine significant differences 

between treated and untreated cultures and between each parental line and 
its respective mutant. 

p-value p-value 
Cell Txne (fold induction) (raw2 
Fetal 0.534 0.823 

BWEM 0.025 0.383 
BW-Hl 0.540 0.926 
BWEM vs. BW-Hl 0.282 0.205 

CLEM 0.004 0.005 
CL-B5 0.165 0.231 
CLEM vs. CL-B5 0.101 0.186 
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To support the use of the BWEM and CLEM myocyte-like cell lines as 

a model system for cardiomyocyte development, experiments were 

performed to examine the effects of TGF-B on sTNC expression. As sTNC is 

not normally expressed in the cardiomyocyte, sTNC transcript levels and 

promoter activity are expected to be low to undetectable, and decrease in the 

presence of TGF-B3• As expected sTNC transcript levels were low, 

requiring extended exposure times for detection, but unexpectedly, the 

BWEM cell line exhibited significant upregulation in the 700 hp sTNC 

transcript levels after 72 hours exposure to TGF-B3 (Figure 15, Table 8). The 

results obtained for the mutant BW-Hl line are significantly different from 

its parental BWEM line (Figure 15, Table 8). Similar to the Northern blot 

analyses, no significant changes were observed in sTNC promoter activity 

at 10 ng/mL TGF-B3 in the primary fetal cardiomyocyte cultures and each 

cell line (Figure 16, Table 9). However, caution should be taken when 

interpreting the promoter data as basal activity in each cell type was 

exceedingly low. These nearly undetectable levels of sTNC transcripts and 

promoter activities are reflective of the fact that sTNC is not normally 

expressed in cardiac myocytes, and therefore supports the use of these cell 

lines as a cardiomyocyte model. 



Table 8: Statistical Analysis ofTGF-B3 Dose Response Curves of sTNC 
Northern Blot Analyses 
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One way ANOV A was used to determine significance of the dose 
response curves of sTNC steady state transcript levels for each cell type. 
Two way ANOV A was used to determine differences between dose curves of 
each parental cell line and its respective mutant. 

Cell Type p-value (48hr.) 
BWEM 
BW-Hl 
BWvs.BW-Hl 

CLEM 
CL-B5 
CL vs. CL-B5 

0.271 
0.671 
0.506 

0.001 
0.127 
0.071 

p-value (72hr.) 
0.012 
0.161 
0.006 

0.266 
0.651 
0.442 



Figure 15: sTNC Northern Blot Analyses 
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Figure 15: TGF-B3 Induced Changes in Steady State sTNC Transcript 
Levels 
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Cultures of all four cell lines were treated with 0-10 ng/mL TGF-B3 for 
48(A) or 72 (B) hours. Northern blots were hybridized with a cDNA probe 
specific for sTNC. Data are presented as fold induction of transcript levels 
as compared to untreated controls. Results shown are from 3 individual 
assays. Data were normalized to 188 rRNA oligo hybridizations. Error 
bars represent SEM. 

* indicate responses significantly different from control (O ng/mL B3) 

Table 9: Statistical Analysis of sTNC Promoter Assays 
Unpaired t-tests were used to determine significant differences 

between untreated and treated samples for each cell line. 

Cell Type 
Fetal 
BWEM 
BW-Hl 
CLEM 
CL-B5 

p-value 
(fold induction) 

0.164 
0.928 
0.015 
0.403 
0.793 

p-value 
(raw) 
0.811 
0.976 
0.154 
0.366 
0.547 



Figure 16: sTNC Promoter Assays 
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Figure 16: TGF-B3-lnduced Changes in Skeletal Troponin C (sTNC) 
Promoter Activity 
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(A) 1.7/900-CAT reporter construct. This construct contains 1.7 kb of 
the sTNC promoter inserted in front of the CAT gene and a 900 hp enhancer 
element found within the first intron inserted downstream of the CAT 
gene. 

(B & C) 48 hour CAT Assays. 18 dpc primary myocyte cultures 
(fetal), each parental line (BWEM and CLEM) and their respective mutant 
clones (BW-Hl and CL-B5) were transfected with the 1.7/900-CAT reporter 
construct and treated with 0 or 10 ng/mL of recombinant TGF-B3 • for 48 
hours. Samples of each were assayed for CAT activity as described in 
Chapter 3. Data were normalized with B-galactosidase activity. Data 
represent the mean value from 3 individual assays and the error bars 
represent SEM. 

(B) Relative changes in activity are presented as fold increases 
when compared to untreated (0 ng/mL B3) samples. 

(C) Raw data are presented as the per cent conversion of 14C
chloramphenicol per 10 µg protein (fetal) or 150 µg protein (cell 
lines). 
*indicates response significantly different from control (0 ng/mL B3) 
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Effect ofTGF-B.a on TNI Isoform Expression 

Unlike TNC, the two TNI isoforms, skeletal (sTNI) and cardiac 

(cTNI), are present in the heart at distinct times during development. The 

transition from sTNI expression to cTNI expression occurs during the 

perinatal transition period. Therefore, we hypothesized TGF-B promotes 

this sTNI-cTNI transition, and thus the maturation and differentiation of 

the cardiomyocyte, through the upregulation of transcription of the adult 

isoform, cTNI, and downregulation of the fetal isoform, sTNI. To test this 

hypothesis, sTNI promoter assays and Northern blot analyses of sTNI and 

cTNI transcript levels were performed. 

Similar to the TNCs, the two TNI isoforms, sTNI and cTNI, are 

derived from separate genes with distinct regulatory sequences within their 

respective promoters. While a promoter construct was not available for 

cTNI, a luciferase-based construct containing the 4.2 kb 5' flanking region 

and exon 1 of the sTNI gene (see Figure 17 a) was used to assay the effects of 

TGF-B3 on sTNI expression. In support of the hypothesis, TGF-B3 (up to 10 

ng/mL) caused a small, but significant decrease in sTNI promoter activity 

in primary fetal cardiomyocytes, but not in any of the cell lines (Figure 1 7b, 

Table 10). As previously seen with the growth assays, inherent differences 

can be seen in basal promoter activity between the BWEM and CLEM 

parental cell lines and their respective DN clones (Figure 17c). To assess 

the relationship of these data to a more in vivo-like system, cDNA probes 

were available and utilized to determine steady state sTNI and cTNI 
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transcript levels in 18 dpc primary fetal cardiomyocyte cultures treated 

with 10 ng/mL TGF-B3 for 48-72 hours. In contrast to what was observed in 

the promoter assays, TGF-B3 significantly (p = 0.027) increased the 1.05 kb 

sTNI transcript level after 72 hours (Figure 18, Table 11). Additionally, 

TGF-B3 significantly (p:::;; 0.001) decreased the cTNI (1.2 kb) transcript levels 

in the fetal cultures to -25% of the control levels after 72 hours of treatment 

(Figure 18). This would suggest that sTNI would become more abundant 

than cTNI after exposure to TGF-B3, possibly resulting in a change in Ca++ 

affinity in the troponin complex. This conclusion would be tentative as 

Northern blots demonstrating sTNI expression used more RNA and 

required a longer exposure time (see Figure 18 legend). Nevertheless, these 

results suggest that TGF-B3 does not promote cardiomyocyte maturation 

and differentiation with regards to TNI isoform expression. 

Table 10: Statistical Analysis ofTGF-B3 Dose Response Curves of sTNI 
Promoter Assays 

One way ANOV A was used to determine significance of the dose 
response curves of sTNI promoter activity in response to TGF-B3 for each 
cell type. 

Cell Type 
Fetal 
BWEM 
BW-Hl 
CLEM 
CL-B5 

p-value 
(fold induction) 

0.003 
0.849 
0.262 
0.823 
0.933 

p-value 
(raw) 

0.394 
0.986 
0.961 
0.604 
0.974 
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Figure 17: sTNI Promoter Assays 
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Figure 17: TGF-B3 Induced Changes in Skeletal Troponin I (sTNI) 
Promoter Activity 
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(A) BW14 7 reporter construct. This construct contains 4.2 kb of the 5' 
flanking region of the sTNI gene as well as the first exon inserted in front of 
the luciferase gene. 

(B & C) 36 hour luciferase assays. 18 dpc primary fetal myocyte 
cultures, each parental line (BWEM and CLEM) and their respective 
mutant clones (BW-Hl and CL-B5) were transfected with the BW147 
reporter plasmid and treated with 0-10 ng/mL of recombinant TGF-B3 for 36 
hours. Each sample was collected and luciferase activity was assessed as 
described in Chapter 3. Luciferase data were normalized with B
galactosidase activity. Data represent the mean value from 3 (fetal) or 5-6 
(cell lines) individual assays and the error bars represent SEM. 

(B) Relative changes in activity are presented as fold increases 
when compared to untreated (0 ng/mL B3) samples. 

(C) Relative luciferase units are presented for each cell line to 
demonstrate individual expression levels in the different cell types. 
*indicates response significantly different from control (O ng/mL B3) 



Figure 18: TNI Northern Blot Analyses 
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Figure 18: TGF-B3 Induced Changes in Steady State Skeletal (sTNI) and 
Cardiac (cTNI) TNI Transcript Levels 
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Primary cultures of 18 dpc fetal ventricular myocytes were treated 
with 0 or 10 ng/mL TGF-B3 for 48-72 hours. Northern blots were hybridized 
with cDNA probes for cardiac TNI (cTNI) and skeletal TNI (sTNI). 

(A) Fold induction of transcript levels compared to untreated 
controls. Results shown are from 3 individual assays. Data were 
normalized to 18S rRNA oligo hybridizations. Error bars represent SEM. 

* indicates response significantly different from control (0 ng/mL B3) 

(B) Representative Northern blots of each TNI isoform. 5 µg (sTNI) 
and 3 µg (cTNI) total RNA loaded for each sample. Bars indicate 18S and 
28S rRNA bands. Blots shown are from 3 day (sTNI) and 24 hr (cTNI) 
exposures to film at -80°C. 18S rRNA hybridization shown below each blot. 

Lane 1: 48 hr. Control Lane 2: 48 hr. +TGF-B3 
Lane 3: 72 hr. Control Lane 4: 72 hr. +TGF-B3 

Table 11: Statistical Analysis ofTNI Northern Blot Analyses 
Unpaired t-tests were used to determine statistical difference between 

control and treated (10 ng/mL TGF-B3) 18 day fetal primary myocyte 
cultures. 

Time/Probe 
48hr. cTNI 
72hr. cTNI 
48hr. sTNI 
72hr. sTNI 

p-value 
0.018 

<0.001 
0.281 
0.027 
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Effect ofTGF-B2 on TNT Isoform Expression 

In contrast to TNC and TNI, the two cardiac TNT (cTNT) isoforms, 

fetal and adult, are products of the same gene and are produced by the 

alternative splicing of a single 30 hp exon (exon 4 in the rat). This exon is 

present in the 1.14 kb transcript for the fetal isoform of cTNT, and 

subsequently absent in the adult isoform. While TGF-B has been shown to 

affect transcriptional and translational activity as well as mRNA stability 

in several different systems, no reports have been made on possible effects 

the TGF-Bs could have on alternative splicing, and thus the cTNT isoform 

switch. Therefore to address TGF-B's role in cardiomyocyte differentiation 

in regards to the troponin complex, the effects of TGF-B3 on cTNT isoform 

expression were evaluated in primary fetal cardiomyocytes and the four cell 

lines. As with the other two troponin proteins, we hypothesized that TGF-B 

would increase the transcript levels of the adult isoform of cTNT, and 

therefore decrease the level of the fetal isoform. 

While promoter analysis is not indicative of cTNT isoform switching, 

assays were performed not only to determine if TGF-B3 has an effect on 

overall transcriptional activity from the cTNT gene, but also to verify the 

use of the myocyte-like cell lines as a model for cardiomyocyte development. 

As transcriptional activity is not expected to influence the alternative 

splicing of the cTNT hnRNA, TGF-B3 is not expected to cause a significant 

change in cTNT gene transcription. However, TGF-B3 (10 ng/mL) appeared 

to downregulate transcription from this promoter in the parental cell lines, 
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but not in the primary fetal cardiomyocytes or mutant cell lines (Figure 19b, 

Table 12). It should be noted that the promoter activity in the fetal 

cardiomyocytes was significantly (p = 0.001) higher than in any of the cell 

lines (Figure 19c). 

To examine the effect TGF-B3 has on cTNT isoform expression, 

Northern blot analyses were performed to detect relative changes in cTNT 

isoform production as the result of alternative splicing. We have 

hypothesized that the role for TGF-B in cardiomyocyte differentiation is to 

upregulate the adult isoform of each type of troponin. While the effect on 

TNC and TNI expression would theoretically be a direct regulation of 

transcriptional activity, the regulation of cTNT splicing could be regarded 

as an indirect effect. Nevertheless, we expect that treatment of the cells 

with TGF-B3 will result in the accumulation of the adult isoform of cTNT. 

Northern blot analyses were performed using oligonucleotide probes 

which detected either total cTNT transcript levels or just the fetal isoform. 

As expected from results obtained from Northern blots of ventricular tissue, 

cTNT transcripts were readily detected in total RNA from primary fetal 

myocyte cultures (Figure 20b). Consistent with the promoter assay data, 10 

ng/mL TGF-B3 had no significant effect on the level of total cTNT 

transcripts in primary fetal myocytes after 48 and 72 hours (Figure 20a, 

Table 13). Using an oligonucleotide probe corresponding to the alternatively 

spliced exon present only in the fetal isoform, the effect of TGF-B3 on its 

steady state transcript levels were determined. The results indicate TGF-B3 
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(10 ng/mL) did not significantly alter the expression of the fetal isoform 

after 48 and 72 hours of treatment (Figure 20a, Table 13). Reflective of the 

significantly lower promoter activity in the cell lines as compared to the 

fetal cardiomyocytes, Northern blot analyses on the cell lines proved 

limiting as neither cTNT isoform could be detected in the cell lines when 

using 30 µg total RNA, but could be detected if Poly A+ RNA was used (data 

not shown). These results indicate that TGF-B3 does not affect the 

alternative splicing or accumulation of the adult isoform of cTNT in the 

fetal cardiomyocyte as originally hypothesized. Additionally, these data 

and the data obtained from the TNI studies indicate that there appears to be 

significant limitations on the use of the BWEM and CLEM myocyte-like cell 

lines for the study of cardiomyocyte development (see discussion, Chapter 

5). 

Table 12: Statistical Analysis of TNT Promoter Assays 
Unpaired t-tests were used to determine significant differences 

between control and treated (10 ng/mL TGF-B3) cultures as well as between 
BWEM and fetal cells. 

Cell Type 
Fetal 

p-value 
(fold induction) 

0.163 
Fetal vs. BWEM 
BWEM 

N.D.* 
0.004 
0.721 
0.026 
0.052 

BW-Hl 
CLEM 
CL-B5 

* N.D. = not determined 

p-value 
(raw) 
0.474 
0.001 
0.368 
0.727 
0.629 
0.537 
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Figure 19: cTNT Promoter Assays 
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Figure 19: TGF-B3 Induced Changes in Cardiac Troponin T (cTNT) 
Promoter Activity 
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(A) 303-CAT reporter construct. This construct contains 303 bp of the 
cTNT promoter inserted upstream of the CAT gene. As noted, this 
promoter contains several known muscle-specific transcription factor 
binding sites (CArG, MEF-2, M-CAT). 

(B & C) 48 hour CAT assays. 18 dpc fetal primary myocyte cultures, 
each parental line (BWEM and CLEM) and their respective mutant clones 
(BW-Hl and CL-B5) were transfected with the 303-CAT reporter plasmid 
and treated with 0 or 10 ng/mL of recombinant TGF-B3 for 48 hours. 
Samples were collected and assayed for CAT activity as described in 
Chapter 3. Data were normalized with B-galactosidase activity. Data 
represent the mean value from 3 individual assays and the error bars 
represent SEM. 

(B) Relative changes in activity are presented as fold increases 
when compared to untreated (O ng/mL 33). 

(C) Raw data are presented as the per cent conversion of 14C
chloramphenicol per 10 µg protein (fetal) or 150 µg protein (cell 
lines). 
* indicates response significantly different from control ( 0 ng/mL B3) 



Figure 20: cTNT Northern Blot Analyses 
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Figure 20: TGF-B3 Induced Changes in cTNT Steady State Transcript 
Levels 
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Primary cultures of 18 dpc fetal ventricular myocytes were treated 
with 0 or 10 ng/mL TGF-133 for 48-72 hours. Northern blots were hybridized 
with the oligonucleotide probes, CCAR (detects adult and fetal isoforms) 
and PE4 (detects only fetal isoform). 

(A) Fold induction of transcript levels compared to untreated 
controls. Results shown are from 3 individual assays. Data were 
normalized to 188 rRNA oligo hybridizations. Error bars represent SEM. 

(B) Representative Northern blots of each cTNT isoform. 8 µg total 
RNA loaded for each sample. Arrow indicates fetal cTNT band. Bars 
indicate 18S and 288 rRNA bands. Blots shown are from 4 day exposure to 
film at -80°C. 188 rRNA hybridizations shown below each blot. 

Lane 1: 48 hr. Control 
Lane 3: 72 hr. Control 

Lane 2: 48 hr. +TGF-B3 
Lane 4: 72 hr. +TGF-B3 

Table 13: Statistical Analysis of TNT Northern Blot Analyses 
Unpaired t-tests were used to determine the statistical difference 

between control and treated (10 ng/mL TGF-133) primary 18-day fetal 
myocyte cultures. 

Time/Probe 
48hr. Total TNT 
72hr. Total TNT 
48hr. Fetal TNT 
72hr. Fetal TNT 

p-value 
0.248 
0.561 
0.129 
0.563 



125 

Changes in TGF-B receptor expression in response to TGF-B.a 

The presence of biologically active ligand and BRII appear to be rate 

limiting factors for the TGF-B signaling processes to function within the 

ventricle during the fetal development period (Engelmann et al., 1992; 

Engelmann 1993, Engelmann and Grutkoski, 1994). As the TGF-B ligands, 

TGF-B1 and -B3, and BRII begin to be expressed at approximately the same 

time and increase dramatically at or around birth, the regulation of one or 

several of these "limiting" components of the TGF-B signaling pathway by 

TGF-B itself would augment its role in the developmental process. 

Therefore, changes in TGF-B receptor expression in response to TGF-B3 

treatment were determined in the five different cell types. As BRI appears 

to be constitutively expressed, its expression level is not expected to be 

affected by the presence of TGF-B3• In contrast, the dramatic increase in 

BRII expression suggests that its expression may be induced by TGF-B in a 

pseudo-autoregulatory loop similar to that seen for the ligand TGF-B1 (Kim 

et al., 1990). 

In support of the developmental data, BRI transcript levels were not 

significantly affected by TGF-B3 treatment after 72 hours (Figure 21a, Table 

14). However in contrast to that suggested by the developmental data, 72 

hours of continuous TGF-B3 treatment resulted in a significant (p < 0.05), 

dose-dependent decrease in BRII transcript levels in the BW-Hl and CLEM 

cell lines (Figures 21b and 22, Table 14), with a 25-40% decrease relative to 

untreated cultures at a dose of 10 ng/mL TGF-B3• While there were no 
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significant differences between BWEM and BW-Hl cell lines, the results 

obtained for CLEM and CL-B5 were significantly (p = 0.013) different. These 

differences between the two DN lines is reflective of the changes observed in 

the growth assays, with BW-Hl having overcome the DN effect at 10 ng/mL 

TGF-B3 while CL-B5 remained minimally unresponsive to TGF-B3 

treatment. As the antiproliferative effect of TGF-B has been uncoupled 

from its transcriptional effects, these results suggest that the regulation of 

BRII by TGF-B3 is indirect and may share or have similar regulatory 

pathways as those used to block proliferation. Prolonged exposure to TGF

B3 was necessary as a significant decrease in transcript levels was not 

observed after only 48 hours of exposure (data not shown). In contrast to the 

cell lines, primary fetal cardiomyocytes exhibited a more modest, non

significant decrease in BRII levels after 72 hours of TGF-B3 (10 ng/mL) 

treatment (Figure 21b, Table 14), which may be reflective of the trend seen 

in these studies in which they appear less responsive to TGF-B3 than the 

cell lines (see discussion, Chapter 5). 



Figure 21: TGF-B Receptor Northern Blot Analyses 
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Figure 21: TGF-B3 Induced Changes in Steady State Type I and Type II 
TGF-13 Receptor Transcript Levels 

128 

Cultures of all four cell lines and primary cultures of 18 dpc fetal 
ventricular myocytes were treated with 0-10 ng/mL TGF-B3 for 72 hours. 
Northern blots analyses were performed and data were normalized to 18S 
rRNA oligo hybridizations. Data are presented as fold induction of 
transcript levels as compared to untreated controls. 

(A) BRI. Blots were hybridized with the cDNA probe for rat BRI (R4). 
Results shown are from 2 individual assays. Data error bars represent SD. 

(B) BRII. Blots were hybridized with the cDNA probe for rat BRII. 
Results shown are from 3-4 individual assays. Data error bars represent 
SEM. 

* indicates response significantly different from control (O ng/mL B3) 

Table 14: Statistical Analysis ofTGF-B3 Dose Response Curves of TGF-B 
Receptor Northern Blot Analyses 

One way ANOV A was used to determine significance of the dose 
response curves of TGF-B receptor steady state transcript levels for each cell 
type. Two way ANOV A was used to determine significance differences 
between the dose curves of each parental line and its respective mutant. 

p-value p-value 
Cell Type {BRI2 {BRII2 
Fetal N.D.* 0.319 

BWEM 0.995 0.066 
BW-Hl 0.350 0.030 
BWvs.BW-Hl 0.907 0.816 

CLEM 0.824 0.001 
CL-B5 0.041 0.132 
CL vs. CL-B5 0.446 0.013 

* N.D. = Not Determined 
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Figure 22: Northern Blots ofTGF-B Receptors 
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Figure 22: Northern Blots ofTGF-B Receptors 
Primary cultures of 18 dpc fetal ventricular myocytes and cultures of 

each of the cell lines were treated with 0-10 ng/mL TGF-B3 for 48-72 hours. 
Northern blots were hybridized with the cDNA probe for BRI (R4) or BRII. 
Bars indicate 188 and 288 rRNA bands. 188 rRNA hybridizations shown 
below each blot. 

(A) 18 dpc Fetal RNA. 3 µg total RNA loaded for each sample. 
Results shown are from 48 hr. exposure to film at -80°C. 

Lane 1: 48 hr. Control Lane 2: 48 hr. + 10 ng/mL TGF-B3 
Lane 3: 72 hr. Control Lane 4: 72 hr. + 10 ng/mL TGF-B3 

(B) TGF-BRI expression. BWEM and BW-Hl RNA. Representative 
dose response curve for BRI transcript expression. 30 µg total RNA loaded 
for each sample. Results shown are from 48 hr. exposure to film at -80°C. 

Lane 1: BWEM Control Lane 2: BWEM 0.1 ng/mL B3 
Lane 3: BWEM 1 ng/mL B3 Lane 4: BWEM 10 ng/mL B3 

Lane 5: BW-Hl Control Lane 6: BW-Hl 0.1 ng/mL B3 
Lane 7: BW-Hl 1 ng/mL B3 Lane 8: BW-Hl 10 ng/mL B3 

(C) TGF-BRII expression. Total RNA from each of the cell lines 
treated with or without 10 ng/mL TGF-B3• 30 µg loaded for each sample as 
indicated. Results shown are from 24 hr. exposure to film at -80°C. 
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Changee3 sin SPARC expression in response to TGF-B:a 

TH.he formation of new blood vessels, or angiogenesis, is a crucial part 

of the ve-entricular remodeling which occurs during the perinatal transition 

period ..... We have hypothesized that TGF-B promotes this angiogenesis 

through _the induction of the angiogenic factor, SPARC. As TGF-B has been 

shown to-o induce SPARC both transcriptionally and translationally, we have 

chosen to;:;o examine the effect of TGF-B3 on SP ARC transcript and protein 

productio.ion. While we expect the end result to be a significant increase in 

SPARC g protein production, it is difficult to predict a priori whether that 

increase e is the result of increased transcript production, increased 

translati i-ion from existing transcripts, or both. 

Tooo examine the effect TGF-B may have on SPARC transcript levels, 

we exam:.o.ined changes in SP ARC promoter activity and steady state 

transcriJXm)t levels after treatment with TGF-B3 for 48 hours. Using a 

promotenr construct containing 639 hp of the 5' flanking region of the SPARC 

promotem plus 11 hp of exon 1, transcriptional activity was determined in 

primary ! fetal myocyte cultures and each of the cell lines in response to 0 

and 10 n1.ng/mL TGF-B3 (Figure 23). Interestingly, the results appeared to be 

cell specii:ific. A modest, but significant, increase of -20% in promoter 

activity ~as detected the fetal myocyte cultures, while a significant decrease 

was deteoected in CLEM (-30%) cultures (Figure 23a, Table 15). As a direct 

result of - - this, the only significant differences between a parental line and 

its respec:>~ctive mutant was between CLEM and CL-B5. Additionally, basal 
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promoter activity in each of the mutant lines appeared higher than their 

respective parental lines, however, this difference was only significant for 

the CLEM and CL-B5 cell lines (Figure 23b, Table 15). In contrast to the 

promoter data, a dose-dependent increase of -25-40% was observed in the 

steady state -2.2 kb transcript levels in the BWEM and fetal myocyte 

cultures (Figures 24 and 25, Table 16). 

Since the changes in SP ARC transcript levels are minimal, possible 

changes in translation rates from existing SPARC transcripts in response 

to TGF-B3 were examined. As SPARC is readily secreted by cells in culture 

after translation, proteins obtained from media conditioned by the cells for 

48 hours± 10 ng/mL TGF-B3 were used for Western blot analysis. Similar to 

the Northern blot analyses, no significant changes in the amount SPARC 

protein secreted were observed in these conditioned media samples (Figure 

26). Similar Western blots analyses were performed on the cellular 

proteins of the cultures from which the media were obtained, and no 

increases in intracellular SPARC protein levels were detected (data not 

shown). Therefore, it does not appear that TGF-B3 promotes angiogenesis 

through the induction of cardiomyocyte produced SPARC. 



Figure 23: SP ARC Promoter Assays 
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Figure 23: TGF-133 Induced Changes in SPARC Promoter Activity 
(A) 639SPARC-CAT promoter construct. This construct contains 639 

bp of the SP ARC promoter inserted in front of the CAT reporter gene. 
(B & C) 48 hour CAT assays. 18 dpc fetal primary myocyte cultures, 

each parental line (BWEM and CLEM) and their respective mutant clones 
(BW-Hl and CL-B5) were transfected with the 639SPARC-CAT reporter 
plasmid and treated with 0 or 10 ng/mL of recombinant TGF-133 for 48 
hours. Samples were collected and assayed for CAT activity as described in 
Chapter 3. Data were normalized with B-galactosidase activity. Data 
represent the mean value from 3 individual assays and the error bars 
represent SEM. 

(B) Relative changes in activity are presented as fold increases 
when compared to untreated (O ng/mL B3). 

(C) Raw data are presented as the per cent conversion of 14C
chloramphenicol per 10 µg protein (fetal) or 150 µg protein (cell 
lines). 
* indicates response significantly different from control (0 ng/mL B3) 

Table 15: Statistical Analysis of SP ARC Promoter Assays 
Unpaired t-tests were used to determine significant differences 

between control and treated (10 ng/mL TGF-B3) samples and between each 
parental cell lines and its respective mutant. 

p-value 
Cell Type (fold induction) 
Fetal 0.013 

BWEM 0.313 
BW-Hl 0.535 
BWEM vs. BW-Hl N.D. * 
CLEM 
CL-B5 
CLEM vs. CL-B5 

0.009 
0.387 
0.019 

* N.D. = Not Determined 

p-value 
Craw) 
0.662 

0.808 
0.654 
0.332 

0.041 
0.834 
0.001 
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Figure 24: TGF-B3 Induced Changes in Steady State SPARC Transcript 
Levels 

Cultures of all four cell lines and primary cultures of 18 dpc fetal 
ventricular myocytes were treated with 0-10 ng/mL TGF-B3 for 48 hours. 
Northern blots were hybridized with a cDNA probe for SPARC. Data are 
presented as fold induction of transcript levels as compared to untreated 
controls. Results shown are from 3 individual assays. Data were 
normalized to 18S rRNA oligo hybridizations. Error bars represent SEM. 
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*indicates response significantly different from control (0 ng/mL B3) 



Table 16: Statistical Analysis of TGF-B3 Dose Response Curves of SP ARC 
Northern Blot Analyses 
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One way ANOV A was used to determine significance of the dose 
response curves of SPARC steady state transcript levels for each cell type. 
Two way ANOVA was used to determine significant differences between 
the dose response curves for each parental line and its respective mutant . 

. Cell Type 
Fetal 

BWEM 
BW-Hl 
BWvs.BW-Hl 

CLEM 
CL-B5 
CL vs. CL-B5 

p-value 
0.002 

<0.001 
0.082 
0.295 

0.069 
0.581 
0.919 



Figure 25: Northern Blot Analyses of SP ARC Expression 
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Figure 25: Northern Blot Analyses of SP ARC Expression 
Primary cultures of fetal cardiomyocytes and cultures of each of the 

cell lines were treated with 0 or 10 ng/mL TGF-Ba for 48 hours. Northern 
blots were hybridized the cDNA probe for SPARC. Bars indicate 18S and 
28S rRNA bands. Blots shown are from 24 hr. exposure to film at -80°C. 18S 
rRNA hybridizations shown below each blot. 

(A) 18 dpc Fetal RNA. 3 µg total RNA loaded for each sample. 
Lane 1: 48 hr. Control Lane 2: 48 hr. +TGF-Ba 
Lane 3: 72 hr. Control Lane 4: 72 hr. +TGF-Ba 

(B) BWEM and BW-Hl RNA. 30 µg total RNA loaded for each 
sample. Lane 1: BWEM Control Lane 2: BWEM 0.1 ng/mL Ba 

Lane 3: BWEM 1 ng/mL Ba Lane 4: BWEM 10 ng/mL Ba 
Lane 5: BW-Hl Control Lane 6: BW-Hl 0.1 ng/mL Ba 
Lane 7: BW-Hl 1 ng/mL Ba Lane 8: BW-Hl 10 ng/mL Ba 

(C) CLEM and CL-B5 RNA. 30 µg total RNA loaded for each sample. 
Lane 1: CLEM Control Lane 2: CLEM 0.1 ng/mL Ba 
Lane 3: CLEM 1 ng/mL Ba Lane 4: CLEM 10 ng/mL Ba 
Lane 5: CL-B5 Control Lane 6: CL-B5 0.1 ng/mL Ba 
Lane 7: CL-B5 1 ng/mL Ba Lane 8: CL-B5 10 ng/mL Ba 
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Figure 26: SP ARC Western Blot Analyses 
Conditioned media proteins from cultures treated for 48 hours± 10 

ng/mL TGF-B3 (72 hr. sample also collected for 18 dpc fetal myocyte 
cultures) were run on 12% SDS-PAGE gels and used for western blot 
analyses to detect the 43 kD SP ARC protein secreted by the cells. 5 µg of 
protein was loaded per lane. Markers on right indicate size in kilodaltons 
as determined by co-running biotinylated standards on the gel. Staining of 
gel indicated that protein loads was consistent, except for CLEM+ B3 (data 
not shown). 



CHAPTERS 

DISCUSSION 

We and others have postulated that TGF-Bs are active participants in 

late fetal and neonatal ventricular development. This is based on the 

temporal and spatial expression patterns of the TGF-B ligands and 

receptors which coincide with established changes in myocyte proliferation 

and differentiation as well as ongoing ventricular remodeling in the 

postnatal heart. To determine the role TGF-Bs may play on cardiomyocyte 

growth and development at the cellular and molecular level, we have 

chosen to use two ventricular myocyte cell lines, BWEM and CLEM, as our 

experimental system. As a means to more clearly define and evaluate the 

direct effects of TGF-B on the cardiomyocyte, mutant myocyte cell lines have 

been created which exhibit reduced BRII function due to a dominant 

negative method of inactivation. These mutant lines, along with their 

parental counterparts and primary fetal myocyte cultures, were used to 

study the direct effects TGF-B may have on several developmental changes 

which occur in the ventricular myocyte population prior to and/or shortly 

after birth. These results are summarized in Table 1 7. 
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Table 17: Summary of Results (10 ng/mL TGF-B3) 

Assay l&l 
Fetal 

BWEM BW-Hl CLEM CL-B5 Notes 

Growth ND .l.50% .l.50%* .l.80% J.20% *10-fold less 
sensitive 

PAI-1 PA t4.8x t5.4x t2.3x* t3.9x tl.6x* *10-fold less 
sensitive 

cTNCNB J. + + + + Increase -2.5 
fold, no DN diff. 

cTNC PA J. J. no DN diff. 

sTNCNB ND + H BWEM/BW-Hl 
sig. diff. 

sTNC PA H J. 

sTNI PA J. H H H H 

sTNINB t ND* ND* ND* ND* *Undetectable 
in total RNA 

cTNI NB J. ND* ND* ND* ND* *Undetectable 
in total RNA 

cTNT PA J. H J. 

e.cTNTNB ND* ND* ND* ND* *Undetectable 
in total RNA 

rt.cTNTNB ND* ND* ND* ND* *Undetectable 
in total RNA 

BRINB ND H H 

BRII NB H J. J. CLEM/CL-B5 
sig. diff. 

SPARC PA t H J. CLEM/CL-B5 
sig. diff. 

SPARC NB t t no sig. DN diff. 

SPARCWB 
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Table 17: Summary of Results: 
Results obtained from each experiment at 10 ng/mL TGF-B3 (vs. 

untreated) are given for each cell type. 

Table Legend: 
NB: Northern blot analyses I: 
PA : Promoter assays .!. : 
WB : Western blot analyses f-+ : 

ND : Not done + : 
t : t. cTNT = total cTNT, f. cTNT = fetal cTNT 

Statistically significant increase 

Statistically significant decrease 

No statistically significant change 
Changes at select time points 

Creation and Initial Characterization of 
Clonal Dominant Negative Cell Lines: 

A eukaryotic expression vector containing a cDNA encoding a kinase 

deficient, human BRII (Figure 3) was introduced into the parental v-myc 

derived myocyte cell lines. Using G418 selection and screening of single 

cell clones derived from our initial polyclonal transformants, four mutant 

myocyte cell lines (BW-F8, BW-Hl, CL-B5, and CL-F5) were chosen for 

further study. Integration of and expression from the truncated, human, 

Type II TGF-B receptor (phBRIIDN) in the mutant lines and its absence in 

the parental lines was verified by Southern (Figure Ba) and Northern 

(Figure 8b) blot hybridization analyses, respectively. The variations in 

signal intensity on the Southern blot between the BW and CL mutant lines 

represent differences in the number of integrations of the plasmid into the 

host genome. Additional studies utilizing alternative restriction enzymes 

indicate that at least 3-4 individual integrations occurred in the BW-Hl line 

(data not shown) while CL-B5 appears to have only a single integration of 
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phBRIIDN. Similarly, multiple integrations and/or aberrant 

transcriptional read-through of the cDNA within the plasmid may be 

responsible for the larger Northern blot transcript(s) detected when using 

the human BRII-DN cDNA insert as a probe during the hybridizations. 

Nonetheless, these data clearly show that we have successfully created and 

isolated clonal BRII mutant cell lines which have stably incorporated the 

phBRIIDN plasmid and express the BRII-DN transcript at high, readily 

detectable levels. 

Additionally, Northern (Figures 5 and 7) and Western (Figure 6) blot 

analyses showed that expression of the endogenous rat BRI and BRII is 

similar in the parental and transformed cell lines. These data indicate that 

the cellular transformation mediated by G418 selection and subsequent 

expression of the human BRII-DN cDNA does not affect the transcript or 

protein levels for any of the endogenous rat TGF-B receptors. Of greatest 

importance, BRI expression data inferred that its availability for 

heterodimerization would be equivalent in the parental lines and mutant 

clones. As partial confirmation of this, ligand-binding by BRI and BRII 

(both wild type and mutant) was verified by receptor crosslinking analyses 

(Figure 9). Similar to the Northern and Western blot analyses, the 

crosslinking results showed that cell surface expression of the endogenous 

rat receptors was similar between the parental lines and mutant clones. 

Since BRI has been shown to bind TGF-B ligands only in the presence of 

BRII, the strong crosslinking signal by the endogenous BRI suggests that 

ligand-binding to BRII and/or BRII-DN is under-represented by the 
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intensity of the image. What is represented with the iodinated ligand 

predominantly associating with BRI rather than BRII or BRII-DN may 

reflect binding of non-isotopic ligand or non-uniform separation of labeled 

vs. unlabeled TGF-B dimers during the stringent reduction step just prior 

to loading samples on the gels. Nonetheless, we interpret these data to 

indicate that the detected BRII-DN transcripts are translated into a ligand

binding, truncated, epitope tagged human BRII in the four mutant rat 

myocyte cell clones. Additionally, we have demonstrated that the levels of 

expression of the endogenous BRI and BRII genes in the cell lines are 

comparable to that seen in primary neonatal cardiomyocytes, 

strengthening the usefulness of these lines for our studies. It does appear 

that the neonatal cardiomyocytes expressed a significantly greater amount 

of BRIII than any of the cell lines. Since this is not a "signaling" molecule 

and our present interests do not include TGF-B2, of which ligand binding to 

BRII is enhanced by ligand presentation by BRIII (Lopez-Casillas et al., 

1993), the lower BRIII expression in the cell lines does not represent a 

limitation to the studies at hand. 

Characterization of the direct effects TGF-B elicits in the parental 

and mutant cell lines was carried out by assaying two fundamental TGF-B

mediated responses which represent the "gold standard" in the literature: 

inhibition of proliferation and induction of PAI-1 promoter activity. Data 

from our growth assays show that the mutant clones are significantly less 

sensitive (-lOX, BW-Hl) or virtually insensitive (CL-B5) to TGF-B3-mediated 

growth inhibition relative to their respective parental BWEM and CLEM 
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lines (Table 17). As expected, TGF-B3 induced transcription from the PAl-1 

promoter construct, p3TP-Lux, in a dose-dependent manner in the parental 

BWEM and CLEM cell lines. Even though the activity from the p3TP-Lux 

plasmid was significantly higher in the cell lines than the activity seen in 

the primary fetal cardiomyocyte cultures, the fold induction above the basal 

(untreated) activity was comparable (Table 17), supporting the use of these 

cell lines as a model to study effects of TGF-B on cardiomyocyte growth and 

differentiation during heart development. PAI-1 was also induced in a 

dose-dependent manner in the mutant clones, BW-Hl and CL-B5. 

However, the concentration needed to elicit a response in the mutant clones 

is significantly greater than in the parental lines, requiring an 

approximately 10-fold higher concentration of bioactive TGF-B ligand to 

elicit similar levels of PAl-1 induction. Therefore, the expression of BRII

DN in the two mutant cell lines was able to reduce the cells' ability to 

respond to TGF-B3, and suggests that this dominant negative inhibition can 

provide a means in which to examine the different aspects of TGF-B signal 

transduction in a cell line of cardiomyocyte origin. 

While total ablation of any TGF-B response in the clones would have 

been ideal, incomplete inhibition through the expression of BRII-DN was 

not unexpected. Since the dominant negative BRII did not interrupt the 

expression of the endogenous TGF-BR genes, any endogenous BRII present 

is still capable of initiating a response if it binds ligand as part of a 

heteromeric receptor complex. In Xenopus embryos, ratios of 1:10 or 1:100 

wild type to mutant FGF receptors were needed to see any level of inhibition 
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(Amaya et al., 1991). While the exact ratio of BRII-DN to BRII was not 

determined, it appears that the ratio of wild type to mutant BRII falls 

within the level which exhibits partial inhibition. While not a receptor, 

dominant negative mutations in the Ras protein demonstrate that different 

levels of activation/phosphorylation are required for the different responses 

a protein can elicit (Han and Sternberg, 1991). Therefore, if sufficient TGF

B ligand is present to saturate the mutant receptor or bind the native, 

functional BRII at a desired "threshold" level, one specific response (such 

as transcription) will be seen while another (growth inhibition) will not 

(Brand and Schneider, 1995). While the model presented for TGF-B signal 

transduction is widely used (see Chapter 2, Figure 2), it is a simplified 

model which does not address the formation of hetero-oligomers of BRI and 

BRII upon ligand binding (Yamashita et al., 1994; ten Dijke et al., 1996). As 

these oligomeric complexes contain at least two molecules of each type of 

receptor (BRI and BRII), the "thresholds" may involve the ability of a 

complex containing just one functional BRII (and one BRII-DN) to contain 

enough activity to trigger one response, while two functional receptors are 

required for another. Similarly, the association of downstream effectors 

with this complex may also rely on the interactions of the intracellular 

domains, with the presence of a truncated mutant possibly interrupting an 

effector's stable interaction with and activation by BRI or BRII. 

Nevertheless, the presence of BRII-DN in our mutant cell lines has 

rendered them -10-fold less sensitive to exogenous TGF-B3 than their 

parental lines. 
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This reduced sensitivity, as opposed to total ablation of TGF-B 

responsiveness, in these lines may actually prove to be advantageous. As 

all TGF-B responses are mediated through BRII and BRI hetero

dimerizations, a different threshold (a.k.a. different levels of stimulation by 

ligand) may be required for each individual response. Therefore, these 

lines may be useful for the characterization of these thresholds in a 

myocyte-like background. Additionally, the data from the CLEM and CL-B5 

lines suggest that the signal transduction pathways utilized by the two 

responses examined, proliferation and PAI-1 induction, are distinct and 

would appear to involve significantly different thresholds for activation. 

This could be one explanation for the virtual insensitivity to inhibition of 

proliferation in CL-B5, even at 10 ng/mL TGF-B3, while there is only an 

approximate 10-fold reduction of sensitivity to TGF-B3 as measured by PAI-1 

promoter induction. 

Through this initial characterization of the cell lines, data have been 

collected that support two fundamental parts of our hypothesis: 1) TGF-B3 

can inhibit cardiomyocyte proliferation, and 2) by inducing the expression 

of PAI-1, TGF-B3 indirectly promotes the accumulation of ECM by 

inhibiting its degradation. As previously discussed, similar effects of TGF

B on proliferation and PAI-1 induction have been observed in primary 

neonatal cardiomyocyte cultures. Therefore, our results were not 

unexpected, and extend these findings to fetal cardiomyocyte cultures and 

the myocyte cell lines which closely reflect the late fetal stage of myocyte 

development. However, as standard assays for TGF-B responsiveness in 
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any cell, these results clearly demonstrate that the parental myocyte-like 

cell lines are responsive to TGF-B3 and that the mutant clones have altered 

(reduced) sensitivity to normal, inhibitory levels of TGF-B3. Therefore, these 

lines are a suitable model in which to examine the effects of TGF-B as it 

appears that components of the TGF-B signal transduction pathway are not 

restricted in the parental or mutant cell lines. Additionally, the differences 

in the signaling pathways or thresholds necessary to elicit the different 

responses suggests there are several mechanisms by which TGF-B can 

influence cellular functions in a variety of cell types, including myocytes. 

These mechanisms may involve processes such as post-translational 

modification, regulation of translational activity, or direct transcriptional 

activation. Given the wide variety of second messenger pathways (e.g. G

proteins, MAP kinases, PLC) which have been linked to TGF-B activity, it 

would not be wise to dismiss any of these mechanisms a priori. The 

mutant cell lines may prove useful in the identification and/or separation of 

these pathways in the myocyte background. As the induced effects of TGF

B3 were clearly discernible at 10 ng/mL TGF-B3 in the parental cells, this 

dose was used for those experiments in which a dose response curve was 

not practical or feasible. This is most important for the CAT-based reporter 

assays in which small changes are not as readily detected as the luciferase

based systems. As most of the effects examined are transcriptional, the 

greater than 50% reduction in transcriptional activity in the mutant lines 

as compared to their parental counterparts in the PAl-1 reporter assay 

should provide a difference in which the DN-effect could be identified. 



Effects of TGF-B~ on Fetal Cardiomyocyte 
Differentiation/Maturation 
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The ability of secreted proteins, such as growth factors, to influence 

the differentiation and maturation of cardiomyocytes is not a new 

phenomenon. It has been previously shown that innervation of heart tissue 

results in a switch in expression of the troponin isoforms to the adult 

forms, and that conditioned media from nerve cultures were able to induce 

the same changes (Toyota and Shimada, 1983). Similarly, thyroid hormone 

and the stimulation of the a 1-adrenergic receptor have also been found to 

activate the fetal gene program in cardiomyocytes (Long et al., 1990; 

Bugaisky et al., 1992). Therefore, as TGF-B ligand and BRII mRNA 

appears and increases during the same period in which many contractile 

proteins are undergoing the transition from a "fetal" isoform to its "adult" 

counterpart, we hypothesized that TGF-B would promote the differentiation 

and maturation of the fetal cardiomyocyte by upregulating the adult 

isoforms and/or downregulating their fetal counterparts. Therefore, we 

examined the ability ofTGF-B3 to influence the expression of the different 

isoforms of three contractile proteins: TNC, TNI, and TNT. 

As hypothesized, TGF-B3 treatment resulted in a dose-dependent 

increase in steady state mRNA levels for cTNC (2-2.5-fold increase at 10 

ng/mL TGF-B3) after 72 hours in all four of the cell lines, both parental and 

mutant (Table 17, Figure 12). The increases observed in the mutant lines 

were not expected to be the same as the increases which occurred in their 

parental counterparts given the mutant cell lines' 10-fold decrease in 
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sensitivity to TGF-B3 stimulation determined in the growth and PAI-1 

promoter assays. Conflicting results were obtained from the cTNC 

promoter assays in each of the parental lines, indicating a 40-50% 

downregulation of transcription from this gene after exposure to 10 ng/mL 

TGF-B3; yet only a 10% decrease in the mutant lines (Table 17). These 

conflicting results between the Northern blot analyses and the promoter 

assays could be explained by the fact that the reporter construct contains a 

relatively small fragment of the cTNC promoter (Figure 14a), and the 

increases observed in transcript levels could be the result of TGF-B3 

induction of cTNC transcription through the use of an enhancer region or 

positive promoter element located outside this region and which remains 

intact for the native cTNC gene. However, this construct does appear to 

have a negative promoter element which is responsible for the decrease in 

transcription from this promoter in response to TGF-B3 • 

It is interesting to note that the downregulation of transcription from 

this cTNC promoter construct was not as pronounced in the mutant lines, 

demonstrating a decrease of only -10% as compared to the 40-50% decreases 

observed in the parental lines. This decreased sensitivity to TGF-B3-

mediated transcriptional changes agrees with the data obtained from the 

PAI-1 promoter assays. The higher transcription rates for cTNC in the 

mutant lines when compared to their parental counterparts would lead to 

the prediction that the cTNC steady state mRNA levels would be greater in 

the mutant lines than in the parental lines after 72 hours. However, steady 

state mRNA levels increased at levels similar to their respective parental 
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lines. This suggests that TGF-B3 is able to regulate cTNC transcript levels 

on at least two overlapping levels, transcriptional and post-transcriptional, 

both of which appear to be disrupted in the mutant lines. 

One post-transcriptional mechanism that can partially explain these 

results is one which involves an increase in cTNC mRNA stability in 

response to TGF-B3, thereby allowing a steady increase in cTNC mRNA 

accumulation even though transcription rates are reduced. The 3' UTR of 

cTNC contains a 10 hp sequence (M. Parmacek, personal communication) 

found to confer TGF-B1-mediated mRNA stability to the mRNA for RHAMM 

(;receptor for hy.~Juronan mediated motility gene, Amara et al., 1996). 

Therefore, studies utilizing the transcriptional inhibitor actinomycin D 

were initiated to address the effects TGF-B3 may have on cTNC mRNA 

stability. Unfortunately, a relatively long half life of the cTNC mRNA in the 

myocyte cell lines (-15 hours, data not shown; Zhu et al., 1991) and reduced 

cell viability in the presence of actinomycin D for extended periods of time 

restricted our ability to clarify this issue. Alternative approaches such as 

metabolic labeling and gel shift analyses could be considered to more 

clearly define any role TGF-B3 may have on cTNC mRNA stability. 

Additionally, a more thorough examination (e.g. nuclear run-on 

analyses or the use of larger promoter constructs) of the transcriptional 

regulation of cTNC should be attempted to clarify or verify the effects of 

TGF-B3• Identification of TGF-B-responsive elements (BRE), both positive 

and negative, may be able to explain the results obtained in the myocyte cell 

lines and possibly negate a role for TGF-B in cTNC mRNA stability. As 
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previously discussed, TGF-B is able to influence the expression of several 

contractile genes in primary myocyte cultures. As contractile gene 

expression involves both cardiac/muscle-specific factors as well as 

ubiquitous factors, the regulation of their activity by TGF-B is of great 

importance. While TGF-B has been shown to increase general 

transcription factors such as c-jun and c-fos, less is known about its effects 

on cardiac transcription factors. One transcription factor which may be of 

particular interest is GATA-4, a zinc-finger protein which appears to be 

important for cTNC transcription and can drive its expression in non

muscle cells (Ip et al., 1994). Since GATA-4 is inducible by factors such as 

retinoic acid (Arceci et al., 1993), one could postulate that this factor, as well 

as other muscle-specific factors, could be regulated by growth factors such 

as TGF-B. 

Although the complex regulation of cTNC expression that occurs in 

the cell lines is intriguing and deserves further attention, these studies do 

not lie within the focus of this dissertation. As a focus of this dissertation, it 

must be stressed that the data obtained from the primary fetal 

cardiomyocyte cultures indicated that cTNC promoter activity and mRNA 

levels are not significantly affected by 10 ng/mL TGF-B3, with the cTNC 

mRNA levels decreasing slightly after 72 hours of TGF-B3 treatment. Thus, 

the effects observed in the lines may be cell line specific and may not fully 

represent what occurs in vivo. 

To further test the hypothesis that TGF-B promotes differentiation 

and maturation through the induction of the "adult"/cardiac isoforms and 
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downregulation of "fetal"/skeletal isoforms of contractile proteins, the effect 

of TGF-B3 on the expression of cTNI, sTNI, and sTNC was examined. As 

sTNC is not normally expressed in the heart, the low promoter activities 

observed in the primary cultures were not unexpected. The similar results 

observed in the cell lines suggest that they have maintained their cardiac

specific background, and therefore, support their use as a cardiomyocyte 

model system. However, mRNA transcripts for sTNC were detectable in 

the cell lines, albeit at very low levels. As cTNC is avidly expressed in all of 

the lines, both parental and mutant, and low stringency washes were 

required for successful sTNC hybridizations, cross-hybridization of the 

sTNC cDNA probe to cTNC transcripts similar to that reported in heart 

tissue remains a possibility. However, the insignificant change in 

transcript levels detected for sTNC after 72 hours of TGF-B3 treatment does 

not support that possibility. Therefore, the sTNC probe identified a 

transcript distinct from cTNC, and suggests that sTNC is transcribed at a 

low, negligible level in the cell lines. 

In contrast to our hypothesis, it appears that TGF-B3 may have a 

negative effect on the maturation of the cardiomyocyte. While sTNI 

promoter activity in the primary fetal cultures is slightly reduced (-15%) in 

response to 10 ng/mL TGF-B3, a slight increase (10-15%) was detected in 

sTNI transcript levels at 48 and 72 hours. In concert with these results, a 

25% decrease in cTNI transcript levels was observed in primary fetal 

myocyte cultures after 72 hours of treatment with 10 ng/mL TGF-B3 (Table 

17, Figure 20). In contrast, sTNI promoter activity, did not significantly 
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change in any of the cell lines, even at 10 ng/mL TGF-B3, however, the 

individuality of the cell lines is once again demonstrated as the basal 

activity in the BWEM lines was higher than that observed in the CLEM 

lines, with little difference between the mutants and their parental lines. 

The implications of the changes observed in the primary cultures and the 

results obtained in the cell lines are discussed below. 

While the transition between the two cTNT isoforms primarily occurs 

just after birth, we hypothesized that TGF-B3 promotes the differentiation of 

the cardiomyocyte through the upregulation of the adult isoform of cTNT. 

Additionally, we used promoter assays to determine if TGF-B3 has an effect 

on overall transcriptional activity from the cTNT gene and to verify the use 

of the myocyte-like cell lines as a model for cardiomyocyte development. 

Promoter analyses demonstrated that 10 ng/mL TGF-B3 did not increase 

transcription from the cTNT promoter construct in either primary fetal 

myocyte cultures or the cell lines (Table 17). However, while cTNT 

promoter activity was high in the primary cardiomyocyte cultures, cTNT 

promoter activity was significantly lower in all of the cell lines. Similarly, 

cTNT transcripts were readily detectable in total RNA collected from 

primary cardiomyocyte cultures, yet undetectable in the cell lines by 

Northern blot analyses using 30 µg total RNA. These results along with the 

results obtained for TNI suggest that the cell lines have limited utility as a 

cardiomyocyte developmental model. These limitations are discussed 

further below. 
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To directly examine effects of TGF-B3 on the expression of the 

different isoforms of cTNT, Northern blot analyses were performed on RNA 

collected from primary fetal cardiomyocytes treated with 0 or 10 ng/mL 

TGF-B3 • Consistent with the promoter data, the transcript levels of total 

cTNT expression did not change after 48 or 72 hours of treatment with TGF

B3 (Table 17). To test the hypothesis that TGF-B promotes fetal myocyte 

maturation, we examined the ability of TGF-B3 to influence the alternative 

splicing of the cTNT transcript to favor the production of the alternatively 

spliced, adult isoform in late fetal cardiomyocytes (18 dpc). A probe specific 

for the fetal isoform of cTNT was used to determine any changes in the ratio 

of fetal to adult isoforms. The results revealed that TGF-B3 did not 

significantly affect the transcript levels of the fetal isoform and, thus, the 

adult isoform in the fetal cardiomyocyte cultures. This is in contrast to 

what was observed in neonatal cardiomyocytes. Northern blot analyses of 

RNA obtained from primary cultures of 2-day neonatal cardiomyocytes 

treated with 1 ng/mL TGF-B1 for 48-72 hours demonstrated an increase in 

total cTNT expression and an increase in the alternatively spliced adult 

isoform of cTNT (Dr. J. Lin, personal communication). As previously 

discussed, TGF-B1 and TGF-B3 elicit nearly identical effects in vitro, and as 

such, it would be unlikely that these differences could be attributed to the 

TGF-B isoform used. Since cTNT isoform switching predominantly occurs 

during the immediate post-natal period, these data suggest that TGF-B can 

augment the switch in its natural developmental time frame, but cannot 

induce the switch prematurely in the fetal cardiomyocyte. Alternatively, 
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the differences observed between the fetal and neonatal primary myocyte 

cultures could be attributed to a developmental change in the TGF-B signal 

transduction pathway (see below for further discussion). While selective 

degradation of the fetal cTNT transcript may result from TGF-B3 treatment, 

these data provide evidence suggesting TGF-B may have the ability to 

influence gene expression at a post-transcriptional level by directly or 

indirectly affecting the alternative splicing of a specific gene product. 

Since the expression of TNC, and possibly other contractile genes, is 

predominantly controlled by the production and accumulation of mRNA 

transcripts (Gahlmann et al., 1988), it appears that TGF-B3 has little effect 

on the expression of TNC, TNI, or TNT isoforms in fetal cardiomyocytes. 

The downregulation observed for the adult isoform of TNI (cTNI) by TGF-B3 

is an extension of what has been observed in neonatal cardiomyocytes 

treated with TGF-B. In these cells, several "fetal" proteins, aSk-actin, B

MHC, B-tropomyosin, and ANF, are induced while the adult isoform of 

myosin, a-MHC, is downregulated (Schneider and Parker, 1990; Schneider 

et al., 1992; Lembo et al., 1995). These changes in expression resemble 

those that occur in the hypertrophic response to pressure overload 

commonly induced in vivo by aortic banding or in vitro by stretching of 

myocytes in culture (Schneider and Parker, 1991; Komuro et al., 1991; 

Chien et al., 1991; Schneider et al., 1992) but not in exercise or thyroid 

induced hypertrophy (Long et al., 1990). Additionally, the absence of 

change in sTNI expression in the cell lines or small changes in expression 

in the primary fetal myocyte cultures treated with TGF-B3 corresponds to 
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the lack of re-expression of sTNI in the ventricle in the adult heart 

challenged by pulmonary hypertension or ischemic heart disease (Sasse et 

al., 1993). 

These similarities in changes in myocyte gene expression induced by 

TGF-B and pressure overload have resulted in a postulated role for TGF-B 

in the hypertrophic response of the adult myocyte. It has been 

demonstrated that TGF-B expression is upregulated in vivo in response to 

pressure overload (such as that induced by aortic banding) (Komuro et al., 

1991; Schneider et al., 1992; Lembo et al., 1995), but not through the 

induction of hypertrophy utilizing other methods (Klein et al., 1995). In this 

regard, TGF-B is considered to be part of a complex mechanism in which 

changes in the cells' environment can be transmitted to the cells, either 

directly influencing changes in gene expression and/or protein production, 

or by augmenting the "signal" imposed by the pressure overload. In 

addition to its apparent role in mediating a stress response, the TGF-Bs 

have been implicated to play a role in recovery from myocardial infarction. 

While TGF-B1 is undetectable in the damaged myocytes, the viable myocytes 

surrounding the injured cells exhibit increased TGF-B1 expression 

(Schneider and Parker, 1990; Lembo et al., 1995). Due to its established 

roles in ECM biosynthesis and tissue repair, TGF-B1 has been postulated to 

play a role in the induction of compensatory hypertrophy of the myocytes 

surviving or surrounding an infarct as well as building up the ECM to 

increase tensile strength of the damaged area (Schneider and Parker, 1990; 

Lembo et al., 1995). This is similar to what is observed during wound 
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repair in skin tissue, where TGF-B ligands and receptor expression is high 

in the tissues surrounding a wound, and absent within the wound and the 

migrating epithelium (Gold et al., 1997). 

In light of the data regarding TGF-B treatment of neonatal 

cardiomyocytes as a model for pressure overload hypertrophy, the results 

obtained in the cell lines and fetal cardiomyocytes suggest that our original 

hypothesis for the direct role of TGF-B in ventricular development in 

regards to modulating myocyte maturation is false and needs to be 

modified. The data obtained for the TNT isoform switch suggests that TGF

B may be able to promote the "adult" phenotype after birth, but not in the 

developing fetal heart. The inability of TGF-B3 to induce similar changes in 

cTNT expression in 18 day fetal myocytes as was observed in the neonatal 

myocytes suggest two possible scenarios. The first option is that the 

developmental program for the isoform switching that occurs in the heart 

cannot be prematurely induced by TGF-B3, but once the isoform switch is 

initiated, TGF-B3 has the ability to augment the change. However, the lack 

of response observed for cTNC and the downregulation of cTNI in the fetal 

myocytes cannot be attributed to TGF-B acting "out of frame" as the isoform 

switch is already underway for these proteins during the late fetal period, 

which encompasses the age at which the primary myocytes were collected. 

This suggests an alternative scenario: the fetal myocytes lack or have a low 

abundance of a rate-limiting factor in the TGF-B3 signal transduction 

pathway. While BRII expression is limiting in vivo at 18 dpc, Northern blot 

analyses of RNA obtained from primary fetal myocyte cultures suggests 
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neither receptor is rate limiting in vitro (Figure 22). However, other 

members of the signal transduction pathway may be limiting. Since 

members of the TGF-B signal transduction pathway have only recently 

begun to be identified, this possibility cannot be addressed at this time. 

However, the ability of the primary fetal myocytes to increase PAI-1 

transcription in response to TGF-B3 suggests these cells contain some of the 

necessary components to mediate transcriptional regulation by TGF-B. As 

PAI-1 is not a cardiac specific gene, a cardiac- or muscle-specific factor, 

such as a transcription factor or a positive or negative trans-acting 

regulator, which can be modulated by TGF-B may not be present or exist at 

a low level in the fetal myocyte, and which is developmentally upregulated 

in the neonatal myocyte conferring TGF-B responsiveness. This could 

explain the overall lack of or low response to exogenous TGF-B3 treatment 

observed in the studies described. 

Similar arguments can be used to explain the differences observed 

between the cell lines and the fetal myocytes. As transformed cell lines, 

BWEM and CLEM have lost some aspect(s) of their cardiac-specific 

transcriptional machinery demonstrated by the fact that they do not express 

contractile proteins such as myosin heavy chain. As demonstrated here, 

similar losses in expression have occurred for two other contractile 

proteins, TNT and TNI, being readily detected in primary fetal myocyte 

cultures but low or undetectable in the cell lines. Additionally, as 

transformed cell lines, BWEM and CLEM express v-myc and potentially 

several other unique transcription factors. As an extension of this, the 
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BRII-DN cell lines, having been transformed again with two exogenous 

plasmids which integrated randomly, may have yet another molecular 

milieu which may or may not be attributed to the expression of BRII-DN. 

The altered transcriptional machinery available in the nucleus of all of 

these cell lines may confer differential responses to exogenous TGF-B3 than 

those responses elicited in the primary cells. Using cTNC as an example, 

the decrease in promoter activity detected in the cell lines may be the result 

of the activation of a TGF-B-responsive regulatory protein that binds to a 

negative element in the cTNC promoter construct. However, the primary 

fetal myocytes did not demonstrate a similar decrease in cTNC promoter 

activity in response to TGF-B3• This suggests that the cell lines have 

acquired or upregulated a negative regulator not normally present in the 

cardiomyocyte. Finally, differences in responses, specifically the level of 

response, between the cell lines and the primary myocytes may be the result 

of differential expression of the receptors. While BRII receptor expression 

is not rate limiting in any of the lines, the low expression levels of BRiil in 

the cell lines may be one possible factor responsible for the differences 

observed between the cell lines and fetal myocytes. Even though membrane 

bound BRiii is thought only to present ligand to BRII, BRiii can be shed 

from the cell surface and act to sequester TGF-B dimers (Attisano et al., 

1994). As BRiii is highly expressed in primary fetal myocyte cultures as 

well as in vivo, heightened sequestration of exogenous TGF-B3 may be 

responsible for the lower responses seen in the primary myocyte cultures. 
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Based on a lack of effect on the filament isoform expression, it 

appears that the developmental effects of TGF-B3 on the fetal cardiomyocyte 

are minimal. In as much as the studies described here only address the 

direct effects TGF-B3 has on the expression of these three contractile 

proteins, indirect effects cannot be ruled out. As a modulator of ECM 

formation, cell-cell interactions, and cell-ECM interactions, TGF-B may 

promote cardiomyocyte differentiation and/or maturation through the 

induction of morphological changes complemented by its ability to induce 

cellular quiescence by its potent anti-proliferative properties retained in all 

cell types examined. 

Effects of TGF-B.a on Angiogenesis 

A number of growth factors have been found to regulate angiogenesis 

in vivo and, as discussed previously, one of these is TGF-B. While TGF-B 

has been hypothesized to work as a chemoattractant and regulator of 

capillary morphogenesis and apoptosis (Choi and Ballermann, 1995), TGF

B may also control angiogenesis by regulating the production of an 

angiogenic factor, SPARC. In order to test the hypothesis that TGF-B 

promotes angiogenesis in the ventricle by increasing cardiomyocyte

produced SPARC, cultures of primary fetal cardiomyocytes and each of the 

cell lines, wild type and mutant, were used to measure the changes in the 

expression of SP ARC and the release of its gene product into the media 

upon exposure to TGF-B3 • Although lower than expected, 10 ng/mL TGF-B3 
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induced a 20-40% increase in steady state SPARC transcript levels in all of 

the cell lines as well as the primary fetal myocytes. Therefore, it appears 

that TGF-B3 minimally upregulated SPARC production through 

transcription. Post-transcriptional upregulation in the absence of any 

transcriptional induction has been demonstrated for SPARC in other cell 

types (Wrana et al., 1991). Therefore, if our hypothesis that TGF-B 

significantly increases SP ARC production by cardiomyocytes and therefore 

promotes angiogenesis in the ventricle is correct, TGF-B3 would have to 

mediate its effects translationally as the increases in transcripts were 

minimal. To determine whether TGF-B3 increased translation from pre

existing SP ARC transcripts, Western blot analyses were performed using 

conditioned media proteins to detect changes in the levels of SP ARC 

secreted by the cells. Measuring the amount of SP ARC protein secreted 

into the media has been a standard determinant of the translation from 

SPARC transcripts by a cell in culture (lruela-Arispe et al., 1991b; Wrana 

et al., 1991). As such, Western blot analyses indicated that no further 

upregulation of SPARC secretion occurred through increased translation 

from the existing SPARC transcripts in response to TGF-B3 in any of the 

cell types. While promoter data for the fetal and BWEM lines support these 

data, the CLEM and CL-B5 lines have conflicting results. Similar to the 

cTNC study, CLEM exhibited a decrease of -35% in promoter activity, while 

there was no significant change in activity in the CL-B5 line in response to 

TGF-B3• However, unlike cTNC, it would be difficult to explain these results 

in terms of mRNA stability as SPARC has a half life of -50 hours (Wrana et 
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al., 1991). It is also of interest to note that the basal promoter activities for 

CL-B5 are significantly higher than those for CLEM (Figure 23c). This is 

reflected in the Western blot analyses (Figure 25) in which it appears that 

CL-B5 secreted higher levels of SPARC protein as compared to CLEM. 

However, this is not reflective of the relative transcript levels. In contrast to 

CL-B5, there is no significant difference between BW-Hl and BWEM for 

SPARC promoter activity, transcript or protein levels. The higher basal 

promoter activity in CL-B5 may be attributed to an altered transcription 

factor or regulatory protein content in this mutant line. While the results 

obtained from these experiments vary slightly from cell line to cell line, a 

general conclusion can be drawn that TGF-B3 does not significantly 

upregulate SP ARC expression in and secretion from the fetal 

cardiomyocytes or the myocyte-like cell lines. 

It should be noted that the basal expression of SP ARC, both mRNA 

and protein, is very high in both the primary myocytes and the cell lines. It 

has also been shown that secreted SP ARC protein in vivo is rapidly 

degraded, and thus, the majority of SPARC found in tissues is stored 

within the cell until it is needed (Sage et al., 1989; Reed and Sage, 1996). 

Therefore, it would be unwise to conclude that cardiomyocyte-produced 

SPARC plays no role in promoting angiogenesis or that TGF-B doesn't have 

a role in this process. However, it can be concluded that TGF-B3 does not 

significantly increase SPARC production by the cardiomyocyte under the 

conditions examined. As SPARC is stored in cytoplasmic granules in vivo, 

TGF-B may provide a regulatory "trigger" which releases SPARC into the 
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extracellular space when appropriate, selectively increasing the level of 

SP ARC into the ECM. As discussed previously, SP ARC mediates most of 

its actions, particularly angiogenesis, only after cleavage by proteases such 

as plasmin. This provides another mechanism for TGF-B to promote 

angiogenesis in relation to SPARC. As a modulator of ECM remodeling, 

TGF-B has been shown to increase the production of several secreted 

proteases. Since some of these same proteases may be involved in SPARC 

activation, TGF-B may promote angiogenesis by inducing the production 

and/or secretion of these SPARC activators from the cardiomyocytes. It 

should also be stressed that TGF-B may also promote SPARC 

production/secretion and angiogenesis in the ventricle by inducing similar 

changes by paracrine mechanisms of action in the surrounding non

myocyte cells whose numbers increase dramatically around and after 

birth. 

Use of Myocyte-like Cell Lines and Their Respective Mutants 

The BWEM and CLEM myocyte-like cells lines are, theoretically, a 

model system in which aspects of cardiomyocyte development and muscle

specific activities can be evaluated. As stated previously, these cell lines 

present certain limitations since they have lost some myocyte-specific 

markers, such as the expression of myosin heavy chain, and their 

spontaneous contractile activity after their transformation with v-myc. 

While other contractile proteins such as cTNC are readily detected in these 
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lines, in the experiments described here, transcripts for two other thin 

filament proteins, TNI and TNT, were found to be very low or undetectable 

using total RNA. Similarly, the basal promoter activities for the reporter 

constructs of these two contractile proteins examined were significantly 

lower than those observed in the primary cultures. As such, these low 

transcript levels and basal promoter activities are difficult to interpret, 

especially when a downregulation in expression level or activity is 

anticipated or observed. Conversion of these promoter constructs to the 

more sensitive luciferase based reporter may result in the accumulation of 

data from the cell lines, as well as the primary myocytes, which are more 

clearly defined and easier to interpret. Additionally, as demonstrated for 

cTNC, the results obtained in these cell lines may not reflect what occurs in 

the primary fetal cardiomyocytes. Therefore, the use of these cell lines as a 

cardiomyocyte developmental model has limitations dependent on the 

particular aspect being examined. 

It has been demonstrated that these cell lines are useful in 

examining aspects of cardiomyocyte developmental function such as the 

roles cardiac and muscle-specific transcription factors play in contractile 

gene expression (G.L. Engelmann, unpublished data). Having low TNI 

and TNT transcript levels, these cells lines may be useful to identify 

transcription factors involved in the activation of these or other genes 

directly related to the contractile machinery of the beating cardiomyocyte. 

Theoretically, through the introduction of exogenous transcription factors 

by transfection of selective expression vectors, those factors involved in TNT 
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or TNI transcription may be identified by their ability to increase levels of 

these transcripts to those seen in primary cardiomyocytes. Since these cells 

are much easier to manipulate than primary fetal and neonatal 

cardiomyocytes, both knock-out and knock-in experimental systems are 

available as tools to study molecular events involved in cardiomyocyte gene 

regulation in a myocyte-like background. 

As described here, these cell lines can be useful to study and possibly 

identify components of the TGF-B signal transduction pathways in a 

myocyte-like background. While not the focus of this dissertation, the 

results obtained for cTNC in regards to the dual mechanisms of control 

revealed by promoter and Northern blot analyses suggest that these cell 

lines, both parental and mutant, provide a system in which the 

mechanism(s) used to elicit the pleiotrophic effects of TGF-B can be 

examined in greater detail. As cell numbers are not a rate-limiting factor, 

co-treatment of cell cultures with TGF-B along with drugs, toxins, or other 

chemicals can be used to interrupt various known signaling mechanisms 

(G-proteins, kinases, etc.) and identify those pathways that may elicit the 

specific TGF-B response. Using the transcriptional and post

transcriptional regulation of cTNC expression as a model, these types of 

experiments could identify the type of pathways which regulate the two 

different responses. Additionally, with the recent, and future, 

identification of proteins which are involved in the signaling pathways of 

the TGF-B superfamily, the dominant negative mutant cell lines could be 

used to identify those proteins which may confer a specific response. 
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Overexpression of an active form of these proteins in the DN lines may 

result in the rescue of only one, transcriptional or post-transcriptional, 

mechanism of cTNC regulation; an effect which may not be easily 

discernible in the parental lines; and very difficult to examine in an in vivo 

situation. 

Conclusion 

It appears that the role of TGF-B in the late fetal/ early neonatal 

period of heart development is not as direct as we originally hypothesized. 

We and others have provided in vitro data which supports the first part of 

our hypothesis: biologically active TGF-B can directly inhibit proliferation 

of ventricular cardiomyocytes. While the expression patterns of TGF-B1, 

TGF-B3, and BRII temporally coincide with the changes in cTNC, TNI, 

TNT, and SPARC expression in the developing ventricle, they do not appear 

to be functionally related to each other. It is important to keep in mind that 

the increased production of TGF-B ligand as detected at the transcript and 

protein level during this period may not be an indicator of TGF-B bioactivity 

as TGF-B is usually secreted as a latent complex. In situ data have been 

obtained from avian embryonic hearts which demonstrate that a majority of 

TGF-B3 located in the ECM is in its latent form (Ghosh and Brauer, 1996). 

Therefore, functional activity of TGF-B in heart development may be 

regulated by carefully restricting its level of activation, and not by its 

general expression levels or that of its required receptor, BRII. 
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As a mediator of the hypertrophic response to pressure overload, 

TGF-B may also be a mediator of the mechanical stress that will be exerted 

after birth as the newborn has to adjust to an air breathing environment. 

As such, the onset of expression of TGF-Bv3 and BRII during the late fetal 

period may serve to prime the myocardium for a proper response to this 

stress or other physiological stimuli after birth. The onset/increase of 

expression of BRII deems the cells competent to respond to TGF-B 

activation. Similarly, as the majority of TGF-B released into the ECM is 

biologically inactive, or latent, the onset/increase in expression of TGF-B113 

in the late fetal period provides a large "stock" of TGF-B which can be 

readily activated as conditions require. While the exact mechanism of 

activation in vivo is unclear, TGF-B can be activated in vitro by extreme pH, 

heat, or proteolytic enzymes. 

In contrast to our hypothesis which states that TGF-B affects 

ventricular remodeling through the promotion of ECM accumulation and 

angiogenesis, it would appear that cardiomyocyte-derived TGF-B may act 

more as a negative regulator for these processes, keeping each in check. 

Through the induction of PAI-1, TGF-B both promotes and inhibits 

ventricular remodeling, allowing ECM accumulation, yet inhibiting the 

transient breakdown of ECM components needed for remodeling and 

cellular migration. Similarly, the induction of PAI-1 may actually inhibit 

angiogenesis with regards to the mechanism of activation of SPARC. As 

mentioned previously, SPARC must be cleaved by plasmin to induce 

angiogenesis, and PAI-1 inhibits the formation of active plasmin. 



Therefore, TGF-B, while having some pro-angiogenic activities, also 

provides a regulatory mechanism to keep the process in check. 
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Interestingly, TGF-B through two separate mechanisms, appears to 

keep its own activity in check. While TGF-B1 has been found to autoinduce 

its expression (MacLellan et al., 1993; Flanders et al., 1995), co-induction of 

PAI-1 inhibits the activation of plasmin, one of several proteolytic enzymes 

found to release bioactive TGF-B from its latent form, thus downregulating 

TGF-B's activity. Secondly, as demonstrated here, TGF-B3 appears to 

downregulate a critical component of its own signal transduction 

machinery by reducing the steady state transcript levels of BRII after 

prolonged exposure. TGF-BRs have been found to undergo rapid 

internalization upon ligand binding, being replaced almost immediately by 

new receptors (Massague and Kelly, 1986; Centrella et al., 1996). As a 

result, downregulation of the steady state transcript levels for BRII may 

gradually slow down its replenishment at the cell surface, thereby 

downregulating the cells' ability to respond to TGF-B. Therefore, it appears 

that a complex web of positive and negative controls involving TGF-B exist 

which could play a regulatory role in the proper development of the 

cardiomyocyte and maintenance of ventricular tissue architectural and 

functional homeostasis. 
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