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CHAPTER 1. 

INTRODUCTION AND OVERVIEW OF RELATED LITERATURE 

The incidence of life-threatening fungal infections is increasing at an alarming rate 

with increased immunosuppressive therapies and the AIDS epidemic (Fox, 1993). Fungal 

infections now are responsible for 40% of deaths due to hospital-acquired infections 

(Sternberg, 1994). Cell-mediated immunity (CMI) by lymphocytes is an important form of 

host defense against fungi, and is probably the principal defense at mucosa! and epidermal 

surfaces (Ashman, 1990; Fidel and Sobel, 1994; Calderone et al., 1994; Levitz et al., 1995). 

During the CMI response to fungi, lymphocytes can release cytokines that not only enhance 

CMI but also modulate the antifungal activity of polymorphonuclear leukocytes (PMN) and 

macrophages (Spaccapelo et al., 1995). In addition, natural killer cells (NK) and IL-2 

activated lymphocytes have been shown to interact directly with and inhibit the growth of 

certain fungi (Beno and Mathews, 1992; Beno et al., 1995; Murphy et al., 1993; Levitz and 

Dupont, 1994). The role of each of these forms of lymphocyte-mediated, antifungal host 

defense is dependent upon the immune status of the host and upon the individual fungal 

pathogen (Murphy, 1990; Murphy, 1991; Calderone et al., 1994). 

The dimorphic fungus Candida albicans is responsible for about 80 % of all deaths 

due to hospital-acquired fungal infections (Sternberg, 1994). The adaptability of the organism 

is emphasized by the fact that oral C. albicans infection, commonly called 'thrush,' was also 

the first yeast infection described: by Hippocrates in the fifth century B.C. (Hazen, 1995). 
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Heat inactivated C. albicans injected intraperitonealy in mice (Scaringi et al., 1991), or 

cultured with peripheral blood lymphocytes without exogenous IL-2 (Ausiello et al., 1993), 

evoke a population of IL-2 activated lymphocytes (IAL) very similar to those used in this 

dissertation stimulated in vitro with IL-2 alone (Ausiello et al., 1993). Previous work from 

this laboratory has shown that IAL inhibit the hyphal growth of C. albicans (Beno and 

Mathews, 1992; Beno et al., 1995). These IL-2 activated lymphocytes have a large granular 

lymphocyte (LGL) appearance and have been shown to require direct contact with C. albicans 

hyphae to effect growth inhibition (Beno and Mathews, 1992). The interaction between 

lymphocytes and C. albicans has been demonstrated in a number of ways including; 

competitive inhibition of mammalian cell binding to the fungus (Beno and Mathews, 1992; 

Zunino and Rudig, 1988), direct measurement of adhesion of lymphocytes to fungal hyphae 

(Levitz et al., 1995), and by yeast cell stimulation of cytokine synthesis in LGL (Blanchard et 

al., 1991; Ausiello et al., 1993). However, the lymphocyte surface structures that mediate 

adhesion to C. albicans or any fungus during the CMI response are unknown. The goal of 

this dissertation research has been to identify the principal molecular structures on murine IL-

2 activated lymphocytes (mlAL) mediating adhesion to C. albicans hyphae during growth 

inhibition of the fungus. To achieve this goal, three Specific Aims were formulated: 

Aim 1.) Develop an in vitro assay system to quantify lymphocyte binding to C. albicans 

hyphae. 

Aim 2.) Identify the principal adherence molecules on murine IL-2 activated lymphocytes that 

mediate binding to C. albicans. 

Aim 3.) Confirm and/or prove the identified lymphocyte adherence molecules mediate binding 
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of murine IL-2 activated lymphocytes to C. albicans hyphae. 

The CD 11 b/CD 18 heterodimer is one of three members of the leukocyte ( restricted to 

white blood cells) integrins or /32 family of integrins. Each has the {32 integrin chain (CD18, 

95 Kd) in common which is noncovalently associated with a unique CDll a chain: LFA-1 

(CD11a/CD18), Mac-1 (CD11b/CD18,CR3) and p150,95 (CD1lc/CD18, CR4) (Arnaout, 

1990). The CDlla,b,c a chains all contain a 200 amino-acid insert critical for binding 

protein ligands referred to as the I (inserted) or A domain. A fourth member of the {32 

family, designated ad/32, has not yet been described in mice, but has very recently been cloned 

in dogs and humans (Danilenko et al., l 995; Van Der Vieren et al., 1995). Mac-1 is found 

on most PMN, monocytes, macrophages, NK cells, LGL (including IL-2 activated 

lymphocytes), basophils, eosinophils, and subsets of mast cells, B cells, and T cells (Arnaout, 

1990; Anderson, 1994; Van der Vieren et al., 1995). 

The structure of the I ( or A) domain of Mac-1 was recently determined and provides 

an illuminating first view of CD1lb/CD18-ligand interactions (Lee et al., 1995). That data 

demonstrates the I domain contains a magnesium ion dependent 'MIDAS' (metal ion­

dependent adhesion site). In light of this structure, those authors propose a new paradigm for 

integrin-ligand interaction which identifies a critical aspartate (D) residue and /3-looped 

structure (Main et al., 1992) to be essential in ligands of integrins containing MIDAS motifs. 

Such ligands are termed 'RGD-mimetic', that is, they can mimic the conventional RGD (Arg­

Gly-Asp) integrin binding motif in their ability to interact with the I domain during integrin 

mediated adhesion (Du et al., 1993). This critical acidic aspartate (and also, rarely, 

glutamate), and not an exact "RGD" sequence per se, are now seen as essential for ligand 

binding by integrins which contain the MIDAS structure (Bergelson and Hemler, 1995). This 

MIDAS motif also forms the RGD binding region of the /33 integrin chain (Loftus et al., 
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1994), which clarifies how anti-/33 integrin monoclonal antibodies (Mabs) like 7E3 which also 

binds to recombinant Mac-1 I domain (Zhou et al., 1994), could inhibit Mac-1. It also could 

clarify why Mac-1 protein ligand recognition sequences are often RGD-mimetic and contain a 

key aspartate, for example: fibrinogen (RLD; Zhou et al., 1994), C3 complement fragment 

C3bi (DE ... EE; Taniguchi-Sidle and lsenman, 1994), and Factor X (GYD .. QED; Rozdzinski 

et al., 1995) as well as Bordatella pertussis FHA (RGD; and QED; Reiman et al., 1990; 

Rozdzinski et al., 1995) and Leishmania gp63 (RYD; Soteriadou et al., 1992). This Mac-1 

structural data clarifies how Mac-1 adhesion to both FHA and gp63 as well as C3bi (Talamas­

Rohanas et al., 1990) has been blocked with GRGDSP sequence peptides and virtually all 

Mac-1 ligands are inhibitable with RGD-mimetic peptides derived from that ligand. 

The /32 integrins require activation to become adhesive to protein ligands (Li et al., 

1995; Stewart et al., 1995). Activated Mac-1 undergoes quantitative and qualitative changes 

including release from intracellular stores, aggregation on the cell surface (Detmers et al., 

1987), association with the cytoskeleton (Rabb et al., 1993) and changes in conformation 

resulting in expression of activation specific neoepitopes (Altieri and Edgington, 1988; 

Diamond and Springer, 1993; Biemer and Edgington, 1994). CD1lb/CD18 possesses two 

distinct extracellular adhesion domains (Wright et al., 1989; Amaout, 1990). One is a 

protein ligand domain (partly composed of the I domain) which binds C3bi, Factor X, 

fibrinogen, FHA, and other protein ligands and is inhibitable with RGD-mimetic peptides. 

The other is a lectin-like ligand domain proximal to the cell membrane which binds 

polysaccharide ligands like LPS, Saccharomyces cerevisiae, yeast zymosan, yeast 

mannoproteins, and /3-glucan and is inhibitable with N-acetyl-D-glucosamine (NADG) (Ross 

et al., 1985; Anderson, 1994; Thornton et al., 1996). 

In this dissertation, a human LGL cell line (YT) that binds to and directly inhibits the 
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growth of C. albicans was employed as a model system to evaluate the interaction between 

lymphocytes and C. albicans. This cell line has been valuable in other studies of MHC­

unrestricted cytotoxicity (Azuma et al., 1992). Utilizing these effector lymphocytes in this 

study, RGD-peptide and carbohydrate inhibition data confirm the more definitive Mab 

blocking data which demonstrates CDllb/CD18 is the principal structure on effector 

lymphocytes mediating adhesion to C. albicans hyphae. These studies were followed by 

similar studies using murine and human IL-2 activated lymphocytes (HIAL) which also 

identified Mac-1 (CD11b/CD18) as the structure on MIAL and HIAL which mediates 

adhesion to C. albicans hyphae. The ability of Mac-1 to mediate adhesion to C. albicans 

hyphae was confirmed using murine NIH-3T3 fibroblast transfectants expressing human 

CD11b/CD18 which mediated specific adhesion to C. albicans hyphae that was blocked by 

Mabs to CD11b/CD18 and RGD-mimetic peptides. Finally, Mabs to murine CDllb/CD18 

were demonstrated to completely eliminate mIAL mediated growth inhibition of C. albicans 

hyphae in a concentration dependent manner, while mAbs to murine CD11a/CD18 and 

CD1lc/CD18 had no effect. When viewed as a whole, the data from these studies clearly 

demonstrate that the integrin CD 11 b/CD 18 is the structure on mIAL which mediates adhesion 

to C. albicans hyphae. 

The ligand(s) on the surface of C. albicans that bind mammalian cell surface 

structures have not been fully characterized. The current view of the cell wall of C. albicans 

identifies six "layers". From outermost moving inward these layers are: 1.) fibrillar 

(composed of fimbriae and filamentous carbohydrates), 2.) glucomannoproteins (proteins 

covalently linked to mannan, a polymer of mannose and /3-glucan, a glucose polymer), 3.) 13-

glucan (both 13-(1,3) and some 13-(1,6) linkages), 4.) /3-glucan and chitin (a polymer 

characteristic of fungi of N-acetyl-D-glucosamine (NADG), 5.) mannoprotein, and 6.) plasma 
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membrane (Hostetter, 1994a). While this simple model conveys the basic elements, a more 

recent model depicts the outermost five elements embedded in a ",6-(1,3)-glucan/chitin mesh" 

(Georgopapadakou and Tkacz, 1995). C. albicans adherence to host tissues, mediated by C. 

albicans molecules designated as "adhesins", correlates with the rank order of virulence 

(Odds, 1994; Santoni et al., 1994; Calderone and Braun, 1991; Hostetter, 1995b) and is 

considered to be a major virulence factor. In general, C. albicans hyphae express more 

adhesins than the yeast form of the fungus (Hostetter, 1994a) and these greater adhesive 

properties, combined with a filamentous hyphal morphology suited to invasion between 

mammalian cells, are probably the major reasons for hyphal formation closely correlating 

with invasive C. albicans infections and thus being considered a major virulence factor 

(Calderone and Braun, 1991; Odds, 1994). All of the C. albicans adhesins characterized so 

far (except one designated as Factor 6) are mannoproteins (Hostetter,1994; Calderone et al., 

1994). C. albicans adherence to mammalian tissues is complex and involves multiple 

mechanisms that are grouped into three major categories designated as: lectin-like, those that 

are still incompletely defined, and the largest group: protein-protein interactions (Calderone 

and Braun, 1991; Hostetter, 1994). Until recently, much of the focus has been on identifying 

C. albicans molecules which enable the fungus to invade mammalian epithelial and endothelial 

(when blood-borne) surfaces (Calderone and Braun, 1991; Hostetter, 1994a), rather than 

receptors on mammalian leukocytes (Murphy, 1990; Murphy, 1991). 

Studies of a mannoprotein lectin-like receptor on C. albicans mediating adhesion to 

epithelial cells indicate a fucose inhibitable lectin (Cutler, 1991). In this dissertation, 150 mM 

concentrations of either L-fucose or D-fucose had no effect on lymphocyte adhesion to C. 

albicans hyphae. Another study indicated mannan oligosaccharide structures (designated 

Factor 6) on C. albicans serotype A mediate some adhesion to epithelial cells (Pendrak and 
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Klotz, 1995). Undefined mechanisms of C. albicans adherence to epithelial and endothelial 

cells include isolation of a C. albicans DNA sequence encoding a putative C. albicans adhesin 

(Barki et al., 1994). When the protein encoded by this DNA was expressed in a nonadherent 

strain of the yeast S. cerevisiae it conferred the ability to adhere to epithelial cells. The 

specific protein conferring adherence has not been characterized. Other studies have isolated 

a C. albicans 66 kD fimbrial mannoprotein with 50% of it's proteins composed of 

hydrophobic amino acids implicated in adhesion to mammalian epithelial/endothelial cells via 

asialogangliosides (Calderone et al., 1994). Hydrophobicity of C. albicans has also been 

implicated as a general mechanism for adhesion to endothelial and epithelial cells in vivo 

(Hazen, 1989). A C. albicans aspartyl proteinase has been implicated in adhesion to human 

epithelial corneocytes, and protease inhibitors block C. albicans yeast adhesion by up to 53 % 

(Frey et al., 1990). Interestingly, it is known that murine and human endothelial and 

epithelial cells secrete C3 complement component. A more recent study showed that the 

major targets inactivated by C. albicans proteinase were the Fe receptor of immunoglobulin 

and C3, both critical elements of receptor mediated phagocytosis by macrophages (Kamanishi 

et al., 1995). The NADG polymer chitin is also considered as a C. albicans adhesin 

(Calderone et al., 1994). 

Among protein-protein interactions, several investigations have shown that C. albicans 

has receptors that mimic integrins in ability to bind C3 complement components, ECM 

proteins, and even cross-react with some mAbs to mammalian integrins. C. albicans also 

expresses surface structures which serve as integrin ligands. Consistent with these findings, 

C. albicans adhesion to some mammalian cells can be inhibited with RGD peptides, including 

the GRGDSP and PepTite-2000 peptides used in this dissertation research (Bendel and 

Hostetter, 1993; Santoni et al., 1994, Hostetter, 1994a). However, upon close examination, 
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there are several points where the C. albicans integrin-like molecules and the actual 

mammalian cell integrins differ. lntegrin-like molecules on C. albicans have been described 

that cross-react with some mAbs to the mammalian integrin cx5{31 "fibronectin receptor" 

(Hemler, 1990; Santoni et al. 1994), cxM/32 (Arnaout, 1990) and cxx/32 (Arnaout, 1990; 

Hostetter, 1994b). It is not known whether these Mabs react with the same structure or 

different structures on C. albicans because competition with the reactive mAbs has not been 

performed. Anti-fibronectin antibodies block adhesion described by one group (Santoni et al., 

1994) but have no effect on C. albicans adhesion measured by others (Hostetter, 1994b). 

Different mAbs to mammalian integrin cx5{31 label C. albicans yeasts in a range from only 

34% of cells to 77% (Santoni et al., 1994). The fibronectin receptor on C. albicans 

originally described (Skerl et al., 1984) and later studied further (Klotz and Smith, 1991; 

Klotz et al., 1992) has been isolated and found to be a 60-70 kD protein monomer which 

occurs on the surface of C. albicans as a dimer or trimer (Klotz et al., 1994). Several 

candidal mannoproteins have been partially characterized in the 60-70 kD range that bind 

ECM proteins including fibronectin (Skerl et al., 1984; Klotz et al., 1994), laminin (Bouchara 

et al., 1990), and fibrinogen (Casanova et al., 1992). It is not known whether a single fungal 

structure or multiple fungal structures mediate this binding (Calderone and Braun, 1991; 

Calderone et al., 1994). Evidence that laminin and fibrinogen compete for binding (Bouchara 

et al., 1990) suggests these two ECM proteins may bind to the same structure. C. albicans 

yeast cells preincubated with fibronectin were shown to be inhibited in their adhesion to 

buccal and vaginal epithelial cells (Skerl et al., 1984). Weak blocking of C. albicans binding 

to human keratinocytes by PT-2000 and fibronectin has been described by one group (Ollert 

et al., 1993). In summary, the genetic cloning and definitive identification of these C. 

albicans receptor(s) mediating adhesion to ECM components, as well as the CR3/CR2-like 



molecule(s) still remains to be demonstrated, although data from this dissertation and other 

studies support the concept that lymphocytes use separate molecules to adhere to C. albicans 

than do mammalian epithelial and endothelial cells previously examined. 

9 

Murine and human PMN's and macrophages probably constitute the major host 

defenses against disseminated C. albicans (Calderone et al., 1994). In contrast to C. albicans 

adherence mechanisms to epithelial and endothelial cells, recent evidence indicates murine and 

human macrophages also use CD11b/CD18 as the principal receptor for adhesion to C. 

albicans. The identity of the principal receptor for C. albicans was investigated using a C. 

albicans cell wall extract which blocked adhesion to macrophages (Szabo et al. 1995). These 

authors have observed that the phagocytosis of C. albicans is mediated by a combination of 

mannose specific lectin-like receptor, Fe receptor, and complement receptor-type 3 

(CR3)-dependent processes. Their conclusion was, however, that the most efficient and major 

uptake of this organism is dependent on CR3-mediated phagocytosis and concluded that the 

principal receptor for C. albicans on murine macrophages is CR3 (CD 11 b/CD 18) (Szabo et 

al., 1995). A mannose specific lectin-like receptor on splenic and lymph node macrophages 

has been described by others as mediating adhesion to C. albicans (Cutler, 1991). Using an 

ex vivo binding assay, adhesion of C. albicans yeast to lymph node macrophages was not 

blocked with laminin or fibronectin (final concentrations 100 nM)(Han et al., 1993). 

However, C. albicans adherence in the ex vivo assay was blocked by C. albicans purified 

carbohydrates which were eluted from a Con A column with a-methyl-D-mannopyranoside 

(Han et al., 1993). The Han et al. study was consistent with earlier studies which the authors 

believed showed that integrins were not involved in C. albicans adherence to splenic zone 

macrophages (Kanbe et al., 1993). Murine and human PMN also appear to utilize Mac-1 as 

the principal receptor for adhesion to C. albicans similar to macrophages (Szabo et al., 1995). 
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Bober et al. also recently demonstrated that CR3, CRl (CD35; an immunoglobulin 

superfamily member which binds C3b, and Fe receptors were involved in PMN-mediated 

killing of C. albicans blastospores (Bober et al., 1995). These data are consistent with the 

extensive data demonstrating S. cerevisiae binding by Mac-1 on macrophages and PMN (Ross 

et al., 1985; Sehgal et al., 1993; Thornton et al., 1996). A recent allergy study supporting 

the similarity between S. cerevisiae and C. albicans cell wall carbohydrates demonstrated that 

specific murine serum IgE directed against S. cerevisiae glucomannans was 100 % eliminated 

by preadsorption with C. albicans glucomannans (Nermes et al., 1995). It is known that a 

common cross-reactive carbohydrate epitope exists between Pneumocystis carinii and 15 other 

opportunistic fungi such as S. cerevisiae and C. albicans (Lundgren et al., 1992). In contrast 

to the ECM and RGD peptide data discussed above for epithelial and endothelial cells, these 

data support the concept that lymphocytes, macrophages, and PMN all utilize CD11b/CD18 

for adhesion to C. albicans. 

Finally, and relevant to the discussion which follows, Senet et al. have demonstrated 

that murine and human platelets adhere to C. albicans yeast and hyphae via the integrin a 1Ib(33 

(Calderone et al., 1994). Interestingly, a 1Ib(33 exhibits "ligand induced activation of binding" 

in which this (33 integrin is activated by and then binds to specific ligands (Du et al., 1993), 

as has been recently shown for Mac-1 adhesion to ICAM-2 (Li et al., 1995), and is proposed 

for Mac-1 adhesion to C. albicans in this study. Consistent with a picture of ligand induced 

activation of adhesion, pre-activated platelets were found to adhere far less than non-activated 

platelets (Mahaza et al., 1991; Robert et al., 1992) and not by a 11b(33 but by ECM proteins 

expressed on the activated platelet surface. A 45 kD mannoprotein on the surface of C. 

albicans has recently been identified as the ligand for resting platelets (Calderone et al., 

1994). Whether this same 45 kD mannoprotein is a ligand for Mac-1 as well remains to be 
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investigated. However, it represents an excellent candidate ligand considering the fact that 

two separate groups have identified specific mAbs that bind only to CD1lb/CD18 and aub/33• 

One mAb (7E3) blocks function of both integrins but reacts with them only in their activated 

state (Altieri and Edgington, 1988). A second newly described mAb (25El 1) directed against 

a 11b/33 also blocks adhesion function of both integrins and does not require integrin activation 

for reactivity (De Nichilo et al., 1996). Such cross-reactivity between functional blocking 

mAbs for two distinct integrins in different /3-chain subfamilies is unique for these two 

integrins (De Nichilo et al., 1996). Another mAb (mAb 24) is known to react with multiple 

{32 integrins and recognizes an activation specific epitope common to CDlla, CDllb, and 

CDllc, but does not block adhesion (Dransfield and Hogg, 1989). However, it does appear 

to block deadhesion. Like the /32 integrins, the {33 integrins require activation to bind specific 

ligands (Du et al., 1993). The integrin aub/33 is considered an RGD-inhibitable integrin when 

activated (Hynes, 1992; Du et al., 1993; Loftus et al., 1993). A 45% overall sequence 

homology exists between CDllb and aub (Corbi et al., 1988j. In addition, greater than 80% 

sequence homology exists in the sequences involved in CD 11 b/CD 18 and aub/33 adhesion to 

RGD-mimetic peptides through a MIDAS domain in the CDl lb I domain and a MIDAS 

domain found on the {33 chain (Corbi et al., 1988; Loftus et al. 1994; Bajt et al., 1995). 

These mAb and sequence data provide solid physical evidence for a functionally important 

epitope shared by these two integrins (De Nichilo et al., 1996), and provide evidence that 

activated Mac-1 could interact with an RGD-mimetic ligand on the surface of C. albicans in a 

manner similar to activated a 11b/33 on platelets. 

It should not be too surprising that the CR3 (Mac-1) complement receptor mediates 

adhesion of lymphocytes to C. albicans, or that C. albicans expresses complement binding 

proteins. Several complement receptors have been demonstrated to mediate adhesion to 
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microorganisms including CRl, CR2, CR3, CR4 (p150,95), MCP, and DAF (Cooper, 1994). 

Conversely, most microorganisms including viruses, bacteria, fungi, and protozoan parasites 

also express a continually growing list of molecules to co-opt, subvert, and evade the 

mammalian complement defense system (Joiner, 1988; Cooper, 1994). Also, other integrins 

in addition to CD 11 b/CD 18 have been demonstrated to mediate adhesion to a wide variety of 

nonopsonized and opsonized microbial pathogens. At least 21 integrins have been identified · 

to date and 12 of these have now been proven to bind microorganisms and viruses (Isberg and 

Nhieu, 1994). Organisms that have been shown to bind to the CD11b/CD18 integrin directly 

without opsonization include the fungi Blastomyces dermadititis (Newman et al., 1995), 

Histoplasma capsulatum (Bullock and Wright, 1987), Saccharomyces cerevisiae (Ross et al., 

1985), and probably Cryptococcus neoformans (Levitz et al., 1994). Other pathogens binding 

directly to Mac-1 include HIV (Thieblemont et al., 1993), Bordatella pertussis (Reiman et 

al., 1990), Leishmania spp. (Mosser and Edelson, 1985), Escherichia coli (Gbarah et al., 

1991), Mycobacterium spp. (Rao et al., 1993), and the hookworm Ancyclostoma caninum 

(Muchowski et al., 1994). Microorganisms binding directly to other integrin receptors 

include Yersinia spp. (lsberg and Leong, 1990), Borrelia burgdorferi (Coburn et al., 1993), 

Echovirus 1 (Bergelson et al., 1992), Adenovirus 2 (Wickham et al., 1993), and foot-and­

mouth disease virus (Mason et al., 1994). In addition a number of microorganisms have been 

shown to bind to the CD11b/CD18 integrin after opsonization including Cryptococcus 

neoformans (Levitz and Tabuni, 1991), Leishmania sp. (Mosser et al., 1992), Rhodococcus 

equi (Hondalus et al., 1993), West Nile virus (Cardosa et al., 1983) and HIV (Dierich et al., 

1993; Thieblemont et al., 1993). In the cases of Bordatella and Leishmania adhesion to 

CD1lb/CD18 and adhesion of Yersinia ({3 1 integrins), Borrelia (anb/33 integrin), and foot-and­

mouth disease virus ({33 integrins) to integrins, inhibition of binding with RGD-mimetic 
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peptides has been demonstrated. An RGD-containing sequence mediates attachment of 

Bordatella FHA glycoprotein to CD11b/CD18 on macrophages (Reiman et al., 1990), while 

it is also clear that Yersinia species interact with {31 integrins via the {31 GRGDSPK binding 

site via the protein invasin using an RGD-mimetic sequence with a key aspartate that contains 

no "RGD" sequence per se (Nhieu and lsberg, 1991). Of relevance to the present study, the 

WI-1 molecule with homology to invasin has been cloned from another dimorphic fungus 

Blastomyces dermatiditis (Klein et al., 1993), and shown to mediate adhesion to CD1lb/CD18 

on macrophages (Newman et al., 1994). The expression of WI-1 correlates with adhesion 

and virulence of B. dermatiditis and is a major target of cell mediated immunity to B. 

dermatiditis (Klein et al., 1992; Klein et al., 1994). Relevant to the model for Mac-1 

activation by carbohydrates on C. albicans proposed later, the expression of surface B. 

dermatiditis a-1,3-glucan also correlates with virulence (Hogan and Klein, 1994). In 

summary, integrins in general and specifically CD11b/CD18 mediate adhesion of a growing 

list of microorganisms to mammalian cells. 

The {32 leukocyte integrins are only expressed on cells of the immune system 

(Kishimoto et al., 1989; Springer, 1990; Amaout, 1990; Anderson, 1994). Mac-1 

(Macrophage- I Antigen) was originally defined as a myeloid cell specific marker (Springer et 

al., 1979) but is now known to be expressed on macrophages, dendritic cells, PMN's, 

eosinophils, basophils, mast cells, large granular lymphocytes (including NK cells), B cells 

(especially cos+), and T cells (especially cos+) (Hoshino et al., 1993; Anderson, 1994). 

The expression of CD 11 b/CD 18 on cells of the murine immune system (Timonen et al., 

1990; McFarland et al., 1992; Razvi et al., 1995) and the human immune system (Hoshino et 

al., 1993, Jaaskelainen et al., 1992; Robertson et al., 1990) can be considered the same. 

CD11b/CD18 is expressed by virtually all monocytes/macrophages and PMN's, and 45% of 
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peripheral blood lymphocytes (PBL) overall including: 85-95% of NK cells, 15-30% of 

peripheral T cells (about 90% cog+ /10% CD4 +), and 10-30% of peripheral B cells (Patel et 

al., 1983; McFarland et al., 1992; Diamond and Springer, 1993; Hoshino et al., 1993). 

CD1lb/CD18 expression is dramatically upregulated in both murine and human IL-2 activated 

lymphocytes to expression of 60 % or greater on large granular lymphocytes (Timonen et al., 

1991; McFarland et al., 1992; Dianzani et al., 1989). Interestingly, Mac-1 has several 

potential glycosylation sites (18 human/17 murine) and may be differentially glycosylated in 

different cell types (Kishimoto et al., 1989). The structure of murine and human 

CD1lb/CD18 are also very similar. There is a 74% sequence identity (over 85% if 

conservative substitutions are allowed) between murine and human CDl lb and each is 1137 

amino acids in length with a 26-amino acid transmembrane domain and a 19-amino acid 

cytoplasmic domain (Corbi et al., 1988; Pytela, 1988; Amaout et al., 1988). Both murine 

and human Mac-1 contain seven "homologous repeat" regions in which 13 conserved 

cysteines are found with homology to the 'BF-hand' calcium binding proteins calmodulin and 

troponin. Both human and murine Mac-1 contain a 200 amino acid inserted domain ("I 

domain") in the N-terminal portion (amino acids 128-314) containing the MIDAS adhesion 

motif (Lee et al. 1995; Bergelson and Hemler, 1995) and hydrophobic residues with 

homology to collagen binding proteins (Corbi et al., 1988; Amaout, 1990). In the 

cytoplasmic, transmembrane, homologous repeats, and I domain regions implicated in 

modulating direct ligand interactions, human and murine CDllb have greater than 90% 

sequence identity (Fleming et al., 1993). In addition, both the human and mouse cDNA 

contain a conserved 5 '-untranslated region containing consensus sequences for interferon 

response elements (Pytela, 1988). 

The {32 integrin subunits of murine CD18 (770 amino acids) and human CD18 (769 
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amino acids) proteins are also very similar with 82 % sequence identity overall and 100 % 

conservation of 56 characteristic cysteine residues (Wilson et al., 1989). Little comparison 

has been made of mAbs which react with murine versus human CD 11 b/CD 18 except the 

initial mAb (Ml/70) used to identify Mac-1 in mice also reacts with and blocks function of 

human Mac-1 (Springer et al., 1979). Similarly, this laboratory has previously demonstrated 

both mIAL and hIAL are equally capable of adhesion to and growth inhibition of C. albicans 

hyphae (Beno and Mathews, 1992). Recently, gene targeting has yielded a CD18 'knockout' 

mouse which is intended as a valuable model of human Leukocyte Adhesion Deficiency 

(LAD) (Wilson et al., 1993). Overall then, the critical structural and functional 

characteristics of murine and human Mac-1, as well as that of other mammals (Fleming et al., 

1993), have been tightly conserved during evolution and the murine model is a relevant 

representation of human Mac-1 function and vice versa. 



CHAPTER 2. 

MATERIALS AND METHODS 

Mice 

C57Bl/6 and BALB/c female mice, ages 6 to 7 weeks, were obtained from Jackson 

Laboratory, Bar Harbor, ME. Mice were 6 to 12 weeks of age when used in experiments. 

BALB/c mice were used solely for the preparation of monoclonal antibody containing ascites 

fluid. All mice used were housed in an AAALAC approved facility at Loyola University 

Medical Center. 

Fungal Culture 

Candida albicans (#58716, ATCC, Rockville, MD) was obtained from Dr. T. 

Hashimoto, Loyola University of Chicago, Maywood, IL, and used throughout this 

investigation. Cultures were stored at 25°C on Sabouraud's dextrose agar (SDA) (Becton 

Dickinson, Lincoln Park, NJ). Cells used for experimentation were cultured overnight at 

37°C on SDA, collected as isolated colonies, and washed once in complete Hank's Balanced 

Salt Solution (HBSS) containing sodium bicarbonate, pH 7.4 (GIBCO, Grand Island, NY). 

Yeast cultures were enumerated microscopically and those with greater than 15 % budding 

were discarded. Clinical isolates of C. albicans were obtained from the Clinical 

Microbiology Laboratories of the Loyola University Medical Center, Maywood, IL. 

16 
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Mammalian Cells 

Mouse polymorphonuclear leukocytes (PMN) were elicited by intraperitoneal (i.p.) 

injection of 1.0 ml Thioglycollate Broth (Difeo Labs, Detroit, Ml). Three hours later the 

peritoneal cavity was washed with 10 ml of HBSS, the elicited cells enumerated and placed in 

culture medium at a concentration of 2.5 x 106 cells/ml in multiwell plates for 18 hat 37°C 

and 5 % CO2 • Non-adherent cells were recovered and were found to be greater than 90 % 

PMN as judged by Wright-Giemsa staining. Human erythrocytes were obtained from 

peripheral blood using a one-step Ficoll-Hypaque density gradient (Sigma Chemical Co., St. 

Louis, MO), washed twice in HBSS, and were greater than 99.99% erythrocytes as judged by 

Wright-Giemsa staining. The murine tumor cell lines EL-4 (thymoma; ATCC, Rockville, 

MD) and NYC (B cell; a gift from Hans-Martin Jack, Loyola University, Chicago, IL), and 

P3-X63-Ag8.653 (myeloma; a gift from Charles F. Lange, Loyola University of Chicago, 

Maywood, IL) are maintained routinely in this laboratory as detailed for YT lymphocytes, 

except without the addition of conditioned medium. For 51Cr labeling of mammalian cells, 

100 µ,Ci of 51Cr (NEN Dupont, Wilmington, DE) were added to 107 mammalian cells in a 

final volume of 0.2 ml of HBSS. The cells were incubated at 37°C with 5 % CO2 for 1 h 

with agitation every 10 min, washed 3 times in HBSS, and enumerated with a hemocytometer. 

LGL-like YT Lymphocyte Cell Line 

Human leukemia, large granular lymphocyte (LGL)-like "YT" lymphocytes were 

originally obtained from E. Kovacks, Loyola University of Chicago, Maywood, IL. A 

subline of these original lymphocytes was selected in our laboratory as described previously 

(Forsyth and Mathews, 1993). These lymphocytes were cultured at 5 x 104 cells/ml in Falcon 

24-well plates (Becton Dickinson, Lincoln Park, NJ) in RPMI 1640 media supplemented with 
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10% fetal bovine serum (FBS) (Sigma Chemical Co., St. Louis, MO), 50 µM 

mercaptoethanol (2-ME), 100 U/ml penicillin, 100 µg/ml streptomycin, 100 µM nonessential 

amino acids, and 2 mM L-glutamine (all from GIBCO, Grand Island, NY). Lymphocytes 

were passaged every 2 days with the addition of 2.5 % 2-day spent culture conditioned 

medium. YT lymphocytes may also be referred to as lymphocytes or LGL throughout. 

/L-2 Activation of Murine and Human Lymphocytes 

For murine IL-2 activated lymphocytes (mlAL) spleens from untreated mice were 

aseptically removed. Single cell suspensions were prepared by dissociating the spleen through 

a 60-gauge wire mesh with the hub of a syringe. Spleen cells were washed once in HBSS 

prior to placement in culture medium containing 50 µM 2-ME at a concentration of 2.5 x 106 

cells/ml with 1500 U/ml IL-2 (Hoffman-LaRoche, Nutley, NJ) in Falcon, 24-well plates 

(Becton Dickinson, Lincoln Park, NJ). Non-adherent cells were harvested following 

incubation for 4-6 days at 37°C, overlaid onto Lymphocyte Separation Medium (Litton 

Bionetics, Kensington, MD) and centrifuged at 1000 x g for 20 min. The cells at the 

interface were washed twice with HBSS prior to assessment of growth inhibitory activity. 

These splenocytes were >99% lymphocytes as judged by Wright-Giemsa staining. 

For human IL-2 activated lymphocytes (hIAL), human peripheral blood mononuclear 

cells were obtained by venipuncture from normal healthy volunteers and isolated with 

Lymphocyte Separation Medium as described above. The cells were placed in culture with 

IL-2 and processed identically as described above for mouse splenocytes. 

NIH 3T3 Fibroblast Transfected Clones 

The experiments described herein with NIH-3T3 cells (National Institutes of Health, 
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Bethesda, MD) utilize two transfected clones of this murine fibroblast cell line which were the 

gift of Robert F. Todd, III (The University of Michigan School of Medicine, Ann Arbor, 

Ml). The description and characterization of these cells has been detailed previously (Krauss 

et al., 1994). Briefly, NIH-3T3 cells were transfected by calcium phosphate precipitation 

with a mixture of 1.5 µg of pSV2neo, 5 µg of pBACDllb containing human CDllb cDNA 

(a gift of D. Hickstein, University of Washington, Seattle, WA), 5 µg of pCMVBACD18 

containing human CD18 CDNA, and 5 µg of human CD16 cDNA (a gift of Brian Seed, 

Massachusetts General Hospital, Boston MA) as described previously (Krauss et al., 1994). 

Twenty-five G418-resistant colonies were expanded and screened for their expression of 

CDllb, CD18 and CD16 by indirect immunofluorescence. 

Of the 3T3 fibroblast clones characterized by those authors, two clones were sent to 

this laboratory as frozen aliquots and immediately thawed and grown to numbers sufficient for 

use in the C. albicans hyphae adhesion assay protocol and maintained in continuous culture as 

adherent cells. Clone 3-1 (3T3-1), while subjected to the complete transfection protocol 

expressed no surface CD11b/CD18 or CD16, but must as a minimum contain the transfected 

PSV2neo plasmid for G418 selection. Clone 3-19 (3T3-19) expressed abundant surface 

CD1lb/CD18 and no CD16. These phenotypes were confirmed upon receipt and at regular 

intervals with immunofluorescent microscopy using the anti-human CDllb mAb OKMl and 

the anti-human CD18 mAb TSl/18 as described below. 

3T3 cells were maintained at 37°C as described for lymphocytes and were grown in 

Falcon 75 mm2 tissue culture flasks (Becton Dickinson, Lincoln Park, NJ) in Dulbecco's 

Modified Eagles's Medium (DMEM) with 4500 mg glucose/L with sodium pyruvate and L­

glutamine (GIBCO, Grand Island, NY) supplemented with 10% PBS (Sigma Chemical Co., 

St. Louis, MO), 50 µM 2-ME, 100 U/ml penicillin, 100 µg/ml streptomycin, 25 ng/ml 
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amphotericin B, 100 µ,M nonessential amino acids, and 2 mM L-glutamine (all from GIBCO, 

Grand Island, NY). Cells received fresh media every 3 d and were passaged every 7-14 d 

when nearly confluent. Cells for passage or use in experiments were removed from the tissue 

culture flasks with a solution of HBSS without Ca2 + or Mg2+ (HBss-1-; GIBCO, Grand 

Island, NY) pH 7.4 containing Tris-base to adjust pH and 10 mM EDTA (Sigma Chemical 

Co., St. Louis, MO). Non-adherent 3T3 fibroblasts were than washed once in HBss-1- pH 

7.4 without EDT A and resuspended in DMEM media for passage or HBss-1- to minimize 

clumping during labeling with 51Cr for use in the adhesion assay. Cells were 51Cr labeled as 

described below for lymphocytes and then washed and resuspended in HBSS (for at least one 

hour) also as described below for lymphocytes with resultant 51Cr uptake and radioactive 

labeling approximately equal to that seen with YT lymphocytes (i.e. 5 x 104 cpm ± 2000 / 5 

x 104 cells). 

Phenotypic Analysis Using Monoclonal Antibodies 

The monoclonal antibodies (mAbs) used in this study were verified to bind to 

lymphocytes and 3T3-19 fibroblasts before and after the mAbs were used in experimentation 

by indirect immunofluorescence with mAbs by utilizing them with an appropriate anti-mouse, 

anti-rat, or anti-hamster secondary antibody. Each secondary antibody was titrated for each 

cell type and number to achieve minimal background baseline immunofluorescence. In these 

microscopic determinations, randomly chosen groups of 100 cells were scored on an arbitrary 

scale of 0-4 + in which O represented negative fluorescence equivalent to background and 1 + -

4 + were increasing magnitudes of brightness. 
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£. albicans Growth Inhibition 

The anti-fungal activity of lymphocytes for C. albicans was determined as described 

previously (Beno and Mathews, 1993). For mAb blocking studies, cells were preincubated 

with mAbs as described for adhesion inhibition below. Briefly, fungal cells used for 

experimentation were collected from isolated, overnight SDA colonies, and washed once in 

HBSS. Yeast form cells were resuspended to 2 x HP/ml in RPMI 1640 (without serum 

unless specified). 104 cells were then added to individual wells of 96 well, flat bottom plates 

(#25861; Corning, Coming, NY). C. albicans hyphal forms were obtained by incubation at 

37°C in 5 % CO2 for 2 h. Effector cells were then added at ratios from 100: 1 to 2.5: 1. After 

3 h incubation at 37°C in 5 % CO2, effector cells were lysed and removed by washing with 

water using a PHO cell harvester (Cambridge Technology, Cambridge, MA). RPMI 1640 

(50 µL) containing 1 µCi of 3H-uridine (ICN Radiochemicals, Irvine, CA) was added to 

individual wells. Following 1 h incubation at 37°C, 5 % CO2, 25 U lyticase (Sigma Chemical 

Co., St. Louis, MO) in 50 µL HBSS was added to individuai wells for 0.5 hat 25°C. 

Hyphae were harvested and associated radioactivity determined. Growth inhibition was 

determined and expressed as percentage inhibition of C. albicans growth as judged by 

associated 3H-uridine as follows: 

% Inhibition = 1 _ (experiment dpm - background dpm) 

(maximum dpm - background dpm) 
X 100. 

Data are calculated from mean % inhibition for triplicate values of two or more experiments. 

Maximum dpm was obtained from wells in which effector lymphocytes were not added. 

51Cr-La.beling of Mammalian Cells 

100 µCi of 51Cr (NEN, Dupont Inc., Wilmington, DE) were added to 1 x 107 



mammalian cells in a final volume of 0.2 ml of HBSS. The cells were incubated at 37°C 

with 5 % CO2 for 1 h with agitation every 10 min, washed 3 times in HBSS and enumerated 

with a hemocytometer. 

Adhesion of Lymphocytes and 3T3 Fibroblasts to £. albicans Hyphae 

This assay is an adaptation of previously described procedures which utilize 51Cr 

labeled cells to quantify cellular binding to substrate (Dustin and Springer, 1989; Van 

Seventer et al., 1991). Briefly, C. albicans hyphae were prepared by growth in RPMI 1640 

without serum for 3 hat 37°C in flat-bottomed 96-well plastic plates (Corning, Corning, 
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NY). Preliminary studies also utilized test tubes (12 x 75) of borosilicate glass and 

polystyrene (Corning, Corning, NY). After 3 h 90%-100% confluence of hyphae was 

obtained when la5 yeast were delivered initially to each well of these assay plates. 51Cr 

(NEN, Dupont Inc., Wilmington, DE) labeled lymphocytes were added to individual wells of 

the assay plates and incubated in a 5 % CO2 incubator at 37°C for 1 h. The assay was 

terminated by washing and removal of unbound lymphocytes from each well either with a 

pasteur pipet ("hand washing") with subsequent 3 x wash with 200 µl of HBSS, or by use of a 

multiple automated sample harvester (MASH) (PHO Cell Harvester, Cambridge Scientific, 

Cambridge, MA). The assay wells were washed three times with HBSS or 0.9% saline and 

200 µl of 0.5% NP-40 (Sigma Chemical Co., St. Louis, MO) was added to each well for 20 

min. The 0.5% NP-40 containing supernates were removed with a pasteur pipet and 

associated radioactivity determined. 

Results are expressed as percentage cells bound as judged by the associated [51Cr] as 

follows: 

% Bound = (experimental cpm) - (background cpm) X 100. 
(maximum cpm) - (background cpm) 
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Maximum cpm release was obtained by adding 0.5% NP40 directly to mammalian 

cells. Experimental means were calculated from triplicate values from two or more 

experiments. Maximum cpm release was obtained by adding 0.5% NP-40 directly to 

radioactively labeled lymphocytes. Typical maximum cpm for 5 x 104 YT lymphocytes or 5 

x 104 and NIH 3T3 fibroblasts was 5 x 104 cpm ± 3%, while typical maximum cpm for 105 

murine and human IAL was 4 x 104 cpm ± 3 % . Typical background values were usually 

less than 1 % of maximum cpm for all the experiments and were typically determined to be 

500 cpm ± 100 for the YT and 3T3 fibroblast experiments and 400 cpm ± 100 for the IAL 

experiments by adding equivalent 51Cr to wells containing only C. albicans hyphae, washing 

as described above, and adding 0.5% NP-40 and determining the associated radioactivity. 

Data are calculated from mean % adhesion for triplicate values of two or more experiments. 

Competition for Binding of Lymphocytes and 3T3-19 Fibroblasts to£, albicans Hyphae 

This procedure was performed as described previously for the adhesion of 

lymphocytes to C. albicans, except that 5 x 104 radiolabeled YT lymphocytes or 3T3 cells, or 

la5 IAL were preincubated for 1 h with the indicated unlabeled YT cells, proteins, peptides, 

carbohydrates or antibodies at 37°C in 200 µl HBSS. This preincubation step was carried out 

in a 96-well polystyrene plate (Corning, Corning, NY) that had been pretreated with sterile 

1 % bovine serum albumin (BSA) (Sigma Chemical Co., St. Louis, MO) in HBSS at 25°C 

overnight and washed once with HBSS prior to addition of lymphocytes or 3T3 cells. The 

entire 200 µl preincubation mixture was transferred to wells containing C. albicans unless 

otherwise noted. In experiments in which free ligand was removed by washing, 5 x 105 YT 

lymphocytes in 1 ml HBSS were preincubated in 12 x 75 mm polystyrene culture tubes 

(Baxter Healthcare Corp., McGaw Park, IL) that had been treated at 4 ° C overnight with 
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sterile 1 % BSA in HBSS and washed once with HBSS. Incubation with proteins, peptides or 

antibodies was for 1 h in HBSS at 37°C at the indicated concentrations. YT lymphocytes 

were then washed twice in HBSS, resuspended in HBSS and aliquots of 5 x 104 YT 

lymphocytes were added to individual wells containing C. albicans and the assay completed as 

described above. In complementary experiments, hyphae were preincubated with proteins, 

peptides or antibodies for 1 hat 37°C in HBSS and then washed twice with HBSS and the 

capacity of untreated YT lymphocytes to bind to these treated hyphae was determined as 

described above. 

For all inhibition experiments, associated radioactivity was determined and expressed 

as percentage inhibition of cells bound to hyphae as judged by associated [51Cr] as follows: 

% Inhibition = 1 _ (experiment CPM - background CPM) 

(maximum CPM - background CPM) 
X 100. 

Maximum cpm release was obtained by adding 0.5 % NP40 directly to radioactively labeled 

YT cells. Data are calculated from mean % inhibition for triplicate values of two or more 

experiments. 

Scanning Electron Microscopy 

Scanning electron microscopy was accomplished with a JEOL 64OA scanning electron 

microscope. Specimens of YT lymphocytes and C. albicans hyphae were allowed to adhere 

for one hour, then dehydrated with graded concentrations of acetone and critical point dried 

before microscopy. 

Western Blot Analysis of IT Lymphocyte CDllb 

Immunopurification was carried out as described previously (Altieri and Edgington, 

1988). YT lymphocytes (2 x 107/ml) were lysed in buffer containing: 1 % NP-40, 1 % Triton 
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X-100, 0.05 M Tris-HCl, 0.15 M NaCl, 0.5% BSA, 2 mM PMSF, and 0.5 U/ml aprotinin 

(all from Sigma Chemical Co., St. Louis, MO) at pH 8.3 for 30 min at 4°C. Cell nuclei and 

other cellular debris were removed by centrifugation at 15,000 x g for 30 min and dialyzed 

overnight to remove Triton X-100. Antigen-antibody complexes were formed by incubating 1 

ml of lysate with 50 µl of undiluted anti-CDllb (LM2/l) mouse ascites at 4°C for 4 h. The 

LM2/1 mAb is known to immunoprecipitate the intact CD1lb/CD18 heterodimer (Altieri and 

Edgington, 1988). This solution was then passed over a recombinant protein A/G column 

(Pierce, Rockford, IL) at pH 8.0., and bound material was eluted with 0.1 M sodium acetate 

pH 2.0 (adjusted quickly to pH 7.4 with 2 M Tris-base), monitored for protein content by uv 

absorption at 206 nm, and collected as 2 ml fractions. Fractions containing peak protein 

concentration at 206 nm were adjusted to 1 mg/ml in a solution containing 2 % SOS with TBS 

pH 6.8, containing 50 mM 2-dithiothreitol (Sigma Chemical Co., St. Louis, MO) as a 

reducing agent. Samples were boiled for 5 min at 100°C, and then clarified by centrifugation 

at 14,000 x g for 5 min. This solution was loaded, 20 µg per lane, and electrophoretically 

separated on 6% polyacrylamide gels with SOS at 200 Vas described (Laemmli, 1970). 

Sample buffer solutions containing molecular weight standards (Gibco, Grand Island, NY) 

were similarly analyzed in adjoining lanes. Proteins were transferred to PolyScreen PVDF 

membranes (DuPont NEN Research Products, Wilmington, DE) at 4°C and 80 mA overnight. 

Blot transfers were blocked for 2 hat room temperature in 50 mM Tris-HCl (pH 7.5), 200 

mM NaCl, 0.05 % Tween 20 (TBST) plus 5 % BSA (Sigma Chemical Co., St. Louis, MO), 

followed by overnight incubation with anti-CDllb (OKMl) (0.5 mg/ml PBS) diluted 1:150 in 

TBST plus 5% BSA at 4°C. After three 10 min washes in TBST, membranes were incubated 

for 1 h at room temperature with horseradish peroxidase labeled sheep-anti-mouse IgG 

antibody, diluted 1:4000 (Sigma Chemical Co., St Louis, MO). Following three washes in 



TBST, membranes were incubated for 1 min with the Chemiluminescence Reagent (NEN, 

Dupont Inc., Wilmington, DE). Emitted light was captured on Dupont Reflection 

autoradiography film for a 30 sec exposure. Only the portions of the membrane developed 

above the 66 kD molecular weight are shown. 

Proteins, Peptides, and Carbohydrates 
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Proteins and peptides used in this investigation were: human albumin, human 

complement component C3, echistatin, human Factor X, human fibrinogen, human fibronectin 

(from plasma), Fibronectin-like Engineered Protein (FEP), Fibrinogen Binding Inhibitory 

Protein (FBIP: HHLGGAKQAGDV, residues 400-411 from human fibrinogen--y fragment), 

heparin sulfate, chicken egg lysozyme, MHC antigen H-2Kb fragment 163-174: 

TCVEWLRRYLKN, and the peptides GRGDSPK, GRGDTP, GRYDS, RGD, and RGDS 

(Sigma Chemical Co., St. Louis, MO); human laminin from placenta (lamininp), human 

vitronectin, GRGDSP peptide, PepTite-2000 (PT-2000) and Cyclic GPenGRGDSPCA 

(GRGDSPc) peptide (Telios Pharmaceuticals, San Diego, CA); mouse laminin from EHS cells 

(Gibco, Grand Island, NY); GRGDSP peptide (Peninsula Laboratories, Belmont, CA). The 

carbohydrates used were: N-acetyl-D-glucosamine (NADG), D-galactose, /3-glucan (from 

bakers yeast and barley, prepared as in: Ross et al., 1985; and D-glucose, D-mannose, 

methyl a-D-mannopyranoside, sucrose, and zymosan (Sigma Chemical Co., St. Louis, MO); 

and LPS type B from S. enteritidis (Difeo Laboratories, Detroit, Ml). 

Monoclonal Antibodies 

The mAbs used in these experiments have been summarized for clarity (Table 1.) 

Anti-human murine mAbs were purchased or purified from hybridoma culture supernates, or 



Table 1.--Monoclonal Antibodies Used 

Antigen MAb Origin Isotype Purified 

murine CD 11 b Ml/70 rat IgG2b yes 

murine CD 11 b 5C6 hamster IgG yes 

murine CD18 M18/2.A rat lgG2a yes 

murine CD18 2E6 hamster lgG yes 

murine CD 11 a M17/4.4 rat lgG2b yes 

murine CD llc N418 hamster IgG yes 

murine CD29 anti-/31 rat lgG2b yes 

human CDllb OKMl mouse IgG2b yes 

human CDllb MY904 mouse lgG1 yes 

human CDllb MN-41 mouse lgG1 yes 

human CDllb LM2/1 mouse lgG1 yes 

human CD18 IB4 mouse IgG2a yes 

human CD18 TSl/18 mouse lgG1 yes 

human CDllb TMG6-5 mouse IgG1 ascites 

human CDllb LPM19c mouse IgG2a ascites 

human CDlla TSl/22 mouse lgG1 yes 

human CD51 anti-av mouse IgG1 yes 

human CDllc SHCL-3 mouse lgG1 yes 

human CD29 anti-/31 mouse IgG1 yes 

human CD58 anti-LFA3 mouse IgG1 yes 

human CD30 HEFl mouse IgG1 yes 

human CD61 anti-/33 mouse IgG1 yes 

as noted below for LPM19c and TMG6-5 were used as ascites. All other mAbs utilized for 

blocking studies were used as purified mAb. Hybridoma cells were grown under conditions 
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as specified by ATCC (ATCC, Rockville, MD), from which all were obtained. The anti-

murine mAb hybridomas and animal of origin used were as follows: Ml/70.15 ( rat anti­

mouse CDllb, lgG2b), 5C6 Clone 1 (hamster anti-mouse CDllb, lgG), M18/2.A (rat anti­

mouse CD18, lgG2a, kappa), 2E6 (hamster anti-mouse CD18, lgG), M17/4.4.11.9 (rat anti­

mouse CDlla, lgG2b, kappa), N418 (hamster anti-mouse CDllc, lgG). 

Purchased anti-murine mAbs were: rat anti-mouse CD29 (/31 integrin),lgG2b, and 

FITC labeled secondary goat anti-rat lgG (Becton Dickinson, Lincoln Park, NJ). The FITC 

secondary used for hamster lgG antibody was FITC goat anti-mouse (Accurate Chemical and 

Scientific Corp., Westbury, NY). 

The mouse anti-human mAbs used were as follows: OKMl (anti-CDllb, lgG2b), 

MY904 (anti-CDllb, lgG1), LM2/1 (anti-CDllb, lgG1) and TSl/18 (anti-CD18, lgG1) (all 

from ATCC, Rockville, MD). These antibodies were purified from mouse ascites using a 

column of recombinant protein A/Gas described by the manufacturer (Pierce, Rockford, IL). 

TMG6-5 (anti-CDllb, lgG1) was used as ascites and was a generous gift of Dr. Istvan Ando 

(Hungarian Academy of Sciences, Szeged, Hungary). LPM19c (anti-CDl lb, lgG2J was used 

as ascites and was a generous gift of Dr. K. Pulford (Radcliffe Hospital, Oxford, UK). MN-

41 (anti-CDllb, lgG1) was used as purified antibody generously provided by Dr. Gordon 

Ross (Univ. of Louisville, Louisville, KY). IB4 (anti-CD18, lgG2J was used as purified 

antibody and was the generous gift of Dr. Samuel Wright (Rockefeller Univ., New York, 

NY) and Dr. Elaine Tuomanen (Rockefeller Univ., New York, NY). HEFl (anti-CD30, 

lgG1) was used as purified antibody and was a generous gift of Dr. Hans-Martin Jack (Loyola 

Univ. Chicago, Maywood, IL). TSl/22 (anti-CDlla, lgG1) and TS2/9 (anti-CD58, lgG1) 

were used as purified antibodies and a generous gift of Dr. Tom Ellis (Loyola Univ. Chicago, 

Maywood, IL). Purified monoclonal antibodies which were purchased included: anti-human 



integrin av (CD51), IgG1, clone VNR147 and anti-human (31 integrin (CD29), IgG1, clone 

P4C10 (both from Telios Pharmaceuticals, San Diego, CA); and anti-human p150,95 

(CDllc), IgG1, clone SHCL-3, and anti-human (33 (CD61), IgG1, clone #550036, (Becton 

Dickinson, Lincoln Park, NJ). All anti-human antibodies were of mouse origin and the 

secondary antibody used for immunofluorescence analysis was FITC goat anti-mouse 

(Accurate Chemical and Scientific Corp., Westbury, NY). Protein concentrations were 

determined by the BCA assay (Pierce, Rockford, IL). 

Statistical Analysis 
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Linear regression plots were constructed from data for the labeled individual matrix 

proteins and Student's t-tests were performed for the data in Figure 13 using the computer 

graphing software Sigmaplot (Sigmaplot 4.1 © 1991, Jandel Corp.). The concentration of 

inhibitor which resulted in 50 % inhibition of cell adhesion to hyphae was estimated by 

dropping a perpendicular to the x-axis from the point of intersection of the linear regression 

plot for that inhibitor and 50% inhibition using Sigmaplot 4.1 and was designated as the IC50. 



CHAPTER 3. 

RESULTS 

Aim 1. Develop an in vitro Assay System to Quantify Lymphocyte Binding to C. albicans 

Hyphae. 

Radiometric Binding Assay for Quantifying Mammalian Cell Adhesion to £. albicans Hyphae 

In order to identify the principal molecular structures which mediate adhesion of 

rnIAL to C. albicans hyphae, it was first necessary to develop a method to consistently and 

reproducibly quantify this adhesion. The purpose of this series of experiments was to develop 

an in vitro assay with which to quantifiably measure mammalian cell adhesion to C. albicans 

hyphae and to investigate the usefulness of this assay for evaluating the identity of the 

principal adhesion molecules mediating this interaction. 

The adhesion of several mammalian cell populations to the hyphal form of C. albicans 

was examined using the radiometric binding assay which was developed (Figure 1). Optimal 

lymphocyte adhesion to hyphae was demonstrated with the human LGL-like cell line YT and 

with murine IL-2 activated lymphocytes (rnlAL) and human IL-2 activated lymphocytes 

(hIAL). For YT lymphocytes 15% of maximum total cell numbers bound was achieved with 

104 cells added per well and 50 % of maximum cells bound was obtained with 6 x 104 cells 

added per well. For 1()5 YT per well, the mean percent bound of added cells relative to the 

maximum counts bound was 80 % ± 10 % . Maximum values of total cells bound to hyphae 

30 
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were attained with between 8 x 105 and 106 cells added per assay well. For mIAL and hIAL 

the mean percent bound of added cells was 30% ± 10% when 5 x 104 cells were added while 

the number of cells required to achieve 50 % of maximum total cells bound to hyphae was 

higher at 105 lymphocytes added with maximum numbers of total cells bound using between 

106 and 3 x 106 lymphocytes per well. Therefore, for the later inhibition experiments, the 

cell numbers which yielded 50 % binding were used for comparison: 5 x 104 for YT 

lymphocytes and 105 cells per well for mIAL and hIAL. No apparent adhesion to hyphae was 

observed with human erythrocytes, murine thymocytes, non-activated murine splenocytes, the 

murine T cell thymoma EL-4 or the murine B cell leukemia NYC. Visual inspection of the 

assay wells revealed hyphae bound lymphocytes prior to the addition of NP-40. Associated 

radioactivity correlated visually with the number of lymphocytes bound to the hyphae. No 

lymphocytes appeared to adhere to the plastic of the assay well surface. 

The conditions employed for these assessments were determined to be optimal. To do 

this, the YT lymphocyte cell line was used as a model in exptriments to determine the 

optimal conditions for evaluating lymphocyte adhesion to C. albicans hyphae. YT 

lymphocytes have been demonstrated to inhibit growth of C. albicans hyphae in a manner 

comparable to mIAL and hIAL and therefore represent a relevant model to study IAL 

adhesion to C. albicans hyphae. In the development of this assay procedure comparisons 

were made of methods for immobilization of C. albicans, C. albicans initial cell 

concentration, degree of C. albicans confluence after culture, time and temperature of 

lymphocyte interaction with C. albicans, and the culture medium in which the binding assay 

was performed. Also, tubes (12 x 75) of borosilicate glass and polystyrene plastic were 

evaluated and did not provide the surface necessary for reproducible immobilization of C. 

albicans. The flat surface of the 96 well polystyrene, 
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Figure 1.: Adhesion of various cell types to C. albicans. 105 51Cr labeled cells of each type 
were added to individual wells of 96 well plates containing la5 C. albicans and allowed to 
bind 1 hat 37°C before washing. Adhesion of different cell types to C. albicans was 
assessed by the retention of 51Cr labeled cells. Data are presented as mean % bound ± the 
standard deviation (SD) of 2 or more experiments. selected YT, ♦-♦; original YT, ■-■; 
mIAL, 0-0; hIAL, •-•; murine PMN, ◊-◊; human PMl'', v-v; human erythrocytes, O­

o; EL-4, ..--..-; murine splenocytes, .o.-.o.; human PBMC, •-•. 



f--+----1 
\ 1-+-f 

\ 0 
0 

0 
0 

0 
0 

0 
0

)
 

c:o 
l'-

co 
lD

 

-[%
] 

,H
?l{

d
A

H
 

SU
'D

:J?,Q
7'D

 

1-11-l 

~
 !al 

\ f--+
-{ 

0 
0 

0 
0 

0 
-tj< 

C
") 

N
 -

·:J 
01 

p
u

n
o

g
 S

l18J 

CD 0 

-IO
 0 --.r 0 

-

33 

"O
 

Q
) 

"O
 

"O
 

<t: 
C

l) 

-- Q
) 

u ..... 0 

... Q
) 

..0 
E

 
;:l 
z 

...... Q
) 

·i... 
;j 
tlD

 

·-C:c.. 



34 

tissue culture treated cluster plates provided highly reproducible results and was simpler and 

easier to manipulate. Comparisons of varying cell numbers of C. albicans (104 - 5 x 105) 

immobilized to the plastic well surfaces showed that optimal growth of hyphae and maximum 

lymphocyte adhesion to the fungal hyphae was achieved by incubation of 105 yeasts/assay well 

and incubating at 37°C and 5 % CO2 for 3 h. This initial yeast cell number produced 

approximately 100 % hyphal confluency during the assay with hyphal interdigitation across the 

entire surface of each well. Maximal lymphocyte adhesion occurred at 60 min of incubation 

with hyphae while shorter periods of time resulted in less lymphocyte adhesion to hyphae. 

Lymphocyte adhesion to hyphae was virtually abolished at 4 °C, however no difference in 

lymphocyte binding was observed at 25°C compared to 37°C. Experiments that compared 

YT lymphocyte binding to C. albicans hyphae in either HBSS, RPMI 1640, or RPMI 1640 

with either 0.1 % or 1.0% FBS were performed. There was no difference in adhesion using 

HBSS versus RPMI 1640, however those wells containing FBS averaged (from 10-50%) 

fewer bound YT cells. 

To further establish the specific nature of the YT lymphocyte interaction with C. 

albicans hyphae experiments similar to the "cold target inhibition" assay for cytotoxic 

lymphocytes were conducted. Non-radioactively labeled YT and murine thymocytes were 

used to compete for the adhesion of radioactively labeled YT to the fungal surface (Figure 2). 

No competitive binding of radioactively labeled YT was seen with non-radioactive 

thymocytes. Cell number dependent inhibition was observed with non-radioactive YT, which 

effectively competed for radioactive YT binding to hyphae, demonstrating a specific 

interaction of YT lymphocytes with C. albicans hyphae. Inspection of assay wells revealed 

no homotypic aggregation of YT cells. 

Another important aspect of the assay developed was the use of a multiple 



Figure 2. Competition by non-radiolabeled cell types with 51Cr-labeled YT lymphocytes for 
adhesion to C. albicans. Adhesion of YT lymphocytes to C. albicans was assessed by the 
retention of 51Cr-labeled lymphocytes in the presence of non-labeled YT lymphocytes or 
thymocytes as in Fig. 1. Data are presented as mean % inhibition ± SD of two or more 
experiments. YT, o-o; mouse thymocytes, •-•. 
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Table 2.--Comparison of Hand Washing and Multiple Automated Sample Harvester 
Recovery of Radioactivity Associated with Lymphocytes Bound to C. albicans 

Lymphocyte Cell Number 

1()5 

8 X 104 

6 X 104 

4 X 104 

MASHb 
(mean cpm ± SD) 

88,008 ± 3,974 

75,142 ± 1,446 

49,103 ± 2,272 

37,222 ± 2,822 

a YT cells were radiolabeled with [51Cr]. 
b MASH ( = multiple automated sample harvester. 

Hand Wash 
(mean cpm ± SD) 

80,536 ± 7,092 

66,771 ± 4,203 

48,030 ± 3,820 

39,164 ± 3,737 

37 
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Figure 3. Binding of 51Cr-labeled YT lymphocytes to different clinical isolates of C. 
albicans. Binding of YT lymphocytes to C. albicans isolates from 6 different patients was 
assessed by the retention of 51Cr-labeled cells. Data are presented as mean % bound ± SD of 
2 or more experiments. ATCC 58716 = (•···•), all others lines are the 6 separate clinical 
isolates of C. albicans. 



,---, 

~ 
'--' 100 

(/J 

~ 
90 ti 

CJ . .., 
..0 80 ......, 
ti 

c.j 70 
0 ....., 

60 
r:: 
0 

50 ...... 
fl} 

OJ 
,.q 

40 't) 

<i: 
OJ 30 ....., 
:,.... 
(.) 

20 0 
,.q 
0.. 

10 El :,.... 
....:i 0 
E-< 
>--

Figure 3. 

5X10 4 6X10 4 7X10 4 8X10 4 9X10 4 10 5 

YT Lymphocyte Cell Number 

w 
\0 



40 

automated sample harvester (MASH) to wash and remove unbound mammalian cells. Data 

from a representative experiment in which "hand washing" with a pasteur pi pet was compared 

to the use of the MASH using separate aliquots of the same batch of labeled YT lymphocytes 

(Table 2). Not only is the MASH more simplistic and easy to use but also the use of the 

MASH results in less variability as judged by comparison of standard deviation (SD) for the 

MASH versus that for the hand washing. For comparative purposes, percentage of adhesion 

and percentage of inhibition of adhesion are used throughout. The data in Table 2 are 

included to illustrate typical cpm ± SD for an individual experiment. 

To make certain that the utility of the binding assay described herein is not restricted 

to a particular strain of C. albicans, the adhesion of YT lymphocytes to six clinical isolates of 

C. albicans was evaluated (Figure 3). Clearly, the six clinical isolates of the microorganism 

were bound by YT lymphocytes in a similar if not identical manner as was strain A TCC 

58716 (Figure 3). These data demonstrate that the utility of the assay is therefore not limited 

to the strain of C. albicans (ATCC 58716) used in these experiments. 

Aim 2.) Identify the Adherence Molecules on Murine IL-2 Activated Lymphocytes that 

Mediate Binding to C. albicans Hyphae 

Extracellular Matrix and Blood Proteins Block IT Lymphocyte Adhesion to [;_. albicans 

In order to identify the probable family of cell adhesion molecules involved in 

adhesion of rnIAL to C. albicans hyphae, YT lymphocytes were employed as a model. 

Because of their interaction with a range of cell adhesion molecules, extracellular matrix 

(ECM) proteins were tested for their ability to inhibit adhesion of YT lymphocytes to hyphae 

(Figure 4). The purpose of this was to determine whether ECM proteins could 
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Figure 4. Extracellular matrix proteins inhibit YT lymphocyte adhesion to C. albicans. 
Adhesion of YT lymphocytes to C. albicans in the presence of the indicated proteins was 
assessed by the retention of 51Cr labeled lymphocytes as in Fig. 1 with 5 x 104 lymphocytes 
per well. Lymphocytes were preincubated for 1 hat 37°C with the indicated proteins or with 
no protein before adding the entire mixture to C. albicans hyphae: vitronectin, •-•; EHS­
laminin, •-•; fibronectin, ..- - ..- ; fibrinogen, • -• ; C3 complement component, ◊ - ◊ ; placental 
laminin, O-O. Solid lines (/) represent linear regression plots constructed from data for the 
labeled individual matrix proteins using Sigmaplot (Sigmaplot 4 .1 © 1991, J andel Corp.). 
Dotted lines (. .. ) represent verticals dropped to the x-axis from a point where the regression 
plots intersect the 50% inhibition value to determine the respective matrix protein 
concentration. Dashed line(--), represents linear regression plot if vitronectin, EHS-laminin, 
fibrinogen, and C3 data points are considered to all be data for a single hypothetical matrix 
component. Data are presented as mean % inhibition ± SD of 2 or more experiments. 
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inhibit YT adhesion to hyphae and thereby identify candidate lymphocyte adhesion 

molecule(s) or a family of adhesion molecules mediating this binding. 

In order to more accurately compare the inhibitory effect of individual ECM and 

blood protein and RGD-mimetic peptides, a linear regression plot was constructed from 

inhibition data for each protein or peptide using a computer graphing system (Sigmaplot 4.1 © 

1991 Jandel Incorporated). These linear regression plots were then used to graphically 

estimate the concentration of each protein or peptide at which 50 % inhibition of YT 

lymphocyte and later mIAL adhesion to hyphae could be achieved ( dotted vertical lines in 

Figures 4, 5, and 6). This value for YT and mIAL was termed the 'estimated 50% inhibition 

concentration' and abbreviated as IC50• Some proteins or peptides for which an IC50 was 

obtained were subsequently tested at this concentration on hlAL and/or 3T3-19 transfectants 

and produced either 50% or no (parentheses) inhibition and are included in Table 3. Known 

IC50 or Kd values for proteins and peptides in Table 3 are noted for comparison in the fifth 

column. 

The most potent ECM protein inhibitor of this YT adhesion on a molar basis was 

vitronectin which inhibited YT lymphocyte adhesion to C. albicans with an IC50 of 30 nM. 

The most potent blood protein inhibitor of YT lymphocyte adhesion to hyphae on a molar 

basis was Factor X. Human clotting Factor X (Anderson, 1994) and C3 (Arnaout, 1990) are 

documented ligands for CD1lb/CD18 as is heparin (Diamond et al., 1995). Factor X was 

tested at a single concentration of 50 nM, this concentration was found to equal the mIAL 

IC50 for adhesion to hyphae. This concentration of Factor X inhibited YT adhesion by 85 % , 

resulting in an estimated IC50 for YT cells of "less than" ( <) 50 nM (Table 3). 

Concentrations of 200 nM fibrinogen and 200 nM mouse EHS laminin each produced 50 % 

inhibition of YT adhesion to hyphae. A hypothetical linear regression plot was 
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Table 3.--Comparison of ECM Proteins and RGD-Mimetic Peptide Inhibition of 
Lymphocyte and 3T3-19 (CD1lb/CD18) Transfectant Adhesion to C. albicans 

Protein/peptide MIAL YT HIAL 3T3-19 Mac-1 
(concent.) ICsoa ICso ICso ICso Kd/IC50 

Factor X 50nM <50 nMb 50nM 50 nM 44.0 nM 
[Kd] 

C3 1 µM 400 nM NDC ND 3.5 µM 
[1Cso1 

Fibrinogen 400nM 200nM ND ND 2.0µM 
[Kd] 

Echistatin 2µM 2µM 2µM ND -d 

EHS-Laminin 300nM 200nM ND ND 

Heparin 100 µM 100 µM ND ND 9.0µM 
[1Cso1 

FBIP 300µM 300 µM 300µM (300 µM)e 600 µM 
[1Cso1 

RGD ND 6mM ND ND 

GRGDSPK 300 µM ND 300µM (300 µM) 

GRGDSP ND 500 µM ND ND 

GRADSP ND 1 mM ND ND 

PEP 700nM 500nM ND ND 

PT-2000 ND 500 µM ND ND 

GRGDSPCAC (40 mM) (40 mM) (40 mM) ND 

MHC Peptide (400 µM) ND ND (400 µM) 

GRYDS (700 µM) (700 µM) (700 µM) ND 

Lamini11p (1 µM) (1 µM) (1 µM) ND 

3 IC50 is the estimated concentration which inhibits mammalian cell adhesion to C. albicans 
hyphae by 50 % . 

b Denotes single concentration tested with 85 % inhibition so IC50 is estimated as less. 
c Not Done (no concentration tested). 
d (-) denotes no value specific for CD11b/CD18 (Mac-1) has been established. 
e Numbers in parentheses denote highest concentration tested although no inhibition was seen 
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Figure 5. Specific RGD-mimetic peptides inhibit YT lymphocyte adhesion to C. albicans. 
Adhesion of lymphocytes to C. albicans was assessed by the retention of 51Cr labeled 
lymphocytes in the presence of various RGD-mimetic peptides and polymers as described in 
Fig. 4 RGD sequences of each are shown in parentheses: FEP (Fibronectin-like Engineered 
Protein),( ♦), is a polymer of 13 repetitions of the sequence VTGRGDSPAS and 9 repetitions 
of GAGAS sequence spacers; PepTite-2000, ( ■); GRGDSP, (.~); RGD, (•); GRYDS (v); 
GRGDSP c is a cyclical molecule comprised of the sequence QPenGRGDSPCA where 
Pen=penicillimine. Data are presented as in Fig. 4 and represent mean % inhibition ± SD 
of 2 or more experiments. 
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also constructed from combined data for vitronectin, fibrinogen, EHS-laminin and C3 because 

of the clustering of the plots for these four proteins. The IC50 of this hypothetical ECM 

component was also 200 nM. Complement component C3 inhibited by only 34% at the 55 

nM concentration, but did inhibit adhesion by 55 % at a concentration of 2 µM resulting in an 

IC50 of 400 nM. Heparin sulfate tested at a single concentration of 100 µM (the mIAL IC50), 

inhibited adhesion by 48 % . Fibronectin from human plasma was a relatively poor inhibitor of 

lymphocyte adhesion to hyphae with maximal inhibition of 20 % at a final concentration of 6 

µM. Human laminin from placenta (Lamininp, Table 3) which lacks the RGD-containing "A" 

chain present in EHS-laminin had no inhibitory effect at concentrations ranging from 10 nM -

1 µM (Figure 4). Two proteins not known to be recognized by integrins: chicken egg 

lysozyme and human albumin each had no effect on lymphocyte adhesion to hyphae at 

concentrations as high as 1. 0 mM thereby demonstrating inhibition was not due to non­

specific protein blocking. YT lymphocytes were examined microscopically prior to and after 

treatment with proteins and no homotypic aggregation was observed. 

The relative inhibition of YT lymphocyte adhesion to C. albicans was not a direct 

function of the molecular size of the proteins (in order of potency: vitronectin 75 kD, Factor 

X 63 kD, fibrinogen 350 kD, EHS-laminin 850 kD, C3 190 kD, heparin 7.5 kD, and 

fibronectin 540 kD,). However, ECM and blood components that competed for YT 

lymphocyte adhesion to C. albicans hyphae all contained at least one RGD (arginine-glycine­

aspartic acid) or RGD-like (containing a key aspartate residue) sequence (Yamada and 

Kleinman, 1992), while human laminin from placenta lacks the RGD-containing A-chain 

present in EHS-laminin (Tryggvason, 1993). Therefore, while these data do not identify a 

single adhesion molecule candidate, the potential pattern of inhibition by proteins containing 

RGD-like or "RGD-mimetic" (Du et al., 1991) sequences suggested a member of the integrin 



48 

family of cell adhesion molecules as a candidate molecule mediating lymphocyte adhesion to 

C. albicans hyphae and for this reason the inhibitory capacity of RGD-mimetic peptides was 

investigated next. 

RGD-mimetic Peptides Inhibit IT Lymphocyte Adhesion to £. albicans 

The purpose of these experiments was to determine if lymphocyte adhesion to hyphae 

could be blocked using peptides containing RGD-mimetic sequences known to specifically 

inhibit integrins (Pierschbacher and Ruoslahti, 1984). The contribution to inhibition of this 

integrin signature adhesion motif was examined using several RGD-mimetic peptides. 

Fibrinogen Binding Inhibitory Peptide (FBIP) from human fibrinogen --y fragment 400-411 is 

also a documented ligand for Mac-1 (Wright et al., 1989). Like other RGD-mimetic peptides 

it contains a critical aspartate residue within the RGD-mimetic sequence:HHLGGAKQAGDV. 

Echistatin, which contains two RGD sequences, is a circular peptide (5.4 kD) member of the 

disintegrin family of highly specific integrin inhibitors isolated from venoms (Garsky et al., 

1989). Echistatin is not an established Mac-1 antagonist per se, but disintegrins are known to 

exert their integrin specific inhibition of adhesion through RGD-mimetic sequences which they 

contain. Four of the peptides tested contained the identical sequence: GRGDSP, yet these 

peptides differ in their specificity of integrin receptors (Piersbacher and Ruoslahti, 1987) and 

in their ability to inhibit lymphocyte adhesion to C. albicans (Figure 5 and Table 3). 

The least potent RGD peptide inhibitor tested was the RGD tripeptide which inhibited 

YT lymphocyte adhesion to C. albicans weakly with an IC50 of 6 mM (Figure 5). The 

peptide GRADSP inhibited by 40% at a concentration of 200 µM with an IC50 of 1 mM 

(Table 3). The hexapeptide GRGDSP (the fibronectin RGD sequence) was a better inhibitor 

with an IC50 of 400 µM consistent with the 500 µM reported to inhibit integrin aui33 by 50 % 



49 

(D'Sousa et al., 1991). FBIP was tested only at the concentration of 340 µM which inhibited 

YT lymphocyte adhesion by 45 % , slightly better than the 600 µM reported to inhibit Mac-1 

adhesion to C3bi coated erythrocytes (EC3bi) by 50% (Wright et al., 1989) (Table 3). 

PepTite-2000 (PT-2000) is a peptide of 2 kD that consists of the sequence: GRGDSPASSK­

GGGGSRLLLLLLR with a single GRGDSP motif. PT-2000 was a potent inhibitor of 

lymphocyte binding to C. albicans hyphae with an IC50 of 10 µM and 98 % inhibition of 

adhesion at a final concentration of 100 µM. Echistatin was a more potent inhibitor although 

tested only at the concentration of 2 µM, which inhibited YT adhesion to hyphae by 47% 

(Table 3). Fibronectin-like Engineered Protein (FEP), a 72 kD protein which contains 13 

identical repeats of the VTGRGDSPAS human fibronectin sequence 10-mer (-VTGRGDSPAS-

13, Figures 5 and 9) separated by 9 GAGAS structural linker regions, was the most potent 

GRGDSP-containing inhibitor tested with an IC50 of 500 nM and 100% inhibition of adhesion 

to C. albicans at a final concentration of 5.5 µM. The circular GRGDSP containing peptide: 

GPenGRGDSPCA (GRGDSPc, Table 3 and Figure 5), which specifically inhibits the 

vitronectin receptor but not the fibronectin receptor (Piersbacher and Ruoslahti, 1987), had no 

capacity to inhibit the binding of YT lymphocytes to hyphae at concentrations ranging from 

100 nM - 40 mM. No homotypic aggregation was observed after cells were treated with the 

above peptides or engineered proteins. 

Identification of the cell population inhibited by ECMIRGD-peptides 

It is known that C. albicans hyphae express receptors for some ECM proteins and 

RGD containing peptides (Calderone and Braun, 1991; Hostetter, 1994b). Therefore, 

experiments were carried out to determine whether the ECM proteins and RGD-peptides 

exerted an inhibitory effect by binding to the surface of the lymphocytes 
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Figure 6. Comparative inhibition of lymphocyte adhesion to C. albicans by preincubation of 
either YT lymphocytes or C. albicans with ECM proteins or ROD-peptides. Adhesion of 
51Cr labeled YT lymphocytes to C. albicans was assessed after pretreatment of either 
lymphocytes (shaded bars) or C. albicans (solid bars) with the indicated agent followed by 
washing. Concentrations were: 10 µM laminin and fibrinogen, and 1 mM for RGD, 
GRGDSP, and PT-2000. Assessment and data presentation was as described in Fig. 4 except 
pretreatment was followed by washing with HBSS before addition of lymphocytes. Data 
represent mean % inhibition ± SD of 2 or more experiments. 
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Table 4.--Summary of Microscopic Phenotypic Analysis 

MAb I Antigen I YT I mIAL I hIAL I 3T3-19 I 3T3-1 

Ml/70 m-CDllb 4+!763 4+140 4+140 4+150 

OKMl h-CDllb 3+116 3+140 3+140 3+150 

5C6 m-CDllb 0+1100 3+140 0+1100 0+1100 

MY904 h-CDllb 3+116 NDb 3+140 ND 

MN-41 h-CDllb 2+116 ND ND ND 

LM2/1 h-CDl lb 3+116 ND 3+140 3+150 

TMG65 h-CDllb 3+116 ND ND ND 
ascites 

LPM19 h-CDllb 3+116 ND ND ND 
ascites 

M18/2. m-CD18 0+1100 3+190 ND ND 

2E6 m-CD18 0+1100 3+190 ND ND 

TSl/18 h-CD18 3+116 0+1100 3+190 3+150 

IB4 h-CD18 3+190 ND ND ND 

M17/4. m-CDlla 0+1100 3+1so ND ND 

TSl/22 h-CDlla o+ 1100 o+ 1100 3+1so ND 

N418 m-CDllc 0+1100 2+160 0+1100 ND 

SHCL3 h-CDllc 3+116 ND ND ND 

/31 m-CD29 ND 3+190 ND 2+190 

/31 h-CD29 0+1100 ND 2+1so ND 

LFA-3 h-CD58 3+190 ND 3+190 ND 

/33 h-CD61 0+1100 ND ND ND 

HEFl h-CD30 2+190 ND ND ND 

CXy h-CD51 0+1100 ND ND ND 

a Given as brightness score(+)/ percent of cells expressing antigen. 
b ND = not done 
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and/or C. albicans (Figure 6). Lymphocytes or hyphae were pretreated with the indicated 

proteins or RGD-peptides and washed before adhesion was evaluated. The concentrations of 

inhibitors employed represented doses which had resulted in 50% or greater inhibition when 

no washing step was employed. The concentrations utilized were: 10 µM laminin and 

fibrinogen, and 1 mM for RGD, GRGDSP, and PT-2000. Pretreatment of C. albicans 

hyphae with ECM or RGD-peptides resulted in no inhibition of lymphocyte adhesion to 

hyphae. However, pretreatment of lymphocytes with the same ECM or RGD-peptides 

resulted in substantial inhibition of adhesion. The RGD tripeptide was the least potent 

inhibitor of LGL binding to C. albicans while PT-2000 was the most effective inhibitor of the 

proteins and peptides tested. Because the washing step may introduce undefined variability, a 

more quantitative comparison of relative inhibition by each element was not performed. The 

important conclusion from these experiments is that clearly the ECM proteins and RGD­

mimetic peptides are exerting their inhibitory effects on the YT lymphocyte cell population 

directly and not by interaction with C. albicans hyphae. 

Phenotypic Analysis Using Monoclonal Antibodies 

All the mAbs utilized were found to label the YT lymphocytes and respective mouse 

and human IAL equally well ranging from 2 + -4 + brightness (mean 3 +) at the concentrations 

of mAb employed in these experiments. These data have been summarized (Table 4). One 

exception was found: the lymphocytes labeled with the Ml/70 mAb tended to be the brightest 

at 4 + and sometimes brighter than the same lymphocytes labeled using the other mAbs at 3 + 

and consistently brighter than lymphocytes labeled with OKMl at 3 + despite variations in 

primary and secondary antibodies which were attempted. This consistent difference between 

Ml/70 and OKMl labeling occurred with YT lymphocytes and murine and human IAL as 
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well and was the only consistent labeling difference which was observed. However, it should 

be noted that these were the only two mAbs which positively labeled all three groups of cells. 

The difference in labeling exhibited by these two mAbs was in the magnitude of brightness of 

those cells which were positive for Mac-1, not in the percentage of positive cells in each case. 

These differences were not observed for the 3T3-19 Mac-1 positive fibroblasts which were 

consistently very bright (4+) for all mAbs tested. Lymphocytes which were positive for 

respective anti-murine or anti-human Mac-1 mAbs were found to exhibit a similar uniformly 

distributed punctate pattern of immunofluorescent staining at 4 °C with extensive capping of 

staining if the same cells were warmed to 25°C. The Mac-1 positive 3T3-19 fibroblasts 

exhibited a less punctate pattern of staining at 4°C with less pronounced capping at 25°C. 

These differences in fluorescence may reflect partial masking of the epitope for OKMl 

resulting from association between CDllb/CD18 with other receptors such as CD16 involving 

the CD1lb/CD18 lectin-like domain. Similar diminished fluorescence of CD11b/CD18 on 

neutrophils and monocytes using OKMl has been demonstratt:d to be due to Mac-1 

association with CD16 (Sehgal et al., 1993) and carbohydrates (Thornton et al., 1996). 

For all cases except the Mac-1 + transfected 3T3 fibroblasts (3T3-19) the percentage of 

cells adhering to hyphae correlated well with the percentage which were positive for Mac-1 ± 

10% (Table 4). The mean percentage of YT lymphocytes which adhered to C. albicans 

hyphae was 70% ± 10% (5 x 104/well) which correlated closely with the 76% ± 5% which 

were Mac-1 positive. The mean percentages of murine and human JAL adhering (105/well) 

was found to be virtually the same at 30 % ± 10 % , while the mean percentage of JAL 

positive for CD 11 b/CD 18 was consistently slightly higher than the percent adherent for any 

given sample with a mean percentage positive of 40 % ± 5 % for both mIAL and hIAL. The 

3 T3 fibroblast control cells (3 T3-1) exhibited very poor adhesion to hyphae of 3 % ± 3 % and 



were clearly all negative (0+) for Mac-1 surface expression. The transfected 3T3-19 

fibroblasts adhesion to hyphae was 20% ± 10%, 50% ± 15% were Mac-1 positive. 

Anti-CDllb/CDJB Monoclonal Antibodies Inhibit IT Lymphocyte Adhesion to~- albicans 
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These ECM and RGD-peptide inhibition data presented in Figures 4, 5, 6, and in 

Table 3, suggest that an RGD-inhibitable integrin may mediate lymphocyte adhesion to 

hyphae. Essentially 50% of the known integrins have been demonstrated so far to be 

inhibitable with GRGDSP sequence RGD-mimetic peptides (Pierschbacher and Ruoslahti, 

1984; D'Souza et al., 1991). An evaluation of possible candidate integrins on YT 

lymphocytes was performed using immunofluorescence microscopy. YT lymphocytes 

evaluated by immunofluorescent microscopy did not express the o:v(CD51), {31(CD29), or the 

/3iCD51) integrin subunits which are one or both subunits of the most widely recognized 

RGD-inhibitable integrins (Hynes, 1992), suggesting that another integrin on the surface of 

YT lymphocytes mediates adhesion to C. albicans. However, immunofluorescence did show 

the {32 integrins CD1lb/CD18 and CD11c/CD18 but not CD11a/CD18 to be on the surface of 

these YT lymphocytes. CD11c/CD18 adhesion has never been shown to be inhibitable with 

RGD peptides (Arnaout, 1990; Anderson, 1994). In contrast, CDllb/CD18 (Mac-1) has 

been inhibited with RGD-containing peptides (Russell et al., 1989; Wright et al., 1989; 

Reiman et al., 1990; Anderson, 1994) and was the best candidate, although the direct 

inhibition of CD 11 b/CD 18 by RGD-mimetic peptides remains controversial. Therefore, 

several mAbs to CD 11 b and also to CD 18 were tested for their ability to block YT 

lymphocyte adhesion to C. albicans hyphae (Figure 7). 

Anti-CDl lb antibodies inhibited adhesion of YT lymphocytes to C. albicans hyphae. 

The mAbs tested were used in purified form unless sent from another investigator as ascites. 
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Figure 7. Competitive inhibition of YT lymphocyte adhesion to C. albicans with monoclonal 
antibodies. Adhesion of 5 x 104 51Cr labeled YT lymphocytes to C. albicans hyphae was 
assessed in the presence of the indicated mAbs. Lymphocytes were preincubated in HBSS 
containing purified murine mAbs or ascites (*) containing mAbs. All cells were incubated 
with the same quantity (45 µg) of protein unless shown otherwise. The mAbs shown are to 
the designated CD antigens: CDllb: *TMG6-5, OKMl, MY904, *LPM19c, LM2/1, and 
MN-41; CD18: TSl/18 and IB4; CD-58 (LFA-3): TS2/9; CL'30: HEFl. Conditions and 
adhesion assessment were as described in Fig. 4. Data are presented as mean % inhibition ± 
SD of 2 or more experiments. 
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Those used as ascites were received as amounts too small to be purified, and their use as 

ascites is denoted with a (*) in Figure 7. At the highest concentration tested of 45 µg protein, 

the most potent purified anti-CDllb mAb was OKMl which blocked adhesion by 69% while 

45 µg TMG6-5 ascites blocked adhesion of lymphocytes to hyphae by 73 % . These were 

followed closely by 45 µg purified MY904 which blocked binding by 62 % and 45 µg 

LPM19c ascites which blocked binding by 59%. A clear dose dependent inhibition of 

adhesion was demonstrated using purified mAb MY904 with 20 µg MY904 blocking by 45 % 

and 10 µg MY904 inhibiting lymphocyte adhesion to hyphae by only 5 % . The anti-CD 11 b 

mAbs LM2/1 and MN-41 demonstrated little or no capacity to inhibit adhesion at the 45 µg 

concentration (Figure 7). 

Two mAbs to the CD 18 {32 integrin chain were tested for their inhibitory capacity 

(Figure 7). Forty-five µg TSl/18 inhibited adhesion well with a mean inhibition of 49% 

while 45 µg IB4 blocked less well with a mean of 15% inhibition. TSl/18 (20 µg) was also 

examined in combinations with anti-CD 11 b mAbs to examine whether an additive inhibitory 

effect on lymphocyte adhesion to hyphae could be achieved. In all cases when the antibodies 

were used in combination, the effect was an increased inhibition of lymphocyte adhesion to C. 

albicans (Figure 7). The combination of 20 µg TSl/18 + 20 µg OKMl inhibited lymphocyte 

adhesion by 88%, while 20 µg TSl/18 + 20 µg MY904 inhibited by 69%, and 20 µg TSl/18 

+ 20 µg LPM 19c ascites blocked adhesion to hyphae by 88 % . To rule out steric and Fe 

receptor effects, equivalent amounts of isotype matched (lgG1) mAbs (matching IgG1 mAbs: 

*TMG6-5, MY904, LM2/1, MN-41, and TSl/18), to two other YT lymphocyte surface 

molecules CD30 (HEFl; Nawrocki et al., 1988), and CD58 (TS2/9; Sanchez-Madrid et al., 

1982) were shown to have no effect on YT lymphocyte adhesion to hyphae. YT lymphocytes 

had detectable surface CD30 and CD58 as judged by immunofluorescence. Specific labeling 
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by all mAbs of the YT lymphocyte surface was verified before andafter adhesion experiments 

with FITC goat anti-mouse lgG and immunofluorescence analysis by microscopy. 

Preincubation of hyphae with equivalent amounts of mAbs followed by washing had no effect 

on lymphocyte adhesion. 

Western Blot Analysis of IT Lymphocyte CDI lb 

The presence of CDl lb/CD18 on the surface of the YT lymphocytes was verified by 

immunopurification followed by western blot analysis (Figure 8)(Forsyth and Mathews, 

1996). The anti-CDllb mAb LM2/1 used to specifically bind to CD11b/CD18 is known to 

immunoprecipitate the intact CD1 lb/CD18 heterodimer from YT cell lysates as shown 

previously (Altieri and Edgington, 1988; Diamond et al., 1993). Under reducing conditions, 

the anti-CDl lb mAb OKMl (which only binds to the CDl lb lectin domain) was then used to 

visualize a broad band at 165 kD on a blot transferred from a 6% SDS gel which identifies 

CDllb (Lane 1., left). This broad band for CDllb on SDS gels is characteristic for CDllb, 

and is thought to result from extensive glycosylation of native CDl lb (Altieri and Edgington, 

1988; Arnaout, 1990). An identically loaded lane from the same gel was cut from the blot 

transfer and processed using only the FITC labeled rat anti-mouse secondary IgG as a control 

indicating no non-specific labeling by the secondary lgG under these conditions (Lane 2., 

right). Only the membrane developed above the 66 kD molecular weight cut-off to verify the 

presence of CDl lb is included. Faint bands appearing at lower molecular weights 

characteristic for dissociated lgG immunoglobulin chains were therefore not included. 

Clearly, these data identify CD11b/CD18 as present in YT whole cell lysates, and serve to 

confirm the immunofluorescence microscopy data showing CD11b/CD18 present on the 

surface of YT lymphocytes. 
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Figure 8. Western blot analysis of YT lymphocyte CD 11 b. Lane 1 contains a sample from 
the Mac-1 fraction, and Lane 2 contains an identical sample treated only with the secondary 
antibody as a control. The broad band at 165 kD is characteristic of CDllb, which is heavily 
glycosylated. YT lymphocyte whole cell lysates were incubated with anti-CDl lb (LM2/1) 
ascites for 4 hat 4°C, then passed over a recombinant protein A/G column at pH 8.0 and 
eluted with 0.1 M Na acetate pH 2.0. Column fractions were run on 6% SOS gels and 
transferred to PVDF membranes and incubated overnight with anti-CDl lb (OKMl) mAb and 
then processed with peroxidase conjugated goat anti-mouse secondary antibody followed by 
chemiluminescence reagent and autoradiography. Data are presented from a representative 
experiment from multiple experiments. 
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Extracellular Matrix and RGD-mimetic Peptides Inhibit mlAL Adhesion to {;_. albicans Hyphae 

The data from the studies with the YT lymphocyte cell line demonstrate that the 

integrin receptor Mac-1 is the principal adhesion molecule mediating adhesion of these human 

LGL-like lymphocytes to hyphae of C. albicans. Experiments were next carried out utilizing 

the unique adhesion assay developed previously to determine whether this receptor also 

mediates adhesion of murine IL-2 activated lymphocytes (mlAL) to C. albicans 

hyphae.Experimental methodology was the same as for YT lymphocytes with the exception 

that the optimal cell number per well was raised from 5 x 104 YT per well to 105 mIAL and 

hIAL per well. 

To examine adhesion of mIAL to C. albicans hyphae, extracellular matrix proteins 

and RGD-mimetic peptides were tested for their ability to inhibit binding of mIAL to C. 

albicans hyphae (Figure 9). The two ECM proteins examined were murine EHS laminin and 

human fibrinogen. A clear dose dependent inhibition of mIAL adhesion to hyphae was 

obtained with both of these ECM proteins. The EHS laminin was a slightly more potent 

inhibitor of mlAL adhesion with an IC50 of 200 nM while a concentration of 500 nM 

fibrinogen was required for 50% inhibition of murine JAL adhesion. In addition, the complex 

glycoprotein heparin sulfate, which was recently shown to be a ligand for Mac-1 (Diamond et 

al., 1995), inhibited adhesion of mIAL to C. albicans hyphae with an IC50 of 100 µM. The 

Mac-1 ligand Factor X (Anderson, 1994), of the blood coagulation cascade, was the most 

potent inhibitor on a molar basis and showed a clear dose dependent inhibition of mIAL 

adhesion to C. albicans hyphae with 50% inhibition at 55 nM and 25% inhibition at a 

concentration of 27 nM. 

Several RGD-mimetic peptides were also examined for their ability to inhibit mIAL 

adhesion to C. albicans hyphae (Figure 9). The GRGDSPK peptide demonstrated a dose 
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Figure 9. Extracellular matrix proteins and certain RGD-mimetic peptides inhibit adhesion of 
murine IL-2 activated lymphocytes to C. albicans. Adhesion of murine IL-2 activated 
lymphocytes to C. albicans was assessed by the retention of 51Cr labeled lymphocytes in the 
presence of the indicated proteins and RGD-peptides: GRGDSPK (•); GRGDSPK plus 30 µg 
aCDllb monoclonal antibody Ml/70 (.._); FEP ( ♦ ); fibrinogen ( ■); EHS-laminin ( ◊ ); 
Factor X ("); -GRGDSPCAc- (v); H-2kb MHC peptide: TCVEWLRRYLKN. Conditions 
and adhesion assessment were as described in Fig. 4 with la5 cells added per well. Data are 
presented as mean % inhibition ± SD of 2 or more experiments. 
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dependent inhibitory effect on mIAL adhesion to C. albicans hyphae with an IC50 of 300 µM 

almost identical to the 500 µM concentration required for 50 % inhibition of YT lymphocyte 

adhesion to hyphae by the GRGDSP peptide (Figure 5). The FEP multimer peptide was also 

examined for dose response and demonstrated clear dose dependent inhibition of mIAL 

adhesion to hyphae with a concentration of 5.5 µM completely eliminating adhesion of mIAL 

to C. albicans hyphae and an IC50 of 800 nM. Again, these concentrations were examined in 

light of data showing very similar FEP inhibition of YT lymphocytes with a 500 nM IC50 

(Figure 5). Two additional RGD-mimetic peptides which were examined significantly 

inhibited mIAL adhesion by 50%. These were the human fibrinogen 12-mer fragment termed 

Fibrinogen Binding Inhibitory Peptide (FBIP; sequence: HHLGGAKQAGDV) with an IC50 of 

300 µM equal to the value for YT lymphocytes and the snake venom disintegrin echistatin 

with an IC50 of 2 µM also equal to that for YT lymphocytes (Table 3). 

While PepTite 2000 (sequence:GRGDSPASSK-GGGGSRLLLLLLR) was no longer 

available commercially, its potent RGD-mimetic inhibition has been attributed in part to the 

hydrophobic: GGGGRLLLLLLR containing portion of the peptide as well as the 

GRGDSPKASSK sequence which it also contains (Craig et al., 1995). Therefore, 

experiments were carried out in this study to examine whether an additive inhibitory effect 

could be obtained with the GRGDSPK peptide and the Ml/70 mAb to an epitope on murine 

CD 11 b outside the RGD-binding I domain which may be associated with Mac-1 adhesion to 

hydrophobic ligands. This combination of mAb Ml/70 (30 µg) and the same concentrations 

of GRGDSPK peptide used alone did result in a dramatic dose dependent increase in 

inhibition by the GRGDSPK peptide with a concentration achieving 50% inhibition of 

adhesion of 4 µM virtually identical to that of 1 µM obtained with PepTite 2000 and YT 

lymphocytes (Figure 5). 



Several other RGD-mimetic peptides were poor inhibitors of mIAL adhesion to C. 

albicans with 900 µM RGDS and 700 µM GRGDTP each inhibiting by only 30%. Also, 

concentrations as high as 700 µM of the GRYDS peptide, which partly mimics the SRYDS 

Mac-1 adhesion motif in Leishmania gp63 protein, had no effect on mIAL adhesion to C. 

albicans hyphae. An "irrelevant" bioactive peptide fragment containing 12 amino acids 

(MW= 1580; sequence: TCVEWLRRYLKN) which inhibits allorecognition and adhesion of 

C57BL/6 TCR to the murine MHC H-2Kb receptor (Schneck et al., 1989) was found at the 

concentrations of 400 µM and 200 µM to have no effect on mIAL adhesion to C. albicans. 

The H-2Kb MHC receptor is expressed by the C57BL/6 murine cells utilized in these 

experiments and the peptide used has been documented to block allorecognition at the 

concentrations utilized as well, and it's lack of inhibition demonstrates that the inhibition by 

ECM and RGD-mimetic peptides is specific. These ECM and RGD-mimetic peptide data 

provided strong evidence that mIAL utilize the same receptor employed by YT lymphocytes 

for adhesion to C. albicans hyphae. 

Monoclonal Antibodies to Murine CDllb/CDJB Block Adhesion of m/AL to£. albicans 

66 

Unlike the human CD1 lb/CD18 heterodimer an extensive epitope mapping of murine 

Mac-1 has not been carried out. OKMl and Ml/70, which also bind to human CDllb, have 

been mapped using human CD1lb/CD18. Ml/70 has been mapped outside the RGD-binding 

I domain to an epitope distinct from the OKMl lectin binding domain epitope which also 

maps outside the I domain of CDllb. The other anti-murine CD11b/CD18 mAbs used in this 

study did not bind to the human lymphocytes or 3T3-19 fibroblasts and are characterized 

simply as either anti-CD 11 b or anti-CD 18 (Figure 10). 

The mAb which inhibited mIAL adhesion to C. albicans hyphae most completely 
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Figure 10. Monoclonal antibodies to CD 11 b/CD 18 inhibit adhesion of murine IL-2 activated 
lymphocytes to C. albicans. Adhesion of murine IL-2 activated lymphocytes to C. albicans 
was assessed by the retention of 51Cr labeled lymphocytes in the presence of the indicated 
monoclonal antibodies to the noted CD antigens: CDllb: OK.Ml (mouse anti-human, IgG2b), 
Ml/70 (rat anti-mouse, lgG2b), 5C6 (hamster anti-mouse, IgG); CD 18: M18/2.A (rat anti­
mouse, IgG2a, kappa), 2E6 (hamster anti-mouse, IgG); CDlla: M17/4.4 (rat anti-mouse, 
IgG2b, kappa); CDl lc: N418 (hamster anti-mouse, IgG). Conditions and adhesion assessment 
were as described in Fig. 4 with 105 cells added per well. n,ta are presented as mean % 
inhibition ± SD of 2 or more experiments. 
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when used alone was OKMl (mouse anti-human, which also binds to murine, CDllb, IgG2b). 

OKMl virtually eliminated mIAL adhesion to hyphae with inhibition by greater than 90% at 

45 µg (1.2 µM). OKMl demonstrated a clear dose dependent inhibition of mIAL adhesion to 

hyphae with 50 % inhibition of adhesion at a concentration of 30 µg (800 nM) and 30 % 

inhibition at 15 µg (400 nM). The next most potent anti-murine CDl lb mAb was the 5C6 

mAb (hamster anti-mouse CDllb, lgG) which inhibited adhesion of mIAL by 70% at the 45 

µg concentration and by 60% when only 25 µg (670 nM) were present. Finally, the mAb 

Ml/70 (rat anti-mouse CDllb, lgG2b), which also binds to human CDllb, also demonstrated 

clear dose dependent inhibition of adhesion of mIAL to C. albicans hyphae and inhibited by 

60% at the 45 µg concentration, by 50% at 30 µg and by 25% when 15 µg were present. 

Two anti-murine CD18 mAbs were tested and each showed a dose dependent inhibition of 

mIAL adhesion to C. albicans hyphae. The anti-CD18 mAb 2E6 (hamster anti-mouse CD18, 

lgG) blocked adhesion by 60 % at 45 µg while inhibiting adhesion of mIAL by 40 % at 25 µg 

and 20% at 10 µg. The anti-CD18 mAb M18/2.A (rat anti-mouse CD18, lgG2a, kappa) 

inhibited mIAL adhesion to hyphae by 50 % at 45 µg and blocked adhesion by 40 % at 25 µg 

and 20% at 10 µg. Combinations of mAb were tested to determine whether additive effects 

in inhibition of adhesion could be demonstrated. Interestingly, 25 µg OKMl + 15 µg Ml/70 

yielded only 53 % inhibition and 25 µg OKMl + 15 µg 5C6 also only inhibited mIAL 

adhesion to hyphae by 57%. However, combinations of anti-CDllb and anti-CD18 mAbs 

proved very effective at inhibiting mIAL adhesion with 25 µg OKMl + 15 µg 2E6 inhibiting 

adhesion by 80% and 25 µg OKMl + 15 µg M18/2.A inhibiting mIAL adhesion to hyphae 

by 70 % . The anti-murine II irrelevant II mAbs used for the mIAL mAb adhesion inhibition 

experiments were M17/4.4 (rat anti-mouse CDlla, lgG2b, kappa) and N418 (hamster anti­

mouse CDl lc, IgG). At concentrations of 45 µg, 35 µg, 25 µg, and 15 µg neither of these 



Table 5.--Carbohydrates as Competitive Blockers of the Adhesion of YT 
Lymphocytes to C. albicans 

Carbohydrate Concentration % Inhibition of 
(mg/ml or [MD Binding± SD 

D-Mannose 150mM 55 ± 5 

D-Galactose 150mM 20 ± 12 

a-Methyl D-Mannopyranoside 150mM 59 ± 2 

LPS 4.0 mg/ml 3 ± 7 

/3-Glucan (yeast) 4.0 mg/ml 62 ± 4 
(40 µM) 

PepTite-2000 (peptide)3 l.0mM 98 ± 4 

Sucrose 150mM 0.0 ± 5 

Zymosan 4 mg/ml 85 ± 3 

N-Acetyl-D-Glucosamine 150mM 66 ± 8 

Note(s): The effects of several carbohydrates on adherence were assessed by the 
competitive binding assay detailed in Figure 2. Data shown are 
mean % inhibition ± SD of triplicate values of 2 or more experiments and 
represent the maximum concentration tested for multiple carbohydrate concentrations. 
a PepTite-2000 is a peptide (not a carbohydrate) shown for comparison. 

two antibodies demonstrated any inhibitory activity towards mlAL adhesion to hyphae other 

than the 10% inhibition observed with 45 µg M17/4.4 (Figure 10). Lack of inhibition by 

these antibodies demonstrates an absence of non-specific and Fe mediated inhibition. These 

mAb inhibition data demonstrate that, like YT lymphocytes, mlAL use CD1 lb/CD18 for 

adhesion to C. albicans hyphae. 
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Carbohydrates Inhibit IT Adhesion to Hyphae 

Carbohydrate-lectin interactions have been shown to be important in adherence of 

CD11b/CD18 to S. cerevisiae and other microbial ligands (Arnaout, 1990; Ross et al., 1985; 

Thornton et al., 1996). Lymphocyte adhesion to hyphae was blocked with the saccharides: 

0.15 M N-acetyl-D-glucosamine (NADG), a-methyl-D-mannopyranoside, D-mannose and /3-

glucan in the concentrations indicated (Table 5). The form of LPS used has been shown not 

to block CD11b/CD18 which was confirmed in our experiments. Galactose had slight and 

sucrose had no inhibitory effect on lymphocyte adhesion to hyphae as shown previously for 

CDllb (Ross et al., 1985). The most inhibitory carbohydrate was zymosan (2 mg/ml) which 

inhibited binding by 85 % and virtually eliminated YT lymphocyte adhesion to C. albicans 

hyphae. The next most inhibitory carbohydrate was NADG with 66 ± 8 % inhibition. This 

profile of carbohydrate inhibition at these concentrations is characteristic of adhesion mediated 

by the CD11b/CD18 lectin-like domain (Ross et al., 1985; Sehgal et al., 1993; Thornton et 

al., 1996). 

Carbohydrates Inhibit m/AL and h/AL Adhesion to {;_. albicans Hyphae 

As with the YT lymphocyte cell line, selected carbohydrates that have been 

documented to block adhesion of neutrophil CD1 lb/CD18 to the yeast S. cerevisiae were 

examined for their ability to inhibit mIAL adhesion to C. albicans hyphae at concentrations of 

150 mM (Ross et al, 1985; Thornton et al., 1996) (Table 6). A clear dose dependent 

inhibition was obtained using N-acetyl-D-glucosamine (NADG) which was also the most 

potent inhibitor of mIAL adhesion with 85 % inhibition at the 150 mM concentration. In 

addition, NADG inhibited mIAL adhesion to hyphae by 50% at 75 mM and by 25% at 7.5 

mM and not at all at 2.5 mM. Although 150 mM D-mannose inhibited mIAL adhesion by 



Table 6.--Carbohydrates as Competitive Blockers of the Adherence of Murine and 
Human IL-2 Activated Lymphocytes to C. albicans * 

Carbohydrate 

Mouse IAL: 

N-Acetyl-D-Glucosamine 

N-Acetyl-D-Glucosamine 

N-Acetyl-D-Glucosamine 

D-Mannose 

N-Acetyl-D-Glucosamine + 
D-Mannose 

a-Methyl mannoside 

a-Methyl mannoside 

D-Glucose 

Sucrose 

Human IAL: 

D- Glucose 

/3-Glucan (yeast) 

N-Acetyl-D-Glucosamine 

Concentration: mg/ml (Molar) 

7.5 mM 

75mM 

150mM 

150mM 

75mM 
75mM 

150mM 

75mM 

150mM 

150mM 

150mM 

4 mg/ml 
(40 µM) 

150mM 

% Inhibition of 
Binding ± SD 

25 ± 3 

50 ± 2 

85 ± 3 

40 ± 5 

74 ± 2 

45 ± 2 

19 ± 4 

5 ± 3 

0 ± 5 

3 ± 5 

70 ± 5 

66 ± 2 

Note(s): The effects of several carbohydrates on adherence were assessed utilizing the 
competitive binding assay detailed in Figure 2. Data shown are mean % inhibition + SD 
and represent the maximum concentration tested for multiple carbohydrate concentrations. 
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only 40%, the combination of 75 mM NADG + 75 mM D-mannose inhibited mIAL adhesion 

to hyphae by 75 % . This combination of inhibitors was tested because it was previously noted 

to have a "synergistic" inhibitory effect on Mac-1 mediated adhesion to yeast (Ross et al, 

1985). The carbohydrate a-methyl mannoside also demonstrated a dose dependent inhibitory 

effect with 150 mM inhibiting by 45% and 75 mM inhibiting mIAL adhesion to hyphae by 

19 % . Yeast {J-glucan when tested at 4 mg/ml strongly inhibited mIAL adhesion by 75 % . 

The "irrelevant" carbohydrates (Ross et al., 1985) sucrose and D-glucose showed no 

inhibition of mIAL adhesion to hyphae at either 150 mM or 75 mM concentrations. 

Carbohydrates which characteristically inhibit neutrophil Mac-1 mediated adhesion to 

yeast (Ross et al., 1985) also inhibited hIAL adhesion to hyphae at concentrations which 

inhibited mIAL adhesion to C. albicans (Table 6). The carbohydrate NADG at 150 mM 

inhibited hIAL adhesion to C. albicans hyphae by 66 % and {J-glucan from S. cerevisiae yeast 

at 4 mg/ml inhibited adhesion of hIAL to hyphae by 70%. D-glucose again had no effect on 

adhesion. Taken as a whole, the mIAL and hIAL carbohydrate inhibition data is consistent 

with the YT lymphocyte data and with inhibition of Mac-1 mediated adhesion by these 

carbohydrates in other published studies (Ross et al., 1985; Sehgal et al., 1993; Thornton et 

al., 1996). This characteristic inhibition by selected carbohydrates serves to further confirm 

that CD11b/CD18 is the principal adhesion molecule on YT, mIAL, and hIAL mediating 

adhesion to C. albicans hyphae. 

Human /AL Adhesion to £. albicans Hyphae is Inhibited by ECMIRGD-mimetic Peptides and 

Monoclonal Antibodies to CD1Jb!CD18 

Human IAL (hIAL) were not the direct subject of this dissertation, but data from 

experiments with blood from human donors could have more direct clinical relevance to 
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Figure 11. Monoclonal antibodies to CD1lb/CD18 and ROD-mimetic proteins inhibit 
adhesion of human IL-2 activated lymphocytes to C. albicans. Adhesion of human IL-2 
activated lymphocytes to C. albicans was assessed by the retention of 51Cr labeled 
lymphocytes in the presence of the indicated monoclonal antibodies to the noted CD antigens 
and ROD-mimetic proteins: CDl lb: OK.Ml (mouse anti-human, lg02b), Ml/70 (rat anti­
mouse, Ig02b); CD18: TSl/18 (mouse anti-human, Ig01); CD58: TS2/9 (mouse anti-human 
LFA-3, lg01); CDlla: TSl/22 (mouse anti-human LFA-1, lg01); Proteins: FBIP (fibrinogen 
binding inhibitory peptide: HHLOOAKQAODV); Echistatin, a disintegrin ROD-specific 
integrin inhibitor; heparin, an ROD-containing extracellular matrix protein; ORODSPc is a 
cyclical molecule comprised of the sequence OPenORODSPCA where Pen=penicillimine. 
Conditions and adhesion assessment were as described in Fig. 4 with 105 cells added per well. 
Data are presented as mean % inhibition ± SD of 2 or more experiments. 
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treatment of human fungal infections and would substantiate data from the mIAL studies. 

Therefore, experiments were conducted using a subset of the reagents and anti-human 

CD1lb/CD18 mAbs detailed previously to examine whether human IAL from peripheral 

blood of twelve healthy donors also utilize Mac-1 for adhesion to C. albicans hyphae (Figure 

11). ECM protein and RGD-mimetic peptide inhibition analysis was not as extensive as with 

mIAL, however the fibrinogen fragment FBIP inhibited hIAL adhesion to hyphae with the 

same IC50 of 340 µM. The disintegrin echistatin also blocked adhesion of hIAL to hyphae by 

50% at a concentration of 2 µM, an effect identical to it's inhibition of mIAL adhesion to 

hyphae. The Mac-1 ligand and complex glycoprotein heparin sulfate was found to inhibit 

hIAL by 45 % at the concentration of 100 µM which also inhibited mIAL adhesion to hyphae 

by 50% (Table 3). The GRGDSPc cyclic peptide had no effect on hIAL adhesion to hyphae, 

the same as seen for YT lymphocytes and mIAL. 

Experiments using a restricted number of the anti-human CD 11 b/CD 18 mAbs 

previously described for the YT lymphocyte experiments were examined for their ability to 

inhibit hIAL adhesion to C. albicans hyphae (Figure 11). The OKMl anti-CDllb mAb again 

demonstrated a dose dependent inhibition of adhesion with 45 µg virtually eliminating hIAL 

adhesion to hyphae with inhibition of 83 % and concentration dependent inhibition of 72 % at 

25 µg, 28% at 15 µg, and 9% at 10 µg. The Ml/70 mAb was tested only at the 45 µg 

concentration which inhibited hIAL adhesion to hyphae by 42 % . The combination of 25 µg 

OKMl + 25 µg Ml/70 inhibited adhesion of hIAL by 75%. The anti-human CD18 mAb 

TS 1/ 18 exhibited a dose dependent inhibition of hIAL adhesion with 45 µg inhibiting hIAL 

adhesion by 68 % while 25 µg inhibited adhesion of these lymphocytes to hyphae by 22 % . 

The combination of 25 µg OKMl + 25 µg TSl/18 inhibited hIAL adhesion to C. albicans 

hyphae by 82 % . "Irrelevant" mAbs utilized in the hIAL experiments were the anti-human 
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CD58 (LFA-3) mAb TS2/9 (Sanchez-Madrid et al., 1982) as well as the anti-human CDlla 

mAb TSl/22 (Diamond et al., 1993) which are both blocking antibodies for interactions by 

these receptors. The TS 1/22 mAb inhibited hIAL adhesion by 10 % at 45 µg and had no 

effect on hIAL adhesion at 25 µg. The TS2/9 mAb had no effect on hIAL adhesion to C. 

albicans hyphae at either 45 µg or 25 µg. Overall, these hIAL data are in agreement with the 

YT lymphocyte and mIAL inhibition data and identify CD1lb/CD18 as mediating lymphocyte 

adhesion to C. albicans hyphae. 

Aim 3.) Confirm and/or Prove the Identified Lymphocyte Adherence Molecules Mediate 

Binding of IAL to C. albicans Hyphae. 

Murine 3T3 Fibroblasts Expressing Transfected Human CDllb/CD18 Specifically Bind to£. 

albicans Hyphae 

Experiments detailed above with YT lymphocytes ana murine and human IAL indicate 

that Mac-1 (CD11b/CD18) is the principal adhesion molecule mediating binding of these 

activated lymphocytes to hyphae of C. albicans during growth inhibition of the fungus by 

these lymphocytes. To confirm the ability of Mac-1 to mediate this adhesion, mouse NIH 

3T3 fibroblasts expressing transfected human CD11b/CD18 (designated 3T3-19) were 

examined using the adhesion assay and by competitive inhibition with a restricted number of 

the ECM proteins, RGD-peptides, and anti-CD1lb/CD18 mAbs previously found to inhibit 

YT lymphocyte and hIAL adhesion to C. albicans hyphae (Figure 12). To demonstrate that 

adhesion of 3T3-19 transfectants to hyphae is Mac-1 specific, NIH 3T3 fibroblasts subjected 

to the transfection protocol but not expressing Mac-1 (designated 3T3-l) were also examined 

using the adhesion assay. These 3T3-1 fibroblasts demonstrated no specific adhesion 
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Figure 12. Monoclonal antibodies to CD 11 b/CD 18 inhibit adhesion of 3T3-19 (Mac-1 +) 
transfectants to C. albicans. Adhesion to C. albicans of NIH-3T3 fibroblasts expressing 
transfected human CD1lb/CD18 (3T3-19) and not expressing CD1lb/CD18 (3T3-1) was 
assessed by the retention of 51Cr labeled transfectants in the presence of the indicated 
monoclonal antibodies to the noted CD antigens: CDllb: OKMl (mouse anti-human, IgG2b); 
CD18: TSl/18 (mouse anti-human, lgG1); murine (3T3 cell) CD29: clone #551125 (rat anti­
mouse {31 integrin, lgG1). Conditions and adhesion assessment were as described in Fig. 4 
with 5 x 104 cells added per well. Data are presented as mean % inhibition ± SD of 2 or 
more experiments. 
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to C. albicans hyphae above background levels of 3 % ± 3 % , which was not different with 

addition of the anti-CDllb mAb OKMl or the anti-CD18 mAb TSl/18 (Figure 12, solid 

bars). These data demonstrate that only transfectants expressing CD11b/CD18 bind to C. 

albicans hyphae. 

The CD11b/CD18 specific adhesion of 3T3-19 transfectants was further demonstrated 

by a concentration dependent inhibition of 3T3-19 adhesion to C. albicans hyphae by anti­

CD1lb/CD18 mAbs. The anti-CDllb mAb OKMl was tested over a broad range of 

concentrations and was found to inhibit adhesion of 3T3-19 fibroblasts to C. albicans in a 

clearly concentration dependent manner (Figure 12). The OKMl mAb inhibited by 67% at 

45 µg, 57% at 40 µg, 38% at 25 µg, 32% at 20 µg, 22% at 15 µg, 10% at 10 µg, and had 

no effect on 3T3-19 fibroblast adhesion to hyphae at a concentration of 5 µg. The anti-CD18 

mAb TSl/18 also demonstrated concentration dependent inhibition of 3T3-19 adhesion to C. 

albicans with 45 µg TSl/18 inhibiting adhesion by 28% while 25 µg TSl/18 inhibited 3T3-19 

adhesion to hyphae by only 9 % . That 3T3-19 adhesion to C. albicans hyphae is 

CD 11 b/CD 18 specific was also demonstrated by the dramatic 85 % inhibition of adhesion by 

the combination of 25 µg OKMl with 25 µg TSl/18. A further verification of specificity is 

demonstrated by the anti-murine CD29 mAb, which reacts with the murine {31 integrin chain 

on the surface of these 3T3-19 fibroblasts, and which had no effect on 3T3-19 adhesion to C. 

albicans (Figure 12, solid bars). These data confirm that CD1lb/CD18 can mediate specific 

adhesion to C. albicans hyphae. 

Monoclonal Antibodies to CD11b/CDJ8 Synergize with RGD-Mimetic Peptides to Inhibit 3T3 

Transf ectant Adhesion to {;_. albicans. 

Because of the controversy surrounding inhibition of Mac-1 by RGD-mimetic 
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peptides, experiments were undertaken using 3T3-19 transfectants to determine whether the 

inhibition of lymphocyte adhesion to C. albicans hyphae by RGD-mimetics was in fact 

specific for Mac-1 mediated adhesion (Figure 13). The Mac-1 ligand clotting Factor X, 

containing the RGD-mimetic sequence: GYD .. QED which blocks Mac-1 adhesion (Rozdzinski 

et al., 1995), inhibited 3T3-19 adhesion to hyphae by 48% at 55 nM comparable to Factor X 

inhibition of lymphocyte adhesion to hyphae (Table 3). However, the FBIP peptide at a 

concentration of 340 µMand the GRGDSPK peptide at 560 µM had no effect on 3T3-19 

adhesion to C. albicans hyphae. Because these two peptides had clearly inhibited adhesion of 

IAL to hyphae by 50% at these concentrations, these peptides were tested with low 

concentrations of mAb to CDllb in an attempt to "activate" the transfected CD11b/CD18 

molecules expressed by the 3T3-19 fibroblasts to a state where RGD-mimetic peptides other 

than Factor X might inhibit adhesion. The anti-CDl lb mAb Ml/70 inhibited adhesion of 

3T3-19 fibroblasts to hyphae by 25% at 30 µg but when combined at this concentration with 

the FBIP peptide demonstrated a synergistic effect by inhibiting 3T3-19 adhesion by 70% with 

340 µM FBIP and inhibited by 53% with 170 µM FBIP. The anti-CDllb mAb OKMl 

inhibited 3T3-19 adhesion to hyphae by 22% at 15 µg when used alone but when combined 

with 140 µM GRGDSPK peptide inhibited 3T3-19 fibroblast adhesion to hyphae by 40%. A 

similar synergistic effect was observed between the OKMl mAb and the anti-human CD18 

mAb TSl/18 (Figure 13). At a concentration of 45 µg TSl/18 inhibited 3T3-19 adhesion by 

25% and had no effect on 3T3-19 adhesion to hyphae at 25 µg. However, the combination of 

15 µg OKMl + 25 µg TSl/18 achieved a synergistic type inhibition of 84% of 3T3-19 

fibroblast adhesion to C. albicans hyphae. An additive effect was seen for 15 µg OKMl + 

15 µg Ml/70 which together blocked 3T3-19 transfectant adhesion by 58%. These data 

confirm that the inhibition of lymphocyte adhesion by RGD-mimetic peptides is 
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Figure 13. RGD-mimetic peptides in combination with monoclonal antibodies to 
CD1lb/CD18 but not alone inhibit adhesion of 3T3-19 (Mac-1 +) transfectants to C. albicans. 
Adhesion to C. albicans of NIH-3T3 fibroblast transfectants expressing human CD11b/CD18 
(3T3-19) was assessed by the retention of 51Cr labeled transfectants in the presence of the 
indicated monoclonal antibodies to the noted CD antigens and RGD-mimetic peptides: CD 11 b: 
OKMl (mouse anti-human, IgG2b), Ml/70 (rat anti-mouse, IgG2b); CD18: TSl/18 (mouse 
anti-human, IgG1); Peptides: GRGDSPK; FBIP (fibrinogen binding inhibitory peptide: 
HHLGGAKQAGDV). Conditions and adhesion assessment were as described in Fig. 4 with 
5 x 104 cells added per well. Data are presented as mean % inhibition ± SD of 2 or more 
experiments. 
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specifically an inhibition of Mac-1 mediated adhesion to C. albicans hyphae. 

Monoclonal Antibodies to CD1lb/CD18 Block m/AL Growth Inhibition of~- albicans 

Finally, experiments were carried out to investigate whether inhibition of 

CD11b/CD18 adhesion of mIAL to C. albicans hyphae was functionally relevant to the 

growth inhibition of the fungus by these IL-2 activated lymphocytes (Figure 14). The growth 

inhibition assay utilizes uptake of 3H-uridine to compare growth of treated and untreated 

hyphae (Beno and Mathews, 1993). The mIAL utilized for these experiments were either 

preincubated with no mAb or the indicated mAb for 1 h, then added to hyphae for 3 h, and 

finally removed and 3H-uridine added for 2 h. Baseline values were obtained using wells with 

no mIAL and wells with mIAL but no mAb (Figure 14, bars 1 and 2). Some C. albicans 

hyphae also were treated with the noted anti-CDllb mAbs, Ml/70 or OKMl, without mIAL 

present (Figure 14, bars 3 and 6, respectively). This had no significant effect on fungal 

growth (Student's t-test, p > .05), ruling out a direct effect of the mAbs on hyphal growth. 

Similarly, mlAL treated with the "irrelevant" mAbs to murine CDlla (M17/4.4; Figure 14, 

bars 9 and 10) and CDl lc (N418; Figure 14, bars 11 and 12) were able to inhibit hyphal 

growth with no significant difference (P > .05) from untreated mIAL (Figure 14, bar 2). 

For both anti-CDllb mAbs, a dose dependent blocking of mIAL growth inhibition of C. 

albicans was obtained. OKMl and Ml/70, each tested at 45 µg separately, completely 

eliminated mIAL growth inhibition of C. albicans hyphae (Figure 14, Ml/70 bar 4, OKMl 

bar 7). There was no significant difference (p > .05) between these values and the baseline 

values without added mIAL either with or without mAbs (Figure 14, bars 1, 3, and 6). 

Thereby demonstrating a significant (*a) (p < .05; bar 4 versus bar 2) blocking effect of the 

anti-CD 11 b mAbs on mIAL growth inhibition of C. albicans. 
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Figure 14. Monoclonal antibodies to CD 11 b/CD 18 block growth inhibition of C. albicans 
hyphae by murine IL-2 activated lymphocytes. C. albicans growth inhibition was assessed by 
the incorporation of 3H-uridine after treatment with murine IL-2 activated lymphocytes. 
Where indicated, monoclonal antibodies were added either to hyphae alone or were 
preincubated with MIAL (murine IL-2 activated lymphocytes) as detailed in Fig. 4. 
Monoclonal antibodies used to the noted CD antigens were: CDl lb: OKMl (mouse anti­
human, IgG2b), Ml/70 (rat anti-mouse, IgG2b); CDlla: Ml7/4.4 (rat anti-mouse, IgG2b, 

kappa); CDllc: N418 (hamster anti-mouse, IgG). An asterisk(*) denotes statistical 
significance (p < .05) between the designated data as determined using the Student's 
independent t-test (SigmaPlot 4.1 @ 1991 Jandel Incorporated). (*a denotes statistically 
significant blocking of mIAL mediated growth inhibition by 45 µg mAb Ml/70: bar 4, or 
OKMl: bar 7); (*b denotes statistically significant growth inhibition by mIAL treated with 25 
µg Ml/70, bar 5 versus bars 2 or 3, or 25 µg OKMl, bar 8 versus bars 2 or 6). Note that 
the baseline mean of 58 % growth inhibition (bar 2) was compared to the four indicated means 
(bars 9, 10, 11, and 12) to test significance and they were not found different (p > .05). 
Data are presented as the mean % inhibition ± SD of 2 or more experiments. 
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However, a significant (*b) (p < .05) growth inhibition by mIAL was evident at the 25 µg 

concentration of both OKMl (43%; bar 8 versus bar 6) and Ml/70 (19%; bar 5 versus bar 

3), although the percentage of growth inhibition as noted for each is also significantly less (p 

< .05) than the 58% seen with mIAL alone (Figure 14, bar 2) thus demonstrating a dose 

dependent blocking by mAbs of mIAL growth inhibition of hyphae. These data, taken 

together with the specific adhesion to C. albicans demonstrated with Mac-1 + 3T3-19 

fibroblasts, confirm that the integrin CD 11 b/CD 18 is the principal adhesion molecule utilized 

by mIAL during growth inhibition of C. albicans hyphae. 



CHAPTER 4. 

DISCUSSION 

In this dissertation, the human YT lymphocyte cell line was utilized for the initial 

characterization of cytotoxic lymphocyte adhesion to C. albicans (Figure 15). The epitopes 

for the anti-human CDl lb mAbs used in this study have been 'mapped' by assessing the 

binding of each mAb to fragments of CDl lb expressed by transfected cells. Each mAb maps 

to either the I-domain or the lectin-like domain of CDllb or the CD18 {32 chain of Mac-1 

(Diamond et al., 1993; Zhou et al., 1994; Violette et al., 1995). Epitope specific inhibition 

is not purely steric, since nonblocking versus blocking mAbs to the same integrin initiate 

different intracellular phosphorylation signalling patterns (Miyamoto et al., 1995), and 

possibly bind to distinct subdomains within the I domain of CD 11 b (Violette et al., 1995; 

Champe et al., 1995; Zhang and Plow, 1996). The mAbs TMG6-5, MY904, and LPM19c 

block lymphocyte adhesion to C. albicans by as much as 73 % , 62 % , and 59 % respectively. 

They each recognize epitopes in the I domain of Mac-1 (Diamond et al., 1993). However, 

two other mAbs to I domain epitopes, LM2/1 and MN-41, have little effect on YT 

lymphocyte adhesion to hyphae. The reason for these differences is not known (Diamond et 

al., 1993; Violette et al., 1995). However, it may be that these mAbs bind to the different 

functional subdomains within the I domain which were recently demonstrated for human and 

murine {32 integrin CD1la/CD18 (Champe et al., 1995). Most recently, evidence for this 

subdomain structure for the CD 11 b I domain has been demonstrated using peptide ligands of 
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Figure 15. Scanning electron micrograph of YT lymphocytes. Two YT lymphocytes are 
shown adhering to a C. albicans hyphal segment after 30 min of interaction (x 12,500). 
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Mac-1 and a library of fifteen '293' type cell transfectants expressing single point mutations in 

the CD11b/CD18 I domain and by showing binding sites for these ligands are overlapping, 

but not identical (Zhang and Plow, 1996). Based on work by these and other authors and 

data from this study a tentative model of the CD1lb/CD18 heterodimer was formulated 

(Figure 16). In support of this model, LPM19c and MY904 both require the entire I domain 

intact to bind, while LM2/1 will bind to an octamer peptide from the C-terminal end of the I 

domain (Violette et al., 1995). The epitopes for TMG6-5 and MN-41 have not yet been 

assigned to a region(s) of the I domain. In contrast to these mAbs, the mAb OKMl 

recognizes an epitope on Mac-1 associated with the lectin-like domain (Diamond et al., 1993; 

Thornton et al., 1996). Both (3-glucan and NADG (as the chitin polymer) are ligands for this 

domain and predominant components of the surface of C. albicans hyphae and other fungi 

(Georgopapadakou and Tkacz, 1995). In addition, the carbohydrate specificity of the Mac-1 

lectin domain has been broadened to include fungal mannoprotein (Thornton et al., 1996). 

By adhering to the lectin-like domain, polymeric (3-glucan, mannoprotein, (and/or NADG) on 

the C. albicans surface may cross-link Mac-1 into clusters of receptors resulting in their 

activation. Activated Mac-1 has been demonstrated to cluster (Detmers et al., 1987). In 

addition, cross-linking of Mac-1 with anti-CDllb mAbs results in transient intracellular 

calcium ([Ca2+U increase and an activation of Mac-1 to bind fibrinogen (Altieri et al., 1992). 

Interestingly, cross-linking CDlla or CDllc with mAbs did not have this effect, while cross­

liking CD18 using mAbs also resulted in transient [Ca2+]; increase (Altieri et al., 1992). 

Clustering has thus been established as a fundamental mechanism of Mac-1 activation (Altieri 

et al., 1992), and for (32 integrin activation by extracellular calcium mediated clustering for 

CD1la/CD18 (Van Kooyk et al., 1994). Aggregation also results in activation of (31 integrins 

using cross-linking by mAb coated beads and multimeric RGD-mimetic peptides. 



Figure 16. Schematic diagram of the CDllb and CD18 subunits of Mac-1, showing the 
possible locations of subdomains. The I domain contains three subdomains with the OKMl 
lectin domain nearby. 
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(Miyamoto et al., 1995a; Miyamoto et al., 1995b). Following aggregation, Mac-1 activation 

would then be followed by adhesion to an RGD-mimetic ligand on the surface of C. albicans 

to trigger cytotoxic LGL degranulation (Figure 17). In this way, receptor clustering and 

ligand occupancy synergize during integrin adhesion as demonstrated for /31 integrins 

(Miyamoto et al., 1995a; Miyamoto et al., 1995b). Such synergy has been shown for Mac-1 

by soluble /3-glucan activating Mac-1 mediated tumoricidal function on NK and cytotoxic 

lymphocytes (CTL) (Di Renzo et al., 1991; Muto et al., 1993). In addition, it was recently 

demonstrated that the Mac-1 lectin domain represents the cellular receptor for an entire class 

of polysaccharide immunomodulators such as lentinan which potentiate cytotoxic anti-tumor 

activity through an unknown mechanism and are currently in clinical trials for anti-cancer 

therapy (Thornton et al. 1996). This explains previous data showing that an anti-Mac-1 mAb 

coupled to forty-six repeated units of muramyldipeptide/gluconolactone activated macrophage 

non-MHC restricted tumor cytotoxicity similar to zymosan (Midoux et al., 1992). Thus Mac-

1 probably represents a broadly specific non-MHC restricted receptor for recognition of 

microbial polysaccharides bound by C3bi or displaying RGD-mimetic virulence factors like B. 

pertussis FHA (and possibly tumors with aberrant surface glycoproteins). This model is 

supported by a recent description of the Mac-1 activating mAb VIM12 (Stocki et al., 1995). 

VIM12 mAb binding to Mac-1 can be inhibited with NADG, and the epitope has been 

mapped to the lectin-like domain of CDllb (Diamond et al., 1993; Stocki et al. 1995). Only 

intact mAb VIM12 or cross-linked Fab' fragments, not monomeric Fab', result in activation 

of Mac-1 adhesion, which was also shown to require intact microfilaments (Stocki et al., 

1995). This model of Mac-1 activation extends one proposed for Mac-l/CD16 (FcRIII) 

mediated phagocytosis of IgG-coated particles (Petty and Todd, 1993; Sehgal et al., 1993). 



Figure 17. Schematic model for lymphocyte (IAL or YT) Mac-1. Activation of Mac-1 is 
proposed to occur via cross-linking of single Mac-1 molecules (at left) by carbohydrates on 
the surface of a C. albicans hypha (above) to form activated clusters (a cluster of three at 
right). The single Mac-1 receptor is unable to bind to the ROD-mimetic ligand (large 
arrowhead) until undergoing a conformational change due to cross-linking and association 
with cytoskeletal proteins (below). 
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The CR3-like molecule on C. albicans has been defined as a single receptor for C3bi 

with saturable binding to C3bi and an affinity for C3bi said to be similar to the CR3 integrin 

(CD1 lb/CD18, Mac-1) (Hostetter, 1994a). However, the concentration of C3bi required for 

50% inhibition to HELA epithelial cells was 300 mM (Bendel and Hostetter, 1993), far above 

the CR3 Kd of 3.5 µM for C3bi (Amout, 1990), or the 400 nM IC50 for YT lymphocytes and 

1 µM IC50 for mIAL seen in this dissertation using C3 complement (Table 3). The C. 

albicans CR3-like molecule may also be inhibitable with GRGDSP-sequence peptides 

(Hostetter, 1994b), however the washing experiments in this dissertation demonstrate the 

RGD-inhibitable integrin to be on the surface of lymphocytes (Figure 6). Besides directly 

mediating adhesion, expression of this receptor may be a device utilized by C. albicans to 

evade detection by the host immune system. C. albicans expression of this C3 complement 

binding protein inversely correlates with phagocytosis of C. albicans yeasts (Gilmore et al., 

1988) and correlates directly with virulence (Hostetter, 1994a; Bendel et al., 1995). The 

CR3-like molecule has also been implicated in iron acquisition by C. albicans (Moors et al., 

1992). Of the mAbs to mammalian aM/32 (CD11b/CD18, Mac-1) tested for reactivity with C. 

albicans, several bind (OKMl, Ml/70, Mol, mAb 17, mAb 44, Mn-41, and OKMlO) while 

several others which are potent blockers of mammalian Mac-1 do not bind (Leu15, 60.1, 

95G8)(Mayer et al., 1990). Of the mAbs to Mac-1 which bind to C. albicans, only mAb 17 

and mAb 44 block adhesion of C. albicans to mammalian cells, even though the other mAbs 

including OKMl were tested at concentrations as high as 2 mg/ml (Bendel and Hostetter, 

1993; Hostetter, 1994a). This is far above the 180 µg/ml of OKMl which blocked murine 

and human IAL adhesion to C. albicans by 70-85 % in the present study. It is also consistent 

with experiments performed in this dissertation in which pre-incubation of C. albicans hyphae 

with 200 µg/ml OKMl, Ml/70 or TSl/18 followed by washing had no effect on lymphocyte 
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adhesion to hyphae. Conversely, a polyclonal rabbit IgG antiserum which reacts specifically 

with the C. albicans CR3-like molecule and blocks C3bi and OKMl adhesion does not react 

with CR3 expressed on U937 cells (Calderone and Braun, 1991). What is believed to be the 

same integrin-like molecule on C. albicans also reacts with mAb to ax/32 (CR4, p150,95) with 

no demonstrated effect on adhesion of the fungus to mammalian cells (Hostetter, 1994b). 

Notably, no reactivity of any mAb to the Mac-1 {32 integrin subunit (including testing of mAb 

TSl/18 used in this dissertation) has ever been detected on C. albicans yeast or hyphal forms 

(Hostetter, 1994b). In contrast, the TSl/18 mAb to human {32 blocked adhesion of 

lymphocytes to C. albicans by 49 % in the present study. 

Two other differences between the mammalian integrins and the C. albicans integrin­

like protein(s) are that carbohydrates, including NADG, at concentrations greater than 65 mM 

have no effect on C. albicans adhesion to endothelial or epithelial cells, while NADG blocked 

in this study by 50-75% at those concentrations (Tables 3 and 4) (Hostetter, 1994b). Also, 

the candidal proteins do not require divalent cations, while the need for divalent cations in 

most adhesion mediated by mammalian integrins is clear (Springer, 1991, Arnaout, 1990; 

Hostetter, 1994b). Finally, the C3bi binding protein of C. albicans has been identified using 

affinity chromatography as a 42 kD protein apparently also occurring on C. albicans in other 

increasingly glycosylated forms of 55 kD and 66 kD (Eigentler et al., 1989; Alaei et al., 

1993). The isolated proteins bound C3bi, cross-reacted with the mAb OKMl, and rabbit 

antiserum to the purified 42 kD protein blocked adhesion of C3bi coated erythrocytes to C. 

albicans pseudohyphae (Alaei et al., 1993). This data is consistent with a 60-70 kD 

CR3/CR2-like molecule described by other groups to also bind to mAbs to mammalian CR2, 

a member of the immunoglobulin superfamily which also binds C3 fragments (Eigentler et 

al., 1989; Wadsworth et al., 1993; Calderone et al., 1994). Nevertheless, a small group of 



researchers continues to search for the gene for the "integrin-analog" C3 receptor on C. 

albicans (Bendel et al., 1995). Clearly, the characteristics of the candidal "CR3/CR2-like 

protein" (Calderone et al., 1994) differ from the native mammalian CR3 (CD11b/CD18) 

shown to mediate adhesion of YT lymphocytes and murine and human IAL to C. albicans 

hyphae in this dissertation. 
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A mannose specific lectin-like receptor on splenic and lymph node macrophages has 

been described by others as mediating adhesion to C. albicans (Cutler, 1991). Using an ex 

vivo binding assay, adhesion of C. albicans yeast to lymph node macrophages was not 

blocked with laminin or fibronectin (final concentrations 100 nM)(Han et al., 1993). This 

concentration of laminin was sufficient to block YT lymphocyte and mIAL adhesion to C. 

albicans by 40 % in this dissertation, although fibronectin at this concentration also had no 

effect on lymphocyte adhesion. However, C. albicans adherence in the ex vivo assay was 

blocked by C. albicans purified carbohydrates which were eluted from a Con A column with 

a-methyl-D-mannopyranoside (Han et al., 1993), a carbohydrate which inhibited adhesion of 

lymphocytes to C. albicans in this dissertation and is a well documented inhibitor of adhesion 

mediated by the lectin-like domain of Mac-1 (Ross et al., 1985; Thornton et al., 1996). 

Another study using the U937 macrophage cell line also claimed that a /3-glucan receptor 

other than CR3 mediated adhesion to C. albicans (Janusz et al., 1988). However, in light of 

the carbohydrate inhibition data in this study, as well as recent mapping of the U937 /3-glucan 

receptor to the Mac-1 lectin-like domain (Thornton et al., 1996), it seems possible that those 

authors were describing Mac-1 mediated adhesion of C. albicans to macrophages. These data 

are consistent with the inhibition of Mac-1 mediated adhesion by lymphocyte effectors in this 

dissertation by the same profile of carbohydrates known to block CD1 lb/CD18 mediated 

adhesion to S. cerevisiae, including /3-glucan from S. cerevisiae itself (Tables 3 and 
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4)(Forsyth and Mathews, 1996; Thornton et al., 1996). However, it is known that 

macrophages from patients with leukocyte adhesion deficiency (LAD) can still mediate a 

reduced level of phagocytosis of C. albicans by a lectin receptor (Szabo et al., 1995). Which 

of these two lectin-like receptors has been described in the series of studies by Han et al. 

remains to be determined (Han et al., 1993). With regard to inhibition of C. albicans 

adhesion to epithelial and endothelial cells, the majority of investigations have shown that 

fibronectin fragments of the GRGDSP sequence and PT-2000 used in this dissertation do not 

block adhesion of C. albicans yeast cells to mammalian cells including HELA S3 epithelial 

cells (Hostetter, 1994a) or rabbit aortic endothelium (Klotz et al., 1992). This was true even 

when used at final concentrations of 1 mg/ml (Benda} and Hostetter, 1993). In this 

dissertation, PT-2000 at a final concentration of 40 µg/ml blocked binding of YT lymphocytes 

to C. albicans by 98% (Forsyth and Mathews, 1996). 

The {32 leukocyte integrins must become activated in order to become adhesive 

(Anderson, 1994; Li et al., 1995; Stewart et al., 1995). Two general pathways of cell 

signaling have been characterized as mediating the activation of {32 integrins (as well as /31 and 

{33 integrins) and have received the terms "outside-in" signalling and "inside-out" signalling. 

The classic example of {32 integrin inside-out signaling, is that cross-linking of the T cell 

receptor (TCR) results in an activation of CD11a/CD18 (LFA-1) for adhesion to ICAM-1 

(Dustin and Springer, 1989). The molecular events underlying these two pathways are not 

well understood for any integrin, but progress is slowly being made, especially in the area of 

{31 integrin signaling. Two synergistically related processes that are believed to regulate 

integrin outside-in signalling are ligand occupancy and receptor cross-linking (Miyamoto et al. 

1995a). A molecular hierarchy has been constructed for /3 1 integrin signaling for 

redistribution of cytoplasmic proteins by integrins. The hierarchy describes increasing 
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association of intracellular proteins with the cytoplasmic domains of integrins beginning with 

weak ligand occupancy, then aggregation/cross-linking followed by ligand occupancy plus 

cross-linking (Miyamoto et al., 1995b). The initial step (ligand occupancy) results in no 

significant intracellular signals. Cross-linking alone with non-inhibitory mAbs results in 

significant intracellular signaling with induction of some 20 intracellular signaling molecules 

including kinase phosphorylated proteins and initial cytoskeletal interactions. However, if 

integrins are cross-linked and ligand occupancy occurs (or cross-linked with inhibitory mAbs), 

then a synergistic intracellular response is elicited with an increase in affinity of the receptor 

for ligand accompanied by induction of some 50 intracellular proteins including increased 

kinase phosphorylated proteins and actin polymerization with full integrin association to the 

cytoskeleton (Miyamoto et al., 1995a; Miyamoto et al., 1995b). 

What is known about (32 integrins and Mac-1 signaling is in agreement with this 

model. Mac-1 has been shown to mediate degranulation in PMN (Walzog et al., 1994), 

Macrophages (Klegeris and McGeer, 1994; Hellberg et al., 1~95), NK and T cells (Muto et 

al., 1993), and eosinophils (Kaneko et al., 1995). Cross-linking of CD18 on lymphocytes 

results in transient intracellular calcium ([Ca2+]i) currents but no increase in Mac-1 affinity 

for fibrinogen, while cross-linking of CDl lb also results in increased [Ca2+L accompanied by 

activation of Mac-1 adhesion to fibrinogen (Altieri et al., 1992). Mac-1 affinity for ligand 

has been demonstrated to be modulated by the cytoplasmic domains of the CD 11 b and CD 18 

subunits (Rabb et al., 1993). Truncation of either the CDllb or CD18 cytoplasmic tails 

results in constitutive activation of Mac-1 adhesion (Rabb et al., 1993). This truncation may 

allow easier aggregation, but also may remove constitutive inhibition due to phosphorylation 

and/or dephosphorylation of cytoplasmic residues (Valmu and Gahmberg, 1995). No 

intracellular signal is elicited by Mac-1 contact with monomeric ligand alone (Li et al., 1995). 
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However, cross-linking Mac-1 has been shown to result in several signals. These signals 

include increased [Ca2+L (Altieri et al., 1992; Hellberg et al., 1995; Walzog et al., 1994). 

Interestingly, in vitro studies done with adhesion of PMN to C. albicans hyphae demonstrate 

transient changes in [Ca2+L in PMN as they move the length of the hyphae. Furthermore, 

that study measured a difference in time before contact to when the transient changes in 

[Ca2+L occurred with unopsonized (4 min) versus serum opsonized (1 min) hyphae (Levitz et 

al., 1987). Cross-linking Mac-1 with opsonized bacteria and other ligands in PMN and 

lymphocytes has also been shown to result in phosphorylation of paxillin (a key cytoskeletal 

linker protein), upregulation of Mac-1 from intracellular stores, shedding of L-selectin, 

granule exocytosis, and actin polymerization (Muto et al., 1993; Walzog et al., 1994; Fuortes 

et al., 1994). The initial calcium signal was not inhibitable with tyrosine kinase inhibitors, 

although PMA (which is known to cause clustering of Mac-1) did inhibit it (Walzog et al., 

1994). More extensive events resulting from anti-CD18 cross-linking, such as granule 

exocytosis, were inhibitable with tyrosine kinase inhibitors. 'fhe PMN respiratory burst was 

not affected by soluble anti-CD18 mAb, but was blocked by solid phase mAb, indicating an 

effect of cross-linking (Walzog et al., 1994). Similarly, the ICAM-2 peptide fragment that 

activates Mac-1 mediated NK cell killing evokes a 35 KD and 150 KD phosphorylated protein 

but mAbs to Mac-1 evoke only the 150 kD protein (Somersalo et al., 1995). Also, cytokines 

that "prime" Mac-1 (TNF-a, fMLP, GM-CSF, but not G-CSF or IFN--y) result in 

phosphorylation of paxillin in the absence of ligand and result in a synergistic respiratory 

burst response in PMN when ligand does engage Mac-1 (Lilles et al., 1995). These data are 

in agreement with the hierarchical model for integrin activation (Miyamoto et al., 1995). The 

fact that opsonized bacteria and opsonized zymosan evoke these responses, including 

degranulation, is virtually the same as C. albicans evoking them, as indicated by the study of 
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[Ca2+L currents in C. albicans adherent PMN (Levitz et al., 1987). Therefore, the model 

proposed herein of Mac-1 activation via cross-linking through the lectin domain has a basis in 

theory and Mac-1 experimental data. 

Finally it should be noted that ligation of the CD 11 b versus CD 18 subunits of Mac-1 

has been shown to have different effects. This is in agreement with data showing different (32 

integrin "activating" mAbs can result in affinity for different ligands (Ortlepp et al., 1995). 

Regulation of Mac-1 adhesion by the differential phosphorylation status of the alpha and beta 

chains has been reported (Buyon et al., 1990; Valmu and Gahmberg, 1995). Similarly for 

Mac-1, cross-linking with anti-CDllb mAbs (using secondary antibodies) results in different 

cellular signals than when anti-CD18 mAbs are used (Crockett-Torabi et al., 1995). In one 

study with PMN, mAbs specific for CDllb or CD18 blocked Mac-1 mediated adhesion to 

zymogen, while only mAbs to CD18 blocked phagocytosis of these particles (Peterson et al., 

1994). Of great interest for cos+ cytotoxic cells is the subject of deadhesion from a target 

that allows recycling of cytotoxic lymphocytes. Mac-1 has been demonstrated to be 

instrumental in the deadhesion of PMN (Bohnsack et al., 1991). A very recent paper shows a 

synergistic relationship between CD3 receptor aggregation and integrin ligand occupancy in 

deadhesion triggered by LFA-1 from tumor targets (Rovere et al., 1996). It also agrees with 

data showing ligand binding to Mac-1 is necessary but not sufficient for function, because full 

function requires deadhesion (Dransfield et al., 1992). Thus the synergistic "trigger" for 

cytotoxic lymphocyte degranulation as well as deadhesion mediated by Mac-1 may come via 

cross-linking mediated by the CD 11 b lectin domain followed by adhesion to ligand mediated 

by both subunits with signaling via the CD18 subunit also required for degranulation as well 

as deadhesion. Consistent with this view are activating mAbs for Mac-1 which are specific 

for the CDllb lectin domain (Stocki et al., 1995) and another specific for CD18 (Petruzzelli 
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et al., 1995). In the model proposed in this dissertation, most natural ligands of Mac-1 are 

proposed here to fulfill the requirements for cross-linking and ligand occupancy by different 

portions (often discontinuous) of the same molecule. Such multiple, noncontiguous sites 

within a Mac-1 ligand which block Mac-1 adhesion have been described for fibrinogen, 

Factor X, S. cerevisiae, FHA, and other microbial ligands noted below as well as C. albicans 

hyphae in the present study. 

This two step adhesion cascade of polysaccharide/hydrophobic adhesion resulting in 

activation followed by RGD-mimetic recognition has been demonstrated for other microbial 

ligands of Mac-1. Binding of the Bordatella pertussis RGD-containing FHA glycoprotein to 

macrophages is inhibitable by GRGDSP peptides and also by 50% with NADG (Reiman et 

al., 1990). Leishmania mexicana also expresses two distinct structures that bind to Mac-1: a 

surface glycolipid (LPG) that can be blocked with OKMl and not RGD and a second protein 

(gp63, containing RYD) which binds to Mac-1 in an RGD-inhibitable manner (Russell et al., 

1989). Mac-1 was also recently shown to mediate macrophage binding to another dimorphic 

fungus Blastomyces dermatitidis and, like adhesion to C. albicans, mAb MY904 is inhibitory 

while MN-41 is not (Newman et al., 1995). RGD peptide inhibition studies have not been 

reported but inhibition by RGD-mimetic peptides would be expected. This is supported by 

these authors identification of the principal Mac-1 ligand on B. dermatitidis as WI-1, with 

homology to invasin of Yersinia species. The invasin protein is an RGD-mimetic integrin 

ligand which contains a critical aspartate but lacks an RGD sequence (Leong et al., 1995). 

Interestingly, not only does WI-1 expression correlate with adhesion and virulence of B. 

dermatiditis (Klein et al., 1994), but so does expression of the Mac-1 lectin domain ligand (3-

glucan by B. dermatiditis (Hogan and Klein, 1994). Such a two-step adhesion cascade has 

been demonstrated for Mac-1 activation by P and E selectins on endothelium which probably 
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interact with the carbohydrate sialyl-Lewisx on Mac-1 to cross-link Mac-1 during leukocyte 

rolling on endothelium at sites of inflammation (Kotovuori et al., 1993). 

The epitope mapping for murine specific anti-CD1lb/CD18 mAbs has not yet been 

carried out. However, the anti-murine CDl lb mAb Ml/70 has been mapped to bind outside 

the I domain of human CD 11 b to an area proximal to the I domain possibly responsible for 

Mac-1 hydrophobic adhesion and also blocked by mAb MY904 (Dana et al., 1986; Zhou et 

al., 1994). Also, the anti-human CDllb mAb OKMl is known to bind the lectin domain of 

human Mac-1 (Thornton et al., 1996). Both mAbs blocked YT lymphocytes and murine and 

human IAL in a comparable manner, with maximum inhibition by Ml/70 in the 35-45% 

range and maximum inhibition by OKMl of 84% for hIAL and 92% for mIAL (Figures 7, 10 

and 11). This is strong evidence that the cross-reactive epitopes recognized by these 

antibodies represent similar functional portions of the respective Mac-1 molecules. Further 

support for similar functions is the potent additive effect of OKMl and anti-CD18 mAbs for 

both mIAL and hIAL resulting in greater than 80% inhibition (Figures 10 and 11). The anti­

murine CD18 mAbs inhibited mIAL adhesion by 52% (M18/2.A) and 59% (2E6) and in a 

dose dependent manner similar to YT lymphocyte inhibition of 49% by TSl/18, and slightly 

greater but comparable inhibition of 69% was seen for hIAL by TSl/18. These data correlate 

well with the close conservation of sequences in the functional areas of Mac-1 that has been 

observed between mouse and human Mac-1 (Pytela, 1988). The specificity of inhibition by 

these mAbs is further demonstrated by the negligible effects on YT and IAL adhesion exerted 

by equal amounts of isotype matched mAbs to other adhesion molecules verified to be present 

on these lymphocytes (solid bars in Figures 7, 10, and 11). This is especially significant 

when considering treatment of mIAL (M17/4.4) and hIAL (TSl/22) with mAbs to LFA-1 

(CD11a/CD18) which have been shown to block adhesion of cytotoxic lymphocytes to targets 
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mediated by LFA-1 in the respective species (Anderson, 1994). No surface reactivity to anti-

LFA-1 mAbs was found for the YT lymphocytes. These data taken together with the dose 

dependent inhibition of lymphocyte adhesion by CD11b/CD18 mAbs, and with maximum 

inhibition of over 80 % for both mIAL and hIAL adhesion to C. albicans by mAbs to 

CD11b/CD18, strongly indicate that these lymphocytes from both species utilize 

CD1 lb/CD18 as the principal structure for adhesion to C. albicans hyphae. 

The data show that for the YT lymphocytes and murine and human IAL, combinations 

of anti-CD 11 b and anti-CD 18 mAbs had an additive inhibitory effect on lymphocyte adhesion 

to C. albicans hyphae (Figures 7, 10, and 11). Maximum inhibition of adhesion observed for 

these combinations of purified mAb were 85% for YT lymphocytes, 84% for mIAL, and 82% 

for hIAL. These data combined with the inhibition demonstrated by mAbs to CD 18 alone 

suggest both subunits of the Mac-1 heterodimer participate in adhesion of lymphocytes to C. 

albicans hyphae. This concept is consistent with mutations in the CD18 chain eliminating 

Mac-1 adhesion to C3bi (Bajt et al., 1995) even though C3bi binds to the purified CDllb 

subunit (Van Strijp et al., 1993). As noted above, mAbs to murine and human CD1la/CD18 

showed no inhibitory effect on IAL adhesion to C. albicans. The only other integrin 

identified on the YT lymphocyte subline is p150,95 (CD11c/CD18) which also utilizes the 

CD18 {32 integrin subunit. However, p150,95 has not been shown to be inhibitable with 

RGD-mimetic peptides or NADG (Anderson, 1994; Thornton et al., 1996). In addition, mAb 

N418 to murine CDllc had no effect on mIAL adhesion to hyphae (Figure 10). The ad/32 

integrin reported in canines and humans recently has not yet been described in murine cells 

(Van der Vieren et al., 1995). Specific mAbs to test for the ad/32 integrin on IAL will be 

utilized when available. However, evidence for ad/32 not mediating human lymphocyte 

adhesion to C. albicans is that of the anti-Mac-1 mAbs utilized in this dissertation, MY904 
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has been tested for cross-reactivity with human ad/32 and no cross-reactivity to ad/32 was found 

(Danilenko et al., 1995), while MY904 demonstrated a dose dependent inhibition of YT 

lymphocyte adhesion to C. albicans (Figure 7). Therefore, the additive effects of mAbs 

reactive with CDllb and CD18 are probably due to the contribution by CD18 to Mac-1 

adhesion. Collectively, these data demonstrate the principal structure that mediates 

lymphocyte adhesion to C. albicans is CD11b/CD18. 

The ECM and RGD-peptide inhibition data support the mAb blocking data. 

Fragments from ECM peptides containing aspartate residues have been shown to activate 

lymphocytes in a manner similar to /3-glucan (Lopez-Moratalla et al., 1995). ECM proteins 

were evaluated for their capacity to inhibit lymphocyte adhesion to C. albicans. On a molar 

basis, the ECM proteins fibrinogen, EHS-laminin, and vitronectin were similarly effective. 

Human placental laminin was ineffective at blocking adhesion, possibly because it lacks the 

RGD-containing laminin A chain (Tryggvason, 1993). Several ECM and blood proteins 

which are documented ligands for Mac-1 demonstrated excellent inhibition of YT lymphocyte, 

mIAL and hIAL adhesion to C. albicans hyphae (Table 3). The complex glycoprotein 

heparin has recently been defined as a Mac-1 ligand and inhibited adhesion well, but with a 

YT and mIAL IC50 of 100 µM compared to an IC50 for blocking Mac-1 adhesion to heparin 

coated plastic of 9.0 µM (Diamond et al., 1995). The higher concentration required might be 

due to the higher density of carbohydrate ligands on C. albicans. Fibrinogen has been 

documented by many laboratories to be a ligand for Mac-1, but only is bound by activated 

Mac-1 (Wright et al., 1988; Altieri et al., 1990; Altieri et al., 1993; Languino et al., 1993). 

The IC50 values for YT and mIAL agree closely with the published value of 2.0 µM (Altieri 

and Edgington, 1988). For mIAL, the documented Mac-1 ligand Factor X (Anderson, 1994) 

showed a clear dose dependent inhibition of adhesion to hyphae with an IC50 of 50 nM 



108 

virtually identical to the documented kD for Mac-1 of 44 nM (Altieri and Edgington, 1988). 

The interaction of Mac-1 with Factor X is so specific that inhibition of transendothelial 

migration of leukocytes in a rabbit model of meningitis using a Factor X RGD-mimetic 

peptide: ETKEVDG (that also mimics a motif in Bordatella pertussis FHA) was recently 

accepted as evidence that Mac-1 recognizes RGD-mimetic sequences in vivo (Rozdzinski et 

al., 1995). These data confirm in vivo that RGD-mimetic peptides based on a microbial Mac-

1 ligand can directly inhibit adhesion mediated by activated Mac-1. Inhibition of at least 50 % 

by this concentration of 50 nM Factor X of YT, mIAL, and hIAL as well as the 3T3-19 

transfectants (Table 3) is strong evidence in itself that Mac-1 mediates lymphocyte adhesion to 

C. albicans (Rozdzinski et al., 1995). The Mac-1 ligand complement C3 also demonstrated a 

dose dependent inhibition of YT lymphocyte adhesion to C. albicans with an IC50 for YT 

lymphocytes (400 nM) and mIAL (1 µM) remarkably close to the Mac-1 kD for C3bi of 3.5 

µM (Amaout, 1990). This is also strong evidence that Mac-1 mediates adhesion of mIAL to 

C. albicans. These data are consistent with /j2 integrins being crucial for migration of IL-2 

activated T and NK lymphocytes through complex ECM models containing all of the ECM 

components employed in the present study (Jaiiskelainen et al., 1992). Also, while 

controversial, several studies specifically demonstrate Mac-1 mediates PMN adherence to 

solid phase ECM components consistent with our data including vitronectin, EHS-laminin, 

fibrinogen, fibronectin, collagens type II and VI, thrombospondin, and undulin (Nathan et al., 

1989; Bohnsack et al., 1992; Walzog et al., 1995). The "irrelevant" proteins BSA and 

chicken egg lysozyme tested in nanomolar-millimolar concentrations demonstrated no 

inhibition of lymphocyte adhesion to C. albicans. 

Several RGD-mimetic peptides also markedly inhibited lymphocyte adhesion to C. 

albicans. The GRGDSP and GRGDSPK peptide sequences from fibronectin (Kleinman and 
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Yamada, 1993) demonstrated dose dependent inhibition of YT lymphocyte and mIAL 

adhesion to hyphae (Figure 9). The IC50 values for these peptides of 500 µM and 300 µM 

respectively are in the range of 400 µM IC50 for inhibition of C3bi coated erythrocytes 

(EC3bi) with an RGD-mimetic peptide containing the C3bi RGD sequence: 

TRYRGDQDATMS (Wright et al., 1989). In the same study, an "LlO" peptide portion of 

the FBIP (HHLGGAKQAGDV) composed of the LGGAKQAGDV segment demonstrated an 

IC50 to block adhesion to EC3bi of 600 µM, being virtually identical to the 300 µM IC50 

value obtained for FBIP inhibition of mlAL as well as YT lymphocytes and hIAL to C. 

albicans (Table 3). Interestingly, the LIO peptide enhanced Mac-1 adhesion to erythrocytes 

coated with the LPS lipid core (rough LPS), indicating that cross-linking through the I domain 

can activate Mac-1 adhesion to purely hydrophobic surfaces, and may indicate an obligatory 

role for Mac-1 adhesion to an RGD-like ligand(s) on C. albicans (Wright et al., 1989). Two 

engineered GRGDSP-containing peptides, PT-2000 and FEP, eliminated lymphocyte adhesion 

to C. albicans hyphae. Tertiary structure is clearly important as emphasized by the av/33 

specific circular GRGDSP peptide with an identical RGD sequence that had no effect on 

adhesion (Pierschbacher and Ruoslahti, 1987). The potent inhibitory activity of FEP may also 

be due to the multiple GRGDSP repeats contained within each molecule which can interact 

with clustered integrins (Miyamoto et al., 1995a; Miyamoto et al., 1995b). The potent 

inhibition by PT-2000 has been attributed to the two domain structure of the GRGDSPASSK 

fibronectin sequence linked to the hydrophobic GGGGSRLLLLLLR sequence (Craig et al., 

1995). The sequence: ASSK-GGGGS serves a necessary role as a "spacer sequence" between 

the fibronectin RGD sequence and six hydrophobic lysines (Craig et al., 1995). More than 

six lysines results in solubility problems (indicating some polymerization occurs) and less than 

six lysines decreases bioactivity (Craig et al., 1995). Remarkably, the RGD-inhibitable 
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"integrin a.v/33 clusters in the membrane at the sites of cell attachment" to PT-2000 coated 

surfaces with formation of integrin associated F-actin bundles (Craig et al., 1995). The two 

domain structure of PT-2000 may thus potently inhibit clustering or prematurely stimulate 

clustering of Mac-1 on the lymphocyte surface in the presence of an RGD-mimetic inhibitor 

of adhesion to C. albicans as demonstrated for GRGDSPK and thus block interaction of Mac-

1 with C. albicans hyphae. Finally, the integrin inhibitor echistatin inhibited adhesion of YT, 

mlAL, and hIAL potently, with an IC50 of 2.0 µM comparable to C3 inhibition of Mac-1 

(Table 3) (Gan et al., 1988; Garsky et al., 1989). This is the first demonstrated inhibition of 

Mac-1 by any disintegrin, echistatin contains two RGD-mimetic sequences within a circular 

peptide: CKRARGD ... DMDDYC (Blobel and White, 1992). The "irrelevant" bioactive 

fragment from the murine class I MHC molecule H-2Kb had no effect on mlAL (or YT 

lymphocyte and hIAL) adhesion to hyphae at concentrations (0.2-0.4 mM) which block 

allorecognition by 50 % or greater (Kd = 0 .1 mM) (Schneck et al., 1989). In addition, the 

GRYDS peptide demonstrated no inhibition of lymphocyte adhesion to C. albicans. This 

peptide is not known to block Mac-1, but was tested because it is similar to the SRYDQL 

sequence in Leishmania gp63 protein which is a ligand for Mac-1 (Soteriadou et al., 1992). 

In summary, the RGD-mimetic peptide, ECM, and blood protein inhibition data strongly 

support a principal role for Mac-1 in mediating YT lymphocyte, mIAL and hIAL adhesion to 

C. albicans hyphae. Taken together with the large body of data demonstrating specific 

blocking of lymphocyte adhesion to C. albicans by mAb to CD1lb/CD18, these data 

demonstrate CD11b/CD18 is the principal structure on mlAL, hIAL and YT lymphocytes 

which mediates adhesion to C. albicans hyphae. 

To further confirm the principal role of CD 11 b/CD 18 in mediating adhesion of mlAL 

to C. albicans hyphae experiments were carried out using NIH-3T3 murine fibroblasts 
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expressing transfected human CD1lb/CD18 (3T3-19) (Figures 12 and 13). The purpose was 

to verify that CD 11 b/CD 18 was capable of mediating specific adhesion in vitro to C. albicans 

hyphae. Parallel experiments were performed using 3T3 cells subjected to the transfection 

protocol which did not express CD11b/CD18 (3T3-1). The 3T3-1 cells have been previously 

characterized as not binding to S. cerevisiae yeasts, while the 3T3-19 Mac-1 + cells 

spontaneously phagocytose S. cerevisiae (Krauss et al., 1994). Both cell lines were found not 

to express Fe receptors for immunoglobulin (Krauss et al., 1994). To confirm that Mac-1 

was mediating this phagocytosis FITC labeled /3-glucan was shown to not bind to 3T3-1 cells, 

but bound to 3T3-19 cells extensively in a punctate pattern. Those authors concluded that one 

possibility is that the yeast provides both the ability to bind and the necessary activation signal 

(Krauss et al., 1994). In this dissertation, these two 3T3 cell lines were compared for their 

ability to bind C. albicans hyphae after preincubation with mAbs to CD 11 b/CD 18 or isotype 

matched irrelevant mAbs (Figure 12). The 3T3-1 fibroblasts demonstrated only background 

adhesion of 3 % to C. albicans hyphae which was unaffected by mAb OKMl (anti-human 

CDllb) or mAb TSl/18 (anti-human CD18). Adhesion of 3T3-1 and 3T3-19 cells was also 

unaffected by a mAb to murine CD29 (/31 integrin) which reacted with both cell lines, 

although only data for 3T3-19 is shown (Figure 12). In contrast, adhesion of 3T3-19 

fibroblasts to C. albicans hyphae was inhibited in a dose dependent manner by OKMl and 

TSl/18. Maximum inhibition of 3T3-19 adhesion with the anti-CDllb mAb OKMl was 

67 % , while TS 1/ l 8 maximum inhibition was 25 % . However, the combination of 25 µg 

OKMl + 25 µg TSl/18 had a very potent additive inhibitory effect with inhibition of 84%. 

Two other combinations of mAb also showed clear additive effects with 15 µg OKMl + 15 

µg TSl/18 inhibiting by 83% and 15 µg OKMl + 15 µg Ml/70 (anti-murine/human CDllb) 

blocking 3T3-19 transfectant adhesion to C. albicans hyphae by 59% (Figure 13). In a 
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fascinating development GRGDSPK and FBIP, two RGD-mimetic peptides which inhibited 

mIAL adhesion to hyphae, demonstrated no inhibitory effect on 3T3-19 adhesion when used 

alone. This raised the possibility that perhaps the transfected CD11b/CD18 was lacking the 

complete cytotoxic lymphocyte activation machinery present in mIAL. To address this 

question, small concentrations of anti-CD 11 b mAbs were added during preincubation with 

GRGDSPK (OKMl) and FBIP (Ml/70) to facilitate cross-linking of the transfected 

CD 11 b/CD 18 heterodimer in the hope of activating CD 11 b/CD 18 for binding to the RGD­

mimetic peptides. A synergistic effect was seen in which both GRGDSPK and FBIP inhibited 

adhesion of 3T3-19 transfectants in a concentration dependent manner (Figure 13). The data 

from these 3T3-19 transfectant mAb inhibition studies confirm that CD11b/CD18 expressed 

on mammalian cells is capable of mediating specific, mAb inhibitable adhesion to C. albicans 

hyphae. These data also confirm that the integrin inhibitable with RGD-mimetic peptides on 

YT lymphocytes, mIAL, and hIAL is indeed CD1 lb/CD18 and support a role for cross­

linking in activation of Mac-1 adhesion to such peptides. 

To confirm that Mac-1 has a primary physiological role during mIAL mediated 

growth inhibition of C. albicans hyphae, experiments were conducted to examine the effect of 

mAbs to CD11b/CD18 on mIAL anti-fungal activity (Figure 14). These experiments utilized 

an in vitro assay of C. albicans growth inhibition developed in this laboratory (Beno and 

Mathews, 1993). A concentration of 45 µg OKMl which inhibited mIAL adhesion by 92 % 

(Figure 10) completely eliminated mIAL growth inhibition of C. albicans. A concentration 

dependent effect for OKMl inhibition was demonstrated by 25 µg OKMl which allowed 43% 

inhibition of growth by mIAL. This effect was significantly different (p < .05; t-test) from 

58 % inhibition by mIAL alone, thus representing an intermediate level of inhibition relative to 

45 µg OKMl. Similar results were obtained using mAb M/170 which eliminated mIAL 
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inhibition of growth at 45 µg and showed a significant (p < .05) concentration dependent 

effect, further demonstrating specificity as with OKMl. The anti-COllb mAbs OKMl and 

Ml/70 demonstrated no inhibition of C. albicans growth when introduced alone without 

mIAL present. Additionally demonstrating specificity for C. albicans growth inhibition, 

mAbs to murine COlla (Ml7/4.4) and murine COllc (N418) demonstrated no effect on 

mIAL anti-candidal activity. This is particularly significant in light of many studies 

attributing a role for CDlla (LFA-1) in anti-tumor cytotoxicity (Anderson, 1994) and recent 

work showing LFA-1 cocapping with Mac-1 during cytotoxicity (Zhou et al., 1993). These 

data confirm a principal role for CO11b/CD18 in mediating adhesion of murine IL-2 activated 

lymphocytes to C. albicans hyphae during mIAL mediated growth inhibition of the fungus 

(Beno and Mathews, 1992; Beno et al., 1995). 

The direct antimicrobial activity of T lymphocytes is an area of study that has only 

recently gained legitimacy in the mainstream of immunology (Levitz et al., 1995). This 

laboratory has demonstrated previously that the populations oi murine and human IAL 

mediating growth inhibition of C. albicans hyphae are cos+ T lymphocytes (Beno et al., 

1995). Two other laboratories have also demonstrated a direct antimicrobial effect of cos+ 

lymphocytes against Cryptococcus neoformans requiring direct contact but not opsonins 

(Murphy, 1991; Levitz and Dupont, 1994). Other groups have demonstrated cos+ T 

lymphocytes mediate defense against the fungus Histoplasma capsulatum (Oeepe, 1994). As 

noted above, H. capsulatum was one of the earliest documented microbial ligands for Mac-1 

(Bullock and Wright, 1987). cos+ lymphocytes have also been shown to directly kill 

Schistosoma mansoni (Ellner et al., 1982), Entamoeba histolytica (Salata et al., 1987), and 

bacteria including Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus 

(Levitz et al., 1995). cos+ lymphocytes are a critical first line of protection against 
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Toxoplasma gondii (Shirahata et al., 1994), and anti-murine Mac-1 blocks protection in T. 

gondii infection (Johnson et al., 1996). CDS+ CD 1 lb+ T cells have been demonstrated to 

play a direct role in clearance of Listeria (Goossens et al., 1995) and Yersinia (Autenrieth et 

al., 1993). cos+co11b+ T cells have also been demonstrated to mediate the first line of 

defense in vivo against movement of intestinal microorganisms into the blood (Gautreaux et 

al., 1994). This is especially relevant for C. albicans, since gastrointestinal colonization 

often precedes infection in neonates and AIDS patients (Van den Anker et al., 1995). 

It is clear that CDS+ T lymphocytes have been demonstrated to exhibit broad anti­

microbial activity. Important questions for the significance of this dissertation then become: 

on what cos+ lymphocytes is CD11b/CD18 expressed, and do these cells exist and exhibit a 

relevant non-MHC restricted cytotoxic phenotype, especially after IL-2 activation? The 

answers to these questions as they are known might seem surprising. Originally, 

CD 11 b/CD 18 was identified as a marker of monocytes/macrophages and granulocytes 

(Springer et al., 1979), and has since been identified in peripheral blood of normal mouse and 

human as comprising 60-100% of NK cells (Polli et al., 1987; Robertson et al., 1990; Triozzi 

et al., 1992), 50-95% of LGL (Polli et al., 1987; Timonen et al., 1990; Triozzi et al., 1992), 

and 20-30% of T lymphocytes (Dianzani et al., 1989; Hoshino et al., 1993; McFarland et al., 

1992; Nielsen et al., 1994; Patel et al., 1987; Razvi et al., 1995). In 1983, CD11b/CD18 

surface expression by a subset of human peripheral blood T cells (15 % ± 5 % ) was 

demonstrated with the monoclonal antibody OKMl (Wilson et al., 1983). Four years later a 

cos+co11b+ subset of human peripheral blood lymphocytes was demonstrated to be the 

precursor phenotype responsible for LAK generation (Patel et al., 1989). All T lymphocyte 

clones generated in that study were CD 11 b +. Those authors showed cytolytic activity of the 

T cell clones to be dependent on direct contact of the clones with tumor targets and they 
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concluded that T cells expressing CD 11 b correlate very strongly with the capacity to mediate 

MHC-unrestricted cytolytic activity. That work was expanded by a second group (Dianzani et 

al., 1989) who showed that after separation of co3+cos+ peripheral blood lymphocytes into 

CDllb+ and CDllb- cells only the cos+co11b+ subset produced LAK activity. The 

cos+co11b+ cells had an LGL morphology while the cos+co11b- cells did not. These 

authors clearly demonstrated the cos+co11b+ population to be heterogeneous. This 

heterogeneity may explain the designation of the cos+co11b+ phenotype as characteristic of 

so-called suppressor cells by some authors (Hornquivst et al., 1993; Lebeck et al., 1993) and 

by others as cytolytic T lymphocytes (CTL) that exhibit antiviral activity (McFarland et al., 

1992; Razvi et al., 1995) or the precursor and effector lymphocytes that mediate LAK activity 

following IL-2 stimulation in murine (McFarland et al., 1992; Razvi et al., 1995) and human 

(Dianzani et al., 1989) peripheral blood lymphocytes. 

CD1lb/CD18 has been clearly shown to be expressed by activated murine 

lymphocytes in this research and by others (Timonen et al., 1990; Macfarland et al., 1992; 

Triozzi et al., 1992; Brooks-Kaiser et al., 1993; Gosselin et al., 1995; Ikemoto et al., 1995), 

and to facilitate the homing of cos+ lymphocytes to sites of inflammation in mice (Nielsen et 

al., 1994). Of particular interest to this dissertation is the fact that a subset of peripheral 

blood T cells present in all healthy humans has been shown to constitutively express the 

phenotype: co3+cos+co11b+co16+cos6+ (Zupo et al., 1993) and the beta-chain of the 

IL-2 receptor. While these CD56+ T cells are only about 10% of T cells in peripheral blood, 

they are 50% of those found in the liver and exhibit constitutive "LAK" ability to lyse NK­

resistant targets (Garcia-Barcina et al., 1994), and are often increased in patients with 

malignancy (Takii et al., 1994). Upon stimulation with IL-2, the 

CD3 + CD8 + CD 11 b + CD 16 + CD56 + clones demonstrate cytotoxicity against NK-sensitive and 
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NK-resistant tumor targets (Zupo et al., 1993), similar to the murine and human IAL 

described by this laboratory (Beno and Mathews, 1992; Beno et al. 1995; Forsyth and 

Mathews, 1996). However, long-term culture of IAL results in the variable loss of CD16+ 

and CD56+ markers (Roussel et al., 1990). 

Other researchers have described distinct CDllb+ subsets of IL-2 activated 

CD56+co16+ "NK" cells, depending on the culture conditions with IL-2 (Vuianovic et al., 

1993). These data may explain why this laboratory and others (Zunino and Hudig, 1988; 

Beno and Mathews, 1992; Arancia et al., 1995; Beno et al., 1995) have described that NK 

cells bind but do not inhibit C. albicans growth, while others (Levitz and Dupont, 1994) show 

anti-cryptococcal activity in positively selected CD56+CD16+ "NK" or CD4 + T cell IAL. In 

addition, a clearly defined but small subset of circulating co4+ T cells (Gane et al., 1992; 

Hoshino et al., 1993) are now known to express high levels of CDllb as well as the ai31 and 

a5{31 integrins (the traditional fibronectin receptors). Perhaps these CD4 +co11b+ cells also 

have an anti-candidal role as defined for CD4 + lymphocytes (Romani et al., 1993; Romani 

and Howard; 1995). 

Another intriguing alternative is that the recently described Ly-49 MHC class I 

receptors on murine NK lymphocytes, with homology to the C-type lectin superfamily to 

which the selectins also belong, interact with microbial polysaccharides or possibly 

CD1lb/CD18 to deliver an inhibitory signal (Leibson, 1995). Also, the CD8 molecule could 

modulate cytotoxic cell signaling because it has been demonstrated to interact directly with a 

microbial ligand secreted by Trypanosoma brucei (Olsson et al., 1993). Also, a number of T 

cell and NK cell specific signalling molecules associated with adhesion have been described 

which could explain these differences including the itk tyrosine kinase expressed in IL-2 

stimulated T cells (Siliciano et al., 1992), a 50 Kd integrin-associated protein (Reinhold et al., 
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1995), and T cell specific G-proteins now known to transduce adhesion signals (Clark and 

Brugge, 1995). Mac-1 has been shown to be activated by signals from other ECM receptor 

integrins as well (Simms and D'Amico, 1995). Finally, Mac-1 has been shown to interact 

through the lectin domain with glycosylphosphatidylinositol-linked (GPI-linked) proteins in the 

plasma membrane. A recent review suggested this co-receptor modulation by Mac-1 may 

ultimately prove to be as important as adhesion mediated by Mac-1 (Stewart et al., 1995). 

Receptors shown to associate with Mac-1 are Fc-yRIII (CD16)(Sehgal et al., 1993), urokinase­

type plasminogen activator (uPA) receptor, (Xue et al., 1994), the fMLP receptor, CD14, and 

Fc-yRII (Petty and Todd, 1993), and possibly L-selectin (Simon et al., 1995). Cross-linking 

of these receptors which bind to the Mac-1 lectin domain initiates signaling via the Mac-1 

cytoplasmic domains (Zhou et al., 1993; Simon et al., 1995). In addition to transducing 

signals from these receptors, it has been proposed that Mac-1 regulates the activity of serine 

protease enzymes released during degranulation by cytotoxic cells (Altieri, 1995a; Altieri, 

1995b). More detailed phenotypic/functional studies of CDS ,·co 11 b + lymphocytes are 

required to unravel the differences in Mac-1 signaling in different lymphocyte subsets (Gane 

et al., 1992; Stewart et al., 1995). 

The Th1 versus Th2 characteristics of immune response have received much attention 

in recent years and have been highlighted by the progression of a Th1 (CMI, IL-2, IL-12, 

IFN--y; including cos+ cytotoxic T cells) to a Th2 response (predominantly humoral 

immunity, IL-4, IL-10; including cos+ helper/suppressor T cells) in the progression of AIDS 

(Maggi et al., 1994; Paganelli et al., 1995). Such a Th1 to Th2 progression also characterizes 

the progression of infection with C. albicans (Romani et al., 1993; Puccetti et al., 1995), and 

treatment with anti-IL-4 cytokine reagents cures murine C. albicans infection (Puccetti et al., 

1994). Interestingly, a similar Th1 to Th2 progression and cure by anti-IL-4 characterizes 
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infection with Leishmania major, another CD11b/CD18 ligand (Kelso, 1995). Similarly, two 

recent studies show that treatment of cos+ lymphocytes from HIV+ patients with Th2 

cytokines depressed anti-HIV activity, while treatment with the Th1 cytokine IL-2 augmented 

anti-HIV activity (Barker et al., 1995; Kinter et al., 1995). 

In fact, gastrointestinal colonization, usually as thrush, by C. albicans during HIV 

infection is a clinical hallmark of disease progression to acquired immune deficiency 

syndrome in over 70% of patients (Sternberg, 1994). Experimental application of 

corticosteroids to the oral mucosa is associated with depletion of intraepithelial lymphocytes 

and what the authors described as a "first line of defense" resulting in a four hundred-fold 

increase in oral thrush (Deslauriers et al., 1995). Recently, a cos+ T cell population has 

been demonstrated as characterizing immediate protection in HIV infection by production of 

the chemokine MIP-1/3. Chemokines have been shown to upregulate Mac-1 expression in 

lymphocytes. Perhaps this is a subset of the constitutively expressed co3+cos+co11b+ T 

cell population which exhibits a Th1 type response to IL-2 (Dianzani et al., 1989; McFarland 

et al., 1992; Zupo et al., 1993) shown by data from this laboratory (Beno and Mathews, 

1992; Beno et al., 1995; Forsyth and Mathews, 1996) and in this dissertation to have anti-C. 

albicans activity as well. An overlap in the subsets would explain susceptibility to 

opportunistic infection in AIDS patients. Besides probably functioning to eliminate both HIV 

and C. albicans in response to IL-2 therapy (Dianzani et al., 1989; McFarland et al., 1992). 

cos+co11b+ T cells also can be directly infected with HIV (Mercure et al., 1994) which 

reduces their ability to kill fungi (Harrison et al., 1995), and both unopsonized and opsonized 

HIV bind to Mac-1 (Thieblemont et al., 1993). Perhaps HIV binds to Mac-1 without cross­

linking in some way, and induces an anergic state in cos+co11b+ lymphocytes, resulting in 

the "default" Th2 phenotype (Ausiello et al., 1993). cos+co11b+ T cells have been shown 
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to be decreased in the blood of HIV-infected patients (Indraccolo et al., 1995). 

While CD8 + lymphocytes have been implicated in many protective and harmful roles 

in disease processes (O'Rourke et al., 1993), often the expression of CD11b/CD18 has not 

been assessed. Therefore, how central a role these lymphocytes play in the immune response 

needs to be much more rigorously evaluated. Patients with cos+ lymphocytosis syndrome 

who have a proliferation of co3+cos+ lymphocytes experience extremely low ( < 1 %) 

incidence of opportunistic infection. cos+cDllb+ lymphocytes are absent in patients with 

leukocyte adhesion deficiency (LAD). This is a rare autosomal recessive disorder caused by 

the absent or severely reduced cell surface expression of {32 integrins, including Mac-1. 

Patients often die in the first years of life of a severe bacterial or fungal infection which 

usually begin as skin or gastrointestinal infections (Pall er et al., 1994). There is strong 

evidence that cos+ cytotoxic cells become "converted " to cos+ T-helper lymphocytes 

during the Th1 to Th2 progression to full-blown AIDS accompanied by a syndrome of 

recurrent fungal infections (Maggi et al., 1994; Paganelli, 19~5). Th2 cos+co11b+ T cells 

have been implicated as exacerbating herpes simplex virus infection by IL-4 production in 

mice (Ikemoto et al., 1995), and this effect was reversed by injecting mice with a {3-glucan 

derivative (Utsunomiya et al., 1995) or a lipid-arabinomamman from M. tuberculosis 

(Kobayashi et al., 1994). 

Most significantly, in light of the identification of Mac-1 as the only {3-glucan receptor 

(Thornton et al., 1996), C. albicans cell wall derived mannan and {3-glucan stimulate a Th1 

cytokine pattern (IL-1(3, TNF-a, IL-6, and IL-2) in culture of peripheral blood mononuclear 

cells (but not IL-4 or IL-lO)(Ausiello et al., 1993). This response was severely depressed in 

mononuclear cells from AIDS patients. However, the protein synthesis inhibitor 

cycloheximide caused a superinduction of IL-4 and IL-10 production by these cells (Ausiello 
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et al., 1993). Similar results were obtained by stimulation of the cultures with IL-2 (Ausiello 

et al., 1993). Similarly, injection of these mannan and /3-glucan constituents results in 

removal of tumor in murine lymphoma (Cassone et al., 1981), and intraperitoneal injection of 

heat killed C. albicans elicits LAK cells in vivo (Scaringi et al., 1991). Integrins can deliver 

a co-stimulatory signal capable of activating cytolytic T cells by adhesion to the Yersinia 

invasin protein (Ennis et al., 1993; Cronin et al., 1994). This has been demonstrated for 

Mac-1 using a peptide fragment of ICAM-2 which activates killing (Li et al., 1993; Li et al., 

1995). In fact, costimulation of cytotoxic T cells by /3-glucan has been measured and is 

similar in magnitude to stimulation with IL-2 (Muto et al., 1993). Perhaps these /3-glucans 

and polysaccharides activate the cos+co11b+ T cells via cross-linking Mac-1 as suggested 

by others for macrophages (Thornton et al., 1996), and as has been shown in vitro for T cells 

(Muto et al. 1993) and NK cells (Di Renzo et al., 1991). The cos+ -helper lymphocytes 

described in AIDS may very well be the cos+co11b+ "suppressor" cells of CMI which 

respond poorly to IL-2 described by others in mice (Brookes-Kaiser et al., 1993; Hornqvist et 

al., 1993; Ikemoto et al., 1995) and humans (Lebeck et al., 1992; Koyama and Fukao, 

1994). 

co3+cos+co11b+ lymphocytes have also been implicated as central to several 

autoimmune diseases including chronic fatigue syndrome (Tirelli et al., 1994), early onset 

diabetes in humans (Hehmke et al., 1995), islet cell destruction in the NOD mouse (Goldrath 

et al., 1995), chronic progressive multiple sclerosis (Balashov et al., 1995), and Whipple's 

disease (Marth et al., 1994), as well as promoting bone marrow transplant survival (Lebeck et 

al.,1992; Dolstra et al., 1995). Distinct subsets of cos+co11b+ T lymphocytes including 

"suppressor" subsets have been described in human bone marrow transplant recipients in 

which co3+cos+co11b+ lymphocytes may comprise as much as 80% of circulating T 
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lymphocytes (Lebeck et al., 1992). There are more examples in addition to these. Much of 

the work investigating cos+co11b+ T lymphocytes has come in the last two years as 

investigators begin to appreciate the importance of this T cell subset in immunity which now 

includes anti-viral murine memory T cells (Razvi et al., 1995). Quite clearly, the 

cos+co11b+ T cells are not a trivial population but in fact appear to play a variety of 

important roles in addition to anti-microbial defense. In fact, their involvement in both anti­

microbial response and autoimmunity implies a central role in both processes. This is 

illustrated by the same cos+co11b+ T cells possibly mediating both epidermal anti-fungal 

defense and psoriasis (Rosenberg et al., 1994). 

The intracellular pathogen Listeria is also known to induce a strong CDS+ T cell 

response, and one fascinating prospect for immunomodulation involves introducing specific 

recombinant antigens or cytokines expressed by Listeria to modulate the CDS+ cell response 

(Goossens, et al., 1995). Perhaps attenuated Listeria, HIV, or C. albicans could be used in 

such a way to modulate the cos+co11b+ T cell response to these or other diseases. In 

contrast to the activating effect of /3-glucans, a class of compounds called leumedins have also 

been described which specifically inhibit Mac-1 function (Endeman et al., 1996). 

These data represent the first identification of the adhesion molecule on activated T 

lymphocytes which mediates binding to this or any opportunistic fungal pathogen. Such cell 

mediated immunity may be the predominant form of anti-C. albicans defense at the mucosal 

and epithelial sites that encounter C. albicans on a daily basis (Fidel and Sobel, 1994). 

Within an IL-2 activated population, cos+ T cells mediate anti-C. albicans effects (Beno et 

al., 1995). In human peripheral blood, 20-30% of T cells are CD11b+ (Hoshino et al., 

1993), and the cos+, IL-2-activated population which mediates MHC-unrestricted 

cytotoxicity are cos+co11b+ (Dianzani et al., 1989). These are also the only peripheral 
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blood cos+ cells that express perforin (Nakata et al., 1992). Mac-I may represent a broadly 

specific receptor for MHC-unrestricted cytotoxicity of microorganisms by C08 + lymphocytes 

which may also facilitate lymphocyte homing to areas of fungal infection (Nielsen et al., 

1994). The novel ad/32 is also expressed by a population of human PBL which are mostly 

cos+ including LGL (Oanilenko et al., 1995). How this population overlaps with the 

COllb+cos+ population will be an interesting area for future investigation. Verification of 

these data in vivo could have important implications for treatment of C. albicans infections. 

In light of data from this dissertation, to the list of microbial-mammalian cell 

interactions should be added the RGO-mimetic inhibitable recognition of C. albicans by the 

Mac-1 integrin on the surface of murine and human IL-2 activated lymphocytes. This 

knowledge of the specific immune response to C. albicans should contribute to designing 

therapy for patients infected with this important pathogen and possibly other fungal pathogens 

which together are responsible for enormous morbidity and for 40 % of deaths in hospital 

acquired infections each year and continue to increase. 



CHAPTER 5. 

CONCLUSIONS 

The significant conclusions of this dissertation research are: 

1. Adhesion of mIAL, hIAL, and YT lymphocytes to C. albicans hyphae is specific 

and therefore reproducibly quantifiable. This was demonstrated by the development and 

publication of an in vitro assay for quantifying mammalian cell adhesion to C. albicans 

hyphae and it's use in identifying the principal structure on mIAL which mediates adhesion to 

C. albicans hyphae (Forsyth and Mathews, 1993). 

2. Certain extracellular matrix, blood proteins, and RGD-mimetic peptides inhibit 

adhesion of mIAL, hIAL, and YT lymphocytes as well as NIH-3T3 fibroblasts expressing 

recombinant human CD 11 b/CD 18. 

3. MAb blocking studies identify the principal molecule mediating adhesion of mIAL, 

hIAL, and YT lymphocytes to C. albicans hyphae is the integrin CDl lb/CD 18. 

4. The identity of CD11b/CD18 as the receptor for C. albicans hyphae on mIAL, 

hIAL, and YT lymphocytes was confirmed using NIH-3T3 fibroblasts which demonstrated 

little adhesion to C. albicans hyphae while NIH-3T3 fibroblasts expressing CD11b/CD18 
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demonstrated specific adhesion to C. albicans hyphae inhibited with mAbs to CD11b/CD18. 

5. The identity of CD11b/CD18 as the structure mediating adhesion of mlAL, hIAL, 

and YT lymphocytes to C. albicans was further confirmed by experiments in which mAbs to 

CD 11 b/CD 18 eliminated mIAL mediated growth inhibition of C. albicans hyphae in a dose 

dependent manner. 

In addition to these broad overall conclusions, certain aspects of the data using 

specific inhibitors of adhesion have resulted in a unique model being proposed by this 

investigator for the interaction of lymphocyte CD 11 b/CD 18 with C. albicans hyphae and 

perhaps other microbial surfaces. The relevant aspects of the data are: 

First, mAbs to the I domain and the lectin-like domain of CDllb blocked lymphocyte 

adhesion to hyphae demonstrating both of these functional domains of Mac-1 participate in 

lymphocyte adhesion to C. albicans hyphae. 

Second, certain ECM, blood protein, and RGD-mimetic peptides were demonstrated 

to mimic mAb inhibition of lymphocyte adhesion to hyphae by interaction with an integrin, 

probably Mac-1 as confirmed by the CD 11 b/CD 18 transfected fibroblast data, on lymphocytes 

and not a structure on C. albicans hyphae. Several of these inhibitory proteins and peptides 

are previously documented to interact as ligands of CD 11 b/CD 18 only when this integrin is 

activated. 

Third, participation of the Mac-1 lectin-like domain in lymphocyte adherence to 

hyphae was confirmed by a profile of inhibition by carbohydrates such as NADG which 

closely resembles that profile described for inhibition of Mac-1 mediated adherence of 

neutrophils to the yeast S. cerevisiae. 
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Finally, the model proposes that interaction of Mac-1 through the lectin-like domain 

with microbial polysaccharides (and/or hydrophobic ligands) such as /3-glucan results in cross­

linking of Mac-1 molecules and the development of an activated conformational state in which 

the Mac-1 I domain MIDAS motif can interact with RGD-mimetic ligands (Figure 17). This 

activation probably results from interactions of the Mac-1 cytoplasmic and transmembrane 

segments with other molecules as a consequence of the cross-linking of Mac-1 as 

demonstrated for {J1 integrins. 

In the specific case of mIAL, the conformational changes in CD11b/CD18 and the 

interaction of ligand induced binding sites with RGD-rnimetic ligands such as complement(C3) 

fragments or microbial ligands on the surface of the fungus then triggers degranulation by 

cos+co11b+ cytotoxic lymphocytes resulting in growth inhibition of C. albicans hyphae. 
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