
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Dissertations Theses and Dissertations 

1997 

NORF1, a Putative Human Group I RNA Helicase That Regulates NORF1, a Putative Human Group I RNA Helicase That Regulates 

Nonsense MRNA Levels Nonsense MRNA Levels 

Steven E. Applequist 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_diss 

 Part of the Medical Molecular Biology Commons 

Recommended Citation Recommended Citation 
Applequist, Steven E., "NORF1, a Putative Human Group I RNA Helicase That Regulates Nonsense MRNA 
Levels" (1997). Dissertations. 3415. 
https://ecommons.luc.edu/luc_diss/3415 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. 
It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 1997 Steven E. Applequist 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_diss
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_diss?utm_source=ecommons.luc.edu%2Fluc_diss%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/673?utm_source=ecommons.luc.edu%2Fluc_diss%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_diss/3415?utm_source=ecommons.luc.edu%2Fluc_diss%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


LOYOLA UNIVERSITY CHICAGO 

NORF1, A PUTATIVE HUMAN GROUP I RNA HELICASE 

THAT REGULA TES NONSENSE mRNA LEVELS 

A DISSERTATION SUBMITTED TO 

THE FACULTY OF THE GRADUATE SCHOOL 

IN CANDIDACY FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

PROGRAM OF MOLECULAR BIOLOGY 

BY 

STEVEN E. APPLEQUIST 

CHICAGO, ILLINOIS 

JANUARY, 1997 



Copyright by Steven E. Applequist, 1997 

All rights reserved. 

ii 



ACKNOWLEDGMENTS 

I would like to thank many individuals. Specifically, Dr. Hans-Martin Jack for 

his help in teaching me how to become a critical scientist as well as a fledgling 

writer, my graduate committee (Dr. Knight, Dr. Fasullo, Dr. Amero, and Dr. Walden) 

for direction during this difficult work, and to all other members of the department of 

Microbiology and Immunology. I thank you all for caring about the work I have done 

whether it be the discussions of successful or unsuccessful experiments, attendance 

at presentations, or direct help by the donation of your time and tools. I especially 

wish to thank my lab for their help during difficult times. I also thank Dr. John Lopes 

who gave me guidance and support in learning how to work with yeast. 

Last but not least, I would also like to thank my family who has supported me 

throughout my time at Loyola. This work would not have been possible without 

them. 

iii 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS ....................................................................................... iii 

LIST OF TABLES ............................................................................................... xv 

LIST OF FIGURES ............................................................................................. xvi 

LIST OF ABBREVIATIONS ................................................................................ xx 

ABSTRACT ....................................................................................................... xxiv 

CHAPTER 

I. INTRODUCTION .............................................................................................. 1 

II. REVIEW OF RELATED LITERATURE ............................................................. 3 

Nonsense Codons: Definition, Generation, and Significance ............................ 3 

Definition ....................................................................................................... 3 

Generation ..................................................................................................... 4 

Significance ................................................................................................... 5 

Nonsense mRNA Decay: Who, Where, and How (Translation, Location and 

Models of Reduction) ........................................................................................ 7 

Translation ..................................................................................................... 7 

Location of Nonsense mRNA Reduction ..................................................... 12 

Models to Explain Nonsense mRNA Reduction ........................................... 16 

iv 



Models to Explain Nonsense mRNA Reduction in Yeast.. ....................... 16 

Model 1 ................................................................................................. 16 

Model 2 ................................................................................................. 19 

Model 3 ................................................................................................. 19 

Model 4 ................................................................................................. 22 

Models to Explain Nonsense mRNA Reduction in Mammalian Cells ....... 25 

Model 1 ................................................................................................. 25 

Model 2 ................................................................................................. 26 

Model 3 ................................................................................................. 27 

Model 4 ................................................................................................. 27 

Genes Involved in Nonsense mRNA reduction ............................................... 31 

Similarites of Nonsense mRNA Reduction Between The Yeast and Higher 

Eukaryotic Systems ......................................................................................... 37 

Summary ........................................................................................................ 38 

Hypothesis ...................................................................................................... 39 

Ill. MATERIALS AND METHODS ....................................................................... 40 

Chemicals and Reagents ................................................................................ 40 

General Chemicals and Reagents ............................................................... 40 

Radiochemicals ........................................................................................ 41 

Kits ........................................................................................................... 41 

Antibodies ................................................................................................ 42 

Antibodies Used for lmmunofluroescence Analysis .............................. 42 

v 



Antibodies Used for Western Blot Analysis ......................................... .43 

Molecular Weight Standards .................................................................... 43 

Enzymes .................................................................................................. 44 

Oligonucleotides ....................................................................................... 44 

Peptides ................................................................................................... 49 

Plasmids and DNA probes ....................................................................... 50 

Cloning Vectors and Plasmids .............................................................. 50 

DNA Probes .......................................................................................... 52 

Analysis of RNA .............................................................................................. 53 

Isolation of RNA for Mammalian Cells ......................................................... 53 

Solutions and Reagents ........................................................................... 53 

Total RNA Isolation .................................................................................. 54 

Guanidinium lsothiocyanate/Cesium Chloride Method ......................... 54 

Qiagen Method ..................................................................................... 55 

Cytoplasmic RNA Isolation ....................................................................... 56 

RNA Isolation From Yeast Cells ............................................................... 56 

Quantitation of RNA ..................................................................................... 57 

Northern Blot Analysis ................................................................................. 58 

Solutions .................................................................................................. 58 

Procedure ................................................................................................ 60 

Electrophoresis ..................................................................................... 60 

Transfer of RNA .................................................................................... 61 

vi 



Hybridization ......................................................................................... 61 

RNase H Treatment of Total RNA ............................................................... 63 

Solutions .................................................................................................. 64 

Procedure ................................................................................................ 64 

DNA Manipulations .......................................................................................... 65 

General Solutions ........................................................................................ 65 

Amplification of Plasmid DNA ...................................................................... 67 

Plasmid DNA Preparations ...................................................................... 67 

Solutions and Media ............................................................................. 67 

Bacterial Strains ................................................................................... 69 

Small Scale Preparation of Plasmid DNA (Miniprep) ............................... 69 

Large Scale Preparation of Plasmid DNA ................................................ 70 

Alkaline Lysis Method ........................................................................... 70 

Qiagen Method ..................................................................................... 71 

'A Phage DNA Preparation ........................................................................... 71 

Enzyme Restriction of DNA ........................................................................ 7 4 

DNA Ag arose Gel Electrophoresis .............................................................. 7 4 

DNA Band Isolation from Ag arose Gels ...................................................... 75 

Elu-Trap Method ...................................................................................... 75 

Sodium Iodide (Nal) method (Super-Band isolation) ................................ 76 

Quantitation of DNA ..................................................................................... 76 

Dephosphorylation of DNA Fragments ........................................................ 77 

vii 



Ligation of DNA Fragments ......................................................................... 77 

Solutions .................................................................................................. 77 

Sticky-End Ligations of DNA Fragments .................................................. 78 

Two-Step Ligations of DNA Fragments .................................................... 79 

Polymerase Chain Reaction (PCR) Amplification ........................................ 80 

Solutions .................................................................................................. 81 

Procedure ................................................................................................ 81 

Cloning of PCR Products ............................................................................. 82 

Radio-labeling of DNA Probes ..................................................................... 83 

Nick Translation ....................................................................................... 83 

5' End Labeling of Oligonucleotides ......................................................... 83 

DNA Sequencing ......................................................................................... 85 

DNA Acrylamide Gel Electrophoresis (Sequencing Gels) ........................ 86 

Reagents .............................................................................................. 86 

Procedure ............................................................................................. 86 

Southern Blot Analysis of DNA .................................................................... 88 

Solutions .................................................................................................. 88 

DNA Isolation ........................................................................................... 89 

Restriction Digestion of DNA .................................................................... 89 

Transfer of DNA ....................................................................................... 90 

Bacterial Strains and Manipulations ................................................................ 91 

Preparation of Transformation Competent Bacterial Cells ........................... 91 

viii 







Flu orography of Polyacrylamide Gels .................................................... 120 

Western Blot Analysis ................................................................................ 120 

Solutions ................................................................................................ 120 

Transfer of Electrophoretically Separated Proteins to Nitrocellulose 

Filters ..................................................................................................... 121 

lmmunodetection of Transferred Proteins on a Nitrocellulose Filter ...... 122 

Yeast Strains, Growth and Manipulation ....................................................... 122 

Yeast Strains ............................................................................................. 123 

Media and Reagents ................................................................................. 123 

YEPD (non-selective complete medium) ................................................ 123 

Selective media ...................................................................................... 123 

Drop-out Induction Medium ........ ~ ........................................................... 125 

Introduction of Recombinant Plasmids Into Yeast ..................................... 126 

Solutions and Reagents ......................................................................... 126 

Yeast Transformation ............................................................................. 127 

Yeast Mating .............................................................................................. 127 

Generation of Diploid Yeast and Isolation of Yeast Spores ................... 127 

Media .................................................................................................. 127 

Procedure ........................................................................................... 128 

Replica Plating of Yeast.. ........................................................................... 129 

Storage of Yeast Strains ............................................................................ 129 

xi 



IV. RES UL TS ................................................................................................... 130 

Rationale, Hypothesis and Overall Experimental Approaches ...................... 130 

Hybridize Mammalian Genomic and cDNA Libraries With a 

Yeast UPF1 DNA Probe ................................................................................ 132 

Isolation of a Rabbit Genomic Clone that Cross Hybridizes 

With the Yeast UPF1 DNA Probe .............................................................. 132 

Isolation of a Rabbit cDNA ......................................................................... 142 

Characterization of the Rabbit TRAPa cDNA ............................................ 147 

TRAPa mRNA Expression in B Lymphoid Lines Representing a 

B and Plasma Cell ..................................................................................... 149 

Conclusion ................................................................................................. 150 

Transfect an upf1 Null Yeast Strain With a Mammalian cDNA 

Expression Library and Rescue Yeast Transformants With a 

UPF1 Positive Phenotype ............................................................................. 154 

Creation of a Selectable Yeast Strain ........................................................ 157 

Conclusion ................................................................................................. 162 

Determine Whether the Expression of a Dominant-Negative 

Form of Yeast Upf1 p In a Mammalian Cell Correlates With 

Increased Levels of Nonsense mRNA ......................................................... 165 

Overall Approach and Rational ................................................................. 165 

Generation of a UPF1-D1 Expresion Vector ............................................. 167 

xii 



Expression of UPF1 and UPF1-D1 in Mouse B Cells 

Containing a Nonsense mRNA .................................................................. 171 

Conclusions ............................................................................................... 176 

Search Mammalian DNA Databases With the Yeast UPF1 Amino 

Acid Sequence and Determine Whether Identified Genes are 

Structural and Functional Homologues of Yeast UPF1 ................................. 177 

Using the XREFdb to Search for Mammalian Homologues of the 

Yeast UPF1 Gene ..................................................................................... 177 

Analysis of Clones Whose Sequence Matched That of UPF1 ................... 178 

Isolation of a Human cDNA Clone Using a Clone 1 Probe ........................ 185 

Sequence Analysis .................................................................................... 188 

Comparison of NORF1 Polypeptide Sequence to Sequences in 

Databases ................................................................................................. 193 

Expression of NORF1 ................................................................................ 200 

Expression of NORF1 Protein ................................................................ 204 

Functional Analysis of NORF1 ................................................................... 208 

NORF1 Complementation of an upf1 Null Yeast Strain ......................... 208 

NORF1 Antisense RNA Expression in Mammalian Cells ....................... 214 

Construction of a Mammalian Antisense NORF1 Expression 

Vector ................................................................................................. 216 

Stable Expression of NORF1 Antisense RNA in Mouse Cells ............ 216 

Isolation of a Mouse NORF1 Homologue .................................................. 222 

xiii 



V. DISCUSSION .............................................................................................. 227 

Putative Functions of Motifs Conserved Between UPF1 and NORF1 ........... 227 

The Zinc-finger Motif .................................................................................. 227 

The RNA Helicase Domain ........................................................................ 228 

The Acidic Region ...................................................................................... 228 

Possible Functions of Other Motifs in NORF1 ............................................... 229 

Expression of NORF1 ................................................................................... 230 

Function of NORF1 ....................................................................................... 231 

Models to Explain How NORF1 Reduces Nonsense mRNA Levels ............. 234 

NORF1: The Big Picture ................................................................................ 241 

APPENDIX ........................................................................................................ 243 

Additional Figure 1. Determination of insert size and restriction enzyme 

mapping of 'A YES cDNA clones that hybridize with EST clone R 13609 ....... 244 

Additional Figure 2. DNA restriction enzyme analysis of the set of human 

NORF1 clones isolated from the Jurkat random-primed cDNA library .......... 246 

Additional Figure 3. DNA restriction enzyme analysis of human 5.5-kb 

NORF1 clone (15.1.1.1) ................................................................................ 247 

Additional Figure 4. DNA restriction enzymen analysis of mouse 4.5-kb 

NORF1 clone (20.1.1.1) ................................................................................ 249 

REFERENCES ................................................................................................. 252 

VITA .................................................................................................................. 266 

xiv 



LIST OF TABLES 

Tables Page 

1. Human Diseases Associated With a Nonsense Codon Mutation ............... 8 

2. Mutational Analysis of UPF1 and Its Effects On a Nonsense mRNA 
In Vivo ................................................................................................ 35 

3. Bacteriophage and Host Strains Used ..................................................... 94 

4. Cell Lines Used ...................................................................................... 102 

5. Amino Acid Supplements Used in Yeast Drop-out Media ...................... 124 

6. Yeast Strains Used ................................................................................ 158 

7. Quantitation of Northern Blot Analysis in Figure 27 ............................... 174 

8. Human cDNA EST Clones and Their Names Used In the Lab .............. 181 

9. Alignment of Consensus Motifs Shared Between Human NORF1 and 
Other Eukaryotic Members of the RNA Helicase Superfamily I ...... 198 

10. Quantitation of Northern Blot Analysis in Figure 46 ............................... 221 

xv 



LIST OF FIGURES 

Figures Page 

1. Models for the Recgonition and Degradation of mRNA Containing 
Nonsnese Codons in Yeast.. ............................................................. 17 

2. Schematic Representation of the Translational Initiation Model to 
Explain Effects of Translation lnitation and Termination 
Changes on mRNA Stability ............................................................. 20 

3. General mRNA Decay Pathway in Yeast ................................................. 23 

4. Models of the Recognition and Degradation of mRNA Containing 
Nonsense Codons ............................................................................. 28 

5. Schematic Representation of the S. cerevesiae UPF1 Gene and 
Gene Product .................................................................................... 32 

6. Schematic Diagram of a Nucleic Acid Capillary Transfer Apparatus ........ 62 

7. Schematic Diagram of a Multiple Antigenic Peptide ............................... 106 

8. Schematic Representation of the Hapten/Carrier Linkage Reaction 
Using a Maleimide Activated Carrier ............................................... 107 

9. Schematic Representation of the Hapten/Matrix Linkage Reaction 
Using Carbodiimide (EDC) .............................................................. 11 O 

10. Schematic Representation of the Regions of the UPF1 Gene Used 
as library and Southern blot probes and the autoradiograph of 
two rabbit ...................................................................................... 134 

11. Flow Chart Representing Steps Taken During the Isolation of a 
Rabbit Genomic Clone That Cross Hybridizes With the Yeast 
UPF1 DNA probe and isolation of a rabbit cDNA ............................ 135 

xvi 



12. Partial nucleotide sequence of the rabbit genomic phage clone #5 
2.0-kb Hindlll fragment that hybridized with the UPF1 RNA 
helicase probe ................................................................................. 139 

13. Original Printout of the FASTA Nucleotide Sequence Alignment of 
the Rabbit Genomic Phage Clone #5 2.0-kb Hindi II Fragment 
With UPF1 ........................................................................................ 140 

14. Original printout of the result of a FASTA analysis using the 26-nt 
sequence .......................................................................................... 141 

15. Comparison of the nt and Deduced aa Sequence of the Rabbit and 
Canine TRAPa Gene ........................................................................ 145 

16. Schematic Representation of the Translocon Proteins a, ~, y, and 3 ..... 146 

17. Northern Blot Analysis of Total and Cytoplasmic RNA from Rabbit, 
Human, and Mouse Cell Lines .......................................................... 148 

18. Northern Blot Analysis of Various Mouse B Lymphoid Cell Lines .......... 151 

19. Schematic diagram of the Complementation Approach to Isolate a 
Mammalian UPF1 Homologue by Complementation ........................ 156 

20. Flow Chart to Generate a Suitable Yeast Strain to Isolate a 
Mammalian UPF1 Homologue by Complementation ....................... 159 

21. Northern Blot of Total Yeast RNA Using a UPF1 Probe ........................ 161 

22. Growth of Various Yeast Strains on Canavanine ................................... 163 

23. Strategy to Identify a UPF1-Like System in a Mammalian Cell by 
Expression of a Dominant-Negaive Form of UPF1 ........................... 166 

24. Schematic Representation of the Steps Take to Clone UPF1 and 
UPF1-D1 ORF Into the Mammalian Expression Vector. ................... 168 

25. Partial Sequences of the Wild-type UPF1 and Corresponding 
Sequences in a Dominant-negative Form of UPF1 .......................... 169 

26. Western Blot Analysis of Yeast Cell Lysates and UPF1 IVTL Products.170 

xvii 



27. Northern Blot Analysis of VXH Cells Stably Transfected With 
UPF1-D1 Expression Vector and Vector Alone ............................... 172 

28. Western Blot of Protein Lysates of VXH Cells Stably Transfected 
With a UPF1 or UPF1-D1 Expression Vector. ................................. 175 

29. XREFdb Announcement That My UPF1 Query Sequence Has 
Been Matched to a Number of Human cDNA EST Clones ............. 179 

30. Schematic Representation of the Yeast UPF1 Protein and Alignments 
With the Putative Translation Products Deduced From cDNA EST 
Clones Identified by the XREFdb .................................................... 182 

31. Alignment of Nucleotide Sequence From the 5' End of Clone 1 and 
GenBank clone #R13609 ................................................................ 184 

32. Northern Blot Analysis of Human and Mouse RNA Using Probes 
Isolated From Human cDNA clones ................................................ 186 

33. Schematic Diagram of pYES Plasmid Excision From Phage 'AYES 
and Subsquent Test of Human cDNA for Complementing Abiliity .. 187 

34. Northern Blot Analysis of Total and Cytoplasmic RNA Using 3.6 the 
Clone Probe .................................................................................... 189 

35. Nucleotide and Predicted Amino Acid Sequence of the Human 
NORF1 Gene ................................................................................... '190 

36. In vitro transcription-translation (IVTL) of UPF1 and NORF1 RNA 
transcribed from plasmid DNA ....................................................... 194 

37. Sequence Comparison of Human NORF1 and Yeast UPF1 .................. 196 

38. Northern Blot Analysis of NORF1 mRNA in Human Cell Lines .............. 201 

39. Schematic Representation and Partial Sequence Alignment of the 
Human NORF1 Clones 3.6 and 5.5 ............................................... 203 

40. Hydrophobicity Plot of NORF1 Used to Design NORF1 Peptides ......... 205 

41. In vitro Transcription-translation (IVTL) and Western Blot Analysis 
of IVTL Products and Cell Lysates ................................................. 207 

xviii 



42. Complementation Test of a upf1 Null Yeast Strain With the NORF1 
cDNA ................................................................................................ 210 

43. Dominant-negative Test of a UPF1 Null Yeast Strain With the NORF1 
cDNA ................................................................................................ 212 

44. Schematic Tepresentation of the Antisense Orientation Cloning of 
NORF1 Into the Expression Vector pHJ)-APr-1-neo and 
Subsequent Transfection Into the Mouse B Cell Hybridoma VXH .... 215 

45. Schematic Diagram and Sequence of the Two Predicted 
Polypeptides That can be Translated From the VXH µ 
lmmunoglobulin Nonsense mRNA in VXH Cells ............................... 217 

46. Effect of Human NORF1 Antisense RNA Expression on µ mRNA 
Levels in Transfected Mouse Cells ................................................... 218 

47. Northern Blot Analysis of Total Human and Mouse RNA using 
Human and Mouse NORF1 Probes .................................................. 223 

48. Sequence Comparison of 5' Sequences of Human and Mouse 
NORF1 .............................................................................................. 225 

49. Model for Activation of NORF1 leading to Decay of a mRNA With 
a Nonsense Codon ........................................................................... 236 

50. Models to Explain NORF1 Helicase Action Induces the Rapid Decay 
of a Nonsense mRNA ....................................................................... 238 

xix 



5' 

3' 

A 

APS 

bp 

BPB 

BSA 

c 

oc 

Chisam 

Ci 

CIF 

Cµ 

CMV 

cpm 

DEPC 

dFA 

DMSO 

DNA 

dNTP 

OTT 

LIST OF ABBREVIATIONS 

five-prime 

three-prime 

adenine 

ammonium persulphate 

base pair(s) 

bromphenol blue 

bovine serum albumin 

cytosine 

degrees Celcius 

Chloroform:isoamyl alcohol (24:1) 

Curie 

cytoplasmic immunofluroescence 

constant region ofµ gene 

cytomegalovirus 

counts per-minute 

diethyl pyrocarbonate 

de-ionized formamide 

dimethyl sulfoxide 

deoxyribonucleic acid 

2'-deoxy nucleotides 

dithiothreitol 

xx 



EDTA 

EtBr 

FBS 

FITC 

G 

g 

GAP DH 

GIT 

HCI 

HEP ES 

lg 

IPTG 

kb 

kDa 

L 

LB 

~-ME 

µCi 

µg 

µI 

ml 

mM 

ethylenediaminetetraacetic acid 

ethidium bromide 

fetal bovine serum 

fluroescine isothiocyanate 

guanine 

gram 

g lyceraldehyde-3-phosphate dehyd rogenase 

guanidine isothiocyanate 

hydrochloric acid 

N-[2-hyd roxyethylpiperazine-N' -[2-ethanesulfonic acid]] 

immunoglobulin 

isopropyl ~-D-thiogalactoside 

kilobase 

kilodalton 

liter 

Luria broth medium 

2-mercaptoethanol 

microCurie 

microgram 

micro liter 

milliliter 

millimolar 

xxi 



M molar 

mol moles 

mAb monoclonal antibody 

MOPS 3-[N-morpholino]propanesulfonic acid 

MW molecular weight 

µ heavy chain polypeptide of lgM immunoglobulin 

NaCl sodium chloride 

neo neomycin phosphotransferase gene 

nonsense a mRNA containing a nonsense codon 
mRNA 

nt nucleotide 

P promoter 

p plasmid 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PBSF phosphate buffered saline with BSA and NaN3 

PCR polymerase chain reaction (trademark of Perkin Elmer Cetus Co.) 

PEG polyethylene glycol 

PMSF phenylmethanesulfonyl fluoride 

Poly(A) DNA polyadenylation 

Prot K proteinase K 

RNA ribonucleic acid 

mRNA messenger RNA 

xx ii 



tRNA 

rRNA 

RNAse 

rpm 

RT 

sos 

SSC 

sv 

T 

TAE 

TBE 

TE 

TE MED 

Tris 

u 

3'UTR 

5'UTR 

vol 

X-Gal 

transfer RNA 

ribosomal RNA 

ribonuclease 

revolutions per-minute 

reverse transcriptase 

sodium dodecyl sulfate 

standard saline citrate (15 mM sodium citrate, 0.15 M sodium 
chloride) 

simianvirus 

thymine 

Tris-acetic acid-EDTA [40 mM Tris, 1 % glacial acetic acid, 1 mM 
EDTA] 

Tris-borate-EDTA [89 mM Tris, pH 7.5, 89 mM boric acid, 2 mM 
EDTA] 

Tris-EDT A 

N,N,N',N'-tetramethylenediamine 

Trizma base 

unit 

3' untranslated region 

5' untranslated region 

volume(s) 

5-bromo-4-chloro-3indolyl ~-D-galactopyranoside 

xxiii 



ABSTRACT 

mRNAs containing nonsense codons encode truncated polypeptides that can 

interfere with the function of their corresponding full-length polypeptides. However, 

levels of most nonsense mRNAs are reduced in eukaryotic and prokaryotic cells 

when compared to that of corresponding functional mRNAs. Genes that encode 

proteins responsible to selectively reduce levels of nonsense mRNA have been 

identified only in lower eukaryotes. Here, I describe the cloning of a putative 

human group I RNA helicase whose amino acid sequence is 60% identical to that 

of UPF1, a bona fide yeast group I RNA helicase required for rapid degradation of 

nonsense mRNA. Besides the seven RNA helicase consensus motifs, UPF1 and 

its human homologue share two similar zinc finger-like domains, which are absent 

in other group I RNA helicases. Blocking of protein expression by antisense RNA 

derived from the human gene increased levels of nonsense immunoglobulin heavy 

chain mRNA in a mouse hybridoma line. I, thus, have identified the first 

mammalian protein that regulates levels of nonsense mRNA, and I have named it 

NORF1 (Il.Qnsense mRNA reducing factor 1). 

xx iv 



INTRODUCTION 

Nonsense codons are able to decrease the stability of mRNA (or pre

mRNA) in simple and complex eukaryotic organisms. Recently, the greatest 

advances to understand how nonsense mRNA levels are reduced have been 

made in yeast. For example, cis-specific nonsense mRNA targeting sequences 

(Peltz et al., 1993) and genes whose products are required for reducing levels of 

nonsense mRNA (UPFINMD genes) (Leeds et al., 1991, 1993; He and 

Jacobson, 1995; Lee and Culbertson, 1995) have been discovered. In 

eukaryotic cells, it seems that the effect of a nonsense codon on mRNA depends 

on its position and also that levels of nonsense mRNA are reduced in the 

nucleus and cytoplasm (reviewed in Peltz et al., 1994). However, no mammalian 

nonsense mRNA reduction factor (NORF) has as yet been identified. 

Using a combination of searching nucleic and protein sequence 

databases with the UPF1 amino acid sequence and screening complementary 

DNA (cDNA) libraries, I isolated a human cDNA clone that encodes a structural 

homologue of yeast UPF1, a protein that rapidly induces the degradation of 

nonsense mRNA. I also showed in RNA antisense experiments that the 

mammalian protein controls levels of nonsense immunoglobulin µ heavy chain 
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mRNA (nonsense µ mRNA). Therefore, I named this protein NORF1 (for 

nonsense mRNA reducing factor 1). 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Nonsense Codons: Definition. Generation and Significance 

Definition 

Genetic information must be relayed through RNA (mRNA) before it is 

disseminated within a cell as a functional protein. After mRNA is transcribed 

from a gene, it is transported into the cytoplasm. There, ribosomes use the 

mRNA as a template and along with amino acid-charged t-RNAs, and 

translational initiation, elongation, and termination factors, synthesize a complete 

protein. The ribosomes translate the mRNA from the authentic start to the 

authentic stop signal as they move along the mRNA (a functional mRNA 

molecule). Through a number of processes to be described below, a mRNA can 

contain a premature stop signal (nonsense codon) that would end protein 

synthesis (Crick et al., 1961). In this case, an incomplete, truncated, polypeptide 

would be synthesized. Analyses of lower eukaryotic and mammalian cells 

containing mRNAs with nonsense codons (nonsense mRNA) have generally 

3 
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found that the average (steady-state) level of nonsense mRNA is lower when 

compared to the same mRNA without a nonsense codon. 

Generation 

Nonsense mRNAs can be generated by many different processes, such 

as inaccurate or incomplete RNA splicing, incorrect RNA editing, mutations of 

DNA or RNA, or the inaccurate assembly of DNA fragments leading to 

nonproductive gene rearrangements. Studies of intron splicing in pre-processed 

mRNAs (pre-mRNA) have found that incorrect splicing can lead to the imprecise 

assembly of exons, exon skipping, or the failure to remove an intron altogether 

(intron retention) (Senapathy, 1986; Senapathy et al., 1990; Carothers et al., 

1993; Stover et al., 1993). All the events can lead to a change in the 

translational reading frame of the mRNA and the new reading frame may contain 

a premature translational stop, or nonsense codon (Legrain and Rosabash, 

1989; He et al., 1993). 

The rearrangement of immunoglobulin (lg) and T cell receptor gene 

segments as well as hypermutation of immunoglobulin genes, may also result in 

the production of a nonsense mRNA (Baumann et al., 1985, Lozano et al., 

1993). Many mRNAs with nonsense codons can also arise from random 

mutations occurring within the cell's genome. Examples include single 

nucleotide (nt) changes (Orkin and Kazazian, 1984; Satoh et al., 1988; Jack et 

al., 1989; Kadowaki et al., 1990; Hamosh et al., 1992; Longo et al., 1992; Bach 
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et al., 1993; Dietz et al., 1993; Gibson et al., 1993; Naylor et al., 1993; Das et al., 

1994), insertions (Myerowitz and Costigan, 1988; Naylor et al., 1993; Das et al., 

1994; Boles and Proia, 1995), or deletions (Krawczak and Cooper, 1991; Naylor 

et al., 1993; Sherrat et al., 1993, Das et al., 1994). 

Significance 

The presence of a nonsense codon in an mRNA usually results in a 

decrease in the steady state level of nonsense mRNA that is not due to 

decreased transcriptional rates (Cheng and Maquat, 1993; Urlaub et al., 1989; 

Jack et al., 1989; Paw and Neufeld, 1988). It has been hypothesized that this 

process, which we call nonsense codon-mediated mRNA reduction, is used by a 

cell to eliminate nonsense mRNAs that could be translated into a 

shorter/truncated protein or a protein with a new amino acid sequence. 

However, if nonsense mRNA levels are not decreased, shorter proteins with the 

new amino acid sequence could interfere with the full-length corresponding 

polypeptide. For example, when a nonsense codon is present in the human p

globin gene at certain positions, levels of the nonsense mRNA are not 

decreased (Table 1) (Kazazian et al., 1992; Thein, 1992; Hall and Thein, 1994). 

Because levels of nonsense p-globin mRNA increases, a truncated p-globin 

encoded by the nonsense mRNA can accumulate in the cell. Patients with a 

heterozygous mutation in the p-globin gene produce the truncated and full length 

P-globin protein, but still have p-thalassemia. It has been hypothesized that the 
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truncated p-globin protein is interfering in a dominant-negative fashion with the 

function of the complete p-globin protein (Kazazian et al., 1992; Thein, 1992). 

Humans with this heterozygous condition are diagnosed with partial P

thalassemia, a disease manifesting itself with symptoms of anemia and bone 

deformation. 

The most striking evidence that nonsense codon-mediated RNA 

degradation is important for an organism comes from experiments with the 

nematode Caenorhabditis elegans (Pulak and Anderson, 1993). In C. elegans a 

nonsense codon within one allele of the myosin heavy chain gene unc-54 has no 

effect on the viability of the heterozygotic worm or on the ability of muscle cells to 

form a functional muscle. When the heterozygotic worm has a defect in the 

nonsense codon-mediated RNA degradation system, (SMG2 mutation), the unc-

54 mRNA with the nonsense codon is not degraded and a truncated myosin 

heavy-chain polypeptide translated from the nonsense mRNA interferes with the 

assembly of muscular structure in the worm. This leads to defective muscle 

function so that the worms are unable to swim. Pulak and Anderson (1993) 

conclude that the shorter myosin heavy-chain polypeptide acts in a dominant

negative fashion and suggest that a nonsense mRNA surveillance mechanism is 

important to avoid the accumulation of dominant-negative or gain-of-function 

polypeptides. 

There are also many other examples of human diseases that correlate 

with the presence of nonsense mRNA and in some cases with the presence of a 
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shorter polypeptide. For example, certain mutations in the apolipoprotein E 

(APO E) gene lead to the generation of a nonsense APO E mRNA. Individuals 

with these mutations produce a truncated APO E receptor that is not able to help 

remove cholesterol from the blood and suffer from elevated plasma cholesterol 

levels and hyperlipoproteinemia (Lohse et al., 1992; see Table 1). The table lists 

other examples where a nonsense mRNA is made but whether a shorter 

polypeptide can cause the disease is not clear. 

Nonsense mRNA Reduction: Who. Where and How (Translation. Location and 

Models of Reduction) 

Translation 

How a cell is able to differentiate between a nonsense codon and a 

normal translational stop codon is unknown. Ribosomes, charged t-RNAs, 

initiation, elongation, and termination factors are all thought to be essential to 

recognize codon triplets and translate mRNA (reviewed in Stansfield and Tuite, 

1994). Therefore, it is thought that the same translational machinery is 

necessary for the recognition of a nonsense codon. The inhibition of translation 

using the translation elongation inhibitor cycloheximide results in increased 

levels of nonsense mRNAs (Qian et al., 1993; Lozano et al., 1994; Menon and 

Neufeld, 1994; Li et al., unpublished results). These results support the 

hypothesis that translation is needed to reduce levels of nonsense mRNA. 



Table 1. --Human Diseases Associated With a Nonsense Codon Mutationa 

Gene Nucleotide Disease Symptoms Truncated Nonsense Reference 
Change Protein mRNA 

Reduction 

p-globin FS >NC, NC p-thalassemia I Cell membrane damage Yes No Hall & Thein, 1994 
and destruction of red cells 

alphaTTP FS> NC Vitamin E deficiency I Ataxia & Peripheral N.D. N.D. Hentati et al., 1996 
neuropathy 

BRACA1 NC Breast and Ovarian cancer N.D. N.D. Serova et al., 1996 

BRACA2 NC Breast cancer N.D. N.D. Tavtigian et al., 1996 

apo E2 FS> NC Type 3 Hyperlipoproteniemia I Yes N.D. Feussner et al., 1996 

RB FS> NC Retinoblastoma I retinal tumors that can N.D. Yes Kato et al., 1994 
proceed to the brain 

SCH NC Schwannomas I benign tumors of the N.D. N.D. Bijlsma et al., 1994 
cranium and spine, Neurofibromatosis 

gp91-phox FS> NC Chronic granulomatous disease N.D. N.D. Rabbani et al., 1993 
(superoxide deficiency) I recurrent life-
threating infections 

hMLH1&2 NC Heridetiary nonpolyposis colon cancer N.D. N.D. Luce et al,. 1996 

ARSA FS> NC Metrochromatic leukodystrophy N.D. Yes Pastor-Soler et al., 1994 
(arylsulfatase A) I defective myelin sulfatide 
degradation leads to demyelination and 
death. 

I)) 



Table 1. cont --Human Diseases Associated With a Nonsense Codon Mutationa 

GP 1b alpha FS> NC Bernard-Soulier syndrome (absence of Yes N.D. Simsek et al., 1994 
platelet glycoprotein lb/IXN complex) I 
giant platelets that cannot promote clotting 

CDKN2 FS> NC Putative melanoma susceptibility gene N.D. N.D. Walder et al., 1995 

IL-2R y NC Severe combined immunodeficeincy I N.D. N.D. Noguchi et al., 1993 
immunodeficiency disease (T cell def.) 

GHRH-R NC Laron syndrome I Pituitary adenomas and N.D. N.D. Hashimoto et al., 1995 
severe growth failure 

WASP FS> NC Wiskott-Aldrich syndrome I X-linked N.D. N.D. Wengler et al., 1995 

NC 
immunodeficiency, thrombocytopenia and 
eczema 

btk FS> NC X-linked agammaglobulinemia I inherited N.D. N.D. Duriez et al., 1994 
immunodeficiency disease (B cell def.) 

XPAC NC Xeroderma pigmentosum I Skin cancer N.D. N.D. Satokata et al., 1992 

LAMC2 FS> NC Herlitz's Junctional epidermolysis bullosa N.D. Yes Vailly et al., 1995 
(laminin-5) I skin blistering at sites of 
pressure or trauma 

p53 NC CMML, AML, CML, Burkitt's lymphoma, Yes, No No, Yes Kawasaki et al., 1994 
Bladder cancer, endometrial carcinoma 

PHKA2 NC X-linked liver glycogenosis type 1 I N.D. N.D. Hendricks et al., 1995 
hepatomegaly, hypoglycemia, gout 

WT1 NC Denys-Drash syndrome I nephropathy, and N.D. N.D. Baird et al., 1992 
Wilms tumors 

co 



Table 1. cont --Human Diseases Associated With a Nonsense Codon Mutation8 

HEXAand FS> NC Tay-Sach or Sandhoff disease respectively N.D. Yes Mcinnes et al., 1992 
HEXB (lysosomal P-hexosaminidase) I motor and 

mental deterioration, blindness 

a-II p-3 FS> NC Glanzmann's thrombasthenia I defect in No N.D. Schlegel et al., 1995 
platelet alpha llb beta 3 protein 

subunit A FS> NC Subunit A coagulation factor 13 deficiency I N.D. Yes Vreken et al., 1995 
coagulation deficiency 

CD18 FS> NC Leukocyte adherence deficiency I recurrent N.D. N.D. Back et al., 1992 
infections due to deficiency in surface 
expression of leukocyte integrin molecules 

CHM FS> NS Choroideremia I X linked progressive N.D. N.D. Sankila et al., 1992 
degeneration of the choroid and retina 

APKD1 NC Autosomal dominant polycystic kidney N.D. No Turco et al., 1995 
disease / 1: 1000 persons, massive 
kidneys, hematuria, hypertension, and 
renal failure 

ACTH-R NC Isolated gluocorticoid deficiency I N.D. N.D. Tsigos et al., 1993 
progressive primary adrenal insufficiency 

COL7A1 FS> NC Hallopeau-Siemens dystrophic No Yes Hilal et al., 1993 
epidermolysis bullosa / loss of dermal 
adherence with abnormal anchoring fibrils 

COL10A1 FS> NC Schmid metaphyseal dysplasias (type 1 O Yes N.D. Bonaventure et al., 1995 
collagen) I metaphyseal dysplasia, poor 
collagen assembly 

COL4A3 FS> NC Alport syndrome (type IV collagen)/ N.D. N.D. Ding et al., 1995 
Deafness, hematuria, proteinuria and renal 
failure ...... 

0 



PBDA 

cytb5r 

FBN1 

APOE 

Spectrin-P 

OA1 

ASM 

Table 1. cont --Human Diseases Associated With a Nonsense Codon Mutation3 

FS > NC lntermitent porphyria I skin lesions 

FS > NC Cytochrome b5 reductase deficiency I 
syanosis or mental retardation 

NC Marfan syndrome (aberrant fibrillin) I 
connective tissue disorder affecting the 
skeleton, eye, and cardiovascular system 

NC Apolipoprotein E deficiency I elevated 
plasma cholesterol levels, 
hyperlipoproteinemia 

FS > NC Hereditary elliptocytosis I 

FS >NC Ocular albinism I impaired visual acuity, 
retinal hypopigmentation 

FS>NC, NC Niemann-Pick disease I neuronopathic 

N.D. 

N.D. 

Yes 

Yes 

Yes 

N.D. 

Yes 

N.D. 

N.D. 

No 

No 

N.D. 

No 

N.D. 

Mgone et al., 1993 

Vieira et al., 1995 

Dietz et al., 1994 

Lohse et al., 1992 

Wilmotte et al., 1994 

Bassi et al., 1995 

Takahashi et al., 1992 

SMN FS >NC Spinal muscular atrophy I degeneration of N.D. N.D. Bussaglia et al., 1995 
motor neurons of the spinal cord 

8This is a partial list of various human diseases correlating with the presence of a nonsense codon in a gene. Nucleotide 
changes are either mutations that generate a nonsense codon (NC) or cause a frame shift (FS) that leads to the 
generation of a nonsense codon. In both cases, translation is presumabely truncated and, thus, only a shorter 
polypeptide could be produced. N.D., not determined. 

-->. 
_;. 
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Although treatment of cells with cycloheximide seems to support the role of 

translation in nonsense mRNA reduction, these experiments are difficult to 

interpret, since the treatment itself may inhibit the production of (a) factor(s) 

necessary during the process of nonsense mRNA reduction. Other evidence 

supporting the role of translation in nonsense mRNA reduction comes from 

experiments using modified RNA constructs that contain a stem-loop structure 

that inhibits translation by virtue of its strong secondary structure (Belgrader et 

al., 1993). mRNAs containing these elements upstream of a nonsense codon do 

not undergo nonsense mRNA reduction suggesting the importance of translation 

in the nonsense mRNA reduction process. 

Location of Nonsense mRNA Reduction 

As mentioned above, the translational process is thought to be involved in 

nonsense mRNA reduction. Because the translational process is only known to 

occurs in the cytoplasm, it would be expected that the reduction of nonsense 

mRNA also occurs in the cytoplasm. Indeed, a number of experiments in yeast 

have found that nonsense mRNA reduction occurs in the cytoplasm and occurs 

by degradation. First, the activity of a cytoplasmic yeast 5' to 3' exonuclease 

(Xrn1p) correlates with the reduction of a nonsense mRNA. When a mutant 

strain lacks XRN1, cytoplasmic mRNA decay does not occur and a nonsense 

mRNA (the PGK1 allele) has the same stability as a wild-type mRNA (Muhlrad 

and Parker, 1994). Second, the presence of a yeast factor associated with 
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cytoplasmic ribosomes (Upf1 p) (Atkin et al., 1995) correlates with reduction of 

nonsense mRNA. When yeast are missing Upf1 p, the levels of nonsense mRNA 

associated with polyribosomes increases (He et al., 1993). Both these 

experiments suggest that a nonsense codon in an mRNA is recognized by the 

translational machinery and that the reduction in the level of the message is due 

to degradation. 

There are also experiments in mammalian cells that suggest that the 

reduction of nonsense mRNA occurs in the cytoplasm. Cytoplasmic nonsense 

mRNA reduction has been demonstrated for p-globin mRNA (Orkin and 

Kazazian, 1984 review) and lg µ mRNA (Li and Jack, unpublished observations). 

In these experiments, p-thalassemic patients producing p-globin nonsense 

mRNAs had no changes in the half-life of the nonsense pre-mRNA. But the half

life of mature nonsense mRNA was reduced to only 30 minutes when compared 

to the wild type p-globin mRNA half life of 16 hours (Maquat, et al., 1981; Ross 

and Pizarro, 1983). In the lg µ mRNA studies, northern blot analysis was used 

to determine the levels of cytoplasmic µ and nonsense µ mRNA at different time 

points after the addition of the transcripitional inhibitors actinomycin and 5, 6-

dichloro-1-beta-D-ribofuranosylbenzimidazole (ORB). The result indicated that 

nonsense µ mRNA had a half-life of 4 hours, whereas functional µ mRNA had a 

half-life of 16 hours. This suggests that the degradation of the µ nonsense 

mRNA is occurring in the cytoplasm. 
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Although the evidence discussed above suggests that nonsense codons 

in mRNAs are recognized in the cytoplasm by the translational machinery, a 

number of observations suggest that the levels of nonsense mRNAs are also 

reduced in the nucleus of a mammalian cell. Examples include the human 

triosephosphate-isomerase (TPI) mRNA in both mouse and human cell lines 

(Cheng and Maquat, 1993), the secretory major urinary protein (MUP) mRNA in 

mouse cells (Belgrader and Maquat, 1994), ~-globin mRNA in nonerythroid cells 

(Takeshita et al., 1984; Baserga and Benz, 1992), viral nonsense mRNA 

encoded by avian sarcoma virus (src) (Simpson and Stoltzfus, 1994) and lg µ 

mRNA (Li and Jack, unpublished observations). However, differences in nuclear 

levels of functional and nonsense mRNA can be explained by the presence of 

small contaminants of cytoplasmic mRNA that co-purified with the nuclei during 

the isolation procedure. To address this problem, Belgrader and coworkers 

examined purified nuclei by light and electron microscopy and found that the 

nuclei were free of any detectable cytoplasmic remnants (Belgrader et al., 1994). 

These observations do not, however, address the possibility that cytoplasmic 

nonsense mRNA molecules are attached to the outside of the nuclei and, thus, 

co-purify with nuclei and increase the signal of "nuclear" mRNA. 

There are also observations suggesting that the presence of a nonsense 

codon in a pre-mRNA may also affect its splicing. The presence of a nonsense 

codon in an immunoglobulin kappa light-chain gene results in inefficient nuclear 

pre-mRNA splicing (Lozano et al., 1994). This effect on splicing is thought to 



15. 

lead to the decrease in cytoplasmic levels of completely spliced kappa mRNA. 

Splicing experiments using K nonsense pre-mRNA and lysates from either 

mouse B cells or endothelial cells suggests that inefficient splicing of K nonsense 

pre-mRNA can be reproduced in vitro (Aoufouchi et al., 1996) but only if B cell 

extracts are used. This suggests that the splicing inefficiency caused by the 

nonsense codon can only occur in B cell splicing extracts. Unfortunately, in 

these in vitro experiments controls were done to test for the presence of possible 

translational machinery molecules (ribosomes and other factors) that could 

sterically inhibit the splicing machinery. In addition to the ability of nonsense 

codons to affect splicing efficiency, it has also been found that certain nonsense 

codons can affect exon skipping, cryptic splicing, or intron retention (Naeger et 

al., 1992, Dietz et al., 1993, Dietz and Kendzior, 1994, Lozano et al., 1994). 

Dietz has proposed that nonsense codons could be recognized within nuclear 

pre-mRNA by a nuclear scanner. In this model, introns are "looped-out" by 

splicing factors, which would align the exons as in an mRNA. A nuclear scanner 

could look for nonsense codons within the exons of these pre-mRNA. But the 

idea that a nonsense codon could influence exon skipping, cryptic splicing, or 

intron retention is problematic considering that nonsense codon recognition is 

thought to be recognized by translational machinery (in the cytoplasm). It is 

more likely that the nonsense codons that have these types of effects are 

influencing the splicing process itself by changing splice site 



recognition, even if they are not located near a splicing junction. Until more is 

known about how the splicing machinery works, it is difficult to understand 

exactly how these nonsense codons are affecting the splicing process. 

Models to Explain Nonsense mRNA Reduction 
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To determine how the translational machinery is able to recognize and 

reduce the levels of nonsense mRNA, many experiments have manipulated the 

location of nonsense codons in mRNAs. 

Models to Explain Nonsense mRNA Reduction in Yeast 

Model 1 

It has been suggested that there might be a nonsense codon-recognition 

factor associated with the translational machinery of yeast (Figure 1.4) and after 

a certain percentage of the mRNA has been translated, this factor falls off 

gradually or by encountering a cis-element in the substrate mRNA (Figure 1.5) 

(Peltz et al., 1993). After this nonsense codon-recognition factor is removed 

from the translation machinery, the nonsense mRNA would not be targeted for 

degradation. In support of this hypothesis it has been found that the position of a 

nonsense codon determines whether nonsense mRNA levels are decreased 

when compared to levels of functional mRNA. Levels of nonsense mRNA from 

the yeast genes, URA3 (Losson et al., 1983), URA 1 (Pelsy and Lacroute, 1984), 

PGK1 (Peltz et al., 1993), HIS4 (Hagan et al., 1995), and CYC1 (Yun and 



Figure 1. Models for the recognition and degradation of mRNA containing 
nonsense codons in yeast. 1) Normal translation of a mRNA by ribosomes 
2) A nonsense mRNA that is not protected by ribosomes is a target for 
cytoplasmic nucleases. 3) A nonsense mRNA with a sequence downstream 
of the nonsense codon acts as a target for a nonsense/sequence specific 
decay. 4) Ribosomes containing a nonsense codon recognition factor 
(Small diamonds) recognize a nonsense codon and target it for decay. 5) 
Ribosomes containing the factor loose the factor after a certain distance or 
after contact with a cis mRNA element. This renders the mRNA immune to 
NMRD. Adapted from Peltz et al., (1993). 
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Sherman, 1995), show almost complete decay when the nonsense mutation is in 

the 5' regions of the mRNA and normal levels when the nonsense codon is in the 

3' region of the mRNA. This is called the position effect of nonsense codons on 

mRNA levels. 

Model 2 

Another hypothesis suggests that the presence of elements downstream 

of a nonsense codon triggers rapid mRNA decay (Figure 1.3), possibly by 

providing a site for 40S ribosomal translation reinitiation (Peltz et al., 1993). 

Experiments supporting this hypothesis found that the removal of a specific RNA 

sequence element 3' (an AUG rich region) from an early nonsense codon yeast 

pgk1 mRNA eliminated the rapid decay of the message. The authors' main 

conclusion was that translational reinitiation is involved; first, because three AUG 

codons lie within the downstream element; second, the insertion of a stem-loop 

structure 5' of the downstream element inhibited the rapid mRNA decay; and 

inhibitors of translation that reduce the ability of ribosomes to reinitiate translation 

at downstream start codons also stabilize mRNA with nonsense codons without 

affecting the stability of a wild type transcript (Peltz and Jacobson, 1993). 

Model 3 

Alternatively, recent work with the yeast CYC1 mRNA suggests a different 

model, the translation initiation model (Figure 2) (Yun and Sherman, 1995). This 
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Figure 2. Schematic representation of the translational initiation model to 
explain effects of translation initation and termination changes on mRNA 
stability. The distributaion of 40S and BOS ribosomal subunits on various 
mRNA species are outlined. Adapted from Yun and Sherman (1995). 
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model describes a number of possible effects that cis-mRNA elements (including 

a stability element) have upon the stability of the CYC1 mRNA. First, a CYC1 

mRNA is transported out of the nucleus (Figure 2.A) and a 40S ribosomal 

subunit scans the mRNA and begins translation at the bona fide AUG as a 

complete BOS ribosome (Figure 2.8). When the normal initiator AUG codon is 

changed (mutated), translation does not initiate (Figure 2.C), even when there is 

an AUG codon within the coding region (Figure 2.0). It may be possible that 

translation initiation factors are only associated with the 40S subunit for a brief 

period of time and are not present when a 40S subunit encounters a 

downstream AUG. These mRNAs are stabilized by the 40S subunit that keeps 

scanning down the mRNA and can cover the sensitive region. Premature 

termination can occur at UAA mutations at different locations (Figure 2.E, F, G) 

but the mRNA is only degraded if the UAA lies inside the sensitive region (Figure 

2.E and F), but not when it is outside this region (Figure 2.G). This degradation 

occurs by exposing a sensitive element within the sensitive region. The 

scanning of the 40S subunit can be disrupted by inserting an ATG TAA 

sequence, because of the formation and quick release of BOS ribosomes (Figure 

2.H, I). These nonsense codons also cause degradation of the mRNA, because 

they expose the sensitive element(s). However, no premature termination or 

destabilization occurs when the sequence ATGTAA is inserted outside of the 

initiation region (Figure 2.J), because the scanning 40S subunit can protect the 

message. The authors also suggest that the exposure of the stability element 
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could lead to interactions of elements with the 5' cap or the poly(A)-tail, which 

triggers decapping and degradation. All these models have been formulated 

considering results from experiments with yeast cells. The same types of 

elements and/or observations involving the nonsense mRNA reduction system 

have not yet been found in higher eukaryotic cells. Nevertheless, these results 

indicate that there may be special trans-acting factors and cis-mRNA elements 

involved in the nonsense codon mRNA recognition system in yeast but these 

results do not directly address how the reduction occurs. 

Model 4 

Experiments in yeast have addressed the question of how mRNAs 

containing a nonsense codon are degraded. Using temperature sensitive mRNA 

decay mutants, it has been found that the normal route of decay of wild-type 

yeast mRNAs is 1) shortening of the poly(A)-tail, 2) removal of the 5' cap of the 

mRNA, and 3) 5' to 3' exonuclease degradation (reviewed in Beelman ar.d 

Parker, 1995) (Figure 3.A). Mulhrad and Parker (1994) demonstrated that the 

decay process of yeast mRNA containing a nonsense codon is similar but not 

identical to that of a wild-type mRNA. His lab demonstrated that the pgk1 mRNA 

containing a nonsense codon does not have its poly(A)-tail shortened like a 

normal PGK1 transcript but instead proceeds directly to the decapping step and 

then is degraded by the same 5' to 3' exonuclease that degrades wild type PGK1 

mRNAs (Figure 3.B) (Muhlrad and Parker, 1994). These results indicate that the 

steps in mRNA degradation are not the same for nonsense and functional mRNA 
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Figure 3. General mRNA decay pathway in yeast. (A) Pathway depicting what 
is thought to be the common decay pathway of a mRNA in yeast. Breifly, the 
process involves shortening of the poly (A) tail, deadenylation dependent 
decapping and subsquent 5' to 3' exonucleitic decay. (8) Pathway depicting the 
probable pathway for a nonsense codon mRNA in yeast. Breifly, the process 
involves deadenylation independent decapping by the NMRD mechanism and 
subsquent 5' to 3' exonucleitic decay similar to the decay of normal yeast 
mRNAs. Figure adapted from Muhlrad and Parker, (1994). 
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and that the recognition of the nonsense codon may be the key step to activating 

the quick decapping of the mRNA and subsequent degradation by a common 

yeast exonuclease. However, it is not clear how the nonsense codon 

degradation system is able to recognize the nonsense codon and then activate 

the decapping of the mRNA. 

Models to Explain Nonsense mRNA Reduction in Mammalian Cells 

Model 1 

As in yeast, it has been suggested that there might be a position effect of 

a nonsense codon on mammalian mRNA levels. Studies involving the TPI gene 

have shown that the levels of nonsense mRNA containing nonsense codons in 

upstream exons are decreased when compared to levels of functional mRNA but 

as the nonsense codon is relocated towards the 3' exons of the gene the levels 

of nonsense mRNA increase (Cheng et al., 1994). From these results Cheng 

and coworkers (1994) have concluded that there is also a position effect of 

nonsense codons upon mammalian mRNAs. These results also suggest that 

there may be a nonsense codon recgonition factor associated with a translated 

mRNA but this mammalian system is more complex than studies of intron-less 

yeast genes and could involve splice-site changes, possible TPI specific cis

mRNA elements, and other nuclear and/or cytoplasmic factors outlined in other 

models described below. 
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Model 2 

Studies of a human nonsense 13-globin mRNA in transgenic mice as well 

as a study done on mouse lg µ mRNA have given some clues to the process of 

nonsense mRNA reduction in higher eukaryotic cells. Experiments that have 

looked at the 13-globin mRNA and its mutant form have found that the 5' end of 13-

globin nonsense mRNAs have shorter, capped, 5' ends. Lim and Maquat (1992) 

have suggested that these nonsense mRNAs were attacked by a 5'-3' 

exonuclease and then capped or re-capped to confer immunity to further 

exonucleolytic attack. Although this model remains to be tested, evidence for 

the existence of a 5'-3' exonuclease has been strengthened by recent results 

from the lab of Brawerman. Coutts and Brawerman (1993) have identified a 

mouse sarcoma 5'-3' exonuclease that appears to cleave capped and uncapped 

mRNAs at either the first, second, or third nucleotide. Together, these results 

implicate a 5' to 3' exonuclease in the degradation of nonsense codon mRNAs 

in mammalian cells. 

Li and coworkers studied the length of the poly(A)-tail in nonsense and 

functional µ mRNAs. In experiments using RNase H digestion followed by 

northern blot analysis, they found that functional µ mRNA contains a shorter 

poly(A)-tail than nonsense µ mRNA. This result suggests that the degradation 

pathway of nonsense µ mRNA does not follow normal mRNA decay which is 

thought to be initiated by the shortening of the poly(A)-tail (reviewed in Ross, 

1995). It is possible that the degradation of nonsense µ mRNA follows a 
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pathway similar or identical to that of yeast pgk1 nonsense mRNA, in which the 

nonsense mRNA does not have its poly(A)-tail shortened before quickly 

decapping and degradation by a 5' to 3' exonuclease. Experiments have also 

been performed to determine if other steps in the degradation of higher 

eukaryotic nonsense mRNAs follow a pathway similar to that of yeast. 

Model 3 

To explain how a nonsense codon can trigger the reduction of nuclear 

mRNA, Chasin and coworkers have proposed the nuclear co-translational export 

model shown in Figure 4.2. This model explains how nonsense codons in a 

mRNA can be recognized by the translational machinery in the cytoplasm and 

still result in a nuclear decrease in the nonsense mRNA level (Urlaub et al., 

1989). In this model, ribosomes encounter nascent, not completely spliced RNA 

at the nuclear pore and begin the translation process (Figure 4.1 ). When a 

nonsense codon is encountered, the ribosomes activate the nonsense mRNA 

reduction pathway either at the surface or inside the nucleus (Figure 4.2). This 

could lead to the degradation of the mRNA or prevent further splicing, both of 

which would account for a drastic reduction in cytoplasmic nonsense mRNA 

levels. 

Model 4 

An additional model of nuclear degradation of nonsense mRNA has been 



Figure 4. Models for the recognition and degradation of mRNA containing 
nonsense codons. 1) Export of a normal mRNA using the translational
translocation model. 2) Degradation of a nonsense mRNA during 
translational-translocation by putative nucleases either outside or inside 
the nucleus. 3) Cytoplasmic degradation of a nonsense mRNA. 4) 
Nuclear scanning model where nonsense codons are recognized in the 
exons of an mRNA which targets the mRNA for degradation. 
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proposed by Chasin and coworkers. In this model, which was termed the 

nuclear scanning model, a hypothesized nuclear scanner identifies a nonsense 

mRNA and targets it for degradation (Urlaub et al., 1989) (Figure 4.4). Because 

the only known complex that can identify codons in a mRNA is tRNA, 

cytoplasmic ribosomes and there associated factors, it is difficult to imagine how 

the scanning occurs in the nucleus without a translation-like process. Recently, 

this scanning model has been redefined to only effect completely spliced mRNA 

(Zhang and Maquat, 1996). Zhang and Maquat have used a site-directed 

mutagenesis approach to generate a nonsense codon. that spans two exons (is 

separated by an intron) in the triosephosphate isomerase (TPI) gene. In other 

words, the nonsense codon is generated by splicing two exons together and is, 

thus, only found in spliced mRNA. Although RT-PCR was used to determine 

differences in nuclear TPI RNA levels, which leads to problems quantitating 

exact differences in RNA levels, the evidence suggests that nuclear nonsense 

mRNA reduction occurs only on the completely spliced TPI mRNA and not on 

the TPI pre-mRNAs (Zhang and Maquat, 1996). These results suggest that if 

nuclear scanning occurs it would only affect completely spliced nonsense 

mRNAs and not nonsense pre-mRNAs. This hypothesis circumvents one of the 

difficulties of the nuclear scanning model which was to explain why pre-mRNAs 

that contain a nonsense codon within an intron are not targeted for nonsense 

mRNA reduction. These results, however, do not prove the existence of nuclear 

nonsense mRNA reduction. Once experiments are designed and carried out to 
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directly test the nuclear co-translational translocation and nuclear scanning 

models, these results may become clearer. 

Genes Involved in Nonsense mRNA Reduction 

Previously, researchers were only able to study the phenomenon of 

nonsense mRNA reduction, but recently through the use of genetic systems, 

researchers working with S. cerevisiae and C. elegans have identified a series of 

genes that are directly involved in the nonsense mRNA reduction process. In S. 

cerevisiae they are named UPF genes (.YQ-frameshift, once thought to be 

frameshifting enhancers) and in C. elegans they are called SMG (~uppressor of 

morphogenesis mutations gene) genes. UPF1, 2, 3 and SMG 2, 3, 5, and 7 

have been cloned. In any of the UPF mutants there is an increased steady state 

level of mRNAs with nonsense codons and unspliced pre-mRNAs that contain a 

nonsense codon within an intron (He et al., 1993). The best characterized of 

these genes, and the only one that will be discussed in detail is the yeast UPF1 

gene. By using genetic and molecular analysis, UPF1 was shown to be required 

in the nonsense mRNA reduction pathway (Peltz et al., 1990, 1993). The levels 

of nonsense mRNA return to that of the corresponding wild-type mRNA, 

indicating that the UPF1 gene is involved in the nonsense mRNA decay process 

but not in general mRNA decay. 

The UPF1 gene encodes a 109-kDa protein (Figure 5). The UPF1 protein 

(Upf1p) contains a number of motifs with interesting properties. The mcst 
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thorough sequence analysis of the putative Upf1 p has been performed by 

Altamura and coworkers and is described here in detail (Altamura et al., 1992). 

Within the UPF1 ORF (from the N- to C- direction) there is a highly acidic region, 

a zn+2 finger motif, a NTP binding domain and a type 1 (superfamily 1) RNA 

helicase domain (Leeds et al., 1992; Altamura et al., 1992). It has been 

suggested that the acidic regions of DNA-binding transcriptional factors are 

required for their ability to act as transcriptional activators (reviewed in Struhl, 

1989). Upf1 p also contains conserved cysteine residues found in a number of 

zinc-finger DNA and RNA binding proteins (Burd and Dreyfuss, 1994). It is 

thought that these cysteine residues form structures that allow interaction with 

helices of nucleic acids. It is possible that this motif in Upf1 p could interact with 

ribosomal RNA (either double or single stranded) or with a nonsense mRNA. 

The elongation factor elF-2P also has a zinc-finger motif. When this motif is 

altered, the factor can no longer help the ribosome recognize the translational 

AUG start codon. This suggests that a zinc-finger motif could help recognition of 

a codon. It is therefore possible that the zinc-finger motif present in Upf1 p could 

be directly involved in the recognition of a stop codon. Upf1 p also contains two 

NTPase consensus motifs (Walker et al., 1982) that are the first and second 

motifs (motif I and II) of the RNA helicase region of RNA helicases of the 

superfamily I (Koonin, 1992). Many superfamily I putative RNA helicase genes 

such as SEN1 (DeMarini et al., 1992) and MOV-10 (Mooslehner et al., 1991) all 

contain a NTP binding domain and are thought to have NTP dependent helicase 
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activity. It has been proposed that the RNA helicase domain of Upf1 p could 

facilitate the degradation of a nonsense mRNA by unwinding secondary structure 

downstream of a nonsense codon thereby making the RNA accessible to 

nucleases (Peltz et al., 1993). 

Recently the functions of a number of these motifs have been confirmed 

(Czaplinski et al., 1995). Purified, epitope-tagged Upf1 p can bind to double 

stranded DNA or RNA. Upf1 p can be released from this substrate by the 

addition of ATP and in doing so, it unwinds the dsDNA or dsRNA; presumably by 

using its RNA helicase domain. Leeds and coworkers (1992) have shown that 

certain mutations in the RNA helicase domain of the UPF1 gene confer a 

dominant-negative effect upon cells transformed with the mutant upf1 (Leeds et 

al., 1992). These cells containing the wild-type UPF1 and the RNA helicase 

mutant upf1 act as if they are upf1-null. These data support the hypothesis that 

Upf1 p may be acting as a dimer and that the RNA helicase domain is critical for 

the function of Upf1 p. 

Experiments performed by Czaplinski and Peltz suggest an even more 

complex picture of Upf1 p function (personal communication). An upf1 mutant 

used in this study changed its growth on plates without leucine depending on the 

levels of nonsense Jeu2-1 mRNA (e.g. yeast that have a wild type UPF1 gene 

and a Jeu2-1 nonsense mutation do not grow in the absence of leucine, whereas 

yeast that have a upf1 null allele and a leu2-1 nonsense allele grow in the 

absence of leucine. In other words, the phenotype of a yeast cell with the leu2-1 
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allele and an upf1 mutation changes from Leu- to Leu+ because, in the absence 

of Upf1 p, nonsense leu2-1 mRNA is more stable and translational readthrough 

generates enough functional Leu2p to grow in the absence of leucine). Recent 

unpublished observations by Czaplinski and Peltz using various upf1 yeast 

challenge this conclusion and shed some light on how Upf1 p may be actually 

working. They have created a number of different upf1 mutants in the putative 

zinc-finger and RNA helicase regions of the UPF1 gene and tested the ability of 

the mutated Upf1 p to complement the function of wild-type UPF1 in vivo. Their 

results are shown in Table 2. 

Table 2. --Mutational analysis of UPF1 and its effects on a nonsense mRNA in vivoa 

Mutation 
Group 

A 

B 

c 

D 

Phenotype 

Nonsense leu2-1 mRNA 
levels 

Up 

Down 

Up 

Down 

Leu phenotype 

+ 

+ 

Specific Mutations Made 
in UPF1 

H94-R I H98-R I 

c122-s I C125-S I 
K436 to P, E, D, Q, or A 

C72-S I H11 O-R I 
RR793-KK 

DE572-AA I RR793-AA 

/TR800-AA 

C65-S I C84-S I 
C148-S 

aPhenotype indicates either high (up) or low (down) levels of the leu2-1 mRNA 
containing a nonsense codon while a + indicates growth, or - indicates lack of 
growth on drop-out medium. Specific mutations are indicated by their IUPC 
amino acid code. The wild-type residue and location of changes are indicated 

on the left before the arrow. The arrow(-) indicates the type of change that has 
been made. 
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These results demonstrate that Upf1 p is not only necessary for the decay of 

nonsense mRNAs, (Group A and C), but it may also be involved, either directly 

or indirectly, in modulating the recognition of the nonsense codon (Group A and 

D). 

Recently, UPF2/NMD2, whic.h is called NMD2 (for nonsense-mediated 

mRNA decay gene 2) has been cloned with the yeast two-hybrid system using 

the Upf1 p as "bait" (Cui et al., 1995; He and Jacobson, 1995). The way in which 

Upf2p was found implies that it interacts with Upf1 p. Additionally, dominant

negative fragments of Upf2p expressed in the cytoplasm of yeast are able to 

interfere with the nonsense mRNA reduction pathway. However, the same 

Upf2p fragment located to the nucleus does not prevent nonsense mRNA 

degradation. This not only indicates that Upf2p interacts with Upf1 p and could 

be a component that recognizes a nonsense codon, but it also shows that the 

yeast nonsense mRNA reduction can occur in the cytoplasm. The identification 

of the yeast UPF3 gene could also help researchers that study nuclear nonsense 

mRNA reduction understand how this may occur. Upf3p contains a bi-partite 

yeast nuclear localization signal and, therefore, is thought to be present in the 

nucleus. The mammalian homologue of this gene (if it exists) would become a 

good candidate for a factor involved in nuclear nonsense mRNA reduction. 

As mentioned above, Parker's studies of yeast genes involved in general 

mRNA decay have indicated that the process involves 1) shortening of the 

poly(A)-tail, 2) decapping of the message and finally 3) 5' to 3' exonuclease 
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activity that degrades the mRNA. His studies of a mRNA containing a nonsense 

codon (pgk1) also found that the decay proceeds directly to the decapping step 

and then follows the normal decay pathway. His lab also studied whether the 

UPF1 gene played a role in the decapping process. In experiments using a 

yeast strain containing an UPF1 mutation, a mutation in the 5' to 3' exonuclease, 

and an mRNA with a nonsense codon, they found that the nonsense mRNA 

contained a shortened poly(A)-tail and eventually was decapped at a rate similar 

to a wild type mRNA. From this observation the authors concluded that UPF1 is 

involved directly or indirectly in the quick decapping of the nonsense mRNA. 

The intracellular location of Upf1 p is consistent with it being involved in 

nonsense codon recognition and/or decay. Upf1 p is predominantly found in the 

cytoplasm and has been shown to be associated with polysomes (Atkin et al., 

1995), and in this way, it could be involved in the recognition of a nonsense 

codon. Yeast lacking Upf1 p also have an increase in pre-mRNAs that contain a 

nonsense codon within an intron (He et al., 1993). Interestingly, not only is the 

pre-mRNA level increased in upf1 mutant yeast, but these pre-mRNAs are also 

associated with ribosomes in the cytoplasm. This indicates that nonsense 

mRNA reduction probably needs the translation process as well as the Upf1 p. 

Similarities of Nonsense mRNA Reduction Between The Yeast and Higher 

Eukaryotic Systems 
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The model systems for nonsense mRNA reduction in yeast and higher 

eukaryotic cells contain a number of similarities. First, translation is required for 

nonsense mRNA reduction. Compounds and RNA structures (cycloheximide 

and stem-loops, respectively), both of which inhibit ribosomal elongation can 

prevent nonsense mRNA reduction. Second, it appears that the poly(A)-tail of 

both yeast and mammalian nonsense mRNA (e.g. pgk1 and mouse µ) is not 

shortened before activation of nonsense mRNA reduction. This suggests that 

after the recognition of a nonsense codon (by a still unknown mechanism), the 

nonsense mRNA in yeast and mammalian cells might be degraded in a similar 

fashion. Third, not all nonsense codons can target an mRNA for nonsense 

mRNA reduction. The position of a nonsense codon within yeast or mammalian 

RNA determines whether a specific mRNA or pre-mRNA is targeted for 

nonsense mRNA reduction. 

Summary 

Significant effort has been put forward to study the effects of a nonsense 

codon on the stability of the afflicted mRNA (or pre-mRNA). Recently, the 

greatest advances have been made in the yeast S. cerevisiae. These systems 

have discovered possible cis-specific nonsense mRNA targeting elements, 

genes specifically involved in the nonsense mRNA reduction system ( UPF/NMD 

genes) and insights into the decay of nonsense mRNA after the nonsense codon 

has been recognized. Research of higher eukaryotic systems is still focused at 
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nonsense mRNA reduction phenomenon such as nuclear v.s. cytoplasmic 

nonsense mRNA reduction, the effects of a nonsense codon on pre-mRNA 

stability and splicing, and the position effect of nonsense codons. Until the 

system itself is identified and studied biochemically, the process of nonsen::;e 

mRNA reduction will remain an enigma. In order to understand the process of 

nonsense mRNA reduction in higher eukaryotic cells work needs to be done to 

identify the higher eukaryotic homologues of yeast nonsense mRNA reducing 

factors. 

The Hypothesis 

Nonsense codons found within mRNA frequently lead to a decreased 

steady state level of nonsense mRNA within an eukaryotic cell. This effect is 

found in simple (S. cerevisiae) and complex eukaryotes (vertebrate). Genes 

required for nonsense codon-mediated mRNA decay have been identified in S. 

cerevisiae and C. elegans through genetic screens. However, no mammalian 

nonsense mRNA reducing protein has yet been identified. Because of the 

general similarities between the nonsense mRNA reduction process in yeast and 

higher eukaryotes, and the observation that a large number of yeast genes are 

conserved in higher eukaryotic organisms (Tugendreich et al., 1994), I propose 

that nonsense mRNA reducing factors similar to those found in the yeast S. 

cerevisiae are present in mammalian cells and control levels of nonsense 

mRNAs. 



CHAPTER Ill 

MATERIALS AND METHODS 

Chemicals and Reagents 

General Chemicals and Reagents 

Ampicillin (Na Salt) and kanamycin from either Sigma Chemical (St. Louis, 

MO) or Boehringer Mannheim (lndianoplis, IN). L-canavanine from Sigma 

Chemicals; AGR501-X8(D) (Mix bead resin), BIS-acrylamide, gelatin, and Tween 

20 from BioRad (Richmond, VA). Yeast extract, Bacto-agar, Yeast extract w/o 

amino acids are from Difeo (Detroit, Ml). Agarose (ultra-pure), Geneticin (G-418 

Sulfate), cesium chloride (ultra-pure), di-thiothreiotol (DTI), LB-media base, 

Penicillin-Streptomycin (500 U/ml), L-Glutamine (200 mM), Glycerol (ultra pure), 

and RPMI 1640 powder from Gibco-BRL Life Technologies, Inc. (Gaithersburg, 

MD); dextran sulfate from Pharmacia (Uppsala, Sweden); fetal calf serum (FCS) 

from HyClone (Logan, UT); universal autoradiography enhancer chemicals (Part 

A and B) from DuPont NEN (Boston, MA); Triton X-100 from Serva (Heidelberg, 

Germany); ethyl alcohol (EtOH, 200 proof) from 

40 
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paper Co. (Shelbyville, KY); Non-fat dehydrated milk from Carnation Food 

Products, Nestle Food Co. (Glendale, CA); scintillation liquid (Econo-Safe) from 

RPI (Mount Prospect, IL). All solutions were prepared in deionized water (dH20) 

filtered by a Millipore Milli-Q water filtering system (Bedford, MA). 

Radiochemicals 

[a-32P] dCTP (Cat# PB10205) 

Redivue [a-32P] dCTP (Cat# AA0005) 

[a-35S] dATP (Cat# SJ1304) 

Trans 35S-label (Cat# 51006) 

[y-32P] dATP (Cat# 35020) 

Amersham, Arlington Heights, IL 

Amersham, Arlington Heights, IL 

Amersham, Arlington Heights, IL 

ICN Biomedicals, Irvine, CA 

ICN Biomedicals, Irvine, CA 

DNA 5'-end labeling kit (Cat#702757) Boehringer Mannheim, 

Indianapolis, IN 

Enhanced Chemiluminescnce Kit Boehringer Mannheim, 

(Cat#1500694) Indianapolis, IN 

1-ethyl-3-(3-dimethylaminopropyl) Pierce Co., Rockford, IL 

carbodiimide/Diaminodipropylamine 

Immobilization kit (Cat#44899) 

Antigen Conjugation kit (Cat#77107) 

Nick-translation kit (Cat#18160-010) 

Pierce Co., Rockford, IL 

Gibco BRL, Gaithersburg, MD 



pGEM-T vector system I (Cat#A3600) Promega, Madison, WI 

Sequenase kit (2.0) (Cat#US70770) United States Biochemical, 

Cleveland, OH 

TNT in vitro translation kit (Cat#L4610) Promega, Madison, WI 

Wizard mini-prep kit (Cat#A7100) Promega, Madison, WI 

Qiagen plasmid isolation DNA 

kits (Cat#12143) 

Qiagen total RNA kit (Cat#74104) 

Antibodies 

Qiagen, Chatsworth, CA 

Qiagen, Chatsworth, CA 

Antibodies Used for lmmunofluroescence Analysis 

42 

Rabbit anti-VH81X 

FITC-labled goat anti-mouse µ 

(Cat#1021-01) 

Hartwell and Jack, unpublished; 

Loyola University, Maywood, IL 

Fisher Biotech, Pittsburgh, PA 

FITC-labled goat anti-rabbit lgG 

(Cat#9817SA) 

Gibco-BRL, Gaithersburg, MD 



Antibodies Used for Western Blot Analysis 

Rabbit anti-UPF1 peptide antiserum 

Horseradish peroxidase conjugated 

(HRP) affinity-purified goat anti-

rabbit lgG (Cat#170-6515) 

Affinity-purified goat anti

MOPC 104E (mouseµ) 
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Allan Jacobson, University of 

Massachusetts Medical School, 

Worcester, MA 

BioRad, Irvine, CA 

Bornemann et al., 1995 

HRP conjugated rabbit anti-Goat lgG Fisher Biotech, Pittsburgh, PA 

Affinity purified rabbit anti-NORF1/pep1 This work 

Affinity purified rabbit anti-NORF1/pep2 This work 

Molecular Weight Standards 

1 Kb DNA ladder 

'A DNA!Hindlll fragments 

Rainbow protein marker 

Bacteriophage <t>X 17 4 DNA 

Gibco BRL, Gaithersburg, MD 

Gibco BRL, Gaithersburg, MD 

Amersham, Buckinghamshire, 

England 

Gibco BRL, Gaithersburg, MD 
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Enzymes 

Restriction endonucleases were obtained form Boehringer Mannheim 

Biochemicals (Indianapolis, IN), Gibco BRL Life Technologies, Inc. 

(Gaithersburg, MD) and New England BioLabs, Inc. (Beverly, MA); AmpliTaq 

DNA polymerase from Perkin Elmer Cetus (Norwalk, CT) and Taq polymerase 

and Superscript reverse transcriptase from Gibco-BRL Life Technologies, Inc. T4 

DNA ligase and Kienow fragment from either Pharmacia (Piscataway, NJ) or 

Promega (Madison, WI); RNasin and DNase I, from Promega (Madison, WI); 

RNase H from Pharmacia (Piscataway, NJ); RNase A (bovine pancreas) and 

lysozyme (chicken egg white) from Sigma Chemical Company (St. Louis, MO); 

DNA Sequenase (polymerase) version 2.0 from United States Biochemical 

(USS, Cleveland, OH); and Proteinase K from Boehringer Mannheim 

(Indianapolis, IN). 

Oligonucleotides 

Standard oligonucleotides were purchased from Promega Corp. and 

United States Biochemical or were synthesized by Bio-Synthesis (Lewisville, TX), 

Chander Raman, Gene Napolitano (Terrapin Technologies, South San 

Francisco, CA), or by the Macromolecular Core Facility at Loyola University 

(Maywood, IL). 

LAC primer: 17 mer 5'-TGTGGAATTGTGAGCGG-3' 



(Elledge et al., 1991 ), From Bio-Synthesis 

GAL primer: 17 mer 5' -ACTTI AACGTCAAGGAG-3' 

(Elledge et al., 1991), From Bio-Synthesis 

GAL-UP.Fow: 18 mer; 5'-TTCGGTTIGTATTACTTC-3' 

From Bio-Synthesis 

SP6 primer: 19 mer; 5'-GATTIAGGTGACACTATAG-3' 

From Promega 

T7 primer: 20 mer; 5'-TAATACGACTCACTATAGGG-3' 

From Promega 

M13 primer (-40, forward): 17 mer; 5'-GTTTTCCCAGTCACGAC-3' 

From USB 

M13 primer, backwards: 16 mer; 5'-TTCACACAGGAAACAG-3' 

From USB 

TRAPa primer#1: 14 mer; 5'-CACTAATTCCCATA-3' 

From Loyola Core Facility 

TRAPa primer #3: 14 mer; 5'-CTGTTIGATTGAAG-3' 

From Bio-Synthesis 

TRAPa primer #4: 16 mer; 5' -CTCCCCCGCTTGCTTC-3' 

From Bio-Synthesis 

TRAPa primer#5: 15 mer; 5'-GTTAAGTCCCAAGCTG-3' 

From Gene Napolitano 

TRAPa primer #6: 13 mer; 5' -GCAAGATGAAGATG-3' 
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From Gene Napolitano 

1RGF.hyb primer: 19 mer; 5'-CCTCAGGTTCTATTATGTC-3' 

From Loyola Core Facility 

2RGF.hyb primer: 16 mer; 5'-GGCATGTTTTCAGTGC-3' 

From Loyola Core Facility 

UPF1-01 .Forward primer: 15 mer; 5'-GGAAAACAGAAGCAG-3' 

From Bio-Synthesis 

UPF1-01 .Backward primer: 15 mer; 5'-CGGGTTAGACCCACG-3' 

From Bio-Synthesis 

2.0H35hom.forward primer: 26 mer; 

5'-GATGTTGACATGTGTTGGTGCTGGTG-3' 

From Loyola Core Facility 

2.0H35hom.backward primer: 26 mer; 

5'-CACCAGCACCAACACATGTCAACATC-3' 

From Loyola Core Facility 

SAM#3.Fow: 20 mer; 5'-GCTGATCCTTGTAGGCGACC-3' 

From Loyola Core Facility 

SAM#4.Bak: 20 mer; 5'-GGTCGCCTACAAGGATCAGC-3' 

From Loyola Core Facility 

SAM#5.Bak: 18 mer; 5'-CCTGGGACAGCTCCGGCT-3' 

From Loyola Core Facility 

SAM#6.Fow; 18 mer; 5'-GGACAGCTCGACGCGCAG-3' 
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From Loyola Core Facility 

SAM#7.bak: 18 mer; 5'-CTGCGCGTCGAGCTGTCC-3' 

From Bio-Synthesis 

SAM#8.bak: 20 mer; 5'-GCGTCTGCGTCTGGCTAGGA-3' 

From Bio-Synthesis 

SAM#9.bak: 19 mer; 5'-CAAGCAGCTCGGCCTCCTC-3' 

From Bio-Synthesis 

SAM#10.Fow: 17 mer; 5'-GCGGGCCAACGAGCACC-3' 

From Bio-Synthesis 

SAM#11. Fow: 19 mer; 5'-TCGGAGCACACACCAGCAC-3' 

From Bio-Synthesis 

SAM#12.Bak: 18 mer; 5'-CGACGAAAGCACCCAGGC-3' 

From Bio-Synthesis 

SAM#13.Fow: 16 mer; 5'-ACGCCAGAAGAACCGC-3' 

From Bio-Synthesis 

LAC2: 20 mer; 5'-TGAGAGAAGGGCTGTGACGC-3' 

From Chander Raman 

SAM3-2: 20 mer; 5'-GCATCATCACGCCCTACGAG-3' 

From Chander Raman 

SAM4-2: 20 mer; 5'-ATCAGGCTCAGTGGTCTTTG-3' 

From Chander Raman 

GALP3: 20 mer; 5'-CCCTGATAACTATGGCGATG-3' 
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From Chander Raman 

GALP3.rev: 20 mer; 5'-TACTGGTAGGCGTCCTCGTA-3' 

From Chander Raman 

SAM3.rev: 20 mer; 5'-GAAGATGTTGGATGGGAAGG-3' 

From Chander Raman 

SAM4.rev: 18 mer; 5'-CGAGGCTGGCCAAGATGC-3' 

From Chander Raman 

Gal-UP.Forward: 18 mer; 5'-TTCGGTTTGTATTACTTC-3' 

From Loyola Core Facility 

A.GT1 OGENE.F: forward primer: 27 mer; 

5'-CTTTTGAGCAAGTTCAGCCTGGTT AAG-3' 

From Gene Napolitano 

A.GT10GENE.B: backward primer: 24 mer; 

5'-GGCTTATGAGTA TTTCTTCCAGGG-3' 

From Gene Napolitano 

UPF1-5'-EcoRI primer: 29 mer; 

5'-CGAA TTCGAAA TGGTCGGTTCCGGTTCTC-3' 

From Bio-Synthesis 

UPF1-3'- BsaBI primer: 30 mer; 

5'-ATTGATCAGTATCCCAGTTCGCAI 111 ICG-3' 

From Bio-Synthesis 

SAM#3.Fow: 20 mer; 5'-GCTGATCCTTGTAGGCGACC-3' 

48-



From Loyola Core Facility 

SAM#4. Bak: 20 mer; 5' -GGTCGCCTACAAGGATCAGC-3' 

From Loyola Core Facility 

SAM#5.Bak: 18 mer; 5'-CCTGGGACAGCTCCGGCT-3' 

From Loyola Core Facility 

SAM#6.Fow; 18 mer; 5'-GGACAGCTCGACGCGCAG-3' 

From Loyola Core Facility 

Peptides 
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Peptides used in this study are of two forms. First, multiple antigenic 

peptide (MAPS) (Ponsette et al., 1988), or COCH-terminal branched peptides, 

were synthesized by Ingrid Haas (University of Heidelberg, Germany). Second, 

linear, non-branched peptides synthesized by Bassam Wakim (Loyola University 

Macromolecular Core Facility). 

UPF1#1; 16 mer; (GenBank #M76659:Codons 950 to 965) 

NH3-ARELQREEQKHELSKD - Poly-K 

UPF1#2; 16 mer; (GenBank #M76659:Codons 920 to 935) 

NH3-KSAFSQKQNRNEIDDR - Poly-K 

UPF1#3; 14 mer; (GenBank #M76659:Codons 635 to 648) 

NH3-EVQYRMNPYLSEFP - Poly-K 

NORF1-pep#1 (Lab name: SAM-PEP#1 ); 18 mer; (Codons 106 to 122) 



NHTEEDEEDTYYTKDLPIHAC-COOH 

NORF1-pep#2 (Lab name: SAM-PEP#2); 24 mer; (Codons 214 to 237) 

NH3-ASQSSLKDINWDSSQWQPLIQDRC-COOH 

Plasmids and DNA Probes 

Cloning Vectors and Plasmids 

50. 

Plasmid clones are indicated by name and by file number in the Chicago 

books in the laboratory of Dr. Hans-Martin Jack. 

pSP73 (plasmid clone: Chicago # 499) Promega, Madison, WI 

pUPF1 (plasmid clone: Chicago# 443) Dr. M. Culbertson (Leeds et al., 

1993) 

pUPF1-D1 (plasmid clone: 

Chicago # 490) 

pUPF1-D4 (plasmid clone: 

Chicago# 491) 

pH~-Apr-1-neo (plasmid clone: 

Chicago # 412) 

p73-UPF1~0.8 (plasmid clone: 

Chicago # 497) 

p73-UPF1/-5'3' (plasmid clone: 

Dr. M. Culbertson (Leeds et al., 

1993) 

Dr. M. Culbertson (Leeds et al., 

1993) 

From Ron Corley (Gunning et al., 

1987) 

This work 

This work 



Chicago# 561) 

pUPF1-5' end (plasmid clone: 

Chicago # 562) 

pUPF1/p-actin (plasmid clone: 

Chicago# 564) 

pUPF1-D1/p-actin (plasmid clone: 

Chicago # 609) 

pR-TRAPa (p5.1.1.X and p7.1.1.X) 

(plasmid clone: Chicago # 533 and 533) 

p2.0-Hindlll (plasmid clone: 

Chicago # 505) 

p6.4-EcoRI (plasmid clone: 

Chicago # 525) 

pNORF1 (p11.2 gene, 3.6-kb) 

(plasmid clone: Chicago # 579) 

pNORF1 (p15.1.1.1. gene, 5.5-kb) 

(plasmid clone: Chicago# 610) 

pR 13609 (plasmid clone: 

Chicago # 592) 

pH11830 (plasmid clone: 

Chicago # 593) 

pH11167 (plasmid clone: 

51 . 

This work 

This work 

This work 

This work 

This work 

This work 

This work 

This work 

Human EST sequencing project 

Boguski et al., 1993 

Human EST sequencing project 

Boguski et al., 1993 

Human EST sequencing project 
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Chicago# 594) Boguski et al., 1993 

pH15581 (plasmid clone: Human EST sequencing project 

Chicago# 595) Boguski et al., 1993 

pNORF1/7Z (pGem7Z+3.5kb NORF1) This work 

(plasmid clone: Chicago #599) 

p~-NORF1 antisense 

(plasmid clone: Chicago# 611) 

p~-NORF1 sense 

(plasmid clone: Chicago # 612) 

DNA Probes 

rabbit GAPDH (plasmid clone: 

Chicago # 265) 

yeast UPF1 

yeast UPF1 RNA helicase region 

yeast UPF1 5'-end region 

yeast CAN1 

mouse µ cDNA (plasmid clone: 

Chicago# 254) 

This work 

This work 

1.2-kb Hindlll fragment from pR

GAPDH (Applequist et al., 1995) 

3.2-kb EcoRl/Xbal fragment from 

pUPF1 (a gift from M.Culbertson) 

1.3-kb Oral fragment from pUPF1 

1.4-kb EcoRl/Kpnl fragment from 

pUPF1 

1.3-kb Hindlll fragment from 

pTLC-1 (Broach et al., 1987) 

1.4-kb Apal/Smal 



human cDNA fragment R 13609 

human cDNA fragment H11830 

1.6-kb Hindlll/EcoRI or 

Hindlll!Notl fragment 

1.4-kb Hindlll/EcoRI or 

Hindlll!Notl fragment 

human cDNA fragment H 11167 1. 7-kb Hindll l/Notl fragment 

human cDNA fragment 11.2 3.5-kb Xhol fragment from 

p11.2.2 and p11.2.1 

human cDNA fragment 5' end of 1.3-kb Xhol/Sa/I fragment from 

NORF1 pNORF1/7Z 
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human cDNA fragment 3' end of 11.2 600-bp BstXl/Xhol fragment from 

NORF1 pNORF1/7Z 

Analysis of RNA 

Isolation of RNA from Mammalian Cells 

Solutions and Reagents 

guanidium isothiocyanate (GIT) 

homogenization buffer 

Mix 94.53 g guanidine 

isothiocyanate (4 M final), 1.67 

ml 3 M Na-acetate, (pH 6.0); and 

add dH20 to 200 ml. Add 8.35 

µI/ml ~-ME before each use. 



cesium chloride buffer 

DEPC-TE 

Total RNA Isolation 

o4 

Mix 95.97 g CsCI (5.7 M); 0.83 ml 

3 M Na-acetate, (pH 6.0); add 

dH20 to 100 ml, and sterile filter. 

Prepare TE using stock Tris-HCI, 

(pH 7.4); and 0.5 M EDTA using 

0.1% DEPC-dH20. 

Total RNA was isolated from cultured cells by either the GIT/cesium 

chloride method or by the Qiagen RNA preparation method (both described 

below). 

Guanidinium Thiocyanate/Cesium Chloride Method 

Total RNA was prepared from cultured cells with GIT followed by 

centrifugation through a cesium chloride (CsCI) solution (Chirgwin et al., 1979). 

Briefly, 1-2 X 107 cells were removed and washed with ice-cold sterile phosphate 

buffered saline solution (Dulbecco's PBS, Cat#21-031-LV, Gibco-BRL). The 

cells were transferred in 1 ml of PBS to a 15 ml-Falcon tube pelleted, decanted, 

and resuspended in residual liquid by tapping the tube vigorously. Cells were 

then resuspended in 2 ml of GIT homogenization buffer. The resulting cell 

homogenate was layered on 2 ml of CsCI solution in a clear 13 X 51 mm thin 
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wall/polymer open top ultracentrifuge tube (Nalgene UltraTubes, Nalge, 

Rochester, NY). The tubes were balanced with GIT homogenization buffer and 

centrifuged with 35,000 rpm for 18-20 hr at 20°C in a Beckman SW50.1 rotor and 

Beckman Preparative Ultracentrifuge (Model L8-70, Beckman, Palo Alto, CA). 

After centrifugation the supernatant was aspirated until the CsCI layer was 

reached. CsCI was removed by gentle pipetting. The bottom of the tube was cut 

off with a razor blade, and the clear RNA pellet (3-5 mm in diameter) was 

resuspended in 3 X 100 µI of ice-cold DEPC-TE and transferred to an 

autoclaved, chilled, 1.5 ml microcentrifuge tube. The RNA was precipitated 

overnight at -20°C after the addition of 1/10 volume of 3 M NaAc, (pH 5.2); and 

2.5 volume of ice-cold EtOH. The RNA was collected by centrifugation at full 

speed at 4°C for 2 hrs, washing with 70% EtOH, air-drying, and resuspended in 

DEPC-TE at concentration of 1-5 µg/µI. 

Qiagen Method 

The method was performed exactly as described by the manufacturer. All 

cell culture samples were disrupted by passing the GIT/cell resuspension 

repeatedly through a 20G1 115 gauge needle until foamy. The mixture was then 

processed as described in the RNeasy kit handbook. 
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Cytoplasmic RNA Isolation 

Cytoplasmic RNA was isolated by the Nonidet-P40/phenol method 

(modified from Favaloro et al., 1980). Briefly, 5 X106 cells were pelleted, washed 

once with ice-cold Oulbecco's PBS, transferred to a microcentrifuge tube and 

lysed for 30 minutes on ice in 200 µI of cold lysis buffer (from 5 Prime-3 Prime, 

Inc., Boulder, CO; 0.14 M NaCl, 1.5 mM MgCl2 , 0.5% Nonidet-p40, 10 mM Tris, 

(pH 8.6)) supplemented with 0.05 U/ml RNasin (Promega, Madison, WI). The 

nuclei and unlysed cells were removed by centrifugation at full speed in a 

microcentrifuge at 4°C for 30 seconds. 175 µI of the supernatant was transferred 

to a new microcentrifuge tube. RNA was then extracted twice with 300 µI of 

phenol/chisam (1+1) heated to 65°C and once with chisam at room temperature. 

RNA was precipitated with 1/10 volume NaAc and 2.5 volume ice-cold EtOH. 

The RNA was collected as described above and resuspended in 25 µI of OEPC

TE. 

RNA Isolation from Yeast Cells 

Total RNA was isolated from yeast by the method of Elion and Warner, 

(1984). Briefly, 10 ml overnight cultures of yeast cells with an 00600 of 1-1.5 

were pelleted, washed with ice-cold dH20, pelleted again, and decanted. The 

pellet was resuspended in 200 µI of LET-1% SOS (10 mM Tris-HCI, (pH 7.4); 0.1 

M EOTA, 0.1 M LiCI, 1.0% SOS) and frozen at-70°C overnight. The yeast were 

thawed on ice, transferred to a cold micro-centrifuge tube, mixed with 120 µI of 
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autoclaved glass beads, and vortexed for 30 sec. 25 µI of phenol/chloroform 

(1+1) are added and vortexed again 4 X 30 seconds with the sample on ice 

between vortexings. 480 µI of LET-0.2% SOS (same as above only to a final 

concentration of 0.2% SOS) is added to the sample and mixed. The lysate is 

removed and extracted twice with 400 µI of TE equilibrated phenol, (pH 7.0); 

warmed to 65°C. Place the samples on ice for 5 minutes between each 

extraction. The aqueous phase is removed from the final extraction, precipitated 

at -70oC the addition of 1/10 volume of 3 M LiCI and 2.5 volume of EtOH. The 

precipitated RNA is collected by centrifugation at full speed for 1 hr at 4°C and 

the RNA is dissolved in 50 µI of DEPC-TE. The quantitation is performed as in 

section 2.14. 

Quantitation of RNA 

The concentration of RNA was determined by measuring the optical 

density (OD) at 260nm using the following equation: 

µg I µI RNA = 00260 X 40 X dilution factor. 

The purity of RNA was determined by comparing the ratio of the 

absorbance of RNA at 260nm to that at 280nm. Samples in the range of 1.8 to 

2.0 are considered relatively pure from protein contamination. 
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Northern Blot Analysis 

Solutions 

10 X MOPS 

5 X RNA loading buffer 

Gel overlay buffer 

Deionized formamide (dFA) 

Mix 41.9 g MOPS (sodium base), 

3.72 g sodium EDTA, 4.1 g 

sodium acetate, add 0.1 % 

DEPC-dH20 to 1 Land pH to 7.0 

with glacial acetic acid. 

12.5% Ficoll (Sigma) 

0.4% bromophenol blue 

1 X MOPS 

DEPC-dH20 to final 

percentages 

Mix 50 ml of 10 X MOPS, 89.3 ml 

formaldehyde (37% from Sigma), 

and add DEPC-dH20 to 500 ml. 

Formamide (Boehringer 

Mannheim) was deionized with 

5g per 100 ml AG 501-X8(0) 

mixed bead resins (Bio-Rad) by 



1 M sodium phosphate buffer 

(NaP, (pH 7.0)) 

Prehybridization solution 

Hybridization solution 
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stirring slowly at room 

temperature for 1 hour, filtered 

through a coarse Whatman filter 

disk and stored at -20°C in 

aliquots. 

200 ml 1 M NaH2P04 

600-700 ml 1 M Na2HP04 

to 1 L with dH20, (pH 7.0). 

Mix 2 ml dH20, 200 µ110% SOS, 

10 ml dFA, 5 ml 20 X SSC, 

2 ml 50 X Denhart's solution, 1 

ml 1 M sodium phosphate buffer, 

(pH 7.0); 0.25 mg/ml denatured 

sheared salmon sperm DNA 

(from 10 mg/ml stock solution). 

Mix 150 µ110% SOS, 7.5 ml dFA 

(50%), 3.75 ml 20 X SSC, 300 µI 

50 X Denhart's solution, 300 µI 1 

M sodium phosphate buffer, (pH 



Agarose Gel Solution 

Procedure 
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7.0); 3 ml 50% dextran sulphate, 

0.3 mg/ml denatured sheared 

salmon sperm DNA (from 10 

mg/ml stock solution). 

Mix 2.4 g agarose with 144.3 ml 

DEPC-dH20. Microwave the 

solution until the agarose is 

completely melted. Add 35.7 ml 

formaldehyde (37%), 20 ml 10 X 

MOPS, mix and pour. 

This procedure is that as described by Jack and Wabl (1988) and the 

hybridizations were performed as described by Meinkoth and Wahl (1984). 

Electrophoresis 

The appropriate amount of RNA (1-10 µg) was mixed with 10 µI of 

deionized formamide (dFA}, 3.5 µI of 37% formaldehyde, 2 µI of 10 X MOPS 

buffer, 2 µI of EtBr (1mg/ml), and filled with DEPC-dH20 to a final volume of 30 

µI. The mixture was heated to 65°C for 5 minutes and chilled on ice. 3 µI of 5 X 

RNA loading buffer was added to each sample and loaded into sample wells of a 
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formaldehyde agarose electrophoresis gel poured in a horizontal gel 

electrophoresis chamber (Model H3, BRL) submerged in overlay buffer. The left 

and right chambers were filled with 1 X MOPS buffer and electrophorised under 

constant voltage of about 40 V for overnight (-16 hours) until the bromophenol 

blue has migrated to the bottom of the gel. 

Transfer of RNA 

The RNA gel was photographed using an ultraviolet light transiluminator 

and a Polaroid camera, rinsed with dH20 and 1 O X SSC. Capillary transfer to a 

nitrocellulose membrane was performed overnight (BA85, 0.45 µm, Schleicher 

and Schuell, Inc., Keene, NH) in 10 X SSC (Figure 6). Standards as well as 18S 

and 28/26S RNA was labeled using a pencil. Filters were dried under a heat 

lamp for 20 minutes, baked under high vacuum at 80°C for 2 hrs. 

Hybridization 

Filters were prehybridized and hybridized with either an Omniblot system 

(ABN) or Hybaid brand hybridization oven according to the manufactures 

instructions. The prehybridization was performed in the prehybridization mix for 

over 1 hour at 42°C. The prehybridization was replace with the hybridization mix 

containing approximately 3 X 107 cpm of denatured 32P-labled probe and 500 µg 

of denatured sheared salmon sperm DNA. Hybridization was carried out for 12-

48 hrs at 42°C. After hybridization, the filters were washed once with 2 X SSC at 



Paper 
Towels--

250 g 
Weight 

Hybridization 
Membrane 

Gel 

62 

Glass Suspension 
Plate Capillary Wick 

Figure. 6 Schematic diagram of a nucleic acid capillary transfer 
apparatus. 
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room temperature to remove free radioactive probe and then several times with 

0.1 X SSC/0.1 % SOS for 20-30 minutes at 52-54°C. The membrane was 

washed until the background detected by a Geiger counter was considered low. 

The washed blots were wrapped in plastic wrap and radioactivity on the blot was 

determined with a Betagen Radioanalytic Imaging System (Betascope 603 Blot 

Analyzer, Betagen Corp., Mountain View, CA). The blots were then wrapped in 

plastic wrap and exposed to X-ray film (Kodak X-OMAT AR film, Eastman Kodak 

Company, Rochester, NY) flanked by one intensifying screen (Fisher Biotech, 

Pittsburgh, PA) for varying times at -70°C before processing by a X-ray film 

processor (Model QX-60A, Konica, Tokyo, Japan). 

The sizes of a RNA band was determined by measuring the distance 

between the loading well and the band and comparing it to that of known RNA 

molecular weight standards. The RNA size standard used was the RNA ladder 

and ribosomal RNAs. 

To control for RNA loading on each lane, northern blots were re

hybridized with a 1.3-kb BamHl/EcoRI fragment of rabbit GAPDH (Applequist et 

al., 1995). 

RNase H Treatment of Total RNA 

RNase H treatment of total RNA was used to identify regions where 

RNA/DNA hybrids were formed. The procedure was performed as adapted from 

and described by Qian et al., 1993. 



Solutions 

10 X RNase H buffer 

RNase H mix 

Procedure 
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0.2 M HEPES, (pH 8.0); 

0.5 M KCI; 0.1 M MgCl2 

Mix 2.5 µI of 10 X RNase H 

buffer, 2.5 µI of 10 mM DTI, 1.2 

µI of RNase H (1 U/µI), and 8.8 µI 

of DEPC-dH20. 

Briefly, 10 µg of total RNA in 5 µI of dH20 or TE was mixed with the 

following; 2 µI of oligo-(dT) primer (0.5 µg/µI; Promega, Madison, WI) or with 0.2 

µg of a DNA oligonucleotide. This mixture was incubated for 30 minutes at 45°C. 

15 µI of the RNase H mix was added, incubated for 20 minutes at 37°C. The 

mixture was extracted once with chisam, and the RNA was precipitated at -20°C 

with 1/10 volume 3 M NaAc, (pH 5.2); and 2.5 volume of ice-cold EtOH. The 

RNA was collected by centrifugation for 1 hr at maximum speed at 4°C, and 

subjected to northern blot analysis as described in section Northern Blot 

Analysis. 



20 X SSC 

50 X Denhart's solution 

0.5 M EDTA 

2 M Tris-HCI, (pH 7.4) 

3 M Sodium acetate 
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DNA Manipulations 

General Solutions 

Mix 525.9 g NaCl, 264.7 g Citric 

Acid, and add 3 L dH20. 

Mix 1 g polyvinylpyrrolidone, 1 g 

of BSA, 1 g of Ficol (DL-400), 

and add 100 ml of d H20. Store 

Whatman filtered aliquots at 

-20°C. 

Mix 186.1 gin 800 ml dH20, add 

NaOH (1 ON) until clear. Fill to 

1000 ml with dH20. 

Mix 12.114 g of Trisma-Base with 

90 ml of dH20. pH to 7.4 with 12 

M HCI. Fill to 100 ml with dH20. 

Mix 24.6 g of NaAc in 90 ml H20 

and pH to 5.2 by using glacial 



TE buffer 

acetic acid. Fill to 100 ml with 

dH20. 

Mix 5 ml of 1 M Tris-HCI, (pH 

8.0); 1 ml of 0.5 M EDTA, and 

add 500 ml of dH20. 
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Salmon Sperm DNA: Resuspend 1 g of salmon sperm DNA in 90 ml of 

dH20 and gently stir overnight. Sonicate the DNA solution on ice in 15 minute 

intervals. Test the average length of the DNA using TAE/agarose gel 

electrophoresis. Repeat the sonications until the average fragment length is 

between 1-3-kb and add SOS to 0.5% and proteinase K until 100 µg/ml. 

Incubate overnight at 42°C and then extract the DNA with TE equilibrated 

phenol, phenol:chisam (1 +1 ), and then with chisam until the interphase is clear. 

Collect the aqueous phase and precipitate the DNA with 1/10 volume of 3 M 

NaAc and 2.5 volumes of EtOH. Collect the precipitate by centrifugation, wash 

with 70% EtOH, and resuspend in 90 ml of dH20. Quantitate the DNA and dilute 

to obtain a stock concentration of 10 µg/µI, aliquot and freeze at -20°C. 

TE-saturated phenol/chisam: Melt phenol in 65°C waterbath. Add 8-

Hydroxy Qunoline (Sigma Cat #H-6878) to a final concentration of 1 mg/ml 

phenol. Extract the phenol once with equal volumes of 1 M Tris-HCI, (pH 8.0); 

and 3 to 5 times until the pH of the TE phase reaches 7-8. Mix 1 part TE

equilibrated phenol with 1 part of chisam (chloroform/isoamyl alcohol at 25:1) 
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Amplification of Plasmid DNA 

Plasmid DNA Preparations 

Large preparations of plasmid DNA used for cloning, transfection and 

transformation were performed by the alkaline lysis as described by Sambrook 

and colleagues (1989) and also with a large scale plasmid kit from Qiagen as 

described by the Qiagen plasmid preparations manual (Qiagen Plasmid maxi kit, 

Cat#12162, Qiagen, Chatsworth, CA). Rapid, small scale plasmid preparations 

were performed as described by the Promega Magic minipreps kit (Cat#A7100, 

Promega, Madison, WI) according to the manufacturers instructions included 

with the kit. 

Solutions and Media 

LB-antibiotic media 

Lysis buffer 

2.5% LB 

5 mM Glucose 

100 µg/ml ampicillin, 15 µg/ml 

tetracycline, or 70 µg/ml 

kanamycin 

1% glucose 

10 mM EDTA, (pH 8.0) 

25 mM Tris-HCI, (pH 8.0) 



Lysozyme solution 

Alkali solution (prepare fresh) 

Potassium acetate, (pH 4.8) 

Proteinase K buffer 

Proteinase K stock 

RNase A buffer 

RNase A stock 

30 mg/ml of lysozyme in lysis 

buffer 

1% sos 

0.2% N NaOH 
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Mix 60 ml of 5 M KAc, 11.5 ml 

glacial acetic acid, and add 28.5 

ml dH20. 

50 mM Tris-HCI, (pH 8.0) 

10 mM CaCl2 (store -20°C) 

10 mg/ml of lyophilized 

proteinase K in proteinase K 

buffer (store -20°C) 

10 mM Tris-HCI, (pH 7.5) 

15 mM NaCl (store at -20°C) 

10 mg/ml of lyophilized RNase A 

in RNase A buffer (store -20°C) 
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Bacterial Strains 

Escherichia coli (E. colt) strains HB101, JM109, or DH5a are from the lab 

stocks of the lab of Dr. Jack. JM110 was obtained from New England BioLabs. 

All bacteria were made competent using a rubidium chloride/calcium chloride 

procedure (Sambrook et al., 1989). All bacteria containing plasmids were grown 

in either liquid culture or on agar plates in the presence of the appropriate 

antibiotic. In order to select for the presence of the DNA fragment disruption of 

the E. coli (3-galactosidase a-peptide gene present on some plasmids, they were 

propagated in JM109 or DH5a were grown on Luria Broth (LB) agar plates (1.5% 

Bacto-agar in LB-media, (pH 7.0)) supplemented with 100 µg/ml ampicillin, 40 

µg/ml X-Gal, and 5 mM IPTG. 

Small Scale Preparation of Plasmid DNA (Miniprep) 

A fresh, single colony was inoculated into 5 ml of LB-media+glucose 

containing the appropriate antibiotic. The cultures were shaken vigorously 

overnight at 37°C. 1.5-3 ml of the cultures were pelleted by centrifugation and 

the plasmids were isolated from the bacteria pellet with Magic mini prep kit 

(Promega, Madison, WI) according to the manufacturer's instructions. 
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Large Scale Preparation of Plasmid DNA 

Alkaline Lysis Method 

2.5 ml of an overnight culture was inoculated into 250 ml of LB-media 

+glucose medium containing appropriate antibiotic in a 1 L Erlenmeyer flask. 

The culture was shaken vigorously at 37°C until it reached an OD550 of 0.6-0.7. 

Bacteria were pelleted by centrifugation in a swinging bucket rotor in a Beckman 

table top centrifuge (Model GPR) at 3,200 rpm for 20 minutes at 4°C. The 

bacterial pellet was resuspended in 4 ml of lysis buffer. 1 ml of freshly prepared 

lysozyme was then added to the suspension. These cells were transferred to a 

50 ml high speed centrifuge tube and incubated for 5 minutes at room 

temperature and 5 minutes on ice. The bacteria were lysed by the addition of 12 

ml of alkali solution and subsequent incubation for 10 minutes on ice. Proteins 

were then precipitated by the addition of 9 ml of ice-cold potassium acetate 

solution for 20 minutes on ice. The solution was gently mixed, balanced, and 

then centrifuged in a Sorvall SS34 rotor at 12,000 rpm at 3°C for 30 minutes. 

The decanted solution was transferred into a new 50 ml tube and the DNA was 

precipitated with 1 volume of cold isopropanol for 20 minutes and collected by 

centrifugation in a Sorvall SS34 rotor at 15,000 rpm at 3°C for 30 minutes. The 

DNA pellet was partially dried by placing the tube in a Speed-Vac vacuum 

evaporator (Savant, Farmingdale, NY) and the pellet was resuspended in 2 ml 

TE. To eliminate the contaminating RNA the DNA was incubated with addition of 
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RNase A. 50 µI of RNase A was added and incubated at 37°C for 15-30 

minutes. To remove contaminating proteins 100 µI of 10% SOS was added 

followed by incubation with 40 µI of proteinase K at 42°C for 1 hour. The treated 

DNA in TE was extracted 3 times with phenol/chisam and once with chisam. 

DNA was precipitated with 1/10 volume of 3 M sodium acetate, (pH 5.2); and 2.5 

volume of ice-cold EtOH for 20 minutes to overnight at -20°C. DNA was pelleted 

a Sorval SS34 rotor with 12,000 rpm at 4°C. The DNA was washed with 70% 

ethanol, dried in a Speed-Vac vacuum evaporator, and dissolved in 250 µI of TE. 

1 µI of this DNA was quantitated by restriction enzyme digestion as described in 

section Quantitation of DNA. 

Qiagen Method 

Large scale plasmid isolation by the Qiagen method was carried out using 

100 ml bacteria cultures grown overnight in LB-media+glucose with antibiotics 

according to the manufacture's instructions (Cat#12162). 

'A Phage DNA Preparation 

'A Phage DNA preparation was carried out according to Sambrook et al., 

(1989). Briefly, eluted phage particles were titrated and infected into the 

appropriate strain at a pfu of 5 X 107 phage per 1010 E.coli cells. The cells were 

grown in 500 ml of LB-media+glucose containing 10 mM maltose and 10 mM 

MgS04 prewarmed to 37°C. Concomitant growth of bacteria and phages should 
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occur, which results in lysis and a clearing of the culture after 9 to 12 hours. To 

lyse residual bacteria, add 10 ml of chloroform to each flask and incubate for 10 

minutes at 37°C with shaking. The culture is cooled to room temperature and 

DNase I and RNase A are added to a final concentration of 1 µg/ml. The mixture 

is incubated for 30 minutes at room temperature. NaCl is slowly added to the 

culture to a final concentration of 1 M (29.2 g per 500 ml of culture). The NaCl is 

dissolved by gentle swirling of the flask. The culture is incubated for 1 hour on 

ice and residual debris are removed using a GSA rotor with 11,000 rpm for 1 O 

minutes at 4°C. Pool the supernatants in a clean flask and PEG 8000 is added 

to a final concentration of 10% w/v (i.e., 50 g per 500 ml of supernatant) and 

dissolve by slow stirring on a magnetic stirrer at room temperature. The phage 

particles are precipitated overnight on ice and pelleted by centrifugation in a 

GSA rotor with 11,000 rpm for 10 minutes at 4°C. Discard the supernatant 

thoroughly. Gently resuspend the pellet in 8 ml of phage buffer using a 

disposable plastic bulb pipette and extract the PEG from the suspension by 

adding an equal volume of chloroform and vortexing for 30 seconds followed by 

centrifugation in a Sorval SS34 rotor at 5000 rpm for 15 minutes at 4°C. 0.5 g of 

CsCI per ml of the phage solution is added and gently dissolved and layer onto 

CsCI step gradients prepared in a SW41 tube by adding the following CsCI 

solutions in phage buffer into the SW41 tube from the bottom up: 1. 7 g/ml of 

phage buffer, 1.5 g/ml, 1.45 g/ml and then on top the 0.5 g/ml solution containing 

the resuspended bacteriophage pellets also in phage buffer. The gradient is 
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dialysis tubing and quantitate it as described in section Quantitation of DNA 

before use. 

Enzyme Restriction of DNA 

0.5-1.0 µg of plasmid and phage DNA were digested with 2-5 U of 

restriction enzyme in a 20 µI reaction volume in buffers provided by the 

manufacturer under reaction conditions recommended by the manufacturer. 

Digested DNA was analyzed on 0.8%-1.2% agarose gel as described in section 

DNA Agarose Gel Electrophoresis, and DNA fragments were isolated as 

described in section DNA Band Isolation from Agarose Gels. 

DNA Agarose Gel Electrophoresis 

DNA fragments were separated in 0.8%-1.2% TAE/agarose gels as 

described by Sambrook et al, (1989). The gels were prepared as follows. 

Dissolve 1 g of agarose in 125 ml TAE buffer (40 mM Tris-HCI, (pH 8.0); 20 mM 

sodium acetate, 2 mM EDTA) by boiling in a microwave oven, cooled to 60°C 

and add 4 µI of ethidium bromide (EtBr) stock solution (10 mg/ml of dH20). Mix 

gently and pour into a horizontal gel casting tray (Wide Mini-Sub DNA 

electrophoresis Cell, BioRad, Richmond, CA). Allowed the gel to solidify at room 

temperature for 60 minutes and submerge it in the electrophoresis chamber 

(Wide Mini-Sub DNA electrophoresis Cell, BioRad, Richmond, CA) containing 1 

X TAE. Remove the comb before use. Add 1/5 volume of DNA loading buffer 
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(0.025% bromphenol blue, 2.5% Ficoll, 1 X TAE)to the DNA sample, heat for 5 

minutes at 65°C, chill on ice and load 20-25 µI on the gel. Separate the DNA 

with 40-70 V until the bromphenol blue dye front reaches about 2/3 of the way 

through the gel. 

Lambda (A.) DNA cleaved with restriction endonuclease Hindlll, ~X DNA 

cleaved with Haelll and/or a 1 kb DNA ladder (all from Gibco BRL) were run 

simultaneously to serve as DNA molecular weight standards. DNA bands were 

viewed under an ultraviolet light box and photographed on Polaroid 667 film with 

a Polaroid Camera (Model DS34, Polaroid Corp., Cambridge, MA). 

DNA Band Isolation from Agarose Gels 

Digested DNA was size fractionated by agarose gel electrophoresis. EtBr 

DNA fragments were visualized using ultraviolet light. The appropriate 

fragments were isolated with a razor blade or scalpel and extracted from the gel 

by one of the methods described below. 

Elu-T rap Method 

DNA was isolated from the agarose piece by electroelution using a an 

Elu-Trap apparatus (Schleicher and Schuell, Keen NH, Cat#46178) according to 

the manufacturer's instructions. Briefly, the agarose piece was placed in the 

elution cell and electroeluted from the agarose with 120 V for approximately 2-4 

hrs into a small elution chamber. The eluted DNA was removed from the 
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isolation chamber and precipitated with 1/10 volume of 3M NaAc and 2.5 volume 

EtOH overnight at -20°C. DNA was recovered by centrifugation and resuspend 

in TE to obtain approximately 1-2 µg DNA/µI. 

Sodium Iodide (Nal) Method (Super-Band isolation) 

The excised gel piece containing the DNA cut into small pieces and 

weighed. 2.5-3 volumes of 6 M Nal in dH20 was added to the tube with the 

minced agarose and DNA. The mixture was incubated at 45°C for 10 to 20 

minutes. The tubes are inverted to facilitate the dissolving of the agarose. 1 ml 

of Magic mini-prep resin (Promega, Madison, WI) was added to the melted 

agarose and incubated at room temperature for 15 minutes. The DNA fragments 

bound to the DNA binding resin were then processed according to the protocol 

provided by the manufacturer (Lit#TB117). 

Quantitation of DNA 

The concentrations of isolated DNA fragments, or plasmids, were 

estimated by comparing their EtBr-staining to that of DNA fragments of known 

amounts. Alternatively, optical densities at 260 and 280 nm were determined 

and the concentration wad calculated with the following equation: 

µg I µI DNA = OD260 X 50 X dilution factor. 

Pure DNA is expected to yield a OD2601280 of 1.8 to 2.0. 
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Dephosphorylation of DNA Fragments 

To prevent self-ligation of vector fragments a nucleotide 

dephosphorylation reaction was carried out as follows. Pipette into a autoclaved 

microcentrifuge tube: digested DNA 20-30 µI, 1 O X Calf Intestinal Phosphatase 

(CIP) buffer 5 µI, CIP enzyme 0.01 U/pmol DNA, and dH20 to 50 µI total 

volume. 

For 5'-overhangs, incubate the mixture at 37°C for 30 minutes, add 

another aliquot of diluted CIP, and incubate for another 30 minutes. For 3'

overhangs or blunt ends, the reaction mixture is incubated at 37°C for 15 

minutes and then at 55°C for 15 minutes. Add another aliquot of CIP and 

incubate again at the same temperatures. 

Inactivate the CIP enzyme by addition of 20 µI of 500 mM EGTA, (pH 8.0); 

followed by heat inactivation at 65°C for 45 minutes. CIP treated DNA is 

prepared for use by one phenol, (pH 8.0); extraction, one chisam extraction and 

EtOH precipitation. Precipitated DNA is resuspended in 10 µI of TE and 

quantitated for use. 

Solutions 

10 X Ligation buffer 

Ligation of DNA Fragments 

300 mM Tris-HCI, (pH 

7.8); 100 mM MgCl2, 100 



1 0 X Kienow buffer 

10 X T3 polymerase buffer 

10 X dNTPs 

Sticky-End Ligations of DNA Fragments 

mM DTI, 5 mM ATP 

100 mM Tris-HCI, (pH 

7.5); 500 mM NaCl 

50mM on 

40 mM Tris-HCI, 6 mM 

MgCl2, 10 mM DTI, 10 

mM spermidine, 4 mM 

ATP, CTP, GTP, and UTP 

(pH 7 .2 at 37°C) 

0.125 mM of each dNTP 
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A 5-10: 1 molar ratio of insert:vector DNA was used to obtain optimal 

ligation efficiency. Usually 0.1 µg of vector DNA was used in a 15 µI ligation 

reaction. One Weiss U of T4 DNA ligase (e.g. 1 Weiss unit is the amount of 

activity an enzyme can catalyze the ligation of greater than 95% of Lambda 

Hindlll fragments of 1 µg of DNA at 16°C in 20 minutes) (Pharmacia or Promega) 

was added to each ligation mixture and ligation reactions were carried out at 

15°C overnight (10-14 hrs). 
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Two-Step Ligations of DNA Fragments 

Two-Step ligation is a procedure to ligate two fragments that are 

compatible only at one of their free ends. 

Reaction 1. Ligation of compatible ends: 

GIP-treated vector 

DNA fragment 

10 X ligase buffer 

T 4 DNA ligase 

dH20 

0.5 µg 

5-10:1 excess over vector 

2 µI 

1 U (Weiss unit) 

to final volume of 20 µI 

Incubate overnight at 15°C and heat inactivate the ligase at 65°C for 10 

minutes. 

Reaction 2. Creation of compatible blunt ends. 

For 5' overhangs: 

DNA ligation mixture 

10 X Kienow buffer 

0.125 mM dNTPs 

100 mM OTT 

Kienow enzyme 

dH20 

20 µI 

3 µI 

3 µI 

1.5 µI 

1 U diluted in 1 X Kienow buffer 

to final volume of 30 µI 

Incubate at room temperature for 30 minutes. 
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For 3' overhangs: 

3' the 10 X Kienow buffer is replaced with T 4 DNA 

polymerase buffer and the Kienow enzyme is replaced with 

T4 DNA polymerase. Proceed as described for the Kienow 

reaction. 

Reaction 3. Ligation of the blunt ends: 

1. Ligation mixture 

10 X ligase buffer 10 µI 

50% PEG 10 µI 

100 mM OTT 1 µI 

T 4 DNA ligase 1 U (Weiss unit) 

dH20 to final volume of 100 µI 

2. Add 40 µI of the ligation mixture to the Klenowrr 4 DNA 

polymerase reaction 2 mix and incubate at 15°C 

overnight. 

Transform the ligation mixture into competent E. coli cells as described in 

Transformations of E. coli With Plasmid DNA using 50 ng of ligated DNA. 

Polymerase Chain Reaction (PCR) Amplification 

PCR was performed with purified plasmid DNA or with complete 'A phage 

particles. Either 1 ng of purified plasmid DNA or serial dilutions of 'A phage 
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particles (eluted 2-6 hours) were used, as a template. PCR was performed with 

the reagents and protocols as described below 

Solutions 

10 X PCR buffer 

10 X dNTPs (20 mM) 

Procedure 

Mix 1 ml of 1 M Tris-HCI (pH 8.3), 

5 ml of 1 M KCI, 250 µI of 1 M 

MgCl2 , 50 ml of 20% gelatin 

(BioRad), add dH20 to 10 ml 

final volume. Store at -20°C in 

small aliquots. 

Mix 10 µI of 100 mM dATP, 10 µI 

of 100 mM dCTP, 10 µI of 100 

mM dGTP, 10 µI of 100 mM 

dTTP, and add 500 µI of dH20. 

Store at -20°C in 50 µI aliquots. 

Pipette the following into a 0.5 ml autoclaved microcentrifuge tube: 

Template DNA (about 1-5 µI) X µI 

1 ng of purified plasmid DNA or 

10 fold serial dilutions of eluted 



phage particles (eluted 2-6 hours) 

10 X PCR buffer 3.5 µI 

10 X dNTPs 3.5 µI 

forward primer (50 pmol/ml) 

backward primer (50 pmol/ml) 

Taq polymerase (5U/µI) 

dH20 

1 µI 

1 µI 

0.2 µI (1 U) 

to 35 µI final volume 
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Overlay the mixture with 25 µI of mineral oil (Sigma, Cat# M-3516). Place 

the tubes in a thermal cycler (Perkin Elmer, Foster City , CA) and subject the 

tubes to the following reaction; 1 minutes at 95°C, 1 minutes at 68°C, 3 minutes 

at 72°C. The cycles were repeated 35 times, followed by a half hour at 4°C. 

Amplification products were analyzed and or purified on an agarose gel as 

described in DNA Agarose Gel Electrophoresis. Under certain conditions the 

annealing temperature of 68°C was lowered in order to allow primer annealing to 

the target DNA. 

Cloning of PCR Products 

Purified PCR products were cloned into the PCR cloning plasmid pGEM-T 

(Promega, Madison, WI) by the ligation methods described above and using the 

amounts of template as described by the manufacturer (Lit.#TB150). 
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Radio-labeling of DNA Probes 

Nick Translation 

Radioactive DNA probes were prepared by nick translation with a kit from 

Gibco-BRL according to the manufacturers instructions except that half of the 

volumes and a-32P dCTP label were used. The labeled DNA was separated 

from unincorporated a-32P dCTP nucleotides by gel chromatography on a G-50 

Sephadex (Fine) spin column according to the protocol supplied by the 

manufacturer (Boehringer Mannheim) (Cat#1273-973). The radioactivity in 1 ml 

of column eluate was measured in a liquid scintillation counter (window 0-1500, 

Packard, Downers Grove, IL). The specific activity was calculated using the 

following formula: 

cpm/µI x total eluate volume 
incorporation in cpm I µg DNA = 

µg input DNA. 

The average specific activities of nick translated probes using this protocol were 

0.5-1 X 108 cpm/µg DNA. 

5' End Labeling of oligonucleotides 

Oligonucleotides were phosphorylated with T4 polynucleotide kinase in 

the presence of 32P y-labeled dATP. The reaction was carried out as described 

below. 

100 pmol or 50 ng of 2 µI 
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oligonucleotide with free 5' ends 

10 X Kinase buffer "C" from 2 µI 

Boehringer Mannheim 

(500 mM Tris-HCI,, 100 mM 

MgCl2, 1 mM EDTA, 50 mM 

OTT, 1 mM spermidine, (pH 8.2 

at 25°C) 

32P a-dATP (ICN > 7000 4 µI 

Ci/mmol SA) 

dH20 11 µI 

T 4 poly-nucleotide Kinase 1 µI 

(1 OU/µI, Boehringer Mannheim) 

Incubate the mixture for 45 minutes at 37°C. After the reaction , fill to 50 

µI with dH20 and heat inactivate at 90°C for 5 minutes. Apply the reaction 

mixture to a G-25 Sephadex (Fine) spin column according to the protocol 

supplied by the manufacturer (Boehringer Mannheim) (Cat#1522990). The 

specific activity of the probe was calculated as described above. The average 

specific activities of labeled probes were between 1-2.4 X 109 cpm/µg 

oligonucleotide DNA. 



85 . 

DNA Sequencing 

DNA sequencing was performed on double stranded plasmid templates 

with the Sequenase 2.0 sequencing kit from USB (Sanger et al., 1977). Plasmid 

templates were denatured by addition of 200 mM EDTA and 200 mM NaOH, 

incubation at 65°C for 2 minutes. 1/10 volume 3 M NaAc and 2.5 volume EtOH 

is added and the DNA is precipitated overnight at -20°C. Denatured plasmid 

DNA is resuspended in 5 µI of dH20, 0.5 pmol sequencing primer, and 2 µI of 5 

X Sequenase Reaction Buffer is added and the volume is filled to 10 µI with 

dH20. The mixture is warmed to 65°C for 2 minutes, allowed to cool slowly to 

room temperature over a period of 30 minutes, and then chilled on ice. The 

Sequenase T7 DNA polymerase is diluted 1 :8 in enzyme dilution buffer. To the 

annealed DNA and primer add 1 µI OTT, 2 µI labeling nucleotide mixture, 2 µI 

diluted Sequenase enzyme and 0.5 µI of 35S a-dATP. The mixture is incubated 

at room temperature for 4 minutes. 3.5 µI of the sequencing reaction is added to 

4 vials each containing 2.5 µI of either di-dioxy (dd) ddGTP, ddATP, ddTIP, or 

ddCTP respectively. The reaction is incubated for 5 minutes at 37°C and 

stopped by the addition of 4 µI of stop buffer. These sequencing reactions can 

be stored at -20°C for up to 4 days. Before loading onto the pre-heated 

sequencing gel as described in chapter DNA Acrylamide Gel Electrophoresis 

(Sequencing Gels), heat the samples to 90°C for 2 min. 
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DNA Acrylamide Gel Electrophoresis (Sequencing Gels) 

Acrylamide gels for the separation of DNA subjected to Sanger dideoxy 

sequencing (Sanger et al., 1977) were prepared as described below. 

Reagents 

Acrylamide Stock Solution 

10 X TBE 

10% Ammonium persulfate (APS) 

Procedure 

Dissolve 40 g acrylamide and 

2 g bis-acrylamide in 100 ml of 

dH20 and sterile filter. 

Dissolve 284 g Trisma base, 165 

g boric Acid, 120 ml 0.5 M EDTA, 

(pH 8.0); in 3 L of dH20 

Dissolve 100 mg of ammonium 

persulfate in 1 ml dH20 

(can be used for up to 1 week) 

Clean 16 cm X 18 cm glass plates (Aladdin enterprise, San Francisco, 

CA) first with soap and hot water. Followed by dH20 and finally with EtOH. 

Wipe with lint-free cloth and assemble with 0.6 mm spacers. Tape the sides. and 

bottom of the glass plates and clamp together with large paper binding clamps 
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along each side. To prepare a 6% acrylamide denaturing urea gel, mix the 

following chemicals in a side-arm Erlenmeyer flask; 21 g Urea (Gibco-BRL), 7.25 

ml acrylamide stock, 5 ml 10 X TBE, and 20 ml dH20. Mix the reagents, degas 

for 1 O minutes, and add 400 µI of APS solution and 20 µI of TEMED (Sigma) with 

gentle swirling. Quickly pipette the mixture between the glass plates, insert the 

sharks tooth comb (Aladdin enterprise, San Francisco, CA) at the top of the gel, 

apply clamps near the top of the gel and allow polymerization to occur. Wrap the 

top of the polymerized gel in plastic wrap, apply 1 X TBE buffer to keep moist, 

and store overnight at room temperature. Carefully remove the comb and set up 

the glass plate in a electrophoresis apparatus (Aladdin enterprise, San 

Francisco, CA). Fill the top and bottom buffer tanks with 1 X TBE and insert the 

shark-tooth comb so that wells are formed. Prerun the gel with a constant 

voltage of 1000 V until the gel is warm and then increase the voltage to 1300-

1800 V until the temperature of the gel is approximately 50°C. Flush the wells 

with fresh 1 X TBE, heat the samples to 85°C for 2 minutes, and immediately 

apply the sample to the gel. Run the samples until the xylene cyanole FF green 

dye band has just run off the bottom of the gel. Remove the thin glass plate, lay 

on top of the gel a 3 mm Whatman paper soaked in 10% acetic acid/ 10% 

methanol and incubate for 10 minutes. Remove any free acid/methanol solution 

by gentle blotting and then remove the Whatman (Note: the gel will stick to the 

filter paper). Cover the gel side of the filter paper with plastic wrap, dry the gel 

for at least 30 minutes at 80°C, and expose the gel to autoradiography. 
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Southern Blot Analysis of DNA 

Solutions 

Lysis Solution 

Solution A 

Solution B 

Solution C 

Southern Hybridization Mix 

Mix 680 µI 1 M NaHC03 , 1.104 

ml Na2C03, 80 µI 0.5 M EDTA, 

0.2 g N-lauroyl sarcosine (Na 

salt), add dH20 to 40 ml and add 

12 mg of proteinase K. 

0.25 M HCI 

0.5 M NaOH 

1.5 M NaCl 

0.5 M Tris-HCI, (pH 7.4-7.5) 

3.0 M NaCl 

Mix 70 ml dH20, 20 ml 

50% Dextran sulphate, 10 ml 

10% sos 
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ONA Isolation 

Pellet 3 X 106 cells and wash once with ice-cold Dulbecco's PBS. 

Suspend the cell pellet and add 3 ml of lysis buffer, and using a 5 ml pipette, 

gently pipette the cell lysate up and down 2-3 times to lyse cells. Incubate the 

cell lysate at 37°C for 3-4 hr while periodically mixing the lysate. Transfer the 

lysate to a 50 ml conical tube extract with phenol (TE equilibrated, (pH 7.0)), 

chloroform, and isoamyl alcohol at a ratio of 25:24:1. Mix gently for 5-10 minutes 

and then separate the phases by centrifugation at 2370 rpm in a Beckman table

top centrifuge. Repeat the extraction step one time. Extract once with 

chloroform:isoamyl alcohol alone (24:1) and transfer the aqueous phase into a 

sterile 25 ml Erlenmeyer flask with 0.2 volume 11 M ammonium acetate. Add 

2.5 volume 95% EtOH and mix the flask gently until DNA precipitates. Spool the 

DNA onto a Pasteur pipette and thoroughly wash the DNA in 70% EtOH. 

Dissolve the precipitated DNA at 37°C in 400 µI of dH20. Add 4 µI of RNase at 

10 mg/ml and incubate at 37°C for 30 minutes. Extract the aqueous mixture as 

above. Precipitate DNA in a microcentrifuge tube by the addition of 1/10th 

volume of 3 M NaAc and 2.5 volumes of EtOH, pellet, wash, and resuspend the 

DNA in 400-600 µI of TE and incubate at 4°C overnight. 

Restriction Digestion of DNA 

Digest approximately 10 µg of DNA in appropriate restriction enzyme 

buffer as described in section Enzyme Restriction of DNA. Extract the digested 
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ONA twice with equal volumes of phenol/chloroform (1+1) and once with 

chloroform. Precipate and wash the DNA as described above and resuspend in 

7.5 µI of 10 mM NaP04, (pH 6.8); in a volume suitable for application to 

TAE/agarose gel electrophoresis. Heat the sample at 37°C for >30 minutes, add 

5 X DNA loading buffer, heat to 65°C for 5 minutes, chill on ice. Apply the 

sample to a 0.7% TAE/agarose gel with 30 V for 16-18 hr in 1 X TAE. 

Transfer of DNA 

After completion of the electrophoresis soak the gel for 15 minutes in 

solution A, 30 minutes in solution B, and in solution C for 45 minutes. Transfer 

the DNA to Gene Screen Plus (DuPont, Boston, MA) as described for RNA and 

then dry the membrane for 30 minutes at 37°C. 

The filter is then prehybridized with the hybridization solution at 65°C and 

then hybridized at 65°C overnight in the same solution containing radiolabled 

probe boiled for 5 minutes with 100 µg of sheared salmon sperm DNA. The 

membrane is washed using high stringency conditions (68°C, 0.1 X SSC/0.1 % 

SOS) for 10 minutes until washing is sufficient. The blot is then dried and put to 

X-ray film at -70°C backed with a fluorographic enhancing screen. 



Bacterial Strains and Manipulations 

Preparation of Transformation Competent Bacterial Cells 

Solutions 

Solution A 

Solution B 

10 mM MOPS, (pH 6.5) 

10 mM RbCI 

10 mM MOPS, (pH 6.5) 

50 mM CaCI 

10 mM RbCI 
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Solutions A and B are filter-sterilized by passage through a 45 µm filter 

and stored at 4°C. 

Procedure 

The bacteria to be made competent are streaked from a frozen stock onto 

a LB-media plate. A single colony is inoculated into 5 ml of LB-media containing 

5 mM Glucose (LB-media+glucose) and shaken vigorously overnight at 37°C. 

100 ml of LB-media is innoculated with 2.5 ml of overnight culture. The culture is 

grown at 37°C until the 00600 is 0.13-0.15. The cells are centrifuged for 5 

minutes with 5,000 X g at 4°C in a sterile tube. The supernatant is decanted and 

the cells are resuspended in 50 ml of solution A. The cells are pelleted as 

described above. The cells are resuspended in 5 ml of solution B and then up to 
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50 ml with solution 8. The cells are incubated on ice for 30 minutes and then 

pelleted as described above. The supernatant is decanted and drained 

thoroughly. The cell pellet is gently resuspended in 4 ml of solution B. 1 ml of 

50% glycerol is added to the resuspended cells and 50 µI aliquots are frozen in 

small tubes at -70°C. 

Transformations of E. coli With Plasmid DNA 

25 µI of competent E. coli cells in a microcentrifuge tube and 50-500 ng of 

plasmid DNA, or 1-5 µI of ligation mixture were mixed gently and incubated on 

ice for 30 minutes. The mix was heat shocked in a 42°C water bath for 50 

seconds and placed on ice for 2 minutes. 1 ml of SOC medium (2% Bacto

tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCI, 10 mM MgCl2 , 10 mM 

MgS04, 20 mM glucose) was added to the heat shocked cells, and the mixture 

was incubated at 37°C for 45-60 minutes. Aliquots of the transformation mix 

were plated on LB-media plates containing 100 µg/ml ampicillin, 15 µg/ml 

tetracycline or 70 µg/ml kanamycin. Transformants were screened as described 

in the following section. 

Screening of E. coli Containing Recombinant Plasmid Vectors 
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Blue/White Color Screening 

To screen transformed E.coli strains, JM109 and DH5a, for the presence 

of p-galactosidase activity, 50 µI of 2% X-Gal (Boehringer Mannheim, 

Indianapolis, IN, turns blue in the presence of p-galactosidase) and 100 µI of 

1 oo mM isopropylthio-p-D-Galactoside (IPTG) (Boheringer Mannheim, 

Indianapolis, IN, induces promoter activity and expression of p-galactosidase a

peptide) were used. If the plasmid contains a DNA insert within the multiple 

cloning site, its presence will disrupt the a-peptide coding region and thus any 

a-peptide activity. To prepare media to detect p-galactoside activity within an E. 

coli strain containing a recombinant plasmid, the color inducing reagents were 

spread on 1.5% agar/LB-media plates containing an appropriate selective 

antibiotic (blue/white plates) for 30 minutes before transformed bacteria were 

plated. Recombinant plasmids are detected by their white color (lack of p

galactosidase activity due to recombinant DNA within the coding region of the a

peptide gene) while non-recombinant colonies (active p-galactosidase activity 

and active a-peptide) were blue. 

Bacterial Colony Lift 

To identify bacterial colonies that carry recombinant plasmids, the 

following protocol was adapted and modified from Buluwela et al., (1989). 

Briefly, LB-media plates containing bacterial colonies were cooled to 3°C before 

use. A nylon membrane (HyBond-N, 0.45 µm, X 82mm, Cat#RPH.82N, 
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Amersham, Arlington Heights, IL) was carefully laid onto the cold bacteria 

colonies and incubated for 2 minutes. To mark the orientation of the filter on the 

plate, filter and agar were punctured with a needle. The filter was removed and 

placed bacteria side up for 2 minutes on a Whatman filter soaked in denaturation 

solution (2 X SSC and 5% SOS). The filters were then placed on Whatman filter 

paper and microwaved on high power (100%) for 2-2.5 minutes. The filters were 

then soaked in 2 X SSC and the bacterial debris were gently rubbed off. The 

filters were prehybridized in a solution containing 0.5 M NaP04, (pH 7.0); 1% 

BSA (Boehringer Mannheim, Indianapolis, IN), 7% SDS, 1 mM EDTA at 65°C for 

at least 1 hour. 2 X 106 counts of denatured 32P-labeled DNA probe were added 

to the prehybridization mix and incubation was carried out overnight at 65°C. 

The filters were washed first with 2 X SSC at room temperature for 2-5 minutes 

and then with 0.1 X SSC/0.1 % SOS at 55°C until the filter that serves as a 

negative control (bacteria transformed with vector alone) is clear of radiation. 

The punctures in the filter were labeled with radioactive ink and the filters were 

autoradiographed overnight using an enhancing screen at -70°C. 

'A Phage Infections 

Phage Strains and Host Strains 
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'A phage particles either from a purified plaque or as a whole library were 

infected into host bacterial strain as described here. The host strain used with 

each type of phage is indicated in Table 3. 

Table 3. -- Bacteriophage and Host Strains Used 

Phage Vector Host Strain Excision Strain Reference 

EMBL4 c600hfl None Woodcock et al., 
1989 

'Agt10 LE392 None Sambrook et al., 
1989 

'A Zapll XL1-Blue MRF' SOLR Stratagene 

'A Zap Express XL 1-Blue MRF' XLOLR Stratagene 

'A Fixll XL 1-Blue-MRA None Stratagene 

Solutions 

Solutions used in phage resuspension, infection, and plating are 

described below. 

Phage buffer Dilute 5 ml of 5 M NaCl, 1 ml of 

1 M Tris-HCI, (pH 7.4); and 0.5 

ml of 1 M MgS04 in 25 ml of 



Top Agar 

Phage Manipulation Protocols 
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Autoclave 0.5 g of NaCl, 0.6 g of 

agarose, and 1 g of Bacto

tryptone in 100 ml of dH20. 

After autoclaving and cooling to 

55°C add 5 ml of 1 M MgS04 . 

Phage particles either undiluted or diluted in phage buffer were added to 

the appropriate bacterial strain that was grown to an 00550 of 0.6-0.7 in LB

media supplemented with 0.2% maltose and 50 mM MgS04. 100 µI of bacteria 

was used when the infection was plated on a 82 mm diameter plate and 300 µI if 

it was plated on a 137 mm diameter plate. Phage and bacteria were incubated 

together for 30 minutes at 37°C. Top agar warmed to 42°C (3 ml for a 82 mm 

plate and 7 ml for a 137 mm plate) was added to the bacteria/phage mixture 

inverted once and quickly spread on pre-warmed (37°C) plates. The plates were 

allowed to sit for 5 minutes at room temperature and then placed upside down at 

37°C to allow plaques to form. 

/..... Phage Screening and Plaque Purification 

LB-media plates containing lysogen plaques are screened for plaques 

containing the desired cDNA/DNA insert by using the following reagents and 

methods. 



Solutions 

Alkaline solution 

Neutralization solution 

3 X SSC/10% Dextran sulphate 

hyb solution 

6 X SSC/10% Dextran sulphate 

hyb solution 

2 X SSC/0.1 % SOS 

Mix 60 g NaOH, 262.9 g NaCl, 

and add 3 L of dH20. 
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Mix 181.7 g Tris-HCI, 525.9 g 

NaCl, and add 3 L of dH20. pH 

to 7.4 using 12 M HCI. 

Mix 150 ml 20 X SSC, 100 ml 50 

X Den hart's solution, 10 ml 10% 

SOS, 100 mg SS DNA 

(denatured), 100 g dextran 

sulphate and add dH20 to 1 L 

Mix 300 ml 20 X SSC, 100 ml 50 

X Den hart's solution, 10 ml 10 

% SOS, 100 mg SS DNA 

(denatured), 100 g dextran 

sulphate, and add dH20 to 1 L 

Mix 100 ml 20 X SSC, 10 ml 10 

% SOS, and add dH20 to 1 L 



1 X SSC/0.1% SOS 

0.1 X SSC/0.1% SOS 

Procedure 
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Mix 50 ml 20 X SSC, 10 ml 10% 

SOS, and add dH20 to 1 L 

Mix 5 ml 20 X SSC, 10 ml 10% 

SOS, and add dH20 to 1 L 

Cool plates containing plaques to 4°C. Overlay plaques with a 

nitrocellulose filter of the appropriate size (82 mm diameter, BA85 [0.45 µm, Cat# 

20440] or 132 mm diameter, BA 85 [0.45 µm, Cat# 20570] Schleicher and 

Schuell, Keene, NH) onto the plate until the filter is completely wet. Make 

alignment holes by puncturing the filter and agar plate with a needle. Lift filters 

from the plate with forceps and place plaque side up on a Whatman paper and 

dry for 5 minutes. Place the filters into alkaline solution for 1 minute and then 

transfer them into neutralization solution for 2 minutes. Remove the filters, dry 

them under a heat lamp, and then bake them at 80°C for 2 hrs. under high 

vacuum. Remove the filters and wet them in the appropriate hybridization 

solution without the dextran sulphate (either 3 X SSC mix for high stringency 

hybridization or 6 X SSC mix for low stringency hybridization). Remove the 

wetting solution and immerse the filters in the complete hybridization solution 

containing dextran sulphate for at least 1 hour at the appropriate hybridization 

temperature (64°C for high stringency [3 X SSC/10% dextran sulphate] or 55°C 
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for low stringency [6 X SSC/10% dextran sulphate]). Perform the hybridization 

overnight in the same solution and add 2 X 106 counts of denatured 32P-labeled 

DNA probe per ml. Wash the filters in the 2 X SSC/0.1 % SDS solution at 55-

580C for low stringency screen and with 1-0.1 X SSC/0.1 % SDS solution at 64-

680C for high stringency screen until the radiation on the negative control (filter 

with a lifted plaque or colony containing a known negative insert (e.g. GAPDH)) 

is minimal. Dry the filters, mark them with radioactive ink, cover them with plastic 

wrap, and expose them to X-ray film overnight against 1 enhancing screen at -

70°C. Positive plaques were picked by excising a small agar piece by using the 

large or small end of a pasture pipette and placing the agar plug in 1 ml of phage 

buffer. The above procedure was repeated with eluted phage until all plaques 

screened positive with the radiolabled probe. 

Plasmid excision from A YES phage by the ere/lox recombination system 

A.-YES phage particle eluted from a plaque-purified single plaque and 

were used to infect the E. coli strain BNN132. This bacteria strain contains the 

ere recombinase protein that is able to recognize its cognate recombination site 

(lox) within the A--YES phage DNA. The recombination process yields an 

ampicillin-resistant E. coli I yeast shuttle plasmid. The process of obtaining 

bacterial colonies containing the excised plasmid is described below. 

The E. coli strain BNN132 was grown to an OD550 of 0.6 in selective 

media (LB, 0.2% glucose, 70 µg/ml kanamycin) to select for the presence of the 
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ere gene present within a kanamycin containing transposon. A-YES phage 

particles are diluted in phage buffer and added to BNN132 at a ratio of 1 particle 

to every 3 bacteria (an 00550 of 0.2 contains 108 bacteria/ml). Incubate the 

phage and bacteria for 30 minutes at 30°C. Add 1 ml of selective media again, 

incubate the mixture for 1 hour at 37°C, and plate aliquots on LB

media+ampicillin agar plates to select for the presence of the excised plasmid. 

Incubate the plates overnight at 37°C and analyze the colonies as described. 

Excision of Plasmid DNA from A Zapll pahge by helper phage 

Recombinant plasmids were excised from single cDNA phage clones 

isolated from Stratagene (La Jolla, CA) libraries A-Zap Express or A-Zap II. This 

was done exactly according to the Stratagene instruction manual (Cat#200253). 

Hybridization with DNA oligonucleotides 

Hybridization of nucleic acids supported on nitrocellulose membranes was 

performed as described by and adapted from M. Shulman, Univ. of Toronto. 

Solutions 

Hybridization mix Mix 50 ml 20 X SSC, 4 ml 1 M 

Na2P04 , (pH 7.0); 14 g SOS, 40 

ml 50 X Denhart's, and add 

dH20 to 200 ml final volume 



Wash solution 

Procedure 
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Mix 75 ml 20 X SSC, 100 ml 50 X 

Oenhart's, 25 g SOS, 12.5 ml 1 

M NaH2P04 , (pH 7.5); and add 

dH20 to 500 ml final volume at 

37°C 

Prehybridize Southern, northern or phage plaque blots on nitrocellulose at 

47°C for at least 1 hour. Add 32P-labeled probe (boiled 10 minutes then iced) 

directly to the prehybridization solution at a final concentration of 1 X 106 cpm/ml. 

Hybridize overnight at 47°C with gentle shaking. Wash the blot with the wash 

solution at 50°C for 10 minutes times until the negative control contains minimal 

background. Wash once with rinse solution (1 X SSC/1 % SOS) at 50°C for 5 

minutes and wrap the wet blot in plastic wrap and expose to film to test washing 

or dry the blot and put to film at -70°C with enhancing screen. Calculate the Tm 

of hybridization by the following equation: Add 2°C for each A or T and Add 4°C 

for each G or C. Hybridization should be at least 15-20°C below Tm· 

Mammalian Cell Culture Techniques 
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Growth of Cells 

All cell lines were grown in complete RPMI medium as described (Keyna 

et al., 1995). Breifly, all cell lines were maintained in RPMI 1640 medium 

supplemented with 10% (volume/volume) fetal calf serum (FCS, HyClone 

Laboratories), 4 mM L-Glutamine, 2.5 ml of penicillin-streptomycin solution (50 

U/ml), 0.05 mM ~-mercaptoethanol and 1 mM sodium pyruvate at 37°C or 30°C 

in a 5% COrhumidified incubator with copper lining (Model#B5060, Hereaus, 

South Plainfield, NJ). This medium is referred to as complete RPMI medium. 

Unless indicated otherwise, all cell culture reagents used were from Gibco-BRL. 

Cell Lines Used For This Work 

The cell lines used are described below. 

Table 4. -- Cell Lines Used 

Name Type Source 

FH I LOCB 81.13.13 B cell hybridoma Murine 

VXH I GAMO 12.8.10 B cell hybridoma Murine 

NYC B cell lymphoma Murine 

MORK B cell hybridoma Murine 

U-937 Monocytic Human 

Raji B lymphoma Human 

Jurkat T lymphoma Human 

He la Endothelial Human 

Reference 

Jack et al., 1989 

Jack et al., 1989 

Jack et al., 1992b 

Jack et al., 1992a 

ATCC # CRL 1593 

ATCC#CCL86 

ATCC # TIB152 

ATCC#CCL2 
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Table 4. cont. -- Cell Lines Used 

HA-VSMC Heart Muscle Cell Human ATCC # CRL-1999 

Gia Glioma Human Established from a 
grade 4 

neuroblastoma by 
LC. Erickson, Loyola 

University 

MC/CAR Plasmacytoma Human ATCC # CRL8083 

96-1 B cell hybridoma Rabbit Dr. Katherine Knight, 
unpublished 

Harvesting of Cells 

Cells were pelleted by centrifugation with 1100 rpm at 4°C for 5 minutes in 

a refrigerated table-top centrifuge (Silencer S-103 NA, , Rupp and Bowman, 

Tustin, CA). 

Freezing and Thawing of Cells 

To freeze cells, approximately 2.5 X 107 cells were pelleted, resuspended 

in 1.5 ml of RPMI freezing medium (RPMI 1640 supplemented with 30% FCS, 

15% DMSO, and 0.05 mM ~-ME), and transferred into a chilled cryogenic tube 

(Vangard CRYOS, Sumitomo Bakelite Co., Ltd., Japan). The frozen cells were 

kept at -70°C overnight and then transferred to liquid nitrogen for long-term 

storage. To thaw cells the frozen tubes were removed from liquid nitrogen and 

warmed in a 37°C water bath until most of the cells were thawed. The cells were 
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transferred to ice cold complete RPMI 1640 media, pelleted by centrifugation, 

and cultured in 15 ml of complete medium. 

Counting of Cells 

A aliquot of cells was removed from the flask and counted in a Neubauer 

hematocytometer chamber (Bright-Line, 0.1 mm, American Optical Co., Buffalo, 

NY). The cell number was determined by the following equation: Cells/ml = total 

number of cells in 1 of the 9 large counting fields X 2 X 104
. 

Transfection of Cells With Plasmid DNA 

All cell transfections were carried out by electroporation as described 

(Jack et al., 1992). 5 X 106 cells were collected and washed twice in ice-cold 

FCS-free RPMI medium and resuspended in 500 µI of the same medium. 5-20 

µg of DNA (in approximately 20 µI of TE) is added and mixed gently by pipetting. 

The cell suspension is subjected to one electric pulse of 330 µF, 285 volts at low 

conductivity on ice with a Cell Porator (BRL, Gaithersburg, MD). The 

electroporated cells were immediately transferred into 10 ml of complete RPMI 

medium/20% FCS and grown for 2 days. To isolate stable transfectants, the 

cells were diluted in complete RPMI containing 0.8 µg/ml G418 (Geneticin, 

Gibco-BRL) to a density of 5 X 104 cells/ml media. 100 µI of the diluted cells 

were plated per-well in 10, 96 well plates. Wells were screened under the 
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microscope for cell clones between days 7-10 and fed with RPMI containing 0.8 

µg/ml G418 at day 10. 

Protein Analysis 

Generation of Antisera Against Synthetic Peptides 

Peptides deduced from the aa sequence of a polypeptide were 

synthesized, coupled to a carrier protein, and rabbits were immunized with the 

peptide I carrier conjugate. Linear polypeptides were coupled to a carrier 

molecule and used as an immunogen as described below. Branched 

polypeptides (Figure 7) were used directly as an immunogen due to their natural 

ability to prime an immune response without a carrier molecule. 

Coupling of Non-branched Peptides to Carrier Molecules 

Because small linear peptides of 15-30 amino acid residues are poorly 

immunogenic, they were coupled to a large carrier protein (keyhole limpet 

hemocyanin [KLH] or bovine serum albumin [BSA]) using commercially available 

pre-activated KLH and BSA (Pierce Co., Rockford, IL). The chemical reaction 

that leads to a covalent association of peptide and carrier is outlined in Figure 8. 

The coupling between peptide and carrier was performed with a antigen-carrier 

coupling kit (Pierce Co., Rockford, IL) according to the manufacturer's 

instructions included with the kit. 



Peptide-Lys4-Tentacles 

Peptides Polylysine 
Scaffolding 

Figure 7. Schematic diagram of a multiple antigenic peptide. 
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Immunization 

Rabbits were either injected with carrier-coupled peptide or with branched 

peptides (antigen) as follows. The antigen is resuspended in PBS to a final 

concentration of 2 mg/ml and 1 ml of antigen is mixed with 500 µI of 0.9% NaCl 

and 1 ml of Complete Freund's Adjuvant (CFA). The emulsion is mixed using an 

emulsion mixer (5100 Mixer I Mill, Spex, Inc., Edison, NJ) for 5 minutes the 

mixture is put into a 3 ml syringe with a small spatula avoiding air bubbles 

whenever possible. Inject the whole mixture sub-dermal into the rabbits at 

different locations six times (by the rear legs, behind the neck and at their flanks) 

using a 20112 gauge needle. After 4-8 weeks boost the rabbits with the antigen in 

the following mixture: 100 mg antigen in PBS, 1 ml 0.9% NaCl, and 1 ml 

incomplete Freund's Adjuvant. If more boosting is required, repeat the 

procedure above. 

One week after the second boost, the rabbits are bled from a small cut on 

the ear (no more than 30 ml from a healthy rabbit). The blood is collected in a 30 

ml glass corex centrifuge tube and left at room temperature overnight (clotting 

occurs). Spin the mixture for 20 minutes at 2000 rpm in a table-top centrifuge 

and remove the cleared top layer of sera. Test the sera for antibody reactivity 

against the injected antigen. 
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Affinity Purification of Anti-peptide Antisera 

To isolate peptide specific antibodies from the antiserum, isolated rabbit 

serum was applied to a peptide matrix column (Pierce Co., Rockford, IL). Briefly, 

a pre-activated amine-containing agarose matrix was mixed with the peptide 

containing at least one COOH group. The mixture was treated with a 

carbodiimide catalyst in order to facilitate the formation of an amine bond 

between the amine-containing matrix and the COOH containing peptide (Figure 

9). The column is then washed of any free peptide. The prepared column is 

then incubated with rabbit sera allowing specific antibody-peptide interactions. 

Un-bound antibodys are washed from the column and then peptide-specific 

antibodies are released from the column by a 0.1 M Glycine (in dH20, (pH 2.5)). 

Solutions 

ELISA Analysis of Antisera 

color reaction solution 

ELISA substrate buffer 

Mix 10 mg Sigma 104 

Phosphatase Substrate [Cat#104-

0] in 10 ml of ELISA substrate 

buffer 

Mix 48.5 ml Diethanolamine, 400 

mg MgCl2+6H20, 100 mg NaN3, 
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and add 500 ml dH20, pH to 9.8 

with 12 M HCI. 

To determine the presence as well as the amount of specific antibodies, 

an ~nzyme linked immunoab_s.orbant assay ELISA assay was performed as 

described. 96 well plates (Falcon #3912-Test Ill) are first coated with target 

antigen at 10 µg/ml in PBS/0.1 % NaN3 overnight at 4 °C. The wells were washed 

twice with antigen incubated plate is washed twice with PBST solution (1 X PBS, 

0.05% Tween-20, 0.02% NaN3) and then blocked with 200 µI of PBS + 1 % BSA 

for 2 hr at 37°C or overnight at 4°C. After blocking, the wells were washed once 

with PBST, filled with serial dilutions of the antibodys solution and incubated for 2 

hr at 37°C. The wells were washed 5 X with the PSST. Then 50 µI of the 

secondary alkaline phosphatase antibody (diluted 1 :2000 in PBS + 0.1 % NaN3) 

is added and incubated for 2 hr at 37°C. The plates are washed 3 X with PBST 

100 µI of color reaction solution is added. Incubate for 30 minutes and read in 

ELISA reader at A.450 . 

lmmunofluorescence Analysis of Cytoplasmic Proteins (CIF) 

To detect cytoplasmic proteins, 1-5 X 104 cells in 200-300 µI of RPMI 

were centrifuged onto a glass slide at 1100 rpm for 2 minutes in a Shandon 

centrifuge (London, England). After briefly air-drying the pelleted cells, the slides 
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(and the cells on them) were placed in EtOH for 5 minutes at room temperature 

and rehydrated in PBSF solution (1 X PBS, 0.1 % BSA, 0.1 % NaN3) for at least 

20 minutes. For direct CIF the slides were then incubated with 10 µI of diluted 

fluorescent-labeled antibodies for 10 minutes at room temperature (Burrows et 

al., 1981). For indirect CIF, the slides were first incubated with 10 µI of primary 

antibody, washed 3 X with PBSF, and then incubated with 10 µI of diluted 

fluorescent-labeled secondary antibody. The slides were washed 3 X with PBSF 

and the cells were mounted under a glass coverslip using Cytoseal 60 (Stephens 

Scientific, Riverdale, NJ). Mounted cells were examined under a fluorescence 

microscope (Leica Photofluorescence Microscope, Model LABOVERT FS, Leitz 

Wetzlar, Germany). 

lmmunoprecipitation of Metabolically Labeled Polypeptides 

Solutions and Reagents 

RPMI labeling medium Mix 500 ml methionine-free RPMI 

1640 (Gibco-BRL), 50 ml of 

dialyzed Fetal calf serum 

(HyClone), 10 ml of 200 mM L

Glutamine (Gibco-BRL), 0.5 ml of 

1 M sodium pyruvate, 5 ml of 500 

U/ml Penicillin-Streptomycin 



10 X NET 

0.1 M (PMSF) 

1 X NET lysis buffer 

(Gibco-BRL), and 2.5 ml of 10 

mM ~-ME. 
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Mix 8.76 g NaCl, 1.86 g of 

sodium EDTA, 6.06 g Trisma 

base, 1 g NaN3, and add dH20 

to 100 ml. pH to 7.4 and store 

aliquots at -20°C. 

0.1 M in ethanol, store at -20°C 

Mix 10 ml of 10 X NET, 2.5 ml 

20% Triton X-100 in water, and 

add dH20 100 ml. Add 1 µI of 

0.1 M PMSF to every 100 µI of 

lysis buffer before use. Aliquot 

and store at -20°C. 

Washed 10 % Staphylococcus aureus S. aureus in PBS and NaN3 was 

prepared as described in 

Bornemann (pH.D. thesis). Cells 

were collected, washed 2 X in S. 



S. aureus wash buffer 

SOS sample buffer (1 X) 

aureus wash buffer and 

resuspended in the original 

volume of buffer. 

Mix 75 mg of methionine, 5 ml 
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0.5 M sodium EDTA, (pH 8.0); 

12.5 ml 2 M Tris-HCI, (pH 8.0); 1 

ml 10% NaN3 , 12.5 ml 20% Triton 

X-100, 25 ml 10% sodium DOC, 

5 ml 10% SOS, 62.5 ml 4 M 

NaCl, and add dH20 to 500 ml, 

pH to 8.3. Before each use add 

1-1.2 mg/ml Ovalbumin (Chicken 

Egg, Sigma, St Louis, MO) 

Mix 2.5 ml of 0.5 M Tris-HCI, (pH 

6.8); 2 g glycerol, 1 ml ~-ME, 200 

µI 0.2% bromphenol blue, 5 ml 

10% SOS, and add dH20 to 20 

ml. 
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Procedure 

Metabolic Labeling of Cells 

1-10 X 106 cells were starved for methionine for 1 hr in 1 ml RPMI labeling 

medium. 50 µCi/ml of Trans-[35S] label (1076 Ci/mmol, ICN) was added and 

cells were incubated for 60-180 minutes in 5% C02 at 37°C. Cells were washed 

in ice-cold PBS and lysed with ice-cold NET lysis buffer (250 µI/ 1-5 X 106 cells) 

and incubated on ice for 20 minutes. Nuclei and un-lysed cells were removed by 

microcentrifugation at 4°C for 5 minutes. The lysate was then transferred to a 

new microcentrifuge tube and placed on ice. 

lmmunoprecipitation 

Lysates were incubated for 4-16 hours at 4°C after the addition of the 

appropriate antisera or monoclonal antibody (approximately 5 µg antibody) to 

each 2 X 105 cells used (amount of the antibody may vary depending on the titer 

of the precipitating antibody used). In some cases where the primary antibody 

binds weakly or not at all to protein A, an appropriate secondary antibody was 

added which reacted with the first antibody and the incubation was carried out 

for 3 hrs at 4°C. Ab-Ag conjugates were precipitated by adding 100 ml of 

washed 10% S. aureus and incubated, the suspension was incubated for 30 

minutes in ice. S. aureus was pelleted in a microcentrifuge tube, washed 2-3 

times in S. aureus wash buffer and once with low salt washing buffer (50 mM 
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Tris-HCI, (pH 8.0)). S. arueus pellets were resuspended in 100 ml of 1 X SOS 

sample buffer, boiled for 3 minutes, and cooled in a water bath to room 

temperature. The S. aureus was pelleted and 50-75 ml of the blue solution was 

analyzed by SDS-polyacrylamide gel electrophoresis. 

Jn Vitro Translation of Proteins 

In vitro translation of proteins from RNA templates transcribed from cloned 

genes were performed with the TNT Coupled reticulocyte lysate system 

(Promega, Madison, WI) as recommended by the manufacturer. Briefly, 1-2 µg 

of linearized plasmid isolated from bacteria using magic mini-preps or from 

Qiagen was mixed with the following reagents; 

1-2 µg of linearized plasmid DNA X ~ti 

TNT rabbit reticulocyte lysate 12.5 µI 

TNT buffer 1 µI 

T7 DNA polymerase 0.5 µI 

35S-methionine, cystine (Trans-label) 2 µI 

10 mM amino acids (-methionine) 0.5 µI 

20 U of RNasin (RNase inhibitor from 0.5 µI 

Promega, Madison, WI) 

dH20 to 25 µI final volume 

The in vitro translation mixture is incubated at 30°C for 120 minutes. 5 µI 

of the reaction was mixed with 1 X Laemmli reducing SOS sample buffer (see 
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section SOS Polyacrylamide Gel Electrophoresis (SOS/PAGE)), incubated for 15 

minutes at 37°C. And analyzed by SOS-PAGE. Extra samples were frozen at -

70°C for later use. 

SOS Polyacrylamide Gel Electrophoresis (SOS/PAGE) 

Proteins were separated by molecular weight on a discontinuous SOS 

polyacrylamide gel system described by Laemmli, (1970). 

Reagents 

acrylamide solution 

8 X separating gel buffer (3M Tris) 

4 X stacking gel buffer (0.5 M Tris) 

10 % sos 

Mix 40 g of acrylamide (40%), 

1.07 g bis-acrylamide (1.07%), 

and add 100 ml of dH20. 

Mix 72.7 g of Trisma base, and 

add 200 ml of dH20. pH to 8.8 

with HCI. 

Mix 6.05 g of Trisma base, and 

add 100 ml of dH20. pH to 6.8. 

Mix 20 g of SOS with 200 ml of 

dH20. 



10% Ammonium persulfate (APS) 

TEMEO 

10 X Laemmli solution 

separating gel buffer 

1 X Laemmli sample buffer 

3 X Laemmli sample buffer 
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Mix 100 mg of APS with 1 ml of 

dH20. 

Stock solution from Sigma 

Mix 121.2 g of Trisma base, 577 

g glycine, 40 g SOS, and add 4 L 

of dH20. 

Mix 3.75 ml of 3 M Tris-HCI, (pH 

8.8); 0.3 ml 10% SOS, and add 

30 ml of dH20. 

Mix 2.5 ml of 0.5 M Tris-HCI, (pH 

6.8); 2 g 100% glycerol, 1 ml 13-

ME, 200 µI 0.2% BPB, 5 ml 10% 

SOS, and add 25 ml of dH20. 

Mix 7.5 ml of 0.5 M Tris-HCI, (pH 

6.8); 6 g 100% glycerol, 3 ml 13-

ME, 600 ml 0.2% bromphenol 
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blue (BPB), 15 ml 10% SOS, and 

add 25 ml of dH20. 

16 X 18 cm glass plates were washed, dried, and assembled with 1.5 mm 

plastic spacers and plate clamps in a Hoefer vertical gel casting stand 

(Model#SE6015). The gel solution (7 .5 ml of acrylamide solution, 3. 75 ml 3 M 

Tris-HCI, (pH 8.8); 18.135 ml dH20) was prepared in a 100 ml vacuum 

Erlenmeyer flask and degassed the solution under vacuum for 10 minutes. 300 

µI of 10% SOS, 300 µI of 10% APS, and 15 µI of TEMEO are quickly added and 

mixed by gentle swirling. The solution is then poured between the glass plates 

and then overlaid with a few ml of butanol saturated with Tris-HCI, (pH 6.8). The 

gel is allowed to polymerize overnight at 3°C. The stacking gel (2.5 ml 0.5 M 

Tris-HCI, (pH 6.8); 875 µI monomer solution, 6.525 ml dH20) is degassed for 10 

minutes, and 100 µI of 10% SOS, 100 µI of 10% APS, and 6 µI of TEMEO are 

added, mixed, and pipetted on top of the separation gel that has been washed 

with dH20. A 1.6 mm multi-well comb is carefully inserted between the plates 

and the gel is allowed to polymerize for 20-30 minutes. The comb is removed 

while applying 1 X Laemmli buffer to the top of the gel. The wells are flushed 

and filled with 1 X Laemmli running buffer. The samples in Laemmli sample 

buffer are boiled for 4 minutes, placed in room temperature water and loaded 

into the wells. The samples are separated with a constant current of 30 mA for 1 
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gel until the BPS band has reached the bottom of the gel. The glass plates are 

disassembled and the gel is either used for a western transfer (section Transfer 

of Electrophoreticaly Separated Proteins to Nitrocellulose Filters) or is enhanced 

and dried for fluorography. SOS-PAGE was also performed using a mini-gel 

system (Cat#67320). with the same solutions as described above. 

Fluorography of Polyacrylamide Gels 

To shorten film exposure time in the detection of radiolabeled compounds 

in polyacrylamide gels. Incubate the gel in ENTENSIFY-Part A solution for 30 

minutes, then in ENTENSIFY-Part 8 (NEN Research Products, Boston, MA) for 

30 minutes. Rinse the gel in dH20, place the gel on Whatman filter paper, dry 

the gel for two hours at 80°C and place it to film at -70°C using one enhancing 

screen. 

Solutions 

Transfer buffer 

Western Blot Analysis 

Mix 12 g of Trisma base, 57.6 g 

glycine, 800 ml methanol, and 

add 4 L of dH20. 

10 X Ponceau S solution 2% Ponceau S dye 



Tris buffered saline 

Blotto 

antibody dilution solution 

Enhanced Chemiluminescence 

30% trichloroacetic acid 

30% sulfosalicylic acid 
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Mix 9.68 g of Trisma base, 

116.96 g NaCl, and add 4 L of 

dH20. pH to 7.5 with 12 M HCI. 

Mix 5 g of dry, non-fat milk and 

add 100 ml of TBS. 

Mix 500 mg of dry, non-fat milk 

and add 100 ml TBS 

EGL kit (Boehringer Mannheim) 

Transfer of Electrophoretically Separated Proteins to Nitrocellulose Filters 

Electrophoretically separated proteins were subjected to Western blot 

analysis (Beck-Engeser et al., 1987). Briefly, SOS gel was soaked for 10 

minutes in 100 ml of transfer buffer. 3 Whatman pieces cut to the size of the gel 

were wetted in transfer buffer placed on a semi-dry transfer apparatus (Model 

#FB-SDB-2020, Fisher Biotech, Pittsburgh, PA) followed by the gel. The 

following sandwich was assembled. The gel is followed by a sheet of 
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nitrocellulose (BA85, 0.45 µm, Schleicher and Schuell, Keene, NH) cut to the 

size of the gel. Above the nitrocellulose is placed 3 additional Whatman sheets 

wetted in transfer buffer. Air-bubbles between the sheets were removed by 

rolling the sandwich with a pipette. Proteins were then transferred with a 

constant current of 10 mA-per cubic cm of sandwich for 2-2.5 hrs. The sandwich 

is then disassembled and the transfer of the proteins to the nitrocellulose is 

confirmed by Ponceau S staining for 10 minutes. The filter is then destained in 

TBS. 

lmmunodetection of Transferred Proteins on a Nitrocellulose Filter 

The membrane is then destained and blocked in Blotto for greater than 1 

hr, rinsed with TBS 2 X 15 minutes and incubated with the primary antibody (in 

antibody dilution solution) overnight at 4°C. After removal of the primary 

antibody the membrane is washed twice with TBS + 0.1 % Tween 20 (BioRad, 

Cat# 170-6531) for 15 minutes and incubated with the secondary antibody (in 

antibody dilution solution) overnight at 4°C. Finally, the blots are washed twice 

with TBS for 15 minutes and subjected to enhanced chemiluminescence (ECL) 

as recommended by the manufacture (Boehringer Mannheim). Rainbow protein 

molecular weight marker were included to determine molecular masses of 

proteins and to control for protein transfer. 
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Yeast Strains. Growth and Manipulation 

Yeast Strains 

The Saccharomyces cerevisiae yeast strains used in this work are listed 

and discussed in Chapter 3. 

Media and Reagents 

YEPD (non-selective complete medium) 

yeast extract (Difeo) 

bacto-peptone (Difeo) 

dextrose 

dH20 

10 g 

20 g 

20g 

to 1 L final volume 

Autoclave aliquots. For growth on plates, add 25 g Bacto-agar per 

liter of YEPD. 

Selective media 

a) Drop-out medium (single selective or multiple selective medium) 

dextrose 20 g 

yeast nitrogen base w/o 6. 7 g 

amino acids 

appropriate 10 X drop-out 100 ml 



stock solution 

50 mM inositol 

dH20 

1 ml 

to 1 L final volume 
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Autoclave aliquots. For growth on plates, add 20 g Bacto-agar per 

liter of YEPD. 

1 O X drop-out stocks: The 10 X drop-out solution will not contain the amino 

acid for selection. For example ura3 yeast will be grown in media without uracil 

to select for the presence of a plasmid containing the URA3 gene. Add the 

following volumes of each amino acid supplement except the one that is being 

"dropped-out". 

Table 5. --Amino Acid Supplements Used in Yeast Drop-out Media 

Supplement Stock concentration 500 ml total 

adenine 5 mg/ml 20ml 

arginine 20 mg/ml 5ml 

histidine 20 mg/ml 5ml 

leucine 10 mg/ml 30 ml 

lysine 115 mg/ml 10 ml 

methionine 20 mg/ml 5ml 

threonine 60 mg/ml 25 ml 

tryptophane 10 mg/ml 10 ml 

uracil 2 mg/ml 50ml 
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Add 340 ml of dH20 to the indicated amounts of amino acids and in place 

of the "dropped-out" supplement add the same amount of dH20. Mix thoroughly, 

make 100 ml aliquots, autoclave, and label according to the "dropped-out" 

supplement (e.g. 10 X Ura-). 

b) Media supplemented with canavanine 

dextrose 

yeast nitrogen base 

arginine drop-out stock 

50 mM insitol 

Agar 

dH20 

20 g 

6.7 g 

100 ml 

1 ml 

20 g 

to 1 L final volume 

Autoclave the mixture and cool to 57°C. Add the appropriate amount of 

stock canavanine solution to the media or aliquot of media to make an arginine 

dropout plate with the desired amount of canavanine. The average amount of 

canavanine to select a can1 strain of yeast is 60 µg/ml. 

Drop-out induction medium (Used to induce the transcription of genes driven by 

the ga/1-10 promoter). 

Drop-out induction media 

glycerol (80% stock) 

10 X drop-out stock 

yeast nitrogen base w/o 

37 ml 

100 ml 

6.7 g 



amino acids 

50 mM inositol 

dH20 

1 ml 

to 1 L final volume 
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Autoclave the mixture and cool to 57°C before the addition of 10 ml of 

100% EtOH. For plates add 20 g of agar per L of plates. Store at 4°C. 

Introduction of Recombinant Plasmids Into Yeast 

Solutions and Reagents 

All yeast transformations described below were performed in the presence 

of carrier DNA (section DNA Manipulations and General Solutions) except that 

the average fragment length was approximately 2.0-0.7-kb. 

Transformation buffer Mix 2.4 g LiAc, 4 g PEG, (pH 

5.0; MW 3550); 1.543 g OTT, 

and 100 ml of dH20. Freeze 

aliquots at -20°C. 

For transformation, 50 µg of the DNA was boiled for 10 minutes and then 

put to ice. After this carrier was sufficiently cooled, 1 µg of the plasmid to be 

transformed was added. 
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Yeast Transformation 

Yeast were transformed by the method of Chen et al., (1992). Resuspend 

5 X 107 pelleted yeast cells in "One-step" transformation buffer. Mix the 

resuspended yeast with 1 µg of plasmid DNA and 50 µg of single-stranded 

carrier DNA (boiled salmon sperm) in a total volume of 100 µI. Incubated the mix 

at 45°C for 45 minutes and plate 10 µI and 90 µI of the suspensions directly onto 

selective medium and incubate the plates at 30°C for 3-4 days. Usually 20 µI 

and 80 µI were the plated cell volumes. The same protocol was used to 

transform DNA fragments into yeast. 

Yeast Mating 

The method used was adapted from a protocol by Rob Barrington (Dawes 

and Hardie, 1979). Yeast strains to be mated were grown on YEPD plates for 3 

days to obtain healthy yeast. These yeast were used in the protocol below. 

Generation of Diploid Yeast and Isolation of Yeast Spores 

Media 

Sporulation Plates 

KAc (1 % final) 10 g 

yeast extract (0.1 % final) 1 g 

dextrose (0.05% final) 0.5 g 



Procedure 

Bacto-agar (1.5% final) 

dH20 

12a· 

15 g 

to 1 L final volume 

Healthy yeast were picked from a YEPD plate using a toothpick. A 1 X 1 

X 1 mm patch of each yeast (one strain a and one strain a) was mixed together 

with 5 µI of sterile dH20 (patch mating). The mixed yeast were allowed to mate 

overnight at 30°C. The mixed yeast were streaked onto sporulation plates and 

incubated for 4-5 days at 25°C. Haploid spores were identified by suspension of 

a small amount of cells in a drop of water on a microscope slide and observed by 

light-field microscopy. The haploid tetrads will appear as clusters of four smetil 

spheres held within a barley discernible sphere. Spores were isolated by 

extraction in ether (Dawes and Hardie, 1979). Briefly, 5 small patches of 

sporulated yeast were picked and put into a microcentrifuge tube containing 100 

µI dH20. The yeast were resuspended by brief vortexing. 300 µI of Ether was 

added to the mixture and vortexed once for 30 sec. The mixture was centrifuged 

for 5 minutes and decanted. This extraction procedure was repeated twice. The 

small pellet of material obtained after the final extraction contains separated 

spores (almost invisible). These spores were then resuspended in 100 ml of 

dH20 and dilutions were plated onto the appropriate selective media to obtain 

haploid yeast of interest. 
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Replica Plating of Yeast 

Yeast to be replica plated are grown on appropriate media. This master 

plate containing the strain or strains of interest is printed onto a velveteen square 

placed over a circular Plexiglas block by applying gentle pressure across the 

whole plate. A copy of this impression is transferred to plates made with all the 

relevant selective media including a plate identical to the one used as the master 

plate (positive control). 

Storage of Yeast Strains 

Yeast were stored as frozen stocks as described by Ausbel et al., (1990). 

Yeast were grown to late-log or early-stationary phase in appropriate media. 700 

µI of the resuspenede culture was mixed with 300 µI of 50% glycerol and frozen 

at -70°C. Cells are revived by taking a fraction of cells from the frozen stock and 

plating on the appropriate media (usually YEPD). 



CHAPTER IV 

RESULTS 

Rationale. Hypothesis and Overall Experimental Approaches 

mRNAs containing nonsense codons (nonsense mRNA) encode 

truncated polypeptides that can interfere with the function of their corresponding 

full-length polypeptides. However, levels of most nonsense mRNAs are reduced 

in prokaryotes and eukaryotes when compared to that of the corresponding wild

type mRNAs (reviewed in Brawerman and Belasco, 1993). Genes that encode 

proteins responsible for the selective reduction of nonsense mRNA have been 

identified only in lower eukaryotes (reviewed in Maquat, 1995). One example is 

UPF1, a group I RNA helicase that is required to rapidly degrade cytoplasmic 

nonsense mRNA (Leeds et al., 1991, 1992; He et al., 1993). Since the half-lives 

of cytoplasmic nonsense p-globin mRNA (Cheng and Maquat, 1993; Belgrader 

et al., 1994) and immunoglobulin µ mRNA (Li and Jack, unpublished 

observations) are decreased when compared to the corresponding wild-type 

mRNA, I hypothesized that mammalian cells contain a UPF1-like system that 

reduces levels of nonsense mRNA. To clone, or identify, a mammalian 
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gene required to reduce levels of nonsense mRNA, I chose the following 

approaches, all of which make use of the yeast UPF1 gene. 

• First approach 

Hybridize mammalian genomic and cDNA libraries with a yeast UPF1 

DNA probe. 

• Second approach 

Transfect a upf1 yeast strain with a mammalian cDNA expression library 

and rescue yeast transformants with a UPF1-positive phenotype. 

• Third approach 

Determine whether the expression of a dominant-negative form of yeast 

Upf1 p in a mammalian cell correlates with increased levels of nonsense 

mRNA. 

• Fourth approach 

Search translated mammalian DNA and protein databases with the yeast 

UPF1 amino acid sequence and determine whether identified genes are 

structural and functional homologues of yeast UPF1. 

Because only the fourth approach led to the isolation of a mammalian 

UPF1 homologue, I will describe and discuss this approach in detail. However, 

in the next three sections I will briefly review the results of the first three 

approaches. I will only discuss at length the data from the first approach, 

because it resulted in the isolation of a rabbit TRAPa cDNA that encodes a 
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protein thought to be involved in the translocation of nascent polypeptide chains 

across the ER membrane. 

Hybridize Mammalian Genomic and cDNA Libraries With a Yeast UPF1 DNA 

Probe. 

The strategy to clone a mammalian homologue of the S. cerevesiae UPF1 

gene by hybridization was carried out using a number of straightforward 

molecular biological techniques and approaches. First, the yeast UPF1 gene 

was used as a DNA probe to screen mammalian genomic DNA and cDNA 

libraries. To detect genes that have partial homology to UPF1, the hybridization 

was carried out under low stringency. Second, to determine whether the isolated 

genes are structurally homologous to the S. cerevisiae UPF1 gene the nucleic 

acid sequence of the clone was determined. This approach, however, did not 

result in the isolation of a DNA clone with homology to UPF1. Instead, I cloned a 

cDNA encoding rabbit TRAPa, a protein that may be involved in the 

translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum 

(ER). 

Isolation of a Rabbit Genomic Clone that Cross Hybridizes 

With the Yeast UPF1 DNA Probe 

To isolate a mammalian UPF1 homologue, I screened a human 

complementary DNA (cDNA) phage library (Elledge et al., 1991) and a genorr.ic 
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rabbit DNA phage library. The human library was chosen because a yeast 

expression plasmid containing the human cDNA insert can be easily excised 

from the phage and tested for its ability to complement a upf1 allele yeast strain. 

The rabbit genomic DNA phage library (in EMBL4) was chosen for the following 

reasons. First, each gene should be represented in the library at least once, and 

second, filters containing about 3 X 1 as lifted plaques were made available to me 

by Dr. Knight. The UPF1 probe used to screen the libraries was a 1.3 kb-Oral 

fragment (Figure 1 a.A). This DNA fragment contains the entire UPF1 RNA 

helicase region. Mutations in this region can lead to dominant-negative forms of 

UPF1 that, when transformed into wild-type UPF1 strains, abolish the function of 

the wild-type UPF1, that is, nonsense mRNA has the same turnover rate as the 

corresponding functional mRNA. Therefore, a mammalian UPF1 homologue 

may have conserved this important functional region, and thus, may contain 

enough nucleotide homologies that the human or rabbit homologue could be 

detected by using the UPF1 helicase probe. The flow-chart in Figure 11 shows 

the individual steps of the hybridization approach and summarizes the major 

results. When I screened filters that contained 2.5 X 1 as individual phage from 

the human Hela cell cDNA phage library or the rabbit genomic phage library, I 

identified 2 genomic rabbit phage clones (Figure 1a.B and Figure 11, box 2) and 

no Hela cDNA clones that hybridized with the UPF1 RNA helicase probe. To 

find the region of nucleotide homology within the two rabbit genomic phage 

clones and the UPF1 RNA helicase probe, I proceeded to isolate total 
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Figure 10. Schematic representation of the regions of the UPF1 gene used as probes in library and 
Southern blot analysis. (A) The bar represents the UPF1 ORF. The regions used as probes are shown 
below the UPF1 ORF. (B) Autoradiograph of rabbit genomic phage clones R1, and R5 after 1 round of 
plaque purification. Phage clones were hybridized with UPF1 RNA helicase probe using low stringency 
hybridization conditions as described in materials and methods. -l. 
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1 
Screen the human cDNA and rabbit 

genomic phage librarys with the UPF1 
RNA helicase probe 

2 
Identified 2 overlapping rabbit genomic phage 

clones that hybridize to the Yeast 
UPF1 RNA helicase probe 

3 
Identified a 6.4-kb 

fragment from both 
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The 6.4-kb fragment does 
not hybridize with the Yeast 

UPF1 gene fragment 
phage clones 8 

Identify in the 6.4-kb 
that hybridize with fragment a 2.0-kb Hindlll 

(5' end) 

f 
5 

Probe a human and rabbit cDNA 
library with the 6.4-kb rabbit DNA 

fragment 

6 

No 
human 
clones 

identified 

7 

3000 
rabbit 
clones 

identified 

the Yeast UPF1 fragment fragment that hybridizes with 
RNA 1------~ the yeast UPF1 RNA 

helicase probe helciase probe 

9 
Subclone the 2.0-kb fragment 
and identify a 560-nt fragment. 

Subclone and sequence the 
560-nt fragment. 

11 

•A region of 61 nucleotides 
shows a 72% identity 
to part of the RNA helciase 
region of UPF1 

•25 nucleotides of a continous 
26 nuclotide stretch within 
the 61-nt region are found 
in UPF1 

10 

Screen a rabbit cDNA 
library with the 560-nt 

fragment. 
No clones identified 

Continued on Next Page 

Figure 11. Flow chart representing steps taken during the isolation of a 
rabbit genomic clone that cross hybridizes with the yeast UPF1 DNA 
probe and isolation of a rabbit cDNA. 



12 
Use 26-nt oligos in northern 

blot analysis 

13 

Hybridization with sense oligo 
does not detect yeast UFP1 

or any rabbit RNA species from 
total RNA 

15 

14 

Hybridization with antisense 
oligo detects yeast UPF1 and a 
rabbit RNA species from total 

RNAs 

Screen Human and Rabbit cDNA 
libraries with the 26-nt antisense 

16 
No positives 

from the 
Human cDNA 

library 

oligo 

18 

17 

Identify 2 positives 
clones from the 

rabbit cDNA library 

Mapping of the 2 positive 
clones indicates that they are 

identical. Sequence analysis of a 
cDNA insert revealed that it encodes 

the rabbit homologue of the 
canine TRAPa gene. 
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phage DNA and map the regions of the 2 clones. The results demonstrated that 

although the two rabbit genomic clones are slightly different, they contain DNA 

restriction sites at similar sites throughout their insert regions. I conclude that 

these two genomic phage clones are overlapping. I also carried out low 

stringency Southern blot analysis on the same restriction enzyme mapped DNA. 

I was able to detect a 6.4-kb EcoRI fragment in both clones which hybridized 

with the UPF1 RNA helicase probe under low stringency conditions (Figure 11, 

box 3). I conclude that the 6.4-kb EcoRI fragment contains a region of 

nucleotide homology between the UPF1 probe and the fragment of rabbit 

genomic DNA. To determine if the rabbit genomic fragment also contains 

nucleotide homology to the 5'-end of the yeast UPF1 gene I used the 5' end of 

the UPF1 gene as a probe on the same Southern blot using low stringency 

conditions. From this Southern I conclude that the insert region of the rabbit 

genomic phage clone does not specifically hybridize to the 5' end of the UPF1 

gene (Figure 11, box 4). 

I used the 6.4-kb EcoRI fragment as a probe to isolate a cDNA fragment 

from a human or rabbit cDNA library (Figure 11, box 5). Unfortunately, I was not 

able to identify any human cDNA clones (Figure 11, box 6). However, by 

screening the rabbit cDNA library I was able to identify approximately 3000 

hybridizing phage plaques (Figure 11, box 7). It is possible that the hybridization 

of most phage clones is due to regions within the 6.4-kb probe that have no 

homology to the yeast UPF1 RNA helicase probe. To generate a smaller probe 

that hybridizes to the UPF1 RNA helicase probe, I subcloned the 6.4-kb EcoRI 
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fragment into a plasmid vector, digested the vector with restriction enzymes and 

determined by Southern blot analyses which of the rabbit fragments hybridized 

to the UPF1 RNA helicase probe (Figure 11, box 8) (data not shown). A 2.0-kb 

Hindlll DNA fragment was identified, isolated and subcloned into a plasmid 

vector. Southern blot analysis of restriction digestion of the 2.0-kb Hindlll 

fragment identified a 0.56-kb EcoRl!Pstl fragment that still hybridized with the 

UPF1 RNA helicase probe (Figure 11, box 9). The EcoRI site comes from the 

vector and the Pstl site is located within the 2.0-kb Hindlll fragment about 500-bp 

downstream of the vector SP6 site. I, therefore, predicted that if I sequence the 

plasmid that contains the 2.0-kb Hindlll fragment with a SP6 primer, I would be 

able to find the region of nucleotide identity between the UPF1 RNA helicase 

probe and the rabbit genomic DNA fragment. 832 nucleotides of the 2.0-kb 

insert were sequenced and confirmed the presence of a Pstl site 560-nt 

downstream of the SP6 site of the vector. When I searched the GenBank 

nucleic acid sequence database with the 832-nt rabbit sequence using the 

FASTA program (GCG Program Manual, 1994), I found that 72% of a 61-bp 

region (underlined position 399-460, Figure 12) of the 832-nt sequence are 

identical to the corresponding region in UPF1 (Figure 13). Within the 61-nt 

region of identity, there is a 26-nt region of 96% identity to UPF1 

(position 399-424 of the rabbit genomic fragment, position 2051-2077 of 

UPF1, Figure 14) (Figure 11, box 11 ). Additional analysis of the rabbit sequenr.e 

revealed the presence of a putative splice donor and splice 



20h35ssr.Txt Length: ~ February 3, 1995 

HindIII 
AAGCTTATCGATTTCGAACCCGGGGTACCGAATTCTCCTATCCCATGCAT 
GTGACTTCTAATATAATTATCAAATGTAGGACAGTGATACTGGACTTCAG 
GTGTTACTTAAATCCCATCAGTTTTCCCACTTGTATTCTTTTTCAGACCC 
AAGATCCTACACTGCGTTTGTCATTTCTCCCTGGTTTCCTGTAATCTGTG 
AGAGTTCCTAGGCCTCCCAGTCACTCCCCGTCTTTTATGATCTTAGTACT 
TTGACAGAATATTGGGCATTTTTTTTGGACCATGTCCTCAGGTTCTATTA 
TGTCTTTTTATTTTTTTTGTGATTGAAGAGAATTTTTGCATTTGTGGCGA 
GAAACAAATGATACAGTGTCCTTGGTGCAGGGTGTAAAGGGTTCTGTGA,T 
GTTGACATGTGTTGGTGCTGGTGACGTTAAQT.TTGAT.cACTTGGT'.rG~ 

TG1'.12AGQTTTGGACTCTAAAGCTGCTGCCCCTCCCTTTGCAGTTGGTAGA 
TATCTTGGGGGCATGTTTTCAGTGCAAATATGACTCCTCTCACATGTTCA 
TGTACTGATTTCAGCNTCGCTCGGTGGGGCTTGTCTGCAGCACTGAGGAG 
TTCCCTTTCCCTTCATTACCCTTGTTGAGTGGAGTCTTCTCAAGGAGGAG 
CTGTCCTTNNCCCGCATTTNTTTGCTTCTTAGCTCATCTCTGACTATGGA 
TATGGATTCAAGGGTACTTGCATNTTTCTNTNNGTCCACACCTACTACTT 
TCATGGTTTATTTNCTCAGATTGTGCAATTGTTGATCACGAGGAGCTCCT 
TCAGTTTGCCTCCTGTTTTCTTTCTAAAAGCC 

Figure 12. Partial nucleotide sequence of the 2.0-kb Hindi II fragment 
of the genomic rabbit clone R5. The Pstl restriction site is indicated 
in bold and the Hindlll cloning site is underlined. The region with 
nucleotide identity to the UPF1 probe is underlined. The identity was 
determined with a FASTA analysis using the 832-nt sequence. 
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Yscupfl. Gb_Pl 

phage clone #5 

SCORES Initl: 80 Initn: 80 Opt: 107 
72.1% identity in 61 bp overlap 

i
~ TCVGAGDK 

Yscupf AGCAGAAATTCTCAATAAGGCAGATGTCGT TGTTGCACATGTGTTGGTGCTGGTGATAA 
11111 111111111TIT11111111 

RGF TCCTTGGTGCAGGGTGTAAAGGGTTCTGT TGTTG-ACATGTGTTGGTGCTGGTGACGT 
polyT--NCAGG T C V G A G D V 

R L ..... ~ Yscupf GCGCTTAGA-CACTAAATTTAGGACTGTGTT TTGATGAAAGTACTCAAGCTTCTGAGC 
11 I I I I 111 11 111 I I I I 

RGF TAACTTTGATCACTTGGTTGAGGTGTGAGGT TGGACTCTAAAGCTGCTGCCCCTCCCTT 
N F CAGGTGAG 

Figure 13. Original printout of the result of a FAST A analysis using 832 
nucleotides of the 2.0-kb Hindi II fragment of rabbit clone RS. Yscupf is part 
of the S. cerevesiae UPF1 DNA sequence and RGF (rabbit genomic 
fragment) is part of the sequence of DNA shown in Figure 12. Underlined are 
the putative splice donor and acceptor sites found within the rabbit genomic 
fragment flanking the region of identity. The splice consensus sequences are 
shown below the underlined region (reviewed in Genes IV, Lewin, 1994). 
The putative amino acid sequence encoded by the rabbit genomic DNA and 
UPF1 is shown above and below the respective nucleotide sequences. The 
aa changed in the D1 dominant- negative form of UPF1 is in bold and 
underlined. The region with 72% identity is shown betwee~ the arrows. 
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20h3prim.For 

Gb_Pl:Yscupfl 

LOCUS YSCUPFl 3546 bp ds-DNA PLN 12-MAY-1992 
DEFINITION Saccharomyces cerevisiae zinc finger protein (UPFl) gene, 
complete eds. 

ACCESSION M76659 
KEYWORDS UPFl gene; zinc-finger protein. 
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SOURCE Saccharomyces cerevisiae (strain GRF88) (library: Ycp50) DNA. 

SCORES 

20h3pr 

Initl: 80 Initn: 80 Opt: 92 
96.3% identity in 27 bp overlap 

10 20 
ATGTTG-ACATGTGTTGGTGCTGGTGA 
111111 11111111111111111111 

Yscupf AGCAGAAATTCTCAATAAGGCAGATGTCGTATGTTGCACATGTGTTGGTGCTGGTGATAA 
2030 2040 2050 2060 2070 2080 

Yscupf GCGCTTAGACACTAAATTTAGGACTGTGTTAATTGATGAAAGTACTCAAGCTTCTGAGCC 
2090 2100 2110 2120 2130 2140 

Figure 14. Origional printout of the result of a FAST A analysis using the 
26-nt sequence (nt position 399-424 in Figure 12). Yscupf is the 
S. cerevesiae UPF1 DNA sequence and 20h3pr is the sequence of the 
26 bp oligonucleotide used to perform the analysis. 
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acceptor site (Lewin, Genes IV, 1995). Between the putative splice sites, one of 

the possible ribosomal reading frames could translate a putative protein 

encoding amino acids identical to those of UPF1 (Figure 13). I conclude from 

these results that the cloned region of rabbit genomic DNA could contain an 

exon of a gene that is the rabbit homologue of the yeast UPF1 gene, or a least a 

rabbit RNA helicase. Translation of an mRNA encoded by this region could lead 

to the production of a protein that has Upf1 p like functions or RNA helicase 

activity. 

Isolation of a Rabbit cDNA 

To avoid extensive sequencing and exon/intron mapping of my genomic 

clone, I attempted to isolate a cDNA clone by screening appropriate libraries with 

a 26-nt oligomer that is identical to the 26-nt region (Figure 14). A 26-nt oligomer 

complimentary to the putative coding region of the rabbit genomic fragment was 

synthesized (26-nt antisense oligo) and used as a probe to determine if a RNA 

species can be detected in total spleenic RNA. When I performed northern blot 

analysis of total rabbit RNA from various tissues using the 26-nt antisense oligo 

as a probe, I detected a 1.3-kb band in total spleen RNA and a 3.6-kb band in 

yeast RNA with the 26-nt antisense oligo (Figure 11, box 14). The 3.5-kb band is 

very likely UPF1 mRNA because a UPF1 probe detects a band of the same size 

(data not shown). I screened 2.5 X 105 phage from a rabbit spleen cDNA library 

(a gift from Dr. Chander Raman) and from a human Hela cDNA library with the 
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26-nt antisense oligo (Figure 11, box 15). I identified two rabbit cDNA clones 

that hybridized with the 26-nt antisense oligo (Figure 11, box 17) but no phage 

clones were identified from the human cDNA library (Figure 11, box 16). cDNA 

inserts from the two rabbit phage clones were rescued from the page particles by 

using PCR and a primer set p.gt1 O.fow0.gt1 O.bac) that flanks the cDNA insert. 

Agarose gel electrophoresis of the PCR product from each phage clone revealed 

a product of 1.2-kb (data not shown). I predicted that if the 1.2-kb PCR product 

actually contains regions of nucleotide identity with the UPF1 gene it should be 

able to hybridize with a UPF1 RNA helicase probe. The PCR products were, 

therefore, subjected to Southern blot analysis under low stringency conditions 

using the UPF1 RNA helicase region probe. The results demonstrated that all 

PCR products as well as the original rabbit genomic phage clone are able to 

hybridize with the UPF1 RNA helicase probe while a DNA fragment amplified by 

PCR from a rabbit GAPDH cDNA or A--phage clones did not hybridize (data not 

shown). To determine whether the clones were identical, A- DNA was digested 

with various restriction enzymes. The results revealed the presence of identical 

restriction enzyme sites within both 1.2-kb inserts (Figure 11, box 18; data not 

shown). DNA sequencing of both clones was performed and revealed that their 

sequences are identical. The nt sequence of the 861 bp ORF of the two rabbit 

cDNA inserts differ by only one nucleotide (a wobble base leading to no aa 

change) and encodes for 286 aa (34.5-kDa). However, a poly(A)-addition signal 

sequence could not be located and comparison of the TRAPa sequence with the 
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putative RNA helicase region of UPF1 revealed that TRAPa does not contain a 

helicase domain. FASTA and TFASTA analysis (GCG Program Manual, 1994) 

showed that the rabbit sequence has a high degree of nucleotide and amino acid 

identity to that of the canine translocon-associated protein alpha (TRAPa) gene 

(GenBank accession #X51367; Figure 11, box 18) (Figure 15) a gene product 

found to be associated with the translocon and associated proteins (Figure 16) 

(Hartmann et al., 1993). 

The ORF has 89% and 94% identities to the canine TRAPa gene at the nt 

and aa level, respectively (Figure 15). The deduced aa sequences of both rabbit 

and canine TRAPa share conserved hydrophobic as well as acidic aa regions 

(Figure 15). Therefore, I conclude that I have isolated a full-length cDNA clone 

encoding rabbit TRAPa. Finally, part of the 26-nt antisense oligo sequence us~d 

to screen the rabbit cDNA library was located within the rabbit sequence 

(underlined and bolded in Figure 15), however, the sequence was translated in a 

reading frame that was different from that of yeast UPF1 (compare aa sequence 

250-255 in Figure 13 with aa sequence 551-555 in Figure 15). These results 

indicate that I have isolated a rabbit cDNA with a very high degree of nucleotide 

and amino acid identity to that of the canine TRAPa gene. Therefore, I conclude 

that I have cloned the rabbit homologue of the canine TRAPa gene whose gene 

product might be important for translocating nascent polypeptide chains from the 

cytoplasm across the ER membrane. 
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Figure 15. Comparison of nt and deduced aa sequences of rabbit and canine 
TRAPa. The nt sequence of rabbit TRAPa (rTRAPa) was determined as described 
(Sanger et al., 1977) from two cloned cDNA inserts. The nt sequence of canine 
TRAPa (cTRAPa) was retrieved from the GenBank database (accession no. 
X51367). In the alignments, a period indicates nt identity and a star a break in the 
nt sequence. The aa sequence predicted from the nt sequence of rTRAPa is 
shown above the codons in the single letter IUPC format, whereas only canine aa 
residues that are different from that of the rabbit aa sequence are shown below the 
canine nt sequence. The putative hydrophobic leader and transmembrane regions 
are underlined and the translational start and termination codons are double 
underlined. Acidic(-) and basic(+) aa residues are indicated and stretches of 
acidic aa residues, which are shared by rabbit and canine TRAPa. 
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Characterization of the Rabbit TRAP a cDNA 

I carried out experiments in various mammalian cells to analyze the 

expression of TRAPa on the mRNA level in various mammalian cells (see Table 

4). I analyzed total RNA from a rabbit (B cell hybridoma, 96-1), mouse (B cell 

lymphoma, NYC) and the human (T cell line, Jurkat) by northern blot analysis 

using high stringency conditions and the complete rabbit TRAPa cDNA clone as 

a probe. Figure 17.A shows the results from this experiment. In rabbit lanes I 

detected bands of 1.3, 2.8 and 3.7 kb (lane 2), in mouse 1.3, and 2.8 kb (lane 6), 

and in human lanes bands of 1.3, 3.7, and 2.7 kb in size (lane 4). From these 

results, I assume that the 1.3-kb band most probably represents TRAPa mRNA 

because its size corresponds very well with that of my rabbit TRAPa cDNA 

clone. Because I detect in the rabbit, human, and mouse cells very slmilgr 

bands with the rabbit TRAPa probe, this gene is very likely conserved during 

evolution. This is further supported by the fact that TRAPa of other species such 

as human and trout (Hartmann and Prehn, 1994) are very similar to the canine 

and rabbit TRAPa. 

To determine if the mRNA species larger than 1.3-kb are TRAPa mRNA 

precursors, I carried out northern blot analysis on the same cell lines using RNA 

isolated from the cytoplasm where only completely spliced TRAPa mRNAs 

should be present. Figure 17 .A shows the results from this experiment. After 

probing the blot with the complete rabbit TRAPa gene, I was able to detect the 
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same bands in both total and cytoplasmic RNA from rabbit, mouse and human 

tissues (Figure 17 .A, lanes 1, 5, and 3 respectively). The purity of the 

cytoplasmic RNA was confirmed by absence of rRNA precursors (35S) in the 

EtBr stained gel (Figure 17.B). I conclude from these results that it is unlikely 

that the bands larger than 1.3-kb are TRAPa pre-mRNAs. Instead, they could 

represent alternatively spliced forms of TRAPa mRNAs or transcripts encoded 

by genes that are different from TRAPa but contain stretches of nucleotide 

identity to the TRAPa cDNA probe. 

TRAPa mRNA Expression In B Lymphoid Lines Representing a B and Plasma 

Cell 

Although TRAPa is not required in vitro for translocating nascent peptides 

across the ER membrane (Migliaccio et al., 1992), its close proximity to the 

translocon suggests a role in this process (Mathes et al., 1994). If TRAPa is 

involved in the translocation process of nascent polypeptide chains into the ER 

lumen, I would predict that TRAPa is expressed at higher levels in a cell with an 

extensive network of ER, which is characteristic for secretory cells. To test the 

idea, I analyzed TRAPa mRNA levels in antibody-producing cell lines that differ 

in their amount of ER and immunoglobulin secretion rate. I found that the 

antibody-secreting hybridoma cell NYCH, which represents a secretory plasma 

cell with an abundant network of ER (Jack et al., 1992), expressed 2-3 X times 

more TRAPa mRNA (1.3-kb) than the B lymphoma line NYC, which represents 
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a mature B cell with a less developed ER network (Jack et al., 1992) (Figure 18). 

Although it remains to be shown that TRAPa is required for polypeptide 

translocation across the ER membrane in vivo, our findings support the idea that 

it may play an important role in protein translocation. Whether the 2.8-kb 

species of RNA in mouse (2.8- and 3.7-kb in rabbit) play a role in producing 

TRAPa protein that aids in protein translocation is unknown. 

Conclusion 

The work above describes my attempt to clone the mammalian 

homologue of the S. cerevesiae UPF1 gene using low-stringency hybridization. 

When an expressed gene (cDNA) was finally isolated, I found that the rabbit 

cloned encoded a homologue of the canine TRAPa (Figure 15). The exact 

function of the canine TRAPa gene is not known. It is known to be a protein 

found to span the membrane of the endoplasmic reticulum (ER) (Wiedmann et 

al., 1987). Though its function is not known, it is possible (as deduced from its 

location) that it is involved with the process of protein translocation across the 

ER membrane (Prehn et al., 1990). It is in close proximity with three other 

proteins called TRAP ~' y and 8 and are thought to be part of the translocon 

(Hartmann et al., 1993), a group of proteins found at the site of protein 

translocation. So far there is evidence for and against the participation of 

TRAPa in the translocation of proteins with leader sequences across the 
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membrane of the ER. Cross linking experiments have identified TRAPa as a 

protein residing in the vicinity of the signal sequence of a polypeptide chain 

during the TRAPa-dependent targeting event (Wiedmann et al., 1987). 

Additionally, lgG or Fab fragments directed against the cytoplasmically exposed 

carboxy terminus of TRAPa block translocation of a secretory protein (Hartmann 

et al., 1989). Conversely, by using microsomal membranes made from TRAPa 

depleted detergent extracts of canine pancreas show that the depletion of 

TRAPa had no effect on the translocation of a secretory precursor (Migliaccio et 

al., 1992). However, so far no molecular analysis of TRAPa at the mRNA level 

have been investigated. If TRAPa is involved in the translocation process of 

nascent polypeptide chains, one prediction would be that TRAPa is expressed at 

higher levels in a cell with a secretory phenotype (an extensive network of ER). 

To test this hypothesis I analyzed TRAPa mRNA levels in antibody-producing 

cell lines that differ in the amount of their ER and potential to secrete antibodies 

(Jack et al., 1989). I found that the antibody secreting B cell hybridoma, (NYCH) 

which represents a secretory plasma cell with extensive ER produces 5 times 

more 1.3-kb TRAPa mRNA than its parent B cell line (NYC) (Figure 18). 

Although it remains to be shown that TRAPa is directly required for 

polypeptide translocation across the ER membrane in vivo, my findings support 

the idea that it may be important in protein translocation. The above conclusion 

is, however, based on mRNA expression analysis. First of all, the increase in 

1.3-kb mRNA levels have not been confirmed on the protein level using an 
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antibody against the TRAPa protein. Second, although there was a 5 fold 

increase in 1.3-kb mRNA level, there was no difference in 2.8-kb mRNA level. It 

appears that this mRNA is not under the same type of control as that of the 1.3-

kb species. This could be due to differential transcription rate or to different 

mRNA stability between the two cell types. Finally, it is not clear whether TRAPa 

protein is indeed transcribed from the 1.3-kb transcript. The 1.3-kb transcript 

could also be encoded by a cross-hybridizing gene. In this case, TRAPa would 

be encoded for by the 2.8-kb or 3.4-kb transcript. 

As mentioned above there is evidence for and against TRAPa's role in the 

translocation of nascent polypeptide chains into the lumen of the ER. The 

evidence described here indicates that when a cell secretes more proteins 

(immunoglobulin in this case) it makes more 1.3-kb TRAPa mRNA. Based on 

the assumption that the 1.3-kb TRAPa mRNA encodes the TRAPa protein, it is 

tempting to speculate that as a cell increases the size of its ER (and thus its 

secretion potential), it increases TRAPa production to facilitate the translocation 

process of secreted proteins. As mentioned above, TRAPa may not be essential 

for protein translocation. However, it could, together with essential proteins, 

serve as a translocation enhancer. 



154· 

Transfect an upf1 Null Yeast Strain With a Mammalian cDNA Expression Library 

and Rescue Yeast Transformants With a UPF1-Positive Phenotype. 

Mammalian homologues of the yeast S. cerevisiae genes can be isolated 

by complementation of a mutant yeast strain with a candidate mammalian gene 

or a mammalian expression library. This process has a number of steps. First, 

the identification or generation of a strain that doesnt express the gene of 

interest (mutant allele) and changes its phenotype, for which one can select, 

depending on the presence or absence of the gene of interest. Second, the 

mutant yeast is then transformed with a cDNA library generated from the 

organism from which the homologue will be cloned. Third, yeast transformants 

are selected, or screened, for a positive phenotype. Fourth, the introduced gene 

is isolated from the yeast and analyzed for structural (sequence) and functional 

homology (antisense expression in mammalian cells). This approach is only 

successful if the mammalian gene product replaces the function of the absent 

yeast protein. 

The first goal was to generate a UPF1 mutant yeast strain (upf1) that 

changes its phenotype depending on the presence or absence of Upf1p, e.g. 

doesn't grow in the absence of an essential nutrient. For example, when the 

HIS4 gene contains a nonsense codon the mRNA is usually degraded and the 

yeast is unable to grow in the absence of histidine (Leeds et al., 1992), however, 

when the UPF1 gene is absent from this yeast cell the mRNA becomes stable 

leading to an increase in his4 mRNA levels and, due to a subsequent ribosomal 

read-through of the nonsense codon, an increase in the level of His4p. Although 
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this selection scheme is useful to isolate upf1 mutant yeast strains, it might be 

difficult to use it for isolating a mammalian homologue. This is because the 

complementation of a upf1 mutant would render a His+ cell His-, which would 

require the replica-plating of thousands of transformants on His- and His+ plates. 

The selection system I have devised uses negative selection marker in S. 

cerevisiae, the CAN1 gene product. The CAN1 gene encodes arginine permase, 

a outer transmembrane protein that transports the amino acid arginine. The 

CAN1 gene product can also import the toxic arginine analogue canavanine. 

Canavanine is able to act as a chain terminator during protein translation and 

leads to the death of the yeast cell. As expected, cells that have a functional 

CAN1 gene are sensitive to medium containing canavanine and cannot grow 

whereas can1 yeast (CanR) are able to grow in canavanine (reviewed by 

Rosenthal, 1977). My selection system employs the CAN1 gene to select for 

upf1 mutant yeast cells that have been complemented with a mammalian UPF1 

homologue. I proposed to generate a yeast strain containing a can1 gene with a 

nonsense codon (canavanine resistance) and a defective UPF1 gene. If the loss 

of UPF1 leads to an increase in nonsense can1 mRNA and if there is enough 

translation read-through, more Can1 p should be synthesized, leading to a 

canavanine sensitive phenotype. Or in other words, the yeast cells should not 

grow in the presence of canavanine (Figure 19). The complementation of this 

sensitive strain with a mammalian UPF1 homologue would then lead to the 
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a can 1 gene with a nonsense 
codon (nonsense can1 mRNA) 
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'-.... Transform Cans, upf1 yeast with 
mammalian cDNA yeast expression 

library and plate transfectants on 
plates supplemented with canavanine 

Transformants that complement the/ 
upf1 defect will degrade the can1 

nonsense mRNA and survive 

/ 
Rescue the complementing 

cDNA for further analysis 

Figure 19. Schematic diagram of the complementation approach to 
isolate a mammalian UPF1 homologue by complementation of a UPF1-
yeast strain. Can1R, grows in canavanine, Can5 , doesn't grow in 
canavanine, UPF1-, UPF1 is deleted. 
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degradation of the nonsense can1 mRNA and thus, to decreased Can1p levels. 

Consequently, yeast cells that have been complemented with a functional UPF1 

homologue, should grow in the presence of canavanine (Figure 19). In this way 

only yeast receiving a mammalian homologue of the UPF1 gene would grow and 

these cells could easily be isolated for study. Because I was unable to generate 

a suitable upf1, can1 nonsense, yeast strain, I will only briefly discuss this 

approach in the following sections. 

Creation of a Selectable Yeast Strain That Changes Its CAN1 Phenotype 

Depending on the Presence of Upf1 p 

To carry out this approach I obtained yeast strains that contain can1 

genes with different nonsense codons (Ono et al., 1983) and a UPF1 mutant 

strain (Table 6) (Leeds et al., 1991). These strains were tested and have the 

correct phenotypes (data not shown). One important part of the UPF1 positive 

selection system is that the levels of can1 nonsense mRNAs are decreased in 

the presence of the Upf1 p. Because at the beginning of these experiments I 

didn't have an antibody against the Upf1 p, I performed northern blot analysis and 

found that nonsense can1 mRNA levels in the three strains Ono 279, 280, and 

284, were approximately 50% lower when compared to the steady state level of 

functional CAN1 mRNA in the parent strain Ono26 (data not shown). From 

these results I conclude that the presence of an UPF1 mRNA correlates 
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Table 6. Yeast Strains 

Strain Genotype Source 

Ono 26 MA Ta leu2-1, 112 metB-1 B.I. Ono 

Ono 280 MATa leu2-1, 112 can1-204 metB-1 B.I. Ono 

Ono 284 MATa leu2-1, 112 can1-202 metB-1 B.I. Ono 

PLY154- MATa upf1-D1 ura3-52 trp1-D1 rpb1-1 his4-38 This work 
ura3::his4 leu2-1 ura3::HIS4 

PLY154 MAT a upf1-tl 1 ura3-52trp1-tl1 rpb1-1 his4-38 M. Culbertson 
leu2-1 

Y06-15C MATa ade2-1 arol-1 can1-100 leu2-2 ilv1-2 B.I. Ono 
his4-166 lys2-101 metB-1 

SL988-11A MAT a leu2-1 Jys2-1his3-tl1 ura3-52 trp1 S. Liebman 

with a decrease in the steady state level of can1 mRNA containing a nonsense 

codon when compared to the parent strain. This result raises the possibility that 

upon elimination of the UPF1 gene in the can1 nonsense codon yeast strains, 

the level of can1 nonsense mRNA will increase and that this increase combined 

with possible ribosomal read-through of the nonser.ise codon will lead to the 

production of enough Can1 p to change the phenotype of the UPF1 mutant strain 

from canavanine resistant to canavanine sensitive. 

The following briefly describes the steps involved in the generation of a 

suitable yeast strain that can be used to select for the presence of a mammalian 

UPF1 homologue (Figure 20). First, I inactivated the URA3 gene by insertion of 

a selectable marker. This will allow selection of transformants containing URA3 
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I KO 

' URA3 Make Diploids 
and Sporulate 

DJ A+a 

Ono strains containing a can 1 gene 
with a nonsense codon 

/ 
Select for presence of His+ (50% are UPF1-) 

~ 
Screen Ura3- yeast by replica plating to Ura- plates 

Select for Upf1- yeast colonies 
by plating on leu- plates 

/I\ 
Confirm absence of Upf1 gene by 

northern blot analysis 

~ Study Further f 
Test upf1 (Upf1-), ura3 (Ura3-) yeast for canavanine sensitive. If yeast are only 
canavanine sensitive, it indicates that the absence of UPF1 may be de-suppressing 
the can1 nonsense mRNA leading to the production of CAN1 protein and thus, 
canavanine sensitivity. Confirm this effect by UPF1 transformation and 
complementation. If both canavanine sensitive and canavanine resistant yeast exist 
it indicates that the absence of upf1 cannot de-suppress the can1 nonsense mRNA 
and the yeast cannot be used to identify a UPF1 mammalian homologue by 
complementation. 

Figure 20. Flow chart to generate a suitable yeast strain to isolate a 
mammalian UPF1 homolgue by complementation. 
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plasmids (data not shown). To generate a upf1, ura3, nonsense can1 strain 

which will finally be used as the recipient for the mammalian cDNA library, I used 

a mating and sporulation approach. To do this the appropriate yeast strains 

(PL Y154 ura3::HIS4, with Ono 26, 280, 284) were mated, sporulated, and 

selected for the presence or absence of appropriate markers according to the 

protocol described in materials and methods. To select for the presence of the 

upf1 gene disrupted by an insertion of the HIS4 gene, the haploid segregates 

were screened for the ability to grow in His- media. Because the can1 nonsense 

codon strains (Ono 26, 280, 284) all contain a wild-type HIS4 gene, I expected 

that only 50% of the His+ yeast would contain a disrupted UPF1 gene. To 

identify the yeast with a disrupted UPF1 gene I replica-plated the His+ yeast 

colonies on plates without leucine. Because the haploid segregates contain 

either a UPF1-suppressable (leu2-1) or UPF1-non-suppressable (leu2-1, 112) 

allele of the leu2 gene, only cells that do not have UPF1 and contain the 

suppressible allele of leu2 can grow in the absence of leucine. The Leu+ yeast 

colonies were then replica plated onto Ura- plates to obtain yeast that are 

auxotrophic for the library selection marker (URA3). To confirm the absence of a 

functional UPF1 gene, RNA from these yeast colonies was subjected to northern 

blot analysis using a UPF1 probe (Figure 21). The results demonstrate that the 

Ura-, His+, Leu+ yeast colonies do not express UPF1 mRNA when compared to 

the parent Ono strains. These yeast colonies will contain either a wild-type or 

nonsense codon CAN1 allele (to be discussed below) (Figure 20). 
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Figure 21. Northern blot of total yeast RNA using a UPF1 probe. 5 µg of total RNA from HIS+, URA+, LEU+ yeast 
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To test whether the upf1 mutant yeast is able to suppress a can1 

nonsense codon allele and change the phenotype of the yeast from canavanine 

resistant to canavanine sensitive, I determined the sensitivity of the yeast 

colonies to canavanine. Briefly, yeast were grown overnight in liquid cultures 

and counted according to the optical density. Ten-fold dilutions of cells were 

spotted onto plates containing increasing levels of canavanine from 0 µg/ml to 

150 µg/ml. All the parent strains used to create the new haploid crosses were 

also plated on these plates to control for a wild type CAN1 or a nonsense can1 

gene. Each cross of the upf1 null strain with Ono 280 as well as Ono 284, both 

of which contain nonsense can1 genes, yielded colonies that are completely 

resistant to canavanine, or that are completely sensitive to canavanine (Figure 

22). This suggests that all yeast colonies received a CAN1 allele from either the 

upf1 parent (PLY154 ura3::H/S4, CAN1), or from the Ono strains (Ono nonsense 

strains, can1). Further, I conclude that the absence of Upf1p does not lead to 

the suppression of the can1 nonsense codon mRNA in Ono 280 and Ono284. 

Thus, none of the crossed yeast strains, although some of them contain a 

nonsense can1, and each of them upf1, are suitable for the selection of a 

functional UPF1 gene or mammalian homologue. 

Conclusion 

I have shown here that the presence of a UPF1 gene correlates with the 
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decreased steady state level of a can1 mRNA containing a nonsense codon. 

Unfortunately when the UPF1 gene is absent, the phenotype of the mutant yeast 

cells does not change from canavanine resistant to canavanine sensitive. 

Because this change does not occur, it is not possible to use these yeast strains 

as recipients for a mammalian cDNA library to select for cDNA clones that 

complement the upf1 defect. Two explanations might be that levels of can1 

nonsense mRNA do not significantly increase in upf1 cells or that an increase in 

Can1p is not enough to confer canavanine sensitivity. 
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Determine Whether the Expression of a Dominant-Negative Form of Yeast Upf1 p 

In a Mammalian Cell Correlates With Increased Levels of Nonsense mRNA 

Overall Approach and Rational 

The use of dominant-negative genetic systems has become widespread in 

identifying the function of a gene in lower eukaryotic and mammalian organisms. 

This technique involves the expression of a truncated or mutant form of a gene 

whose product can interfere with the normal function of its corresponding wild 

type gene. The mutant gene is thought to interfere by competing for interacting 

molecules, thereby inhibiting the ability of the wild type gene product to carry out 

its intended function, or by interacting directly with the wild type gene product 

and, thereby, eliminating its function. Alternatively, a truncated or wild-type 

polypeptide could gain a function, which interferes with other physiological 

processes within a cell. 

It is possible that dominant-negative forms of Upf1 p (Upf1-D1 p ), which 

have been identified in yeast cells, could also act dominant-negative in a higher 

eukaryotic cell. If mammalian cells contain a UPF1-Like protein, I expect that the 

expression of yeast Upf1-D1 p in a mammalian cell could result in increased 

levels of nonsense mRNA (Figure 23). If this is the case, it would be the first 

evidence that a UPF-Like system exists in mammalian cells. 
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Figure 23. Strategy to identify a UPF1-like system in a mammalian cell by expression of a dominant
negative form of UPF1. The Schematic representation of the cloning of UPF1-D1 into the expression 
vector pHp-APr-1-neo and subsequent transfection into the mouse B cell hybridoma VXH. Structure of the 
nonsenseµ mRNA in VXH is shown in the cell. The exons are indicated by boxes (VH variable; C, 
constant) and the length of translation products by lines below the mRNA. The position of the nonsense 
codon at the end of the VH exon is represented by the X. 
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Generation of a Mammalian UPF1-D1 Expression Vector 

To determine if a dominant-negative form of the yeast Upf1 p can block the 

function of a putative mammalian factor that controls nonsense mRNA levels, I 

obtained a dominant-negative UPF1 mutant gene. This gene called UPF1-D1, 

contains a missense mutation within the RNA helicase region (Gly556Asp). Wild 

type yeast transformed with this mutant UPF1-D1 behave as if they lack the 

UPF1 gene, that is, they grow in the absence of leucine, although they still 

contain a nonsense leu2-1 mRNA (see page 34 for explanation). From these 

results it was determined that this UPF1 mutant acts in a dominant-negative 

fashion on the wild type UPF1 expressed within the same cell (Leeds et al., 

1992). To carry out this approach, I cloned the UPF1 and UPF1-D1 genes into a 

mammalian expression vector as described in Figure 24. To confirm that the 

UPF1-D1 construct was not altered during the cloning procedure, I confirmed the 

01 mutation by DNA sequencing and performed western blot analysis on in vitro 

transcribed-translated products generated from an UPF1-D1 plasmid. I was able 

to detect the 01 mutation after the swapping of the 01 fragment (Figure 25) and 

a radiolabeled band of the same size produced from in vitro transcribed

translated UPF1 and UPF1-D1 plasmids (Figure 26). This indicates that the 

cloning of UPF1 and UPF1-D1 did not alter the ORF. 
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PCR amplify the 5' ORF using a 
chimeric 5' end primer that adds a 
EcoRI site immediately upstream 
of the A TG translation start site. 

EcoRI l!!I BsaBI 

Digest p73+UPF1/-3'UTR with / 
EcoRI and BsaBI and remove 
the 5' UTR fragment. Replace 
the missing region of ORF with 
the new PCR product 

Isolate the DNA fragment containing 
the UPF1-D1 mutation on a BstXl/Nrul 
fragment from the plasmid pUPF1-D1 

BstXI !!!!!!!I Nrul 

Digest p73+UPF1/-5'3' with 
BstXI and Nrul and remove / 
a region of the ORF. Replace 
the missing region with the 
UPF1-D1 mutant fragment 

• 
Remove UPF1 and UPF1-D1 on a 
Sall/Xbal fragment and ligate into 
pHb-APr-1-neo prepared with 
Sall/BamHI using a two step ligation. 

Figure 24. Schematic representation of the steps taken to clone UPF1 and 
UPF-01 ORF into the mammalian expression vector pH~-APr-1-neo. The 
restriction enzyme sites used are listed and a Sall and Xbal sites are 
represented by a (S) and (X) respectively. 



UP Fl ATGTCGTATGTTGCACATGTGTTG~TGCTGGTGATAAGCGCTT 

UPFl-Dl ATGTCGTATGTTGCACATGTGTTGATGCTGGTGATAAGCGCTT 

UPFl-Dl 
swap sequence ATGTCGTATGTTGCACATGTGTTGATGCTGGTGATAAGCGCTT 

Figure 25. Partial sequences of the wild-type UPF1 and 
corresponding sequences in a dominanat-negaitive form of UPF1 
(01). The UPF1 and UPF1-D1 sequence are described in Leeds et 
al., 1991; UPF1-D1 swap sequence was deduced by sequencing 
p73+UPF1-01/-5'3' with the primer UPF1 .bak. 
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Figure 26. Western blot analysis of yeast cell lysates and UPF1 IVTL products. (A) Various amounts of 
total yeast lysate (as indicated) and (B) 5 or 10 µI of whole UPF1 or UPF1-D1 IVTL product were 
separated on a reducing 10% SDS/PAG. The gel was transferred to nitrocellulose and incubated with anti
UPF1 rabbit antisera (from Jacobson) at 1 :200. The rabbit anti-UPF1 antibodies were detected using a 
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Expression of UPF1 and UPF1-D1 in Mouse B cells 

Containing a Nonsense mRNA 

171 

To test whether either the wild-type UPF1 or the dominant-negative UPF1 

interfere with a putative mammalian UPF1 homologue, I individually transfected 

the UPF1 or UPF1-01 expression vectors into a mouse B cell hybridoma that 

contains a nonsense codon within the second exon of the lg µ heavy chain 

mRNA (indicated with an X Figure 23) (VXH, Jack et al., 1989). VXH cells stably 

transfected with the UPF1, UPF1-01, as well as an empty vector were screened 

by northern blot analysis for their ability to express the UPF1 or UPF1-01 mRNA. 

Northern blots revealed the same size band in VXH transfected cells and yeast 

cells (Figure 27, lanes 1-7 and 10-15). From this I concluded that my transfected 

UPF1 and UPF1-D1 genes can be transcribed into mRNA. The same northern 

blot was also subjected to probing with a mouse µ cDNA probe as well as a 

GAPDH probe to control for total RNA loading. The levels of hybridization of 

these probes were quantitated using Betascope blot analysis. After 

normalization for RNA loading I found that the level of µ nonsense mRNA was 

unchanged in cells transfected with the UPF1-D1 expression vector when 

compared to the negative control (VXH with vector alone) (Table 7). To test 

whether the UPF1 and UPF1-01 mRNAs can be translated, I performed weste:-n 

blot analysis of the transfected cells. I found that I could also detect a protein of 

the same molecular weight in my UPF1-01 expressing cells (Figure 27, lanes 2, 

4, and 14; and Figure 28 1-3) using an anti-UPF1 antibody (gift from A. 
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Figure 27. Northern blot analysis of VXH cells stably transfected with UPF1-D1 
expression vector and vector alone. 1 Oµg of total RNA from VXH (lab 
nomenclature: GAMO 12.8.10) stably transfected with UPF1-D1 (lanes 2, 3, 4, 5, 
6, 7, 11, 12, 13, 14, 15) and vector alone (~-actin) transfectants (lanes 8, and 16) 
as well as the VXH parent cell line FH (lab nomenclature: LOCB 83.13.13.1) 
(lanes 9, and 17) were subjected to northern blot analysis as described in 
materials and methods and first, probed with a mouse µ cDNA, and second, a 
UPF1 probe. RNA from yeast Y06-15C in lanes 1, and 10 served as a positive 
control for UPF1 hybridization. To control for RNA loading, the blot was finally 
hybridized with a rabbit GAPDH cDNA probe (data not shown). 
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Table 7. --Quantitation of Northern Blot Analysis in Figure 27a 

Hybridomas RNA µ pre-µ GAP DH rel [µ] rel [pre-µ] %µ % pre-µ 
loaded [µ/GAP DH] [pre-µ/GADPH] %VXH %VXH 

[CPM] [CPM] [CPM] 

FH Blot A 5 µg 455.5 6.3 8.2 55.5 0.77 2000% 154% 
VXH/p-actin (#4) 5 µg 21.2 3.9 8.0 2.7 0.50 100% 100% 

VXH/UPF1-D1 (#2) 5 µg 12.7 4.3 9.3 1.3 0.46 48% 92% 
VXH/UPF1-D1 (#3) 5 µg 21.5 6.7 10.4 2.0 0.64 74% 128% 
VXH/UPF1-D1 (#7) 5 µg 16.3 4.1 14.7 1.1 0.28 40% 56% 

VXH/UPF1-D1 (#10) 5 µg 24.8 5.1 10.2 2.4 0.50 88% 100% 
VXH/UPF1-D1 (#11) 5 µg 23.6 6.5 11.2 2.9 0.58 107% 116% 
VXH/UPF1-01 (#13) 5 µg 13.5 5.5 16.0 0.8 0.34 29% 68% 

FH Blot B 5 µg 245.5 5.7 7.8 31.5 0.73 1350% 160% 
VXH/p-actin (#4) 5 µg 11.9 2.4 6.4 2.3 0.45 100% 100% 

VXH/UPF1-D1 (#15) 5 µg 10.5 6.6 8.6 1.1 0.77 48% 171% 
VXH/UPF1-D1 (#16) 5 µg 13.4 8.7 10.5 0.9 0.82 39% 182% 
VHX/UPF1-D1 (#17) 5 µg 9.8 4.0 12.8 0.5 0.31 21% 68% 
VXH/UPF1-D1 (#19) 5 µg 22.2 7.7 13.9 0.9 0.55 40% 122% 
VXH/UPF1-D1 (#20) 5 µg 20.7 7.8 10.9 1.4 0.71 61% 157% 

aRadioactivity of respective bands in each Northern blot (CPM) was determined by using a betascope blot analyzer. 
Relative steady-state level of respective RNA was calculated by dividing CPM of µ by that of GAPDH in the same lane. 
% [µ] is the percent of[µ] relative to that of untransfected hybridoma FH by setting FH (cells containing the same µgene 
as VXH cells except that the stop codon TAG reverted to AAG) value equal to 100%. 
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Figure 28. Western blot of protein lysates of VXH cells stably 
transfected with a UPF1 or UPF1-D1 expression vector. Protein from 8 
X 105 cells was separated by reducing SOS/PAGE, transferred, and 
probed using an rabbit anti-UPF1 peptide antiserum (1 :200). The 
antibody-antigen complex was detected using a HRP labled-goat anti
lgG antiserum (1:10,000) followed by ECL detection. The bands were 
detected by fluorography using a 5 minute exposure. Lanes 1-3, UPF1-
D1 transfected cells; lane 4, UPF1 transfectants. Lane 5, untransfected 
VXH and lane 6, total yeast lysate. Bands detected within the 
bracketed region are mouse y2b heavy chains that cross react with the 
goat anti-rabbit lgG secondary antibody. 
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Jacobson). It is possible that the yeast Upf1 p or Upf1-D1 p folded at 37°C are 

unable to act in a dominant-negative fashion. Therefore, I repeated the northern 

blot analysis with cells that were grown at 30°C, a temperature at which yeast 

cells are normally cultured in the lab. Northern blot analysis of these 

transfectants revealed the same results as obtained with cells grown at 37°C 

(data not shown). From these results, I conclude that the amount of Upf1-D1 p, 

or wild-type Upf1 p that is synthesized in stable VXH transfectants does not result 

in a decrease of nonsense µ mRNA. 

Conclusions 

If mammalian cells contain a UPF1-Like protein, I expected that the 

expression of yeast Upf1-D1p in a mammalian cell could result in increased 

levels of nonsense mRNA. If this is the case, it would be the first evidence that a 

UPF-Like system exists in mammalian cells. To test this hypothesis, cells 

containing a µ nonsense codon-containing mRNA were transfected with a 

construct designed to promote high level expression of Upf1-D1p, a dominant

negative form of Upf1p. Stable transfectants expressed the UPF1-D1 mRNA 

and low levels of Upf1-D1 p. No change in nonsense µ mRNA was observed. 

This result could be due to a number of reasons. First, the level of Upf1-D1 p 

produced was not high enough to interfere with the mammalian nonsense mRNA 

reduction system. Second, the levels of Upf1-D1p were sufficient to have a 

presumed effect but a UPF-Like system does not exist in mammalian cells. 
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Search Mammalian DNA Databases With the Yeast UPF1 Amino Acid Seguence 

and Determine Whether Identified Genes are Structural and Functional 

Homologues of Yeast UPF1. 

To identify human or other mammalian homologues of genes that have 

been previously cloned in lower organisms, one could compare the cloned 

sequence to mammalian nucleic acid and protein databases. If a human gene 

fragment is found, it could then be used to isolate the complete gene from a DNA 

library. A complete gene could then be sequenced and tested for its function as 

discussed below. 

Using the XREFdb to Search for Mammalian Homologues of the Yeast UPF1 

Gene 

Recently a number of new search programs and databases have been 

developed for researchers who want to find a human, rat, or mouse homologue 

of genes cloned from lower eukaryotic organisms. One such search program is 

the XREFdb program (Basset et al., 1995) which is accessible via the world wide 

web (http://www.ncbi.nlm.nih.gov/XREFdb/). The XREFdb provides BLAST 

similarity searches (TBLASTX; Altschul et al., 1990) with an amino acid 

sequence provided by the user. XREFdb searches databases that contain 

Expressed Sequence Tags (EST) (Boguski et al., 1993) and Sequence Tagged 

Sites (STS} (Green et al., 1989) of cloned DNA and cDNA fragments. The query 

sequence submitted to the XREFdb is compared once a month with the rapidly 
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and ever expanding database of DNA sequences generated from the human and 

mouse genome projects and a report of the identified genes is sent to the user 

who submitted the search. 

To identify mammalian homologues of the S. cerevisiae gene UPF1, I 

submitted the Upf1 p sequence (SwissProt accession #P30771) to the XREFdb 

for the first time in September 1995. In both September and October 1995, 

XREFdb E-mail reports were sent to me with no significant matches. In 

November 1995, a XREFdb report was received that contained a number of 

alignments between amino acid sequences deduced from human EST cDNAs 

clones and the Upf1 p. 

Analysis of Clones Whose Sequence Matched That of UPF1 

The original data report that was sent in November, 1995, by the XREFdb 

is shown in Figure 29. When I located the regions that matched with the EST 

sequences in the UPF1 sequence, I found that all EST sequences aligned with 

the RNA helicase region of the Upf1 p (Figure 30). Further analysis of the 

alignments revealed three subsets of matched sequences. The first subset 

contains the first two genes identified in the XREFdb report (GenBank accession 

#F06433 and #R13609). These two human EST cDNAs, which were derived 

independently from same library (a human fetal brain cDNA library constructed 

by Benito Soares, M. Fatima Bonaldo, Hillier, L., The WashU-Merck EST Project, 

unpublished, 1995) share a large amount of identical amino acid residues 

(Figure 29). This suggests that they originated from the same transcript. 
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Figure 29. XREFdb announcement that my UPF1 query sequence has been 
matched to a number of recently sequenced human cDNA EST clones. Sbjct 
indicates the marked EST sequence; query, the submitted UPF1 sequence; 
positives, the number of identical and similar amino acid matches between the 
indicated sbjct and query. 



EST Similarity Search Report: (TBLASTN vs. human/mouse/rat dbEST subset) 

Gene name(s): NAM7/UPF1 Searched: 28 Oct 95 

GenBank Mapped? 
New? NCBI_ID: Accession: P value: N: Matrix: Hiscore: (Probe #) 

New 122095 F06433 4.le-38 2 BLOSUM62 183 Yes(#l65)* 

Organism: 
Library: 
source: 
E-mail: 
Phone: 

H.sapiens 
normalized infant brain cDNA 
Genethon 
genexpress@genethon.fr 
33169472800 FAX: 33160778698 

Score = 183 (83.9 bits), Expect 4.le-38, Sum P(2) 4.le-38 
Identities= 37/68 (54%), Positives= 43/68 (63%), Frame= +2 

Query: 624 LISLGHVPIRLEVQYRMNPYLSEFPSNMFYEGSLQNGVTIEQRTVPNSKFPWPIRGIPMM 
L+ LG P RL+VQYRM+ LS FPSN+FYEGSLQNGVT R F WP PM 

Sbjct: 146 LVXLGIRPXRLQVQYRMHSALSAFPSNIFYEGSLQNGVTAADRVKXGFDFQWPQPDKPMF 

Query: 684 FWANYGRE 691 
F+ G+E 

Sbjct: 326 FYVTQGQE 349 

Score 174 (79.8 bits), Expect= 4.le-38, Sum P(2) = 4.le-38 
Identities = 32/47 (68%), Positives = 40/47 (85%), Frame = +3 

Query: 

Sbjct: 

576 QASEPECLIPIVKGAKQV!LVGDHQQLGPVILERKAADAGLKQSLFE 622 
Q +EPEC++P+V G KQ+ILVGDH QLGPV++ +!CAA AGL QSLFE 

3 QXTEPECMVPVVLGGKQLILVGDHCQLGPVVMCKKAAKAGLSQSLFE 143 

New 184188 Rl3609 4.6e-30 2 BLOSUM62 165 

Organism: 
Library: 
Source: 
E-mail: 
Phone: 

H.sapiens 
Soares inf ant brain lNIB 
Wilson RK 
est@watson.wustl.edu 
314 286 1800 FAX: 314 286 1810 

Score= 165 (75.7 bits), Expect 4.7e-30, Sum P(2) = 4.7e-30 
Identities= 33/52 (63%), Positives= 37/52 (71\), Frame= +2 

No 

Query: 624 LISLGHVPIRLEVQYRMNPYLSEFPSNMFYEGSLQNGVTIEQRTVPNSKFPW 675 
L+ LG PIRL+VQYRM+P LS FPSN+FYEGSLQNGVT R F W 

Sbjct: 143 LVVLGIRPIRLQVQYRMHPALSAFPSNIFYEGSLQNGVTAADRVKXGFDFQW 298 

Score 133 (61.0 bits), Expect = 4.6e-30, Sum P(2) = 4.6e-30 
Identities= 24/37 (64%), Positives= 32/37 (86%), Frame= +l 

Query: 

Sbjct: 

578 SEPECLIPIVKGAKQVILVGDHQQLGPVILERKAADA 614 
+EP C++P+V GAKQ+ILVGDH QLGPV++ +!CAA A 

7 TEPXCMVPVVLGAKQLILVGDHCQLGPVVMCKKAAKA 117 

New 271744 Rll830 2.2e-ll 3 BLOSUM62 

Organism: H.sapiens 
Library: Soares infant brain lNIB 

83 

Score= 83 (38.l bits), Expect= 2.2e-ll, Sum P(3) = 2.2e-ll 
Identities• 17/27 (62\), Positives= 22/27 (81%), Frame= +2 

Query: 

Sbjct: 

758 EVASVDAFQGREKDYIILSCVRANEQQ 784 
EV +VDAFQGR+KD +I++ VRAN Q 

167 EVDTVDAFQGRQKDCVIVTXVRANSIQ 247 

Score • 71 (32.6 bits), Expect = 2.2e-ll, Sum P(3) = 2.2e-ll 
Identities= 15/23 (65%), Positives= 19/23 (82\), Frame• +3 

Query: 

Sbjct: 

793 RRLNVGLTRAKYGLVILGNPRSL 815 
+RLNV +TRAKY L ILG+ R+L 

276 QRLNVTITRAKYSLFILGHLRAL 344 

No 

180 

683 

325 



sum p( 3 ) = 2.2e-11 
wll• (S4 t), Frame = +2 
• 12/22 

118 

sum p(2) = 3.Je-ll 
w11. l 

-. 31/62 (SH)• Frame = + 

No 

LVGDHQQLGPVILERKAADAGLKQSLFERLI 625 
VGD +QL p ++ KA + G QS+ R 

I 

++i~VGDPKQLPPTVISMKAQEYGYDQSMMARFC 18 6 

= 3.Je-11 
Frame = +l 

114 No 

VGDHQQLGPVILERKAADAGLKQSLFERLISL 627 

ILVGD +OL P ++ KA + G QS+ R L 

LVGDPKQLPPTVISMKAQEYGYDQSMMARFCRL 224 

= 6.3e-ll 
(72lr), Frame = +3 

: EST clones and their names used in the lab. 

Insert Size in kb 
(approximate) 

1.5 

1.3 

1.6 

Lab Designation 

Clone 1 / SAM1 

Clone 2 I SAM2 

Clone 3 I SAM3 

r-.* 
- . 

N/A Clone 4 I SAM4 
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Figure 30. Schematic representation of the yeast UPF1 protein and alignments with the 
putative translation products deduced from from cDNA EST clones identifed by the XREFdb 
and shown in Figure 29. Amino acid residues in UPF1 that border the RNA Helicase region are 
indicated. 
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I, therefore, decided to obtain the clone that was the most accessible (GenBank 

accession #R13609). The second subset contained only clone H11830 

(GenBank accession #H11830). The third and final subset contained clones 

H15581 and H11176 (GenBank accession #H15581, #H11167). These two 

human EST cDNAs overlap completely. Therefore, only clone H11167 was used 

in all subsequent experiments. The human EST cDNA clones mentioned above 

were requested and upon arrival, all four clones were renamed (Table 8). The 

insert size of clones 1, 2, and 3 was determined by restriction enzyme digestion. 

Even though the GenBank sequence of each clone was between 250 and 400 nt 

long, the actual insert size of the clones was between 1.3-kb and 1.6-kb in 

length. Clone 1 (R13609) had an insert size of approximately 1.5 kb. To verify 

the identity of clone 1, both ends of this clone were sequenced. The 5' 

sequence of clone 1 could be aligned with the published GenBank sequence of 

clone 1 (#R 13609) (Figure 31 ). The 3' end of the clone contained nucleotides 

compatible to the oligomer used to generate the first strand cDNA synthesis 

during the cDNA library construction (data not shown). Therefore, my clone 1 

contains a 1.5-kb insert whose 5' sequence is identical to that published in 

Gen Bank file #R 13609. Next, I isolated the 1. 5-kb insert from the plasmid and 

used it as a probe in northern blot analysis of total human RNA. Inserts were 

also prepared from clones 2 and 3 (Gen Bank clones #H 11830 and #H 11167, 

respectively) and used as probes for northern blot analysis. However, the 

sequences of inserts 2 and 3 were not confirmed by DNA sequencing. The 
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R 13609 = Sequence obtained from Gen Bank file #R 13609 

SEA = Sequence by SEA 

Rl3609 CCAGGCACCGAGCCGNAGTGCATGGTTCCCGTGGTCCTCGGGGCCAAGC 

111111 
SEA CCAAGC 

Rl3609 AGCTGATCCTTG-AGGCGACCACTGCCAGCTGGGCCCAGTGGTGATGTGC 

111111111111 11111111111111111 11111111 I 1111111 11 
SEA AGCTGATCCTTGTAGGCGACCACTGCCAGCAGGGCCCAGTGGTGATG-GC 

Rl3609 AAGAAGGCGGCCAAGGCGGNCTGTCACAGT-CGCTCTTCGAGNCCTGGTG 

111111111111111 111 1111111111 I I 
SEA AAGAAGGCGGCCAAG-CGG-CTGTCACAGTCCG-T 

Rl3609 TGCTGGGCATCCGGCCCATCCGCCTGCAGGTCCAGTACCGGATGCACCC 

Rl3609 AATGGTGTCACTGCAGCGGATCGTGTGAAGAAGGGATTTGATTTCCAGT 

Rl3609 CAAGAGGGAGATTTGCCAGTTTGGGGCAACTTCTTACCTTGAACAGGGA 

Rl3609 CC 

Figure 31. Alignment of nucleotide sequences from the 5' end of clone 1 (SEA) 
and GenBank clone #R13609. Sequence of the 5' end of clone R13609 was 
obtained by double stranded sequencing of plasmid containing insert of clone 1 
by the Sanger didioxy method (Sanger et al., 1977) using primer M13.back 
primer. Alignment errors may be due to errors in the automated sequencing of 
the EST clone or by incorrect reading of data by (SEA). 
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results from these three northern are shown in Figure 32. Northern blot analysis 

using clone 1 revealed in human cells, two bands of 3.6 and 5.5 kb, whereas 

probing blots with both clones 2 and 3 revealed in human cells bands of 8.0 and 

11.0 kb in size. Interestingly, in mouse cells, clone 1 detected a weak band of 

4.5 kb in size and clone 2 detected a weak band of 10.8 kb. Whether or not 

these bands represent murine homologues of human clone 1 and 2 remains to 

be seen. From these experiments, I conclude that clone 1 might represent a 

homologue of the yeast UPF1 gene because the size of the transcripts (3.7- and 

5.5-kb) are closest in size to those encoded by UPF1 (3.2-kb). 

Isolation of a Human cDNA Clone Using a Clone 1 Probe 

To isolate a full length human cDNA representing the human clone 1 

cDNA fragment (R13609), I screened approximately 2.5 X 105 individual plaques 

of a human oligo-d(T)-primed cDNA library prepared from Hela cell RNA 

(Elledge et al., 1991) with the isolated 1.5-kb fragment of clone 1 under high 

stringency conditions. Seven hybridizing phage clones were identified, plaque 

purified, and used to infect an E. coli strain able to excise a yeast/E. coli shuttle 

vector from the phage DNA. The shuttle vector can be used to express the 

cDNA from an inducible promoter in yeast cells (Figure 33). Plasmids could be 

excised from seven (clone numbers 8.1.1/2, 11.1.1/2, 11.2.1/2, 13.1.1/2, 

15.1.1/2, 21.1.1/2, 22.1.1/2) of seven clones and the size of their cDNA inserts 

was determined by restriction digestion (Appendix Figure 1.A). Six of the seven 
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Figure 32. Northern blot analysis of human and mouse RNA using 
probes isolated from human cDNA EST clones. Indicated amounts 
of total RNA were subjected to northern blot analysis using the 
probes called clone 1 (R13609), 2 (H11830) and 3 (H11167). 
Arrows indicate the position and size of RNA bands detected in 
human cells. An asterisk indicates faint bands detected in mouse 
cells that are 11.0-kb band with the H11830 probe (lane 4) and a 
4.6-kb band with the R13609 probe (lane 1). 
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defective yeast gene. 

Figure 33. Schematic diagram of pYES plasmid excision from phage A-YES and subsquent test of 
human cDNA for complementing ability. 
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clones contained detectable inserts. One clone (clone 11.2.1/2) contained an 

insert of 3.6-kb (called clone 3.6)., whereas the other clones contained smaller 

inserts (Appendix Figure 1.A, 1.C). Restriction mapping revealed that three of 

the clones with smaller inserts (21.1.1, 8.1.1, 13.1.1) overlapped with the insert 

of clone 3.6 (Appendix Figure 1.B, 1.0). These clones were not examined 

further. 

When I sequenced the 3' end of clone 3.6, I found that the nucleotide 

sequence was identical to that of the original clone 1 (GenBank clone #R13609) 

(data not shown). When I used the 3.6-kb insert as a probe in a northern blot 

analysis of human total Hela RNA, I detected bands of 5.5- and 3.6-kb (Figure 

34). Because the original 1.5-kb clone 1 probe also detected 3.6-kb and 5.5-kb 

bands in Hela RNA (Figure 32), I conclude that I have cloned a 3.6-kb cDNA 

that very likely represents a full length cDNA of the original 1.5-kb clone 1 probe. 

Sequence Analysis 

The insert of the 3.6-kb clone (clone 3.6) was sequenced by Sanger 

dideoxy chain termination method (Sanger et al., 1977) and primer-walking 

(Slightam et al., 1994) with the ABI Cycle Sequencing kit from Perkin Elmer 

(Branchburg, NJ) and an ABI automated DNA sequencer. The sequence of 

clone 3.6 was 3602 bp in length and contains the poly(A)-signal sequence 

AATAAA and from nucleotide 176 to nucleotide 3529 a 3354-bp open reading 

frame (ORF) that could encode a 123-kDa polypeptide (Figure 35). The first 

amino (N)-terminal ATG codon of clone 3.6 is very likely the true translational 
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Figure 34. Northern blot analysis of total and cytoplasmic RNA using 
the 3.6 clone probe. (A) Northern blot of 5 µg of total RNA from the 
mouse B cell hybridoma FH (Lane 1) and human endothelial cell line 
HeLa (lane 2). Blot was exposed to film 2 days at -70°C with one 
enhancing screen. (8) Northern blot of 10 µg of cytoplasmic (C, lane 
3) and total (T, lane 4) HeLa RNA. Blot was exposed to film 3 days at 
-70°C with one enhancing screen. 
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Figure 35. Nucleotide and predicted amino acid sequence of the human NORF1 
gene. 



gcggcggctcggcactgttacctctcggtccggctggcgccgcgggcggtttggtcctttccgggcgcgcgggggcgaca 80 

gcggcagcgacccgaggcctgcggcctaggcctcagcgcggcggcgggctcgagtgcagcgcggaaccggcccgagggcc 160 

ctacccggaggcaccatgagcgtggaggcgtacgggcccagctcgcagactctcactttcctggacacggaggaggccga 240 
M S V E A Y G P S S Q T L T F L D T E E A E 22 

gctgcttggcgccgacacacagggctccgagttcgagttcaccgactttactcttcctagccagacgcagacgccccccg 320 
L L G A D T Q G S E F E F T D F T L P S Q T Q T P P 48 

gcggccccggcggcccgggcggtggcggcgcgggaagcccgggcggcgcgggcgccggcgctgcggcgggacagctcgac 400 
G G P G G P G G G G A G S P G G A G A G A A A G Q L D 75 

gcgcaggttgggcccgaaggcatcctgcagaacggggctgtggacgacagtgtagccaagaccagccagttgttggctga 480 
A Q V G P E G I L Q N G A V D D S V A K T S Q L L A E 102 

gttgaacttcgaggaagatgaagaagacacctattacacgaaggacctccccatacacgcctgcagttactgtggaatac 560 
L N F E E D E E D T Y Y T K D L P I H A C S Y C G I 128 

acgatcctgcctgcgtggtttactgtaataccagcaagaagtggttctgcaacggacgtggaaatacttctggcagccac 640 
H D P A C V V Y C N T S K K W F C N G R G N T S G S H 155 

attgtaaatcaccttgtgagggcaaaatgcaaagaggtgaccctgcacaaggacgggcccctgggggagacagtcctgga 720 
I V N H L V R A K C K E V T L H K D G P L G E T V L E 182 

gtgctacaactgcggctgtcgcaacgtcttcctcctcggcttcatcccggccaaagctgactcagtggtggtgctgctgt 800 
C Y N C G C R N V F L L G F I P A K A D S V V V L L 208 

gcaggcagccctgtgccagccagagcagcctcaaggacatcaactgggacagctcgcagtggcagccgctgatccaggac 880 
C R Q P C A S Q S S L K D I N W D S S Q W Q P L I Q D 235 

cgctgcttcctgtcctggctggtcaagatcccctccgagcaggagcagctgcgggcacgccagatcacggcacagcagat 960 
R C F L S W L V K I P S E Q E Q L R A R Q I T A Q Q I 262 

191 

caacaagctggaggagctgtggaaggaaaacccttctgccacgctggaggacctggagaagccgggggtggacgaggagc 1040 
N K L E E L W K E N P S A T L E D L E K P G V D E E 288 

cgcagcatgtcctcctgcggtacgaggacgcctaccagtaccagaacatattcgggcccctggtcaagctggaggccgac 1120 
P Q H V L L R Y E D A Y Q Y Q N I F G P L V K L E A D 315 

tacgacaagaagctgaaggagtcccagactcaagataacatcactgtcaggtgggacctgggccttaacaagaagagaat 1200 
y D K K L K E S Q T Q D N I T V R W D L G L N K K R I 342 

cgcctacttcactttgcccaagactgactctgacatgcggctcatgcagggggatgagatatgcctgcggtacaaagggg 1280 
A Y F T L P K T D S D M R L M Q G D E I C L R Y K G 368 

accttgcgcccctgtggaaagggatcggccacgtcatcaaggtccctgataattatggcgatgagatcgccattgagctg 1360 
D L A P L W K G I G H V I K V P D N Y G D E I A I E L 395 

cggagcagcgtgggtgcacctgtggaggtgactcacaacttccaggtggattttgtgtggaagtcgacctcctttgacag 1440 
R S S V G A P V E V T H N F Q V D F V W K S T S F D R 422 

gatgcagagcgcattgaaaacgtttgccgtggatgagacctcggtgtctggctacatctaccacaagctgttgggccacg 1520 
M Q S A L K T F A V D E T S V S G Y I Y H K L L G H 448 

aggtggaggacgtaatcaccaagtgccagctgcccaagcgcttcacggcgcagggcctccccgacctcaaccactcccag 1600 
E V E D V I T K C Q L P K R F T A Q G L P D L N H S Q 475 

gtttatgccgtgaagactgtgctgcaaagaccactgagcctgatccagggcccgccaggcacggggaagacggtgacgtc 1680 
V y A V K T V L Q R P L S L I Q G P P G T G K T V T S 502 

ggccaccatcgtctaccacctggcccggcaaggcaacgggccggtgctggtgtgtgctccgagcaacatcgccgtggacc 1760 
A T I V Y H L A R Q G N G P V L V C A P S N I A V D 528 

agctaacggagaagatccaccagacggggctaaaggtcgtgcgcctctgcgccaagagccgtgaggccatcgactccccg 1840 
Q L T E K I H Q T G L K V V R L C A K S R E A I D S P 555 

gtgtcttttctggccctgcacaaccagatcaggaacatggacagcatgcctgagctgcagaagctgcagcagctgaaaga 1920 
V S F L A L H N Q I R N M D S M P E L Q K L Q Q L K D 582 

cgagactggggagctgtcgtctgccgacgagaagcggtaccgggccttgaagcgcaccgcagagagagagctgctgatga 2000 
E T G E L S S A D E K R Y R A L K R T A E R E L L M 608 

acgcagatgtcatctgctgcacatgtgtgggcgccggtgacccgaggctggccaagatgcagttccgctccattttaatc 2080 
N A D V I C C T C V G A G D P R L A K M Q F R S I L I 635 



gacgaaagcacccaggccaccgagccggagtgcatggttcccgtggtcctcggggccaagcagctgatccttgtaggcga 
D E S T Q A T E P E C M V P V V L G A K Q L I L V G D 

ccactgccagctgggcccagtggtgatgtgcaagaaggcggccaaggccgggctgtcacagtcgctcttcgagcgcctgg 
H C Q L G P V V M C K K A A K A G L S Q S L F E R L 

tggtgctgggcatccggcccatccgcctgcaggtccagtaccggatgcaccctgcactcagcgccttcccatccaacatc 
V V L G I R P I R L Q V Q Y R M H P A L S A F P S N I 

ttctacgagggctccctccagaatggtgtcactgcagcggatcgtgtgaagaagggatttgacttccagtggccccaacc 
F Y E G S L Q N G V T A A D R V K K G F D F Q W P Q P 

cgataaaccgatgttcttctacgtgacccagggccaagaggagattgccagctcgggcacctcctacctgaacaggaccg 
D K P M F F Y V T Q G Q E E I A S S G T S Y L N R T 

aggctgcgaacgtggagaagatcaccacgaagttgctgaaggcaggcgccaagccggaccagattggcatcatcacgccc 
E A A N V E K I T T K L L K A G A K P D Q I G I I T P 

tacgagggccagcgctcctacctggtgcagtacatgcagttcagcggctccctgcacaccaagctctaccaggaagtgga 
Y E G Q R S Y L V Q Y M Q F S G S L H T K L Y Q E V E 

gatcgccagtgtggacgcctttcagggacgcgagaaggacttcatcatcctgtcctgtgtgcgggccaacgagcaccaag 
I A S V D A F Q G R E K D F I I L S C V R A N E H Q 

gcattggctttttaaatgaccccaggcgtctgaacgtggccctgaccagagcaaggtatggcgtcatcattgtgggcaac 
G I G F L N D P R R L N V A L T R A R Y G V I I V G N 

ccgaaggcactatcaaagcagccgctctggaaccacctgctgaactactataaggagcagaaggtgctggtggaggggcc 
P K A L S K Q P L W N H L L N Y Y K E Q K V L V E G P 

gctcaacaacctgcgtgagagcctcatgcagttcagcaagccacggaagctggtcaacactatcaacccgggagcccgct 
L N N L R E S L M Q F S K P R K L V N T I N P G A R 

tcatgaccacagccatgtatgatgcccgggaggccatcatcccaggctccgtctatgatcggagcagccagggccggcct 
F M T T A M Y D A R E A I I P G S V Y D R S S Q G R P 

tccagcatgtacttccagacccatgaccagattggcatgatcagtgccggccctagccacgtggctgccatgaacattcc 
S S M Y F Q T H D Q I G M I S A G P S H V A A M N I P 

catccccttcaacctggtcatgccacccatgccaccgcctggctattttggacaagccaacgggcctgctgcagggcgag 
I P F N L V M P P M P P P G Y F G Q A N G P A A G R 

gcaccccgaaaggcaagactggtcgtgggggacgccagaagaaccgctttgggcttcctggacccagccagactaacctc 
G T P K G K T G R G G R Q K N R F G L P G P S Q T N L 

cccaacagccaagccagccaggatgtggcgtcacagcccttctctcagggcgccctgacgcagggctacatctccatgag 
P N S Q A S Q D V A S Q P F S Q G A L T Q G Y I S M S 

ccagccttcccagatgagccagcccggcctctcccagccggagctgtcccaggacagttaccttggtgacgagtttaaat 
Q P S Q M S Q P G L S Q P E L S Q D S Y L G D E F K 

cacaaatcgacgtggcgctctcacaggactccacgtaccagggagagcgggcttaccagcatggcggggtgacggggctg 
S Q I D V A L S Q D S T Y Q G E R A Y Q H G G V T G L 

tcccagtattaaaaggtggcggcggaagagctaagcaacgtggcttagtccatcagcatcttattctgggtaataaaaaa 
s Q y 
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initiation codon, because it is flanked by sequences that predict strong 

translational initiation (Kozak, 1994) and is preceded by an in-frame TAG stop 

codon from nucleotide positions 107 to 109. As mentioned above, clone 3.6 

could encode a protein of approximately 123-kDa. To determine if this is the 

case, in vitro transcription-translation (IVTL) was performed using a linearized 

NORF1 cDNA plasmid preceded by a T7 polymerase promoter. When 

radiolabeled IVTL products were subjected to SOS/PAGE, I detected a band with 

an apparent molecular mass of 130 kDa (Figure 36). This result indicates that 

the ORF of the 3.6-kb NORF1 clone (clone 3.6) can be translated into a protein 

product of approximately 130-kDa. This corresponds well with the calculated 

molecular mass of 123 kDa. The difference between predicted and apparent 

molecular weight might be due to the fact that acidic polypeptides run aberrantly 

in SOS polyacrylamide gels (Koshland, 1985; Bornemann et al., 1995). 

Comparison of NORF1 Polypeptide Sequence to Sequences in Databases 

When the translated non-redundant GenBank, PDB, SwissProt, and PIR 

databases (release date: July 22, 1996) was searched with the deduced amino 

acid sequence of clone 3.6 using the BLAST program (Altschul et al., 1990), the 

results revealed that the human protein showed the highest degree of homology 

to yeast UPF1 (Leeds et al., 1991 ), which is also known as NAM7 (Altamura et 

al., 1992). First, 71% of the human coding sequence from codon 121 to codon 
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Figure 36. In vitro transcription-translation (IVTL) of UPF1 and 
NORF1 RNA transcribed from plasmid DNA. 5 µg of linearized 
plasmid was subjected to in vitro transcription-translation in the 
presence of 35S-labeled methionine and cystine using the TnT 
coupled transcription-translation kit (Promega, WI) as suggested by 
the manufacturer. 10 µI of reaction product was separated by 10% 
SOS/PAGE and subjected to flurography for 16 hours. 
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918 is 60% identical and 74% similar to the corresponding UPF1 (NAM7) coding 

sequence from codons 60 to 856. Second, both proteins contain at their amino 

(N)-terminal ends an acidic stretch followed by a cysteine-rich region and in their 

middle parts, an RNA helicase region (Figure 37.B). 

The RNA helicase region of the human polypeptide from codons 489 to 

875 is 63% identical and 85% similar to that of Upf1 p (codons 427 to 811) and 

contains in the same order all seven RNA helicase motifs that are found in Upf1 p 

(Altamura et al., 1992; Leeds et al., 1992), and other group I RNA helicases 

(Koonin, 1992). Remarkably, the distances between six of the seven RNA 

helicase consensus motifs are preserved between the human protein and yeast 

Upf1 p and the distances between domains lb and II differ only by two amino acid 

residues (Figure 37.B). The BLAST search revealed also that all seven RNA 

helicase consensus motifs in the human protein are very similar to that of other 

putative eukaryotic group I RNA helicases (Koonin, 1992) such as S. cerevisiae 

SEN1, mouse MOV-10, the putative S. pombe UPF1 homologue, the human and 

mouse µ switch region binding proteins SMBP-2, a putative human DNA 

helicase, and an insulin enhancer binding protein (Figure 37, Table 9). Thus, I 

conclude that the human 3.6-kb cDNA clone encodes a putative group I RNA 

helicase. 

In contrast to the seven RNA helicase motifs, which are present in all 

group I RNA helicases, a cysteine-rich region is found only in the human protein 

and Upf1 p but not in other members of the group I RNA helicase family. The 
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Figure 37. Sequence comparison of human NORF1 and yeast UPF1. (A) Partial 
complementary nucleotide and entire deduced amino acid sequences of human 
NORF1 and comparison with the S. cerevisiae UPF1 amino acid sequence 
(SwissProt accession # P30771 ). The numbers at the right indicate nucleotide 
and amino acid positions. Untranslated regions are shown in lowercase and 
translated regions in uppercase letters. Arrows indicate the region of the NORF1 
nucleotide sequence that was omitted from the figure and can be retrieved from 
GenBank file #U59323. The start and stop codons of NORF1 are in bold and the 
in-frame stop codon upstream of the ATG as well as the poly(A)-addition signal 
site are underlined and italicized. The glycine/praline-rich regions and the 
serine/glutamine (SQ) and serine/glutamine/proline (SQP) repeats are 
underlined. The deduced amino acid sequences of NORF1 and UPF1 (in single 
letter IUPC code) are shown below the partial nucleotide sequence. In the 
alignments (top, NORF1 and bottom, UPF1 ), a period indicates an identical 
amino acid residue and a forward slash a gap of one amino acid introduced for 
optimal alignments. Charged amino acids at the N-terminal ends are indicated 
by + and -. The cysteine-rich putative zinc finger motifs are underlined in bold, a 
putative tyrosine phosphorylation site is boxed and the seven group I RNA 
helicase motifs (I, lb, II-VI) are indicated by gray-shaded boxes. (B) Domain 
maps of human NORF1 and yeast UPF1. The domains are indicated by boxes. 
Numbers between and below the domains and at the ends indicate amino acid 
distances, and numbers in the boxes the net charge of the domain. "PG", 
praline/glycine-rich; "SQP" serine/glutamine and serine/glutamine/proline 
repeats. 
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Table 9. --Alignment of Consensus Motifs Shared Between Human NORF1 and Other Eukaryotic Members of the RNA 
Helicase Superfamily I. 
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cysteine-rich region in the human protein extends from codons 123 to 213 

(Figure 37.A) and is 63% identical and 90% similar to that of Upf1 p (residues 62 

to 152). The cysteine-rich region in both the human and Upf1 p is preceded by 

an acidic stretch of 47 and 55 amino acids, respectively, with a net charge of -9. 

Two motifs within the cysteine-rich region of the human protein (starting at codon 

123 and codon 183, respectively), as well as Upf1 p (starting at codon 62 and 

122, respectively), can be written as CysX2CysXnCysX3Cys (X represents any 

amino acid and n is 6 for the first and 26 for the second motif). The distances 

between the two motifs are preserved in both the human protein and Upf1 p and 

the distances between their cysteine-rich and RNA helicase regions differ only by 

one amino acid residue (Figure 37.A and B). Alternatively, starting with the first 

cysteine at codon 122, or 62 in Upf1 p, another putative zinc finger motif can be 

written as CysX2CysX26HisX3His. All three motifs can be partially aligned with the 

zinc finger/knuckle motif CysX2_5CysX4_12Cys/HisX2_4Cys/His, which is found in 

some zinc finger DNA binding proteins as well as in polypeptides that interact 

with RNA (Burd and Dreyfuss, 1994 ). 

Because the human protein exhibits the highest degree of homology to 

the group I RNA helicase Upf1p (Figure 37.A) and contains a very similar overall 

polypeptide domain structure as Upf1p (Figure 37.B), I conclude that the human 

protein, which I named NORF1 (nonsense mRNA reducing factor 1 ), is a putative 

group I RNA helicase and the first mammalian structural homologue of yeast 
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Upf1 p, a yeast protein responsible for reducing nonsense mRNA levels (Leeds et 

al., 1991). 

Compared to Upf1 p, NORF1 has 63 and 83 more amino acids on its N

and carboxy (C) -terminal ends, respectively. These extra tails contain motifs 

that are absent from yeast Upf1 p, such as an additional acidic stretch of 34 

amino acids with a net charge of -9 followed by three repeats of a 

praline/glycine-rich motif (PGGXG) at the N-terminal tail. This glycine-rich region 

could be involved in RNA binding (Burd and Dryfuss, 1994). There are also 

multiple SQP and SQ repeats at the C-terminal tail (Figure 37.B) but a structural 

or functional role for this motif has not been determined. 

Expression of NORF1 

If NORF1 is involved in degrading nonsense mRNA, I would expect that it 

is expressed in every tissue, because any cell can potentially generate nonsense 

mRNA, for example via imprecise pre-mRNA splicing. Northern blot analysis 

was performed using total RNA from several human cell lines representing 

various human tissues and probed with the human 3.6-kb NORF1 probe. A 

predominant -5.5-kb and a minor -3.7-kb transcript in all samples (Figure 38), 

suggesting that NORF1 is expressed in many tissues. 

The size of the 3. 7-kb transcripts corresponds very well with the size of 

the 3.6-kb cDNA clone and, therefore, could represent mature NORF1 mRNA. 

The 5.6-kb mRNA might represent an incompletely spliced precursor of the 

mature 3.7-kb NORF1 mRNA. If this is true, I would expect that levels of the 5.6-
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Figure 38. Northern blot analysis of NORF1 mRNA in human cell lines. (A) 
5 µg of total RNA was subjected to northern blot analysis and hybridized 
with the complete human clone 3.6 probe. The blot was subjected to 
flurography for 2 days. RNA size markers are indicated in kilobases (kb) on 
the left and the position of the 18S and 28S RNA and the two NORF1 
transcripts on the right. (B) Photograph of the ethidium bromide stained gel. 
The arrows point to the hybridizing bands at 5.5 and 3.6 kb. 
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kb transcript would be lower in both total and cytoplasmic total RNA preparations 

when compared to the signal of the 3.7-kb band. However, as detected by 

northern blot analysis, levels of the 5.6-kb transcripts are higher in both total and 

cytoplasmic RNA preparations than levels of the 3.6-kb transcript (compare in 

Figure 34 lane 4 with lane 3). Therefore, it seems more likely that the two 

transcripts represent mature mRNA that was generated from a common pre

mRNA by either differential splicing or differential usage of polyadenylation sites. 

To isolate a cDNA clone that might represent the 5.5-kb transcript, I screened a 

human Jurkat A.-phage cDNA library with a 5' probe of clone 3.6 (Xhol-Sa/I 

fragment in Figure 39). I identified 22 clones; eight of these clones were plaque 

purified and plasmids were excised from plaque-purified phage. Restriction 

enzyme digestion of plasmids prepared from the 8 clones (3.1.1.1/2, 3.2.1.1/2, 

9.1.1.1/2, 15.1.1.1/2, 17.1.1.1/2, 19.1.1.1/2, 21.1.1.1/2, 27.1.1.1/2) identified 

inserts of different sizes (Appendix Figure 2). The largest insert (clone 15.1.1/2) 

was 5.5-kb in length. This clone, whose size corresponds very well with that of 

the 5.5-kb transcript, was named clone 5.5 and used for further analyses. 

Restriction mapping analysis (Appendix Figure 3.A, 3.8) and partial DNA 

sequencing of clone 5.5 revealed that clone 3.6 overlaps with clone 5.5 . For 

example, I identified in clone 5.5 all restriction enzyme sites that were found in 

clone 3.6 (Figure 39). Moreover, I verified in clone 5.5 sequences of clone 3.6 

that contain the translational start and stop sites and the polyadenylation signal 

site AATAAA (Figure 39). I also detected at the 3' end of clone 5.5 a second 
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classical polyadenylation signal site (AATAAA). I, therefore, propose that both 

the 3.7-kb and 5.5-kb transcript contain the same ORF and differ in their 3' 

untranslated region. Thus, the two transcripts might have been generated from 

the same pre-mRNA by differential polyadenylation signal site usage. However, 

I cannot completely exclude that clone 3.6 represents a truncated cDNA 

fragment of the 5.6-kb transcript. It may be possible that the 3.6-kb transcript is 

encoded by a gene that is different from NORF1 but shares with NORF1 some 

DNA sequence identity. 

Expression of NORF1 Protein 

To determine if a NORF1-like protein of about 130-kDa is present within 

human cells, I generated a rabbit antiserum reactive against peptides deduced 

from hydrophilic regions of the putative ORF of NORF1 (underlined in Figure 40). 

The synthesized peptides (NORF1/pep#1 and #2) were coupled to keyhole 

limpet hemocyanin (KLH) and used to immunize rabbits. The antibodies vvere 

affinity-purified from serum on the respective NORF1-peptide columns and used 

in western blot analysis. The affinity purified anti-NORF1-pep#1 antibodies 

stained on a western blot the radiolabeled 130-kDa protein that was in vitro 

translated from a clone 3.6 template (Figure 41). This antibody also detected a 

130-kDa protein in both mouse (lane 3) and human cells (lane 4). This suggests 

that the ORF of NORF1 can be translated in vitro, and in vivo, into a 130-kDa 

polypeptide. It is not known if the anti-NORF1-pep#1 antibodies detect yeast 

Upf1 p but it is unlikely that it would do so as the peptide epitope used to 



205 

Figure40. Hydrophobicity plot of NORF1 used to design NORF1 peptides.· The 
plot was generated by submitting the polypeptide sequence below the 
hydrophobicity plot to the ExPASy molecular biology server at 
http://expasy.hcuge.ch/www/ tools.html. The bracket in the plot represents the 
region of NORF1 residues used as an immunogen. The exact residues are 
shown below the plot and are in bold and underlined. 
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207 



208 

generate the anti-NORF1-pep#1 antibodies is not found within the predicted 

UPF1 polypeptide. Based on these data, I conclude that I have cloned a human 

cDNA (NORF1) that exhibits a large degree of amino acid identity to that of yeast 

Upf1 p, a group 1 RNA helicase required for nonsense codon-mediated mRNA 

degradation. It also suggests that both human and mouse cells express the 

NORF1 protein. 

Functional Analysis of NORF1 

NORF1 Complementation of an upf1 Null Yeast Strain 

To determine if NORF1 is capable of reducing nonsense mRNA levels in 

a upf1 null (upf1) yeast strain, I transformed the yeast strain PL Y154 ura3::1-f/S4 

(PL Y154) with a plasmid that contains the complete ORF of NORF1 cDNA under 

the control of the inducible ga/1-10 promoter. PL Y154 cells contain a nonsense 

LEU2 allele (leu2-1), which encodes a nonsense leu2-1 mRNA. Because Upf1p 

is absent from PL Y154 cells, nonsense leu2-1 mRNA becomes more stable and 

a low degree of translational readthrough can generate enough Leu2p to support 

the growth of PL Y154 cells in the absence of leucine. If NORF1 can replace the 

function of Upf1 p in yeast, leu2-1 mRNA should rapidly be degraded and the 

transformants will not grow in the absence of leucine. Six transformants were 

isolated and tested for their inability to grow in the absence and presence of 

leucine. The growth of these transformants was compared to yeast cells 

transformed with a control plasmid lacking an insert (pYes 2.0, lnvitrogen). 
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Figure 42 shows the results from these experiments. Yeast containing either the 

NORF1 cDNA (a-d) or the control plasmid (e-h) were both able to grow in the 

absence of uracil (indicating the presence of the transformed plasmid), the 

presence of galactose (which induces expression of the NORF1 cDNA), and in 

the absence of leucine, indicating that levels of nonsense /eu2-1 mRNA have not 

been decreased. Therefore, I conclude that the presence of the NORF1 cDNA 

under inducing conditions is not able to replace the function of Upf1 p, that is, to 

induce the degradation of nonsense mRNA. 

Leeds and co-workers (1992) were able to determine that mutations in the 

RNA helicase region of the UPF1 gene led to a dominant-negative effect in yeast 

cells containing a wild type copy of the UPF1 gene. Based on these 

observations, it may be possible NORF1 rather blocks Upf1 p leading to a UPF1-

minus (upf1) phenotype. To test this idea, yeast cells containing a wild type 

UPF1 gene were transformed with the plasmid containing the complete NORF1 

ORF or with a control plasmid that does not contain the NORF1 ORF. If NORF1 

acts in a dominant-negative fashion, it will interfere with Upf1 p and prevent the 

degradation of the nonsense mRNA transcribed from the /eu2-1 gene, which will 

change the phenotype of the transformed yeast cell from Leu- to Leu+. 

Transformants were generated and grown in the absence of uracil (which selects 

for the presence of the transformed plasmid library) and the presence of 

galactose (which induces the expression of the NORF1). However, when replica 

plated on plates with or without leucine, none of the cells transformed with the 

NORF1 (Figure 43 a-d) or control plasmid (e-h) grew on plates 
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Figure 42. Complementation of a UPF1 null (upf1) yeast strain with the NORF1 
cDNA. The yeast strain PL Y154 ura3::HIS4 was transformed with the galactose 
inducible NORF1 cDNA yeast shuttle plasmid (11.2.2) or with the galactose 
inducible yeast shuttle plasmid pYes 2.0 with no insert. Transformants were 
patched onto plates lacking uracil (Ura-) and replica plated to the indicated 
plates. The plasmid used to transform the yeast is shown above the plate and 
the composition of the plate medium is shown below the plate. Whether cell 
growth was observed is noted in parentheses after the medium. 
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Figure 43. Dominant-negative test of a UPF1 null (upf1) yeast strain with the 
NORF1 cDNA. The yeast strain SL988-11A was transformed with the galactose 
inducible NORF1 cDNA yeast shuttle plasmid (11.2.2) or with the galactose 
inducible yeast shuttle plasmid pYes 2.0 with no insert. Transformants were 
patched onto plates lacking uracil (Ura-) and replica plated to the indicated 
plates. The plasmid used to transform the yeast is shown above the plate and 
the composition of the plate medium is shown below the plate. Whether cell 
growth was observed is noted in parentheses after the medium. 
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supplemented with leucine. From this result I conclude that NORF1 does not 

block the function of Upf1 p in yeast cells. But in fact, more control experiments 

need to be done to confirm the expression of NORF1 protein in the yeast cells 

grown under inducing conditions. 

In summary, NORF1 when expressed in yeast cells does not replace nor 

block the function of Upf1 p. However, it is possible that in both the 

complementation and dominant-negative approaches NORF1 was expressed at 

levels that were not high enough to replace Upf1 p or to act dominant-negative. 

Alternatively, NORF1 might not replace the function of Upf1 p in yeast cells, 

because it cannot interact with another protein that is required to induce the 

degradation of nonsense mRNA. 

NORF1 Antisense RNA Expression in Mammalian Cells 

To determine if the NORF1 protein controls nonsense mRNA levels in a 

mammalian cell, I stably expressed NORF1 antisense transcripts from a 

transfected NORF1 cDNA in mouse B cells containing a immunoglobulin µ 

mRNA with a nonsense codon (Jack and Wabl, 1989) (Figure 44). If NORF1 is 

involved in the regulation of nonsense mRNA, downregulation of NORF1 

synthesis by antisense NORF1 transcripts should result in an increase in µ 

mRNA levels. 
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Figure 44. Schematic representation of the antisense orientation cloning of NORF1 into the expression 
vector pHp-APr-1-neo and subsequent transfection into the mouse B cell hybridoma VXH. The complete 
NORF1 ORF was excised on a Xhol/Hindlll fragment and cloned into the vector prepared with Hindlll/BamHI. 
The pHp-APr-1-neo contains a p-actin promoter (P), a 5' UTR intron, a SV40 poly(A) addition site, an ampicillin 
resistance gene (bla), and a neomycin/G418 resistance gene (neo). Structure of the nonsense µ mRNA in 
VXH is shown in the cell. The exons are indicated by boxes (VH variable; C, constant) and the length of 
translation products by lines below the mRNA. The position of the nonsense codon at the end of the VH 
exon is represented by the X. 
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Construction of a Mammalian Antisense NORF1 Expression Vector 

The complete NORF1 ORF was cloned into the mammalian antisense 

expression vector pHpApr-1-neo (Gunning et al., 1987). The NORF1 ORF was 

excised from plasmid pGem7Z-NORF1(3.6-kb) as a 3.5-kb Hindlll/Xhol fragment 

and cloned in a two-step ligation procedure into the expression vector prepared 

with Hindi 11/BamH I. 

Stable Expression of NORF1 Antisense RNA in Mouse Cells 

To determine whether NORF1 is important for controlling levels of 

nonsense mRNA in mammalian cells, I introduced the mammalian antisense 

NORF1 expression vector into the mouse hybridoma line VXH. VXH transcribes 

an endogenous µ gene with a TAG nonsense codon in its variable (VH) gene 

exon (Figure 45). The nonsense mutation reduces the level of µ mRNA in VXH 

by a factor of -15 when compared to that of functional µ mRNA in the hybridoma 

line FH (Jack and Wabl, 1989). FH cells contain the same µ gene as VXH cells 

except that the TAG nonsense codon in the V exon is changed to TAC (Jack and 

Wabl, 1989). When I analyzed VXH transfectants on western blots, I found that 

antisense clone VXH.3 produced less NORF1 protein (Figure 46A, lane 1) than 

control vector-transfected VXH (lane 3) and untransfected FH cells (lane 4). 

However, transfected and untransfected VXH clones produce about the same 

amount of the heavy chain binding protein, BiP (Haas, 1994). This suggests that 

human NORF1 antisense transcripts downregulated the expression of mouse 
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A 

FH ~ VH I Cµ1 I Cµ2 lCµ3 lCµ4 lAAA 
µ t--~~~~~-------4 

VXH -1 VHXICµ1 ICµ2 ICµ3 ICµ4 IAAA 

VHI ~---1 

B 

VH81X with Leader to the VXH nonsense codon 

MDFGLSLVFLVLILKSGVQCEVQLVESGGGLVQPRESLKLSCESNEYEFPSHDMSWVRKTPEKR 
LELVAAINSDGGSTYYPDTMERRFIISRDNTKKTLYLQMSSLRSEDTALYYCARHD 

Theoretical Mw for the protein sequence 
MDFGLSLVFL ... TALYYCARHD: Theoretical Mw: 13691.44 

c 

VH81X without Leader to the VXH nonsense codon 

GVQCEVQLVESGGGLVQPRESLKLSCESNEYEFPSHDMSWVRKTPEKRLELVAAINSDGGSTYY 
PDTMERRFIISRDNTKKTLYLQMSSLRSEDTALYYCARHD 

Theoretical Mw for the protein sequence 
GVQCEVQLVE ... TALYYCARHD: Theoretical Mw: 11914.23 

Figure 45. Schematic diagram and sequence of the two predicted polypeptides 
that can be translated from the µ immunoglobulin nonsense mRNA in VXH cells. 
(A) Structures of functional µ mRNA in FH cells and nonsense µ mRNA in VXH 
cells. The exons are indicated by boxes \VH variable; C, constant) and the 
length of translation products by lines below the mRNA. The position of the TAG 
nonsense codon at the end of the VH exon, is represented by the X. The m gene 
in VXH differs from that in the FH cell by the presence of the TAG stop codon. 
(B) Sequence of the polypeptide translated from nonsense mRNA in VXH cells 
before cleavage of the leader sequence. (C) Sequence of the polypeptide after 
cleavage of the leader sequence. The predicted molecular mass of each 
polypeptide is shown below each sequence in bold letters. The nucleotide 
sequences used to caculate the molecular mass were obtained from GenBank 
entries: accession #X01113, and #K02890 and from Wabl et al., ( 1985). 
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Figure 46. Effect of human NORF1 antisense RNA expression on µ mRNA 
levels in transfected mouse cells. (A) Western blot analysis of mouse NORF1 in 
untransfected FH cells (lane 4) and VXH cells stably transfected with the human 
NORF1 antisense expression vector (lanes 1 and 2) and the expression vector 
alone (lane 3). The blot was first probed with anti-NORF1-pep1 antibodies (see 
Figure X) and then, to control for loading, restained with anti-BiP antibodies. (B) 
Northern blot analysis of µ mRNA expression in transfected VXH and 
untransfected FH cells. 5 µg total RNA was analyzed as described in Figure 17. 
The blot was probed with a mouse Cµ and a rabbit GAPDH cDNA probe. The 
positions of m and GAPDH mRNAs are indicated on the right. (C) Western blot 
analysis of polypeptides that react with anti-VH peptide antibodies in transfected 
VXH and untransfected VXH cells. The blot was probed with a rabbit anti-VH 
peptide antiserum that reacts with an epitope encoded by the VH region in FH 
and VXH cells (Hartwell & Jack, unpublished observations). The positions of the 
VH and full length µ polypeptides are indicated on the right. Bands other than 
those indicated by arrows are also detected in cells that do not produce any lg 
chains and thus, result from reactions of rabbit antibodies with non-lg 
polypeptides. To control for loading, the blot was reprobed with a rabbit anti-BiP 
serum and similar signals of a single 70-kDa band (BiP) were observed in all 4 
lanes. 
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NORF1 protein in antisense clone VXH.3. The downregulation of NORF1 

protein correlated with an increase in nonsenseµ mRNA in VXH.3 transfectants. 

On northern blots, I found about 3 times more nonsense µ mRNA in antisense 

clone VXH.3 (Figure 468, lane 1) than in a VXH clone transfected with the 

expression vector alone (lane 4) (Table 10). One possibility to explain why the 

level of nonsense µ mRNA was not restored to that of functional µ mRNA in FH 

cells (Figure 468, lane 5) is that I still detected some NORF1 protein in antisense 

clone VXH.3 (Figure 46A, lane 1 ). Because the levels of nonsense µ mRNA are 

increased in VXH.3 transfectants, I should also detect a shorter lg chain that is 

encoded by the ORF extending from the start codon to the nonsense codon µ 

mRNA (Figure 45.B and C and Figure 46.C). Indeed, I detected a band of 

approximately 15 kDa by western with anti-VH antibodies in antisense clone 

VXH.3 (Figure 46, lane 1), but not in vector-transfected VXH (lane 3) and wild

type FH cells (lane 4). I conclude that the transfection of an antisense NORF1 

gene into VXH cells resulted in increased levels of nonsense µ mRNA and, 

therefore, that NORF1 is responsible for controlling nonsense µ mRNA levels. 

However, this conclusion is based on the result obtained with this one VXH 

transfectant as well as from one western blot and northern blot of the indicated 

transfectants. The accuracy of the data obtained needs to be confirmed by 

repeating the western and northern blot analysis on these and possibly other 

independent transfectants. 



Table 10. -- Quantitation of Northern Blot Analysis in Figure 463 

Cell line and RNA µ pre-µ GAP DH rel[µ] rel [pre-µ) 
transfectant clone loaded [µ/GAP DH] [pre-µ/GADPH] 

number 
[CPM] [CPM] [CPM] 

FH 5 µg 289.5 11.1 132.3 17 1 

VXH vector 5 µg 7.5 3.9 56.9 1 1 

VXH.1 5 µg 22.5 8.0 101.2 1.7 1.1 

VXH.2 5 µg 22.6 8.2 109.9 1.6 1 

VXH.3 5 µg 35.3 10.7 99.3 2.8 1.5 

3 Radioactivity of respective bands in each Northern blot (CPM) was determined by using a betascope blot analyzer. 
Relative steady-state level of respective RNA was calculated by dividing CPM ofµ by that of GAPDH in the same lane. 
Blots were determined to be free of background by emperical observation so no adjustments of the numbers collected 
were made. 
% [µ] is the percent of[µ] relative to that of the hybridoma VXH by setting VXH value equal to 100%. 
An [*] indicates the absence of data due to either background hybridization or to the absence of this data to perform 
caculations. 
Note: This data is the result of only one experiment. 

N 
N ...... 
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Isolation of a Mouse NORF1 Homologue 

The current work in our lab involves the analysis of immunoglobulin 

mRNA with nonsense codons in murine B cells. To study the function of the 

NORF1 gene in mouse cells, the mouse NORF1 cDNA was isolated. Southern 

blot analysis of mouse genomic DNA using the complete human NORF1 cDNA 

revealed the presence of hybridizing bands under high stringent conditions (data 

not shown). I concluded from this result that the mouse genome likely encodes a 

gene that has nucleotide identity with the human NORF1 gene. Therefore I used 

the human 3.6-kb NORF1 cDNA probe to screen approximately 2 X 105 

individual cDNA plaques from a mouse C2 muscle cell line oligo-d(T)-primed /...

phage library under low stringency hybridization conditions. The library was 

generated from a mouse muscle cell line and, because NORF1 is likely to be 

expressed in all cells, the library should contain NORF1 cDNA clones. Two 

phage clones were identified that hybridized with the human 3.6-kb NORF1 

probe. One of these clones was plaque purified using low stringency 

hybridization, the plasmid was excised from the phage, and was found to contain 

a 4.5-kb cDNA insert (Appendix Figure 4.A). The plasmid and insert were also 

mapped (Appendix Figure 4.8, C, D, E, F, and G). Northern blot analysis using 

the 4.5-kb mouse insert revealed a single band of about 4.6-kb, the size 

expected for a full-length cDNA clone of NORF1 (Figure 47). 

The nucleotide sequence of the insert was partially determined and was 

very similar at the nt and aa level to that of the corresponding human sequence. 
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Figure 47. Northern blot analysis of total human and mouse RNA using 
human and mouse NORF1 probes. 10 µg of total RNA was separated by 
formaldahyde gel electrophoresis and blotted. Each blot was probed with 
the indicated NORF1 probe onto GeneScreen Plus. Two strips with 
identical RNA samples were cut from the membrane. One was hybridized 
with the 4.5-kb mouse NORF1 and the other with the 5.5-kb human 
NORF1. RNA size markers are indicated in kilobases (kb) on the left and 
the right. The position of the two NORF1 transcripts in the center. The 
blots were exposed to X-ray film for 36 hours at -70°C using an enhancing 
screen. 
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(Figure 48). From these sequence data I conclude that I cloned a murine cDNA 

that exhibits a high degree of identity to the human 3.6-kb NORF1 gene. 
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FIGURE 48. Sequence comparison of 5' sequences of human (h) and mouse 
(m) NORF1. The complementary 5' nucleotide and deduced amino acid 
sequences of hNORF1 were aligned manually with the 5' nucleotide and 
deduced amino acid sequence of the mouse 4.5-kb cDNA fragment. The 
numbers at the right indicate nucleotide and amino acid positions. Untranslated 
regions are shown in lowercase and translated regions in uppercase letters. The 
start codon of NORF1 and the in-frame stop codons upstream of the start codon 
are in bold. The deduced amino acid sequences of hNORF1 and mNORF1 (in 
single letter IUPC code) are shown above and below their corresponding partial 
nucleotide sequences. In the alignments, a period indicates an identical amino 
acid residue, a X an unidentified nucleic and amino acid residue, and a forward 
slash a gap of one amino acid or nucleotide introduced for optimal alignments. 
The cysteine-rich putative zinc finger motifs and the GP-rich motifs are 
underlined in bold. 
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DISCUSSION 

The yeast UPF1 gene plays a defined role in the accelerated degradation 

of yeast nonsense mRNAs (Leeds et al., 1992; He et al., 1993). The 

identification of the UPF1 homologue, NORF1, in both human and mouse cells 

suggests that mammalian genes reduce levels of nonsense mRNA, at least in 

part, by similar mechanisms as yeast. Two results support the hypothesis that 

NORF1 is a UPF1 homologue. First, the conservation of key functional elements 

of Upf1 p such as the zinc-finger-like domain and RNA helicase region in NORF1 

suggest that it may act in a similar manner. Second, antisense NORf1 

expression partially reduces, the levels of nonsense mRNA in mammalian cells. 

Putative Functions of Motifs Conserved Between UPF1 and NORF1 

The Zinc-finger Motif 

NORF1 and Upf1 p contain very similar cysteine-rich regions which are 

characteristic of proteins that interact with nucleic acids. The cysteine-rich 
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domain contains two zinc-finger-like motifs that can be partially aligned with the 

zinc finger/knuckle motif, CysX2_5CysX4_12Cys/HisX2-4Cys/His. Zinc finger/ 

knuckle motifs are found in some zinc finger DNA binding proteins as well as in 

polypeptides that interact with RNA (Burd and Dreyfuss, 1994). 

The RNA Helicase Domain 

NORF1 and Upf1 p also contain a very similar RNA helicase domain that is 

characteristic of RNA helicases. These enzymes can unwind double stranded 

RNA (reviewed in Schmid and Linder, 1992). Purified Upf1 p is able to unwind 

dsRNA in in vitro tests in an ATP-dependent fashion (Czaplinski et al., 1995). 

Because NORF1 contains a conserved superfamily I ATP-dependent RNA 

helicase region, it is possible that NORF1 is also able to unwind dsRNA and 

uses ATP as the energy source. How this activity may affect nonsense mRNA is 

discussed below. 

The Acidic Region 

NORF1 and Upf1 p contain a stretch of acidic amino acids without 

conserved residues and NORF1 has an additional stretch with the same net 

charge as the acidic stretch shared by Upf1 p and NORF1. Some DNA-binding 

proteins require these domains to allow transcriptional activation (Umesono and 

Evans, 1989). This region, as well as regions discussed below, could bind to 

other proteins that are part of the machinery that recognize nonsense mRNA. 
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Possible Functions of Other Motifs in NORF1 

The predicted NORF1 protein contains at its N- terminal end a proline

glycine rich region motif that is not present in Upf1 p. When DNA databases 

were searched with the praline-glycine rich region of the NORF1 gene, matches 

were found with transcription factors that contained praline-glycine rich regions at 

their N-terminal ends. When these praline-glycine rich regions are changed, the 

activity of a transcription factor can decrease or is completely abolished 

(Umesono and Evans, 1989). It is thought that this region is important for 

interactions of transcription factors with DNA. In NORF1 this region could 

interact with double stranded RNA. 

NORF1 contains a number of SQ-space (serine and glutamine) and SQP

space (serine, glutamine and praline) di- and tri-residue repeats at the carboxy 

end of the protein. Searches of protein and DNA databases with the C-terminal 

end of NORF1 containing the SQ and SOP repeats did not reveal any significant 

matches. I speculate that it is possible that a SQ-space-SQ repeat could 

produce a highly hydrophillic region of polypeptide responsible for interactions 

with proteins that modifiy the activity of NORF1, that is, NORF1 might gain a 

function different from that of Upf1 p. Alternatively, it might interact with a 

mammalian homologue of Upf2p. 
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Expression of NORF1 

Northern blot analysis with the 3.6-kb NORF1 probe revealed a 5.5-kb 

and 3.6-kb transcript in all cell lines used in the analysis. Results of restriction 

and sequence analysis suggest that both transcripts encode NORF1. Although I 

did not quantitate the transcript levels in various cell lines, the result of the 

northern blot analysis in Figure 34 suggests that the ratio of the 3.6-kb and 5.5-

kb transcripts might be different from cell line to cell line. It is possible that the 

3.6-kb transcript represents a constitutively expressed mRNA, whereas levels of 

the 5.6-kb are regulated depending on the level of truncated polypeptides. It is 

tempting to speculate that sequences in the 3' UTR of the 5.6-kb species, about 

2-kb, might be responsible for this regulation. The complete sequence of the 5' 

UTR of clone 5.6 and a repeat of northern blot analysis with different cell lines 

and tissues might support this idea. It is hard to imagine how a truncated protein 

can signal the upregulation of a mRNA. However, truncated and mis-folded 

polypeptides that bind to the ER chaperone protein BiP could trigger an 

intracellular signal pathway activating a protein that binds to the 5' UTR of the 

5.6-kb NORF1 mRNA. Alternatively, NORF1 might directly be involved. We 

detected a putative tyrosine phosphorylation site in NORF1. 

The finding that an antiserum against human NORF1 detects a 130-kDa 

polypeptide in human and mouse cells (Figure 41) suggests some protein 

conservation. This is supported by Southern blot analysis of mouse DNA with 

the human probe as well as by sequence data of the mouse NORF_1 cDNA. 
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Interestingly, western blot analysis of rabbit proteins using the anti-human 

NORF1 peptide antiserum revealed a band of 115 kDa (data not shown). This 

may indicate that certain regions of the mouse and human NORF1 are 

dispensable for nonsense mRNA reduction. Therefore, the cloning and 

sequence of the rabbit NORF1 gene should identify regions that are different 

from mouse and human and possibly dispensable for NORF1 function. 

Function of NORF1 

To test whether NORF1 is able to promote nonsense mRNA reduction, I 

generated stable transfectants of a human NORF1 antisense cDNA into a mouse 

cell that expresses a nonsense µ mRNA. We found in one experiment and in 

one antisense transfectant that the expression of antisense-NORF1 mRNA 

correlated with a decrease of mouse NORF1 protein, an increase in nonsense µ 

mRNA, and the detection of a shorter polypeptide encoded by the nonsense µ 

mRNA. The reason why the level of nonsense µ mRNA was not restored to that 

of functional µ mRNA in FH could be that low levels of NORF1 protein can still be 

detected in antisense clone VXH.3. This raises the question of why the human 

NORF1 antisense transcripts do not completely decrease the level of mouse 

NORF1 protein. One possibility is that differences in the nucleotide sequence 

between human and mouse NORF1 result in a sense/antisense RNA hybrid that 

is only partially able to inhibit ribosomal translation of the mouse NORF1 protein. 

Indeed, partial sequence comparison of the mouse and human NORF1 genes 
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reveals that the two cDNAs contain nucleotide differences. Nevertheless, the 

most straightforward interpretation of these functional tests is that NORF1 is 

responsible for reducing nonsense µ mRNA levels. These results suggest that 

NORF1 is the first mammalian gene product that can affect the steady state level 

of a nonsense mRNA. However, this conclusion is based on the result obtained 

with this one VXH transfectant as well as from one western blot and northern blot 

of the indicated transfectants. The accuracy of the data obtained needs to be 

confirmed by repeating the western and northern blot analysis on these and 

possibly other independent transfectants. 

Another approach involved transforming a yeast upf1 mutant with a 

NORF1 expression plasmid to test for its ability to complement the upf1 defect. 

The presence of the NORF1 expressing plasmid, and presumed NORF1 

expression, did not result in yeast with an upf1 phenotype as determined by no 

change in the Leu- phenotype. There may be a number of reasons that NORF1 

did not complement the upf1 defect. First, the yeast may not have expressed 

NORF1 mRNA and protein. This is unlikely as the yeast grew readily in the 

presence of galactose, indicating the presence of endogenous yeast factors 

needed for metabolism as well as induction of the NORF1 cDNA. Additionally, 

the NORF1 cDNA was found to be in the correct orientation in the expression 

vector (data not shown). Because experiments confirming the presence of 

NORF1 mRNA and protein were not performed, these possibilities cannot be 

excluded. Second, NORF1 may not complement upf1 because it may .not have 



233 

the ability to interact with factors also required to rapidly degrade nonsense 

mRNA. The alignment of NORF1 with UPF1 (Figure 37) has revealed that not all 

regions of UPF1 are conserved in NORF1. For example, both proteins have 

different N- and C-terminal tails. It could be that these are the regions of Upf1 p 

that interact with the other UPF factors required to promote nonsense mRNA 

reduction. Because NORF1 lacks this region(s), it may not interact with other 

UPF factors. 

In another attempt to determine if NORF1 promotes nonsense mRNA 

reduction, I transformed yeast containing a wild-type UPF1 gene with a NORF1-

expression plasmid to determine if NORF1 could act in a dominant-negative 

fashion on Upf1p. The presence of the NORF1-expressing plasmid, and 

presumed expression of NORF1 protein, did not result in yeast with an upf1 

phenotype. There may be a number of reasons that NORF1 did not act in a 

dominant-negative fashion. First, the yeast may not have expressed NORF1 

mRNA and protein as discussed above. Second, there may be differences 

between NORF1 and Upf1 p that do not allow direct interaction. The differences 

between Upf1 p and NORF1 at their N- and C-terminal ends may prevent such 

interactions. 

The final test of NORF1 function should be perfomed in a cell line that 

lacks NORF1 expresion. The next experiments to be done are 1) isolating of a 

genomic fragment and disrupting the NORF1 gene in a mouse cell line, 2) 

finishing the sequence of the mouse NORF1 cDNA to identify conserved and 
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possible functional residues, 3) isolating clones that encode proteins interacting 

with NORF1 in a yeast two-hybrid system, and 4) generating antibodies against 

mouse NORF1 to localize the intracelluar localization of NORF1 by immuno 

electron microscopy. 

Models to Explain How NORF1 Reduces Nonsense mRNA levels 

In yeast, nonsense mRNA seems to be selectively degraded in the 

cytoplasm in an UPF-dependent manner (reviewed in Maquat, 1995). However, 

cytoplasmic levels of nonsense mRNA in mammalian cells seem to be reduced 

by both nuclear and cytoplasmic events (reviewed in Maquat, 1995). NORF1, in 

concert with other NORF factors, could be involved in both events. It is tempting 

to speculate that the two zinc-finger-like motifs of the NORF1 may facilitate the 

recognition of nonsense codons either in mature mRNA in the nucleus and/or the 

cytoplasm or in looped-out nuclear pre-mRNA, in which the exons have been 

aligned to form a continuous translational reading frame (Dietz and Kendzior, 

1994). One way in which the zinc-finger motif of NORF1 could be involved in 

nonsense codon recognition is that it could interact with a dsRNA region formed 

by the association of ribosomal subunits. The formation of dsRNA between 

ribosomal subunits is supported by experiments that have shown that the RNA 

components of mammalian ribosomes become less accessible to chemical 

modification after the 408 and 608 subunits have assembled into the BOS 

ribosome (Holmberg et al., 1994). From these results the authors believed that 

the RNA regions that are not modified are involved in rRNA subunit interactions. 
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Alternatively, rRNA could pair with tRNA molecules and form ds-rRNA/tRNA 

regions. That rRNA interacts with tRNA is suported by studies in prokaryotes 

that have shown that rRNA molecules are involved in tRNA selection and 

translational accuracy (reviewed by Noller, 1994). It may be possible that the 

zinc-finger motif of NORF1 binds to dsRNA or ds-rRNA/tRNA complexes. When 

these double-stranded regions are changed, either because tRNA is absent from 

the ribosomal A site, or ribosomal subunits disassociate, the binding of the zinc

finger to its double-stranded RNA binding site might be disrupted, which could 

result in the activation of the RNA helicase domain. Consequently, the helicase 

is activated, which leads to the degradation of nonsense mRNA as described 

below. That a zinc-finger motif could bind to dsRNA has been proposed for the 

ribosomal elongation factor elF-2p. In elF-2p, the zinc-finger motif is required for 

the recognition of the AUG start codon during the ribosome-mediated 

translational scanning process (Donahue et al., 1988). It has been suggested 

that the zinc-finger motif of elF-2P could participate in start site selection by 

either scanning for an AUG or by stabilizing the AUG codon-anticodon 

interaction (a dsRNA interaction). Because a stop codon has no tRNA with an 

anticodon, NORF1 may only participate in interactions with ribosomal rRNA to 

recognize stop codons, similar to the way elF-2P could interact with tRNA to 

stabilize AUG codon-anticodon interactions, and when activated by ribosomal 

disassociation, promote nonsense mRNA reduction (Figure 49). The importance 
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of the zinc-finger motif in Upf1 p has already been shown, because mutations in 

the zinc-finger motif of Upf1 p eliminate its ability to recognize a nonsense codon 

but does not influence the RNA helciase activity of Upf1 p (personal 

communication with K. Czaplinski) (see Table 2). These experiments were 

discussed in Chapter 11. 

The RNA helicase region of the Upf1 p is critical for its ability to promote 

the decay of nonsense mRNAs (Leeds et al., 1992). It has been suggested that 

upon activation (discussed above), Upf1 p could melt any secondary structure 

downstream of a nonsense codon by using its RNA helicase region, thereby 

leaving the mRNA exposed to nucleases (Figure 50.B; Peltz et al., 1993). For 

example, the ATP-dependent RNA helicase elF-4A can render RNA susceptible 

to nucleases (Ray et al., 1985). NORF1 may also act in this way (Figure 50.B). 

Another way in which Upf1 p is thought to influence the degradation of a 

nonsense mRNA is to promote the rapid de-capping of the nonsense message 

(Muhlrad and Parker, 1994). One way to explain how the RNA helicase activity 

of NORF1 could facilitate the rapid de-capping of a nonsense mRNA is that 

Upf1 p could unwind a trans-RNA interaction between the RNA portion of a 

RNA/protein complex and the capped end of a nonsense mRNA (Figure 50.C). 

This complex could somehow be involved in protecting the cap complex. 

Alternatively, the RNA helicase activity of NORF1 could unwind rRNA 

interactions in the ribosome which might result in the activation of other NORF 

factors that induce decapping (Figure 50.C). Yet, another way by which the RNA 

helicase activity of NORF1 could activate de-capping is to disrupt interactions 
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between the 5' cap and 3' poly(A)-tail (Figure 50.D). This would expose the cap 

to a decapping enzyme and, subsequently, to 5'-3' exonuclease attack. That 

poly(A)/cap interactions might be required to protect mRNA from rapid 

degradation, comes from experiments that show that translation and 

deadenylation are prerequisites to decapping (Muhlrad et al., 1994) and from 

electron micrograph studies that show circular polysomes (Christensen et al., 

1987). 

If NORF1 can activate nonsense codon mRNA reduction, it raises the 

question of why mRNA with normal stop codons are not affected by the action of 

NORF1. It may be that NORF1 is a labile factor and may only be associated 

with an elongating ribosome for a limited time. The further a ribosome 

elongates, the greater its chance of loosing NORF1. After a certain distance, 

any ribosome encountering a stop codon will not recognize it as a nonsense 

codon because it lacks NORF1. 

As mentioned above, nonsense mRNA in yeast seems to be selectively 

degraded in the cytoplasm in an UPF1-dependent manner (Peltz et al., 1994). 

However, cytoplasmic levels of nonsense mRNA in mammalian cells are 

apparently reduced by both nuclear and cytoplasmic events (reviewed in 

Maquat, 1995). If NORF1 is not found in the nucleus, other factors might be 

responsible for reducing nuclear levels of nonsense mRNA either by degrading 

mature nuclear mRNA or influencing the splicing of nonsense pre-mRNA 

(reviewed in Maquat, 1995). A mammalian homologue of Upf3p might be a 
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candidtate for a second factor. Upf3p contains a bi-partite nuclear localization 

sequence and thus, is thought to be present in the yeast nucleus (Lee and 

Culbertson, 1995). 
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NORF1: The Big Picture 

The conservation of a protein that reduces levels of nonsense mRNA in 

lower (S. cerevesiae and C. elegans) and higher eukaryotes, such as mouse and 

human, implies an important biological function, presumably because it reduces 

nonsense mRNA levels and, thus, high levels of truncated polypeptides. Most 

truncated proteins might not be deleterious for a single cell. However, it might 

prevent in a dominant-negative fashion the assembly of signal-transducing 

receptors and prevent a cell from proceeding along a differentiation pathway or 

to fulfill its major physiologic function. If applied to the immune system, it is 

possible that nonsense immunoglobulin or T-cell receptor genes generated by 

DNA rearrangements could produce nonsense mRNA that can be translated into 

a truncated polypeptide. Such truncated lg or TCR chains could interfere with 

the assembly of an lg or TCR molecule, respectively, thereby eliminating the 

ability of the cell to respond to foreign antigens. The presence of a truncated 

polypeptide encoded by a stable nonsense mRNA correlates with a number of 

human diseases. For example, certain cases of Larons syndrome (Hashimoto et 

al., 1995), p-thalassemia (Hall and Thein, 1994), cancer associated with altered 

p53 expression (Kawasaki et al., 1994), Marfan syndrome (Dietz et al., 1994), 

and many others diseases are all thought to be the result of a dominant-negative 

protein product being translated from a mRNA containing a nonsense codon 

(see Table 1 for additional examples and references). It may be possible that 

these patients also have a defect in NORF1 (or another NORF gene) making 
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them susceptible to protein products produced from nonsense mRNAs that are 

not eliminated. Therefore, NORF1 not only protects a cell from nonsense 

mRNAs but also from the deleterious effect of truncated polypeptides encoded 

by nonsense mRNA. 
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Additional Figure 1. Determination of insert size and restriction enzyme mapping of 'A YES cDNA clones that 
hybridize with EST clone R13609. (A) Determination of insert size in phage excised plasmid DNA. Plasmid DNA 
was analyzed by TAE/agarose gel electrophoresis using Xhol digestion. Molecular weight markers are in the 
indicated lanes. The band representing the 'A YES vector DNA is indicated by the arrow on the right. (B) 
Mapping of inserts in phage excised plasmid DNA by C. Kampershorer (5/16/96). Plasmid DNA was digested 
with BstXI and Xhol and analyzed by TAE/agarose gel electrophoresis. The faint 900 bp fragment identified in 
certian lanes is indicated by a white circle. (C) Table listing the phage clone picks and their insert sizes in kb. 
(D) Schematic representation of results from restriction enzyme mapping in B using diagnostic BstXI (8) and Xhol 
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Additional Figure 4. DNA restriction enzyme analysis of mouse 4.5-kb NORF1 clone (20.1.1.1 ). (A) Initial 
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and F) DNA restriction enzyme analysis of mouse NORF1 clone 20.1.1.1. Mouse NORF1 was digested with 
the indicated enzymes and mapped. (B) 4.5-kb cDNA insert is indicated by the arrow on the right. Molecular 
weight markers are shown in the indicated lanes. (G) Schematic representation of the pBluescript SK 
plasmid containing the 4.5-kb NORF1 cDNA clone. 
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