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ABSTRACT 

Walter Jeske 

Loyola University Chicago 

Heparin is a mixture of glycosaminoglycan chains which is used to prevent 

thrombosis in a number of clinical indications. Heparin is known to promote the 

inhibition of blood coagulation via the plasmatjc cofactors antithrombin ill (ATilI) and 

heparin cofactor II (HCII). 

The objective of this dissertation was to examine the importance of heparin 

cofactors in the mediation of the anticoagulant and antithrombotic effects of heparin. To 

achieve this goal, synthetic heparin analogues exhibiting a more selective interaction with 

heparin cofactors were studied using a number of in vitro systems and in vivo models. 

Three analogues were selected for this study. The pentasaccharide representing 

the minimal ATill binding sequence of heparin was observed to inhibit factor Xa but not 

thrombin via activation of A TIIl. Aprosulate mhibited thrombin via HCII but did not 

exhibit activate ATill. GL-522-Y-l also promoted the inhibition of thrombin via HCII 

but did not interact with A Tiii. 

The in vitro actions of each agent were investigated in plasma based clotting 

assays, Plasmatic and non-plasmatic amidolytic protease generation assays and in 

endothelial cell cultures. The in vivo phannacologic actions were studied in terms of 

iv 



antithrombotic and hemorrhagic activities in a rabbit stasis thrombosis model, a rat 

jugular vein clamping model of thrombosis and a rabbit ear bleeding model. The impact 

of the administration of synthetic heparin analogues on plasma TFPI levels was assessed 

in several species. TFPI antigen levels were also measured in primates and as part of two 

phase I human trials with aprosulate. 

From these studies, it was observed that ATIII plays a primary role in mediating 

heparin's anticoagulant and antithrombotic actions. In both models of thrombosis, agents 

capable of interacting with ATill proved more potent than those which solely inhibited 

thrombin via HCII. Interaction with plasma based SERPIN s was not predictive of 

hemorrhagic potential as both pentasaccharide and aprosulate failed to produce 

hemorrhage. These results also indicate a relative urrimportance of HCII mediated 

thrombin inhibition in the mediation of anticoagulant and antithrombotic activities. While 

aprosulate and GL-522-Y-1 were observed to :inhibit thrombin via HCII with similar 

potencies the in vitro and in vivo activities of these agents were widely divergent 

suggesting the importance of mechanisms other than protease inhibition by A Tiil and 

HCII for the mediation of the biologic effects of these agents. 
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CHAPTER I 

LITERATURE REVIEW 

A.Overview of Blood Coagulation 

1. Introduction 

Hemostasis as defined by Virchow in the last century is a fine balance between 

blood flow, humoral factors, and cellular elements of the vascular system. Today, 

biotechnology has advanced our understanding of the thrombotic process and its 

regulation. Whereas in the past, heparin and warfarin have been the sole antithrombotic 

agents available, specific sites in the thrombotic network can now be targeted. Antibodies 

against specific platelet receptors as well as specific antithrombin and anti-Xa agents are 

being developed. Mutations of endogenous inhibitors have been identified as causes of 

congenital thrombophilias. The use of heparin has also advanced. Heparin is no longer 

solely a surgical anticoagulant, but is used to treat a variety of conditions including 

venous thrombosis, unstable angina and myocardial infarction and is used in procedures 

such as angioplasty and stent implantation. The mechanism of heparin's action has 

become more complex with the discovery of tissue factor pathway inhibitor. 

Blood normally is maintained in the fluid state so that nutrients can be delivered 

to the various tissues of the body. When the integrity of the vascular system has been 

compromised, it becomes necessary for the blood to clot. The initial response to a break 

in the continuity of the vasculature is the formation of the platelet plug. Platelets in the 
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flowing blood rapidly adhere to the exposed subendothelial vessel wall matrix and 

become activated. During this activation process, components of the platelet a and B 

granules (ATP, ADP, factor V, 5-HT) are released causing further platelet aggregation. 

Also during these morphologic changes, activated platelets express protein and cell 

receptors and procoagulant phospholipids are expressed upon their surface. 

The negatively charged phospholipid phosphatidylserine is asymmetrically 

distributed in mammalian cell membranes, primarily on the inner leaflet. Upon exposure 

to collagen or thrombin, the distribution of phospholipids changes with increasing 

phosphatidylserine in the external membrane leaf (Bevers et al., 1985). The increased 

expression of phosphatidylserine on the outer leaflet of the membrane creates a 

procoagulant surface on which several steps of the coagulation cascade take place. 

The platelet plug initially arrests the loss of blood. This, however, is not a 

permanent blockade. The formation of a fibrin based clot acts to stabilize the initial 

platelet plug. The coagulation system is a complex network of zymogens which must be 

activated to ultimately form the fibrin strands of the blood clot. Upon activation, most 

of these coagulation proteins are converted into active serine proteases which are similar 

to trypsin and chymotrypsin. Traditionally, coagulation has been viewed as having two 

distinct branches (Davie et al., 1964; Macfarlane et al., 1964), the intrinsic and the 

extrinsic pathways. Today it has been established that the two pathways are linked prior 

to the generation of factor Xa (Osterud et al., 1977). A schematic of the coagulation 

cascade is depicted in Figure 1. 
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Figure I. Schematic of the coagulation cascade. The formation of the fibrin clot can be 
initiated in one of two ways. Activation of the contact system results in the sequential 
activation of factors XII, XI, IX, X and II. Exposure of tissue factor leads to activation 
of factors IX and X via a complex with factor Vlla. Solid arrows indicate enzymatic 
conversion. Broken arrows indicate inhibition. Factors in parenthesis are act as cofactors. 
ATIII primarily inhibits in the intrinsic pathway. TFPI regulates the extrinsic pathway. 
HCII is limited to inhibiting thrombin. 
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2.Intrinsic Pathway of Coagulation 

In the intrinsic pathway, factor XII becomes activated in the contact phase of 

coagulation. This occurs when factor XII, factor XI, prekallikrein, and high molecular 

weight kininogen come together on a negatively charged surface. While this reaction can 

take place in the laboratory on a negatively charged surface such as glass or kaolin, the 

physiologic surface is unknown. It has been proposed that this could be a tissue rich in 

collagen or sulphatides (Scully et al., 1992). By binding to the negatively charged 

surface, factor XII is converted to its active form through an unknown mechanism. The 

formation of factor XIIa is amplified by a positive feedback loop. Factor XIIa is capable 

of converting prekallikrein to kallikrein. Likewise, kallikrein converts factor XII to its 

active form. Factor XIIa also converts factor XI to factor Xla which in turn activates 

factor IX. Factor IX along with its cofactor factor VIII, calcium ions, and phospholipid 

membranes form the "tenase" complex which converts factor X to factor Xa thereby 

initiating the common pathway of coagulation. The phospholipid membrane in these 

complexes serves to lower the Km of the reaction. The phospholipid allows the enzyme 

to become saturated more easily and serves to localize the coagulation response to where 

it is most needed. The cofactor, factor V, increases the catalytic efficiency of the enzyme 

(Hemker et al., 1991). Factor Xa joins with its cofactor factor V, calcium ions and 

phospholipid membranes to form the prothrombinase complex. The prothrombinase 

complex then acts to convert prothrombin into the active enzyme thrombin. Factors V 

and VIII are activated through proteolytic cleavage by factor Xa or thrombin. They are 

not, however, active proteases. Factor V is believed to have two rate enhancing effects 
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on the prothrombinase complex. In the prothrombinase complex, factor Xa and factor V 

are present in stoichiometric amounts resulting in an unknown alteration in the active site 

of factor Xa which increases its catalytic efficiency (Mann et al., 1988). Factor V also 

binds to prothrombin thus sequestering it at the site of assembly of the prothrombinase 

complex. Overall, these two actions of factor V result in a 300,000-fold increase in the 

rate of prothrombin conversion. 

Thrombin serves many functions in coagulation. First, thrombin cleaves the 

soluble protein fibrinogen to generate the insoluble fibrin monomer. Fibrinogen circulates 

as a disulfide-linked dimer containing two A-0! chains, two B-6 chains and two gamma 

chains. Cleavage of fibrinogen by thrombin results in the release of fibrinopeptides A and 

B and the exposure of charged domains at opposite ends of the molecule (Roberts et al., 

1992). Exposure of these charged domains leads to polymerization of the monomers. The 

release of fibrinopeptides A and B occur at different rates with fibrinopeptide A 

preferentially removed in mammalian systems (Blomback et al., 1958; Shainoff et al., 

1960). Removal of fibrinopeptide A leads to end-to-end fibrin polymerization whereas 

loss of fibrinopeptide B allows side-to-side polymerization of the end-to-end linked 

monomers (Laurent et al., 1958). It is these monomers which are cross-linked by the 

transaminase factor XIIIa to form the meshwork of the thrombus. Thrombin also acts to 

augment its own generation by being a part of several positive feedback loops in the 

coagulation cascade. In these loops, thrombin activates factors XII, XI, VIII, and V. By 

activating the precursors to its own generation, thrombin greatly amplifies its own 

generation. Thrombin also activates platelets (Coughlin et al., 1992), activates the 
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inhibitor Protein C through binding with thrombomodulin (Esmon et al., 1989), and 

stimulates activated endothelial cells to release tissue plasminogen activator (Olsen et al., 

1992). 

3. Extrinsic Path way of Coagulation 

The extrinsic pathway of coagulation is activated when circulating factor VII 

encounters tissue factor. Tissue factor is a transmembrane glycoprotein which is normally 

expressed by subendothelial fibroblast-like cells which surround the blood vessel. An 

intact endothelium normally shields the circulating blood from exposure to tissue factor. 

The tissue factor molecule consists of a 219 amino acid hydrophilic extracellular domain, 

a 23 amino acid hydrophobic region which spans the membrane, and a 21 amino acid 

cytoplasmic tail which anchors the molecule to the cell membrane (Bach et al., 1988; 

Mc Vey et al., 1994). Other sites of tissue factor expression include activated monocytes, 

activated endothelial cells, and atherosclerotic plaques. 

Factor VII exhibits a weak procoagulant activity on its own, typically accounting 

for about 1-2 % of the total factor VII/VIIa activity (Morrisey et al., 1993). Upon binding 

to tissue factor, a 10,000,000 fold increase in factor VIIa enzymatic activity is observed 

(Edgington et al., 1991). Both factor Vll and factor VIIa bind to tissue factor with equal 

affinity (Nemerson et al., 1988). How factor VII is initially activated is not known, 

though it is hypothesized that factor Xa can activate factor VII in a back activation 

reaction. The factor VIia - tissue factor complex: can then activate factor X leading to the 

generation of thrombin and ultimately to the formation of fibrin strands. 
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It has been shown in 1977 and more recently appreciated that the tissue factor -

factor Vila complex also activates factor IX to factor IXa, thus interacting with 

"intrinsic" pathway enzymes (Osterud et al., 1977). This is believed to be important for 

maintaining the clotting process. Direct activation of factor X by factor Vila - tissue 

factor can rapidly initiate coagulation, but both of these enzymes are quickly inhibited 

by the endogenous inhibitor tissue factor pathway inhibitor. By activating factor IX, the 

tissue factor - Vila complex initiates two path ways for thrombin generation. The small 

amounts of factor Xa generated prior to TFPI inhibition are sufficient to cleave 

prothrombin and generate a small amount of thrombin. This thrombin is then capable of 

back-activating factors V, VIII and possibly XI, thereby sustaining clot formation through 

generation of thrombin via the intrinsic pathway. It has been observed that the activation 

of factor X by the factor IXa-VIII complex in the presence of calcium and phospholipids 

is 50 times greater than by the tissue factor-VIia complex (Mann et al., 1990). Factor 

XI activation has been shown to occur in the presence of thrombin and a polyanion 

cofactor (Naito et al., 1991; Gailani et al., 1991). Activation with the cofactor has been 

observed to be poor. A physiologic cofactor has not been elucidated. lt has been reasoned 

that if the direct activation of factor X by VIia - tissue factor is the sole source of 

thrombin generation, there would be no manifestation of hemophilia, a genetic deficiency 

of either factor IX or factor VIII. 

4. Role of Platelets 

Platelets are disc-shaped, anuclear cells which circulate in a non-adhesive state 
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in the undamaged circulation (Packham, 1994). These cells contain a contractile system 

and a number of storage granules. The a storage granules contain platelet factor 4 (PF4), 

J3-thromboglobulin, platelet derived growth factor (PDGF), fibrinogen, factor V, and von 

Willebrand factor (Kaplan et al., 1981). The dense or fl-granules contain ATP, ADP, and 

serotonin (Holm sen et al., 1987; Niewiarowski et al., 1987). 

The first step toward platelet aggregation is platelet adhesion. Normally, 

platelets do not adhere to the vessel walls due to the non-thrombogenic properties of the 

endothelium. Endothelial cells produce heparan sulfate (to activate antithrombin III), 

thrombomodulin (for activation of protein C), plasminogen activators (to induce fibrin 

degradation) and TFPI (to inhibit tissue factor activity). In addition, these cells also 

produce prostacyclin (PGI2) which inhibits platelet activation by raising platelet cAMP 

levels and endothelial derived relaxing factor (EDRF; NO) which inhibits platelet 

activation through a cGMP dependent mechanism. When this antithrombotic continuum 

of cells is interrupted by vascular injury, platelets adhere to the exposed subendothelial 

tissues. 

Following adhesion, platelets become activated. In this activation process, there 

is a morphologic shape change in the platelet, with pseudopod formation observed. This 

brings about a change in the conformation of the glycoprotein IIb/IIIa receptor on the 

platelet surface which allows for fibrinogen binding (Packham, 1994). Fibrinogen binding 

serves as a bridge which links individual platelets into larger aggregates. An increase in 

cytosolic calcium levels leads to activation of internal platelet enzymes with the 

subsequent release of platelet granule con ten ts. The formation of these platelet aggregates 
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is the process of primary hemostasis, the first step to arrest blood loss. 

The release of platelet granule contents leads to further platelet activation and 

aggregation and an activation of coagulation. Most of the known aggregating agents cause 

release of the platelet storage granule contents. These agonists include thrombin, ADP, 

collagen, TXA2 , platelet activating factor, serotonin, epinephrine, immune complexes, 

and fibrinogen (Packham, 1994). Thrombin is the most potent aggregating agent, capable 

of causing platelet aggregation without any contribution from thromboxane A2 or ADP 

(Packham, 1994). Serotonin and epinephrine do not induce aggregation on their own, but 

synergistically promote aggregation induced by other agents (Coller et al., 1992; Hourani 

et al., 1991; Siess et al., 1989). 

Platelet membranes contain a variety or receptors for the various agonists 

including the thrombin receptor, the TXA2 receptor, 5-HT2 receptors, and a 2-adrenergic 

receptors. In addition, a number of glycoproteins present on the membrane serve as 

receptors for collagen (GP Ia/Ila), fibrinogen (GP IIb/IIIa), van Willebrand factor (GP 

lb) and fibronectin (GP IIb/IIIa) (Coller et al., 1992; Hourani et al., 1991; Siess et al., 

1989). A high molecular weight chondroitin sulfate proteoglycan has been shown to be 

released from the surface of the platelet during the aggregation process (Nader, 1991). 

This proteoglycan contains homopolymers of 4-0 chondroitin sulfate which inhibit ADP 

induced aggregation of platelets. 

Activated platelets also provide a procoagulant surface on which several 

reactions of the coagulation cascade take place. Unstimulated platelets provide only a 

minimally effective surface on which the "tenase" and prothrombinase complexes can 
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assemble (Zwaal et al., 1989; Wiedman et al., 1986; Esmon, 1993). This is due to the 

bilayer partitioning of various phospholipids. In unstimulated platelets, the outer leaflet 

of the membrane consists of mostly phosphatidylcholine while the inner leaf contains 

most of the phosphatidylserine. Two mechanisms have been proposed for maintaining this 

distribution (Sandberg, et al., 1985; Tilly et al., 1990). When platelets are stimulated to 

release their granular contents, the procoagulant phospholipids are brought to the surface 

as the granules fuse to the membranes (Zwaal et al., 1989). This expression of 

phosphatidylserine on the outer leaflet along with factor V release from the a-granule 

greatly accelerates the formation of thrombin (Tracy et al., 1992; Miletich et al., 1977; 

Ittyerah et al., 1981). 

Platelet activation leads to the formation of platelet derived microparticles 

derived from the platelet surface. These microvesicles typically account for 25 to 30 % 

of platelet procoagulant activity and factor V binding sites (Sandberg et al., 1985; Sims 

et al., 1989). 

5. Role of Platelet Integrins 

A number of the glycoproteins on the surface of the platelet belong to the 

superfamily of adhesive protein receptors known as integrins. Integrins are a/B 

heterodimer protein complexes which are present on the surface of adherent cells of most 

species (Bogaert et al., 1987; DeSimone et al., 1988; Marcantonio et al., 1988). These 

integrins mediate cell-cell and cell-matrix interactions involved in a diverse number of 

biologic functions (Hynes et al., 1987; Takada et al., 1987). Integrins are divided into 
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subfamilies based on the identity of the fl-subunit. The first two subfamilies of integrins, 

the VLA complexes and the Leu-Cams, are found on white cells and mediate various 

leukocyte aggregation responses (Hemler et al., 1983; Anderson et al., 1987). Platelets 

contain two members of the third subfamily of integrins, glycoprotein Ilb/Illa or P

selectin and the vitronectin receptor (Cheresh et al., 1987; Lam et al., 1989; Bray et al., 

1987; Zimrin et al., 1988). 

Integrins function by interacting with a number of extracellular glycoprotein 

ligands such as fibronectin, laminin, collagen, vitronectin, fibrinogen, and von 

Willebrand's factor (Bennett et al., 1991). Integrins are capable of binding several 

ligands and the nature of the ligand specificity is not known. 

Platelet membranes contain five integrin-like receptors which are involved in the 

formation of the primary hemostatic plug. These include VLA-2, VLA-5, VLA-6, 

glycoprotein IIb/IIIa and the vitronectin receptor. Of these, GP IIb/IIIa is the most 

abundant (Phillips et al., 1991). VLA-2 (GPJafIIa) is the binding site for collagen on the 

platelet surface (Staatz et al., 1989). VLA-5 and VLA-6 are responsible for the binding 

to vitronectin and laminin, respectively (Hemler et al., 1988; Fischel et al., 1988). The 

extent to which these receptors contribute to platelet adhesion in vivo is not known. The 

physiologic function of the vitronectin receptor is not known. 

Platelet aggregation requires that platelets become activated by at least one 

platelet agonist, the presence of functional GPJlblllla molecules and the presence of at 

least one GPIIb/IIIa ligand (Shattil et al., 1981 ). Lack of GPilbfIIIa complexes leads to 

the congenital bleeding disorder known as Glanzmann's thrombasthenia (Bennett et al., 
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1979). In nonactivated platelets, GPIIb/IIIa is capable of binding only immobilized 

fibrinogen. Platelet activation allows plasma-borne adhesive proteins to bind to GPIIb/llla 

complexes (Jackson et al., 1993). The activation of the lib/Illa complex occurs by an 

unknown mechanism though the number of receptors on the membrane is not altered by 

activation (Phillips et al., 1991). Fibrin polymers bind to the activated GPIIb/Illa 

complexes and anchor the platelet plug in place. 

Recent studies have shown that the binding ofligands to GPilb/Illaalso activates 

a number of cellular processes important for platelet stimulation (Phillips et al., 1991) 

including the synthesis of 3-phosphorylated phosphatidylinositols, the release of 

arachidonic acid, and the increase in plasma calcium levels. Stimulation of these 

processes allows for bidirectional signalling between the intracellular and extracellular 

compartments. 

6. Role of Leukocytes 

Leukocytes typically express minimal amounts of procoagulant activity in the 

unstimulated state (Drake et al., 1989). Cytokines such as interleukin-1 (IL-1) and tumor 

necrosis factor (TNF) can elicit the expression of tissue factor on endothelial and 

mononuclear cells (Carlsen et al., 1988). Monocyte procoagulant activity is also induced 

by endotoxin, the complement system, phorbol esters, prostaglandins, and a number of 

other agonists (Edwards et al., 1992). Procoagulant activity associated with leukocytes 

is not limited to the expression of tissue factor. Several monocyte/macrophage derived 

procoagulant activities have been characterized. These include tissue factor (Gregory et 
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al., 1989; McGee et al., 1990, Schwartz et al., 1981), factor VII (McGee et al., 1989; 

Chapman et al., 1985), and factor XIII (Weisberg et al., 1987). In addition, some 

monocytes and macrophages have been shown to express functional factor V /Va 

(Rothberger et al., 1984) and to possess binding sites for factor X (Altieri et al., 1988). 

The factor Xa binding site on leukocytes has been shown to be the integrin CD1lb/CD18 

(Altieri et al., 1988). Not only does this integrin bind factor X, but it also proteolytically 

activates factor X to Xa, allowing for initiation of coagulation on the surface of the 

monocytes and neutrophils (Altieri et al., 1988b). Monocytes have also been shown to 

contain a receptor for the factor IXa/VIII complex which allows the reactions of the 

intrinsic pathway of coagulation to take place on the surface of the monocyte (McGee et 

al., 1991). 

Prothrombin has been shown to be efficiently activated on the cell surface of 

monocytes and lymphocytes (Tracy et al., 1983; Tracy et al., 1985). As with platelets, 

the prothrombinase activity on monocytes is increased with activated monocytes as 

compared to the non-activated cells (Robinson et al., 1992). 

It has been stated that when coagulation takes place on the surface of leukocytes, 

it " ... assumes the aspects of a broad inflammatory mechanism, directly influencing 

cellular motility and adhesion, phagocytosis, cell-cell communication, and normal or 

deregulated cellular growth" (Altieri et al., 1993). Fibrin formation not only forms the 

basis for a blood clot, but can also serve to limit the inflammatory response. In addition, 

products of the coagulation process such as thrombin, fibrinopeptides, and fibrin 

degradation products have chemotactic and mitogenic properties (Perdue et al., 1981; 



14 

Senior et al., 1986; Shavit et al., 1983). 

Studies have indicated that leukocytes play a critical role in the activation of 

coagulation in patients with septicemia and in animal models of acute lung injury 

(Okajima et al., 1991; Car et al., 1991). One study has presented direct evidence 

indicating the role of tissue factor expression on activated endothelial cells on in vivo 

thrombogenesis (Nawroth et al., 1986). 

7. Role of Cytokines 

Cytokines produced during inflammatory responses as in sepsis lead to several 

alterations of the hemostatic system. Primarily affected are the endothelium and 

leukocytes. Following an injection of endotoxin, it has been shown that there is an 

increase in tissue factor expression on monocytes leading to the formation of the VIIa

tissue factor complex. (Edgington et al., 1992; ten Cate et al., 1994). Cytokines such as 

interleukin- I (IL-1) and tumor necrosis factor (TNF) are known to alter the 

antithrombotic properties of the endothelium. Among these changes is an increased 

expression of adhesion molecules for neutrophils and lymphocytes on the endothelium 

(Savage et al., 1993; Redl et al., 1994; Waage et al., 1993). Both cell types are capable 

of directly damaging the endothelium (Savage et al., 1993). Damage to the endothelium 

leads to both an activation of coagulation (Levi et al., 1993; Maruyama, 1994) and to 

delayed alterations in the balance of fibrinolytic activators and inhibitors (Gertler et al., 

1992), both of which can promote thrombus formation. 
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Antithrombin III is a single chain glycoprotein with a molecular weight of 

approximately 58,000 Da (Mourey et al., 1990). The primary structure of this serine 

protease inhibitor (SERPIN) has been determined by protein and cDNA sequencing of 

clones from several species (Beck et al., 1982; Chandra et al., 1983; Petersen et al., 

1979; Prowchownil et al., 1983; Sheffield et al., 1992; Stackhouse et al., 1983). Normal 

plasma levels of antithrombin III are approximately 2 to 3 µM (Conrad et al., 1983). 

In the beginning of the century, it was suspected that a natural inhibitor of 

thrombin was present in the plasma (Howell, 1918). The first hints of antithrombin Ill's 

existence were detected shortly after the discovery of heparin when it was discovered that 

heparin required a cofactor to exhibit its anticoagulant activity (Howell, 1925; Brinkhous 

et al., 1939). At this point, the molecule was termed heparin cofactor (Brinkhous et al., 

1939). It was not until the late 1960's that Abildgaard demonstrated that the proteins 

antithrombin and heparin cofactor were one in the same (Abildgaard et al., 1968). 

Antithrombin III is a member of the SERPIN superfamily of proteins which 

includes the inhibitors a 2-antiplasmin, a 1-antichymotrypsin, and a 1-proteinase inhibitor 

(Pizzo et al., 1994). Antithrombin III is considered to be the primary inhibitor of 

coagulation (Pratt et al., 1991) and targets most coagulation proteases as well as the 

enzymes trypsin, plasmin, and kallikrein (Bjork et al., 1986; Travis et al., 1983). 

Inhibition takes place when a stoichiometric complex between the active site serine of the 

protease and the ARG393-SER294 bond of antithrombin III forms (Rosenberg et al., 
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1973; Jornvall et al., 1979; Damus et al., 1973; Owen et al., 1975). 

The tertiary structure of antithrombin III resembles ~.-antitrypsin in that it is 

folded into N-terminal domain helices and 13-sheets. This tertiary structure is maintained 

by the formation of three disulfide bonds (Mourey et al., 1990). Four glycosylation sites 

exist on human antithrombin III, two of which are suspected to actually contain 

carbohydrate chains. The glycosylation of these sites appears to effect heparin binding 

to the inhibitor (Brennan et al., 1987; Brennan et al., 1988). 

The efficient inhibition of proteases by antithrombin III requires heparin as a 

cofactor. Without heparin, the inhibition rate constants for thrombin and factor Xa have 

been estimated to be 1 x 103 and 3 x 103 L/mol sec-1
, respectively. In the presence of 

heparin, these rates of inhibition are accelerated to 3 x 107 and 4 x 106 L/mol sec-1
, 

respectively, for thrombin and factor Xa (Jordan et al., 1980). The binding site for 

heparin is located on the N-terminal domain of the molecule. 

Two mechanisms have been proposed to account for heparin's ability to catalyze 

the antiprotease actions of antithrombin III. The first suggests that heparin binds to 

antithrombin III and causes a conformational change at the active site (Rosenberg et al., 

1973). The second model, the ternary complex or template model, proposes that heparin 

acts catalytically by binding both antithrombin III and the serine protease, thereby 

bringing them in close proximity (Bjork et al., 1986). Both models may be operative 

depending upon the serine protease being inhibited. Conformational changes of ATIII 

upon heparin binding have been observed spectroscopically (Villaneuva et al., 1979; 

Shore et al., 1989; Rosenberg et al, 1973). Furthermore, the ability of a pentasaccharide 
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region of heparin to promote the antithrombin III mediated inhibition of factor Xa 

supports this model. The inhibition of thrombin appears to be better explained by the 

template model. Conformational changes induced by heparin binding do not alter the 

reactivity of antithrombin III towards thrombin (Peterson et al., 1987). In addition, 

heparin pentasaccharides do not promote thrombin inhibition. Rather, chains of greater 

than 18 saccharide units are needed for this inhibition. Kinetic studies indicate that 

heparin must bind both thrombin and antithrombin HI (Nesheim et al., 1986; Hoylaerts 

et al., 1984). It is not clear if one binding must precede the other for optimal inhibition 

to occur (Griffith et al., 1982; Pletcher et al., 1983). 

Deficiency of antithrombin III predisposes the patient to thrombotic 

complications. Antithrombin III deficiencies can be the result oflow protein levels or due 

to functionally abnormal molecules. Low protein levels can be brought about by reduced 

synthesis or an increased turnover of the molecule. Functional deficiencies can be 

brought about by mutations in either the reactive site or heparin binding sites. A number 

of such mutations have been documented (Erdjument et al., 1988; Lane et al., 1987; 

Stephens et al., 1987; Bock et al., 1985; Koide et al., 1984; Owen et al., 1987; Borg et 

al., 1988; Chang et al., 1986) 

2. Heparin Cofactor Il 

Heparin cofactor II is a second plasma SERPIN which has resemblance to 

antithrombin III in that it is activatable by glycosaminoglycan binding. This protein has 

also been called antithrombin BM (Wunderwald et al., 1982), dermatan sulfate cofactor 
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(Abildgaard et al., 1984) and human leuserpin 2 (Ragg et al., 1986). The existence of 

this second inhibitor and heparin cofactor was first shown by Briginshaw in 1974 

(Briginshaw et al., 197 4a, b). Whereas· antithrombin III is observed to have progressive 

antithrombin activity and to also inhibit factor Xa, the second cofactor exhibits only weak 

progressive activity and does not inhibit factor Xa. Tollefsen observed two different 

thrombin inhibitor complexes, one of which could not be identified with antisera to 

known protease inhibitors (Tollefsen et al., 1981 ). Several clinical studies observed a 

discrepancy between heparin cofactor activity levels and plasma antithrombin Ill antigen 

levels (Friberger et al., 1982; Griffith et al., 1983). The existence of the inhibitor was 

confirmed when the protein was isolated from human plasma (Tollefsen et al., 1982) and 

from Cohn fraction IV (Wunderwald et al., 1982). The heparin cofactor II protein has 

a molecular weight of 62,000 to 72,000 Da depending upon the methodology used 

(Tollefsen et al., 1982; Tran et al., 1986). 

Like antithrombin III, heparin cofactor II inhibits proteases by forming a 1: 1 

stoichiometric complex with the enzyme. The protease attacks the reactive site of heparin 

cofactor II located on the C-terminus, resulting in the formation of a covalent bond. 

Heparin cofactor II has a higher protease specificity than antithrombin III. Of the 

coagulation enzymes, heparin cofactor II is known only to inhibit thrombin (Travis et al., 

1983). Additionally, heparin cofactor II has been shown to inhibit chymotrypsin (Church 

et al., 1985) and leukocyte cathepsin G (Parker et al., 1985). This protease specificity 

appears to be due to the active site bond present in heparin cofactor II. Whereas 

antithrombin III contains an Arg-Ser bond as its active site, heparin cofactor II is unique 
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in containing a Leu-Ser bond. This suggests than another portion of the heparin cofactor 

II molecular may be required for protease binding. 

As in the case of antithrombin III, the inhibition of protease activity by heparin 

cofactor II is promoted by glycosaminoglycan binding. Whereas the activation of 

antithrombin III is dependent upon the presence of a specific sequence in the heparin 

chain, heparin cofactor II can be activated by a wide variety of agents. Heparins, 

heparans, and dermatan sulfate all promote thrombin inhibition via heparin cofactor II. 

Agents with relatively little sulfation such as chondroitin 4-0- or 6-0-sulfate, keratan 

sulfate or hyaluronic acid do not activate heparin cofactor II. Heparan sulfate containing 

0. 97 sulfates per disaccharide has been shown to be a better activator of heparin cofactor 

II than heparan sulfate containing 0.67 sulfates per disaccharide (Tollefsen et al., 1989). 

In addition, sulfated, synthetic agents are able to activate heparin cofactor II. Both 

pentosan polysulfate (Scully et al., 1984; Scully et al., 1986) and dextran sulfate 

(Yamagishi et al., 1984) have been shown to activate heparin cofactor II. 

Both dermatan sulfate and heparin have been fractionated in order to study their 

heparin cofactor II binding characteristics. In studies performed by Tollefsen et al. 

dermatan sulfate octasaccharides with higher negative charge have been shown to bind 

to heparin cofactor II better than those with a lower charge (Tollefsen et al., 1986). 

Although these octasaccharides bind to heparin cofactor II, dermatan sulfate chains of 12 

to 14 saccharides are required to promote thrombin inhibition. This is consistent with the 

template model of inhibition. Heparin has been fractionated by charge density and 

subsequently on an ATIII-Sepharose column into high and low affinity fractions (Hurst 
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et al., 1983). It has been observed that for a given charge density, antithrombin III 

affinity is unrelated to the ability of the fraction to activate heparin cofactor II. High and 

low affinity fractions equally activated heparin cofactor II when charge density is 

constant. To date, definitive data supporting the existence of a minimally required 

sequence to activate heparin cofactor II has not been reported. 

Rogers et al. have probed the role of thrombin exosites in the heparin cofactor 

II mediated inhibition of this enzyme (Rogers et al., 1992). In the absence of 

glycosaminoglycan, thrombin variants recognize antithrombin III and heparin cofactor 

II to a similar degree, indicating that neither the autolysis loop nor the B-loop of 

thrombin is required for SERPIN/protease interaction. Upon addition of heparin, the 

interaction of antithrombin III with the thrombin variants is not altered suggesting the 

importance of the anion binding exosite II for the heparin bridge between thrombin and 

antithrombin III. These same studies indicate the importance of anion binding exosite I 

for the inhibition of thrombin by heparin cofactor II as gamma thrombin, lacking this 

site, is not inhibited. Based on these results, a complex double bridge mechanism for 

heparin cofactor II mediated thrombin inhibition has been postulated. In this mechanism, 

heparin or dermatan sulfate binds to the glycosaminoglycan binding site on heparin 

cofactor II and anion binding site I on thrombin. Upon heparin binding to heparin 

cofactor II, the acidic domain is displaced and is free to interact with the B-loop region 

of the anion binding exosite of thrombin, facilitating its rapid inhibition. 

The normal plasma level of heparin cofactor II is approximately 1.2 ± 0.2 µM 

(Tollefsen et al., 1985). Two patients to date have been described as having heparin 
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cofactor II deficiency related to thrombosis (Sie et al., 1985; Tran et al., 1985). 

3. Tissue Factor Pathway Inhibitor 

Tissue factor pathway inhibitor (TFPI) is one of the coagulation protease 

inhibitors found endogenously within the vasculature. TFPI has alternately been known 

as lipoprotein associated coagulation inhibitor (LACI) or extrinsic pathway inhibitor 

(EPI). This 42 kDa inhibitor has been shown to contain three Kunitz domains tandemly 

linked between a negatively charged amino terminus and a positively charged carboxy 

terminus (Girard et al., 1989). The active site of the first Kunitz domain binds to the 

active site of the VIia - tissue factor complex while the active site of the second Kunitz 

domain binds to the active site of factor Xa. Mutation of the active site of the third 

Kunitz domain has no effect on the inhibition of either factor VIIa or factor Xa. 

Modification of the second Kunitz domain has also been shown to result in a loss of 

inhibition of tissue factor-VIIa activity. In experiments where the third Kunitz domain 

has been truncated, TFPI still inhibits factor VIia tissue factor complexes on cell surfaces 

in culture (Hamamoto et al., 1993). The carboxy terminus of TFPI is required for the 

optimal inhibition of factor Xa (Wesselschmidt et al., 1992; Nordfang et al., 1991), 

perhaps effecting the rate at which TFPI can bind to Factor Xa. No difference is 

observed between the inhibition of factor VIIa - tissue factor by full-length TFPI or by 

a truncated form of TFPI (Wesselschmidt et al., 1992). Two studies have examined the 

kinetics of TFPI inhibition of factor Xa (Lindhou t et al., 1993; Huang et al., 1993). Both 

studies have indicated that more than just the second Kunitz domain is required for factor 
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Xa binding as the association rate constants for full-length TFPI are higher than for 

carboxy-terminus or Kunitz 3 truncated TFPI. The third Kunitz domain has recently been 

shown to contain a second heparin binding site (Enjyoji et al., 1995). 

TFPI has been cloned from a number of species including humans, rabbits, rats, 

and monkeys (Sprecher et al., 1994; Warn-Cramer et al., 1992; Kamei et al., 1994; Wun 

et al., 1988; Enjyoji et al., 1992). Monkey TFPI was observed to be similar in structure 

and function to human TFPI. Rabbit TFPI was shown to have a weaker antiprotease 

activity compared to human TFPI and not to associate with lipoproteins (Warn-Cramer 

et al., 1992). 

In normal tissues of the vasculature, TFPI is produced by megakaryocytes and 

the endothelium (Werling et al., 1993). Once produced, this TFPI is stored in three 

intravascular pools. These pools are located in the plasma, in platelets, and bound to the 

endothelium (Lindahl et al., 1992). The smallest pool of TFPI is found in the platelets, 

accounting for less than 2.5 % of the intravascular total. This small pool of TFPI is 

released upon platelet activation (Novotny et al., 1988). 10 to 50 % of the intravascular 

TFPI is in the plasma. Most plasma based TFPI is bound to plasma lipoproteins 

(Novotny et al., 1991; Braze et al., 1987). Approximately 5 % of the plasma pool of 

TFPI circulates in the free form (Novotny et al., 1989; Lindahl et al., 1991). The 

lipoprotein bound TFPI is reported to be of relatively low inhibitory activity (Lindahl et 

al., 1991). The largest pool of TFPI is found bound to the endothelial surface (Novotny 

et al., 1991; Sandset et al., 1988; Lindahl et al., 1990). This pool can account for 50 to 

90% of the total intravascular TFPI. 
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The TFPI pool bound to the endothelium has been shown to be heparin 

releasable in a number of studies (Ariens et al., 1994; Warn-Cramer et al., 1993; Bara 

et al., 1993; Holst et al., 1993; Novotny et al., 199 ld). Venous occlusion (Sandset et al., 

1988) and agents such as DDAVP which induce exocytosis of endothelial granular 

proteins (Warr et al., 1989) do not cause the release of TFPI. Repeated heparin 

administration is observed to release similar amounts of TFPI (Ariens et al., 1994) with 

no tachyphylaxis. It is believed that the endothelial pool of TFPI is bound to 

glycosaminoglycans on the surface of the endothelium. Heparin injection, then, is thought 

to displace TFPI from the endogenous glycosaminoglycans. The amount of TFPI in the 

plasma following heparin administration is determined by the heparin concentration. TFPI 

levels 2 to 10 fold baseline have been reported following heparin and low molecular 

weight heparin administration. The chemical nature of the low molecular weight heparin 

also effects the degree of TFPI release. It has been shown that when different LMWHs 

are administered at the same anti-Xa unit dosage, plasma TFPI levels vary by as much 

as 30 % (Vogel, 1995). Neutralization of heparin by protamine sulfate or protamine 

chloride results in a dramatic decrease in plasma TFPI levels (Harenberg et al., 1993; 

Hoppensteadt et al., 1995). 

TFPI acts in vitro as an anticoagulant when measured by a number of assays. 

Both the thromboplastin induced clotting time and the activated partial thromboplastin 

time are prolonged by TFPI (Lindahl et al., 1991b; Lindahl et al., 1991c). Factor Xa 

based assays such as the Heptest and the amidolytic anti-Xa assay are also affected by 

recombinant TFPI (Kristensen et al., 1992). Higher amounts of TFPI are required in the 
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prothrombin time and APTI for prolongation of the clotting time than are needed in the 

Heptest•. The prothrombin time is a more sensitive assay for the anticoagulant effects of 

TFPI than is the APTI, suggesting that the main in vitro inhibitory effect of TFPI is the 

inhibition of factor Vlla (Lindahl et al., 1991d). Co-supplementation of heparin and 

rTFPI to plasma in vitro has differing effects depending upon the assay used. Kristensen 

observed that heparin and rTFPI additively prolong the Heptest• clotting time. It has been 

shown that the prolongation of the APTI and PT assays by heparin and TFPI is 

synergistic (Valentin et al., 1991; Wun et al., 1992). A study by N ordfang et al., 

however, suggest that the increased effect of TFPI in the presence of heparin is due to 

heparin antithrombin III complexes as addition of heparin exhibited no effect in 

antithrombin III deficient plasma (Nordfang et al., 1993). The rate of Xa inhibition by 

rTFPI was observed to increase 2.5 fold upon the addition of heparin (Broze et al., 

1988), though not with full-length TFPI (Wesselschmidt et al., 1992). 

TFPI, when administered to rabbits, has been shown to have an antithrombotic 

effect when thromboplastin was used as a thrombogenic challenge (Day et al., 1990). 

TFPI was also shown to be an effective inhibitor when thrombosis was induced in rabbit 

jugular veins by endothelial destruction and restricted blood flow (Holst et al., 1994). 

The antithrombotic and antiprotease actions of TFPI have been tested in several other 

animal models. Warn-Cramer et al. investigated the effect of immunodepletion of TFPI 

in factor VIIa and Xa induced coagulation in rabbits (Warn-Cramer et al., 1993b). These 

rabbits were observed to be sensitized to the procoagulant effects of factor Vlla, but not 

factor Xa in the absence of factor Vila. Two studies have indicated that TFPI 
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administration reduces the lethal effects of E. coli administration in a septic shock model 

in baboons (Carr et al., 1995; Creasey et al., 1993). These studies also indicated that 

TFPI may have an anti-inflammatory effect as an attenuation of the IL-6 response was 

also observed. Administration of TFPI has been observed to prevent reocclusion of 

arteries in dogs following clot lysis with t-PA (Haskel et al., 1991). Topical 

administration of TFPI has been shown to prevent thrombosis in a rabbit model of 

vascular trauma (Khouri et al., 1993). 

4. Protein C 

The protein C pathway is one of the natural anticoagulant systems which keeps 

blood in the fluid state. When thrombin is formed, it stimulates coagulation and its own 

formation by activating factors V and VIII through proteolytic cleavage (Jenny et al., 

1994; Kane et al., 1988). Factors VIiia and Va bind to negatively charged phospholipids 

on activated platelets and act as binding sites for factors IXa and Xa, respectively, 

allowing for formation of the "tenase" and prothrombinase complexes (Mann et al., 

1990). 

Thrombin can also act to limit its own procoagulant activity. When thrombin is 

m circulation, it binds a high affinity receptor on the endothelium known as 

thrombomodulin (Esmon et al., 1981). The ~for this binding is 0.2 to 0.5 x 10-9 M 

(Owen et al., 1981). Thrombomodulin is a membrane spanning protein containing 

multiple functional domains and a molecular weight of approximately 60,000 Da 

(Dahlback et al., 1995). When thrombin binds to thrombomodulin, a change in substrate 
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specificity is noted. While this complex is a potent activator of protein C, the bound 

thrombin no longer cleaves fibrinogen, is not able to activate other coagulation proteases 

such as factors V and VIII and does not activate platelets (Esmon et al., 1982; Esmon 

et al., 1983). The thrombin-thrombomodulin complex is a 20,000 fold better activator 

of protein C than is free thrombin (Esmon et al., 1981; Owen et al., 1981). 

Thrombomodulin is present on the endothelium in most arteries, veins, and capillaries 

(Maruyama et al., 1985; DeBault et al., 1986). 

Protein C is a vitamin K-dependent zymogen identified by Stenflo (Stenflo et al., 

1976) which has been shown to be identical to autoprothrombin Ila (Seegers et al., 

1976). Upon activation, protein C exhibits anticoagulant properties (Kisiel et al., 1977; 

Kisiel et al., 1979). Alterations of thrombin' s substrate specificity upon binding to 

thrombomodulin are thought to be due both to steric hinderance of thrombin's active site 

and to conformational changes in the active site (Musci et al., 1988; Ye et al., 1991; 

Holtin et al., 1991). Protein C is made up of disulfide linked heavy and light chains and 

has a molecular weight of approximately 62,000 Da (Beckman et al., 1982; Foster et al., 

1984). Protein C derives its anticoagulant properties from its ability to cleave and 

inactivate membrane bound forms of factors Va and Vllla (Esmon et al., 1992; Esmon 

et al., 1993; Walker et al., 1992). Factors V and vur as well as non-membrane bound 

forms of factors Va and VIIIa are not cleaved by protein C. 

Protein C requires two cofactors in order to express its anticoagulant activity, 

protein S and factor V. Protein S is another vita.min K dependent plasma protein whose 

free form expresses protein C cofactor activity for the degradation of factors Va and 
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Vllla (Dahlback et al., 1994). Protein S is a single chain, 70,000 Da glycoprotein 

(Dahlback et al., 1995), which has the highest affinity for negatively charged 

phospholipids among vitamin K dependent proteins (Nelsestuen et al., 1978). Protein S 

forms a 1: 1 complex with protein C on the lipid membrane which may account for its 

ability to increase the affinity of activated protein C for such membranes (Walker et al., 

1981; Walker et al., 1984). Though the mechanism of action of protein S is not 

completely understood, it may be related to its ability to make factors Va and VIila 

available for proteolytic cleavage by activated protein C (Regan et al., 1994; Solymoss 

et al., 1988). Less is known about factor V's role as an activated protein C cofactor, 

though it is hypothesized that factor V and protein S may synergistically act to localize 

protein C activity to the surface of membranes (Shen et al., 1994; Dahlback et al., 

1994b). 

As low levels of protein C activation peptide are found in healthy individuals, 

it is suggested that protein C is constantly activated to a small degree (Bauer et al., 

1984). Protein C administration has been shown to inhibit both arterial and venous 

thrombosis in animal models (Gruber et al., 1990; Arnljots et al., 1994; Wakefield et al., 

1993). Heterozygous protein C deficiency or activated protein C resistance due to factor 

V mutation are thought to explain 60 to 70 % of the cases of familial thrombophilia 

(Dahlback et al., 1995). 

5. Protease Nexins 

Protease nexins 1 and 2 are endogenous serine protease inhibitors which have 
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molecular weights of 43 and approximately 100 kDa, respectively (Preissner et al., 1988; 

van Nostrand et al., 1992). Both protease nexin 1 and protease nexin 2 have effects on 

the coagulation system. Based on cell culture studies, protease nexin 1 appears to be 

produced by fibroblasts, smooth muscle cells, and epithelial cells (Baker et al., 1980; 

Knauer et al., 1983; Eaton et al., 1983). Protease nexin 1 has a 30 percent sequence 

homology with antithrombin III and like A TUI, has a high affinity heparin binding site. 

Heparin binding to protease nexin 1 accelerates protease inhibition (Baker et al., 1987; 

Kruithof et al., 1988). Protease nexin 1 appears to be limited to the extravascular 

compartment as human plasma contains only small amounts of this inhibitor (20 pM) 

(Preissner et al., 1988). Protease nexin 1 inhibits several serine proteases including 

thrombin, urokinase, plasminogen activator, and activated protein C (Hermans et al., 

1993; Scott et al., 1983; Bergman et al., 1984). Upon formation of a stable complex with 

the target protease, the complex binds back to the cells where it is internalized and 

degraded (Cunningham et al., 1992). The physiologic role of protease nexin 1 appears 

to be related to protection of the extracellular matrix from degradation by urokinase and 

plasminogen activator (Rao et al., 1989). This is supported by the fact that protease nexin 

1 binds tightly to the extracellular matrix, thereby localizing its activity (Farrell et al., 

1988). 

Protease nexin 2 is identical to the secreted form of the amyloid precursor 

protein containing the Kunitz-type serine protease inhibitor domain (van Nostrand et al., 

1989; Oltersdorf et al., 1989). Protease nexin 2 circulates in blood stored as a platelet 

a-granule protein which is secreted upon platelet activation (van Nostrand et al., l 990a). 
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Protease nexin 2 inhibits trypsin- and chymotrypsin-like serine proteases and is also a 

potent inhibitor of factor Xia (Smith et al., 1990; van Nostrand et al., 1990a, 1991a, 

1991b; Sinha et al., 1990). Its location in platelets and its ability to inhibit factor Xia 

suggests a role in regulating blood coagulation for protease nexin 2. 

6. Other Inhibitors 

A number of other serine protease inhibitors are known to play a role in 

modulating physiologic functions. Plasminogen activator inhibitors serve to limit the 

normal activation of the fibrinolytic process. High levels of PAI-1 are associated with an 

increased risk of thromboembolic disease (Reilly et al., 1994). PAI-1 has also been 

shown to regulate the degradation of extracellular matrix which may be important in 

modulating cancer invasion. a 2-Antiplasmin rapidly inhibits the fibrinolytic activity of 

plasmin (Edelberg et al., 1994). ai-Macroglobulin has been described as a "panproteinase 

inhibitor" in light of evidence that it interacts with nearly any proteinase (Borth, 1992). 

In addition, a 2-macroglobulin may play a role in inflammation and immune reactions 

through its ability to regulate the distribution and activity of numerous cytokines 

including transforming growth factor B, tumor necrosis factor a, platelet derived growth 

factor, and several interleukins (LaMarre et al., 1991; Chaudhuri et al., 1993; Chu et 

al., 1994; Borth, 1994; Bonner et al., 1995). The complement and contact systems are 

regulated by c1-esterase inhibitor through the inhibition of complement components Clr 

and Cls (Hack et al., 1994; Zahedi et al., 1993). Deficiency of c1-esterase inhibitor is 

associated with angioedema (Carreer, 1992). Histidine-rich glycoprotein has been shown 
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to bind to plasminogen an interfere with its interaction with fibrin (Lijnen et al., 1980; 

Munkvad, 1993). Additionally, histidine-rich glycoprotein is known to bind to heparin 

and related glycosaminoglycans (Lijnen et al., 1983). High levels of this protein have not 

been definitively linked to thrombosis (Engesser et al., 1987). 

C. Heparin 

1. Discovery of Heparin 

Heparin was first discovered in 1916 by Jay McLean while he was studying the 

procoagulant actions of phospholipids (McLean, 1916). In these early years, heparin was 

initially thought to be a phospholipid as it was isolated using procedures designed to 

separate phospholipids. Today we know that heparin is a glycosaminoglycan structurally 

related to the dermatans and chondroitins. More specifically, heparin has been defined 

as " ... a family of polysaccharide species, whose chains are made up of alternating, 1-4 

linked and variously sulfated residues of uronic acid and D-glucosamine" (Casu, 1989). 

The uronic acid residues are either L-iduronic acid or D-glucuronic acid. The 

glucosamine residues are either N-sulfated or N-acetylated. Typically, the iduronic acid 

moieties are 2-0 sulfated whereas the glucosamine residues contain 6-0 sulfate groups 

and a small proportion are 3-0 sulfated (Brenkowski et al., 1985). 

2. Chemistry of Heparin 

Heparin is synthesized by a number of tissues and mast cells as part of a high 

molecular weight proteoglycan (molecular weight = 750 to 1000 kDa). This 
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proteoglycan consists of a peptide core which is composed of 20 to 25 residues each of 

glycine and serine (Robinson et al., 1978). Attached to this peptide are 15 polysaccharide 

chains with molecular weights ranging from 60 to 100 kDa. The polysaccharide chains 

are attached to the peptide core via a galactosyl-galactosyl-xylosyl trisaccharide sequence 

(Lindahl et al., 1972). 

The polysaccharide chains are formed by stepwise transfer of D-glucuronic acid 

and N-acetyl-D-glucosamine from their UDP sugar nucleotide forms to the non-reducing 

end of the polysaccharide chain (Heiting et al., 1972; Heiting et al., 1973; Forsee et al., 

1981). Presumably these sugar moieties are polymerized directly to the linkage region 

of the protein core. The alternating sequence of glucuronic acid and hexosamine is due 

to the substrate specificity of the glycosyl transferases (Lindahl et al., 1989). Following 

polysaccharide chain elongation, the polymer undergoes a series of modification 

reactions. 

Heparin is structurally heterogeneous due to incomplete structural modifications. 

Four enzymatic modifications of the polysaccharide backbone occur following its 

synthesis. The majority of the N-acetyl groups on the glucosarnine residues are removed 

(Hook et al., 1975). The N-deacetylated glucosamines are subsequently sulfated. In the 

next step, D-glucuronic acid residues are epimerized to L-iduronic acid units by uronosyl 

C-5 epimerase (Lindahl et al., 1976; Malmstrorn et al., 1980). During the epimerization 

process, most iduronic acids are 2-0 sulfated. Finally, 3-0 and 6-0 sulfate groups are 

added onto the glucosamine units. Previous N-sulfation allows more efficient 0-sulfation 

to occur (Lindahl et al., 1989). Several more recent studies have indicated that chain 
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elonation and modification may occur simultaneously during heparin synthesis (Lidholt 

et al., 1989; Linholt et al., 1992) 

Nuclear resonance spectroscopy involves the measurement of radiofrequency 

radiation absorption by a given sample when it is placed in a strong magnetic field. The 

nuclei of many atoms act as magnetic dipoles in that they can be aligned either with or 

against the magnetic field. These nuclei include 1H, 13C, 19F, and 31 P. 1H and 13C are the 

most commonly studied nuclei due to their abundance in organic materials. The ground 

state of a nuclei is the energy level when the dipole is aligned along the magnetic field. 

The excited state occurs when the nuclei are aligned against the magnetic field. Transfer 

of nuclei from the ground to the excited state occurs when nuclei absorb radiofrequency 

radiation. The amount of power which is absorbed is dependent not only on the 

molecular properties of the given sample, but also upon the surrounding magnetic field. 

The surrounding magnetic field includes the field produced by the instrument as well as 

any field produced by adjacent nuclei. Adjacent nuclei can either shield (decrease) of 

deshield (increase) the magnetic field produced by the instrument. Resonance frequencies 

of nuclei vary depending upon the chemical environment of the nuclei. This is expressed 

in terms of a chemical shift (o). Chemical shift is usually given in ppm and is 

independent of the applied magnetic field. As there is no way of measuring the strength 

of the magnetic field at a given nucleus without shielding, chemical shifts are determined 

relative to an internal standard. The chemical shifts of nuclei are dependent upon the 

nearby chemical structures. Structural characteristics of a molecule can be elucidated 

using this technique as the various protons (1H) and 13C nuclei are present in different 
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environments with respect to the local charge density and, therefore, are excited to 

different extents by the introduction of the radiofrequency pulse. 

Monodimemsional spectroscopy of polysaccharides such as heparin is often of 

limited value due to the intrinsically broad signals and the large number of overlapping 

signals. Bidimensional spectroscopy is a more useful technique as it allows for the 

correlation of two similar (1H - 1H) or different (1H - 13C) nuclei in a manner such that 

the signals relating to intramolecular interactions can be identified. These are termed 

homonuclear and heteronuclear correlations. 

3. Biologic Effects of Heparin - Non-anticoagulant 

Heparin is a strongly anionic polyelectrolyte which at physiologic pHs contains 

three acidic functional groups which are fully dissociated; -OSQ3·, -NHS03-, and -coo

(Nieduszynski, 1989). Owing to this fact, heparin has a large number of pharmacologic 

properties. Among these are its antilipemic and antihemolytic actions (Bradshaw et al., 

1975; Levy et al., 1958). Heparin is also known to inhibit a variety of enzymes including 

myosin ATPase, RNA dependent DNA polymerase, elastase, and renin (Cruz et al., 

1967; Neuhoff et al., 1970; Sealey et al., 1967). Heparin inhibits tumor growth 

(Lippman et al., 1965; Folkman et al., 1985). Additionally, heparin exhibits antibacterial 

and antiviral properties (Corrigan et al., 1977; Vaheri et al., 1964). 

4. Pharmacokinetics of Heparin 

Heparin 1s administered either by intravenous infusion or by subcutaneous 
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injection. Upon entering the blood stream, heparin binds to a variety of plasma proteins, 

thereby lowering its bioavailability and producing a variable anticoagulant response 

(Hirsh et al., 1976). These proteins include histidine rich glycoprotein, platelet factor 4, 

vitronectin, and von Willebrand factor (Lane, et al., 1986; Lijnen et al., 1983; Peterson 

et al., 1987; Holt et al., 1985; Preissner et al, 1987; Dawes et al., 1991; Sobel et al., 

1991). Heparin exhibits a complex pharmacokinetics and is cleared by two mechanisms. 

The rapid, saturable phase of elimination is thought to be due to receptor mediated 

internalization of heparin by endothelial cells and macrophages (Glimelius et al., 1978; 

Mahadoo et al., 1978; Friedman et al., 1974). A slower, nonsaturable renal mechanism 

also clears heparin from the plasma (de Swart et al., 1982; Olsson et al., 1963; 

Bjomsson et al., 1982). The anticoagulant effect of heparin is therefore not linearly 

related to dose when in the therapeutic range (Hirsh et al., 1994). The biologic half-life 

of heparin increases from 30 minutes following an IV bolus dose of 25 U/kg to 150 

minutes following a dose of 400 U/kg (de Swart et al., 1982; Olsson et al., 1963; 

Bjomsson et al., 1982). 

5. Clinical Use of Heparin 

Heparin is used in the therapy of several cardiovascular disorders including 

prevention and treatment of venous thromboembolism, treatment of unstable angina, 

acute myocardial infarction, cardiac and vascular surgery, coronary angioplasty, stent 

implantation, and as an adjunctive agent during thrombolysis. Heparin is also the 

anticoagulant of choice during pregnancy. 
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Studies have demonstrated that there is a reduction in mortality in patients 

receiving heparin for the treatment of pulmonary embolism (Barritt et al., 1960; Brandjes 

et al., 1992). In addition, recurrent thrombosis was not common during the 

heparinization period, but increased significantly when heparin was stopped and no other 

anticoagulant therapy was utilized (Hull et al., 1979; Lagerstedt et al., 1985). Heparin 

is effective in treating venous thrombosis. This effectiveness has been shown to be 

dependent upon the anticoagulant effect achieved (Hull et al., 1986; Turpie et al., 1989). 

Heparin is also effective prophylactically, reducing the risk of venous thrombosis and 

pulmonary embolism 60 to 70 percent (Clagett et al., 1988; Collins et al., 1988). 

Heparin is effective short-term in preventing acute myocardial infarction and recurrent 

refractory angina in patients with unstable angina (Theroux et al., 1990; Theroux et al., 

1992; Neri Serneri et al., 1990). This beneficial effect is lost upon cessation of heparin 

therapy. In patients with previous myocardial infarction, heparin administration has been 

shown to significantly reduce reinfarction and death when compared to untreated controls 

(Neri Serneri et al., 1987). Heparin has been tested as an adjunct in thrombol ytic therapy 

where it appears to increase patency during the initial stages of recanalization by 

preventing rethrombosis (Bleich et al., 1990; de Bono et al., 1992). Heparin is the 

anticoagulant of choice in pregnancy as it does not cross the placental barrier and is not 

known to cause unwanted effects on the fetus (Hirsh et al., 1994; Hyers et al., 1992). 

6. Effect of Heparin on Platelets 

The effect of heparin on platelets is controversial. Studies by Ellison and 



36 

Thomson have shown that heparin decreases the threshold for ADP and epinephrine 

induced aggregation and enhances the platelet release reactions by these agonists (Ellison 

et al., 1978; Thomson et al., 1973). Treatment with heparin was also observed to 

increase platelet retention on cellophane membranes. Other studies have indicated the 

opposite effects on platelets. Besterman showed that irreversible aggregation induced by 

collagen and epinephrine was reduced in patients treated with 2500 to 5000 U of 

unfractionated heparin (Besterman et al., 1973). In these same patients, no effect to a 

slight increase in aggregation was observed with ADP (Zucker et al., 1977). Heiden 

demonstrated a loss of [14C]-5-HT release in PRP of individuals treated with 100 U/kg 

heparin in response to collagen, epinephrine, and ADP (Heiden et al., 1977). An indirect 

mechanism was suggested to account for this observation based on the finding that in 

vitro addition of heparin caused no effect on aggregation (Eika et al., 1972). Salzman et 

al. have shown that concentrations of heparin as low as 10 µg!mL induces aggregation 

in platelet rich plasma, but not in washed platelets (Salzman et al., 1980). 

Heparin administration is also known to cause an adverse effect on platelets 

known as heparin induced thrombocytopenia (HIT). Type I HIT occurs early in heparin 

treatment and causes a transient reduction in platelet count. Patients usually remain 

asymptomatic. Type II HIT is a more severe thrornbocytopenia of delayed onset. This 

form of HIT often results in thrombosis and is associated with a high degree of mortality. 

While the exact mechanism is unknown, it appears that an IgG antibody is generated 

whose F-ab portion binds to the heparin/PF4 complex. Optimal platelet activation occurs 

when heparin and platelet factor 4 are in near equimolar concentrations. The Fe portion 
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of the antibody binds to the Fella receptor on the platelet surface and activates the 

platelets. The differences in response to these heparin/PF4 antibodies may be due to 

differences in the genotype of the Fella receptor. Studies have indicated that the IgG 

antibody:heparin:PF4 complex forms in solution an then binds to the platelet Fella 

receptor on platelets. 

7. Chemically Modified Heparins 

a. Hypersulfated heparins 

The anticoagulant and antithrombotic actions of heparins containing higher than 

normal degrees of sulfation have been examined in several studies. In a laser model of 

thrombosis, a supersulfated low molecular weight heparin was observed to require a 10 

fold lower dose than native heparin or low molecular weight heparin to achieve a 

comparable antithrombotic effect (Krupinski et al., 1990). In another study, oversulfation 

of low molecular weight heparin was observed to reduce the ex vivo anticoagulant activity 

relative to LMWH which has not been oversulfated. Addition of sulfate groups, however, 

did not effect the antithrombotic activity in a rat venous stasis-thrombosis model and did 

not significantly increase the bleeding time (Naggi et al,, 1987). The release of 

lipoprotein lipase by the supersulfated low molecular weight heparin was twice that of 

heparin. In a pure biochemical system, the inhibition of thrombin via heparin cofactor 

II by supersulfated low molecular weight heparin was approximately 100 fold stronger 

than for low molecular weight heparin (Jeske et al., 1995). 
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b. Desulfated heparins 

N- and 0- desulfated heparins have to be examined for a number of 

pharmacologic properties. In general, a reduction in the sulfation of heparin results in 

a decrease in the given biologic activity. N- and 6-0-desulfation significantly decreased 

the antiviral activity of heparin with respect to herpes simplex I binding (Herold et al., 

1995). Heparin potentiates the binding of vascular endothelial growth factor (VEGF 165) 

to its cellular receptors. 0- and N- desulfated heparins potentiated this binding to a lesser 

extent (Soker et al., 1994). Rajtar demonstrated that N- desulfated heparins were less 

effective at inhibiting platelet function than native heparin (Rajtar et al., 1993). Both 

fully desulfated heparin and N-desulfated heparin lack the ability to bind heparin binding 

growth factor (Belford et al., 1992). 

The anticoagulant and antithrombotic effects of desulfated heparins have also 

been examined. A partially N-desulfated heparin has been shown to have no measurable 

anticoagulant or antiprotease activity, but to dose-dependently impair thrombogenesis in 

vivo (Sache et al., 1989). A completely N-desulfated heparin derivative lacked both in 

vitro and in vivo activity (Inoue et al., 1976). Other investigators have shown that N

desulfated heparins have minimal anticoagulant activity (Bjornsson et al., 1988; 

Danishefsky et al., 1977). N-desulfated heparin has been shown to be cleared 

approximately 6 fold faster than native heparin (Bjornsson et al., 1988). The weak 

anticoagulant activity is attributable to the lack of interaction with antithrombin III 

(Danishefsky et al., 1977). 
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8. Low Molecular Weight Heparin 

The depolymerization of heparin either chemically by nitrous acid degradation, 

benzylation - alkaline hydrolysis, or peroxidative cleavage, or enzymatically using 

heparinase results in the production of another clinically useful drug known as low 

molecular weight heparin. Low molecular weight heparins exhibit several distinct 

properties which differentiate them from standard unfractionated heparin. Through the 

depolymerization process, the molecular weight is reduced to approximately one third 

that of the parent material (Fareed, 1995). This is important for two reasons. First, the 

largest heparin chains are not well absorbed following subcutaneous administration. The 

bioavailability of heparin is only 20 to 30 percent (Fareed, 1995). The bioavailability of 

LMWH is nearly 100 percent when measured using an amidolytic anti-Xa assay. The 

smaller molecular size of the LMWHs also has an effect on the biologic activity of these 

agents. The LMWHs have a lower anticoagulant potency than unfractionated heparin. 

This is a reflection of the lower antithrombin activity of these agents. Heparin exhibits 

a 1: 1 ratio of antithrombin to anti-Xa activity whereas for LMWHs the ratio ranges from 

1:2 to 1:4 depending upon the molecular weight composition of the given LMWH (Hirsh 

et al., 1994). 

LMWHs are the agents of choice in European countries for the prophylaxis of 

deep venous thrombosis due to their efficacy and safety. Owing to their high 

bioavailability, LMWHs exhibit a sustained pharmacologic effect such that once daily 

dosing is sufficient to keep the patient in an antithrombotic state. Heparin, in contrast, 

requires 2 or 3 daily injections to achieve a similar effect (Fareed, 1995). Due to their 
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near complete availability and limited plasma protein binding (Sobel et al., 1991; Lane 

et al., 1986; Lijnen et al., 1983; Dawes et al., 1991), LMWHs exhibit predictable 

clinical effects and do not require daily monitoring of plasma levels (Handeland et al., 

1990). Heparin levels are monitored frequently using the APTT assay. There has also 

been the suggestion that LMWHs may cause less hemorrhagic side-effects, less 

osteoporosis, and decreased cytopenia relative to standard heparin (Fareed, 1995). 

Low molecular weight heparins have been examined for their efficacy in the 

treatment and prevention of venous thromboembolism. In general surgical patients, 

randomized trials have indicated that LMWH is both effective and safe. Statistically 

significant reductions in thromboembolic mortality was observed without a significant 

increase in major hemorrhage. Most clinical trials indicate a bleeding effect which is 

equal to or less than that caused by heparin (Ockelford et al., 1989; Pezzuoli et al., 

1989; Kakkar et al., 1985; Bergqvist, 1988). In orthopedic patients, LMWHs have 

exhibited equal or superior efficacy compared to low dose heparin (Planes et al., 1988; 

Eriksson et al., 1991), adjusted dose heparin (Leyvraz et al., 1991; Dechavanne et al., 

1989), warfarin (Heit et al., 1991), and dextran (Bergqvist et al., 1991). In medical 

patients, LMWHs have been shown to reduce the risk of thromboembolism relative to 

placebo (Prins et al., 1987; Turpie et al., 1987) and heparin (Green et al., 1990; Turpie 

et al., 1992). LMWHs have been shown to be effective in treating established 

thrombosis, both preventing further extension of the thrombus and enhancing its 

regression (Hull et al., 1992; Prandoni et al., 1992). 
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Heparan sulfate has a backbone which is structurally similar to heparin. Heparan 

sulfate generally contains more than 20 % N-acetylated glucosamine and nearly equal 

amounts of N- and 0-sulfation. In contrast, the ratio of 0- to N-sulfation in heparin is 

almost 4 to 1 (Gallagher et al., 1985; Lindahl et al., 1991). Like heparin, heparan sulfate 

primarily inhibits proteases via activation of antithrombin III and has been shown to 

catalyze the formation of thrombin-antithrombin complexes (Hatton et al., 1978) and also 

to exhibit anti-factor Xa activity (Thomas et al., 1979). As it does not completely inhibit 

prothrombin activation, it is much less effective than heparin. The antithrombotic dosage 

of heparan sulfate has been shown to be approximately 500 to 600 µglkg compared with 

60 to 70 µglkg for heparin (Ofosu, 1989) .. 

2. Dennatan Sulfate 

Dermatan sulfate is a glycosaminoglycan polymer of iduronic acid and N

acetylated galactosamine. Due to a difference in the molecular backbone, dermatan 

sulfate is unable to interact with antithrombin III (Ofosu et al., 1985), but rather 

complexes with heparin cofactor II to mediate thrombin inhibition (Tollefsen et al., 

1983). The anticoagulant potency of dermatan sulfate is less than that of heparan sulfate 

(Teien et al., 1976; Ofosu et al., 1984). Anticoagulant activity as measured by the APTT 

and thrombin time is nearly undetectable (Sie et al., 1991). Dermatan sulfate inhibits 

thrombin as it is formed rather than preventing its generation (Ofosu et al., 1989). It has 
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been shown that thrombin generation inhibition by dermatan sulfate is much less than for 

an equigravimetric amount of heparin (Merton et al., 1987). At a dosage of 150 µg/kg, 

dermatan sulfate caused a 28 % inhibition of thrombin generation compared to an 83 % 

inhibition by heparin. While dermatan octasaccharides bind heparin cofactor II, 12 to 14 

residues are required for thrombin inhibition. Dermatan sulfate chains with a higher 

charge density appear to bind to heparin cofactor II better than those with a lower 

charge. 

Dermatan sulfate is active in vivo as an antithrombotic agent in the rabbit stasis 

thrombosis model, but to a lesser extent than heparin (Merton et al., 1987). Though both 

agents inhibited thrombus formation to the same extent at an equigravimetric dosage of 

150 µg/kg after 10 minutes of stasis, dermatan sulfate was ineffective at inhibiting 

thrombus formation following 20 minutes stasis time at a dose 8 times higher than that 

of heparin. The advantage dermatan sulfate has over heparin as an antithrombotic agent 

is a lower risk of bleeding complications (Fernandez et al., 1986); Desnoyers et al., 

1989). Dermatan sulfate has been shown not to significantly increase bleeding versus a 

saline control at doses which are antithrombotically effective. 

It is thought that the decreased bleeding seen with dermatan sulfate is a result 

of its minor effects on platelets. Sie et al. have shown that while thrombin induced 

platelet aggregation is inhibited by dermatan sulfate in the presence of heparin cofactor 

II, arachidonic acid, ADP and collagen induced aggregations were not effected (Sie et 

al., 1982). In addition, it has been shown that dermatan sulfate has a smaller effect on 

heparin induced thrombocytopenic serum induced platelet aggregation than did heparin 



43 

(Hoppenstead t et al. , 1991). 

3. Chondroitin Sulfate 

Chondroitin sulfate is a glycosaminoglycan which consists of alternating D

glucuronic acid and N-acetylated D-galactosamine residues. The galactosamine residues 

are typically 4-0 or 6-0 sulfated (Casu et al., 1991). Chondroitin sulfate has a lower 

degree of sulfation than the heparin or heparan-type glycosaminoglycans, with a sa3-

/COO- ratio equal to 1. Due to a low degree of sulfation, and the lack of iduronic acid 

moieties, chondroitin sulfate does not have strong interactions with the endogenous 

coagulation inhibitors antithrombin III or heparin cofactor II or with lipoprotein lipase 

or low density lipoproteins as heparin does (Casu et al., 1991). Chondroitin sulfates are 

typically found in cartilage. Chondroitin sulfate has been used in the treatment of 

osteoarthritis as it inhibits elastase and hyaluronidase in the synovial fluid which can 

damage joint cartilage (Pepitone et al., 1991). The anticoagulant activity of chondroitin 

sulfate is minimal, with potency designated as less than 5 USP IU/mg and 5 anti-factor 

Xa U/mg by the Yin and Wessler test (Bianchini et al., 1985). 

The antithrombotic activity of chondroitin sulfate and its oversulfated derivatives 

was examined in a rat model of thrombosis and was observed to be minimal (Pescador 

et al., 1991). Oversulfation of the molecules also did not enhance the negligible 

anticoagulant activity of the native chondroitin sulfate. The chondroitin sulfate present 

in Org 10172 was not observed to enhance the antithrombotic effect of the high affinity 

material present in the preparation (Zammit et al., 1994). 
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Chondroitin sulfate has been shown to have several biologic functions. Evidence 

has been presented indicating that chondroitin sulfate proteoglycans interact with the 

herpes simplex virus (Banfield et al., 1995). Chondroitin sulfate offers neuroprotective 

effects against glutamate induced neuronal cell death (Okamoto et al., 1994) and may 

play a role in neuronal patterning (Brittis et al., 1992). Chondroitin sulfate has been 

shown in vitro to inhibit the activation of the complement system (Biffoni et al., 1991). 

This potency was related to the sulfate content of the chondroitin. Chondroitin sulfate 

exhibits in vitro anti-HIV-1 activity (Jurkiewicz et al., 1982). When administered to 

cholesterol fed rabbits, chondroitin sulfate suppressed cholesterol deposition in the aorta 

due to a decrease in plasma LDL cholesterol and to a change in arterial metabolism 

(Matsushima et al., 1987). Chondroitin sulfate E was shown to be a weak activator of 

heparin cofactor II, accelerating the inhibition of thrombin approximately 200 fold. In 

addition, chondroitin sulfate may exhibit some anticoagulant activity due to a interference 

in the thrombin-fibrinogen interaction (Scully et al., 1986). 

E. Homoloeues of Heparin 

1. K-5 Derived Agents 

Heparin-like agents can be derived from bacterial polysaccharides. The K5 

capsular polysaccharide from E. coli is a polymer of glucuronic acid and N-acetylated 

glucosamine. This is the same chemical structure as N-acetyl heparosan, a precursor in 

mammalian heparin formation (Casu et al., 1992). To make a heparin-like substance, this 

precursor is first deacetylated with hydrazine (Jann et al., 1992) and then N-sulfated. The 
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resultant sulfamino heparosan undergoes C5 epimerization to produce iduronic acid 

moieties (Kusche et al., 1991) and finally 0-sulfation produces a substance resembling 

mammalian heparin. NMR analysis of the resultant polysaccharides indicate strong 

signals characteristic of N-sulfated groups, glucosamine and glucuronic acid residues 

(Jann et al., 1992). These modified polysaccharides have also been shown to contain the 

3-0 sulfate group on glucosamine which is required for high affinity heparin binding to 

ATIII (Casu et al, 1994). These agents have been shown to produce similar in vitro 

anticoagulant and in vivo antithrombotic effects as low molecular weight heparin (Fareed 

et al., 1995). 

2. Pentosan Polysulfate 

Pentosan polysulfate is a linear polymer of sulfated 1-4 linked B-xylopyranose 

units which is derived from the bark of the beech tree (Aspinsall, 1959). All available 

hydroxyl groups on pentosan are sulfated. The molecular weight of pentosan polysulfate 

preparations is in the range of that of the low molecular weight heparins (4 to 6.5 kDa). 

Like unfractionated heparin, pentosan polysulfate has multiple pharmacologic 

actions. It has been widely utilized as an antilipemic agent (Barrowcliffe et al., 1986), 

shown to selectively inhibit HIV-1 replication (Baba et al., 1988) and to have anti-tumor 

effects in animals (Well stein et al., 1991). 

A number of investigators have examined the anticoagulant actions of pentosan 

polysulfate. Unlike heparin, pentosan polysulfate prevents coagulation independently of 

AT-III (Fischer et al., 1982; Scully et al., 1983). Pentosan polysulfate has been shown 
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to inhibit coagulation by two mechanisms. Firstly, pentosan polysulfate prevents thrombin 

generation through its ability to inhibit the thrombin dependent activation of factor V 

(Ofosu et al., 1987). Thereby, pentosan polysulfate inhibits the formation of the 

prothrombinase complex and the generation of thrombin. Secondly, pentosan polysulfate 

promotes the inhibition of preformed thrombin via HC-II (Scully et al., 1984). 

Consequently, pentosan polysulfate has been shown to have low anticoagulant potency 

in vitro (Scully et al., 1983; Soria et al., 1980). The potency of pentosan polysulfate has 

been reported as 12 anti-Ila U/mg and 8 anti-Xa U/mg. 

Despite its low anticoagulant activity, a number of investigators have 

demonstrated the antithrombotic efficacy of this agent. In a rabbit model of stasis

thrombosis, pentosan polysulfate was shown to inhibit factor Xa, thrombin, and 

thromboplastin induced thrombogenesis to varying degrees. Thromboplastin was most 

potently inhibited (van Ryn-McKenna et al., 1989). Similarly in rats, pentosan 

polysulfate was observed to dose-dependently increase the number of laser injuries 

required to induce thrombogenesis, though at much higher doses than were required for 

heparin or low molecular weight heparin (Krupinski et al., 1990). 

The major side effects of pentosan polysulfate are reported to be similar to those 

of heparin. A recent report has indicated that pentosan polysulfate induced 

thrombocytopenia and thrombosis in patients receiving repeated administrations of the 

agent (Tardy-Poncet et al., 1994). Positive cross-reactivity with heparin and low 

molecular weight heparin was observed in a large number of these cases. 
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3. Sulfated Mucopolysaccharides 

Sulfated mucopolysaccharides are mixtures of glucosaminoglycans and 

galactosaminoglycans extracted from cartilage. These substances are frequently used in 

rheumatology for the treatment of joint degeneration. Several of these agents have also 

been tested for their effects on the hemostatic system. Gorog et al. demonstrated that a 

high concentration of a galactosaminoglycan caused a concentration dependent inhibition 

of platelet reactivity. In addition, doses from 1 to 10 mg/kg were seen to inhibit 

thrombus formation in a laser model of thrombosis (Gorog et al., 1987). Bauer et al. 

examined the anticoagulant properties of three mucopolysaccharides used clinically to 

treat degenerative joint diseases (Bauer et al., 1983). Arteparon was observed to have an 

in vitro anticoagulant potency one quarter that of heparin as measured by the APTT. In 

vivo administration of this agent confirmed its anticoagulant properties. 

F. Synthetic Heparin Analo~ues 

1. Pentasaccharide 

By measuring the antithrombin III affinity of a series of heparin fragments, it 

was determined that the minimal antithrombin III binding sequence resides in an irregular 

region of heparin and is a pentasaccharide (Rosenberg et al., 1979; Lindahl et al., 1979; 

Choay et al., 1980). In the irregular region of heparin, 25 to 30 percent of the 

glucosamine residues contain a unique 3-0 sulfate group. The importance of this sulfate 

group to both the in vitro anticoagulant and the in vivo antithrombotic activities has been 

demonstrated (Walenga et al., 1988). Subsequent to its discovery, this pentasaccharide 
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was chemically synthesized (Petitou et al., 1986). Higher yields of the methyl a-

glycoside derivative of the pentasaccharide have been achieved (Petitou et al., 1987). The 

chemical structure of this pentasaccharide is depicted in Figure 2. This derivative exhibits 

the same biologic properties as the native agent. 

By allometry, it has been estimated that the half-life of pentasaccharide in 

humans is approximately 14 hours (Herault et al., 1995a). The first clinical study 

performed in man with pentasaccharide has confirmed the long duration of action of this 

agent following subcutaneous administration (Boneu et al., 1995). Half-lives of 13.1 to 

13.9 hours were observed in healthy volunteers. The peak plasma concentrations were 

linearly related to dose and plasma clearance was observed to be three fold higher than 

that of typical low molecular weight heparins. This agent has been reported to exhibit a 

very good tolerance with no prolongation of the bleeding time, APTT, or PT. Van 

Amsterdam has shown that there is a rapid clearance of unbound pentasaccharide from 

the plasma, but that antithrombin III bound pentasaccharide is cleared similarly to 

endogenous antithrombin III (van Amsterdam et al., 1993). This was also observed 

following administration of the highest dose in the study of Boneu. 

The inhibition of thrombin generation was studied following subcutaneous 

administration to normal volunteers (Lormeau et al., 1995). In this study, thrombin 

generation was observed to be inhibited for periods of up to 18 hours. TFPI release was 

not observed with subcutaneously administered pentasaccharide doses as high as 12,000 

anti-Xa units. It was concluded from this study that thrombin generation by 

pentasaccharide is mediated exclusively through selective A THI mediated inhibition of 
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Figure 2. depicts the chemical structure of a methyl a-glycoside derivative of the high ATIII 
affinity binding pentasaccharide of heparin. The pentasaccharide contains the unique 3-0 sulfate 
group required for binding to antithrombin ID. The molecular weight of this agent is 1728 Da. 
This structure was adapted from Petitou et al., 1991. 
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factor Xa. 

Studies have shown that the pentasaccharide has no measurable activity in the 

prothrombin time or in the APTT assays. In addition, pentasaccharide was seen to be 

ineffective in both coagulant and amidolytic antithrombin assays (Walenga et al., 1985). 

This pentasaccharide does exhibit a very high anti-factor Xa potency (Choay et al., 

1983). Pentasaccharide has been shown to concentration dependently inhibit thrombin 

generation in normal human plasma (Lormeau et al., 1993). Thrombin generation 

following extrinsic pathway activation was more potently inhibited than following 

intrinsic pathway activation. This weaker inhibition of the intrinsic pathway is likely due 

to the pentasaccharide's inability to inhibit factor V and factor VIII formation (Ofosu et 

al., 1991). It has been shown both in vitro and in vivo that thrombin generation is not 

completely inhibited by pentasaccharide. At doses of pentasaccharide which completely 

prevented thrombus formation in a modified Wessler model, thrombin generation was 

only inhibited sixty percent (Walenga et al., 1988). Clots formed in this model contain 

predominantly red cells and fibrin, but few platelets. The thrombi formed in the arterio

venous shunt model contain red cell, fibrin strands, and a large amount of platelets. 

Pentasaccharide was able to inhibit thrombus formation in both models. Hobbelen showed 

that pentasaccharide dose-dependently inhibited thrombosis caused by various triggers in 

a rat thrombosis model (Hobbelen et al., 1990). Additionally, this study had shown that 

pentasaccharide causes a smaller increase in blood loss than heparin at antithrombotically 

active doses. Impaired thrombin generation rather than anti-Xa activity was observed to 

correlate with prevention of stasis induced thrombus formation (Thomas et al., 1989). 
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The antithrombotic effect of this agent was also tested in baboons using a 

modified arterio-venous shunt in which both arterial-type and venous-type thrombi can 

form (Cadroy et al., 1993). While both types of thrombi were inhibited by 

pentasaccharide, higher doses of the agent were needed to achieve a comparable level of 

inhibition on the arterial side. The pentasaccharide was also observed to have no effect 

on platelet function as measured by the template bleeding time. The pentasaccharide has 

been observed to reduce thrombus formation following an electrical stimulation injury 

in rabbit carotid arteries. This agent was also observed to enhance clot lysis induced by 

tissue plasminogen activator. 

A series of structural analogues of the native pentasaccharide sequence have 

been synthesized (Meulemen et al., 1991). The analogues contain an additional 3-0 

sulfate group on glucosamine residue H. Additionally, some of the analogues also 

contained a 3-0 or 4-0 sulfate group on glucosamine residue D. All of the analogues 

with additional 3-0 sulfate groups were observed to exhibit a higher anti-Xa potency than 

the native pentasaccharide (1230 anti Xa U/mg vs. 700 anti-Xa U/mg). The higher 

specific activity is proposed to be due to a tighter two site binding to antithrombin III. 

As expected, all of the analogues were active in a rat stasis thrombosis model. The 

duration of the antithrombotic effect was four to five times longer than the natural 

pentasaccharide. The half-life of the anti-Xa activity of the modified analogues was 

approximately twice that of the natural pentasaccharide. Other pentasaccharide analogues 

have been reported (Herault et al., 1995b). Conversion of the N-sulfate groups to 0-

sulfates has been shown to increase antithrombin III affinity 2 fold. 0-methylation leads 
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to an 8 fold increase in affinity. 

2. Aprosulate 

Sulfated bis-aldonic acid amides are a new class of synthetic low molecular 

weight polyanions whose anticoagulant and antithrombotic activity is dependent on their 

chemical structure. These agents are synthesized by conversion of aldonic acids to their 

corresponding cyclic ester, or lactone. Two such lactone molecules are linked via amide 

bonds with an alkylene diamine. The intermediate is then fully sulfated using a pyridine

S03 complex resulting in a homogeneous product (Klauser et al., 1991). Lactobionic, D

gluconic, L-mannonic, D-galactonic, milibionic, and maltobionic acids were used as 

starting materials and were linked by alkylene diamine bridges ranging from 2 to 12 units 

in length. The compound which has shown the best anticoagulant and antithrombotic 

profile is one which is produced by linking two lactobionic acid moieties with a 

trimethylene diamine (Klauser et al., 1991). This compound is known as aprosulate. The 

chemical structure of aprosulate is depicted in Figure 3. The series of compounds is 

characterized by a defined structure and has been shown to have limited dispersity 

(Klauser et al., 1991). The molecular weights of these compounds are lower than those 

of the low molecular weight heparins with the molecular weight of aprosulate being 2388 

Da. 

The anticoagulant properties of several aldonic acid amides has been reported 

(Raake et al., 1991; Jeske et al., 1993; Sugidachi et al., 1994). These agents exhibited 

activity in the APTT and Heptest" assays indicating that they inhibit the intrinsic 
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Figure 3 depicts the chemical structure of aprosulate. Its structure is characterized by two fully 
sulfated disaccharides linked via amide bonds by a propylene chain. One saccharide of each 
disaccharide is in open chain conformation. The molecular weight of aprosulate is 2388 Da. This 
structure was adapted from Raake et al., 1991. 
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coagulation pathway enzymes. This activity was low when compared to heparin. Activity 

in a chromogenic anti-Xa was 200 times less than that of heparin (Raake et al., 1991). 

Fareed et al. examined the pharmacodynamics of aprosulate with the purpose 

of determining the usefulness of various assay methods for determining the amount of 

aprosulate in plasma samples. In this study, Rhesus monkeys (Macaca mulatta) were 

given aprosulate by both intravenous and subcutaneous injection, with blood samples 

drawn over a period of six hours (Fareed et al. , 1991). Both the APTT, 5U thrombin 

time and the Heptest" were dose-dependently prolonged by aprosulate. The amidolytic 

activity of thrombin was inhibited only up to 30 minutes post-injection. This data 

indicates that aprosulate is absorbed following subcutaneous administration. Based on this 

data, the biologic half-life of aprosulate was estimated to be 45 minutes. 

Protamine sulfate is a heterogeneous mixture of polybasic proteins derived from 

various types of fish (Meischer et al., 1874) which is used clinically to neutralize the 

anticoagulant effects of heparin. In vitro, ex vivo, and in vivo neutralizations of 

aprosulate have been examined. With the in vitro samples, complete neutralization in the 

Heptest" and thrombin time assays was observed when a two to four fold gravimetric 

excess of protamine was used. Despite this high level of protamine, the APTT values 

remained elevated (Hoppensteadt et al., 1991). Aprosulate's effects on the amidolytic 

anti-Ila and anti-Xa assays were completely neutralized by equigravimetric amounts of 

protamine. Protamine effectively neutralized aprosulate when an intravenous injection of 

aprosulate was followed by an equigravimetric intravenous injection of protamine as 

measured using the Heptest" or thrombin time (Hoppensteadt et al., 1991; Kijowski et 



55 

al., 1994). It has also been demonstrated that protamine dose-dependently neutralizes the 

antithrombotic activity of aprosulate as measured in a rat jugular vein clamping model 

of thrombosis. A 2.5 fold gravimetric excess of protamine was required to completely 

neutralize the antithrombotic activity (Raake et al., 1993). The anticoagulant activity of 

aprosulate was not effected by high concentrations of the native heparin inhibitor, platelet 

factor 4 {Klauser et al., 1991). 

The mechanism of action of aprosulate has been examined in several studies. 

Aprosulate was seen to inhibit approximately 50 % of thrombin activity in the presence 

of plasma when 5 to 20 µg/mL of the agent was used. If purified antithrombin III was 

substituted for the plasma, aprosulate was completely ineffective at inhibiting thrombin. 

This is in contrast to heparin which was observed to be more potent in the presence of 

purified antithrombin Ill. To further examine aprosulate's interaction with antithrombin 

III, the APTT was measured with and without the presence of rabbit anti-antithrombin 

III antibodies. Addition of the antibodies had no effect on the prolongation of the APTT 

by aprosulate whereas heparin's ability to prolong the APTT was almost completely 

neutralized in the presence of the antibodies (Klauser et al., 1991). Aprosulate is able to 

dose-dependently inhibit thrombin when incubated with purified heparin cofactor II 

(Hoppensteadt et al., 1988; Jeske et al., 1993b). This was seen to be a slow reaction, 

with 15 minutes of incubation needed to achieve full inhibition. Ofosu et al. demonstrated 

that aprosulate was able to inhibit intrinsic prothrombin activation by a mechanism 

similar to that of dermatan sulfate, via heparin cofactor II. Even at high concentrations, 

aprosulate was unable to prevent the onset of tissue factor dependent factor X and factor 
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v activation. The lag time for intrinsic prothrombin activation was, however, increased 

by aprosulate. Though several bis-aldonic acid amides were shown to release tissue 

plasminogen activator in an isolated pig ear perfusion model, aprosulate did not 

(Klocking et al., 1991). 

Aprosulate is an effective antithrombotic agent in vivo in several animal models. 

In the Harbauer model (Harbauer et al., 1984) of venous thrombosis in rabbits, 1 mg/kg 

intravenously administered aprosulate was observed to almost completely prevent 

thrombosis. The same effect was observed two hours post-subcutaneous administration 

of the same dose. This effect was stronger than that seen with an equigravimetric dose 

of heparin (Raake et al., 1989). A significant inhibition of thrombus formation in this 

model was seen to last at least six hours following subcutaneous administration. In a rat 

jugular vein clamping model (Raake et al., 1989), aprosulate was observed to be an 

effective anti thrombotic agent (Raake et al., 1991). A dose of 1 mg/kg was effective in 

preventing thrombosis. With increasing doses, an increased number of clampings was 

required to elicit thrombus formation. Aprosulate was less potent than heparin in 

preventing thrombosis in this model. Aprosulate has been shown to be effective in an 

arterio-venous shunt model of thrombosis (Sugidachi et al., 1993). The hemorrhagic 

effect of aprosulate has been examined in a rat tail transection model. Antithrombotically 

effective doses of aprosulate were not associated with significant bleeding risks. 

Aprosulate has been administered to humans in two phase I clinical trials. In the 

first trial, ascending doses from 0.25 to 2.0 mg/kg were administered to healthy 

individuals on alternate days. Both the APTT and the Heptest" were dose-dependently 



57 

elevated. No effect was observed on the thrombin time. There was no indication of a 

thrombocytopenic response during this study (Papoulias et al., 1993). In the second trial, 

three doses of aprosulate were studied in a repeated administration protocol for a period 

of one week. In this study, an increase in plasma TFPI antigen levels was observed 

following each administration of aprosulate. The TFPI antigen level was observed to 

correlate with the plasma aprosulate levels (Jeske et al., 1995). 

3. GL-522-Y-1 

GL-522-Y-l is a synthetic sulfonated calix[8]arene which exhibits weak 

antithrombotic properties. This compound does not have a saccharidic backbone like 

heparin, yet maintains a degree of antithrombotic activity. The chemical structure of GL-

522-Y-1 is depicted in Figure 4. Unlike heparin, GL-522- Y-1 exhibits its anticoagulant 

activity in global clotting assays only at very high concentrations. Additionally, negligible 

activity is observed in chromogenic antithrombin and anti-factor Xa assays at these 

concentrations (Jeske et al., 1992). GL-522-Y-1 exhibits no affinity to antithrombin III 

and only a weak affinity for heparin cofactor II. This compound does inhibit factor Xa 

and thrombin generation as measured in amidolytic, fibrinogen deficient plasma systems. 

GL-522-Y-1 is a protease generation inhibitor following both intrinsic and extrinsic 

pathway activation. This inhibition was observed to be more potent than that of either 

pentasaccharide or aprosulate. Additionally, this inhibition was observed at lower 

concentrations than were required to activate heparin cofactor II. The mechanism by 

which this agent achieves this inhibition is not known. 
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Figure 4 depicts the chemical structure of GL-522-Y-1. This agent is not saccharidic in nature 
but rather is a cyclic polymer of phenol residues alternately separated by a methyl group. The 
charge density of this agent is derived from sulfone groups rather than sulfate groups as found 
in heparin. The molecular weight of this agent is 1488 Da. 



59 

GL-522-Y-l has been shown to be effective as an antithrombotic agent in the 

rabbit stasis thrombosis model (Jeske et al., 1993a). This agent was effective following 

both intravenous and subcutaneous administration (Lee et al., 1993). GL-522-Y-1 was 

also observed to be effective in a laser injury model of thrombosis following intravenous 

and oral administration (Giedrojc et al., 1993). The antithrombotic activity following oral 

administration was observed to have a duration of six hours. Administration of GL-522-

Y-1 to primates (Macaca fascicularis) resulted in an increase in plasma functional TFPI 

levels (Jeske et al., 1993b). 

G. Factor Xa Inhibitors 

1. DX-9065a 

The synthetic factor Xa inhibitor DX-9065a is currently being investigated. This 

amidinonaphthalene derivative exhibits high specificity for factor Xa over thrombin and 

other coagulation proteases. The k; for factor Xa was determined to be 41 nM versus 2.3 

µM for plasma kallikrein, 21 µM fort-PA, 23 µM for plasmin, and > 2000 µM for 

thrombin (Hara et al., 1994). Trypsin is also inhibited by DX-9065a. Both free factor Xa 

as well as factor Xa found in the prothrombinase complex on platelets was inhibited by 

DX-9065a. Moreover, this inhibition has been shown to be independent of antithrombin 

III. DX-9065a demonstrates several advantages over other heparin-like antithrombotics. 

First, this agent is reported to be absorbed orally. It has been shown that the PT, APTT, 

and anti-Xa activity in blood samples drawn 30 to 240 minutes post-oral administration 

to rats are dose-dependently increased. Second, as DX-9065a does not directly inhibit 
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thrombin and has minimal effects on platelet response to known aggregants, almost no 

effect was observed on the bleeding time in rats (Tanabe et al., 1993). This compound 

has also been examined for its ability to abrogate disseminated intravascular coagulation 

(DIC) induced by endotoxin or thromboplastin administration to rats (Yamazaki et al., 

1994). In both models, oral administration of DX-9065a inhibited the reduction of 

platelet counts and fibrinogen levels characteristic of DIC. 

2. Antistasin 

Antistasin is a 119 amino acid protein which has been isolated from the saliva 

of the leech Haementaria officinalis (Nutt et al., 1988). This protein is a slow, tight

binding inhibitor of factor Xa with an estimated dissociation rate constant of 0.3 nM 

(Dunwiddie et al., 1989). Antistasin is a selective inhibitor of factor Xa, with no 

observed inhibition of thrombin at concentrations 1000 fold higher than that of thrombin 

(Vlasuk et al., 1991; Ohta et al., 1994). Antistasin inhibits factor Xa in a manner similar 

to other serine protease inhibitors in which a rigid, substrate-like reactive site is 

presented to the enzyme (Hoffman et al., 1992). Studies have shown that antistasin has 

a specific and saturable binding site for heparin (Manley et al., 1992; Brankamp et al., 

1992). In contrast to LMWHs, antistasin is capable of dose-dependently prolonging the 

APTT, suggestive of an ability to inhibit prothrombinase bound factor Xa (Vlasuk et al., 

1991). 

Antistasin has been studied in several animal models for its in vivo 

antithrombotic effects. In a rabbit model, antistasin was observed to reduce angiographic 
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restenosis following balloon angioplasty (Ragosta et al., 1994). In a dog model, co-

administration of recombinant antistasin with tPA dramatically reduced the time to 

reperfusion (Mellott et al., 1992). In a monkey model of mild DIC, 1 mg/kg recombinant 

antistasin was shown to be comparably effective to 1000 U/kg unfractionated heparin in 

reducing fibrinopeptide A generation. This effect was observed to have a duration of at 

least 5 hours (Dunwiddie et al., 1992). Platelet and fibrinogen deposition onto a Dacron 

graft in a femoral arteriovenous shunt can be completely inhibited by antistasin infusion 

(Schaffer et al., 1992). In models of thrombosis, recombinant antistasin was observed to 

be as effective as conventional heparin therapy in preventing venous thrombosis (Vlasuk 

et al., 1991). Additionally, antistasin is effective in arterial models of thrombosis where 

heparin has limited effects (Hauptmann et al., 1993 ). While template bleeding times are 

not increased by antistasin administration (Schaffer et al., 1992), its clinical utility may 

be limited by the generation of neutralizing antibodies following repeated administration 

(Dunwiddie et al., 1992). 



CHAPTER Il 

STATEMENT OF PURPOSE 

It is the purpose of this dissertation to test the hypothesis that antithrombin III and 

heparin cofactor II are not the sole mediators of the anticoagulant and antithrombotic 

actions of heparin. 

Heparin has long been used clinically for the prevention and treatment of 

thrombosis. In more recent times, the use of heparin has expanded to include treatment 

of angina and myocardial infarction and is used extensively in cardiovascular surgery and 

invasive cardiologic procedures such as coronary angioplasty. In addition, depolymerized 

forms of heparin known as low molecular weight heparins have been developed for a 

variety of thrombotic indications. It has been initially established that the plasma serine 

protease inhibitor antithrombin III is required for the mediation of the anticoagulant 

activity of heparin (Abildgaard, 1968). The activities of other plasma serine protease 

inhibitors are also known to be modulated by heparin. 

To study the role of endogenous serine protease inhibitors in the mediation of 

heparin's anticoagulant and antithrombotic activities, a systematic approach using 

synthetic heparin analogues is utilized. These analogues offer the advantage of being 

chemically homogeneous substances. As these agents exhibit varying degrees of 
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interaction with antithrombin III and heparin cofactor II, they produce a more specific 

and targeted range of functional properties inherent to heparin. 

For this dissertation, three low molecular weight analogues of heparin have been 

selected for both the biochemical and pharmacologic studies. These include a heparin 

pentasaccharide, a sulfated bis-lactobionic acid amide (aprosulate), and a cyclic aromatic 

polysulfonate derivative (GL-522-Y-l). Their activities in biochemical and biologic 

assays are compared with those of unfractionated heparin. 

Pentasaccharide, which mimics the minimal sequence in heparin that binds with 

high affinity to AT-III, has been selected for study in this dissertation as it selectively 

interacts with ATIII. This molecule has been shown to exhibit relatively little interaction 

with HCII. This agent, produced synthetically through a collaboration between Sanofi 

Recherche, France and Organon, Oss, the Netherlands, is a potent catalyst for the AT-III 

mediated inhibition of factor Xa. Unlike the larger heparin chains of which it is normally 

a part, this molecule is too small to catalyze thrombin inhibition. Despite its different 

mechanism of action, pentasaccharide exhibits potent antithrombotic actions in animal 

models. 

Aprosulate is a synthetic polyanion developed by Luitpold-Pharma (Munich, 

Germany) whose backbone is saccharidic in nature though structurally dissimilar to that 

of heparin and pentasaccharide. This agent has been selected for study as it has been 

shown to lack the sulfate conformation required to activate AT-III, but to potently 

catalyzes the HCII mediated inhibition of thrombin. Aprosulate has also been shown to 

be an effective antithrombotic agent in animal models. 
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GL-522-Y-1 has been developed by Genelabs, Inc., Redwood City, CA, as an 

antithrombotic agent. GL-522-Y-1 has been selected for study as it is structurally distinct 

from the other polyanions chosen. GL-522-Y-l is not saccharidic in nature and derives 

its polyanionic character from sulfonate rather than sulfate groups. Despite these 

chemical differences, GL-522-Y-1 has been shown to potentiate thrombin inhibition via 

HCII. Like aprosulate, this agent has been shown to be unable to catalyze the AT-III 

mediated inhibition of either factor Xa or thrombin. 

Physical characterization of these agents has been performed using gel permeation 

chromatography (GPC), nuclear magnetic resonance spectroscopy (NMR), and mass 

spectrometry (MS). GPC analysis provides data concerning molecular mass and 

molecular weight distribution of each agent. This is particularly important for 

unfractionated heparin as it is a mixture of various size glycosaminoglycan chains. NMR 

and mass spectral analysis of these compounds has provided additional information on 

the structural and molecular characteristics of these agents. 

The in vitro biochemistry of the synthetic heparin analogues has been defined 

using a variety of assays. These included a battery of clotting and amidolytic antiprotease 

assays designed to examine various steps of the coagulation cascade. The effects on the 

intrinsic pathway are investigated using the activated partial thromboplastin time (APTT). 

Effects on the extrinsic pathway are investigated using the prothrombin time (PT). The 

common pathway of coagulation is iinvestigated using the thrombin time, Heptest®, and 

amidolytic anti-factor Ila and anti-factor Xa assays. 

Interactions of the various analogues with the endogenous SERPINs is examined 
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using amidolytic assays in which the ability of each agent to mediate inhibition of factor 

Xa or thrombin via antithrombin III or heparin cofactor II activation is examined in a 

concentration dependent manner. 

Protease generation inhibition assays provide a useful set of data to explain the 

mechanism of action of the synthetic analogues as well as to determine the relative 

importance of heparin cofactor II and antithrombin III activation for the inhibition of 

these processes. Plasmatic and defined non-plasmatic amidolytic assay systems are 

utilized for these purposes. Non-plasmatic systems provide the opportunity to study the 

effect of each agent on protease generation in the absense of ATIII and HCII. 

As platelets play an important role in the hemostatic process (forming the primary 

hemostatic plug, catalyzing several reactions of the coagulation cascade, releasing 

procoagulant or heparin neutralizing compounds), the effects of the synthetic analogues 

on various platelet functions are also investigated. Agonist specific platelet aggregation 

inhibition is assessed by determining the individual modulatory profile of these agents in 

platelet rich plasma. The potential for each of these analogues to produce platelet 

activation in a heparin induced thrombocytopenia screening assay is also investigated. 

The in vivo pharmacology of the heparin analogues is examined using valid 

models of thrombosis and bleeding. The activity of each agent is determined in a dose 

dependent manner in order to compare the potency of each agent. Two models of 

thrombosis are utilized. In the rabbit model of stasis thrombosis, thrombus formation is 

induced by the administration of activated coagulation factors and a stasis of blood flow 

in a segment of jugular vein. In the rat model of jugular vein clamping, thrombus 
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formation is triggered by vascular damage. The rat model offers the advantage of 

maintaining blood flow through the damaged area over the experimental course. The 

rabbit model offers the advantage of allowing the drawing of several blood samples over 

the course of the experiment for ex vivo analysis of coagulation parameters. By 

measuring various SERPIN mediated events (anti-Ila activity, anti-Xa activity, APTT, 

PT) ex vivo in blood samples taken during the thrombotic models, the relative importance 

of these actions to producing the antithrombotic state can be more clearly elucidated. 

In the rabbit ear bleeding model, the number of red blood cells lost in a given 

period of time is quantitated and used as a measure of hemorrhagic potential in terms of 

a bleeding index. 

The effects measured in these in vivo models are compared to heparin cofactor 

II and antithrombin III mediated activities, activity in in vitro systems, and ex vivo 

clotting activities. Since these analogues are structurally defined, their actions are 

presented in terms of molar dosage and a comparison of the activities can be readily 

achieved. 

Tissue factor pathway inhibitor (TFPI) has been shown to be an important 

mediator of the pharmacologic actions of heparin. The effect of the heparin analogues 

on plasma TFPI levels has been assessed in several animal models. An assay to measure 

functional TFPI levels in rabbit samples obtained during the stasis-thrombosis 

experiments has been optimized. Additionally the effect of intravenous administration of 

pentasaccharide and GL-522-Y-1 on TFPI levels in non-human primates is also assessed. 

The effect of aprosulate on plasma TFPI levels has been assessed in human volunteers 



67 

as part of two phase I clinical studies. 

By characterizing the actions of the selected heparin analogues in parallel with 

unfractionated heparin, the importance of SERPIN activation for the antithrombotic and 

bleeding effects of these agents is determined. The data obtained from the current 

research provids a defined biochemical and pharmacologic basis for understanding the 

molecular mechanisms by which heparin mediates its antithrombotic actions and bleeding 

effects. 



CHAPTER ID 

MATERIALS AND METHODS 

A. Materials 

1. Unfractionated Heparin 

Unfractionated porcine mucosa! heparin (lot H410) was obtained from Sanofi 

Pharma, Paris, France. The molecular weight of this heparin was approximately 10.5 

kDa. The potency of this preparation was 160 IU/mg when cross referenced to 

International Standard #3. The heparin was provided as a white powder and was stored 

in a desiccator at room temperature. Stock solutions were made in physiologic saline as 

needed. Unused solutions were stored at 1 °C and were discarded after two weeks. The 

molecular profile of this heparin is depicted in Appendix 1. Product specifications are 

listed in Appendix 2. 

2. Pentasaccharide 

The pentasaccharide representing the minimal antithrombin III binding sequence 

( 0-(2-deox y-2-sulfamido-6-0-sulfo-a-D-gl ucopyranos yl)-( 1-4 )-0-(13-D

glucopyranosyluronic acid)-( 1-4 )-0-(2-deoxy-2-sulfamido-3, 6-di-0-sulfo-a-D

glucopyranosy 1)-( 1-4)-0-(2-0-sulfo-a-L-idopyranosy1 uronic acid)-) 1-4 )-2-deoxy-2-

68 
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sulfamido-6-0-sulfo-D-glucopyranose decasodium salt (SR90107A lot JMS07046) was 

obtained from Sanofi Pharma, Paris, France. The molecular weight of this 

pentasaccharide is 1. 724 kDa. The potency of this compound was designated at 650 aXa 

units/mg in human plasma. Stock solutions were made in physiologic saline as needed. 

Unused portions of the solutions were frozen at -70 °C for future use. The molecular 

profile of this heparin is depicted in Appendix 1. Product specifications are listed in 

Appendix 2. 

3. Aprosulate 

Aprosulate, lot 90416/7172, is a sulfated bis-lactobionic acid amide 

(Hexadecasodium trimeth y lenebis-[ 4-0-13-D-galactopyranosy 1-D-gluconoylamino 

octasulfate]) obtained from Luitpold-Pharma, Munich, Germany. Its molecular weight 

is 2.388 kDa. The potency of aprosulate was determined to be 4.6 USP units/mg using 

the USP XXII method. Purity of this substance was determined to be greater than 99. 7 

% . It was provided as a colorless powder whose solubility in water was determined to 

be up to 60 % • This agent is not soluble in methanol, ethanol, or acetone. Stock solutions 

were made in physiologic saline as needed. Unused solutions were stored at 1 °C and 

were discarded after two weeks. The molecular profile of this heparin is depicted in 

Appendix 1. Product specifications are listed in Appendix 2. 

4. GL-522-Y-1 

GL-522-Y-1, a sulfonated calix[8]arene, (Lot Sabinsa #4) was obtained from 
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Genelabs Inc. (Redwood City, CA). This compound has a molecular weight of 1.488 

kDa. Purity was determined to be greater than 99 % by reverse-phase ion pairing HPLC 

following two recrystallizations. The solubility of GL-522-Y-l in water is greater than 

1000 mg/mL. The material was provided as a white powder which was reconstituted in 

physiologic saline as needed. Unused solutions were stored at l °C and were discarded 

after two weeks. The molecular profile of this heparin is depicted in Appendix 1. Product 

specifications are listed in Appendix 2. 

5. Reagents 

a. Enzymes 

Human thrombin (Fibrindex®) was purchased from Ortho Diagnostics (Raritan, 

NJ). The lyophilized material was reconstituted in physiologic saline (Baxter Healthcare 

Corp., Deerfield, IL) prior to use with the remaining material frozen in aliquots at -70 

°C. Bovine factor Xa was obtained from Enzyme Research Laboratories (South Bend, 

IN) and was stored in aliquots at -70 ° C. This material was reconstituted in Tris buffer 

(50 mM Tris, 175 mM NaCl, 7.5 mM EDTA; pH = 8.4 at 25 °C) immediately prior 

to use. 

b. Substrates 

Chromogenic substrates, Spectrozyme TH (HDCT-Ala-Arg-pNA) and 

Spectrozyme FXa (CH30CDHG-Gly-Arg-pNA), were obtained from American 

Diagnostica (Greenwich, CT). They were reconstituted in deionized water to 
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concentrations of 1.0 and 2.5 mM, respectively, for use in the amidolytic antiprotease 

assays. 

c. Clotting Assays 

Reagents for the APTI, 0.025 M CaC12 and a micronized silica based APTI 

reagent, were purchased from Organon Teknika (Parsippany, NJ). The APTI reagent 

was reconstituted by the addition of 5 mLs of sterile, deionized water. 0.025 M CaC12 

was used at 37 °C. Once reconstituted, the APTI reagents were refrigerated (4 °C) for 

periods of up to one week. 

Thromboplastin C®, used in the PT and protease generation assays, was obtained 

from Baxter Healthcare, Dade Division (Miami, FL). ISI = 2.69. Each bottle was 

reconstituted with 20 mLs of sterile, distilled water, gently shaken, and allowed to sit for 

20 minutes prior to use. Once reconstituted, the thromboplastin reagent was refrigerated 

(4 °C) for periods of up to one week. 

Reagents for the Heptest®, bovine FXa and Recalmix®, were purchased from 

Haemochem (St. Louis, MO). Both were obtained in lyophilized form and each vial was 

reconstituted with 2 mLs of deionized water prior to use. Recalmix®, an optimized 

mixture of CaC12 and brain cephalin in a bovine plasma fraction was used at 37 °C. 

Bovine factor Xa was used at room temperature. Once reconstituted, the Heptest® 

reagents were refrigerated (4 °C) for periods of up to one week. 

Purified human AT-III was obtained from Kabi Vitrum (Stockholm, Sweden). 

It was stored in aliquots of 500 U/mL at -70 °c and was diluted with physiologic saline 
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to obtain desirable concentrations immediately prior to use. 

Purified HC-11 (lot 1180) was obtained from Diagnostica Stago (Gennevieres, 

France) in lyophilized form. Each vial contained 100 µg of HC-11 purified from human 

plasma and was reconstituted with 200 µL of physiologic saline to make a 500 µglmL 

solution. Biologic activity was designated as 1.6 U/vial. 

Tris (hydroxymethyl)aminomethane (Trizma base and Trizma HCl) was 

purchased from Sigma (St. Louis, MO). Buffers of various pHs and osmolality were 

prepared as described in Methods. 

Fibrinogen deficient plasma was purchased from George King Biomedical 

(Overland Park, KS). Fibrinogen levels were less than 25 mg/dL. 

Actin®, activated cephaloplastin reagent, was purchased from Baxter Healthcare, 

Dade Division (Miami, FL). Once reconstituted, the Actin® reagent was refrigerated (4 

°C) for periods of up to one week. 

Konyne® brand of prothrombin complex concentrate was purchased from Cutter 

Laboratories (Berkeley, CA). This reagent contains purified human coagulation factors 

II, VII, IX, and X in a stabilized matrix. 

FEIBA ® brand of activated prothrombin complex concentrate was purchased 

from Immuno, AG (Vienna, Austria) in lyophilized form. Each bottle was reconstituted 

with 20 mLs of sterile water prior to use with any remaining portions frozen in aliquots 

of 25 U/mL at -70 °C. This complex concentrate contains purified human coagulation 

factors II, VIIa, IX, and X in a stabilized matrix. 

d. Anesthetics 
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Ketaset®, ketamine hydrochloride, was purchased from Aveco Co. Inc. (Fort 

Dodge, IA) as a 100 mg/mL injectable solution. Rom pun®, xylazine, was purchased from 

Mobay Corporation (Shawnee, KS) as a 100 mg/mL injectable solution. 

Beuthanasia®-D, a solution of sodium pentobarbital and phenytoin sodium, was 

obtained from Schering-Plough Animal Health, Kenilworth, NJ. 

e. Other agents 

Physiologic saline, obtained from Baxter Healthcare (Deerfield, IL), contained 

308 mOsmol/L NaCl at a pH of 5.5. Sterile irrigation water prepared by distillation was 

obtained from Baxter Healthcare Corp., Deerfield, IL. 

Celite coagulation tubes were purchased from International Technidyne (Edison, 

NJ). Each evacuated tube contained 12 mg of diatomaceous earth and was designed to 

activate 2 mLs of blood. 

Mineral oil was obtained from Sigma (St. Louis, MO). 

Albumin was obtained from Sigma (St. Louis, MO). 

Sodium sulfate was purchased from Mallinkrodt (Paris, KY). 

6. Major Instrumentation 

Beckman DU®-7 spectrophotometer (Beckman Instruments Inc., Fullerton CA); 

ACL 300 Plus fast kinetics coagulation analyzer (Coulter, Hialeah, FL); fibrometers® 

(Becton Dickinson and Co, Rutherford, NJ); Multistat III centrifugal analyzer 

(Instrumentation Laboratory, Lexington, MA); Thrombelastograph CTEG model #3000 
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(Hellige GmbH, Freiburg, Germany); ACT machine (International Technidyne, Edison, 

NJ), model 801; Light microscope (model BH-2, Olympus); HPLC (Waters, Lexington, 

MA), consisting of a VAX 3100 computer, a LACIE interface module, two model 510 

HPLC pumps, a 712 WISP autoinjector, a model R401 differential refractometer, and 

a model 484 tunable absorbance detector; platelet aggregometer (BioData Corporation, 

Hatboro, PA) and an IBM compatible personal computer linked to a Hewlett Packard 

(San Diego, CA) Laserjet Illsi printer for wordprocessing, statistical analysis, and 

graphics were used in these studies. 

7. Animals 

Male, White New Zealand rabbits (2.5 to 3.5 kg, 10 to 12 weeks of age) 

obtained from LSR Industries Inc. (Union Grove, WI) were housed in individual cages 

in the Animal Research Facility of Loyola University Medical Center (AAALAC 

accredited effective 3/9/93; PHS Animal Welfare Assurance ID # A 3117-01). The 

rabbits were fed a diet of standard rabbit chow and had free access to water. The ambient 

temperature was kept at 65 °F with approximately 45 % humidity. The animals were 

kept on a 12 hour light/dark cycle with the light period beginning at 7:00 a.m. All 

experiments were performed during the animals light cycle. Rabbits were anesthetized 

during all procedures with ketamine (50 mg/kg intramuscularly) and xylazine (25 mg/kg 

intramuscularly). Beuthanasia®-D, Schering-Plough Animal Health, Kenilworth, NJ was 

administered at a dose of 0.1 mL/kg for euthanasia. 

Male Sprague-Dawley rats (300 to 400 g, 73 to 121 days in age) were obtained 



75 

from Harlan Industries, Indianapolis, IN and were housed two per cage in the Animal 

Research Facility of Loyola University Medical Center (AAALAC accredited effective 

3/9/93; PHS Animal Welfare Assurance ID# A 3117-01). The rats were fed a diet of 

standard rat chow and had free access to water. The animals were kept on a 12 hour 

light/dark cycle with the light period beginning at 7:00 a.m. All experiments were 

performed during the animals light cycle. The rats were anesthetized with an 

intraperitoneal injection of urethane (15 % in physiologic saline) for all procedures. Rats 

were euthanized with a 0.1 mL/kg intravenous injection of Beuthanasia®-D. 

B. Physical Characterization of Aeents 

1. Molecular Weight Profile by Gel 

Permeation Chromatography (GPC) 

Calibration curves made using three different types of calibrators were prepared 

by running the appropriate compounds on a Waters 845 GPC-HPLC system (Millipore

Waters, Lexington, MA, U.S.A.) equipped with Expert Ease® software designed for 

polymer analysis. Each calibrator was dissolved in 0.5 M Na2S04 to give a final 

concentration of 10 mg/mL. The HPLC system consisted of a VAX 3100 computer 

(Digital Corp.), a LACIE interface module, two Waters model 510 HPLC pumps, a 

Waters model 712 WISP autoinjector, a model 401 differential refractometer (RI), and 

a Waters 484 tunable absorbance detector. The UV and the RI detector were linked in 

series, with the outlet end of the columns attached to the UV detector. 

20 µL of each sample was injected onto a tandem column system (TSK 2000 I 
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TSK 3000, Tosoh Haas, Tokyo, Japan) for analysis. The mobile phase, 0.5 M Na2S04 , 

was pumped through the columns at a flow rate of 0.5 mL/minute. All analyses were 

made at room temperature. The run time for each sample was set at 65 minutes. UV 

determinations were made at 234 nm. The system was equilibrated each morning using 

freshly degassed mobile phase until a stable baseline was obtained. 

Nineteen narrow range calibrators of known molecular weight were supplied by 

Choay Laboratories, Roen, France. They were prepared by fractionation of heparin on 

Ultragel AcA44 agarose acrylamide (LKB-Produkteur AB) gel permeation 

chromatographic columns. The narrow range fractions were further analyzed for their 

molecular weights by running them through TSK G2000 SW and TSK 3000 SW 

analytical gel permeation columns which had been calibrated against other well defined 

reference standards. The weights of these fractions were found to be: 22,500; 17,300; 

14,800; 12,900; 11,500; 10, 100; 8,650; 7,540; 6,670; 6, 150; 5,730; 5,360; 5,000; 

4,530; 4,000; 3,410; 2,440; 1,880 and 1,320 Da. These molecular weights were 

confirmed by viscometry, LALLS, or sedimentation analysis. 

The log molecular weight of each calibrator was plotted against its retention 

time. Using the Expert Ease® software, a third order polynomial regression equation was 

fitted to the data points to give an expression in the form : 

log M. W. = D0 + D1 (RT) + D2(RT)2 + D3(RT)3 

where M.W. = calculated molecular weight and 

RT = sample retention time 
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D0 , D1, D2, and D3 = coefficients calculated in the curve fitting process 

The molecular weight profile of each agent was determined based on this 

calibration curve. The molecular weight profile consisted of the parameters weight 

average molecular weight, number average molecular weight, peak molecular weight, and 

dispersity. 

2. 1H and 13C Nuclear Magmetic Resonance (NMR) Spectra 

Proton (1H) NMR spectra of aprosulate, GL-522-Y-1, heparin, and pentasaccharide were 

detected with an AC300 or AMX 500 NMR spectrometer (Bruker, Germany) at either 

300 or 500 MHz in collaboration with Professor B. Casu (Ronzoni Institute, Milan, 

Italy). Carbon 13 (13C) spectra were detected using an AC300 NMR spectrometer at 75 

MHz. For this analysis, the samples were dissolved in 99.9% deuterium oxide at 

concentrations varying from 1 to 10 % depending upon the sample and the magnetic 

field. For aprosulate and heparin, spectra were obtained at a temperature of 313 K. The 

spectra of GL-522-Y-1 were obtained at 300 K while those of pentasaccharide were 

obtained at 298 K. Proton spectra were made at 300 MHz and 13C spectra were made at 

75 MHz. All chemical shifts were given in ppm downfield from at internal sodium-3-

(trimethylsilyl)-propionate standard. 

3. Mass Spectral Analysis 

Mass spectra of aprosulate and GL-522-Y-1 were obtained using a Finnigan 
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MAT900 2-sector mass spectrometer equipped with an Antek cesium ion gun. For the 

analysis, an aliquot of the sample was dissolved in 1 µL of solvent and added to 1 µL 

of matrix on a probe tip. The matrix for these analyses was triethanolamine. The probe 

tip was subsequently inserted into the ion source of the mass spectrometer. The sample 

was ionized by liquid secondary ion mass spectrometry. All data was collected in the 

negative ion mode. 

C. In vitro Biochemical and Pharmacolo~ic Profile 

The comparative in vitro biochemical and pharmacologic analysis of heparin and 

its synthetic analogues was carried out utilizing biochemically defined, normal human 

pooled plasma and normal rabbit pooled plasma based assays. In addition, protease 

generation assays were carried out utilizing fibrinogen deficient plasma and activated and 

non-activated prothrombin complex concentrate supplemented systems. The modulatory 

actions of each of these agents were investigated utilizing endothelial cell cultures and 

platelet rich plasma harvested from citrated whole blood obtained from human 

volunteers. 

1. SERPIN Activity Assays 

a. Antithrombin III (AT-III) 

The ability of an agent to mediate antiprotease activity via AT-III was measured 

utilizing an amidolytic substrate assay run on the ACL-300+ fast kinetics analyzer. Test 

agents were diluted in saline and placed in sample cups such that the final assay 
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concentrations ranged from 0 to 40 µM. 12.5 µL of a 1.25 U/mL human AT-III solution 

was added to the sample cups such that the final concentration of AT-III in the assay was 

0.0625 U/mL. The first reagent consisted of 1.25 U/mL thrombin or 0.625 nkat/mL 

factor Xa in Tris buffer (50 mM Tris, 175 mM NaCl, 7.5 mM EDTA, pH = 8.4@ 25 

°C). The second reagent consisted of0.5 mM Spectrozyme TH or 1.25 mM Spectrozyme 

FXa. The instrument was programmed such that 100 µL of sample and 100 µL of 

reagent 1 were placed into individual compartments in a reaction rotor. These reagents 

were incubated at 37 °C for 1 minute and were then mixed together. 50 µ.L of reagent 

2 was then added to the rotor and the reaction rotor was spun at 1200 r.p.m. Optical 

density readings at 405 nm were made continuously for all cells for 60 seconds. The data 

was downloaded for analysis to an IBM PC containing the Instrument Laboratories 

research program. A printout of the change in optical density with time was obtained. 

Percent inhibition and maximal reaction rates were determined. 

Potency evaluations were made by comparing IC50 values for each agent in both 

systems. IC50 values were calculated in the following manner: Data from each individual 

run was plotted as percent inhibition relative to saline versus concentration (µM). 

Regression analysis was performed on the linear portion of each curve. The agent 

concentration resulting in 50 % maximal inhibition was extrapolated from the best fit 

line. The mean and standard deviation of the extrapolated IC50's was determined. 

Statistical differences between the respective IC50's were determined by one way ANOVA 

followed by the Newman-Keuls test. 
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b. Heparin Cofactor II CHC-II) 

The ability of an agent to mediate antiprotease activity via HC-II was measured 

utilizing an amidolytic substrate assay run on the ACL-300+ fast kinetics analyzer. 

Agents were diluted in saline and placed in sample cups such that the final assay 

concentrations ranged from 0 to 40 µM. 4.2 µL of a 500 µglmL human HC-II solution 

was added to the sample cups such that the final concentration of HC-II in the assay was 

8.4 µg/mL. The first reagent consisted of human thrombin diluted to 2.08 U/mL with 

Tris buffer (50 mM Tris, 175 mM NaCl, 7.5 mM EDTA, pH = 8.4@ 25 °C). The 

second reagent consisted of 0.625 mM Spectrozyme TH. The instrument was 

programmed such that 100 µL of sample and 50 µL of reagent 1 were placed into 

individual compartments in a reaction rotor. These reagents were incubated at 37 °C for 

1 minute and were them mixed together. 100 µ.L of reagent 2 was then added to the rotor 

and the reaction rotor was spun at 1200 r.p.m. Optical density readings at 405 nm were 

made continuously for all cells for 60 seconds. The data was downloaded for analysis to 

an IBM PC containing the Instrument Laboratories research program. A printout of the 

change in optical density with time was obtained. Percent inhibition and maximal reaction 

rates were determined. 

Potency evaluations were made by comparing IC50 values for each agent. IC50 

values were calculated in the following manner: Data from each individual run was 

plotted as percent inhibition relative to saline versus concentration (µ.M). Regression 

analysis was performed on the linear portion of each curve. The agent concentration 

resulting in 50 % maximal inhibition was extrapolated from the best fit line. The mean 
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and standard deviation of the extrapolated IC50's was determined. Statistical differences 

between the respective IC50's were determined by one way ANOVA followed by the 

Newman-Keuls test. 

2. Anticoagulant Profile 

a. Activated Partial Thromboplastin Time CAPTT) 

The APTT is a global clotting assay which is used to measure inhibition of 

coagulation factors in the intrinsic pathway and is commonly used to monitor heparin 

therapy. The assay was performed in the following manner. 100 µL of APTT reagent 

was added to 100 µL of test plasma and was incubated for 5 minutes at 37 °C. Clotting 

time was measured using a Fibrometer® (BBL, Cockeysville, MD) following the addition 

of 100 µL of prewarmed 0.025 M CaC12• Measurement of clotting time was stopped at 

300 seconds as clotting times beyond 300 seconds were outside of the linear range of the 

instrument. 

b. Heptest® 

The Heptest® (Haemochem, St. Louis, MO) is an assay which is used to 

measure clotting times after the addition of purified bovine factor Xa. The assay was 

performed in the following manner. 100 µL of plasma was added to 100 µL of bovine 

factor Xa and was incubated for 2 minutes at 37 °C. Clotting time was measured with 

a Fibrometer® (BBL, Cockeysville, MD) after the addition of 100 µL of prewarmed 

Recalmix®. Measurement of clotting time was stopped at 300 seconds as clotting times 
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beyond 300 seconds were outside of the linear range of the instrument. 

c. 5 U Thrombin Time (5 U TT) 

The 5 U thrombin time measures the time needed to convert fibrinogen to fibrin 

by preformed thrombin. The assay was performed in the following manner. 200 µL of 

plasma was equilibrated to 37 °C for 3 minutes. The clotting time was measured with 

a Fibrometer® (BBL, Cockeysville, MD) following the addition of 100 µL of human 

thrombin. This thrombin had previously been calibrated to 5 U/mL by adjusting its 

concentration such that the clotting time of pooled normal human plasma was 18 to 20 

seconds. Measurement of clotting time was stopped at 300 seconds as clotting times 

beyond 300 seconds were outside of the linear range of the instrument. 

d. Prothrombin Time (PT) 

The PT is a global clotting test which is used to measure inhibition of 

coagulation factors in the extrinsic pathway (FVIIa and FXa). This assay is commonly 

used to monitor oral anticoagulant therapy. The assay was performed in the following 

manner. 100 µL of plasma was incubated at 37 °C for 3 minutes. Clotting time was 

measured using a Fibrometer® (BBL, Cockeysville, MD) following the addition of 200 

µL of prewarmed Thromboplastin C® (Dade, FL). Measurement of clotting time was 

stopped at 300 seconds as clotting times beyond 300 seconds were outside of the linear 

range of the instrument. 



3. Amidolytic Antiprotease Assays 

a. Anti-thrombin assay (Anti-Ila) 
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Residual thrombin activity was measured using a amidolytic substrate based 

assay on a Beckman spectrophotometer. Anticoagulant present in the plasma sample 

would inhibit a given portion of the available added thrombin. Any remaining thrombin 

would cleave the amidolytic substrate and release p-nitro aniline. The reaction was 

followed by monitoring the change in the amount of free chromophore (pNA) at an 

optical density of 405 nm. The assay was performed in the following manner. 400 µL 

of buffer (50 mM Tris, 175 mM NaCl, 7.5 mM EDTA, pH= 8.4@ 25 °C) and 25 µL 

of the test plasma was prewarmed for 1 minute at 37 °C in a quartz cuvette. 25 µL of 

10 U/mL thrombin was then added. Thrombin for this assay was calibrated to give an 

optical density change of 0.65 to 0. 75 mau/min in a saline control. Following an 

incubation time of exactly 1 minute, 50 µL of a 1 mM solution of the amidolytic 

substrate Spectrozyme TH was added and the change in optical density was measured for 

1 minute. Percent inhibition was determined in relation to unsupplemented baseline 

plasma using the following formula: 

% I = {(delta 0.D. baseline - delta O.D. sample) I delta O.D. baseline} * 100 % 

b. Anti-factor Xa assay (Anti-Xa) 

Residual factor Xa activity was measured using a chromogenic substrate assay 

developed by Hoppensteadt et al. (Hoppensteadt et al., 1985). Anticoagulant present in 
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plasma may inhibit a given fraction of added factor Xa. Any residual factor Xa was able 

to cleave an amidolytic substrate to release p-nitro aniline. The reaction was monitored 

by measuring the change in the amount of free chromophore (pNA) by measuring the 

change in optical density at 405 nm. The assay was performed in the following manner. 

375 µL of buffer (50 mM Tris, 175 mM NaCl, 7.5 mM EDTA, pH = 8.4@ 25 °C) 

was incubated with 25 µL of the plasma sample for 2 minutes at 37 °C. 50 µL of bovine 

FXa was added. Prior to running the assay, an aliquot of factor Xa was reconstituted in 

reaction buffer such that in a saline control a change in absorbance of 0.65 to 0. 75 

mau/min was observed. Following a 2 minute incubation at 37 °C, 50 µL of 

Spectrozyme FXa (2.5 mM) was added and the change in optical density at 405 nm was 

measured for 1 minute. Percent inhibition was determined in relation to unsupplemented 

baseline plasma using the following formula: 

% I = {(delta O.D. baseline - delta O.D. sample) I delta O.D. baseline} * 100 % 

4. FVIII:C assay 

Factor VIII coagulant (FVIII:C) activity was determined using an amidolytic 

assay (Coatest Factor VIII, USA Helena Laboratories, Beaumont, TX) in which a 

purified FVIII solution (4 U/mL) was supplemented with the agent being studied over a 

concentration range of 0 to 100 µM. 300 U of lyophilized FVIII (Armour, Kankakee, IL) 

was reconstituted with 15 mLs of physiologic saline and was stored in 0.5 mL aliquots 

at -70 °C. Immediately prior to the experiment, 0.2 mLs of the 20 U/mL aliquot was 
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diluted with 0.8 mL of Owren's Verona! Buffer (pH = 7.35 ± 0.1; American Dade, 

Aguada, Puerto Rico). 40 µL of each sample was incubated with 420 µL of buffer (0.05 

M Tris + 0.2 % bovine albumin; pH = 7.3) and 200 µL of a solution containing factor 

IXa, factor X, and phosphatidylserine for 5 minutes. 100 µL of CaC12 (0.025 M) was 

added and the solution was incubated for another 5 minutes. 200 µL of the factor Xa 

substrate, Spectrozyme Xa (2. 7 mM) was added and the change in absorbance at 405 nm 

was measured for 60 seconds. Percent inhibition was determined in relation to a saline 

control using the following formula: 

% I = {(delta O.D. baseline - delta O.D. sample) I delta O.D. baseline} * 100 % 

5. Protease Generation Assays 

a. Fibrinogen Deficient Plasma 

Inhibition of thrombin and factor Xa generation was measured utilizing an 

amidolytic substrate method (Kaiser et al., 1992) run on the ACL-300+ fast kinetics 

analyzer. Agents were diluted in saline to the appropriate concentrations and placed in 

the sample cup carousel. Reagent position 1 contained fibrinogen deficient plasma diluted 

1:8 in Tris buffer (pH = 8.5, 100 mM Tris base adjusted with HCl). Reagent position 

2 contained Actin (Dade,, Miami, FL) diluted 1: 1 with Spectrozyme TH or Spectrozyme 

FXa (1 mM made in 0.025M CaC12) for measuring intrinsic IIa and Xa generation or 

Thromboplastin C® diluted 1 :6 with the chromogenic substrates for measuring extrinsic 

thrombin and FXa generation. 60 µL of sample and 60 µL of reagent 1 were pipetted 
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into the rotor and were incubated at 37 °C for 5 minutes. 60 µL of reagent 2 was 

pipetted into the rotor and the rotor was spun at 1200 r.p.m. 1040 optical density 

measurements were made over a period of 999 seconds for each cuvette. This data was 

downloaded to an IBM PC for analysis by the IL research program. Kinetics curves were 

generated. Percent inhibition was determined according to the following formula: 

% I = {(delta O.D. baseline - delta O.D. sample) I delta O.D. baseline} * 100 % 

b. Prothrombin Complex Concentrate Based (Konyne) System 

Thrombin and FXa generation inhibition were measured in a non-plasma system 

in which a prothrombin complex concentrate provides the necessary coagulation factors 

for the reaction in the absence of plasma. This system used Konyne® brand of 

prothrombin complex concentrate (Cutter Laboratories, Berkeley, CA), containing factors 

II, VII, IX, and X. This amidolytic assay was run on the Multi-stat III centrifugal 

analyzer. The reagents were added to the rotor in the following order. 25 µL of the drug 

dilution (0 to 100 µM in saline) and 140 µL of buffer (Thromboquant aPTT buffer, 

Boehringer Mannheim, GmbH, Mannheim, Germany, lot 1313205) was added to the 

outer well of the reaction rotor. 10 µL of the same buffer and 25 µL of Konyne® (10 

U/mL) were added to the inner well of each cuvette. 25 µL ofThromboplastin C® (Dade, 

FL) diluted 1: 10 with 0.025 CaC12 was added to the outer well. Immediately before the 

rotor was placed in the instrument, 25 µL of Spectrozyme TH or FXa made at 2.5 mM 

in deionized water was added to the outer well. The rotor was incubated for 30 seconds 
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at 37 °C before optical density readings at 405 nm were made. The rotor was spun at 

600 r.p.m. Optical density was read once every 60 seconds for a period of twelve 

minutes. Data printouts contained optical density readings at each time point as well as 

the overall optical density change. The data was plotted as kinetic curves (Ll O.D. vs. 

time) and as % inhibition relative to saline control vs. concentration (µM). Percent 

inhibition is calculated as above. 

c. Activated Prothrombin Complex Concentrate (FEIBA~ System 

Thrombin and FXa generation inhibition were measured in a non-plasmatic 

system in which an activated prothrombin complex concentrate provided the necessary 

coagulation factors for the reaction in the absence of plasma. This system used FEIBA ® 

brand of prothrombin complex concentrate containing factors II, VIia, IX, and X. This 

was an amidolytic assay run on the Multi-stat III centrifugal analyzer. The reagents were 

added in the following order. 25 µL of the drug dilution (0 to 100 µMin saline) and 140 

µL of buffer (Thromboquant aPTT buffer, Boehringer Mannheim, GmbH, Mannheim, 

Germany, lot 1313205) was added to the outer well of the reaction rotor. 10 µL of the 

same buffer and 25 µL of FEIBA® (10 U/mL) were added to the inner well of each 

cuvette. 25 µL of Thromboplastin C® (Dade, FL) diluted 1 : 10 with 0.025 CaC12 was 

added to the outer well. Immediately before the rotor was placed in the instrument, 25 

µL of Spectrozyme TH or FXa made at 2.5 mM in deionized water was added to the 

outer well. The rotor was incubated for 30 seconds at 37 °C before optical density 

readings (405 nm) were made. The rotor was spun at 600 r.p.m. Optical density was 
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read once every 60 seconds for a period of twelve minutes. Data printouts contained 

optical density readings at each time point as well as the overall optical density change. 

The data was plotted as kinetic curves (.1 0.D. vs. time) and as % inhibition relative to 

saline control vs. concentration in µM. 

6. Endothelial Cell Culture System 

Rabbit aortic endothelial cells were grown to confluence in F 12 culture medium 

supplemented with fetal calf serum. Confluence was achieved after approximately 2 

weeks. Immediately prior to the experiment, serum factors were washed out of the 

cultures with fresh F12 medium. The experimental media consisted of 900 µL of F12 

medium + 35S (made by adding 125 µL 35S to 20 mLs of F12 medium) and 100 µL of 

the stock polyanion solution. Stock solutions of 0.001 to 1.0 mg/mL for the various 

polyanions were utilized. Controls were treated with 100 µ.L of F12 medium in place of 

the polyanion solution. The experimental media remained with the cells for a period of 

20 hours at which time the media was removed and the cells were washed. Both the cells 

and the culture media were frozen for future analysis. 

To analyze the newly synthesized glycosaminoglycans in the media and the cells, 

cells were removed from the freezer and 250 µ..L of a Superase solution was added to 

degrade the cellular proteins. The cells were stirred and scraped into a tube containing 

250 µL of Tris HCl buffer and 10 µ.L of a non-labelled chondroitin sulfate + heparan 

sulfate + dermatan sulfate standard. In separate tubes, 100 µ.L of the media + 10 µL 

Superase + 10 µL of the standard solution were added. These solutions were incubated 
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overnight. Heparan sulfate, chondroitin sulfate and dermatan sulfate were separated by 

agarose gel electrophoresis in PDA buffer and visualized by toluidine blue staining. Each 

gel was run for 30 minutes. Newly synthesized heparan and chondroitin sulfate in each 

sample was quantitated using scintillation counting of the respective bands. 

7. In Vitro Supplementation to Freshly Drawn Human Blood 

Each heparin analogue was supplemented to freshly drawn human blood at a 

final concentration of 0.25 µM. Stock solutions of each agent were prepared at 2.5 µM 

in physiologic saline. 500 µLs of each stock solution was placed in individual 

polypropylene syringes. Blood was drawn from normal human volunteers via the 

antecubital vein using a double syringe technique. After discarding the initial 2 mLs of 

blood, blood was drawn to the 5 mL mark in the syringes containing the test agent. 

These syringes were gently inverted to mix the blood and test agent. Celite and saline 

activated clotting times were performed to determine the anticoagulant activity of each 

agent. TEG analysis was also performed to assess the ability of each agent to effect clot 

formation. 

8. Effect of Heparin Analogues on Platelet Function 

a. Agonist Induced Platelet Aggregation 

The effects of the synthetic heparin analogues on platelet function were assessed 

by platelet aggregometry. In the first set of experiments, blood was drawn from 10 

volunteers (5 males and 5 females) using a double syringe technique to avoid 
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contamination by tissue factors released upon venipuncture. Standard venipuncture was 

performed using a 21 gauge Butterfly® (3/4 x 12" tubing) infusion set (Abbott Hosp. 

Inc., North Chicago, IL). 9 mL of blood was drawn into a 10 mL polyethylene syringe. 

The blood was immediately transferred to plastic test tubes containing 1 mL of 3.8% 

sodium citrate. The blood was mixed by gentle inversion. Platelet rich plasma (PRP) was 

prepared by spinning the citrated blood at 800 r.p.m. for 15 minutes at room 

temperature. PRP was carefully removed and kept in capped plastic tubes. The remaining 

blood was spun further at 1200 x g for 15 minutes to obtain platelet poor plasma (PPP). 

PPP was used to blank the aggregometer (BioData Corporation, Hatboro PA). 

Aggregations were performed in the following manner. 450 µL of platelet rich plasma 

was pipeted into the aggregometer tubes and allowed to incubate at 37 °C for 2 to 4 

minutes to assure that the platelets do not self aggregate. 50 µ.L of agonist was pipetted 

into each tube. The agonists which were tested included ADP (1.15 and 0.58 µg/mL), 

collagen (0.8 µg/mL), epinephrine (10 µg/mL), arachidonic acid (300 µg/mL), and 

human thrombin (1 U/mL). All agonist concentrations are final assay concentrations. 

Platelet rich plasma was supplemented with each analogue at a concentration 10 µM. The 

aggregation profile was analyzed according to two parameters: maximum percent 

aggregation and slope. Saline supplementation was used as a control. 

b. Heparin Induced Thrombocytopenia Screening 

The synthetic analogues were also analyzed for their ability to promote heparin

induced thrombocytopenia (HIT) according to the method of Brace (Brace et al., 1990). 
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290 µL of PRP and 160 µL of heat inactivated HIT serum were warmed in a cuvette for 

1 to 2 minutes at 37 °C. 5, 10, or 20 µL of a 1 mgfmL solution of the analogue being 

tested was then added. The aggregation response was monitored for 30 minutes. The 

inactivated HIT serum was made by allowing the blood of known heparin-induced 

thrombocytopenic individuals to clot. The clotted blood was then centrifuged and the 

serum drawn off and aliquoted for use in this screening. 

D. In vivo Phannacolo~ic studies: 

The in vivo pharmacologic studies were carried out in established models of 

rabbit stasis thrombosis and rabbit ear bleeding, and a rat jugular vein clamping model 

of thrombosis. Both intravenous and subcutaneous dosing protocols were utilized. To 

measure the pharmacodynamics of parenterally administered heparin and its analogues, 

whole blood investigations employing ACT and TEG were performed. In addition, ex 

vivo analysis of blood samples included global anticoagulant profiling and the 

measurement of functional TFPI. 

1. Rabbit Stasis Thrombosis Model 

The modified stasis thrombosis model of Fareed (Fareed et al., 1985) was used 

to study the in vivo antithrombotic effects of the synthetic heparin analogues. Male white 

New Zealand rabbits (2.5 to 3.5 kg) were administered Ketaset® (ketamine 

hydrochloride) at a dose of 50 mg/kg and Rompun® (xylazine) at a dose of 25 mg/kg 

intramuscularly to induce anesthesia. When the rabbits appeared too lightly anesthetized 
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during the procedure, an additional injection of Ketaset® (25 mg/kg) was given. A 

scalpel, forceps, and cautery were used to isolate the jugular veins from the facia while 

causing minimal trauma to the vessels. A 2 cm segment of each jugular vein, including 

the bifurcation, was isolated. The right carotid artery was cannulated for the purpose of 

obtaining blood samples. When long circulation times were employed, baseline samples 

were drawn via the medial ear artery. Heparin analogues were administered either 

subcutaneously in the abdominal region or intravenously via the marginal ear vein. 7.5 

U/kg FEIBA ® was administered via the marginal ear vein as a thrombogenic challenge. 

The FEIBA® was allowed to circulate for exactly 20 seconds before the jugular vein 

segments were ligated to induce stasis. After 10 minutes of stasis time, the left vein 

segment was excised, opened, and the clot graded according to the following scale. +0 

is scored when the blood in the segment is completely unclotted. + 1 is scored when a 

small number of microscopic clots are present in largely unclotted blood. +2 is scored 

when a larger number of small clots are present. + 3 is scored when a single large clot 

is present with few unclotted blood cells. +4 is scored when a solid clot with no 

unclotted blood is present. The right jugular segment was removed after 20 minutes of 

stasis time and the clots were graded using the above scale. One blue top tube (4.5 mLs 

blood in 0.5 mLs of 3.8 % sodium citrate) and one red top tube (3 mLs whole blood) 

were drawn at baseline, post-drug, and 6 minutes post-FEIBA®. The blue top tube was 

spun at 1200 x g for 20 minutes to obtain platelet poor plasma. This plasma was 

aliquoted and frozen at -70 °C for future analysis using the PT, APTT, TT, Heptest®, 

anti-Ila, anti-Xa, and functional TFPI assays. The blood saved in a red top tube was 
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analyzed immediately for activated clotting time and by thrombelastography. 5 rabbits 

per drug per dose were used. Controls were run using saline. Following each 

experiment, the rabbit was euthanized with an intravenous injection of 0.1 mL/kg 

Beuthanasia®-D. 

2. Rabbit Ear Bleeding Model 

The rabbit ear bleeding model (Cade et al., 1984) was used to evaluate the 

hemorrhagic potential of each agent. A white New Zealand male rabbit was anesthetized 

with 25 mg/kg Rompun® (xylazine) and 50 mg/kg Ketaset® (ketamine hydrochloride) 

intramuscularly. The rabbit's ear was immersed in a physiological saline bath kept at 37 

°C. Using transillumination, an area was selected which was free of major blood vessels. 

A #20 Bard-Parker scalpel blade (Becton Dickinson AcuteCare, Franklin Lakes, NJ) was 

used to make 5 uniform, full thickness incisions through the ear. The ear was 

immediately re-immersed in the saline bath for 10 minutes. After 10 minutes, the saline 

bath was collected and bottled. The red blood cells in each sample were counted using 

a Hycel red cell counter. The rabbit ear was bandaged as necessary and the rabbit was 

allowed to recover in its cage for minimally one week prior to use in the rabbit stasis 

thrombosis model. 

3. Rat Jugular Vein Clamping Model of Thrombosis 

Male Sprague-Dawley rats were anesthetized using an i.p. injection of 1 mL/100 

g body weight of a 15 % solution of urethane (Raake et al., 1989). The skin on the neck 
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was shaved and an incision was made centrally above the trachea. The right jugular vein 

was isolated and covered with ultrasound transmission gel. A bi-directional Doppler 

probe was used to measure blood flow through the vessel. The jugular vein was clamped 

using a mosquito forceps for 1 minute and then released in order to measure flow. 

Clamping of the blood vessel caused endothelial damage and initiated clot formation. 

Blood flow was measured for five minutes between clampings. This process was repeated 

until no flow was measured at five minutes post-clamping. The effectiveness of the 

antithrombotic agent was determined by the number of clampings required to cause 

vascular occlusion. 

4. Ex Vivo Analysis of Anticoagulant Activity 

a. Activated Clotting Time (ACT) 

2 mLs of blood freshly drawn via carotid catheter was added to blood 

coagulation tubes containing 12 mg celite to activate clotting. The tube was agitated 

vigorously for a few seconds and immediately inserted into a Hemochron® test well. The 

time taken for the blood to clot was displayed digitally on the face of the instrument. 

b. Thrombelastography (TEG) 

The TEG automatically recorded viscoelastic changes in a sample of whole blood 

as the sample clotted. The resultant profile was a measure of the kinetics of clot 

formation. This analysis was sensitive to all of the interacting cellular and plasmatic 

components in a given sample of blood that may affect the rate or structure of the 
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clotting sample. The procedure was as follows. A clean cup and pin were placed in the 

instrument and were maintained at 37 °C. Three minutes after being drawn, 360 µL of 

the blood was placed in the test cup and the pin was lowered into the cup. A thin layer 

of mineral oil was carefully placed on the blood surface to prevent drying. As a clot 

forms, the deflection of the pin as it moves in the cup was recorded. Four parameters 

were measured from the profile: R-time, RK-time, maximum amplitude, and divergence 

angle. R-time was measured as the distance in millimeters from the start of the tracing 

until there was a 2 mm divergence. This was the point of reproducible clot formation. 

RK-time was the distance in millimeters from the beginning of the tracing until a 20 mm 

divergence was reached. This was the time to a standard clot firmness. The maximum 

amplitude corresponded to the maximum shear modulus of the clot. Divergence angle 

was measured by drawing a tangent line from the point of initial divergence along the 

maximum curvature of the tracing. The size of the angle was directly related to the 

kinetics of clot formation. 

5. Ex Vivo Analysis of Functional TFPI in Rabbits 

Levels of TFPI activity in rabbit plasma samples were measured usmg an 

amidolytic assay based on that of Sandset (Sandset et al., 1987). In this assay, 300 to 400 

µL of test plasma was heated in a plastic test tube at 56 °C in a water bath for 15 

minutes to inactivate endogenous coagulation enzymes and to precipitate fibrinogen. 

Following heating, the samples were cooled for 1 minute on ice and then centrifuged for 

10 minutes at 1200 x g. The supernatant plasma was diluted 1 to 20 in TFPI buffer (0.1 
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M NaCl, 0.05 M Tris HCl, 0.01 M trisodium dicitrate; pH = 8.0). These dilutions were 

then kept on ice until assayed. The following reagents were placed into each reaction 

tube: 50 µL of 0.025 U/mL human factor VII, 50 µ.L of Thromboplastin C+ diluted 1 

to 20 in TFPI buffer, 50 µL of 0.025 U/mL human factor X, and 50 µL of 0.075 M 

CaC12• Each tube was vortexed and incubated at 37 °C. After 5 minutes, 50 µL of the 

plasma dilution was added to each tube. After vortexing, the tubes were incubated for 

40 minutes at 37 °C. 50 µL of 0.4 U/mL factor X was added to each tube. Following 

vortexing, the tubes were incubated for 20 minutes at 37 °C. 50 µL of 3.25 mM 

Spectrozyme Xa was added to each tube. Following a 15 minute incubation period, 200 

µL of 50 % acetic acid to each tube was added to stop the amidolytic reaction. 200 µL 

of each sample was pipetted onto a microtiter plate and the optical density was read at 

410 nm. Percent inhibition was measured relative to the appropriate baseline sample. 

F. Other In Vivo Animal Models 

Primate studies, using Macaca fascicularis and Macaca mulatta, provided the 

opportunity to measure TFPI antigen levels utilizing a modified ELISA technique. 

I. Effect of GL-522-Y-1 on TFPI Levels in Non-human Primates 

Three male Cynomolgus monkeys (Macaca fascicularis), weighing 2.5 to 5.0 

kg, received 10 mg/kg GL-522-Y-l intravenously via the cephalic vein. Blood was drawn 

via a 12 inch catheter placed in the saphenous vein under ketamine ( 10 mg/kg) anesthesia 

using a double syringe technique. Following the draw, blood was placed into a tube 
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containing 3.8 % sodium citrate. The final ratio of blood to citrate was 9: 1. Within 30 

minutes of collection, the blood sample was centrifuged to make platelet poor plasma. 

The sample was aliquoted and frozen at - 70 °C. Samples were collected at baseline, 5, 

15, 30, 60, 120, 240, and 360 minutes post-administration. TFPI levels were measured 

using functional and immunologic assays. 

2. Effect of Pentasaccharide on TFPI Levels in Non-human Primates 

Three monkeys (Macaca mulatta), anesthetized with 10 mg/kg ketamine and 

ranging in weight from 7 to 13 kg, received penta.saccharide at doses of either 100, 250, 

or 500 µglkg intravenously via the saphenous vein. Blood was drawn using a double 

syringe technique via a butterfly needle placed in the saphenous vein. Following the 

draw, the blood was placed into a tube containing 3.8 % sodium citrate. The final ratio 

of blood to citrate was 9: 1. The blood was kept on ice until centrifugation to make 

platelet poor plasma. The plasma samples were aliquoted and frozen at - 70 °C. Samples 

were collected at baseline and at 5 and 60 minutes post-administration. TFPI levels were 

measured using an immunologic assay. 

G. Human Trials with Aprosulate 

In conjunction with two phase I studies carried out in collaboration with 

Luitpold-Pharma, TFPI levels were measured after aprosulate administration. To relate 

the TFPI levels with the anticoagulant effects, Heptest® and APTI were also measured. 
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t. Dose Finding Study with Bis-Lactobionic Acid Amide - Phase I (DELPHn 

Plasma samples used in this study were obtained in the DELPHI phase-I clinical 

trial of aprosulate conducted by Inveresk Clinical Research, Ltd. (Edinburgh, Scotland) 

under the sponsorship of Luitpold Pharma GmbH (Munich, Germany). This study was 

performed for the purpose of assessing the local and systemic tolerance of different doses 

of aprosulate after subcutaneous application and to measure the kinetics of this agent as 

well as any changes in coagulation parameters (Papoulias et al., 1993). 

The DELPHI study was an open, non-randomized tolerance study in which 

twelve normal, healthy male volunteers received increasing dosages of aprosulate over 

a period of 16 days. On day 0 of the study, screenings were performed to confirm the 

eligibility of the volunteers. On Day 1 of the study, each volunteer received an injection 

of placebo in order to assess the normal circadian variations in each person's baseline 

measurements. Aprosulate dosing began on day 2 with a dose of 0.25 mg/kg. Blood 

samples for the determination of coagulation and clinical chemistry parameters were 

drawn 1, 2, 4, and 10 hours post-administration. On the ensuing washout day, blood 

samples were obtained at 4 and 10 hours. Increasing doses of aprosulate (0.5, 0.75, 1.0, 

1.5, and 2.0 mg/kg) were subsequently administered on alternate days, separated by 

intervening washout days. 

Blood samples were collected in citrated tubes (1 part 3.8 % citrate to 9 parts 

whole blood) and centrifuged within 20 minutes at 2000 x g for 20 minutes at 4 to 8 °C. 

Plasma was separated, aliquoted, and frozen at -70 °C for future analysis. Aliquots were 

shipped to Loyola University Medical Center (Maywood, IL) on dry ice and were stored 
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2. Phase I-Study for the Assessment of the Laboratory Values 

after Repeated Daily Application of Aprosulate (PALLAS) 
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Plasma samples used in this study were obtained in the PALLAS phase-I clinical 

trial of aprosulate conducted by Inveresk Clinical Research, Ltd. (Edinburgh, Scotland) 

under the sponsorship of Luitpold Pharma GmbH (Munich, Germany). This study was 

performed for the purpose of assessing the effects of repeated administration of 

aprosulate on hematologic parameters. 

Four dosing regimens were utilized in this study, with 6 healthy, human, male 

volunteers randomized into each group. The treatments included : 35 mg aprosulate 

b.i.d., 70 mg aprosulate b.i.d., 70 mg aprosulate o.d. +placebo (saline) o.d., and 40 

mg Enoxaparin® o.d. + placebo. The average age for the treatment groups ranged from 

25.50 ± 3.72 to 27.83 + 3.24 years (mean + S.E.M.). The difference in the ages of 

the groups was not statistically significant. The injectable drugs were administered 

subcutaneously every 12 hours for a duration of 7 days. Volunteers could be removed 

from the study prior to 7 treatment days according to preset safety criteria. Blood 

samples were drawn at baseline, 15, 30, 45, 60 minutes, 2, 4, 8, and 12 hours on days 

1 and 7 of the study. Samples were drawn at 2 and 12 hours on days 2 and 3 and at 12 

hours on days 4 through 6 of the study. The majority of the blood samples were drawn 

on the first and seventh days of the trial in order to determine the effects of repeated 

aprosulate administration on various hematologic parameters. 
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Blood samples were collected in citrated tubes (1 part 3. 8 % citrate to 9 parts 

whole blood) and centrifuged within 20 minutes at 2000 x g for 20 minutes at 4 to 8 °C. 

Plasma was separated, aliquoted, and frozen at -70 °C for future analysis. Aliquots were 

shipped to Loyola University Medical Center (Maywood, IL) on dry ice and were stored 

at -70 °C. Samples were later thawed and batch analyzed for TFPI antigen levels. 

a. ELISA TFPI Assay 

TFPI antigen levels were determined using Imubind® TFPI ELISA kits 

(American Diagnostica, Greenwich, CT). This was a sandwich, enzyme-linked 

immunoassay which utilized a murine anti-TFPI monoclonal as the capture antibody and 

a biotinylated antibody I streptavidin conjugated horseradish peroxidase complex for 

detection of the captured TFPI. The detection limit of the kit was stated as 200 pg 

TFPl/mL. Six TFPI standards ranging in concentration from 0 to 10 ng/mL diluted in 

deionized water were used to construct a calibration curve. A full-length recombinant 

TFPI which was expressed in E. coli was used as the calibration standard. This rTFPI 

contained a full carboxy tail, but was lacking the native glycosylation. The molecular 

weight of the rTFPI was approximately 32 kDa. rTFPI was provided by Dr. T.C. Wun 

(Monsanto Inc, St. Louis, MO). Optical density readings and standard curve calculations 

were made using a Dynatech MR7000 system (Dynatech Laboratories, Inc, Chantilly, 

VA). 



101 

H. Data Processine and Statistical Analysis 

The experimental data obtained in this dissertation is presented as the mean ± 

standard deviation for the biochemical results and mean ± SEM for the pharmacologic 

results in order to indicate the precision of the data and to facilitate the comparison 

between each agent. The results obtained from the biochemical experiments were 

analyzed using a repeated measures two way analysis of variance. Data which did not 

meet the criteria for parametric statistics (normality of distibution and equality of 

variance) were analyzed using the Friedman two way analysis of variance by ranks. This 

analysis was used to determine statistically significant differences between the effects of 

the different heparin analogues. If a significant difference was noted using the two way 

analysis of variance in a given assay system, the concentration response data for each 

individual agent was analyzed by one way analysis of variance followed by a post hoc 

Newman Keuls analysis to determine the statistical significance of the effect of each 

concentration relative to a vehicle control. Designations of potency in a given assay 

system such as IC50, ED50, etc. were compared using a one way analysis of variance with 

a post hoc Newman Keuls analysis. In all cases a p value < 0.05 was considered 

statistically significant. Degrees of freedom, F-ratios, and computed p values are 

presented for each analysis. 

For the analysis of the data obtained from the stasis-thrombosis model, the 

Kruskal-Wallis H test with a post hoc Mann-Whitney U test was utilized. Standard 

parametric analysis of variance techniques were not applicable with this data because the 

clot scores assigned in this model are subjectively designated; there were not necessarily 
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equal differences between the numerical scores used to grade the clots. 



CHAPTER IV 

RESULTS 

A. Physicochemical Characterization of Various A&ents 
Used in this Research 

The three synthetic analogues used in this investigation present diverse chemical 

and molecular characteristics. Unlike heparin, these agents are homogeneous and 

obtained by synthetic methods. Molecular mass distribution studies were carried out using 

HLPC. NMR analysis utilizing both 1H and 13C detection modes was performed on all 

agents. Since pentasaccharide and heparin represent multicomponenet agents, mass 

spectral analysis was only performed on GL-522-Y-1 and aprosulate. 

1. High Performance Liquid Chromatography (HPLC) Profile 

The molecular weights of aprosulate, G L-522-Y-1, heparin, and pentasaccharide 

were determined by gel permeation chromatography using three different calibrations of 

the columns. Elution profiles of each agent are depicted in Appendix 2. The first 

calibration consisted of 19 heparin fractions with previously characterized molecular 

weights. The agent was detected in the mobile phase by either an ultraviolet or a 

refractive index detector. The results obtained with the UV detector are depicted in Table 

10. The molecular weights of the synthetic analogues determined by HPLC were all 

lower than the known formula weights. The molecular weight of aprosulate was closest 
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to its true formula weight, lower by only 1.3 %. The molecular weights of GL-522-Y-1 

and pentasaccharide were somewhat farther from their true weights. The molecular 

weight of heparin was calculated to be 10. 5 kDa in this analysis. Dispersity, a measure 

of the homogeneity of the sample, was highest for heparin. 

The higher dispersity of heparin was more dramatically seen in the data 

obtained with the nineteen calibrators using the refractive index detector. This is depicted 

in Table 11. The dispersities of the synthetic analogues were less than 1.1 whereas that 

of heparin was greater than 1.3. The molecular weights obtained with the RI detector 

were all lower than those obtained with the UV detector, and thus further from the 

known formula weights. 

Two other calibrators developed for the detennination of the molecular weight 

of low molecular weight heparins were also used to analyze the molecular weight profiles 

of these agents. The results of these analyses are depicted in Tables 12 and 13. GL-522-

y -1 was not analyzed with these calibrants due to the unusual elution profile it exhibited. 

The molecular weights of aprosulate and pentasaccharide were much different from their 

formula weights ( > 25 % ) . The molecular weight determined for heparin with these two 

calibrants varied widely from 9.9 kDa with the HMC calibrant to 12.8 kDa with the 

F913B calibrant. Dispersity values were consistent with those obtained with the 19 

heparin fraction calibrators. The dispersity of heparin was high in both cases, consistent 

with the polycomponent nature of heparin. The dispersity values for aprosulate and 

pentasaccharide were less than 1.1. 
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2. Nuclear Magnetic Resonance (NMR) Spectra 

Figure 5 depicts the 13C spectra of unfractionated heparin. This spectra contains 

signals typical of a heparin-like agent. Between 55 and 60 ppm are signals indicative of 

the presence of C-N bonds of glucosamine residues. Between 60 and 69 ppm are signals 

indicative of the presence of primary alcohol groupings of the aminosugar rings. From 

70 to 80 ppm are signals from secondary alcohols on both the uronic and amino sugar 

rings. Anomeric carbon signals appear between 95 and 105 ppm. Methyl groups appear 

at 24 ppm and carboxyl signals are at 177 ppm. No extraneous signals from potential 

glycosaminoglycan contaminants such as dermatan sulfate or heparan sulfate are noted. 

By comparing the signal intensities for the glucuronic N-sulfate at carbon 2 and the 

glucuronic 0-sulfate at carbon 3, it is possible to estimate the relative amount of high 

affinity ATIII binding sites present in a given sample of heparin. For this preparation, 

it is estimated that 7 % of the heparin chains contain the 3-0 sulfate group required for 

high affinity ATIII binding. The 13C signal assignments for unfractionated heparin are 

presented in Table 14. 

By integrating the area under the peaks at 62 and 69 ppm under controlled 

conditions, it is possible to determine the ratio of 6-0-S03 to 6-0H. In this heparin, the 

glucosamine residues are 76 % 6-0 sulfated. The ratio of glucosamine N-sulfate to 

glucosamine N-acetate is determined by comparing the integrals at 60 and 56 ppm, 

respectively. This heparin is 88 % N-sulfated by this analysis. The % total iduronic acid 

(sulfated and unsulfated) relative to total uronic acid is 71 % . 

Figure 6 depicts the 1H NMR spectrum of heparin. This spectrum contains 
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Figure 5. 13C NMR spectrum of unfractionated heparin. This spectrum was determined on a Bruker AC300 NMR spectrometer at 
75 MHz. The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. Specific peak assignments 
are listed in Table 14. Analysis of the signal intensities for glucosamine N-sulfate (60 ppm) and glucosamine 3-0-sulfate (58.5 ppm) 
indicates that approximately 7 % of the heparin chains contain the 3-0 sulfate group required for high affinity ATIII binding. ...... 
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Figure 6. Proton NMR spectrum of unfractionated heparin. This spectrum was determined on an Bruker AMX500 NMR spectrometer 
at 500 MHz. The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. The signal at 
approximately 4.5 ppm is that of residual protons in the deuterated solvent. Peaks labeled with an asterisk belong to the 3-0 sulfated 
amino sugar required for high affinity ATIII binding. The peak at 5.5 ppm. is that of the proton on carbon 1 and the peak at 3.4 ppm 
is that of the proton on carbon 2. 6 
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Figure 7. Proton NMR spectrum of the synthetic pentasaccharide. This spectrum was determined on an Bruker AMX500 NMR 
spectrometer at 500 MHz. The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. The 
signal at approximately 4.8 ppm is that of residual protons in the deuterated solvent. No signs of impurities are evident. Peaks labeled 
with an asterisk belong to the 3-0 sulfated amino sugar required for high affinity A TIU binding. Peak assignments are listed in Table 
15. t-' 
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Figure 8. 13C NMR spectrum of the synthetic methylated pentasaccharide. This spectrum was determined on a Bruker AC300 NMR 
spectrometer at 75 MHz. The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. The 
labelled peaks represent the carbons of the 3-0 sulfated glucosamine of pentasaccharide. C-1 = 98 ppm, C-2 = 59 ppm, C-3 = 78 
ppm, C-4 = 75 ppm, C-5 = 72 ppm, C-6 = 68 ppm. 
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peaks typically associated with heparin. The assignments of some of the major peaks are 

found in Table 15. The strong peaks at 4.5 ppm is that of the solvent, HOD. Of note are 

two peaks labelled with an asterisk which derive from the protons attached to C-1 and 

C-2 of the 3-0 sulfated glucosamine. The intensity of these peaks is markedly less than 

of the same peaks in the pentasaccharide spectrum. 

Figure 7 depicts the 1H NMR spectrum of the synthetic ATIII binding 

pentasaccharide. It is important to note the signals for the 3-0 sulfated aminosugar 

residue required for high affininy A TIII binding which are labelled by asterisks in the 

figure. These chemical shifts are listed in Table 16. 

Figure 8 depicts the 13C NMR spectrum of the ATIIl binding pentasaccharide. 

Most notable are the peaks labelled by asterisks which belong to the carbons of the 3-0 

sulfated glucosamine residue. These chemical shifts are listed in Table 17. 

In the aprosulate molecule, there are eleven distinct protons on the sugar 

moieties, five are located on the open chain sugar and six are located on the closed ring 

sugar. Assignment of the proton spectra is made by homonuclear correlation. With this 

technique, magnetization transfer is limited to pairs of protons which are located on 

adjacent carbon atoms. 

The 13C spectra of aprosulate is depicted in Figure 10. Peaks belonging to each 

of the carbon atoms in the open and closed ring sugar moieties are present. No 

extraneous signals are observed, indicating that the material is pure. A table relating 

chemical shift to 13C nucleus assignment is presented in Table 18. 

In Figure 11, the 1H spectra are placed on both the x and y axes. The series of 
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Figure 9. Proton NMR spectrum of aprosulate. This spectrum was determined at 300 Mhz using a Bruker AC300 NMR spectrometer. 
Peak assignments along with their associated chemical shifts relative to sodium-3-(trimethylsilyl)-propionate are tabulated in Table 
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Figure 10. 13C NMR spectrum of aprosulate. This spectrum was determined at 75 Mhz using a Bruker AC300 NMR spectrometer. 
The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. No additional signals suggestive 
of contamination are observed. ~eak assignments are listed in Table 16. 
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Figure 11. Homonuclear shift-correlated 2-D NMR spectrum of aprosulate. This spectrum was obtained at 300 Mhz using a Bruker 
AC300 NMR spectrometer. This analysis, 1H spectra are placed on both the x and y axes. The series of peaks on the diagonal 
correspond to those of the original spectra. Groups of peaks off the diagonal illustrate linkage between those peaks on the diagona~ 
This analysis is used to make the assignments of the proton spectra. t:; 
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Figure 12. 13C NMR spectrum of GL-522-Y- l. This spectrum was determined on an Bruker AC300 NMR spectrometer at 75 MHz. 
The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. Five distinct carbon signals are 
observed. No signs of impurities are evident. Specific peak assignments are listed in Table 18. 
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peaks on the diagonal correspond to those of the original 1H spectra. Groups of peaks off 

the diagonal illustrate linkage between those peaks on the diagonal. By analyzing the 

linkage pattern, it is possible to make the proton assignments as labelled in Figure 9. A 

table relating chemical shift to proton assignments is presented in Table 19. 

The 13C spectra of GL-522-Y-1 is relatively simple due to the symmetry in the 

molecular structure. There are only five distinct carbon signals observed for this agent. 

The 13C spectra is pictured in Figure 12. The 13C NMR signal assignments are tabulated 

in Table 20. The signal for the methylene bridge carbon atom is located at 33 ppm. The 

benzyl ring carbons are shifted further downfield. The C-H benzyl carbon exhibits a 

signal at 128.8 ppm. The C-CH2 benzyl carbon exhibits a peak at 130.8 ppm. The C-OH 

benzyl carbon exhibits a peak at 138 ppm. The C-HSO~ benzyl carbon is shifted furthest 

downfield, with a signal at 155.5 ppm. 

The 1H spectra for GL-522-Y-1 is given in Figure 13. Two distinct signals for 

protons are observed. These are tabulated in Table 21. The protons of the methylene 

bridging group are located at approximately 4.2 ppm. The benzyl protons are shifted 

farther downfield at approximately 7.7 ppm. The peak at 4.7 ppm belongs to residual 

protons present in the deuterium oxide solvent. 

3. Mass Spectral Analysis 

In mass spectral analysis, samples are bombarded with a stream of electrons. 

This bombardment results in a fragmentation of the sample. The molecular fragments are 

detected based on their mass to charge ratio. As most species are singly charged, the 
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fragment mass can be determined. The mass spectrum of GL-522-Y-1 is presented in 

Figure 14. From this spectrum it is observed that the molecular ion peak is at 1489.1 Da 

and corresponds to the intact GL-522-Y-1 (C8) molecule. The masses of some of the 

more prominent peaks are labelled in the figure. The next most prominent peak is that 

of the C4 species. Peaks are also observed at 926 and 1118 Da corresponding to the 5 

and 6 benzyl ring species. A small degree of desulfonation is also evident. The peak at 

1410 corresponds to the loss of one -S03 group from the intact GL-522-Y-1 molecule. 

Figure 15 depicts the mass spectrum of aprosulate. Aprosulate is a symmetrical 

molecule consisting of two fully sulfated disaccharides linked by a three member carbon 

chain. Upon bombardment, aprosulate is cleaved between the amide nitrogen and the 

alkyl linker region. The peak at 1172.8 Dais that of one half the aprosulate molecule, 

the fully sulfated disaccharide. The peak at 1132 corresponds to the loss of the amide 

group from this disaccharide. The regularly spaced peaks at 545, 687, 829, and 971 Da 

represent progressive desulfation of the disaccharide components of aprosulate. 

B. In Vitro Study Results 

Heparin is both a functionally and chemically heterogeneous drug. It exhibits 

multiple interactions with plasmatic proteins, platelets, and other cells. The endogenous 

interactions of heparin are largely mediated by antitbrombin ill and heparin cofactor II, 

resulting in direct antiprotease activity and protease generation inhibition. Heparin also 

directly or indirectly influences the function of endothelial cells and platelets. In this 

section, defined experimental systems have been used to determine the effects of various 
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Figure 13. Proton NMR spectrum of GL-522-Y-l. This spectrum was determined on an Bruker AC300 NMR spectrometer at 300 
MHz. The x axis represents chemical shift from a sodium-3-(trimethylsilyl)-propionate standard in ppm. Three distinct proton signals 
are observed. The signal at approximately 4. 7 ppm is that of residual protons in the deuterated solvent. No signs of impurities are 
evident. Specific peak assignments are listed in Table 19. ...... 
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Figure 14. Mass spectrum of GL-522-Y-l. The molecular ion peak is observed at 1489 Da. 
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heparin analogues and to demonstrate the relative contribution of HCII and ATIII in 

mediating various plasmatic and cellular effects in in vitro settings. 

1. ATIII Mediated Antiprotease Actions 

Serpin mediated inhibition of thrombin and factor Xa was determined using 

amidolytic assay systems. These plasma-free systems contained purified enzyme 

(thrombin or factor Xa), purified serpin (ATilI or HCII), amidolytic substrate, and 

varying concentrations of heparin or synthetic heparin analogue. IC50 values were 

determined by linear regression of the straight line portion of the concentration response 

curves. Concentrations producing 50 % maximal inhibition were extrapolated from the 

best fit lines. Individual data from these assays are presented in Tables 20 to 23. 

The antithrombin ill mediated inhibition of thrombin was only potentiated by 

unfractionated heparin as seen in Figure 16 (Friedman two way ANOVA; chi-square = 

73.89, dF = 31, p < 0.0001). Heparin potently inhibited the amidolytic activity of 

thrombin in this assay with an IC50 value calculated as 0.87 + 0.12 nM. Pentasaccharide 

produced a small ( < 15 %) but statistically significant inhibition of thrombin via 

antithrombin ill at concentrations above 0.18 µM. Neither aprosulate nor GL-522-Y-1 

exhibited a significant inhibition of thrombin via antithrombin m. 

Concentration response curves for the antithrom bin ill mediated inhibition of 

factor Xa are depicted in Figure 17. Both heparin and pentasaccharide were observed to 

potently inhibit the amidolytic activity of factor Xa (Friedman two way ANOV A; chi

square = 85.50, dF = 31, p < 0.0001). Heparin was three fold more potent than 
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Figure 16. Effect of aprosulate, GL-522-Y-1, heparin, and pentasaccharide on the 
A TIII mediated inhibition of thrombin. The ATJJJ mediated inhibition of thrombin was 
determined using a plasma-free amidolytic assay system. All results represent the 
mean ± one standard devation of three observations. Heparin was the only agent 
observed to inhibit thrombin via ATIII. Statistical differences between agents was 
determined using the Friedman two ANOVA (Friedman chi-squared= 75.89, dF = 
31, p < 0. 0001). Statistical differences relative to control were determined by one 
way ANOVA followed by the Newman Keuls multiple comparison test for each agent. 
• p < 0.05 was considered to be statistically significant. IC50 values were calculated 
where possible to compare the potencies of the various agents. Data are compiled in 
Tables 20 through 23. 

Heparin : IC50 = 0. 87 ± 0.12 nM 

Aprosulate : p = 0.636; ANOVA 
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Figure 17. Effect of aprosulate, GL-522-Y-1. heparin and pentasaccharide on the 
ATIII mediated inhibition of factor Xa. The ATIII mediated inhibition of factor Xa 
was determined using a plasma-free amidolytic assay system. All results represent the 
mean ± one standard deviation of three observations. Heparin more potently inhibited 
factor Xa than did pentasaccharide. Neither aprosulate not GL-522-Y-1 were observed 
to significantly inhibit Xa. Statistical differences between the agents were determined 
using the Friedman two ANOVA (Friedman chi-square = 85.50, dF = 31, p < 
0.0001). Statistical differences relative to control were determined by one way 
ANOV A followed by the Newman Keuls multiple comparison test for each agent. • 
p < 0.05 was considered to be statistically significant. IC50 values were calculated 
where possible to compare the potencies of the various agents. Data are compiled in 
Tables 20 through 23. 

Heparin : IC50 = 0.007 ± 0.003 ,uM; p = 0. 004 v~. pentasaccharide 

Pentasaccharide : IC50 = 0.024 ± 0. 004 JLM 

GL-522-Y-1 : p = 0.316; ANOVA 

Aprosulate: p = 0.640; ANOVA 
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pentasaccharide with a calculated IC50 value of 0.007 + 0.003 µM vs. 0.024 ± 0.004 

µM for pentasaccharide (t-test, p = 0.004). The inhibition by each agent plateaued at 97 

to 98 % relative to control. GL-522-Y-1 promoted a weaker concentration dependent 

inhibition of factor Xa. At an assay concentration of 27 µM, a 25 percent inhibition of 

factor Xa activity was noted. The inhibition of factor Xa by GL-522-Y-1 was not 

statistically significant (ANOVA; p = 0.316). Aprosulate did not promote the 

antithrombin III mediated inhibition of factor Xa (ANOVA; p = 0.640). 

2. HCII Mediated Antiprotease Actions 

Concentration response curves for the heparin cofactor II mediated inhibition 

of thrombin are depicted in Figure 18. Heparin, aprosulate, and GL-522-Y-1 exhibited 

a concentration dependent inhibition of thrombin activity (Friedman two way ANOV A; 

chi-square = 91.97, dF = 31, p < 0.0001). Heparin exhibited the highest potency (IC50 

= 0.051 ± 0.003 µM) of the three agents and was approximately 20 fold more potent 

than either aprosulate or GL-522-Y-1 (ANOV A, Newman Keuls; p < 0.05). Aprosulate 

and GL-522-Y-1 exhibited similar potencies (IC50 = 1.23 + 0.22 vs. 0.84 ± 0.09 µM, 

respectively; p < 0.05) Maximal inhibition of thrombin activity plateaued at 

approximately 80 percent for each agent. No significant differences in the maximal effect 

of any agent were noted (ANOVA; p = 0.239). Only the highest concentration of 

pentasaccharide tested exhibited a significant inhibition of thrombin via heparin cofactor 

II. It should be noted that the concentrations of heparin required to promote thrombin 

inhibition by heparin cofactor II were nearly two orders of magnitude higher than those 
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Figure 18. Effect of aprosulate, GL-522-Y-l, heparin, and pentasaccharide on the 
HCII mediated inhibition of thrombin. The HCII mediated inhibition of thrombin was 
determined using a plasma-free amidolytic assay system. All results represent the 
mean ± one standard deviation of three observations. The rank order potency for 
thrombin inhibition was observed to be heparin > GL-522-Y-1 > aprosulate > 
pentasaccharide. Statistical differences between agents were determined using the 
Friedman two way ANOVA (Friedman chi-square = 91.97, dF = 31, p < 0.0001). 
Statistical differences relative to control were determined by one way ANOVA 
followed by the Newman Keuls multiple comparison test for each agent. * p < 0.05 
was considered to be statistically significant. lC5() values were calculated where 
possible to compare the potencies of the various agents. Data are compiled in Tables 
20 through 23. 

Heparin: IC50 = 0.051 ± 0.003 µ.M; p < 0.05 vs. aprosulate and GL-522-Y-
1 

GL-522-Y-1: IC50 = 0.84 ± 0.09 µ.M; p < 0.05 vs. aprosulate 

Aprosulate : IC50 = 1.23 ± 0.22 µ.M 
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TABLE 1 

POTENCY COMPARISON OF APROSULATE, GL-522-Y-1, HEPARIN, AND 
PENTASACCHARIDE IN SERPIN ACTIVITY ASSAYS 

~o (µM) 

ATIIl/Ila ATlll/Xa HCII/Ila 

Aprosulate > 16.8 > 16.8 1.2 ± 0.2 

GL-522-Y-1 > 26.9 > 26.9 0.8 ± 0.1 

Heparin 0.87 ± 0.12# 0.51 ± 0.01 

Pentasaccharide > 0.7 0.24 ± 0.004 > 23.2 

All values represent the mean ± one standard deviation of three individual trials. IC50 

values were determined by extrapolation from the regression line of the straight line 
portion of the concentration reponse curve. ' results are expressed in nM. 



required for thrombin inhibition by antithrombin ill. 

3. Global Anticoagulant Profile 

a. Studies in Supplemented Normal Human Plasma Systems 
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The global anticoagulant effects of heparin, pentasaccharide, aprosulate, and 

GL-522-Y-1 were determined following supplementation to normal human pooled plasma 

using the prothrombin time (PT), activated partial thromboplastin time (APIT), Heptest®, 

and 5 U thrombin time (5U TI). Each drug was supplemented to pooled plasma in four 

separate trials and the clotting times were detennined as described in "Materials and 

Methods". Pooled plasma was made by mixing citrated platelet poor plasma from at least 

five healthy volunteers. Agent concentrations were expressed as micromolar (µM) 

amounts of agent supplemented to plasma. In the PT, AP1T, and Heptest® assays, the 

final assay concentration of each agent was one third that of the plasma concentration. 

In the 5U TI, the final assay concentration is two thirds that of the plasma concentration. 

Micromolar concentrations for the synthetic heparin analogues were determined using 

their known formula weights. The weight average molecular weight of heparin as 

determined by gel permeation chromatography was used to calculate the micromolar 

concentrations of heparin. Individual clotting and antiprotease data is tabulated in Tables 

24 to 27. In each assay, statistically significant differences between agents was 

determined using the Friedman two way ANOV A. If a significant difference was found, 

significant differences for treatment relative to control for each agent were determined 

using one way ANOVA followed by the Newman-Keuls multiple comparison test. 
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Figure 19 describes the anticoagulant effects of heparin and the synthetic 

heparin analogues as measured by the prothrombin time assay (PT). Only heparin was 

observed to prolong the clotting time (Friedman chi-square = 114.70, dF = 35, p < 

0.0001). Potency of each agent was determined by comparing the plasma concentrations 

which prolonged clotting time to 100 seconds. Where possible, these concentrations were 

extrapolated from the best fit regression curves of the data. Other concentrations were 

extrapolated from the concentration vs. clotting time curves. Potencies of aprosulate, GL-

522-Y-1, heparin, and pentasaccharide are compared in Table 2. Doubling of the baseline 

clotting time was observed at a plasma heparin concentration of approximately 2 .5 µM 

and a 100 second clotting time was achieved at a plasma concentration of 6.2 ± 2.1 µM. 

None of the synthetic analogues were able to double the clotting time in the PT despite 

plasma concentrations 16 to 27 fold higher than the effective heparin concentration. 

The APIT was a more sensitive measure of the anticoagulant effects of heparin 

and the synthetic analogues as observed in Figure 20. A statistically significant difference 

between agents was observed (Friedman chi-square = 133.46, dF = 35, p < 0.0001). 

As the concentration-response curves were not parallel, the slopes of the straight line 

portions of the curves were calculated by least squares regression. The slope of the 

heparin curve was approximately 40 fold higher than that calculated from the aprosulate 

curve (454 vs 11.5 s/µM). Neither pentasaccharide nor GL-522-Y-1 exhibited a potent 

anticoagulant effect in this assay. Using the concentration which brought about a 100 

second clotting time as an index of potency, it was observed that heparin was 10 fold 

more potent than aprosulate (0.30 ± 0.08 vs. 3.1 ± 0.4 ,uM, respectively). Both 



300 

250 

200 ....--... 
u 
(J) 
(/) 150 '--/ 

f-
0.... 

100 

50 

0 
0.01 

0 Aprosulate 
e GL-522-Y-1 
\l Heparin 
Y Pentasaccharide 

0. 1 

Concentration (µM) 

128 

1 0 100 

Figure 19. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the prothrombin time. Aprosulate, GL-522-Y-l, heparin, 
and pentasaccharide were supplemented to normal human plasma over a concentration 
range of 0 to 100 µg/mL. Plasma concentrations were converted to µM amounts using 
the molecular weight of each agent as described previously. All results represent the 
mean ± one standard deviation of four observations. Heparin was the only agent 
observed to prolong the clotting time in this assay. A statistical difference between 
agents was determined using the Friedman two way ANOVA (Friedman chi-square 
= 114.90, dF = 35, p < 0.0001). Statistically significant differences between 
treatment and control for each agent were determined by one way ANOVA followed 
by the Newman-Keuls test. Results were considered to be statistically significant if p 
< 0.05. ·indicates statistical significance relative to unsupplemented control plasma. 
Data are compiled in Tables 24 through 27. 



Figure 20. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the activated partial thrornboplastin time. Aprosulate, GL-
522-Y-l, heparin, and pentasaccharide were supplemented to normal human plasma 
over a concentration range of 0 to 100 µ.g/mL. Plasma concentrations were converted 
to µM amounts using the molecular weight of each agent as described previously. All 
results represent the mean ± one standard deviation of four observations. Clotting 
times were dose-dependently prolonged with a rank order potency of heparin > 
aprosulate > GL-522-Y-1 > pentasaccharide. A statistical difference between agents 
was determined using the Friedman two way ANOV A (Friedman chi-square = 
133.46, dF = 35, p < 0.0001). Statistically significant differences between treatment 
and control for each agent were determined by one way ANOVA followed by the 
Newman-Keuls test. Results were considered to be statistically significant if p < 
0.05. • indicates statistical significance relative to unsupplemented control plasma. 
Data are compiled in Tables 24 through 27. 
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pentasaccharide and GL-522-Y -1 were notably weaker, with Conc100• greater than 50 µM. 

This data is presented in Table 2. 

In the Heptest® assay, all agents exhibited concentration dependent anticoagulant 

effects with the exception of GL-522-Y-l. A statistically significant difference between 

the effects of the various agents was observed (Friedman chi-square= 132.94, dF = 35, 

p < 0.0001). Concentration response curves are depicted in Figure 21. As with the 

APIT, the log concentration vs. clotting time curves were not parallel. Heparin was the 

most potent agent on a molar basis (calculated slope = 229 s/ µM). The concentration

response curves for heparin and aprosulate appeared to parallel each other though 25 fold 

more aprosulate than heparin was required to achieve a 100 second clotting time. The 

curve for pentasaccharide did not parallel those of heparin or aprosulate (Conc100• = 1.1 

+ 0.9 µM). GL-522-Y-l doubled the Heptest® clotting time only at the highest 

concentration tested (67 µM). 

The 5 unit thrombin time (5U TT) was the most sensitive assay for heparin with 

a slope of 850 s/ µM. The response to aprosulate in this assay was considerably weaker. 

Comparison of the Conc100• values for heparin and aprosulate indicate that 90 fold more 

aprosulate was required to achieve a 100 second clotting time. GL-522-Y-1 did not 

produce a statistically significant increase :in thrombin clotting time whereas 

pentasaccharide significantly increased clotting times only at concentrations above 58 

µM. Concentration response curves are depicted in Figure 22. A statistically significant 

difference between the effects of the various agents was observed (Frieman chi-square 

= 110.14, dF = 35, p < 0.0001). 
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Figure 21. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the Heptest®. Aprosulate, GL-522-Y-1, heparin, and 
pentasaccharide were supplemented to normal human plasma over a concentration 
range of 0 to 100 µglmL. Plasma concentrations were converted to µM amounts using 
the molecular weight of each agent as described previously. All results represent the 
mean ± one standard deviation of four observations. The rank order potency for 
Heptest® prolongation was observed to be Heparin > pentasaccharide > aprosulate 
> GL-522-Y-1. A statistical difference between agents was determined using the 
Friedman two way ANOVA (Friedman chi-square= 132.94, dF = 35, p < 0.0001). 
Statistically significant differences between treatment and control for each agent were 
determined by one way ANOV A followed by the Newman-Keuls test. Results were 
considered to be statistically significant if p < 0. 05. • indicates statistical significance 
relative to unsupplemented control plasma. Data are compiled in Tables 24 through 
27. 
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Figure 22. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the 5 unit thrombin time. Aprosulate, GL-522-Y-1, heparin, 
and pentasaccharide were supplemented to normal human plasma over a concentration 
range of 0 to 100 µg/mL. Plasma concentrations were converted to µM amounts using 
the molecular weight of each agent as described previously. All results represent the 
mean ± one standard deviation of four observations. Heparin was observed to more 
potently prolong the thrombin time than aprosulate. Pentasaccharide and GL-522-Y-1 
had no effect on the clotting time in this assay. A statistical difference between agents 
was determined using the Friedman two way ANOV A (Friedman chi-square = 
110.14, dF = 35, p < 0.0001). Statistically significant differences between treatment 
and control for each agent were determined by one way ANOVA followed by the 
Newman-Keuls test. Results were considered to be statistically significant if p < 
0.05. * indicates statistical significance relative to unsupplemented control plasma. 
Data are compiled in Tables 24 through 27. 



TABLE 2 

PLASMA CONCENTRATIONS OF SYNTHETIC HEPARIN ANALOGUES 
REQUIRED TO PROLONG NORMAL HUMAN PLASMA CLOTTING 

TIMES TO 100 SECONDS 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

PT 

> 42 

> 67 

6.2 ± 
2.1* 

> 58 

APTT Heptest 

3.1 ± 0.4** 8.0 ± 0.7 

53.9 + 6.4 > 67 

0.30 ± 0.05** 0.32 ± 0.03# 

> 58 1.1 ± 0.9# 

SUTT 

7.2 + 0.3 

> 67 

0.08 ± 
0.05## 

> 58 
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The potencies of aprosulate, GL-522-Y-1, heparin, and pentasaccharide were 
compared by extrapolating the concentrations of each agent which caused a 
prolongation of the clotting time to 100 seconds. Results represent the mean ± 1 
standard deviation of 4 determinations. In cases in which agents did not prolong the 
clotting time to 100 seconds, the highest concentration tested is presented. Statistical 
Comparison of these values was made by one way ANOV A followed by the Student 
Newman-Keuls multiple comparison test for each assay. p < 0.05 was considered 
statistically significant. 

PT: * p < 0.05; heparin vs. aprosulate, GL-522-Y-1, and pentasaccharide 

APTT : ** p < 0.05; aprosulate and heparin vs. GL-522-Y-1 
p > 0.05; aprosulate vs. heparin 

Heptest® # p < 0.05; heparin and pentasaccharide vs. 
aprosulate 

p > 0.05; pentasaccharide vs. heparin 

5U IT : ## p < 0.05; heparin vs. aprosulate 
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b. Studies in Supplemented Normal Rabbit Pool Plasma Systems 

The global anticoagulant effects of heparin, aprosulate, GL-522-Y-1, and 

pentasaccharide were determined following supplementation to nonnal rabbit plasma 

using the prothrombin time, activated partial thromboplastin time, Heptest®, and 5 unit 

thrombin time. Each agent was supplemented to pooled normal rabbit plasma on three 

occasions and clotting times were determined as described in "Materials and Methods". 

Pooled normal rabbit plasma was made by mixing citrated platelet poor plasma obtained 

from at least five virgin male New Zealand white rabbits. Agent concentrations were 

expressed as ,uM amounts based on the known molecular formula weights for the 

synthetic analogues and the weight average molecular weight determined by gel 

permeation chromatography for heparin. Concentration response data for each agent is 

tabulated in Tables 28 to 31. The potency of each agent was assessed by determining the 

plasma concentration of each agent which prolonged the various clotting times to 100 

seconds. A comparison of these potencies is made in Table 3. 

Figure 23 depicts the concentration response curves for aprosulate, GL-522-Y-1, 

heparin, and pentasaccharide in the prothrombin time assay. The baseline clotting time 

of rabbit plasma was observed to be 6.3 ± 0.4 seconds. Only heparin produced a 

concentration dependent increase in clotting time (Friedman chi-square = 84.01, dF = 

35, p < 0.0001). At the highest concentration tested, a 2.5 fold increase over baseline 

was observed. None of the synthetic analogues was able to prolong the PT over the 

concentration ranges tested. 

The APTT was a more sensitive assay to measure the anticoagulant activity of 



135 

heparin and the synthetic analogues. Concentration response curves are depicted in Figure 

24. A statistically significant difference between the effects of the various agents was 

observed (Friedman chi-square= 102.21, dF = 35,p < 0.0001). Heparin was the most 

potent agent in this assay, prolonging the clotting time beyond 300 seconds at 

concentrations above 0.30 µM. The concentration of heparin required to prolong the 

clotting time to 100 seconds was estimated from the concentration-response curves to be 

0.15 ± 0.03 µM. Aprosulate also achieved a clotting time greater than 300 seconds over 

the concentration range tested. The concentration needed to reach 100 seconds was 

approximately 25 times that of heparin at 3.9 ± 1.1 µM (p > 0.05 vs. heparin). 

Pentasaccharide exhibited a relatively weaker concentration dependent prolongation of 

clotting time, reaching 100 seconds at a concentration of 32.4 ± 6.4 µM (p < 0.05 vs. 

heparin and aprosulate). GL-522-Y-1 did not signiflcan11y prolong the APTT over the 

concentration range tested. 

In the Heptest® assay, heparin produced the most potent anticoagulant activity, 

reaching 100 seconds at a concentration of 1 . 9 + 0.1 J.'M and prolonging clotting time 

beyond 300 seconds at concentrations greater than 0. 60 µM. Pentasaccharide produced 

a linear increase in clotting time with increasing dose, though did not reach 300 seconds 

over the concentration range tested. The concentra1fon to elevate the clotting time to 100 

seconds was determined to be 3.7 ± 0.2 µ.M pentasaccharide (p > 0.05 vs. heparin). 

Aprosulate did not prolong the Heptest® at plasma concentrations below 10 µM. A 100 

second concentration of 23. 8 ± 6. 7 µM (p < 0 .OS -vs. heparin and pentasaccharide). 

GL-522-Y-1 did not prolong the Heptest® clotting time at concentrations up to 67 µM. 
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Figure 23. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the prothrombin time. Aprosulate, GL-522-Y-1, heparin, 
and pentasaccharide were supplemented to normal rabbit plasma over a concentration 
range of 0 to 100 µg/mL. Plasma concentrations were converted to µM amounts using 
the molecular weight of each agent as described previously. All results represent the 
mean ± one standard deviation of three observations. Heparin was the only agent 
observed to prolong the clotting time in this a.ss.ay. A statistical difference between 
agents was determined using the Friedman two way ANOVA (Friedman chi-square 
= 84.00, dF = 35, p < 0.0001). StatisticaJly significant differences between 
treatment and control for each agent were determined by one way ANOV A followed 
by the Newman-Keuls test. Results were considered to be statistically significant if p 
< 0.05. ·indicates statistical significance relative to un.supplernented control plasma. 
Data are compiled in Tables 28 through 31. 
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Figure 24. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the activated partial thromboplastin time. Aprosulate, GL-
522-Y-1, heparin, and pentasaccharide were supplemented to normal rabbit plasma 
over a concentration range of 0 to 100 ,uglmL. Plasma concentrations were converted 
to µM amounts using the molecular weight of each agent as described previously. All 
results represent the mean ± one standard deviation of three observations. The agents 
prolonged the clotting time with a rank order potency of heparin > aprosulate > 
pentasaccharide. GL-522-Y-1 did not prolong the clotting time over the concentration 
range tested. A statistical difference between agents was determined using the 
Friedman two way ANOVA (Friedman chi-square = 102.21, dF = 35, p < 0.0001). 
Statistically significant differences between treatment and control for each agent were 
determined by one way ANOVA followed by the Newman-Keuls test. Results were 
considered to be statistically significant if p < 0.05. "indicates statistical significance 
relative to unsupplemented control plasm.a.. Data are compiled in Tables 28 through 
31. 
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This data is presented in Figure 25. A statistically significant difference between the 

effects of the various agents was observed (Friedman chi-square = 94.10, dF = 35, p 

< 0.0001). 

Heparin exhibited a strong anticoagulant effect in the 5 U thrombin time assay 

as depicted in Figure 26. At the lowest concentration tested, 70 nM, clotting times 

exceeded 300 seconds. Aprosulate was the only other agent capable of prolonging the 

clotting time beyond 300 seconds. A concentration to prolong clotting time to 100 

seconds of 5.5 ± 0 µM was determined for aprosulate. Pentasaccharide produced a weak 

prolongation of the clotting time ( < 2 fold baseline) at the highest concentrations tested. 

GL-522-Y-1 did not prolong the thrombm time. A statistically significant difference 

between the effects of the various agents was observed (Friedman chi-square = 98.67, 

dF = 35, p < 0.0001). 

4. Anti protease Prorde 

a. Studies in Nonna! Human Plasma Systems 

Thrombin and factor Xa inhibition by heparin, aprosulate, pentasaccharide, and 

GL-522-Y-1 was assessed following supplementation of each agent to nonnal human 

plasma. Amidolytic assays using specific substrates were utilized such that enzyme 

inhibition was detennined by measuring changes in optical density of the sample. Percent 

inhibition was calculated relative to 11nsupplemen1ed NHP. IC50 and Ic;5 values were 

detennined by perfonning linear regression on the straight line portion of each individual 

concentration versus percent inhibition curve. IC5JIC25 values were detennined by 
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Figure 25. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the Hepte~rt®. Aprosulate, GL-522-Y-1, heparin, and 
pentasaccharide were supplemented to normal rabbi.t plasma over a concentration 
range of 0 to 100 µg/mL. Plasma concentrations were converted to µM amounts using 
the molecular weight of each agent as described previously. All results represent the 
mean ± one standard deviation of three observations. The agents prolonged the 
clotting time with a rank order potency of heparin > pentasaccharide > aprosulate. 
GL-522-Y -1 did not prolong the clotting ti me in this assay. A statistical difference 
between agents was determined using the Friedman two way ANOVA (Friedman chi
square = 94.10, dF = 35, p < 0.0001). Sta.tisbcally signi.ficant differences between 
treatment and control for each agent were determined by one way ANOVA followed 
by the Newman-Keuls test. Results were considered to be statistically significant if p 
< 0. 05. • indicates statistical significance relative to uns upplernented control plasma. 
Data are compiled in Tables 28 through 3 L. 
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Figure 26. Comparative anticoagulant effect of heparin and three synthetic heparin 
analogues as measured by the 5 unitthrombin time. Aprosulate, GL-522-Y-1, heparin, 
and pentasaccharide were supplemented to normal rabbit plasma over a concentration 
range of 0 to 100 µglmL. Plasma concentrations were converted to µM amounts using 
the molecular weight of each agent as described previously. All results represent the 
mean ± one standard deviation of three observations. The agents prolonged the 
clotting time with a rank order potency of heparin > aprosulate > pentasaccharide. 
GL-522-Y-l did not prolong the clotting time in this assay. A statistical difference 
between agents was determined using the Friedman two way ANOVA (Friedman chi
square = 98.67, dF = 35, p < 0.0001). Statistically significant differences between 
treatment and control for each agent were determined by one way ANOV A followed 
by the Newman-Keuls test. Results were comidered to be statistically significant if p 
< 0.05. ·indicates statistical significance relative to unsupplemented control plasma. 
Data are compiled in Tables 28 through 31 . 



TABLE 3 

PLASMA CONCENTRATIONS OF SYNTHETIC HEPARIN ANALOGUES 
REQUIRED TO PROLONG NORMAL RABBIT PLASMA CLOTIING 

TIMES TO 100 SECONDS 

PT APIT Hep test 5UTT 

Aprosulate > 42 3.9 + 1.1" 23.8 ± 6.7 5.5 ± 0 

GL-522-Y-1 > 67 > 67 > 67 > 67 

Heparin > 10 0.15 + 0.03· 1.9 ± 0.1# < 0.8 

Pentasaccharide > 58 32.4 + 6.4 3.7 ± 0.2# > 58 
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The potencies of aprosulate, GL-522-Y-1, heparin, and pentasaccharide were 
compared by extrapolating the concentrations of each agent which caused a 
prolongation of the clotting time to 100 seconds. Results represent the mean ± 1 
standard deviation of 3 determinations. Jn cases in which agents did not prolong the 
clotting time to 100 seconds, the highest concentration tested is presented. Statistical 
Comparison of these values was made by one way ANOV A followed by the Student 
Newman-Keuls multiple comparison test for each assay. p < 0.05 was considered 
statistically significant. 

APTT : • p < 0.05; aprosulate and heparin vs. pentasaccharide 

Heptest® 

p > 0.05; aprosulate vs. heparin 

# p < 0.05; heparin and pentasaccharide vs. 
aprosulate 

p > 0.05; pentasaccharide v.s. heparin 
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interpolation from the regression curves. A correlation coefficient greater than 0.92 was 

obtained for each regression line. Potencies of aprosulate, Gl-522-Y-1, heparin, and 

pentasaccharide are compared in Table 4. 

Heparin was the most potent thrombin inhibitor in this assay system, with an 

IC50 value calculated to be 0.144 ± 0.003 µM. Aprosulate was the only heparin analogue 

to inhibit thrombin, though its effects were much weaker than those of heparin. At 

concentrations as high as 40 µ.M, the inhibition of thrombin by aprosulate was less than 

50 % (Figure 27). The IC25 value for aprosulate was detennined to be 1.95 ± 0.05 µ.M. 

This was 28 fold higher than the value determine for heparin (0.069 ± 0.002 µM). 

Neither pentasaccharide nor GL-522-Y-1 displayed a significant inhibition of thrombin. 

A statistically significant difference between the effects of the various agents was 

observed (Friedman chi-square = 89.29, dF = 31, p < 0.0001). 

Heparin and pentasaccharide inhibited factor Xa amidolytic activity in a 

concentration dependent manner. This is depicted in Figure 28. The inhibition of factor 

Xa by pentasaccharide was observed to be slightly weaker than that for heparin. The IC50 

value for pentasaccharide was two fold higher than that for heparin (0.83 ± 0.03 vs. 

0 .40 ± 0. 02 µ.M). Neither aprosulate nor GL-522-Y -1 promoted the inhibition of factor 

Xa. A statistically significant difference between the effects of the various agents was 

observed (Friedman chi-square = 86.76, dF = 31, p < 0.0001). 

b. Studies in Normal Rabbit Pool Plasma Systems 

Amidolytic assays were prefonned to assess each agents antiprotease activity. 
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Figure 27. Comparative antiprotease effect of heparin and three synthetic heparin 
analogues as measured by the amidolytic anti-Ila assay. Aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were supplemented to normal human plasma over a 
concentration range of 0 to 100 µ.g)mL. Plasma concentrations were converted to µM 
amounts using the molecular weight of each agent as described previously. All results 
represent the mean ± one standard deviation of four observations. The rank order 
potency of thrombin inhibition was heparin > aprosulate > GL-522-Y-1. 
Pentasaccharide did not promote the inhibition of thrombin. A statistical difference 
between agents was determined using the Friedman two way ANOV A (Friedman chi
square = 89.29 dF = 35, p < 0.0001). Statistically significant differences between 
treatment and control for each agent were determined by one way ANOVA followed 
by the Newman-Keuls test. Results were considered to be statistically significant if p 
< 0.05. ·indicates statistical significance relative to unsupplemented control plasma. 
Data are compiled in Tables 24 through 27. 
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Figure 28. Comparative antiprotease effect of heparin and three synthetic heparin 
analogues as measured by the amidolytic anti-Xa assay. Aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were supplemented to normal human plasma over a 
concentration range of 0 to 100 µg/mL. Plasma concentrations were converted to µ.M 
amounts using the molecular weight of each agent as described previously. All results 
represent the mean ± one standard deviation of four observations. Heparin exhibited 
a higher anti-Xa potency than pentasaccharide. GL-522-Y-l and aprosulate were not 
observed to inhibit Xa activity. A statistical difference between agents was determined 
using the Friedman two way ANOVA (Friedman chi-square = 86. 76 dF = 35, p < 
0.0001). Statistically significant differences between treatment and control for each 
agent were determined by one way ANOVA followed by the Newman-Keuls test. 
Results were considered to be statistically significant if p < 0.05. • indicates statistical 
significance relative to unsupplemented control plasma. Data are compiled in Tables 
24 through 27. 
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TABLE4 

IC50 VALVES FOR SYNTHETIC HEP ARIN ANALOGUES IN AMIDOLYTIC 
ANTIPROTEASE ASSAYS IN NORMAL HUMAN PLASMA 

Anti-Ila Anti-Xa 

Aprosulate 1.05 + 0.05 µM > 42µM 

GL-522-Y-1 > 67 µM > 67 µM 

Heparin 0.14 ± 0.01 µ.M• 0.40 ± 0.02 µM** 

Pentasaccharide > 58 µ;M 0. 83 ± 0.03 µM 

The potencies of aprosulate, GL-5 22-Y -1, heparin, and pentasaccharide were 
compared in amidolytic antiprotease assays by determining the IC50 values for each 
agent from the concentration vs. % inhibition curves_ Results represent the mean ± 
1 standard deviation of 4 determinations. In cases where the agent did not promote 
inhibition, the highest concentration tested is presented. Statistical significance was 
determined using the Student's t-test (p < 0.05). 

a!Ia: *p < 0.001; heparin vs. aprosulate 
aXa: **p < 0.001; heparin vs. pentasaccbaride 
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Concentration-response curves for the antithrombotic activity of each agent are depicted 

in Figure 29. Only heparin exhibited a potent inhibition ofthrombin. Inhibition plateaued 

at 90 % at concentrations above 1.2 µ,M. The IC!io for heparin was calculated to be 120 

± 10 nM. Aprosulate, GL-522-Y-l, and pentasaccharide exhibited small inhibitions of 

thrombin at the highest concentrations tested. A statistically significant difference 

between the effects of the various agents was observed (Friedman chi-square = 77.83, 

dF = 35, p < 0.0001). 

In the anti-Xa assay, heparin and pentasaccharide both exhibited potent 

inhibition of Xa activity. This data is depicted in Figure 30. Maximal inhibition of 

approximately 95 % was achieved at concentrations greater than 3 µM. Heparin was 

more potent than pentasaccharide. The lC!io for heparin was determined to be 0.36 ± 

0.02 µM. The IC50 for pentasaccharide was detenn:ined to be 2.10 ± 0.51 µM (p = 

0.004 vs. heparin). Neither aprosulate nor GL-522-Y-1 exhibited an anti-Xa activity. A 

statistically significant difference between the effects of the various agents was observed 

(Friedman chi-square = 86.78, dF = 35, p < 0.0001). The potencies of each agent in 

the amidolytic assays are listed in Table 5. 

5. FVIll:C Mediated Factor Xa Generation 

Figure 31 depicts the concentration response curves for the effect of heparin, 

aprosulate, GL-522-Y-1 and pentasaccharide on the FVIII:C mediated generation of 

factor Xa. All agents exhibited a concentration dependent inhibition of factor Xa 

amidolytic activity. The effects of the different agents were compared using the Friedman 



,,---..... 
c 
0 

......., 

..0 

....c 
c 

~ 
'-../ 

0 

......., 
c 

<( 

100 

80 

60 

40 

20 

0 
0.01 

* * * * 
~v-v-v-v 

~/ 

I 
0 Aprosulate 
e GL-522-Y-1 
V He pa rin 

* T Pentasaccharide 

v 

147 

*/ \l 

0. 1 

Co n cent ratio n (µ M) 

* 
* /0 

/* * 
.... - .. * 

/ 
10 100 

Figure 29. Comparative antiprotease effect of heparin and three synthetic heparin 
analogues as measured by the amidolytic anti-Ha assay. Aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were supplemented to normal rabbit plasma over a 
concentration range of 0 to 100 µg/mL. Plasma concentrations were converted to µM 
amounts using the molecular weight of each agent as described previously. All results 
represent the mean ± one stalldard deviation of three observations. Thrombin was 
most potently inhibited by heparin. IC5() values for aprosulate, GL-522-Y-1, and 
pentasaccharide could not be calculated from this data. A statistical difference between 
agents was determined using the Friedman two way ANOV A (Friedman chi-square 
= 77.83, dF = 35, p < O.OOOL). Statistically significant differences between 
treatment and control for each agent were determjned by one way ANOV A followed 
by the Newman-Keuls test. Results were considered to be statistically significant if p 
< 0.05. ·indicates statistical significance relative to unsupplemented control plasma. 
Data are compiled in Tables 28 through 3 L 
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Figure 30. Comparative antiprotease effect of heparin and three synthetic heparin 
analogues as measured by the amidolytic anti-Xa assay. Aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were supplemented to normal rabbit plasma over a 
concentration range of 0 to 100 µg/mL. Plasma concentrations were converted to µM 
amounts using the molecular weight of each agent as described previously. All results 
represent the mean ± one standard deviation of three observations. Heparin exhibited 
a higher anti-Xa potency than did pentasaccharide. Aprosulate and GL-522-Y-1 did 
not promote the inhibition of Xa activity. A statistical difference between agents was 
determined using the Friedman two way AN OVA (Friedman chi-square = 86. 78, dF 
= 35, p < 0.0001). Statistically significant differences between treatment and control 
for each agent were determined by one way ANOVA folJowed by the Newman-Keuls 
test. Results were considered to be statistically significant if p < 0.05. • indicates 
statistical significance relative to unsupplemented control plasma. Data are compiled 
in Tables 28 through 31. 
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Figure 31. Comparison of the effect of heparin analogues on the FVIII: C mediated 
generation of factor Xa. This effect was measured wjth a plasma-free amidolytic assay 
system in which only agent, FVIJI, FIXa, FX and FXa substrate were present. All 
results represent the mean ± one standard deviation of three observations. All agents 
inhibited Xa amidolytic activity in a concentra6on dependent manner. A statistical 
difference between agents was determined by Friedman two ANOVA (Friedman chi
square = 91.59, dF = 31, p < 0.0001). IC50s were calculated in order to compare 
the potencies of each agent. IC50s were compared using one way ANOVA followed 
by the Newman-Keuls multiple comparison test. Data are compiled in Tables 32 
through 35. 

Heparin: IC50 = 0.0016 ± 0.0003 µM; p < 0.05 vs. GL-522-Y-1 

Pentasaccharide: IC50 < 0.45 µ.M 

Aprosulate: IC50 = 1.13 ± 0. 68 µM; p < 0 .05 vs. GL-522-Y-1 

GL-522-Y-1: IC50 = 25.66 ± 0.94 µ.M 
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two way ANOV A. A significant difference was observed between the agents (Friedman 

chi-square = 91.59, dF = 31, p < 0.0001). In this system, FVIII, FIXa and FX were 

incubated with a phosphatidylserine containingphospholipid. The generation of factor Xa 

could then be measured in the absence of the extrinsic and contact pathway enzymes. 

Heparin strongly inhibited the generation of Xa amidolytic activity, reaching 100 % 

inhibition at concentrations above 10 nM. I C5() values were determined by extrapolation 

from the regression line of the linear portion of the curve. The IC50 for heparin was 

determined to be 1.6 ± 0.3 nM (p < 0.05 vs. GL-522-Y-1). Aprosulate and GL-522-Y-

1 were also able to attain maximal inhibition. The IC50 values for these agents were 

significantly higher than for heparin. IC50 values of 1.13 + 0.68 (p < 0.05) and 25.66 

± 0.94 µM (p < 0.05) were determined for aprosulate and GL-522-Y-1. 

Pentasaccharide also inhibited the generation of factor Xa in this system. The 

concentration response curve for pentasaccharide was much flatter than for the other 

agents. A change in % inhibition from 53 % to 82 % was observed over a concentration 

range of 0.45 to 58 µM. As a plateau in percent inhibition was not achieved with 

pentasaccharide over the concentration range tested, an IC50 value was not determined. 

Raw data is tabulated in Tables 32 to 35. 

6. Protease Generation in Fibrinogen Deficient Plasma 

The inhibition of thrombin and factor Xa generation by heparin, aprosulate, GL-

522-Y -1, and pentasaccharide was determined using amidolytic assays in which protease 

formation was initiated by either thromboplastin (extrinsic pathway) or Actin®, an ellagic 
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TABLE 5 

IC50 VALUES FOR SYNTHETIC HEPARJN ANALOGUES IN AMIDOLYTIC 
ANTIPROTEASE ASSAYS IN NORMAL RABBIT PLASMA 

Anti-Ila Anti-Xa 

Aprosulate > 42 µ.M > 42µM 

GL-522-Y-1 > 67 µ.M > 67 µM 

Heparin 0.12 ± 0.01 µ.M 0.36 ± 0.02 µM* 

Pentasaccharide > 58 µM 2.10 ± 0.51 µM 

The potencies of aprosulate, GL-522-Y-1, heparin, and pentasaccharide were 
compared in amidolytic antiprotease assays by detennining the IC50 values for each 
agent from the concentration vs. % inhibition curves. Results represent the mean ± 
1 standard deviation of 3 determinations. In cases where the agent did not promote 
inhibition, the highest concentration tested is presented. Statistical significance was 
determined using the Student's t-test (p < 0.05). 

aXa: *p = 0.004; heparin vs. pentasaccharide 



152 

acid reagent (contact system). Concentration response data for each agent is tabulated in 

Tables 36 to 39. Figure 32 illustrates the concentration response curves for the inhibition 

of Xa generation following activation of the extrinsic pathway. A statistically significant 

difference between the effects of the various agents was noted (Friedman chi-square = 

87.84, dF = 35, p < 0.0001). Both heparin and GL-522-Y-1 were observed to 

concentration dependently inhibit Xa formation. Both agents were able to completely 

inhibit Xa generation. Comparison of the IC50 values for heparin and GL-522-Y-1 

showed that heparin was significantly more potent than GL-522-Y-1 (0.56 ± 0.04 vs. 

6.57 ± 1.77 µM; t-test; p = 0.004). Neither aprosulate nor pentasaccharide was able 

to promote Xa generation inhibition following extrinsic pathway activation. 

Both heparin and GL-522-Y-1 also inhibited the formation of thrombin 

following extrinsic pathway activation as shown in Figure 33. A statistically significant 

difference between the effects of the various agents was noted (Friedman chi-square = 

82.33, dF = 35, p < 0.0001). The concentration response curves were not parallel, with 

that of GL-522-Y-1 showing a more gradual rise. TheIC50 for heparin (2.10 ± 0.07 µM) 

was significantly lower than that calculated for GL-522-Y-1 (8.00 ± 1.87 µM; t-test; p 

= 0.005). Aprosulate exhibited a weak inhibition at high concentrations. Pentasaccharide 

did not inhibit thrombin generation following activation of the extrinsic pathway. Heparin 

was relatively more potent at inhibiting Xa generation than Ila generation following 

extrinsic activation (p < 0.001). While the IC51)for GL-522-Y-1 mediated Xa generation 

inhibition was lower than that for Ila generation inhibition, this difference was not 

statistically significant. 
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Figure 32. The effect of aprosulate, GL-522-Y-1. heparin, and pentasaccharide on 
thrombin generation following activation of the extrinsic pathway. Thrombin 
generation was measured using an amidolytic assay in fibrinogen deficient plasma. 
Percent inhibition was calculated relative to unsupplemented control. All results 
represent the mean ± one standard deviation of three observations. A statistically 
significant difference between the effects of the various agents was noted (Friedman 
chi-square = 82.33, dF = 35, p < 0.000 L). Heparin was observed to more potently 
inhibit thrombin generation than GL-5 22- Y -1 in this system. Neither aprosulate not 
pentasaccharide exhibited an inhibitory effect in this assay. IC50 values were 
determined to compare the potency of the various agents. Statistical comparison of the 
IC50s was made by one way ANOVA followed by the Newman-Keuls multiple 
comparison test. • p < 0.05 was considered statistically significant vs. control. Data 
are compiled in Tables 36 through 39. 
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Figure 33. The effect of aprosulate, GL-522-Y-1, heparin, and pentasaccharide on 
factor Xa generation following activation of the extrinsic pathway. Factor Xa 
generation was measured using an a.midolytic assay in fibrinogen deficient plasma. 
Percent inhibition was calculated relative to unsupplemented control. IC50 values were 
determined to compare the potency of the various agents. All results represent the 
mean ± one standard deviation of three observations. A statistically significant 
difference between the effects of the various agents was noted (Friedman chi-square 
= 87.84, dF = 35, p < 0.0001). Heparin was observed to more potently inhibit 
thrombin generation than GL-522-Y-l :in this system. Neither aprosulate not 
pentasaccharide exhibited an inhibitory effect in this assay. Statistical comparison of 
the IC50 values was made by one way ANOVA followed by the Newman-Keuls 
multiple comparison test. • p < 0.05 was considered statistically significant vs. 
control. Data are compiled in Tables 36 through 39. 

Heparin (IC50 = 0.56 ± 0.04 µM) vs. GL-522-Y-l (JC50 = 6.57 ± 1.77 µM) 
; p = 0.004 
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Thrombin generation following intrinsic pathway activiation was inhibited by 

GL-522-Y-l, aprosulate and heparin in a concentration dependent manner as shown in 

Figure 34. A statistically significant difference between the effects of the various agents 

was noted (Friedman chi-square = 85. 76, dF = 35, p < 0.0001). GL-522-Y-l was the 

most efficacious agent, completely inhibiting thrombin generation at concentrations above 

10 µM. Inhibition by aprosulate plateaued at approximately 75 % over the concentration 

range tested. The potency of these agents was not statistically dlfferent (3.51 ± 1.22 µM 

aprosulate vs. 2.89 + 0.83 µM GL-522-Y-l;p = 0.507). Heparin exhibited less activity 

in this assay with maximal inhibition peaking at 30 % at concentrations greater than 4 

µM (IC50 = 0.7 µM). 

All agents were active at inhibiting factor Xa generation following intrinsic 

pathway activation. A statistically significant difference between the effects of the various 

agents was observed (Friedman chi-square = 101.50, dF = 35, p < 0.0001). Both 

aprosulate and GL-522-Y-1 inhibited Xa generation greater than 90 % relative to 

unsupplemented control. The potencies of these agents were not statistically different 

(IC50 = 1.28 ± 0.66 µM aprosulate vs. 1.46 ± 0.33 µ.M GL-522-Y-l; t-test; p = 

0.694). Pentasaccharide also exhibited a concentration dependent inhibition of Xa 

generation, though weaker than either aprosulate or GL-522-Y-l. IC25 values were 

calculated assuming that pentasaccharide would reach the same maximal level of 

inhibition as aprosulate or GL-522-Y-1 at the appropriate concentration. No statistical 

differences were noted between the IC25 values for aprosulate and GL-522-Y-l (0.95 ± 

0.43 vs. 0.93 ± 0.32 µM, respectively). Both were significantly lower than that 
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determined for pentasaccharide (12.44 ± 6.19 µM; p < 0.05). This data is depicted in 

Figure 35. 

The potencies of the test agents in the various systems are compared in Table 

6. Following activation of the intrinsic pathway, aprosulate was more potent at inhibiting 

the generation of Xa than Ila (IC50 = 1.28 ± 0.66 vs. 3.51 ± 1.22 ~M; p = 0.050). 

The IC50 for GL-522-Y-1 mediated Xa generation inhibition was lower than for Ila 

generation, though not statistically significant. Heparin was more efficacious at inhibiting 

Xa generation compared to Ila generation. In the intrinsically activated systems, heparin 

was more than 100 fold more potent at inhibiting Xa generation compared with thrombin 

generation. Overall, aprosulate and GL-522-Y-1 were more potent at inhibiting 

intrinsically activated generation than following extrinsic activation. Pentasaccharide 

demonstrated minimal ability to inhibit protease generation in these systems. IC50 values 

for pentasaccharide were greater than 3 3 ,u.M :in all four systems. 

7. Protease Generation in Non-plasmatic Systems 

The inhibition of thrombin and factot Xa generation by aprosulate, GL-522-Y-1, 

heparin and pentasaccharide was examined in non-plasmat:ic systems in which native and 

activated prothrombin complex concentrates provided the necessary coagulation factors. 

Two different prothrombin complex concentrates were used, one containing factor VII 

(Konyne®) and one containing factor VIIa (FEIBA~. Figure 36 depicts the concentration 

response curves for thrombin generation inhibition in the FEIBA® based system. Both 

heparin and GL-522-Y-1 were able to concentratfon dependently inhibit thrombin 
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Figure 34. The effect of aprosula.te, GL-522-Y-1, heparin, and pentasaccharide on 
thrombin generation following activation of the intrinsic pathway. Thrombin 
generation was measured using an amidolytic assay in fibrinogen deficient plasma. 
Percent inhibition was calculated relative to unsupplemented control. IC50 values were 
determined to compare the potency of the various a.gents. All results represent the 
mean ± one standard deviation of three observations. A statistically significant 
difference between the effects of the various agents was noted (Friedman chi-square 
= 85.76, dF = 35,p < 0.0001). Statistical comparison of the IC50 values was made 
by one way ANOVA followed by the Newman-Keuls multiple comparison test. • p < 
0.05 was considered statistically significant vs. control. Data a.re compiled in Tables 
36 through 39. 

Aprosulate (IC50 = 3.51 ± 1 .22 µM) \JS. GL-522-Y-L (IC50 = 2.89 ± 0.83 
µM); p = 0.507 
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Figure 35. The effect of aprosulate, GL-5 22- Y -1, heparin, and pentasaccharide on 
factor Xa generation following activation of the intrinsic pathway. Factor Xa 
generation was measured using an amidolytic assay in fibrinogen deficient plasma. 
Percent inhibition was calculated relative to unsuppJemented control. IC50 values were 
determined to compare the potency of the various agents. All results represent the 
mean ± one standard deviation of three observations. A statistically significant 
difference between the effects of the various agents was noted (Friedman chi-square 
= 101.50, dF = 35, p < 0.0001). Statistical comparison of the IC50 values was made 
by one way ANOVA followed by the Newman-Keuls multiple comparison test. • p < 
0.05 was considered statistically significant vs. control. Data are compiled in Tables 
36 through 39. 

Aprosulate (IC50 = 1.28 ± 0. 66 J,.tM) l'J. GL-522-Y-1 (IC50 = 1.46 ± 0.33 
µM) ; p = 0.694 



TABLE 6 

POTENCY EVALUATION OF HEPARIN ANALOGUES IN PROTEASE GENERATION SYSTEMS IN FIBRINOGEN 
DEFICIENT PLASMA 

Extrinsic Intrinsic 

Ila Xa Ila Xa 

Aprosulate > 33.3 > 33.3 3.51 ± 1.22 1.28 ± 0.66 

GL-522-Y-1 8.00 ± 1.87 6.57 ± 1.77 2.89 ± 0.83 1.46 ± 0.33 

Heparin 2.10 ± 0.07 0.56 ± 0.04 > 33.3 < 0.26 

Pentasaccharide > 33.3 > 33.3 > 33.3 > 33.3 

IC50 values were detennined by extrapolation from the best fit regression lines of the straight line portion of the concentration 
response curves. 

-VI 
\0 
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formation in this system. Both heparin and GL-5 22-Y -1 reached levels of thrombin 

inhibition of approximately 85 % • Heparin was observed to be approximately 10 fold 

more potent than GL-522-Y-l. Neither aprosulate nor pentasaccharide demonstrated 

substantial inhibition of thrombin generation in this system. 

Figure 37 depicts the concentration response curves for factor Xa generation in 

the FEIBA® based system. GL-522-Y-1 was the only agent to demonstrate significant 

inhibition of Xa generation. At concentrations greater than 10 µM GL-522-Y-l, more 

than 75 % inhibition was observed. Neither aprosulate, pentasaccharide, nor heparin 

produced any inhibition of Xa generation. 

Figure 38 depicts the concentration response curves for the inhibition of 

thrombin generation in the Konyne® based system. Aprosulate, GL-522-Y-1 and heparin 

all inhibited thrombin generation in a dose-dependent fashion. Heparin produced the most 

potent inhibition of thrombin generation, reaching 50 % inhibition at a concentration of 

3 µM. Aprosulate and GL-522-Y-l produced somewhat weaker inhibitory effects than 

heparin. Neither agent reached a level of 50 3 inhibition at concentrations up to 70 µM. 

Pentasaccharide did not produce an inhibition of thrombin generation. 

Figure 39 depicts the concentration response curves for the inhibition of factor 

Xa generation in the Konyne® based system. As in the other non-plasmatic systems, GL-

522-Y-1 and heparin produced a concentration dependent inhibition of Xa generation. 

The slope of the heparin response curve was flatter than that of the GL-522-Y-1 response 

curve. Neither aprosulate nor pentasaccharide were able to inhibit Xa generation. 



Figure 36. Effect of aprosulate, GL-522-Y-1, heparin, and pentasaccharide on the 
inhibition of thrombin generation in a FEIBA® based system. All results represent the 
mean(± one standard deviation) percent inhibition relative to unsupplemented control 
of three determinations. Heparin more potently inhibited thrombin generation in this 
system than did GL-522-Y-l. Neither aprosulate nor pentasaccharide exhibited an 
inhibitory effect in this assay. Statistical compari.som versus control were made by one 
way ANOVA followed by the Newman Keuls test. p < 0.05 was considered 
statistically significant. 

By ANOVA, 
aprosulate; p = 0. 704 
GL-522-Y-1; p < 0.001 
heparin; p < 0.001 
pentasaccharide; p = 0.548 
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Figure 37. Effect of aprosulate, GL-522-Y-1, heparin, and pentasaccharide on the 
inhibition of factor Xa generation in a FEIBA ® based system. AU results represent the 
mean ( ± one standard deviation) percent inhibition relative to unsupplemented control 
of three determinations. GL-522-Y-1 was the only agent to exhibit an inhibitory effect 
in this assay. Statistical comparisons versus control were made by one way ANOV A 
followed by the Newman Keuls test_ ·p < 0.05 was considered statistically 
significant. 

By ANOVA, 
aprosulate; p = 0. 823 
GL-522-Y-1; p < 0.001 
heparin; p = 0.013 
pentasaccharide; p = 0 .911 
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Figure 38. Effect of aprosulate, GL-522-Y-l, heparin, and pentasaccharide on the 
inhibition of thrombin generation in a Konyne® based system. All results represent the 
mean(± one standard deviation) percent inhibition reJative to unsupplemented control 
of three determinations. Thrombin generation was inhibited in this system with a rank 
order potency of heparin > GL-522-Y-1 > aprosulate. Pentasaccharide did not 
exhibit an inhibitory effect in this assay. Statistical comparisons versus control were 
made by one way ANOV A followed by the Newman Keuls test. "p < 0.05 was 
considered statistically significant. 

By ANOVA, 
aprosulate; p = 0. 017 
GL-522-Y-1; p < 0.001 
heparin; p < 0.001 
pentasaccharide; p = 0.5 43 
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Figure 39. Effect of aprosulate, GL-522-Y-l, heparin, and pentasaccharide on the 
inhibition of factor Xa generation in a Konyne® based system. All results represent 
the mean ( + one standard deviation) percent inhibition relative to unsupplemented 
control of three determinations. Heparin and GL-522-Y-l exhibited an inhibitory 
effect in this assay. Aprosulate and pentasaccharide displayed no effect on Xa 
generation. Statistical comparisons versus control were made by one way ANOV A 
followed by the Newman Keuls test. p < 0. 05 was considered statistically 
significant. 

By ANOVA, 
aprosulate; p < 0.001 
GL-522-Y-1; p < 0.001 
heparin; p < 0.001 
pen tasaccharide; p = 0. 35 2 
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The effect of aprosulate, GL-522-Y -1, heparin, and pentasaccharide on the 

modulation of glycosaminoglycan synthesis by endothelial cells was examined in cultured 

rabbit endothelial cells. Agents were supplemented to the culture media for 18 hours 

prior to analysis. Glycosaminoglycan synthesis was quantitated by measuring the amount 

of 35S present in the chondroitin sulfate and hepara.n sulfate bands of the culture media 

and cell homogenates separated by gel electrophoresis. 35S was measured by scintillation 

counting. Concentration response data is presented in Tables 40 to 43. 

Figure 40 depicts the concentration-response curves for aprosulate on the 

synthesis of chondroitin and heparan sulfates in cultured rabbit endothelial cells. In panel 

A it is observed that incubation of endothelial cells with aprosulate concentration 

dependently increased the amount of chondroitin sulfate in the culture media. None of 

the levels measured in the aprosulate treated cultures reached statistical significance 

relative to control. Panel B depicts the concentration-response curves for the synthesis 

of heparan sulfate as measured in the culture media of rabbit endothelial cells. A 

concentration-dependent increase in CPM's was observed_ A concentration of 41 µM was 

determined to double the amount of CPM's relative to baseline. Aprosulate increased the 

amount of chondroitin sulfate associated w i1h the endothelial cells at concentrations 

greater than 4.2 µM (panel C). Aprosulate had no effect on cell associated heparan 

sulfate levels (panel D). 

The effect of GL-522-Y-1 on the synthesis of glycosaminoglycans by cultured 
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Figure 40. Effect of aprosulate on glycosarninoglycan synthesis in endothelial cell 
culture. Concentration-response curves for the effect of aprosulate on the synthesis of 
chondroitin sulfate in culture media (panel A), heparan sulfate in culture media (panel 
B), chondroitin sulfate associated with endothelial cells (panel C), and heparan sulfate 
associated with endothelial cells (panel D) are depicted. The results represent the mean 
(± SEM) C.P.M. 's of three independent measurements as determined by scintillation 
counting. Aprosulate was observed to concentratfon dependently increase the synthesis 
of chondroitin sulfate and heparan sulfate as measured in the culture media. The 
synthesis of chondroitin sulfate associated with the endothelial cells was increased at 
concentrations greater than 10 µ.M. Statistical comparisons were made by one way 
ANOVA followed by the Newman-Keuls test. (CS Med; dF = 17, F = 10.5, p = 
0.0005. HS Med; dF = 17, F = 21.2, p < 0.0001. CS Cell; dF = 17, F = 25.4, 
p < 0.0001. HS Cell; dF = 17, F = 2.56, p = 0.0847). *p< 0.05 vs. 
unsupplemented control was considered statistically significant. Data are compiled in 
Table 40. 
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endothelial cells is depicted in Figure 41. GL-522-Y-1 supplementation did not have an 

effect on the amount of chondroitin sulfate measured in the cell culture media. Heparan 

sulfate was greatly increased by incubation with GL-522-Y-l. In panel Bit is observed 

that GL-522-Y-1 produced a concentration-dependent increase in heparan sulfate over a 

concentration range of 0.07 to 33.5 µ.M. Increase in the GL-522-Y-l concentration above 

33.5 µM did not further enhance heparan sulfate production. Heparan sulfate levels at 

33.5 and 67 µM were signifcantly greater than control. A concentration of 4.5 µM was 

determined to double the number of CPM' s relative to unsupplemented control. As seen 

in panels C and D, GL-522-Y-1 also increased the synthesis of chondroitin and heparan 

sulfate associated with the endothelial cells. In both ins1ances, significant increases in 

synthesis were observed at concentrations above 0. 67 µM. 

Figure 42 depicts the concentration-response curves for the modulation of 

glycosaminoglycan synthesis by heparin. Heparin did not significantly alter the 

production of chondroitin sulfate as measured in the culture media or associated with the 

endothelial cells or the production of heparan sulfate associated with the endothelial cells. 

As depicted in panel B, heparin concentration-dependently increased the amount of 

heparan sulfate released to the culture media. Concentrations greater than 0.95 µM were 

observed to significantly increase heparan sulfate production compared to control. A 

concentration of 3.3 µM was determined to double the number of CPM's relative to 

unsupplemented control. 

The concentration-response curves for the modulation of glycosaminoglycan 

synthesis in endothelial cell culture by pentasaccharide are depicted in Figure 43. 
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Figure 41. Effect of GL-522-Y-1 on glycosaminogly can synthesis in endothelial cell 
culture. Concentration-response curves for the effect of GL-522-Y-1 on the synthesis 
of chondroitin sulfate in culture media (panel A), heparan sulfate in culture media 
(panel B), chondroitin sulfate associated with endothelial cells (panel C), and heparan 
sulfate associated with endothelial cells (panel D) are depicted. The results represent 
the mean (± SEM) C.P.M. 's of three independent measurements as determined by 
scintillation counting. GL-522-Y-1 significantly increased the production of 
chondroitin sulfate and heparan sulfate associated with the endothelial cells and 
heparan sulfate content in the culture media at concentrations above 10 µM. Statistical 
comparisons were made by one way ANOVA followed by the Newman-Keuls test. 
(CS Med; dF = 17, F = 1.80, p = 0.1867. HS Med; dF = 17, F = 31.6, p < 
0.0001. CS Cell; dF = 17, F = 16.5, p < 0.0001. HS Cell; dF = 17, F = 28.3, 
p < 0.0001). ·p < 0.05 vs. unsupplemented control was considered statistically 
significant. Data are compiled in Table 4 L 
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Figure 42. Effect of heparin on glycosaminoglycan synthesis in endothelial cell 
culture. concentration-response curves for the effect of heparin on the synthesis of 
chondroitin sulfate in culture media (panel A), heparan sulfate in culture media (panel 
B), chondroitin sulfate associated with endothelial cells (panel C), and heparan sulfate 
associated with endothelial cells (panel D) are depicted. The results represent the mean 
(± SEM) C.P.M. 's of three indepeadent mea..surements as determined by scintillation 
counting. Heparin dose-dependently increased heparan sulfate content as measured in 
the culture media. Statistically significant increases were observed at concentrations 
greater than 1 µM. Chondroitin sulfate synthesis was not effected by heparin 
supplementation. Statistica..l comparisons were made by one way ANOV A followed by 
the Newman-Keuls test (CS Med; dF = J 7, F = 0.959, p = 0.4793. HS Med; dF 
= 17, F = 59.9, p < 0.0001. CS Cell; dF = 17, F = 2.44, p = 0.0950. HS Cell; 
dF = 17, F = 0.655, p = 0.6636). ·p < 0.05 vs. unsupplemented control was 
considered statistically significant. Data are compiled in Table 42. 
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Pentasaccharide did not significantly effect the production of chondroitin or heparan 

sulfate as measured in the culture media (panels A and B). While trends for increasing 

levels of chondroitin and heparan associated with the endothelial cells were observed, no 

statistically significant differences relative to unsupplemented control were determined. 

9. Studies in Native Human Whole Blood 

Whole blood was drawn into syringes containing representative amounts of 

aprosulate, pentasaccharide, or GL-522-Y-1 to result in a final concentration of 25 µ.M. 

The anticoagulant activity of these agents was determined by ACT and TEG. Figure 44 

depicts the results of the celite ACT analysis. The effect of heparin at 0.25 µ.M was 

included for comparison. All agents were observed to significantly increase the clotting 

time compared with saline supplementation. A baseline clotting time 110 ± 12 seconds 

was observed. Pentasaccharide and GL-522-Y- l prolonged clotting times to nearly 200 

seconds. Aprosulate produced a significantly higher clotting time compared to 

pentasaccharide and GL-522-Y-l (p < 0.05). Supplementation of 25 µ.M aprosulate 

resulted in a clotting time of 290 seconds. Heparin was not included in the statistical 

analysis due to the 100 fold lower concentration used. 

Two parameters of the TEG were used to compare the effects of aprosulate, 

GL-522-Y-1, or pentasaccharide supplementation. Figure 45 depicts the effect on K-time, 

or time to standard clot firmness. The K-time of saline supplemented whole blood was 

measured as 10.5 mm. Aprosulate doubled the K-time (p < 0.05). GL-522-Y-1 did not 

prolong the K-time relative to control. The K-time for pentasaccharide supplemented 



171 

A. B. 

9 10 ,--.._ .r--.. 
"<;j-

8 
LO 

~-y 
( ( 

9 0 0 
.-

7 .-
x x 8 ...._,, ...._,, 

6 en IJ) - - 7 ~ 5 ~ 
0... 0... 
u (.) 

4 6 
0.01 0. 1 1 10 0.01 0. 1 1 10 

Concentration (µM) Co nee ntrati on (µM) 
C. D. 

1 0 

I 
5.0 I ,--.._ 

1 
,--.._ 

"<;j- IC 

T/I~-f 
( 

9 ( 
4-.5 0 0 

x 8 !I~ x 4-.0 ...._,, 
'-J 

en IJ) - 7 T __ 9 
- 3.5 ~ ~ 

0... 0... 
u (.) 

6 3.0 
0.01 0. 1 1 10 0.01 0. 1 10 

Concentration (µM) Co nee ntrati on (µM) 

Figure 43. Effect of pentasaccharide on glycosaminoglycan synthesis in endothelial 
cell culture. Concentration-response curves for the effect of pentasaccharide on the 
synthesis of chondroitin sulfate in culture media (panel A), heparan sulfate in culture 
media (panel B), chondroitin sulfate associated with endothelial cells (panel C), and 
heparan sulfate associated with endothelial cells (panel D) are depicted. The results 
represent the mean (± SEM) C.P.M. 's of three independent measurements as 
determined by scintillation counting. Pentasaccharide supplementation was not 
observed to effect the synthesis of heparan sulfate. Chondroitin sulfate associated with 
the cells was observed to be concentrntjon dependently increased, though statistical 
significance was not achieved. Statistical comparisons were made by one way 
ANOVA followed by the Newman-Keuls test. (CS Med; dF = 17, F = 0.964, p = 
0.4770. HS Med; dF = 17, F = 11.0,p = 0.0004. CS Cell; dF = 17, F = 9.86, 
p = 0.0006. HS Cell; dF = 17, F = 3.63, p = 0.0313). *p < 0.05 vs. 
unsupplemented control was considered statistically significant. Data are compiled in 
Table 43. 
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Figure 44. Anticoagulant effect of aprosulate, GL-522-Y-1, heparin and 
pentasaccharide on freshly drawn whole blood supplemented with each agent at a final 
concentration of 25 µM (0.25 µ.M for heparin) using the celite ACT. Blood from 10 
volunteers was used to test each agent. All re~ults represent the mean + one standard 
deviation. A control clotting time of UO ± 12 seconds was observed. Statistical 
comparisons were made by one way ANOVA followed by the Newman Keuls test. All 
treatments produced significant increases in clotting time compared to saline 
supplementation. Aprosulate produced the ~trongest anticoagulant action of the 
synthetic analogues, increasing clotting time~ approximately 100 seconds longer than 
pentasaccharide or GL-522-Y-1. 

Aprosulate vs. pentasaccharide; p < 0.05 
Aprosulate vs. GL-522-Y-l;p < 0.05 
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samples was not determinable as the blood did not begin to clot over the 45 minute test 

period. 

Figure 46 depicts the effects of heparin analogue supplementation on the angle 

measured on the TEG tracings. The angle :in control samples was 47.4 ± 4.1 °. Both 

aprosulate and GL-522-Y-1 significantly reduced the angle relative to control (p < 0.05) 

indicating a slower clot formation. The angle in aprosulate supplemented blood was 26.0 

± 2.0° compared with 43.8 ± 4.1° for GL-522-Y-l supplemented blood. The angle 

determined from aprosulate treated samples was significantly lower than that determined 

for GL-522-Y-1 treated blood_ (p < 0.05). The angle was not determinable for 

pentasaccharide treated samples. 

10. Studies in Platelet Based Systems 

a. Agonist Induced Platelet Aggregation 

The effects of aprosulate, GL-522-Y-1, heparin and pentasaccharide on agonist 

induced platelet aggregation were examined in a platelet rich plasma system in response 

to epinephrine, ADP, arachidonic acid, thrombin, and collagen. All test agents were 

supplemented to the plasma at a :fmal concentration of IO ,ug/mL. Agonists were used at 

concentrations listed in "Materials and Methods". Maximal percent aggregation as well 

as the slope of the aggregation response were detennined from the tracings. These results 

are tabulated in Tables 44 and 45. Figure 47 depicts a comparison of the effect of 

aprosulate, GL-522-Y-1, heparin, and pentasaccharide on thrombin induced aggregation. 

In panel A, a comparison of the aggregation response is observed. Thrombin caused a 
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Figure 45. Effect of heparin analogues on the TEG following ex vivo supplementation. 
TEG analysis was performed on freshly drawn blood supplemented with either 
aprosulate, GL-522-Y-1, or pentasaccharide at a final concentration of 25 µM. The 
results represent the mean + one standard deviation of the K-time determined on 10 
volunteers in each treatment group. Statistical comparisons were made by one way 
ANOVA followed by the Newman Keuls multiple comparison test. GL-522-Y-1 did 
not prolong the K-time relative to control. Aprosulate doubted the K-time relative to 
saline supplemented controls. Blood supplemented with pentasaccharide did not clot 
over the course of the experiment, thereby preventing a determination of K-time on 
these samples. 

Aprosulate vs. control; p < 0.05 
Aprosulate vs. GL-522-Y-l; p < 0.05 
GL-522-Y-1 vs. control; p > 0.05 
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Figure 46. Effect of heparin analogues on the TEG following ex vivo supplementation. 
TEG analysis was performed on freshJy drawn blood supplemented with either 
aprosulate, GL-522-Y-1, or pentasaccharide at a :final concentration of 25 µM. The 
results represent the mean + one standard deviation of the angle determined on 10 
volunteers in each treatment group. Statistical comparisons were made by one way 
ANOV A followed by the Newman Keuls multiple comparison test. Aprosulate 
supplementation resulted in a larger decrease in angle than did supplementation of GL-
522-Y-1. The angle could not be calculated on pentasaccharide supplemented samples 
as the blood did not clot over the course of the ex.periment. 

Aprosulate vs. controJ; p < 0 .OS 
Aprosulate vs. GL-522-Y-l;p < 0.05 
GL-522-Y-1 vs. control; p < 0.05 
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94 % aggregation response in saline supplemented PRP. Both aprosulate and heparin 

significantly attenuated the aggregation response (p < 0. 05) relative to saline 

supplemented plasma. Addition of 10 µ.gJmL aprosulate to the PRP resulted in a 50 % 

decrease in the aggregation response. 10 µ.gJmL heparin almost completely inhibited the 

proaggregatory actions of thrombin. In the heparinized PRP, only 7 % aggregation was 

noted. Neither GL-522-Y-1 nor pentasaccharide were able to inhibit thrombin induced 

platelet aggregation at the concentration tested. In panel B, the slopes of the aggregation 

responses in the presence of test agent are compared. As with the aggegation response, 

only aprosulate and heparin were able to significantly reduce the slope of the aggregation 

response. The aggregation response in aprosulate supplemented plasma exhibited a slope 

which was one third that measured in control PRP. The responses to epinephrine, ADP, 

arachidonic acid, and collagen were not significantly effected by analogue 

supplementation. 

b. Heparin Induced Thrombocytopenia Screening 

The effect of aprosulate, GL-522-Y-l, heparin and pentasaccharide in a heparin 

induced thrombocytopenia screening assay is depicted in Figure 48. In this assay, platelet 

rich plasma is incubated with the test agent and serum from a known HIT positive pool. 

Platelet aggregation upon addition of the test agent and the serum indicates a positive 

HIT potential. Both heparin and aprosulate concentration dependently increased the 

degree of platelet aggregation. In PRP supplemented with only HIT positive serum, 8.3 

± 1.1 % aggregation was observed. At concentrations above 11 ,ug/mL, aprosulate and 
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Figure 47. Effect of aprosulate, GL-522-Y-l, heparin and pentasaccharide on platelet 
aggregation in a platelet rich plasma system. The results represent the mean + SEM 
of 10 donors for each agent. All test agents were supplemented to plasma at a final 
concentration of 10 µglmL. Statistical comparisons were made by one way ANOV A 
followed by the Newman Keuls multiple comparison test (aggregation; dF = 49, F 
= 532.0, p < 0.0001. slope; dF = 49, F = 410.6, p < 0.0001). *p < 0.05 vs. 
control was considered statistically significant. Data are compiled in Tables 44 and 45. 

1 = aprosulate 
2 = GL-522-Y-1 
3 = Heparin 
4 = Pentasaccharide 
5 = Control 
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Figure 48. Comparative effect of synthetic heparin analogues ina heparin induced 
thrombocytopenia screening assay. In this assay, platelet aggregation is induced by the 
test agent and serum from a heparin induced thrombocytopenic individual. All results 
represent the mean ± SEM of 10 blood donors. Statistical comparisons between agent 
and control were made using one way ANOVA followed by the Newman Keuls 
multiple comparison test. *p < 0. 05 was considered statistically significant. Data are 
compiled in Table 46. 
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heparin produced significantly higher levels of aggregation than control (p < 0.05). 

Neither pentasaccharide nor GL-522-Y-1 produced a significant increase in the amount 

of platelet aggregation measured in this assay. At a concentration of 22 µ.g/m.L, heparin 

and aprosulate produced a comparable 22 % level of aggregation. At equigravimetric 

concentrations, aprosulate produced a stronger aggregation response than either GL-522-

Y-1 or pentasaccharide (p < 0. 05; ANOV A). Aggregation levels determined in these 

studies are tabulated in Table 46. 

C. In ViJJo Study Results 

The in vivo studies are designed to demonstrate the relative antithrombotic and 

hemorrhagic effects of these analogues after intravenous and subcutaneous adminstration. 

Well defined animal models were used to detennine the dose response of the 

antithrombotic and bleeding effects. In addition, the plasmatic pharmacodynamic response 

which is related to the ATIII and HCII mediated effects was also investigated. The role 

of functional TFPI in relation to the observed pharmacologic action was investigated by 

measuring the release of this agent. 

1. Dose-response in the Rab bit Stasis thrombosis Model 

Following Intravenous Admjuistration 

A rabbit model of stasis thrombosis was used to assess the antithrombotic 

activity of heparin, aprosulate, GL-522-Y-1, and pentasaccharide. In this model, clots 

were formed in response to a stasis of blood flow in the jugular vein segment and a 
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hypercoagulable state induced by injection of an activated prothrombin complex 

concentrate. 

In the intravenous dose-response study, test agents were administered via the 

marginal ear vein following drawing of the baseline blood sample. Control animals were 

administered saline at a dose of 0. 1 mL/kg. The thrombogenic challenge was 

administered after a 5 minute drug circulation time. Clots were scored visually after 10 

or 20 minutes stasis time according to the scale described in "Materials and Methods". 

Statistical differences between the clot scores obtained in treated and control animals 

were assessed using the Kruskal-Wallis non-parametric analysis of variance. Specific 

comparisons were made using the Mann-Whitney U test. All agents produced a dose

dependent decrease in clot score. Potency was evaluated by fitting the individual data 

points to a straight line by least squares regression. ED5() values were extrapolated from 

these regression lines based on a clot score at 10 minutes stasis time of 2.9 in saline 

treated control animals. Clot scores for each intravenous treatment are tabulated in Table 

47. 

Dose response curves for the antithrombotic activity measured after a 10 minute 

stasis time following intravenous administration are depicted in Figure 49. Heparin was 

observed to be the most potent of the agents tested with an ED50 value of 1. 7 nmol/kg. 

Doses greater than or equal to 2. 4 nmol/kg produced a statistically significant reduction 

in thrombus formation (p < 0.05). Pentasaccharide was the most potent of the synthetic 

analogues with an ED50 value of 20 nmollkg. Statistical significance was achieved relative 

to control at doses higher than 14 nmol!kg. The ED.s<J in aprosulate treated animals was 
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Figure 49. Comparison of the antithrombotic actions of heparin analogues in a rabbit 
model of stasis thrombosis. The antithrombotic activity of aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were determined using the rabbit stasis thrombosis 
model. Dose-response curves of the clot scores obtained following a stasis time of 10 
minutes are depicted. Drug was allowed to circulate for 5 minutes prior to the 
administration of the thrombogenic challenge. 7.5 Ulkg FEIBA was used as a 
thrombogenic challenge. The results represent the mean ± S.E.M. of 5 rabbits per 
treatment group. Saline treatment resulted in a mean clot score of 2.9 ± 0.1. All 
agents produced a dose-dependent antithrombotic action. The rank order potency of 
antithrombotic activity was observed to be heparin > pentasaccharide > aprosulate 
> GL-522-Y-1. Statistical comparisons were made using the Kruskal-Wallis non
parametric analysis of variance following by the Mann-Whitney U test. ·p < 0.05 vs. 
control. ~ < 0.01 vs. control. Data are compiJed in Table 47. 
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determined to be 93 nmol/kg. Aprosulate doses greater than 104 nmol/kg produced 

significant antithrombotic effects. GL-522-Y-1 was the weakest of the agents tested with 

an ED50 equal to 662 nmol/kg. All doses tested produced a significant antithrombotic 

action. The slope of the GL-522-Y-1 dose-response curve was noted to be different from 

those of the other agents. 

Figure 50 presents the dose-response curves for the antithrombotic actions of 

the synthetic heparin analogues after a 20 minute stasis time. A much weaker 

antithrombotic activity was observed following 20 minutes stasis time compared to the 

10 minute stasis time point. AdditionaUy, a weak dose-response was observed where only 

the highest doses of heparin and pentasaccharide resulted in clot scores less than 2. 

Aprosulate produced a statistically significant reductfon in clot score after 20 minutes of 

stasis only at a dose of 209 nmol!kg (p < 0.05 vs. control). Both heparin and 

pentasaccharide also significantly inhibited clot formation after 20 minutes stasis at the 

highest dose tested (p < 0.01 vs. control). GL-522-Y-1 was ineffective at inhibiting 

thrombus formation after 20 minutes stasis. ED50 values based on this data were not 

calculated. 

2. Dose-resp.onse in the Rabbit Stasis Thrombosis Model 

Following Subcutaneous Administration 

Relatively higher doses of each agent were required to prevent thrombus 

formation following subcutaneous administration. Dose response curves for the 

antithrombotic activity are depicted in Figure 5 L The antithrombotic activity was 
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Figure 50. Comparison of the antithrombotic ac6ons of heparin analogues in a rabbit 
model of stasis thrombosis. The antithrombotic actjvity of aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were determined using the rabbit stasis thrombosis 
model. Dose-response curves of the dot scores obtained following a stasis time of 20 
minutes are depicted. Drug was allowed to circulate for 5 minutes prior to the 
administration of the thrombogenic challellge. 7.5 Ulkg FEIBA was used as a 
thrombogenic challenge. The results represent the mean ± S.E.M. of 5 rabbits per 
treatment group. Saline treatment resulted in a mean dot score of 3.6 ± 0.3. The 
rank order potency of antithrombotic activity was observed to be heparin > 
pentasaccharide > aprosulate > GL-522-Y-I. Statistical comparisons were made 
using the Kruskal-Wallis non-parametric analysis of variance following by the Mann
Whitney U test. *p < 0.05 vs. control. 11p < 0.01 vs. control. Data are compiled in 
Table 47. 
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Figure 51. Comparison of the antithrombotic actions of heparin analogues in a rabbit 
model of stasis thrombosis. The antithrombotic activity of aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were determined using the rabbit stasis thrombosis 
model. Dose-response curves of the clot scores obtained following a stasis time of 10 
minutes after subcutaneous administration a.re depicted. An absorption time of 2 hours 
was utilized prior to administration of the thrombogenic challenge. 7.5 U/kg FEIBA 
was used as a thrombogenic challenge. The results represent the mean ± S.E.M. of 
5 rabbits per treatment group. Saline treatment resulted in a mean clot score of 2.9 
+ 0.1. All agents produced a dose-dependent decrease in clot score. The rank order 
potency of antithrombotic activity was observed to be heparin > poo.tasaccharide > 
aprosulate > GL-522-Y-l. Statistical comparisons were made using the Kruskal
Wallis non-parametric analysis of variance following by the Mann-Whitney U test. *p 
< 0.05 vs. control. #p < 0.01 vs. contro1. Data are compiled in Table 48. 
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measured two hours post- administration of the test agent. Each agent was able to prevent 

thrombus formation in a dose-dependent manner. Individual clot scores for the various 

agents studied are presented in Table 48. Potency was evaluated as described above. The 

same rank order potency was observed as in the intravenous study. Heparin was the most 

potent with an ED50 calculated to be 0.043 µmol/kg. Doses greater than 0.048 µmollkg 

resulted in significant reductions of clot scores (p < 0.01). The ED50 for pentasaccharide 

was approximately three fold higher at 0.12 µmol/kg. All doses of pentasaccharide tested 

produced significant reductions in clot score. Aprosulate and GL-522-Y-1 were 

considerably weaker with ED50 values of 2.2 and 12.3 ,umol/kg, respectively. 

After 20 minutes stasis time following subcutaneous administration, heparin, 

aprosulate and pentasaccharide exhibited a progressive, dose-dependent decrease in clot 

score with increasing dose as shown in Figure 52. Such an effect was not observed in 

GL-522-Y-1 treated rabbits as all clot scores remained greater than 3 regardless of dose 

(p = 0.408; Kruskal-Wallis). ED50 values for heparin, aprosulate, and pentasaccharide 

were determined to be 0.058, 2.74, and 0.17 ,arnollkg, respectively based on a clot score 

of 3. 6 for the saline treated control animals. Doses greater than 2 µmol/kg aprosulate 

significantly reduced clot scores compared to control. Only the highest doses of heparin 

and pentasaccharide produced a significant reduction in clot score. 

3. Time Dependent Antithromboiic Effects in the Rabbit Stasis 

Thrombosis Model Following Intravenous Administration 

The time dependence on the antithrombotic activity of heparin analogues was 
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Figure 52. Comparison of the antithrombotic actions of heparin analogues in a rabbit 
model of stasis thrombosis. The antithrombotic activity of aprosulate, GL-522-Y-1, 
heparin, and pentasaccharide were determined using the rabbit stasis thrombosis 
model. Dose-response curves of the clot scores obtained following a stasis time of 20 
minutes after subcutaneous administration are depicted. An absorption time of 2 hours 
was utilized prior to administration of the thrombogenic challenge. 7.5 U/kg FEIBA 
was used as a thrombogenic challenge. The results represent the mean ± S.E.M. of 
5 rabbits per treatment group. Saline treatment resulted in a mean clot score of 3.6 
+ 0.3. Clot scores were decreased in a dose-dependent manner by heparin, 
pentasaccharide and aprosulate. GL-522-Y-l administration did not effect the clot 
score. The rank order potency of antithrombotic activity was observed to be heparin 
> pentasaccharide > aprosulate > GL-522-Y-L Statistical comparisons were made 
using the Kruskal-Wallis non-parametric analysis of variance following by the Mann
Whitney U test. ·p < 0.05 vs. control. i;p < 0.0 l vs. control. Data are compiled in 
Table 48. 
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Figure 53. Comparison of the antithrombotic activ1ty of heparin analogues as 
determined using the rabbit stasis thrombosis model. The time-dependence on the 
antithrombotic activity of the synthetic heparin analogues was determined by 
administering an equally antithrombotic dose of each agent intravenously and 
determining clot scores at various time points post-administration. 10 minutes stasis 
time was utilized. Each point represents the mean ± SEM of 5 rabbits. The duration 
of antithrombotic activity was shortest for heparin. Pentasaccharide produced a 
statistically significant antithrombotic effect at time points out to 240 minutes post
administration. Statistical comparisons were made using the Kruskal-Wallis test 
followed by the Mann-Whitney U test. 'p < 0.05 vs. control. lfp < 0.01 vs. control. 
No statistical differences were noted between clot scores at 5 minutes circulation time. 
Data are compiled in Table 49. 
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determined by varying the circulation time after administration of a selected 

antithrombotic dose of each agent. Individual clot scores are tabulated in Table 49. The 

time-response curves following intravenous administration are depicted in Figure 53. No 

statistical differences were noted in the clot scores determined after 5 minutes circulation 

time for the various agents (p = 0. 680). The antithrombotic activity of heparin was the 

shortest lived of the agents tested. By 60 minutes, a statistically significant antithrombotic 

effect was no longer obtained. Aprosulate did not exhibit any antithrombotic actions 2 

hours after administration. Both GL-522-Y- l and pentasaccharide exhibited a significant 

antithrombotic effect at 2 hours (p < 0.05, pentasaccharide vs. control and GL-522-Y-l 

vs. control). Pentasaccharide maintained its antithrombotic effect at 4 hours. GL-522-Y-1 

was not tested at this time point. 

After 20 minutes stasis time, the antithrombotic activity of these agents was 

rapidly diminished. By 60 minutes, all agents failed to produce significant antithrombotic 

effects relative to control. These time-response curves are depicted in Figure 54. 

4. Time Dependent Antithrombotic Effects in a Rabbit Stasis 

Thrombosis Model Following Sub cutaneous Administration 

The time-response curves for aprosulate, GL-522-Y-1, heparin, and 

pentasaccharide following subcutaneous administration are depicted in Figure 55. 

Individual clot scores are tabulated in Table 50. At 2 honrs post-administration, all agents 

exhibited equivalent antithrombotic activity (p = 0.184). The antithrombotic activities 

of heparin and GL-522-Y-1 were rapidly diminished. By 4 hours post-administration, an 
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Figure 54. Comparison of the antithrombobc actLv1ty of heparin analogues as 
determined using the rabbit stasis thrombosis model. The time-dependence on the 
antithrombotic activity of the synthetic heparin analogues was determined by 
administering an antithrombotically effective dose of each agent intravenously and 
determining clot scores a various time points post-administration. 20 minutes stasis 
time was utilized. Each point represents the mean ± SEM of 5 rabbits. 
Antithrombotic activity was rapidly diminished at circulation times greater than 5 
minutes. Statistical comparisons were made using the Kruskal-Wallis test followed by 
the Mann-Whitney U test. • p < 0.05 vs. control. 'p < 0.01 vs. control. Data are 
compiled in Table 49. 
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Figure 55. Comparison of the anti.thrombotic act1v1ty of heparin analogues as 
determined using the rabbit stasis thrombosis model. The time-dependence on the 
antithrombotic activity of the synthetic heparin analogues was determined by 
administering an antithrombotically effective dose of each agent subcutaneously and 
determining clot scores a various time points post-administration. 10 minutes stasis 
time was utilized. Each point represents the mean + SEM of 5 rabbits. The 
antithrombotic activity of GL-522- Y-1 and heparin was diminished after a 4 hour 
circulation time whereas aprosulate and penta:saccharide continued to produce a 
significant antithrombotic effect. Stati:stical comparison:s were made using the Kruskal
Wallis test followed by the Mann-Whitney U test. "p < 0.05 vs. control. #p < 0.01 
vs. control. No statistical differences were noted between clot scores at 5 minutes 
circulation time. Data are compiled in Table 50. 
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average clot score of 2 .4 was observed in GL-522-Y -1 treated rabbits. This clot score 

was not significantly different from control. The antithrombotic activity of heparin was 

no longer present after a four hour circulation time. The antithrombotic activities of 

aprosulate and pentasaccharide decreased at a slower rate than for heparin or GL-522-Y-

1. After a four hour circulation time, both agents produced a significant antithrombotic 

effect (p < 0.01 for aprosulate and p < 0.05 for pentasaccharide). By 6 hours post

administration, the antithrombotic activity of aprosulate and pentasaccharide was no 

longer significantly different from control. 

The relative thrombogenic effects in this model at 20 minutes stasis time were 

stronger than the ones observed at 10 minutes stasis. Time-response curves are depicted 

in Figure 56. At 2 and 4 hours post administration of aprosulate, significant reductions 

in clot score were achieved (p < 0.01 andp < 0.05, respectively). Clot scores in these 

animals were less than 2. At all time points tested following GL-522-Y-1, heparin, and 

pentasacharide administration, a significant reduction in clot score was not observed. 

The potencies of each agent follow:ing intravenous and subcutaneous 

administration are compared in Table 7. Potency was evaluated by extrapolating the dose 

which produced a clot score one half that observed in saline treated rabbits from the dose 

response curves for each agent. Following intravenous administration, heparin exhibited 

the highest potency. The potencies ofpentasaccharide, aprosulate and GL-522-Y-1 were 

observed to be 12, 55, and 390 fold higher than heparin, respectively. Following 

subcutaneous administration, the potency of pentasaccbaride was only 3 fold higher than 

that of heparin. Aprosulate and GL-522-Y-1 were considerably weaker, exhibiting 
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Figure 56. Comparison of the an tithrombotic actlvtty of heparin analogues as 
determined using the rabbit stasis thrombosis model. The time-dependence on the 
antithrombotic activity of the syntlletic heparin analogues was determined by 
administering an antithrombotically effectlve dose of each a.gent subcutaneously and 
determining clot scores a various time points post-administration. 20 minutes stasis 
time was utilized. Each point represents the mea.n ± SEM of 5 rabbits. Statistical 
comparisons were made using the Kruskal-Wal]js test followed by the Mann-Whitney 
U test. • p < 0.05 vs. control. #p < 0.01 vs. control. Data are compiled in Table 50. 
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TABLE 7 

ED50 VALVES FOR SYNTHETIC HEPARIN ANALOGUES FOLLOWING 
INTRAVENOUSANDSUBCUTANEOUSAD:MINISTRATION 

IN A RABBIT STASIS TIIRO:MBOSrs MODEL 

IV (nmoUkg) SC (µmol/kg) 

Aprosulate 93.4 2.20 

GL-522-Y-l 662.4 12.3 

Heparin 1. 7 0.043 

Pentasaccharide 20.6 0.12 

Potency of each agent is compared by detennining the dose which inhibits 50 % clot 
formation. This was achieved by fitting the mdividual concentration - clot score points 
to a straight line. Doses providing 50 % inhibition were extrapolated from the curves 
based on a clot score of 2.9 ± 0.1 for saline treated animals after 10 minutes stasis 
time. 
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Figure 57. Comparison of the antithrombotic activity of heparin analogues in a rat 
model of thrombosis. Jugular patency was assessed by Doppler flow measurement. 
Data presented represents the mean + SEM for 5 rats in each treatment group. Saline 
treated control rats required 4.4 ± 0.3 clampings on average for jugular occlusion. 
All agents were administered via the left femoral vein 5 minutes prior to the initiation 
of clamping. Each agent produced a dose-dependent increase in clamping number. The 
rank order potency of antithrombotic activity in this model was observed to be heparin 
> pentasaccharide > aprosulate > GL-522-Y- L. Sta.Ustical comparisons were made 
by one way ANOVA followed by the Newman-Keuls multiple comparison test. *p < 
0.05 vs. control. Data are compiled in Table 5 L. 



potencies of 2.2 and 12.3 µmol/kg, respectively. 

5. Dose-response in the Rat Jugular Vein Clamping Model 

Following Intravenous Administration 
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Figure 57 depicts the dose-response curves for heparin, aprosulate, GL-522-Y-1 

and pentasaccharide in a rat jugular vein clamping model of thrombosis following 

intravenous administration. An increasing number of clampings is reflective of the 

antithrombotic activity of an agent. Saline treated control rats required 4.4 ± 0.3 

clampings on average to cause jugular occlusion. Clamping numbers for each intravenous 

administration are tabulated in Table 51. 

Increasing aprosulate dosages from 0.1 to 1.0 µmol/kg dose-dependently 

increased the number of clampings required for occlusion compared to control. Statistical 

analysis of this data using one way ANOVA followed by the Newman-Keuls multiple 

comparison test indicated that the clamping numbers for the three highest doses were 

significantly higher than control (p < 0.05). GL-522-Y-1 was antithrombotically active 

at approximately 10 fold higher doses than aprosulate. A dose-dependent increase in 

clamping number was observed over a dose range of 1.9 to 7. 8 ,amol/kg. Increasing the 

dose beyond 7. 8 µmol/kg did not significantly increase the number of clampings required 

for occlusion (7.8 µmol/kg vs. 11.6 p.moUkg, p = 0.751). Heparin also increased the 

number of clampings for occlusion in a dose-dependent manner over a dose range of 12 

to 95 nmol/kg. At a dose of 95 nmol/kg, the number of clampings exceeded 15. 

Pentasaccharide dose-dependently increased the number of clampings needed to occlude 
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Figure 58. Comparison of the antithrombotic activity of heparin analogues in a rat 
model of thrombosis. Jugular patency was assessed by Doppler flow measurement. 
Data presented represents the mean ± SEM for 5 rats in each treatment group. Saline 
treated control rats required 4.4 ± 0. 3 clamping.s on average for jugular occlusion. 
All agents were administered subcutaneously 2 hours prior to the initiation of 
clamping. Each agent produced a dose-dependent increase in clamping number. The 
rank order potency of antithrombotic actiYity in this model was observed to be 
pentasaccharide > heparin > aprosulate > GL-522-Y-1. Statistical comparisons were 
made by one way ANOV A followed by the Newman-Keuls multiple comparison test. 
·p < 0.05 vs. control. Data are compiJed in Table 52. 
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the vessel. At all doses tested the number of clampings in pentasaccharide treated rats 

was significantly higher than in control treated rats (p < 0.05). 

To compare the potency of each agent, linear regression was performed on the 

log dose vs. clamping number curves. 5 points were used at each dose. The clamping 

numbers for the highest dose of GL-522-Y-1 were not used in this analysis as they did 

not fit a straight line. Correlation coefficients greater than 0. 80 were obtained for each 

set of data. The dose which doubled the baseline number of clampings was extrapolated 

from these curves and used as an index of potency. By this analysis, heparin was 

observed to be the most potent agent, requiring a dose of 25 nmol/kg to achieve a level 

of 8.8 clampings. Pentasaccharide was approximately 3 fold less potent, and aprosulate 

required approximately 10 fold more drug to achieve the same effect. GL-522-Y-1 was 

the least potent agent, requiring 3. 8 µmol/kg to double the baseline number of clam pings. 

These potency values are compared in Table 8. 

6. Dose-response in the Rat Jugular Vein Clamping Model 

Following Subcutam~ous Administration 

Figure 57 depicts the dose-response curves for heparin, aprosulate, GL-522-Y-

1, and pentasaccharide in a rat jugular vein clamping model 2 hours following 

subcutaneous administration. All agents produced a dose-dependent increase in clamping 

number, though the rank order potency was somewhat different than following 

intravenous administration. The clamping numbers for all subcutaneous treatments are 

tabulated in Table 52. All doses of aprosnla.te produced a statistically significant increase 
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TABLE 8 

DOSES OF SYNTIIETIC HEPARIN ANALOGUES REQUIRED TO DOUBLE 
BASELINE CLAMPING NlThffiERS 

IV (,uM) SC (µM) 

Aprosulate 0.28 2.09 

GL-522-Y-1 3.84 7.07 

Heparin 0.025 0.145 

Pentasaccharide 0.071 0.106 

Data points for each agent were fitted to a straight line by linear regression. 
Treatments producing clamping numbeis which did not fit a straight line (0.012 
µmollkg heparin and 13.88 µmol/kg GL-522-Y-1) were excluded from this analysis. 
Doses which doubled the baseline c1amp:ing numbeI of 4.4 clampings were 
extrapolated from each curve. Correlation coefficients greater than 0.80 were achieved 
for each regression curve. 
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in clamping number relative to control (p < 0.05; ANOVA followed by Newman-

Keuls). A dose of 2. 09 µmo I/kg was detennined to double the baseline clamping number. 

GL-522-Y-1 was again the weakest of the agents tested, requiring 7.1 µmol/kg to double 

the baseline clamping number. Doses above 6. 7 µmol/kg significantly increased the 

number of clampings relative to baseline. Heparin and pentasaccharide were notably 

more potent than aprosulate or GL-522-Y-1. Heparin and pentasaccharide exhibited 

nearly equal potency for doubling baseline clamping number (0.145 and 0.106 µmol/kg, 

respectively). For this analysis, the data obtained. with the lowest dose of heparin, 0.012 

µmol/kg, was not included as it did not fit a straight line. 

When comparing the doses required for doubling the clamping number 

following intravenous and subcutaneous adminst.ration, it was observed that both 

pentasaccharide and GL-522-Y-1 are relatively well absorbed, exhibiting SC/IV ratios 

of 1.49 and 1.84, respectively. Aprosulate and heparin were absorbed to a lesser degree 

and therefore required higher doses subcutaneously to achieve a comparable effect 

(SC/IV ratios of 7.5 and 5.8, respectively). 

7. Dose-response in the Rabbit Ear Bleeding Model 

Following Intravenous Administration 

The hemorrhagic potential of aprosulate, GL-522-Y-1, heparin, and 

pentasaccharide was determined using a rabbit ear bleeding model. In this model, five 

standardized incisions were made in the ear following drug administration, and blood 

cells lost from these incisions were collected for ten minutes. The blood cells collected 
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were quantitated by hemocytometer and used as an index of bleeding potential. Control 

treated animals were administered a dose of 0. l mLJkg saline. Statistical comparisons 

of red blood cell counts were made by one way ANOV A followed by the Newman-Keuls 

test. p < 0.05 was considered to be statistically significant. Individual data are presented 

in Tables 53 to 56. 

Figure 59 depicts the dose-response curves for aprosulate, GL-522-Y-l, 

heparin, and pentasaccharide in the rabbit ear bleeding model following intravenous 

administration. The five standard1zed incisions were made 5 minutes following 

administration of the test agent. Both heparin and GL-522-Y- l were observed to linearly 

increase blood loss with increasing dose, though over a different concentration range. 

Heparin increased blood loss over a concentration range of 0.02 to 0.10 µmollkg. At 

doses of at least 0.10 µmolJkg, blood loss significantly higher than control was observed 

(p < 0.05). GL-522-Y-1 produced more blood loss over the concentration range tested. 

Significantly higher bleeding compared to control was achieved with doses above 3.36 

µmolJkg. Aprosulate produced a significant increase in blood loss compared to control 

at all doses tested. This increase was approximately 225 % of control over a dose range 

of 0.4 to 2.1 µmolJkg. No dose-dependency was observed. Pentasaccharide did not 

increase blood loss at doses as high as 2. 9 1tm0Ukg. 

To assess the potency of each agent in produc.ing a bleeding effect, a bleeding 

index was calculated. This index was calculated as the dose required to elicit a blood cell 

loss 3 times that measured in control treated animals. For heparin and GL-522-Y-1, the 

dose response curves were fitted to a straight line by linear regression. The dose eliciting 
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Figure 59. Hemorrhagic effects of heparin analogues following intravenous 
administration in a rabbit ear bleeding model. AU results represent the mean ± SEM 
of 5 rabbits per treatment group. Heparin and GL-522· Y-1 exhibited dose-dependent 
increases in blood loss. Neither aprosulate nor pentasaccharide treatment resulted in 
significant increases in blood loss. Statistical differences were determined by one way 
ANOVA followed by the Newman-Keuls test. A p-value less than 0.05 was 
considered statistically significant. p < 0.05 vs. control. Data are compiled in Table 
53. 



202 

a loss of blood cells equal to 0.21 x 109 
/ liter was extrapolated from the curve. For 

heparin, this dose was 0.045 µmol/kg. The dose of GL-522-Y-1 was nearly 40 times 

higher at 1. 79 µmol/kg. Neither aprosulate nor pentasaccharide reached this level of 

blood loss at the highest dose tested. The bleeding :indices for each agent following 

intravenous and subcutaneous administration are listed in Table 9. 

At 15 minutes post-administration, only GL-522-Y-1 produced a significant 

bleeding effect. The dose-response at 15 minutes was similar to that at 5 minutes for this 

agent. Neither aprosulate, heparin, nor pentasaccharide produced a significant increase 

in bleeding 15 minutes post administration. 

8. Dose-response in the Rabbit Ear Bleeding Model 

Following Subcutaneous Administration 

Hemorrhagic potential was also studied two hours following subcutaneous 

administration. In this study, aprosulate, heparin, and GL-522-Y-1 produced significant 

dose-dependent increases in bleeding. In aprosulate treated animals, doses above 4 

µmol/kg produced significant blood loss compared to control. The dose producing a three 

fold increase in blood loss was higher than the highest dose tested (8.4 µmol/kg). GL-

522-Y-l produced significant increases :in blood loss at doses above 3.4 µmol/kg. The 

dose producing a three fold increase :in blood loss was lower than the lowest dose tested 

(1.7 µmol/kg). Heparin produced a dose-dependent increase in blood loss at doses above 

0.5 µmol/kg. Statistically significant blood loss was observed at heparin doses above 0.95 

µmol/kg. The dose which caused a three fold increase in blood loss was extrapolated to 
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be 0.64 µmol/kg. Pentasaccharide did not cause significant bleeding at doses below 12 

µmol/kg. These results are depicted in Figure 60. 

9. Time Dependent Effeds in the Rabbit Ear Bleeding Model 

Following Intravenous Administration 

Time dependence on the bleeding effect was measured at various time points 

following intravenous administration. This data is depicted in Figure 61. Aprosulate 

treatment resulted in a small increase in blood loss (150 %) compared to control treated 

animals. This effect was statistically significant at S and 30 minutes post-administration. 

Blood loss returned to control levels by 60 minutes. GL-522-Y-1 exhibited significant 

bleeding at all time points measured. The blood loss was higher at 60 minutes than at 5 

minutes post-administration. Heparin administration produced a strong bleeding effect at 

5 minutes post administration. This effect decreased with time to levels which were not 

significant at 60 minutes. Pentasaccharide administration did not produce significant 

increases in blood loss. 

10. Time Dependent Effects in the Rabbit Ear Bleeding Model 

Following Subcutaneous Administration 

Time dependence on the hemorrhagic effects of heparin, aprosulate, and GL-

522-Y-1 were examined following subcutaneous administration. This data is depicted in 

Figure 62. Treatment with 2.1 µmol/kg aprosulate resulted in a statistically significant 

increase in blood loss at 1, 2, and 4 hours post-administration. By 6 hours, control levels 
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Figure 60. Hemorrhagic effects of heparin analogues following subcutaneous 
administration in a rabbit ear bleeding model. All results represent the mean ± SEM 
of 5 rabbits per treatment group. Heparin and GL-522-Y -1 exhibited dose-dependent 
increases in blood loss. Neither aprosulate nor pentasaccharide treatment resulted in 
significant increases in blood loss. Sta.tistkal differences were determined by one way 
ANOV A followed by the Newman-Keuls test. A p-value less than 0.05 was 
considered statistically significant. 

0

p < 0.05 vs. control. Data are compiled in Table 
54. 
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TABLE 9 

BLEEDING INDEX FOR APROSULATE, GL-522-Y-l, HEPARIN, AND 
PENTASACCHARIDE IN A RABBIT EAR BLEEDING MODEL 

IV (µmol/kg) SC (µmol/kg) 

Aprosulate > 2.09 > 8.38 

GL-522-Y-l 1.79 < 1.68 

Heparin 0.04 0.64 

Pentasaccharide > 2.90 > 11.60 

Bleeding index was calculated as the dose of a given agent which caused a three fold 
increase in the number of RBC's lost relative to control. Values were extrapolated 
from the best fit curve of the data. The regression curves exhibited correlation 
coefficients greater than 0.94. The highest dose tested is tabulated where an agent did 
not significantly increase the amount of bleeding relative to control. 
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Figure 61. Time dependence on the hemorrhagic effect of heparin analogues following 
intravenous administration in a rabbit ear bleeding model. Each time point represents 
the mean ± SEM of 5 rabbits. Heparin exhibited a time-dependent decrease in blood 
loss. Neither aprosulate nor pentasaccharide treatment resulted in significant increases 
in blood loss. Statistical differences were determined by one way ANOV A followed 
by the Newman-Keuls test. A p-value less than 0. 05 was considered statistically 
significant. ·p < 0.05 vs. control. Data are compiled in Table 55. 
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Figure 62. Time dependence on the hemorrhagic effect of heparin analogues following 
subcutaneous administration in a rabbit ear bleeding model. Each time point represents 
the mean ± SEM of 5 rabbits. Heparin, aprosuJate and GL-522-Y-1 exhibited time
dependent decreases in blood loss. Pentasa.ccharide treatment was not examined. 
Statistical differences were determined by one way ANOV A followed by the Newman
Keuls test. A p-value less than 0.05 was considered statistically significant. ·p < 0.05 
vs. control. Data are compiled in Table 5 6. 
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Figure 63. Effect of intravenous administration of heparin analogues on the celite 
ACT. Dose-response curves for aprosulate (pane] A), GL-522-Y-1 (panel B), heparin 
(panel C), and pentasaccharide (panel D) in the celite ACT assay on rabbit blood are 
presented. Blood was drawn at baseline and 5 minutes post intravenous administration 
of the test agent. Fold increase is calculated relative to each individual baseline. Data 
represents the mean ± SEM of 3 to 5 rabbits. Both aprosulate and GL-522-Y-1 were 
observed to prolong the ACT in a dose-dependent fashion. Heparin and 
pentasaccharide did not prolong the ACT over the dose range tested. Statistical 
comparisons were made using one way ANOVA followed by the Newman-Keuls test. 
"p < 0.05 vs. saline treatment is considered statistically significant. Data are compiled 
in Table 57. 
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of blood loss had been attained. At a dose of 3.4 µ.mol/kg, GL-522-Y-1 produced a 

strong bleeding effect at 3 and 4.5 hours post-administration. By 6 hours, the blood loss 

had returned to control levels. The bleeding effect induced by heparin administration was 

also lost by 6 hours post-administration. 

11. Ex Vivo Anticoagulant Responses 

a. celite ACT 

Blood samples were drawn from rabbits at baseline and at 5 minutes post

adminstration of the test agent in the intravenous dose-response studies for determination 

of the celite activated clotting time. Dose-response curves are depicted in Figure 63. In 

panel A it is shown that aprosulate produces a weak dose dependent prolongation of the 

activated clotting time over the range of 100 10 500 µ.glkg. At 500 ,ug/kg, the ACT was 

prolonged 1.12 fold relative to baseline. None of these increases were statistically 

significant compared to saline treatment. The dose response curve for GL-522-Y-1 is 

shown in panel B. A dose dependent increase in clotting time was observed over a dose 

range of 1. 0 to 5. 0 mg/kg with the clotting time reaching 1. 2 fold baseline at a dose of 

5.0 mg/kg. All increases in clotting time induced by GL-522-Y-1 administration were 

statistically significant relative to saline treatment (p < 0.05). In panel C, the dose

response curve for heparin is depicted. No significant changes in the ACT were observed 

at heparin dosages which were antithrombotically effective (p > 0.05). Panel D depicts 

the dose-response curve for pentasaccharide. A concentration dependent increase in 

clotting time was observed with increasing dose from 12.5 to 50 ,ug/kg. These increases 
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Figure 64. Effect of intravenous administration of heparin analogues on the celite 
ACT. Dose-response curves for GL-522-Y-l (panel A), heparin (panel B), and 
pentasaccharide (panel C) in the celite ACT assay on rabbit blood are presented. 
Blood was drawn at baseline and 2 hours post subcutaneous administration of the test 
agent. Fold increase is calculated relative to each individual baseline. Data represents 
the mean ± SEM of 3 to 5 rabbits. Only GL-522-Y-1 was observed to dose
dependently prolong the ACT following subcutaneous administration. Statistical 
comparisons were made using one way ANOVA followed by the Newman-Keuls test. 
*p < 0.05 vs. saline treatment is considered stabstically significant. Data are compiled 
in Table 58. 
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were not statistically significant (p > 0. 05). 

The dose-response curves for heparin, GL-5 22-Y-1, and pentasaccharide in the 

celite ACT following subcutaneous administration are shown in Figure 64. GL-522-Y-1 

was observed to increase the ACT in a dose-dependent fashion over the dose range of 

10 to 30 mg/kg. At a dose of 30 mg/kg, the ACT was :increased to 1.2 fold baseline. 

None of these increases was determined to be statistically significant (p > 0.05). Heparin 

dosages from 250 to 1000 µg/kg produced a dose-independent increase in the ACT. Only 

the clotting time at a dose of 500 µg!kg was statistically significant compared to saline 

treated controls. Pentasaccharide did not significantly increase activated clotting times (p 

> 0.05). Individual celite ACT clotting times are tabulated in Tables 57 and 58. 

b. Thrombelastographic Analysis 

Figure 65 depicts the effect of intraYenous administration of aprosulate, GL-

522-Y-1, heparin, and pentasaccharide on the TEG in whole rabbit blood. Data for the 

R-time, or time to clot formation, are presented. All results are presented as fold increase 

relative to baseline. Fold increase was detenn:ined using each individual rabbits baseline. 

In panel A, the effect of aprosulate on R-time is shown. While a dose-dependent 

prolongation of the time to clot was observed, statistical significance was not achieved 

due to the high variability, particularly at the 500 µ.glkg dosage. Following a 500 µglkg 

dosage, a mean fold increase of 4. 0 was detennined. In panel B it is observed that GL-

522-Y-1 also dose-dependently prolonged the R-time. As with aprosulate, wide variations 

prevented these increases from being statistically significant. At a dose of 5.0 mg/kg, the 
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Figure 65. Effect of intravenous administration of heparin analogues on the R-time of 
the thrombelastograph. Both aprosulate and GL-522-Y-l dose-dependently prolonged 
the R-time (panels A and B, respectively). Heparin and pentasaccharide elevated the 
R-time in a dose-independent manner (panels C and D, respectively). Results represent 
the mean ± SEM of 3 to 5 observations_ Statistical significance was assessed for each 
agent using one way ANOVA followed by the Newman-Keuls multiple comparison 
test. All p values are for treatment versus saline treated control animals. Data are 
compiled in Table 59. 

Aprosulate : p = 0.146 

GL-52-Y-1 : p = 0.168 

Heparin : p = 0.636 

Pentasaccharide : p 0.388. 
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Figure 66. Effect of subcutaneous adminjstration of heparin analogues (GL-522-Y-1 
(A), heparin (B), and pentasaccharide (C)) on the R-time of the thrombelastograph. 
Results represent the mean ± SEM of 3 to 5 observations. None of the agents were 
observed to prolong the R-time following subcutaneous administration. Statistical 
significance was assessed for each agent using one way ANOV A followed by the 
Newman-Keuls multiple comparison test. All p values are for treatment versus saline 
treated control animals. Data are compiled in Table 60. 

GL-52-Y-1 : p = 0.842 

Heparin : p = 0.113 

Pentasaccharide : p = 0.251 
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R-time was prolonged 2.3 fold baseline. The effect of heparin administration on the R-

time is shown in panel C. The R-tirne was prolonged at doses above 12.5 µg/kg in a 

dose-independent manner. There was no difference in the prolongations produced by 

12.5, 25, or 50 µglkg. Pentasaccharide also elevated the R-time in a dose-independent 

manner. These results are depicted in panel D. Individual R-time values are presented 

in Table 59. 

Figure 66 depicts the effects of subcutaneous administration of GL-522-Y-1, 

heparin and pentasaccharide on the R-time as measured by thrombelastography. The 

dose-response curve for GL-522-Y-1 is pictured in panel A. Small changes in the R-time 

were evident with high doses of GL-522-Y-1. Wide variation, particularly at a dose of 

20 mg/kg prevented any statistically significant differences. Heparin increased the R-time 

at all doses tested, though not in a dose-dependent manner (panel B). The smallest 

increase in R-time was observed at a dose of 500 µglkg. At a dose of 1 mg/kg, heparin 

prolonged the R-time to 2.5 fold baseline. As with heparin, a dose-independent increase 

in R-time was observed following pentasaccharide administration. In panel C in is 

observed that at the highest dose, the R-time was prolonged 1.6 fold over baseline. R

time values are presented in Table 60. 

c. Ex Vivo Anticoagulant Effects as Measured by the Global Clotting Assays 

Blood samples were drawn at baseline and immediately prior to administration 

of the thrombogenic challenge for the purpose of detennining anticoagulant activity at 
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these time points. PT, APTI, Heptest®, and 2.5 U thrombin times were performed on 

plasma derived from these samples. Due to the wide variation of the clotting parameters 

among the rabbits, anticoagulant activity was expressed as fold increase over baseline. 

This anticoagulant activity was plotted against clot score and a correlation coefficient for 

each agent was determined. The clotting time data is presented in Tables 61 to 68. 

Following intravenous administration, none of the agents dose-dependently 

prolonged the prothrombin time. The APTf was dose-dependently increased by 

aprosulate administration. At the highest dose tested, 500 µ.glkg, the APTT was increased 

1.5 fold above baseline values. A correlation coefficient of 0.85 was observed between 

clotting times in the APTI assay and clot scores following 10 minutes stasis time. 

Administration of the other agents did not produce a dose-dependent increase clotting 

time in this assay. 

In the Heptest® assay, aprosulate was observed to increase the clotting time in 

a dose-independent manner. Heparin and G L-522-Y -1 adrnini stration resulted in elevation 

of the clotting time only at the highest dose tested. Both agents increased clotting times 

to approximately 1.4 fold baseline. Pentasaccharide produced a dose-dependent elevation 

of the Heptest® clotting time which demonstrated a strong correlation with the observed 

antithrombotic activity (r = 0.97). At a pentasaccharide dose of 100 µglkg, the Heptest® 

clotting time was 2. 7 fold baseline. 

Pentasaccharide was the only agent which did not prolong the 2.5 U thrombin 

time following administration. Aprosulate, GL-522-Y-l, and heparin all increased the 

clotting time in this assay in a dose-dependent fashion. Correlation coefficients between 
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clotting time and clot scores were 0.87, 0.89 and 0.94 for aprosulate, GL-522-Y-1, and 

heparin, respectively. Heparin exhibited the highest potency in the thrombin time assay, 

prolonging the clotting time 3.2 fold baseline following a dose of 50 µg/kg. Aprosulate 

increased clotting time 2.6 fold following a dose of 500 µ.g/kg. GL-522-Y-1 

administration produced the least potent increase in thrombin time, elevating the clotting 

time 1. 9 fold at a dose of 5000 µ.g/kg. 

As following intravenous administration, none of the agents produced a dose

dependent increase in prothrombin time following subcutaneous administration. In the 

APTT assay, heparin was the only agent to dose-dependently prolong the clotting time. 

This increase in clotting time correlated well with the clot scores determined after 10 

minutes stasis (r = 0.98). The AP1T was increased 1.3 fold after a dose of 1 mg/kg 

heparin. 

In the Heptest® assay, both heparin and pentasaccharide were observed to dose

dependently prolong the clotting time. For a given gravimetric dose of each agent, 

pentasaccharide produced a larger increase in the clotting time. Following a dose of 1 

mg/kg, heparin produced a 2 fold increase in clotting time relative to baseline whereas 

administration of pentasaccharide at a dose of 250 µgfkg produced a similar prolongation. 

In the case of both agents, the prolongation of the clotting time was highly correlated 

with the antithrombotic activity in the stasis thrombosis model. Correlation coefficients 

of 0. 98 and 0. 90 were determined for heparin and pentasaccharide, respectively. 

In the 2.5 U thrombin time, heparin was the only agent observed to increase the 

clotting time in a dose-dependent fashion. Following a dose of 1 mg/kg, the clotting time 
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was increased more than 5 fold baseline. This prolongation of the clotting time correlated 

well with heparin's antithrombotic activity (r = 0.99). 

12. Ex Vivo Functional TFPI Levels 

TFPI release was measured in rabbit plasma samples obtained during the rabbit 

stasis thrombosis model. TFPI was measured using a modified functional assay on 

baseline and post-drug samples. The post-drug samples chosen were those from rabbits 

treated with the highest intravenous dosage of each agent. These treatments included 50 

µglkg heparin, 100 µglkg pentasaccharide, 500 µg/kg aprosulate, and 5 mg/kg GL-522-

Y-1. At these doses, there was equivalent antithrombotic activity in the stasis thrombosis 

model. TFPI levels expressed as U I mL were determined in each sample relative to a 

calibration curve made by diluting normal rabbit pool plasma. NRP is designated as 

having 1 U/mL TFPI. Fold increase over baseline was detennined for each post-drug 

sample. Figure 67 depicts the results of this analysis. The largest increase in functional 

TFPI levels were observed following heparin administration. Levels in the post-drug 

samples were 180 % those in the baseline samples of the same rabbits. This increase in 

TFPI by heparin was significantly larger than that observed in saline, aprosulate, or 

pentasaccharide treated rabbits (p < 0. 05). The synthetic analogues increased plasma 

TFPI levels to varying degrees. Pentasaccharide administration produced the smallest 

increase in TFPI levels. None of the increases produced by the synthetic analogues were 

significantly higher than in the saline treated control rabbits. 
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1. Control 
2. Aprosulate (500 µg/kg) 
3. GL-522-Y-1 (5.0 mg/kg) 
4. Heparin (50 µg/kg) 
5. Pentasaccharide (100 µg/kg) * 

1 2 3 4 5 

Figure 67. TFPI release by heparin analogues in rabbits following intravenous 
administration. TFPI levels were determined using a modified functional assay. All 
results are expressed as the mean ± SEM fold increase relative to baseline of n = 5 
rabbits. Doses represent those producing maximal antithrombotic activity in the stasis 
thrombosis model. Only heparin administration was observed to significantly increase 
the functional TFPI levels measured in plasma. Statistical comparisons were made by 
one way ANOV A (p = 0.008) followed by the Newman Keuls test. "p < 0.05 was 
considered statistically significant. 

Heparin vs. saline; p < 0.05 
Heparin vs. aprosulate; p < 0.05 
Heparin vs. GL-522-Y-1; p < 0. 05 
Heparin vs. pentasaccharide; p < 0. 05 
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Figure 68. TFPI levels following intravenous administration of IO mg/kg GL-522-Y-1 
to monkeys. TFPI levels were measured using an amidolytic functional assay (panel 
A) and an immunologic assay (panel B). The results in panel A represent the mean 
± SEM of 3 monkeys. TFPI levels were compared using one way ANOVA followed 
by the Newman Keuls test. *p < 0.05 was considered statistically significant. The 
results in panel B represent the TFPI levels in one of the monkeys analyzed with the 
functional assay. Both functional and immunologic TFPI levels were observed to peak 
5 minutes post-administration of GL-522-Y-1. Functional TFPI levels were no longer 
observed to be significantly elevated form control at 240 minutes post-administration. 
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D. Other In Vivo Studies in Various Animal Models 

Non-human primates offer a unique opportunity to determine the modulation of 

endogenous mediators such as TFPI after heparin administration. To determine the 

relative release of TFPI by some of these analogues, non-human primates were used. 

Newly developed immunologic methods along with functional assays for TPFI were 

employed. 

1. Effect of GL-522-Y-1 on TFPI Levels in Non-human Primates 

The release of TFPI following intravenous administration of GL-522-Y-1 to 

Macaca fascicularis was determined using both the functional and immunologic assays. 

Three monkeys received an intravenous dose of 10 mg/kg GL-522-Y-l. Blood samples 

were drawn at baseline and at 5, 15, 30, 60, 120, 240, and 360 minutes post

administration. Figure 68 depicts the time response curves of the plasma TFPI levels 

following GL-522-Y-1 administration. In panel A, the functional TFPI levels expressed 

as % Xa inhibition at various time points are shown. At 5 minutes post-administration, 

a peak of 54 ± 2.5 % Xa inhibition was observed. The TFPI level decreased to a level 

below 40 % inhibition by 15 minutes and then progressively declined with time through 

360 minutes. TFPI levels were significantly eleYated from 5 to 120 minutes post

administration (p < 0.05). A wide variation in the inhibition of functional TFPI activity 

was observed in these monkeys. In panel B, a similar pattern of immunologic TFPI levels 

was observed. Using the immunologic assay, TFPl levels were observed to peak 2.25 

fold in relation to a human TFPI based standard at 5 minutes post-administration. TFPI 
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Figure 69. TFPI levels following intravenous adminstration of pentasaccaharide to 
monkeys. TFPI levels (panel A) were determined using an immunologic assay. The 
results represent the mean ± SEM of I to 3 monkeys per treatment group. Post-drug 
results were compared to baseline using ANOV A followed by the Newman Keuls test. 
*p < 0.05 was considered statistically significant. TFPI antigen levels were not 
effected by pentasaccharide administration. The Heptest® clotting time was dose
dependently elevated at 5 and 60 minutes post-pen ta.saccharide administration. 
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levels reached 100 % normal human plasma by 240 minutes post-administration. It is 

unknown why the TFPI level in the baseline sample was unusually low. 

2. Immunologic TFPI Levels in Primates Treated with Pentasaccharide 

The release of TFPI following intravenous administration of pentasaccharide to 

Macaca mulatta was determined by immunologic assay. Individual groups of monkeys 

received an intravenous injection of pentasaccharide at a dose of either 100, 250, or 500 

µg/kg. Blood samples were drawn at baseline and at 5 and 60 minutes post-administration 

of pentasaccharide. These results are presented in Figure 69. In panel A, the effect of 

increasing pentasaccharide dosage on plasma TFPI levels is shown. Baseline TFPI 

antigen levels in monkey plasma were determined to be 16 ng/mL. No increase in TFPI 

levels was observed at any of the pentasaccharide dosages studied despite a dose

dependent increase in the Heptest® clotting time following administration. The effect of 

the pentasaccharide dosages on the Heptest® are shown in panel B. Significant, dose

dependent prolongations of the clotting time were observed at 5 and 60 minutes post

administration of 250 and 500 µg/kg pentasaccharide (p < 0.05). Following 

administration of 500 µg/kg pentasaccharide, Heptest® clotting times were increased up 

to 9 fold baseline (p < 0.05 vs. control). 

E. Human Trials with Aprosulate 

To further validate the preclinical data obtained with aprosulate, TFPI levels 

were measured with a newly developed immunologic assay in plasma samples obtained 
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Figure 70. TFPI levels in human volunteers treated with ascending doses of 
aprosulate. Volunteers received placebo, 0.75 mglkg and 2.0 mg/kg aprosulate 
subcutaneously on days 1, 6, and 12, respectively, of the trial. TFPI levels 2 hours 
post-administration of aprosulate were increased in a dose-dependent manner. TFPI 
antigen levels were observed to decrease in samples drawn subsequent to 2 hours. 
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from human trials. Two well developed studies carried out in human volunteers were 

included. The anticoagulant effects were also investigated utilizing global clotting assays 

to explain the contribution of TFPI for the mediation of these effects. 

1. DELPill Study 

TFPI levels were measured in DELPID trial samples using an ELISA based 

assay for the quantitation of TFPI antigen. In this trial, volunteers received ascending 

dosages of aprosulate subcutaneously for a period of 12 days. Blood samples were drawn 

at baseline and at 2, 4, and 10 hours post-administration. As seen in Figure 70, on day 

1 where volunteers were treated with placebo, no fluctuation in TFPI levels was 

observed. TFPI levels were approximately 75 % that of a normal human plasma pool 

which was used as a standard. On day 6, volunteers received 0. 75 mg/kg aprosulate 

subcutaneously. At the two hour point, the TFPI levels were approximately 7 fold higher 

than baseline. The TFPI levels gradually declined as the time post administration 

increased. By 10 hours, TFPI levels had nearly returned to baseline. On day 12 of the 

study where volunteers received 2.0 mg/kg aprosulate subcutaneously, TFPI levels were 

9 .5 fold that of baseline. At four hours, TFPI levels remained 6 fold higher than 

baseline. 

2. PALLAS Study 

The ability of aprosulate administration to increase plasma TFPI levels was 

examined in plasma samples obtained from a phase I clinical trial of this agent in healthy, 
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Figure 71. Comparison of TFPI release following subcutaneous administration of 35 
mg b.i.d. aprosulate on days 1 and 1 of the PALLAS study. Blood samples were 
obtained at time points as described in "Materials and Methods". The results represent 
the mean ± SEM of six human volunteers. Fold increase was calculated relative to 
the pretreatment control level of each indi vidua1 volunteer. TFPI antigen levels were 
observed to peak 45 to 60 minutes after administratjon of aprosulate. Significant 
differences between days 1 and 7 were not observed. Statjstical differences were 
determined by one way ANOVA followed by the Newman-Keuls multiple comparison 
test. A p-value less than 0.05 was considered statisbcally significant. ·p < 0.05 vs. 
baseline on Day 1. #p < 0.05 vs. baseline on Day 7. 
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male volunteers. TFPI levels were determined using an ELISA assay. Statistical 

comparisons between timepoints on the same day were made by one way ANOV A 

followed by the Newman-Keuls test. Comparison between Day 1 and Day 7 were made 

by t-test. 

Figure 71 illustrates a comparison of the TFPI antigen (TFPI:Ag) levels 

measured on Day 1 of treatment with those measured on Day 7 of treatment at the same 

time points. On Day 1, TFPI levels were observed to rapidly increase following 

subcutaneous administration of aprosulate. Peak TFPI:Ag levels, 2.5 fold baseline, were 

measured at 45 minutes post-injection, with the TFPI:Ag levels declining over the next 

12 hours. TFPI:Ag levels were significantly elevated over baseline up to the 4 hour time 

point (p < 0.05 vs. baseline). At 12 hours, TFPI:Ag levels remained elevated 

approximately 40 % over baseline. A similar increase in TFPI:Ag levels was observed 

on Day 7 of the study. While the mean TFPI:Ag were slightly lower on Day 7, the levels 

on Day 1 and Day 7 were not statistically different. Heptest® clotting times were also 

determined on these samples. The anticoagulant activity measured by the Heptest® 

exhibited a strong correlation with the TFPI antigen levels. Regression analysis of these 

parameters indicated a correlation coefficient of 0. 92. 

Figure 72 depicts the data on the comparison of the TFPI:Ag measured on Day 

1 of treatment with those measured on Day 7 of treatment at the same time points in the 

group of volunteers receiving 70 mg aprosulate once daily. On Day 1, the peak TFPI:Ag 

level was achieved 60 minutes post-injection and was 2.6 fold baseline (p = 0.001 vs. 

control). TFPI:Ag levels declined less rapidly foUowing the peak in the 70 mg o.d. group 
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Figure 72. Comparison of TFPI release following subcutaneous administration of 70 
mg o.d. aprosulate on days 1 and 7 of the PALLAS study. Blood samples were 
obtained at time points as described in "Materials and Methods". The results represent 
the mean + SEM of six human volunteers. FoJd increase was calculated relative to 
the pretreatment control level of each individual volunteer. TFPI antigen levels were 
observed to peak 45 to 60 minutes after administration of aprosulate. Significant 
differences between the TFPI levels on days 1 and 7 were not observed. Statistical 
differences were determined by one way ANOVA followed by the Newman-Keuls 
multiple comparison test. A p-value less than 0. 05 was considered statistically 
significant. *p < 0.05 vs. baseline on Day L "p < 0.05 vs. baseline on Day 7. 
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Figure 73. Comparison of TFPI release following subcutaneous administration of 40 
mg o.d. Enoxaparin® on days 1 and 7 of the PALLAS study. Blood samples were 
obtained at time points as described in "Materials and Methods". The results represent 
the mean ± SEM of six human volunteers. Fold increase was calculated relative to 
the pretreatment control level of each individual volunteer. Statistical differences were 
determined by one way ANOV A followed by the Newman-Keuls multiple comparison 
test. A p-value less than 0.05 was considered statistically significant. ·p < 0.05 vs. 
baseline on Day 1. #p < 0.05 vs. baseline on Day 7. 
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than in the 35 mg b.i.d. group. At 8 hours, TFPI:Ag levels remained nearly 2 fold 

baseline in the 70 mg o.d. group. All time points post-administration had TFPI:Ag levels 

significantly elevated relative to baseline. A difference between Day 7 and Day 1 

TFPI:Ag levels was more evident in this treatment group than in those volunteers treated 

with the lower dose of aprosulate. The peak TFPI :Ag level on Day 7 was approximately 

15 % lower on Day 7 than on Day 1. This difference, evident at all subsequent time 

points, was not statistically significant. A good correlation between Heptest® clotting 

times and TFPI:Ag levels was again observed (r = 0. 79). 

Figure 73 illustrates the TFPI:Ag levels in the Enoxaparin® treated group of 

volunteers on Days 1 and 7. Peak TFPI:Ag levels were observed at 45 minutes post

administration. Maximal levels were determined to be approximately 2.4 fold over 

baseline on both Days 1 and 7. TFPI levels were significantly elevated compared to 

baseline from 45 minutes to 8 hours post-administration. The TFPI:Ag levels measured 

on Days 1 and 7 were nearly identical. By 12 hours, the TFPI:Ag levels returned to 

baseline values. The correlation between anticoagulant activity and TFPI levels was 0.90. 

Figure 74 depicts the results of the anticoagulant activity as measured by the 

APTT in the plasma samples from volunteers treated with 35 mg b.i.d. aprosulate, 70 

mg o.d aprosulate, and 40 mg o.d. Enoxaparin®. Enoxaparin® administration resulted in 

a weak effect on the APTT which peaked 4 hours post-administration (p < 0.05). 

Aprosulate was observed to prolong the APTI to a greater degree than Enoxaparin® and 

did so in a dose-dependent manner. Peak APITs in the aprosulate treated groups 

occurrred at 45 minutes (35 mg b.i.d. aprosulate) and 60 minutes (70 mg o.d. aprosulate) 
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Figure 74. Comparison of anticoagulant a.ctlv1ty as measured by the APTI in 
PALLAS study samples. Blood samples were obtained at time points as described in 
"Materials and Methods". The results represent the mean ± SEM of six human 
volunteers. Statistical differences were determined by one wa.y ANOV A followed by 
the Newman-Keuls multiple comparison test. Ap-value less than 0.05 was considered 
statistically significant. ·p < 0.05; aprosulate 70 mg vs. aprosulate 35 mg. #p < 0.05; 
aprosulate 70 mg vs. Enoxaparin®. ®p < 0.05; aprosulate 35 mg vs. Enoxaparin®. 
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post-administration. Administration of 70 mg aprosulate produced significantly elevated 

clotting times compared to Enoxaparin® treatment at times up to eight hours post

administration. The lower dose of aprosulate significantly elevated clotting times relative 

to those in the Enoxaparin® treatment group only at 30 and 45 minutes post

administration. 70 mg aprosulate significantly prolonged AP'IT clotting times relative to 

a 35 mg aprosulate treatment up to eight hours post-administration. Baseline AP1T 

values were reachieved by 12 hours in each of the treatment groups. 



CHAPTER V 

DISCUSSION 

Despite an incomplete understanding of its mechanism of action, heparin has 

been used effectively as an antithrombotic agent for nearly 60 years. The study of 

heparin's mechanism of action is complicated by the polycomponent and polyfunctional 

nature of this agent. Heparin preparations which are used clinically contain components 

which vary in molecular weight from 1,500 to 30, 000 daltons. In addition to the gradient 

in molecular weight, heparin chains of a similar molecular weight can exhibit a 

microheterogeneity in chemical structure in that the sulfation pattern of the 

polysaccharide chains is not consistent. The specillc sequence of heparin required for 

high affinity binding to antithrombin m is present in approximately 20 % of the chains 

(Casu, 1989). 

Heparin's primary mechanism of action involves the indirect inhibition of 

coagulation proteases mediated by binding to the endogenous plasma protein antithrombin 

ID. Heparin acts as a catalyst in this reaction, increasing the rate of inhibition of several 

coagulation enzymes more than 1,000 fold (Jordan et al., 1980). The primary targets of 

the heparin-antithrombin ID complex are factors Xa and Ila (thrombin). The inhibition 

of these enzymes has been utilized both for the monitoring of heparin therapy and for the 

232 
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designation of potency of heparin preparations. 

The potency of heparin is typically designated in relation to its anticoagulant or 

antiprotease activity. Heparins are usually dosed based on their anti-Xa or antithrombin 

units per milligram potency. Due to amplification reactions in the coagulation cascade, 

the anti-Xa and antithrombin potencies of a given material are not necessarily equivalent. 

Furthermore, the in vitro potency of heparin does not truly reflect this endogenous 

actions. 

Heparin therapy has traditionally been monitored using the activated partial 

thromboplastin time (AP1T) (Noureddine, 1995). In this assay, a patient's plasma is 

incubated with an activator of the contact system. The inhibition of each intrinsic 

pathway enzyme by the heparin-antithrombin III complex contributes to the overall 

anticoagulant activity observed. More specific assays are also used to monitor heparin. 

In clotting assays such as the Heptest®, activated factor Xis added to the test plasma so 

as to more specifically measure the common pathway of coagulation. Amidolytic assays 

for specific coagulation factors are also employed. While these assays allow for the 

monitoring of a specific activity of heparin, they are considered somewhat less 

physiologic than the clotting assays as the test pJasma is diluted and the substrates used 

only mimic the enzyme's natural substrate. 

Higher doses of heparin used in cardiopulmonary bypass, angioplasty and other 

indications are monitored using the activated clotting time. These tests are usually 

performed on native whole blood in the presence of an activator. Heparin levels up to 

5 U/mL can be measured using this test. This test also measures the effect of TFPI 
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which is released from the vascular sites. 

Heparin produces several distinct effects on the coagulation system. The 

anticoagulant effect of heparin is related to its ability to inhibit preformed serine 

proteases through binding with endogenous plasma cofactors such as antithrombin ID and 

heparin cofactor II. By inhibiting the proteolytic actions of the coagulation factors, 

heparin also acts to limit further generation of these enzymes. The anticoagulant 

properties of heparin can be measured in vitro. The antithrombotic activity of heparin 

refers to the in vivo inhibition of thrombus fonnation. This property of heparin relates 

not only to the SERPIN mediated inhibition of coagulation proteases but also to heparin's 

ability to modulate endothelial function (heparan sulfate synthesis, TFPI release) and 

interact with other cellular components of the vascular system. The inhibition of 

hemostatic function by heparin following higher doses may be the result of heparin's 

interactions with platelets and result in the hemorrhagic side effects observed with 

heparin therapy. 

The low molecular weight heparins are depol ymerized derivatives of porcine and 

bovine mucosa! heparins (Fareed et al., 1995). These agents usually exhibit a molecular 

weight in the range of 4000 to 6000 Da. A large proportion of the molecular components 

of a given low molecular weight heparin is below 75 00 Da. Because of this difference 

in molecular weight composition, low molecular weight heparins exhibit a relatively 

weaker antithrombin activity. This is primarily due to the proportionately lower chain 

lengths of these agents. Barrowcliffe et al. described the effect of chain length on the 

relative antithrombin and anti-factor Xa potencies of heparins (Barrowcliffe et al., 1979). 
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Consistent with this hypothesis, pentasaccharide only exhibits anti-Xa properties. While 

aprosulate is also a low molecular weight analogue of heparin, it does have antithrombin 

activity. The data in this dissertation clearly demonstrate that this antithrombin activity 

was primarily mediated by HCII and not by ATill. Because of endogenous 

pharmacodynamic interactions, heparin and its analogues produce their effects by 

modulating endogenous serpins in a differential manner. 

Thus, while molecular weight dependence on the antithrombin/anti-factor Xa 

activity in a given molecular species of heparin may be valid for the high ATIIl affinity 

components, it does not hold true for the non-ATIII affinity components. Charge density 

also plays an important role in the mediation of the antithrombin actions. As depicted in 

Figure 75, the smaller oligosaccharide components in heparin are present in relatively 

lower proportions whereas low molecular weight heparin and ultralow molecular weight 

heparin contain a higher proportion of these components. Pentasaccharide is a high 

affinity, low molecular weight fragment of heparin. Aprosulate mimics heparin fragments 

with almost no ATIII affinity. The data presented in this study provides strong evidence 

on the different role of A TIII and charge density independent of molecular weight. It 

is likely that if pentasaccharide is hypersulfated, its ability to interact with HC-II would 

be enhanced. 

Synthetic antithrombotic agents offer several potential advantages over the 

classic heparin-type anticoagulant agents. Whereas heparin is polycomponent in nature, 

a synthetic agent can be made with a high degree of purity. Product homogeneity would 

be beneficial in two respects. First, the agent could be administered on a gravimetric or 
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to determine the chemical structure of a given agent. For this study, mass spectral analysis 

was only made for aprosulate and GL-522-Y- L As these agents possess symmetrical 

structures, their fragmentation patterns are more easily understood. Practical considerations 

limit the usefulness of this technique for the structural determination of heparin. 

Fragmentation patterns of heparin would be djfficult to interpret as multiple species are 

present in the initial preparation. 

The molecular heterogeneity of heparin contributes significantly to its 

pharmacologic effects. The polycomponent nature of this product is largely due to 

components of varying chain length which also ex.bibit differi__ng degrees of sulfation and 

binding to antithrombin ill. The synthetic analogues used in these investigations are highly 

pure compounds which do not exhibit structural heterogeneity. The three physicochemical 

methods used to characterize the molecular and structural profile of heparin provide 

information on the molecular weight, molecular m~s distribution, degree of sulfation, and 

the absolute molecular mass. The results obtained using gel pem1eation chromatography, 

NMR, and mass spectral analysis are consistent with the proposed structure of each agent. 

The purity of each agent was also consistent with their specifications. By utilizing these 

three different methods, reliable information of the molecular and structural characteristics 

of heparin and its synthetic analogues was obtained. 

~omparative Shi dies_an .. .SERPIN Modulation 

Heparin is known to promote both antitltrombin III and heparin cofactor II 

mediated anti.protease activities. In the amidolytic assay systems used here, it was possible 
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molar basis. Heparin must be dosed on the basis of activity units as it is a mixture of 

many components whose biologic activity varies with molecular size. Second, the range 

of biologic activity may be more limited than that observed with heparin, potentially 

providing a more specific approach to treat various disorders. 

In this study, the relative role of SER.PIN activation to clarify the mechanisms 

of action of heparin was investigated by studying the biologic effects of synthetic heparin 

analogues in a variety of in vitro assays and in vivo animal models. The in vitro systems 

were chosen so that the effect of these agents on various steps of the coagulation cascade 

could be determined. Two models of thrombosis were chosen so that the effect of these 

agents on thrombogenesis induced by varying triggers could be studied. The hemostatic 

compromising effects of these agents were compared in a rabbit ear bleeding model. By 

performing these studies in a integrated fashion, the importance of SERPIN activation 

to the anticoagulant and antithrombotic actions of heparin was determined. While this 

study does not address the vascular effects of heparin and its analogues, an attempt has 

been made to measure the pharmacodynamic effects in terms of the endogenous release 

of vascular markers such as TFPI. Such data may provide information on the vascular 

modulation by heparin and its analogues. Dedicated studies on tissue culture on their 

expression of various antithrombotic mediators such as TFPI and heparan sulfate may 

also be useful to support the data presented in this dissertation. 

A. Physical Characterization of Heparin and Various Analo&nes 

As aprosulate, GL-522-Y-1, and pentasaccbaride are homogeneous compounds, 
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their molecular weights can be calculated based on their chemical structure. Since heparin 

is polycomponent, however, its average molecular weight was determined using gel 

permeation chromatography. This technique, which separates the components of the 

heparin mixture based on molecular size, has previously been used to characterize the 

molecular weight profiles of heparins, low molecular weight heparins and other 

glycosaminoglycans (Ahsan et al., 1994; Ahsan et al., 1995; Nieduszynski, 1989). By 

using the appropriate buffers, the effect of charge density on chromatographic separation 

can be neutralized and separations are made based on hydrodynamic size. This analysis 

was important so that the activities of all agents could be compared on a molar basis. 

A number of methods have been used to characterize the molecular weight of 

heparins. These include viscometry (Mathews et al., 1971), low angle laser light scatter 

(Patat et al., 1959), NMR (Desai et al., 1995), ultracentrifugation (Lasker et al., 1966), 

and gel permeation chromatography (Ahsan et al., 1994). Gel permeation 

chromatography offers the advantages of minimal sample preparation and handling and 

a rapid tum around time. In order to obtain molecular weight data from the HPLC 

elution profiles, however, the columns used require calibration. These calibrators are 

optimally derived from a similar material as that being analyzed. Three different 

calibrations were used in these studies. The first consisted of nineteen fractions of 

heparin of varying molecular weight. These calibrators were produced by fractionation 

of heparin. The homogeneity of these samples is increased relative to unfractionated 

heparin by a series of chromatographic steps. The molecular weights of these calibrators 

have previously been reported (Ahsan et al. , 1994). 
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The elution profile of heparin was observed to take the form of a Gaussian 

distribution, indicating the presence of multiple species. Dispersity, a measure of 

heterogeneity, was observed to be higher for heparin than for the other agents. The 

molecular weight of heparin was determined to be 10.5 lcDa by this analysis. The weight 

average molecular weight value for GL-522-Y-1 was the most discrepant with its known 

formula weight. It was determined that due to its chemical nature, GL-522-Y-1 was being 

bound by the packing material in the HPLC column thereby skewing the elution profile. 

For this reason, the elution profile of GL-522-Y-1 was not analyzed using the other 

calibrants. The dispersities determined for aprosulate and pentasaccharide were closer to 

1.0. 

Each of these two analogues represented homogenous and chemically pure 

compounds that can be used to study the SAR relationship in heparin. Since aprosulate 

is highly sulfated in comparison to heparin and pentasaccharide, it's retention on the 

chromatographic column was different than that of a comparably sized heparin chain. 

This resulted in a falsely lowered molecular weight value. With both the HMC and the 

19 narrow range calibrators, the molecular weight was lower than the calculated formula 

weight. Since both methods utilized heparin derived products of a lower charge density, 

these structural differences contributed to the altered molecular mass distribution. 

Regardless of these differences, the dispersity of aprosulate was noted to be near 1. 

The molecular weights of these agents were also detennined based on two other 

calibrations which have been developed for profiling low molecular weight heparins. One 

of these calibrators, F913B, was proposed to be the European Pharmacopoeial calibration 
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standard for low molecular weight heparins {van Declem et al., 1991). Each of these 

calibrants is a mixture of partially degraded heparins. It has previously been shown that 

the effectiveness of these calibrators was dependent on the weight range of the sample 

(Ahsan et al., 1994). With both calibrators, coded HMC and F913B, the molecular 

weights determined for aprosulate and pentasaccharide were much lower than their true 

formula weights. This was likely due to the fact that these agents fall at the extreme low 

end of the calibration curve. The molecular weight of heparin determined with the two 

calibrations varied from 9.9 to 12.8 kDa. The difference in molecular weights calculated 

using these two methods is due to the difference in composition of the calibrants (Ahsan 

et al., 1994). The HMC calibrant contains a larger fraction of higher molecular weight 

material. This difference in molecular weights using these two methods is consistent with 

that published for several heparins and low molecular weight heparins (Ahsan et al., 

1994). 

To calculate molar concentrations and dosages, the known formula weights of 

the synthetic analogues were used along wjth the weight average molecular weight of 

heparin as determined by the 19 calibrator method. This method is of major value in the 

study of the molecular mass distribution profile of heparin and low molecular weight 

heparin as the distribution profile and various other parameters can be calculated. 

NMR spectroscopy is a valuable technique for the analysis of heparins. This 

technique provides both information describing the primary structure of heparin as well 

as its solution conformation. With regard to the primary structure, major components of 

the heparin chain such as glucosamine and iduronic acid residues can be identified, 
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sulfate content at various positions can be ascertained, and the configuration of the 

disaccharide linkage (a or fi) can be detennined. NMR analysis is also a powerful tool 

for determining the solution confonnation of the heparin chain. The measured chemical 

shifts are dependent on the molecular environment of the nucleus and the size of 

interproton coupling constants is dependent upon the dihedral angle formed between 

adjacent C-H bonds. Thus, it can be determined whether adjacent hydrogen moieties are 

positioned cis or trans to each other. NMR spectra can provide information on the purity 

of the sample. As the intensity of a given peak is related to the amount of substance 

present, purity can be readily assessed. Recently, NMR spectroscopy has been used to 

determine the calibration free molecular weight of heparin (Desai et al., 1995). 

Because of the polycomponent nature of heparin, peaks in the NMR spectra tend 

to overlap. In order to make specific assignments for various peaks, the peaks must be 

clearly resolved. The spectra of the agents used in this dissertation were obtained using 

300 and 500 MHz instruments so as to obtain high resolution spectra. 

The degree of sulfation of the heparin used in these studies was characterized 

by integrating certain peak areas of the 13C spectra. By this analysis, it was shown that 

in this heparin, 76 % of the 6-0H groups were sulfated and that 88 % of the amino 

groups were sulfated. More importantly, it is possible to estimate the amount of high 

affinity ATIII binding sites present in the sample by detennining the percentage of 3-0 

sulfate. For this heparin, it was estimated that 7 % of the chains contained ATIII binding 

sites. This is in contrast to the pentasaccharide which has an ATill binding site on every 

molecule. No peaks related to other glycosaminoglycans such as dennatan sulfate or 
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heparan sulfate were present in these spectra, indicating a pure heparin sample. This is 

important as dermatans and heparans exhibit variable effects on the coagulation system. 

The spectra of aprosulate and GL-522-Y-1 are much simpler than those of 

heparin or pentasaccharide. Each structure is symmetrical, and contains no 

microheterogeneities in sulfation as does heparin. In each of these spectra, all peaks 

could be assigned. The purity of each agent was confirmed by the lack of extraneous 

peaks. 

1H NMR spectra are complementary to the 13C spectra obtained on a given 

sample. 1H spectra are not as easily used for the rapid characterization of the purity of 

polysaccharides such as heparin due to the overlap of signals and a poorer resolution 

compared to that observed in 13C spectra. The 1H spectra are beneficial, however, for the 

determination of the secondary structure of such agents (Casu, 1989). Based upon 

coupling constants and nuclear Overhauser enhancements, conformation data can be 

obtained. 

Mass spectral analysis provides information on the molecular weight and 

structural features of tested agents. By examining the fragmentation pattern, it is possible 

to determine the chemical structure of a given agent. For this study, mass spectral 

analysis was only made for aprosulate and GL-522-Y- L As these agents possess 

symmetrical structures, their fragmentation patterns are more easily understood. Practical 

considerations limit the usefulness of this technique for the structural determination of 

heparin. Fragmentation patterns of heparin would be dfflicult to interpret as multiple 

species are present in the initial preparation. 
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The molecular heterogeneity of heparin contributes significantly to its 

pharmacologic effects. The polycomponent nature of this product is largely due to 

components of varying chain length which also exhibit differing degrees of sulfation and 

binding to antithrombin ill. The synthetic analogues used in these investigations are 

highly pure compounds which do not exhibit structural heterogeneity. The three 

physicochemical methods used to characterize the molecular and structural profile of 

heparin provide information on the molecular weight, molecular mass distribution, degree 

of sulfation, and the absolute molecular mass. The results obtained using gel permeation 

chromatography, NMR, and mass spectral analysis are consistent with the proposed 

structure of each agent. The purity of each agent was also consistent with their 

specifications. By utilizing these three different methods, reliable information of the 

molecular and structural characteristics of heparin and its synthetic analogues was 

obtained. 

B. Comparative Studies on SERPIN Modulation 

Heparin is known to promote both antithrombin m and heparin cofactor II 

mediated antiprotease activities. In the amidolytic assay systems used here, it was 

possible to examine the effect of each analogue on a distinct SERPIN mediated event. 

It was observed that heparin more strongly inhibited thrombin via antithrombin ill than 

by heparin cofactor II. The IC50 value determined for ATIII mediated thrombin inhibition 

was 60 fold lower than the value determined for the HCII system. This is consistent with 

the data of Griffith which demonstrates an apparent ~ of 150 nM for the thrombin-HCII 
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reaction compared with 35 nM for the thrombin-ATIII reaction (Griffith et al., 1983) and 

data which demonstrates a 5 fold higher NaCl concentration required to elute ATilI from 

heparin agarose compared with that needed for HCII (Yamagishi et al., 1984; Griffith 

et al., 1985; Tran et al., 1986). In the ATIII mediated antithrombin assay, maximal 

inhibition of approximately 95 % relative to unsupplemented control was observed. In 

the HCII assay, however, a maximal inhibition of only 80 % was observed. Several 

assays were performed in which either the concentration of HCII, the concentration of 

heparin or the concentrations of both were increased two fold relative to the standard 

assay. In these systems, the maximal inhibition remained at 80 % . This can be explained 

by taking into account the reported Vmax values of 0.9 and 3.8 nM/min/ng heparin for the 

HCII-thrombin and ATIII-thrombin reactions, respectively (Griffith et al., 1983). As the 

kinetics of thrombin interaction with HCII are slower than with ATIII, it is possible that 

some portion of the thrombin in the assay can interact with the substrate before being 

inhibited by HCII. 

The synthetic analogues exhibited a more selective SERPIN inhibitory profile 

than heparin. Pentasaccharide was the only analogue to mediate significant antiprotease 

actions via ATilI. Due to its molecular size, pentasaccharide only inhibits factor Xa. It 

has been shown previously that a heparin chain length of 18 monosaccharides is 

minimally required to catalyze the inhibition ofthrombin by ATIII (Laurent et al., 1978; 

Oosta et al., 1981; Holmer et al., 1981; Lane et al., 1984; Danielsson et al., 1986). 

Pentasaccharide only promotes small increases in the HCII mediated antithrombin 

activity. It does so at relatively high concentrations compared to those required for ATIII 
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mediated Xa inhibition. While data is not currently available, a pentasaccharide with 

higher charge density may exhibit appreciable activity via HCII. The activation of HCII 

by glycosaminoglycans has been shown to be dependent on the charge density of the 

GAG rather than on a specific sequence as with the case of ATIIl (Hurst et al. 1983). 

Neither aprosulate nor GL-522-Y-l produced significant antiprotease actions via 

antithrombin mas they lack the proper 3-0 sulfate conformation needed for high affinity 

binding. Despite differences in their chemical structure and the functional groups 

providing the negative charge, GL-522-Y-1 and aprosulate inhibited thrombin via HCII 

with similar potency. This potency was approximately 20 fold lower than that observed 

with heparin. Kinetics models of the inhibition of thrombin by HCII suggest that it is 

necessary for heparin to bind both HCII and thrombin to achieve a catalytic effect 

(Tollefsen, 1989). Studies with thrombin mutants suggest that an allosteric model rather 

than a template model better describes the inhibition of thrombin by heparin cofactor II 

(Sheehan et al., 1994). In the case of ATIII mediated inhibition of thrombin, a minimal 

chain length of 18 saccharide units is required for heparin to inhibit thrombin. It is 

possible that the weaker potency of aprosulate and GL-522-Y-1 in inhibiting thrombin 

via HCII is due to their smaller molecular size. 

Although both aprosulate and GL-522-Y-1 produced comparable inhibitory 

effects mediated by HCII, there was a clear dissociation between the anticoagulant and 

antithrombotic actions of these two agents. This suggests that aprosulate may have 

additional functional properties in addition to its. interaction with HCII. This data also 

suggests that HCII alone may have a relatively minor role in the production of 
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anticoagulant and antithrombotic responses. Such properties as the non-specific binding 

of these analogues to fibrinogen and other coagulation factors and direct effects on the 

generation of various protease during activation may be contributory to their actions. 

C. Endo~enous Release of TFPI by Heparin and Heparin Analogues 

In addition to antithrombin III and heparin cofactor II, other endogenous 

modulators of the coagulation system are known to exist. These include protein C which 

acts to limit procoagulant activity by inactivating factors Va and VIIla, protease nexins 

which have been shown to inhibit thrombin, activated protein C, and factor Xia, and 

tissue factor pathway inhibitor, a multi-Kunitz inhibitor of factors Vila and Xa. 

Tissue factor pathway inhibitor is a recently recharacterized Kunitz-type protease 

inhibitor which may be an important mediator of heparin's actions. It is known that 

heparin administration causes an increase in plasma TFPI levels (Ariens et al., 1994; 

Warn-Cramer et al., 1993). Additionally, it has been reported that heparin and related 

glycosaminoglycans are capable of binding to TFPI (Valentin et al., 1994) and can 

promote a synergistic anticoagulant action (Wun, 1992). Based on these studies, it has 

been suggested that TFPI may be just as important as ATIII and HCII for the 

anticoagulant actions of heparin (Valentin et al., 1992) and may significantly contribute 

to the antithrombotic actions of heparin and heparin analogues (Ostergaard et al., 1993). 

In phase I clinical trials using human volunteers, the effect of the synthetic 

analogues on TFPI release was investigated. In addition, because of the molecular 

homology of TFPI in non-human primates, additional experimental studies were carried 
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out in non-human primates. TFPI levels were measured using functional and 

immunologic assays. The functional and immunologic assays for TFPI can potentially 

give different results. In the ELISA assay, TFPI is detected by a monoclonal antibody 

directed against the first Kunitz domain. This assay, therefore, measures the total TFPI 

content of the sample. Carboxy truncation of the TFPI molecule is known to result in a 

reduced antiprotease activity (Nordfang et al., 1991). The functional assay, therefore, 

may only measure a fraction of the TFPI present in plasma, that which is not truncated. 

Intravenous administration of GL-522-Y-1 to non-human primates was observed 

to rapidly increase the levels of functional TFPI activity measured as Xa inhibition. The 

antigenic TFPI levels measured in the samples of one of these treated monkeys correlated 

highly with the functional TFPI levels (r = 0.976) indicating that full-length, functional 

TFPI is released upon GL-522-Y-1 administration. Administration of pentasaccharide at 

doses up to 500 µglkg did not elevate the plasma TFPI antigen levels in non-human 

primates. Despite this, a dose-dependent anticoagulant effect was observed suggesting 

that the release of TFPI does not contribute to the anti-Xa effects of pentasaccharide. It 

has been suggested that glycosaminoglycan binding to TFPI may be dependent not only 

on the total sulfate content, but also on the localization of the charged groups (Valentin 

et al., 1994). Calixarenes such as GL-522-Y-l have been shown to be in a folded 

conformation in solution which may act to fonn a region of high negative charge 

(Atwood et al., 1992; Gutsche et al., 1981). Based on charge density alone, 

pentasaccharide would be expected to release TFPI. Both unfractionated heparin and 

various low molecular weight heparins have been shown to increase plasma TFPI levels 
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following intravenous and subcutaneous administration (Ari.ens et al., 1994; Wam-

Cramer et al., 1993; Bara et al., 1993; Holst et al., 1993; Vogel, 1995). The number 

of sulfate groups per saccharide in heparin is not markedly different from that in 

pentasaccharide. The size of the pentasaccharide molecule appears to play a role in its 

inability to release TFPI. 

The effects of aprosulate on plasma TFPI levels were investigated as part on two 

phase I clinical trials. In the PALLAS study, aprosulate was administered daily for a 

period of seven days. It was observed that aprosulate increased plasma TFPI antigen 

levels within 15 minutes after subcutaneous administration and peak levels were achieved 

45 to 60 minutes post-administration. The TFPI antigen levels were observed to correlate 

with anticoagulant activity measured by the APTT and plasma drug levels determined 

using the Heptest®. Repeated administration of aprosulate did not deplete endogenous 

TFPI stores following seven days of treatment (Jeske et al., 1995). The time course of 

TFPI levels and the time to peak levels were not significantly different on days 1 and 7 

of the study. Limited data from the DELPHI dose-escalation study indicates that 

aprosulate dose-dependently increases the plasma TFPI antigen levels. As in the PALLAS 

trial, dosing of aprosulate on alternate days for a period of 12 days did not deplete the 

TFPI stores. 

The significance of the heparin releasable TFPI to the pharmacologic effects of 

heparin remains unknown at this time. To date, no TFPI deficient individuals have been 

identified. Since small amounts of tissue factor generation on the cell surface is sufficient 

to initiate thrombogenesis, circulating levels of TFPI may be sufficient to blunt the 
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thrombogenic effects of tissue factor. It is also unknown as to whether any of the 

synthetic analogues are capable of interacting with and potentiating the activity of TFPI. 

Studies presented in the literature have indicated that in in vitro systems, heparin 

potentiates the anticoagulant activity of TFPI. The mechanism for this effect has not been 

fully elucidated. Heparin and its analogues may also directly interact with circulating 

and released TFPI and alter its pharmacodynamic or phannacokinetic behavior. These 

interactions may be charge dependent and result in certain modifications of TFPI 

molecules resulting in increased functionality. 

D. Comparative Anticoa~lant Profile 

The anticoagulant potency of the heparin analogues was compared in human and 

rabbit plasma using global clotting tests such as the prothrombin time, activated partial 

thromboplastin time, Heptest® and the thrombin time. In these assays, different triggers 

are used to activate the coagulation system in distinct locations. In the prothrombin time, 

a rabbit brain tissue thromboplastin is used to activate factor VII and the extrinsic 

pathway of coagulation. This assay is routinely used to monitor oral anticoagulant 

therapy as it is sensitive to low levels or inhibition of factor VIla (Hirsh et al., 1994). 

In the APIT, a micronized silica solution is used to activate the contact system. This 

assay is used clinically to monitor heparin therapy as the heparin-ATIII complex inhibits 

most of the intrinsic pathway enzymes (Noureddine, 1995). The Heptest® and the 

thrombin time are more specific clot based assays. The Heptest® is designed to measure 

the inhibition of the conversion of prothrombin to thrombin. This is achieved by using 
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bovine factor Xa as an activator of coagulation. As thrombin is ultimately formed prior 

to reaching the assay endpoint, this assay is also sensitive to the antithrombin actions of 

different agents. The thrombin time measures the conversion of fibrinogen to fibrin 

following the addition of a known amount of thrombin to plasma. Thus, each of these 

assays provide a distinct point in the coagulation cascade for the evaluation of the 

anticoagulant effects of various drugs. 

The anticoagulant potency of heparin and related drugs is dependent on several 

factors. Due to the differing and more limited mechanisms of action of the heparin 

analogues, the procoagulant trigger will influence the systems in which these agents are 

active. In addition, the dilution of the plasma with the assay reagents will affect the 

anticoagulant activity observed. In the thrombin time assay, 200 µL of plasma is used 

to determine the clotting time, whereas in the other clotting assays, 100 µL of plasma is 

used. In the thrombin time, therefore, twice as much anticoagulant is present in the 

system as is present in the other assays. Lastly, the anticoagulant potency of each agent 

was compared based on agent concentrations required to increase the clotting time to 100 

seconds. In the various assays, baseline clotting times in normal human plasma ranged 

from 12.0 ± 0.2 seconds in the PT to 37.3 ± 4.0 seconds in the AP1T. A clotting time 

of 100 seconds is therefore, a three fold increase over baseline in the APTI', but more 

than 8 fold in the PT. This approach to comparing the potencies of each agent was used 

due to the fact that a maximal anticoagulant activity was not observed. Clotting times 

were artificially limited to a maximum of 300 seconds based on the linear range of the 

assays. 
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Heparin exhibited the broadest anticoagulant effect, prolonging clotting times in 

all assays. This is consistent with the known range of activities of heparin. The primary 

targets of the heparin-ATIIl complex are Xa and thrombin. Heparin is also a potent 

inhibitor of factor IXa (Barrow et al., 1994; Beguin et al., 1991) and recent reports 

indicate that heparin-ATIIl can also inhibit factor VIla (Rao et al., 1995; Rao et al., 

1993; Lawson et al., 1993). The observed anticoagulant potencies range from 0.08 ± 

0.05 µMin the 5 U thrombin time to 6.2 + 2.1 µ.Min the PT. The strongest effects are 

observed in the assays in which intrinsic pathway enzymes are involved. Identical 

potencies are noted in the Heptest® and APTT where the observed anticoagulant activity 

of heparin is dependent on its ability to inhibit both factors Xa and thrombin. The 

thrombin time assay was the most sensitive to the anticoagulant actions of heparin. This 

is due to the biochemical nature of the assay systems. In the thrombin time assay, active 

enzyme is added to plasma containing the test agent. In the APIT and Heptest®, active 

thrombin is generated following an activation process further upstream in the coagulation 

cascade. 

Aprosulate exhibited a weaker anticoagulant activity consistent with its more 

limited SERPIN mediated antiprotease activity. The potency of aprosulate in the APTT 

and the Heptest® was 10 to 25 times weaker than that of heparin. Whereas in the APTT 

heparin would be expected to limit thrombin formation by inhibiting the upstream 

intrinsic pathway enzymes as well as inhibit any throm bin that is formed, aprosulate can 

only promote the inhibition of thrombin once it has been formed. Similarly in the 

Heptest® assay, heparin-ATIIl is capable of inhibiting the supplemented bovine Xa as 
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well as any thrombin which may be formed. Aprosulate which only activates HCII may 

not inhibit the added Xa and thereby limit the amount of thrombin formed. In addition, 

the inhibition of thrombin by HCII is kinetically slower than thrombin inhibition by 

A Tiii. The free thrombin can therefore promote feedback activation reactions of other 

coagulation enzymes such as factor VIII. This is also observed in the weaker potency of 

aprosulate in the thrombin time assay. 

Pentasaccharide which has been shown to inhibit Xa via ATIII but not thrombin 

was active only in the Heptest®. Single targeting ofXa results in pentasaccharide's lower 

potency compared to heparin in this assay. Inhibition of Xa would be expected to prolong 

the APTT as activation of the intrinsic pathway results in Xa generation. The lack of 

effect of pentasaccharide in the APTT may be related to the inability of the 

pentasaccharide-ATIII complex to inhibit prothrombinase bound Xa as other ATIII 

independent Xa inhibitors such as antistasin and DX-9065a concentration dependently 

prolong the APIT (Vlasuk et al., 1991; Hara et al., 1994). 

Based on the concentration response of GL-522-Y-l in the amidolytic HCII 

assay, it would be expected that GL-522-Y-1 would also demonstrate appreciable 

anticoagulant activity similar to aprosulate. GL-5 22-Y-1, however, demonstrated almost 

no in vitro anticoagulant activity. The AP1T was the only assay which showed a weak 

prolongation of the clotting time. Thus, it appears that the direct inhibition of thrombin 

by GL-522-Y-1 observed in the HCII assay may not be relevant to the anticoagulant 

effects as measured with the APTT assay. This observation further reinforces the concept 

that thrombin generation inhibition is more important in the mediation of the 
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anticoagulant activity of heparins than the direct inhibition of proteases. The plasma 

based systems using the thrombin generation process to determine the inhibitory actions 

of various agents therefore provide a polycomponent assay system where different actions 

of various agents can be differentiated. 

Amidolytic antiprotease assays were used to examine the effect of these heparin 

analogues at two specific stages of coagulation. These results were largely consistent with 

those obtained in the amidolytic SERPIN activity assays. The difference between these 

systems and the SERPIN activation systems is the presence of plasma. In these systems, 

each test agent was supplemented to plasma. The activities measured can, therefore, be 

the result of that agent's interaction with multiple cofactors. Both heparin and aprosulate 

were observed to inhibit the amidolytic activity of thrornbin. The potency of aprosulate 

was lower than that of heparin consistent with the ability of heparin to inhibit thrombin 

via both ATIII and HCII. Interestingly, GL-522-Y-l did not demonstrate any 

antithrombin effects in this assay. Hin fact the inhibition of thrombin which was seen 

in the HCII activity assay is not SERPIN related, this finding in the anti-Ila assay may 

be partially explained by the lower concentrations of GL-522-Y-1 in this assay. In the 

HCII assay, the highest concentration of GL-522-Y- l studied was 26.5 µM. Due to 

plasma dilution in the anti-Iia assay, however, the highest GL-522-Y-l assay 

concentration tested was 3.4 µM. An alternate explanation for the lack of antiprotease 

activity in the anti-Ila assay by GL-522-Y-l may be related to the protein binding ability 

of this agent. While the protein binding profile ofGL-522-Y-1 was not determined, other 

sulfonate containing polymers have been shown to bind to a variety of plasma proteins 
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(Santerre et al.,_ 1992). 

Both heparin and pentasaccharide were observed to inhibit Xa amidolytic activity 

in this assay. The potency of pentasaccharide was only 2 fold lower than that of heparin 

in the plasma based assay. In the plasma-free system, heparin was observed to be more 

than 30 fold stronger than pentasaccharide. The IC5() values for both agents were higher 

in the plasma based assays than in the plasma-free systems. The difference in the relative 

potency of pentasaccharide is largely due to a marked increase in heparin levels required 

to inhibit Xa activity in the plasma based systems. This may be related to endogenous 

protein binding of heparin. Low molecular weight heparins are suggested to have a lesser 

affinity for heparin binding proteins (Young et aL, 1994). It would be expected that 

pentasaccharide, which is even smaller than the low molecular weight heparins, would 

exhibit even less protein binding. 

The anticoagulant activity of the heparin analogues was also examined following 

supplementation to normal rabbit pool plasma. In the rabbit plasma, the baseline clotting 

times were significantly lower in human plasma in the APTT, Heptest®, and the thrombin 

time assays. Baseline PT's were significantly lower in rabbit plasma than in human 

plasma. Differences in relative potencies observed with the different agents were minor 

when compared to the results obtained in the NHP systems. The most notable difference 

in potency was observed in the Heptest®, where ail agents required higher concentrations 

to prolong the clotting time to 100 seconds. For both aprosulate and pentasaccharide, 

three fold more agent was required to prolong the clotting time to 100 seconds despite 

a higher baseline clotting time. GL-522-Y-1 exhibited less anticoagulant activity in rabbit 
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plasma than in human plasma. In the amidolytic antiprotease assays, heparin was equally 

potent in rabbit and human plasma with respect to both thrombin and factor Xa 

inhibition. In these assays, pentasaccharide exhibited a 2.5 fold lower potency in the anti

Xa assay in rabbit plasma compared to its potency in human plasma. This corresponds 

to the three fold difference in potency observed in the Heptest®. Whereas aprosulate 

exhibited a potency of 1.05 + 0.05 µ.M in the anti-Ila assay in human plasma, no 

inhibition of thrombin was observed in the rabbit plasma system. While this may explain 

the weaker effects of aprosulate in the Heptest®, it does not explain why the potency of 

aprosulate is higher in rabbit plasma in the thrombin time assay. These differences in 

clotting time may be attributable to differences in coagulation factor levels in rabbit 

plasma compared with human plasma. Most clotting factor levels in rabbit plasma are 

elevated relative to human plasma levels, particularly factors VII, IX, XI and V. In 

addition to the differences in the coagulation process, vascular lining and cellular factors 

also contribute to the differences in the hemostatic responses in different species. 

As discussed previously, pentasaccharide and aprosulate exhibit differential 

specificity to ATIII and HCil. These differences, together with the compositional 

differences between rabbit and human plasma, may account for the observed potency 

differences noted in this study. In addition, spedes dependent differences in the function 

of TFPI have been documented (Warn-Cramer et al., 1992). Such differences may also 

exist in the functional properties of other S ERPINs and contribute to the observed 

differences in the anticoagulant actions of various heparin analogues. 

The anticoagulant effect of a given agent can be markedly different in whole 
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blood compared to the effect in plasma. For coagulation assays, platelet poor plasma 

prepared from citrated whole blood is generally used. Addition of citrate removes 

calcium ions from solution, thereby preventing coagulation as the formation of activated 

factors VII, IX, X, and thrombin are calcium dependent (Davie et al., 1991). 

Recalcification of the plasma in global clotting assays results in a dilution of plasmatic 

coagulation factors. Additionally, platelet poor plasma does not contain the platelets, red 

cells or white cells normally found in whole blood. Platelets are known to contain both 

procoagulant material and heparin neutralizing agents in their granules as well to provide 

a procoagulant surface upon activation (Majerus et al., 1987; Davie et al., 1991). 

Macrophages and monocytes also may provide procoagulant surfaces (Altieri, 1993; 

Edwards et al., 1992) and be involved in complex interactions with platelets. 

To study the anticoagulant effects of heparin analogues in whole blood, celite 

activated clotting times and thrombelastography were used on supplemented, freshly 

drawn human blood. Celite is an activator of the intrinsic pathway. When the analogues 

were tested on an equimolar basis, the activated clotting time was markedly prolonged 

by aprosulate, appearing to indicate that the potential to inhibit thrombin is more 

important than inhibition of factor Xa to produce this effect. Pentasaccharide produced 

a stronger anticoagulant effect that aprosulate in the TEG analysis. This may be due to 

pentasaccharide's ability to limit the generation of thrombin by inhibiting factor Xa. 

Although unfractionated heparin and pentasaccharide exhibit very strong anti-Xa 

activities which are mediated by ATIII, the relative prolongation of the whole blood ACT 

was not proportional to the respective anti-Xa potency of those agents. Aprosulate 
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produced the strongest effect in this assay, whereas GL-522-Y-1 produced a comparable 

response to pentasaccharide. This observation is suggestive that in whole blood, factor 

Xa inhibition has a relatively minor role in the mediation of whole blood clot formation. 

Aprosulate may have additional cellular mediated effects which can partially account for 

its stronger effect. 

Pentasaccharide exhibited stronger anticoagulant effects in comparison to 

aprosulate and GL-522-Y-1 in the TEG analysis. It appears that ATilI mediated Xa 

inhibition may be more important in the mediation of the anticoagulant activity of this 

agent. It is somewhat paradoxical that there is a different potency profile of these 

analogues in each whole blood assay. While heparin is a strong anticoagulant, 

pentasaccharide and aprosulate exhibited a differential behavior. This observation points 

to the fact that assay dependent variations are observed and may depend on several 

factors such as the trigger mechanisms involved in such assays. These observations 

clearly suggest that activation mechanisms are the primary determinant of the relative 

anticoagulant effects of heparin and its analogues. In contrast to heparin, the analogues 

certainly alter the coagulation process at specific sites. 

E. Protease Generation Assays 

For a complete understanding of the anticoagulant and antithrombotic 

mechanisms of action of various drugs, it is necessary to analyze the actions of these 

agents at various steps in the coagulation process. In addition to direct antiprotease 

activities, a given agent can also modulate the formation of active proteases. To identify 
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these activities, protease generation was measured continuously in a fibrinogen deficient 

plasma system. By using fibrinogen deficient plasma, it was possible to monitor the 

formation of active factor X or thrombin using amidolytic substrates. The absence of 

fibrinogen renders the plasma unclottable. In fibrinogen clotting systems fibrin 

polymerization would result in aberrant changes in optical density. Methods to defibrinate 

normal human plasma are known (Dupouy, et al. 1988; Prentice et al., 1993). Use of 

these defibrinations, however, may result in factor level alterations. It is also possible to 

use ELISA technology to measure levels of Fl .2 and factor X activation peptide as 

indices of protease generation. 

In the fibrinogen deficient plasma systems used here, heparin is expected to 

exhibit a potent inhibitory effect. Not only is the heparin-ATIII complex capable of 

preventing thrombin generation by inhibiting intrinsic pathway enzymes, but by directly 

inhibiting thrombin, heparin limits thrombin feedback activation reactions. Heparin was 

observed to be a potent inhibitor of Xa and thromb.in generation following thromboplastin 

induced activation, with IC50 values of 0.6 and 2.1 ,uM determined, respectively. The 

four fold higher amount of heparin needed for thrombin generation inhibition is 

consistent with the additional amplification step present in its generation. In both systems, 

GL-522-Y-1 also inhibited protease generation, but exhibited a lower potency than 

heparin. This may be related to the more limited antiprotease actions of this agent. 

Neither aprosulate nor pentasaccharide promoted substantial inhibition in these assay 

systems. The lack of effect by aprosulate suggests that the inhibition by GL-522-Y-1 is 

not related to HCII mediated thrombin inhibition. The lack of effect by pentasaccharide 
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is unexpected in light of the data from Lonneau et al. which indicates that 

pentasaccharide is a potent inhibitor of protease generation (Lormeau et al., 1993), 

particularly following activation of the extrinsic pathway. Plasma dilution in this assay 

may be an explanation for this discrepancy. The relatively high plasma dilution (1:24 

final dilution) used in this assay results in a lack of ATilI through which pentasaccharide 

can act. In the work of Lonneau, protease generation was measured in undiluted 

difibrinated plasma where the relative proportions of various plasma proteins were 

significantly different from the system used in these studies. 

Following activation of the intrinsic pathway, GL-522-Y-1 was observed to 

inhibit both thrombin and factor Xa generation. Inhibition following intrinsic activation 

was observed to be more potent than following extrinsic activation. Aprosulate inhibited 

thrombin and factor Xa generation with similar potencies. This is in contrast to the lack 

of effect observed with this agent following extrinsic activation. Pentasaccharide dose

dependently inhibited Xa generation following intrinsic activation. The pentasaccharide

ATIII complex has not been shown to inhibit proteases other than Xa, indicating that this 

effect may reflect direct Xa inhibition. Neither aprosulate nor GL-522-Y-1 has been 

shown to produce direct inhibition of Xa however these agents inhibited activities, yet 

inhibited Xa generation with a potency approximately 20 fold higher than that of 

pentasaccharide. These results indicate that these agents may exhibit other non-SERPIN 

mediated activities as these agents do not activate ATIII and HCII does not inhibit 

coagulation proteases beside thrombin (Tollefsen, 1989). 

To further define the protease generation modulatory actions of these agents, 
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non-plasmatic assay systems were utilized. In these systems, prothrombin complex 

concentrates were used to provide the necessary coagulation factors. These concentrates 

contain factors II, VII, IX, and X (Konyne®) or their activated fonns (FEIBA®). These 

systems allow the modulatory actions of these agents to be assessed in the absence of 

endogenous cofactors such as A TTII and HCII and other plasma components. Also 

missing from these systems are cofactors factors V and VIII which enhance "tenase" and 

prothrombinase activity. Both GL-522-Y-1 and heparin inhibit thrombin generation in the 

FEIBA ® based system, indicating a non-SERPIN mediated inhibition of protease activity. 

Heparin did not inhibit Xa generation in the same system, however. Smaller levels of 

inhibition were noted in the Konyne® based systems. Previous studies with the Konyne® 

based systems have shown an increased effect by heparin with A TIII supplementation 

(Kaiser et al., 1994). The difference in heparin's activity may also be related to 

differences in ATIII content of the prothrombin complex concentrates (Kohler et al., 

1990). Some of these concentrates are supplemented with heparin to reduce their 

thrombogenicity. If HCII contamination is present in the Konyne®, this may also explain 

the inhibitory effects of aprosulate in this system. 

To examine the modulation of the intrinsic pathway in the absence of plasma, 

a factor VIII:C mediated Xa generation system was used. In this system, the ability of 

an agent to inhibit conversion of X to Xa by factor IXa in the presence of factor VIII is 

determined. Previous work has indicated that heparin is capable of directly inhibiting IXa 

activity at concentrations lower than those normally achieved during antithrombotic 

therapy (Barrow et al., 1994). This study also demonstrated that this inhibition of IXa 
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activity was A TilI independent as low and high affinity heparins exhibited similar ~ 

values. It is also known that the activity of factor IXa is inhibited by the heparin-ATIII 

complex (Jordan et al., 1980). It is not known what effect the addition of ATIII to the 

system of Barrow et al. would have on Xa generation. Data obtained with the heparin 

analogues suggests the presence of non-HCII mediated actions of aprosulate and GL-522-

Y-l. Both agents were observed to dose-dependently inhibit Xa amidolytic activity in this 

system in the absence of plasma derived cofactors. Studies by Sugidachi et al. have 

confirmed the direct inhibitory effects of aprosulate on the IXa/VIIIa complex (Sugidachi 

et al., 1994). 

The direct inhibition of the IXa/FVIIIa complex by heparin and like agents may 

also explain the inhibitory effect observed in the FEIBA ® and the Konyne® based 

systems. In both systems, factor IX is activated by the tissue factor/VIIa complex. This 

IXa could potentially be inhibited by heparin or a synthetic heparin analogue. Alternately, 

a FVIII contaminant of the prothrombin complex may be the site of inhibition of these 

agents. Levels of IXa and VIII in each prothrombin complex may explain the differing 

effects of the synthetic analogues in each different system. 

It is interesting to note that heparin produces measurable anticoagulant effects, 

whereas the heparin analogues produce relatively weaker effects in the global tests. 

However, the relative inhibitory effects of these agents are stronger in the protease 

generation tests. This indicates that protease generation inhibition actions of heparin 

analogues may depend on their direct interactions with the component of the coagulation 

network resulting in an alteration of their function. 
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F. Cellular Modulation 

The endothelium is important for the maintenance of hemostasis. Endothelial 

cells produce several antithrombotic materials including PGI2, TFPI and tP A (Davie et 

al., 1992). The majority of the vascular system's TFPI is thought to be stored bound to 

endothelial glycosaminoglycans (Werling et al., 1993). Endothelial cells are known to 

constitutively produce several glycosaminoglycans. A heparan sulfate has been isolated 

which exhibits anticoagulant activity. Heparin is known to modulate the production of 

heparan sulfate by endothelial cells (Nader et al., 1989). To study the effects of these 

heparin analogues on the modulation of glycosaminoglycan synthesis, each agent was 

supplemented to the culture media of rabbit aortic endothelial cells. Incorporation of 35S 

into the glycosaminoglycan was measured by scintillation counting and used as an index 

of glycosaminoglycan modulation. Glycosaminoglycan production was measured in two 

areas, the culture media and associated with the cells. 

Heparin, as had been previously been published, concentration dependently 

increased the amount of heparan sulfate in the culture media. At heparin concentrations 

above 1 µM, the heparan sulfate levels were significantly elevated relative to control 

treated cultures. Both aprosulate and GL-522-Y-1 were also able to concentration 

dependently increase the amount of heparan sulfate in the media, though statistical 

significance was achieved at higher concentrations than with heparin. Heparin's 

modulation of glycosaminoglycan synthesis by endothelial cells was limited to heparan 

sulfate measured in the media. Heparan sulfate associated with the cells was not effected 

by heparin supplementation. The synthesis of chondroitin sulfate was also not effected 
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by heparin. The actions of aprosulate and GL-522-Y-1 were not as specific as those of 

heparin. Cell associated chondroitin sulfate was increased following incubation with 

aprosulate at concentrations above 10 ,uM. GL-5 22-Y-1 significantly increased cell 

associated chondroitin and heparan sulfates. Due to a wide variation among cultures and 

its lower molecular weight and lesser charge density, pentasaccharide did not 

significantly increase glycosaminoglycan synthesis. The mean level of cell associated 

chondroitin sulfate was elevated by pentasaccharide (p > 0.05). 

To compare the potency of each agent for inducing heparan sulfate synthesis, 

the concentration required to increase the number of C.P .M. 2 fold over control was 

determined for each agent. Heparin and GL-522-Y-l exhibited a higher potency than 

aprosulate or pentasaccharide for promoting heparan sulfate synthesis. Heparin and GL-

522-Y-1 supplementation resulted in a doubling of the C.P.M. at concentrations of 3.3 

and 4.5 µM, respectively. Aprosulate was relatively ineffective at promoting heparan 

sulfate synthesis, with a doubling concentration of 41 µ.M. Supplementation of 

pentasaccharide did not result in an increase in heparan sulfate production. 

TFPI is known to be produced by and bound to endothelial cells (Osterud et al., 

1995). For this reason, attempts were made to measure TFPI levels in aliquots of the 

culture media. Due to limitations in specificity of the anti-TFPI antibodies, TFPI levels 

could not be measured in these samples. The anti-TFPI antibodies used in the ELISA 

TFPI assay are directed against human TFPI. Cross reactivity of these antibodies with 

rabbit TFPI could not be demonstrated using the standard assay conditions. Additional 

studies were also performed using rabbit aortic smooth muscle cell cultures to determine 
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the specificity of this effect. No significant increases in heparan or chondroitin sulfate 

production by smooth muscle cells were observed following supplementation of any of 

the agents. 

Heparin analogues were found to produce variable effects on the synthesis of 

various glycosaminoglycans by different cell cultures. The observed rank order for 

heparan sulfate synthesis was found to be heparin > GL-522-Y-l > aprosulate > 

pentasaccharide. The physiologic effects of these effects remain to be determined. Studies 

with phorbol esters suggest that the release of heparan suHate may be one of the 

responses of the cell to a mitogenic stimulus (Porcionatto et al., 1994). 

The consequences of cellular modulation produced by heparin and its analogues 

are largely dependent on the route and duration of therr use. In the acute settings, these 

effects may be rather limited. However, in chronic and sub-chronic settings, such effects 

may be amplified at different levels. Thus, both the efficacy and safety of these agents 

may be dependent on the duration of therapy. 

G. Platelet Studies 

Platelets play an important role in the hemostatic process. Platelets adhere to 

damaged areas of the blood vessel wall fonning the first line of defense against blood 

loss. These platelets become activated in this process through interaction with vessel wall 

collagen. A large number of other agonists have also been shown to activate platelets 

(Packham et al., 1994). Heparin's effect on this process has not definitively been 

elucidated. Studies have shown heparin to both promote and inhibit platelet activation 
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responses. This may be related to the concentration of heparin used in these studies. To 

determine the effect of the synthetic analogues on platelet function, several agonists were 

used to promote aggregation in platelet rich plasma supplemented with each agent. To 

make platelet rich plasma, citrated whole blood is gently centrifuged to remove red and 

white blood cells. In this assay, platelet aggregation is monitored by measuring light 

transmittance through the plasma sample. Prior to agonist addition, platelet rich plasma 

is relatively opaque due to platelets in suspension. As platelets aggregate, the larger 

aggregates fall out of solution and light transmittance is increased. While this assay 

allows for the easy determination of the effect of agents on the final aggregation 

response, the system is somewhat unphysiologic. Different components of the aggregation 

response such as platelet activation, receptor expression, or granule release can not be 

studied. Additionally, platelet interaction with white cells during the activation process 

does not occur. 

In these studies, platelet rich plasma was supplemented with 10 µg/mL of the 

heparin analogues. Aggregation was induced by a number of known platelet agonists 

including ADP, epinephrine, collagen, arachidonic acid, and thrombin. Addition of 

optimal concentrations of these agonists resulted in strong aggregation responses. Heparin 

and aprosulate supplementation resulted in an attenuation of the proaggregatory response 

to thrombin. Heparin produced a stronger inhlbitfon than aprosulate despite a lower 

molar concentration. Neither pentasaccharide nor GL-522-Y-l were able to inhibit 

thrombin induced aggregation. The effects of the other agonists were not modulated by 

any of the agents at the concentration tested. 
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In these studies, heparin and its analogues were used at a relatively high 

concentration of 10 ,ug/mL. At concentrations below 2.5 µg/mL, heparin is known to 

augment platelet aggregation induced by such agonists as low concentrations of ADP 

(Brace et al., 1986). Similarly, the effects of other agonists can also be augmented. Thus, 

the platelet modulation was only observed in terms of the inhibitory responses. 

Heparin induced thrombocytopenia is an increasingly common side-effect of 

heparin therapy. In patients with HIT, heparin administration results in a dramatic 

decrease in platelet number due to consumption. HIT patients rarely bleed, but rather 

present with arterial thrombi which can lead to loss of limb or life. The mechanism for 

this pathology is largely unknown. Current hypotheses suggest that upon administration, 

heparin combines with endogenous platelet factor 4 to fonn. a neoantigen (Chong et al., 

1982). The antibody to heparin-PF4 activates platelets via the Fella receptor (Chong et 

al., 1993). The endothelium is also postulated to play a role in this process. Quantities 

of this epitope can be measured using a highly sensitive ELISA method. The initial 

results with this methodology, however, indicate a lack of correlation between clinically 

observed HIT and the generation of antibodies (Raible et al., 1995). 

Several assays are used to help make the clinical diagnosis of HIT. These 

include 14C-serotonin release assays, platelet aggregation, immunoblots, and ELISA 

assays (Walenga et al., 1996). To identify whether any of the heparin analogues were 

capable of generating a HIT response, an aggregation assay was set up in which platelet 

rich plasma from normal donors is mixed with serum collected from known HIT positive 

individuals and the heparin analogues. An aggregation response indicates the potential 
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to cause IDT. The platelet aggregation assays for IIlT are known to be effected by a 

number of variables. One is the source of the platelet rich plasma. Plasmas from all 

volunteers do not react in the same manner to IDT serum. The reason for this is not 

known, though it may be related to individual differences in platelet Fe receptor genotype 

(Warkentin et al., 1995). In a study performed on five individuals using 17 different IDT 

sera, the least aggregable PRP reacted with 29 % of the test sera while the most 

aggregable reacted with 82 % of the sera (Chong et al., 1993). In the studies with the 

heparin analogues, 5 to 10 volunteers were used for each concentration of heparin 

analogue. To account for individual variations, each analogue was tested on each donors 

plasma. Using an inappropriate heparin concentration has also been shown to reduce the 

accuracy of the assay. 

In this assay system, heparin produced a concentration dependent increase in the 

level of platelet aggregation at concentrations from 5.5 to 22 µg/mL. This corresponds 

to a heparin level of 0.9 to 3.5 U/mL. The only heparin analogue observed to cause a 

IDT response was aprosulate. As with heparin, aprosulate produced a statistically 

significant increase in the aggregation level at concentrations above 11 µg/mL. On a 

molar basis, this concentration of aprosulate is 4 .5 fold higher than the concentration of 

heparin. Neither GL-522-Y-1 nor pentasaccharide promoted a HIT response. Reports in 

the literature have indicated that the size of the heparin chain is an important factor in 

determining whether a IDT response will be generated (Greinacher et al., 1995). While 

pentasaccharide has a similar composition to heparin, :it is below the critical size to illicit 

an antigenic response. The other critical factor for the production of a IDT response by 
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heparin-like agents is the degree of sulfation. Agents with a higher degree of sulfation 

tend to produce higher amounts of HIT responses. Aprosulate contains four sulfates per 

saccharide unit, twice as many as pentasaccharide and GL-522-Y-1 on a similarly sized 

backbone. Pentasaccharide provides a suitable alternative antithrombotic agent which may 

be completely free of any heparin induced thrombocytopenic effects. This agent has 

already been compared in a large number of people using the HIT aggregation assay. 

This data indicates that it may be used as a substitute for heparin. 

The fact that pentasaccharide is devoid of any thrombocytopenic potential makes 

this analogue especially attractive for use in patients who exhibit this syndrome. 

However, because of the lower antiplatelet effects, its use may be limited for 

prophylactic indications. 

H. Antithrombotic Effects 

To study the antithrombotic activity of the heparin analogues and to determine 

the relative role of SERPIN modulation on this activity, two animal models of thrombosis 

were utilized. In the rabbit stasis thrombosis model, a hypercoagulable state is mimicked 

by administration of an activated prothrombin complex concentrate. This administration 

serves to increase plasma levels of coagulation factors II, IX and X. Additionally, it 

provides activated factor VII to initiate clot fonnation. Diminution of blood flow 

achieved by ligating the ends of the vessel segments serves to augment the prothrombotic 

environment. This thrombogenic environment simulates venous thrombosis where both 

blood flow and the activation of coagulation play a role in the development of a 
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thrombus. 

The rat jugular vein clamping model was also used to characterize the 

antithrombotic activity of each agent. In this model, endothelial damage and subsequent 

exposure of the underlying tissue leads to the formation of a prothrombotic locus. Tissue 

factor present subendothelially is exposed to the flowing blood where it can complex with 

FVII and initiate coagulation. Additionally, collagen from the vessel wall can activate 

platelets. Blood flow through the damaged area is partially maintained in this model. 

With both models, studies were perfonned during the light cycles of the animals. 

Several studies have examined the effect of circadian rhythm on the hemostatic system. 

Studies in man have indicated that the time of venepuncture does not influence the plasma 

levels of factor VII or fibrinogen (Miller et al., 1995). Additionally, it has been shown 

that the level of platelet aggregation and blood coagulation are increased during the 

morning hours, whereas fibrinolytic activity was observed to be decreased at this time 

of day (Decousus et al., 1991). In a study perfonned in rats, levels of factors II, VII and 

X were observed to be higher during the light cycle whereas factor IX levels were not 

influenced by the time of day (Soulban et al., 1989). The levels of factor V and ATIII 

in humans have also shown no circadian variations (Haus et al., 1990). The effect of 

heparin administered by constant infusion has been shown to peak in the early morning 

and to have its minimal effect around noon (Krulder et al., 1994). It has been suggested 

that the extent of circadian change in the hemostatic system is not of sufficient magnitude 

to cause diagnostic problems (Haus et al., 1990) and that further studies are need to 

ascertain the clinical significance of such variations (Labrecque et al., 1991). During the 



270 

course of the studies performed here, significant differences in antithrombotic activity in 

animals treated in the morning or afternoon were not observed. 

Ever since its introduction by Wessler, the rabbit model of jugular stasis 

thrombosis has been extensively used for the pbannacologic screening of antithrombotic 

agents (Wessler et al., 1959). The development of low molecular weight heparins was 

facilitated by the use of this model The phannacod ynamk effects of antithrombotic 

agents have also been investigated using this model and by analyzing blood samples post

administration. While several different thrombogenic triggers have been used (Fareed et 

al., 1985), in this investigation, a commercially available activated prothrombin complex 

concentrate (FEIBA®) was employed. These complexes provide a uniform activation of 

the coagulation process in which the inhibitory effects of heparin and its analogues can 

be readily assessed. 

The antithrombotic activity of each agent was detennined in the rabbit stasis 

thrombosis model following a 10 and 20 minute stasis period. The prothrombotic 

environment was much stronger following 20 minutes stasis than after only 10 minutes 

as evidenced by the mean clot score of 3.6 after 20 minutes versus 2.9 after 10 minutes. 

The longer period of stasis led to a larger generation of activated coagulation factors. All 

agents were tested following intravenous administration and a 5 minute circulation time. 

By using this route of administration and short circulation time, little clearance or 

metabolism of each of the heparin analogues is likely to have occurred. In this system, 

each agent produced a dose-dependent reduction in thrombus formation. Despite differing 

mechanisms of action, each agent is able to completely suppress thrombogenesis when 
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administered at the appropriate dose. The most potent agents were those which were 

capable of mediating protease inhibition via antithrombin m. Both heparin and 

pentasaccharide were notably more potent than either aprosulate or GL-522-Y-1. While 

the sole inhibition of factor Xa was observed to be effective for limiting thrombogenesis, 

concurrent inhibition of thrombin was seen to enhance antithrombotic activity. The 

apparent ED50 following intravenous administration for pentasaccharide was 20.6 

nmoVkg, while that for heparin was 1.7 nmol/kg. 

The relative antithrombotic actions of aprosulate and GL-522-Y -1 were 

considerably weaker than that of heparin. On a molar basis, the antithrombotic potencies 

of aprosulate and GL-522-Y-1 were observed to be 55 and 390 fold lower than the 

potency of heparin, respectively. The most likely explanation for this finding is the 

multiple sites at which the heparin-ATIII complex is capable of producing its action. 

While the heparin-ATIII complex can inhibit Yarious serine proteases to differing 

degrees, thrombin is the only coagulation protease known to be inhibited by HCII 

(Tollefsen, 1989). A certain degree of this difference may also be due to the kinetic 

differences in protease inhibition by the different SERPINs. To elucidate the role of 

kinetics, an agent with sole ability to inhibit thrombin via antithrombin III would be 

required. No such agent is currently available. In Light of the similar SERPIN profile of 

GL-522-Y-1 and aprosulate, it was surprising to observe the 7 fold difference in 

antithrombotic potency of these agents. The lower potency antithrombotic activity of GL-

522-Y-1 is understandable when considering the in virro anticoagulant activity of these 

agents. When a maximal intravenous dose of 5 mglkg GL-522-Y-1 was administered to 
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the rabbits, a plasma concentration no more than 100 µ.g/mL would be expected. At these 

concentrations, GL-522-Y-1 produced no plasmatic anticoagulant effect after in vitro 

supplementation to rabbit pool plasma. It is evident from these observations that the in 

vitro antiprotease activity of these agents may not be the sole mediator of the 

antithrombotic effect. 

The stronger prothrombotic environment was evident after 20 minutes stasis 

time. A weaker antithrombotic activity was observed with each agent though the same 

rank order potency was observed. Only with the highest doses of each agent was a 

significant antithrombotic action observed. For heparin, a weak progressive 

antithrombotic activity was observed at doses ranging from 0. 6 to 2.4 nmol/kg. At doses 

higher than 2.4 nmol/kg was a significant antithrombotic activity observed. No effect on 

clot score was observed with pentasaccharide doses up to 29 nmol/kg. ED50 values 

extrapolated from the dose-response curves for heparin and pentasaccharide were 

approximately 2 fold higher following 20 minutes stasis time than were calculated 

following 10 minutes stasis. ED50 values for aprosulate and GL-522-Y-1 could not be 

calculated from this data due to the relative :ineffecHveness of these agents. GL-522-Y-1 

was particularly ineffective in preventing thrombus formation as clot scores below + 3 

were not observed. 

It is of interest to note that the relative antithrombotic effects of heparin did 

differ at 10 and 20 minutes stasis time and the ED5()s were in close proximity. In the case 

of pentasaccharide, a lag in the antithrombotic response at the lower doses was noted. 

Similarly, the antithrombotic actions of aprosulate and GL-52-Y-l were considerably 
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lower when the 20 minute endpoint was used. This data clearly suggests that in contrast 

to heparin, which is a polycomponent drug, the heparin analogues did not exhibit a 

buffering capacity for the stronger thrombogenic environment. Thus, additional factors 

which may play a role in a prolonged thrombogenesis may not be inhibited by ATilI or 

HCII. 

When an antithrombotic agent is administered subcutaneously, pharmacokinetic 

and bioavailability considerations become important in assessing the observed 

antithrombotic activity. Plasma drug levels are influenced by the extent of drug 

absorption as well as the time needed for the absorption to occur. Drug absorption and 

drug metabolism may occur simultaneously following subcutaneous administration. In 

these studies, each agent was administered subcutaneously two hours prior to the 

initiation of thrombus formation. As with the intravenous studies, all agents produced 

dose-dependent but weaker antithrombotic effects. The dose-range where each agent was 

effective was higher following subcutaneous administration than following intravenous 

administration. The subcutaneous absorption of each synthetic analogue was better than 

that of heparin. Ratios of the ED5()s following subcutaneous and intravenous 

administration were calculated to compare the absorption of each agent. This ratio was 

lowest for pentasaccharide, where less than 6 fold higher doses were required 

subcutaneously compared to intravenous administration. Ratios of 18.6, 23.6 and 25.3 

were determined for GL-522-Y-l, aprosulate, and heparin, respectively. This was most 

dramatically seen with the pentasaccharide whose potency was less than three fold lower 

than heparin following subcutaneous administration, but 12 fold lower following 
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intravenous administration. 

When the ratios of the subcutaneous and the intravenous antithrombotic effects 

at a single time point (5 minutes for IV and 120 minutes for SC) were calculated, 

heparin, aprosulate, and GL-522-Y-l exhibited a similar behavior. Pentasaccharide 

exhibited a considerably smaller ratio. While these studies do not predict bioavailability, 

they suggest that pentasaccharide's behavior in producing an antithrombotic response was 

distinct from the other analogues. This data also suggests that at the time points of the 

observation, pentasaccharide was absorbed to a greater degree than the other agents 

studied. 

As with the intravenous studies, a twenty minute stasis period produced a 

stronger thrombogenic challenge. Aprosulate, heparin and pentasaccharide produced 

dose-dependent antithrombotic effects following subcutaneous administration and 20 

minutes stasis time. An ED50 value for GL-522-Y-l was not detennined as it failed to 

prevent thrombus formation after 20 minutes stasis. Pentasaccharide and heparin were 

relatively stronger in inhibiting clot formation, with ED50 values of 0.067 and 0.289 

µmollkg, respectively. Aprosulate was at least 10 fold less potent with an ED50 value of 

2. 6 µmol/kg. For aprosulate and heparin, the ED5() value calculated from the dose

response curves following 20 minutes stasis were nearly equal to those determined 

following 10 minutes stasis. The ED50 value for pentasaccharide was more than two fold 

higher following 20 minutes stasis compared to 10 minutes stasis. 

Heparin is conventionally standardized in tenns of United States Pharmacopoeia! 

(USP) units per milligram (van Dedem et al. , 1981). No standardization methods for any 
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of the analogues studied here have been made available. All of these agents are known 

to produce specific effects but their potency relative to heparin can not be measured using 

the USP assay. Most of these agents exhibit less than 5 USP units/mg potency. Thus, the 

results of the inhibitory actions can not be compared in biologically standardized manner. 

On a gravimetric basis, pentasaccharide and GL-522-Y-1 exhibit comparable 

mass whereas that of aprosulate was nearly two fold higher. On the other hand, heparin 

has a 4 to 5 fold higher molecular mass. While a direct comparison of the analogues on 

a molar basis is valid, in the case of heparin, due to the presence of different molecular 

species ranging in molecular mass for 1,000 to 50,000 Da, and varying in their 

proportions, this comparison may not be entirely valid. Since the interaction of heparin 

with ATIII and HCII is known to occur stoichiometrically, the comparison of these 

agents on a molar basis may be relevant. The antithrombotic activities of these agents are 

also depicted in gravimetric amounts in the individual tables. It should be noted that 

potency ratios markedly change when the results are calculated in terms of gravimetric 

doses. For pharmacologic comparisons, the molar doses of each agent appear ideal. For 

clinical applications, a gravimetric dosage is more conventionally accepted. 

SERPIN affinity did not predict the duration of anti thrombotic activity. In a 

time-dependent study, doses of each agent which exhibited equal antithrombotic activity 

were administered intravenously to rabbits and stasis was induced at various time points 

following administration. In interpreting the data from this study, it is important to note 

that the doses used for each agent were different. More than 10 fold more 

pentasaccharide on a molar basis was used to achieve the equivalent antithrombotic effect 
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of heparin. While pentasaccharide has been shown to exhibit a prolonged elimination 

half-life in humans (Boneu et al., 1995), a molar equivalent dosage of heparin 

administered to rabbits would also be expected to exhibit a prolonged antithrombotic 

effect as the elimination of heparin is known to be dose dependent (Gilman et al., 1985). 

Administration of such a dose of heparin, however, would most likely be limited 

by its hemorrhagic tendencies. At doses which were antithrombotically equivalent, 

pentasaccharide was observed to have the longest duration of antithrombotic activity of 

any of the agents tested, producing a significant antithrombotic effect 6 hours post

administration. It has been shown previously that ATIIl bound pentasaccharide has a 

similar half-life to native antithrombin ill (van Amsterdam, 1994) while unbound 

pentasaccharide is rapidly cleared from the circulation. ATilI affinity alone, however, 

does not ensure a long plasma half-life. The antithrombotic activity of heparin was 

rapidly diminished. By 60 minutes, clot scores were nearly at baseline levels. Aprosulate 

and GL-522-Y-1 exhibited effective antithrombotic activity for time periods between the 

duration of action of heparin and pentasaccharide. 

To compare the duration of the antithrombotic effect of each agent following 

intravenous administration, the time to reach a half maximal clot score ( + 1.45) was 

determined. Heparin exhibited the shortest duration of action. Following a 30 minute 

circulation time, clot scores of 1.5 were achieved. The duration of activity for aprosulate 

and GL-522-Y-1 were 2 to 3 fold longer than heparin. Pentasaccharide exhibited the 

longest duration of activity. A circulation time of nearly 3 hours was required before clot 

scores returned to half maximal levels. Following a 20 minute stasis period, the loss of 



277 

antithrombotic activity occurred more rapidly. For pentasaccharide, a half maximal clot 

score was attained after a 40 minute circulation time. The 22 minute time calculated for 

heparin was nearly the same as following 10 minutes stasis. Neither aprosulate nor GL-

522-Y-1 produced clot scores which were below + 1. 8 after any circulation times. 

The time course of antithrombotic activity was also determined following 

subcutaneous administration. At the doses chosen, GL-522-Y-1, heparin, and 

pentasaccharide produced identical antithrombotic activity after a 2 hour circulation time. 

Aprosulate produced a stronger antithrombotic action at 2 hours. This difference was not 

statistically significant. Heparin exhibited the shortest duration of antithrombotic efficacy, 

with clot scores returning to half maximal values following a circulation time of 160 

minutes. GL-522-Y-1 and pentasaccharide requrred somewhat longer times to return to 

the half maximal clot score. Aprosulate exhibited the longest duration of activity. This 

is likely related to the increased activity observed after 2 hours circulation time. 

Following 20 minutes stasis time, only aprosulate decreased clot scores below the half 

maximal value of + 1.8 after a 2 hour circulation time. With aprosulate, the time to 

return to a half maximal clot score was more than 4 hours. 

Anticoagulant activity was measured in blood samples obtained during the course 

of the stasis thrombosis experiments in order to determine the relative importance of 

these effects on the antithrombotic activity. Anticoagulant activity was determined in 

whole blood using the ACT and TEG and in platelet poor plasma samples using global 

clotting assays. Following intravenous administration, the ACT was dose dependently 

increased by aprosulate and GL-522-Y-1, This increase in anticoagulant activity was 
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correlated with the antithrombotic activity observed at these doses (r = 0.96 and 0.99 

for aprosulate and GL-522-Y-1, respectively). Neither heparin nor pentasaccharide 

produced significant increases in the clotting time following intravenous administration. 

The ACT values for animals treated with these agents did not correlate well with the 

antithrombotic activity observed. Clinically, the ACT is used to monitor high dose 

heparin therapy. In these situations, a clotting time of 300 seconds is considered to reflect 

a complete anticoagulant state. This clotting time corresponds to an approximate heparin 

concentration of 2 to 3 U/mL. The doses used in this study are, however, to low to cause 

an increase in the clotting time. The highest dose of heparin used was 50 µglkg. By 

estimating the blood volume of a rabbit to be approximately 50 mLs/kg (Schalm et al., 

1975), the maximal heparin concentration to be expected based on this assumption was 

1 µg/kg ( = 0.1 U/mL). 

Following subcutaneous administration, theantithrombotic activity of GL-522-Y

l also demonstrated a strong correlation with the ACT determined ex vivo (r = 0.99). 

As in the intravenous studies, heparin treatment did not result in a strong correlation. 

The increase in ACT produced by pentasaccharide correlated with the antithrombotic 

activity (r = 0.90). The doses of pentasaccharide administered subcutaneously were five 

times higher than those in the intravenous study. Because of pentasaccharide's high 

bioavailability and slow clearance, plasma pentasaccharide levels were likely higher 

following subcutaneous administration than after intravenous administration. ACT 

measurements in native whole blood provide a more physiologic method to assess the 

anticoagulant actions of various agents. 
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The anticoagulant activity in whole blood was also determined using the TEG. 

The time to initial clot fonnation (R-time) was correlated with antithrombotic activity. 

For aprosulate and GL-522-Y-1, this correlation was high following intravenous 

administration (r = 0.91and0.99 foraprosulate and GL-522-Y-l, respectively). As with 

the ACT, heparin displayed a poorer correlation. Pentasaccharide did not produce a dose

dependent increase in R-time following intravenous administration. Following 

subcutaneous administration, GL-522-Y-l demonstrated a weak dose-dependent increase 

in R-time which correlated well with antithrombotic activity (r = 0.98). Neither heparin 

nor pentasaccharide administration produced as good a correlation. 

Ex vivo anticoagulant responses were also determined on plasma samples using 

the global clotting assays. None of the agents was able to dose-dependently prolong the 

prothrombin time following either intravenous or subcutaneous administration. It was 

observed in vitro that of these agents, only heparin demonstrated a weak prolongation of 

the clotting time in this assay. The doses used in the rabbits were, however, too low to 

cause an anticoagulant effect measurable by the PT. The prothrombin time in nonnal 

rabbit plasma was significantly increased by heparin only a concentrations above 6 

µglmL. 

Using the APTT assay, only aprosulate produced a significant dose-dependent 

increase in clotting time. The anticoagulant activity of aprosulate correlated with the 

antithrombotic activity (r = 0.85). The AP'IT was not a sensitive measure of the activity 

of GL-522-Y-1 or pentasaccharide. While the APIT is used clinically to monitor heparin 

therapy, higher levels of heparin are needed to significantly prolong the clotting time. 
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Heparin exhibited a dose-dependent increase in AP1T following subcutaneous 

administration (r = 0.98) which correlated to the antithrombotic activity. 

In the Heptest®, coagulation is initiated by the addition of activated factor X to 

the test plasma. Agents capable of inhibiting this factor Xa would be expected to prolong 

the clotting time. Following both intravenous and subcutaneous administration of heparin 

and pentasaccharide, the Heptest® clotting time was dose-dependently prolonged. This 

dose-dependent anticoagulant state was correlated with antithrombotic activity for both 

agents (r > 0.90). 

The inhibition of thrombin as measured by the 2. 5 U thrombin time was 

correlated with antithrombotic activity of all agents with the exception of pentasaccharide. 

Following intravenous administration, aprosulate, GL-522-Y-1, and heparin all dose

dependently increased thrombin inhibition. The inhibition of thrombin correlated well 

with the antithrombotic activity (r > 0.90). Following subcutaneous administration, only 

heparin treatment led to an increase in thrombin inhibition which correlated with 

antithrombotic activity. 

The release of TFPI was measured in rabbit plasma samples obtained during the 

course of the intravenous dose-response studies with the stasis thrombosis model. For this 

analysis, samples from rabbits treated with the highest dose of each agent were analyzed. 

At these doses, equivalent antithrombotic activity was observed. To measure the TFPI 

levels, a functional assay was modified which was based on the assay of Sandset (Sandset 

et al, 1987). In this assay, incubation times were lengthened to compensate for the 

decreased anticoagulant potency of rabbit TFPI (Warn-Cramer et al., 1992). Aprosulate, 
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GL-522-Y-l, and pentasaccharide produced mild, statistically insignificant increases in 

the TFPI levels post-administration despite being administered at higher gravimetric 

dosages than heparin. This is in contrast to the stronger release observed with these 

agents in other species (Jeske et al., 1995). Heparin was the only agent which 

significantly increased TFPI levels relative to control treatment. 

The e.t vivo pharmacologic studies pe:rf onned on the blood samples collected 

from animals treated with heparin or its analogues, were suggestive of the relevance of 

plasmatic effects of each agent to their antithrombotic activity. The degree of thrombin 

or Xa inhibition was not proportional to the expected antithrombotic activity using 

heparin as a reference drug. This again suggests that heparin is a polyfunctional drug 

targeting multiple sites while the analogues produce their actions at certain sites related 

to their affinity and specificity for various cofactors. For each analogue, a distinct e.t vivo 

assay effect-antithrombotic response is obtained. Thus a single assay to predict the 

antithrombotic actions of heparin and its analogues may not be practical. 

The e.t vivo analysis also indicates that the vascular interactions of heparin and 

its analogues are not measurable by ex vivo assays. The TFPI release is also agent 

specific. Additional effects on platelets and white cells may also be contributing to the 

antithrombotic actions of these agents. 

The formation of a thrombus may not be solely induced by a plasmatic 

hypercoagulable state. In the normal vasculature, the intact endothelium provides a 

nonthrombogenic surface over which the blood flows. The nonthrombogenic properties 

of the endothelium are in part due to release of such agents as prostacyclin which 
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prevents platelet aggregation, the presence of TFPI and heparin-like glycosaminoglycans, 

and the synthesis of fibrinolytic activators (Roberts et al., 1992). Disruption of the 

endothelium not only limits the beneficial effects enumerated above, but also exposes 

subendothelial tissue factor and collagen which serve to activate the coagulation and 

platelet processes, respectively. This process was modelled using a rat model of jugular 

vein clamping. In this model, repeated clamping of the jugular vein with a hemostat 

causes endothelial disruption. This vessel damage has previously been shown 

histologically (Raake et al., 1989). These studies clearly demonstrated endothelial damage 

which eventually results in the exposure of collagen and tissue factor. The number of 

clampings required to cause vascular occlusion are an index of antithrombotic activity. 

For this study, an experimental procedure was stopped when the clamping number 

reached 15. Above 15 clampings, excessive mechanical damage of the vessel led to 

bleeding from the clamping site, preventing an accurate dete.nnination of the time for 

thrombus formation. Potency was assessed in this model by determining the dose 

required to double the number of clampings needed in saline treated rats to cause 

vascular occlusion. 

Intravenous and subcutaneous treatment protocols were used to study the 

antithrombotic properties of the heparin analogues in response to this thrombogenic 

trigger. Following intravenous administration, each agent exhibited a dose-dependent 

increase in the number of vascular clampings required to induce thrombus formation. The 

same rank order potency was observed as in the stasis thrombosis model with heparin 

being the most potent of the agents studied. The effective doses in the jugular vein 
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clamping model were higher than the doses required prevent clot formation in the stasis 

thrombosis model. 25 nmol/kg heparin was required to double control clamping numbers. 

Pentasaccharide, aprosulate, and GL-522-Y-1 were 3, 12, and 150 fold less potent than 

heparin, respectively. For each agent this dose exceeded the dose in the stasis thrombosis 

model which completely inhibited clot formation following intravenous administration. 

In the subcutaneous administration protocol, the pharrnacologic activity of 

heparin was hindered by its low bioavailability. Pentasaccharide was the most potent 

agent with this treatment protocol. The dose of pentasaccharide which doubled the 

baseline clamping number following subcutaneous administration was only 50 % higher 

than the dose determined following intravenous administration. GL-522-Y-1 was also 

well absorbed following subcutaneous administration. The dose to double baseline was 

less than two fold higher than the dose producing the same effect following intravenous 

administration. Heparin was nearly as potent as pentasaccharide following subcutaneous 

administration. The dose to double the number of baseline clampings, however, was 

nearly 6 fold higher than the dose determined following intravenous administration. 

The antithrombotic profile of heparin and its analogues is also highly suggestive 

that non-serpin mediated actions contribute to the overall mechanism of heparin and its 

analogues. TFPI and other release mediators are known to significantly modulate these 

effects. Additional factors such as the modulation of selectin may also contribute to the 

antithrombotic actions of these agents. 
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I. Hemorrha~ic Effects 

Hemorrhagic complications are associated with anticoagulant therapy and to a 

greater degree when an anticoagulant in overdosed. Most commonly, this bleeding 

tendency is observed as oozing from a surgical incision or from a site of catheter 

insertion. To mimic these clinical situations a rabbit ear bleeding model was utilized 

which has previously been used to measure the hemorrhagic tendency of a wide variety 

of anticoagulant agents (Cade et al., 1984). In this model, five incisions were made in 

the rabbit ear avoiding major vessels. Red blood cells were collected in a saline bath for 

a standard amount of time and quantitated by hemocytometer. 

The dose-response relationship was determined following intravenous 

administration of each agent. A bleeding index was determined to compare the potency 

of these agents. The bleeding index was calculated as the dose which elicited the loss of 

threefold more blood cells than observed in saline treated rabbits. Heparin and GL-522-

Y- l were observed to dose-dependently increase blood loss. For heparin, a bleeding 

index of 45 nmol/kg was determined. This dose was nearly 10 fold higher than the dose 

of heparin which completely inhibited clot fonnation in the stasis thrombosis model. For 

GL-522-Y-l, a bleeding index of 1.8 µ.mol!kg was determined. In the rabbit stasis 

thrombosis model, this dose did not to completely inhibit clot formation following 

intravenous administration. By comparing the slopes of the blood cell vs. dose curves for 

GL-522-Y-l and heparin, it is noted that heparin produces a more potent hemorrhagic 

effect. A slope of 2.5 x 109 RBCs!Ll(µ.moUkg) was determined. For GL-522-Y-l, a 

slope of 0.13 x 109 RBCs/L/(µmol/kg) was determined. Aprosulate doubled the amount 
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of blood loss relative to saline treatment. This increase was not dose-dependent over the 

dose range studied. Pentasaccharide did not significantly increase the amount of blood 

loss in this model at doses 50 fold higher than the dose which was completely effective 

in the stasis thrombosis model. 

In the subcutaneous administration protocol, both heparin and GL-522-Y-1 

produced a hemorrhagic effect. As following intravenous administration, the bleeding 

index for heparin was higher than the antithrombotically effective dose ( = 7 fold). For 

GL-522-Y-1, the dose determined for the bleeding index was antithrombotically 

ineffective in the stasis thrombosis model. Aprosulate administration promoted a 

statistically significant increase in bleeding at doses above 4 µmol/kg. Blood loss did not 

reach levels of 3 fold baseline at doses below 8 .4 1tmol/kg. Pentasaccharide did not 

produce a significant blood loss a dose 40 fold higher than that which was completely 

effective in the stasis thrombosis model. 

The time dependence on blood loss was exammed following intravenous and 

subcutaneous administration. At five minutes post-mtravenous administration, heparin, 

GL-522-Y-l, and aprosulate produced statistically significant mcreases in blood loss. By 

60 minutes post-administration, neither heparin nor aprosulate produced a significant 

blood loss. GL-522-Y-1 was observed to have a longer duration of hemorrhagic effects 

than the other agents. GL-522-Y-1 significantly increased bleeding at time points out to 

120 minutes post-intravenous administration and followmg subcutaneous administration, 

GL-522-Y-1 induced blood loss which was progressively decreased such that by 6 hours 

baseline values were observed. 
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It has been shown that the topical administration od heparin results in enhanced 

bleeding from small blood vessels (Cruz et al., 1967). As the hemorrhagic tendencies 

persisted following irrigation of the wound, it was suggested that heparin may be binding 

to a specific site in the wound. Heparin was shown to inhibit the hydrolysis of ATP by 

myosin ATPase (Cruz et al., 1967) and subsequently it was demonstrated that heparin 

binds to myosin ATPase with high affinity (Tersariol et al., 1992). It was also shown in 

human patients that topical administration of ATP reduces blood loss produced by 

heparin following cardiopulmonary bypass operations (Garcia et al., 1994). ATP is 

believed to displace heparin from the surgical lesions which may be related to its 

hemorrhagic actions. 

To determine the relative safety of each agent, the bleeding index was divided 

by the ED50 calculated from the dose response curves m the stasis thrombosis model. 

Following intravenous administration, a ratio of 26.5 was calculated for heparin. The 

ratio for GL-522-Y-1 was nearly 10 fold lower than calculated for heparin. Exact values 

could not be determined for aprosulate and pentasaccharide due to their minimal bleeding 

effects. Based on the data obtained, aprosulate was at least as safe as heparin with a ratio 

calculated to be greater than 22. Pentasaccharide was much safer than any of the other 

agents tested with a ratio calculated to be greater than 140 following intravenous 

administration. Following subcutaneous administration, the ratio calculated for heparin 

was lower than following intravenous administration. This ratio was determined to be 15. 

The ratio for GL-522-Y-1 could not be calculated as all doses tested produced 

hemorrhagic effects greater than the bleeding index level Due to low levels of bleeding, 
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exact ratios for aprosulate and pentasaccharide could not be determined. 

From these studies, it appears that hemorrhagic actions can be separated from 

anticoagulant and antithrombotic activities. While heparin was the most potent 

antithrombotic agent and exhibited anticoagulant activity in all global assays, it did not 

promote bleeding at antithrombotically effective doses. Pentasaccharide also displayed 

potent antithrombotic activity in both animal models and a similar anti-Xa activity as 

heparin, yet did not promote bleeding at doses more than 10 fold higher than those which 

were antithrombotically effective. Aprosulate also did not promote a dose-dependent 

bleeding effect despite requiring higher doses than heparin or pentasaccharide to prevent 

thrombus formation (Sugidachi et al., 1993). This is m contrast to GL-522-Y-l which 

promoted a strong hemorrhagic effect at doses which did not completely block thrombus 

formation. 

.I. Structure Adivity Relationship 

From the obvervations on the bleeding actions of heparin and its analogues, it 

is obvious that non-plasmatic processes also contribute to the bleeding effects. The 

release of TFPI and other vascular modulation may be important and should be 

investigated further. Because of the relatively inert effects of pentasaccharide in the 

bleeding models, it can be stated that agents with direct anti-Xa effects may not produce 

bleeding effects. 

Heparin's chemical structure is complex in nature, contaIDing iduronic acid 

residues which can adopt a number of energetically favorable solution conformations as 
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well as varyingly placed sulfate groups which result in a high degree of polyanionic 

character (Torri et al., 1985). On the other hand, sulfated glucuronic acid and 

glucosamine residues behave differently. These physicochemical characteristics of heparin 

allow it to interact with a variety of endogenous proteins and cellular sites. 

The interaction with ATIII is dependent upon a specific sequence. The ATill 

binding sequence represents a specific consensus region which is mimicked by the 

synthetic pentasaccharide in this dissertation. The :interaction with other proteins such as 

HCII and tissue factor pathway inhibitor is dependent on other characteristics such as 

charge density and molecular size. One report has shown that a hexasaccharide 

component of heparin exhibits a high specific activjty when determined with purified 

HCII (Linhardt et al., 1986). Additional studies designed to discover a minimal sequence 

which activates HCII have not confinned this find:ing (Maimone et al., 1988). By 

designing agents which mimic various structural features of heparin, it is possible to 

mimic some of the specific biologic functions of this agent. Pentasaccharide, aprosulate, 

and GL-522-Y-1 are different analogues wrnch were designed using such rationales. 

Additional strategies include hypersulfation of naturally occurring polymers 

resulting in such products as pentosan polysulfate and MPS. These agents still exhibit 

structural heterogeneity and produce their pharmacologic effects at several sites. Thus, 

these agents would not be suitable to determine the structure activity relationship in 

heparin. These agents have been investigated for their non-ATIII mediated effects. 

The synthetic analogues used in this research offer specific probes to delineate 

the role of SERPINs as well as the degree of sulfation on the biologic effects of heparin. 
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The heparin analogues chosen for these studies exhibit more selective interactions with 

the endogenous inhibitors ATIII and HCII than heparin. In addition, while the anionic 

character of both pentasaccharide and aprosulate is derived from sulfate groups as in 

heparin, GL-522-Y-1 possesses sulfonate groups. 

The synthetic pentasaccharide represents the minimal heparin sequence which 

binds ATIII with high affinity. It was shown by fractionation of native heparin that this 

sequence was required for the activation of ATIII (Rosenberg et al., 1979; Lindahl et al., 

1979; Choay et al., 1980). This irregular sequence of heparin contains a single 

glucosamine unit which is sulfated at the 3-0 position and gives heparin its ability to bind 

ATIII (Atha et al., 1985; Petitou, 1984). Removal of this sulfate group has been shown 

to abolish the interaction of pentasaccharide with ATIII. Due to its low molecular weight, 

pentasaccharide-ATIII complexes only inhibit Xa and Xa amplified processes. It was 

speculated that due to the critical role of Xa in the formation of thrombin, a specific Xa 

inhibitor would be an effective antithrom botic agent. This agent is currently in phase II 

clinical development for the prophylaxis of deep venous thrombosis. Additional 

indications for its use may include the prophylaxis or treatment of arterial thrombosis and 

the treatment of stroke. Initial studies have also demonstrated that pentasaccharide may 

be useful in preventing clotting in extracorporeal circuits such as in hemodialysis. 

Because of its low molecular weight, pentasaccharide exhibits an almost 100 % 

bioavailability after subcutaneous administration. Additional molecular manipulations of 

pentasaccharide have resulted in the development of" super pentasaccharides" with higher 

anti-Xa potencies (up to 1200 U/mg) and much longer hall-lives (Meuleman et al., 
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1991). These pentasaccharide derivatives are made by adding additional 3-0 sulfate 

groups to the other glucosamine residues of the molecule. Kinetics studies with these 

derivatives has indicated that the increased anti-Xa potencies observed are primarily due 

to an increase in ATIII affinity brought about by the addition of 3-0 sulfate groups. It 

is therefore projected that several pentasaccharide analogues will be developed for 

indication specific applications in thrombotic and cardiovascular disorders (Carrie et al., 

1994). 

It remains speculative as to the potential that the super pentasaccharides may 

release TFPI upon administration. It has been shown in this work and in the work of 

others (Boneu et al., 1995) that plasma TFPI levels are not affected by pentasaccharide 

administration. It is also known, however, that the release of TFPI into the plasma is 

dependent upon the anionic charge density of the glycosarninoglysan. In addition, it has 

been shown in this dissertation that low molecular weight polyanions of high charge 

density release TFPI. One could, therefore, hypothesize that the superpentasaccharides 

may also be releasers of TFPI. 

Aprosulate is produced from low molecular weight building blocks with the 

purpose of creating an agent which is antithrombotic yet exhibits reduced anticoagulant 

activity. The high sulfate content of this agent not only allows for its interaction with 

plasma proteins, but also eliminates structural heterogeneity. which can preclude dosing 

of the agent on a gravimetric basis. 

Aprosulate provided a unique tool to differentially investigate the role of HCII 

in the mediation of the antithrombotic actions of heparin. Owing to its low molecular 
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weight and high degree of sulfation, this agent mimicked heparin and produced sizable 

antithrombotic actions in various models which warranted its clinical development. 

Aprosulate also produced a sizable release of TFPI from vascular sites. This observation 

confirmed the role of charge density on TFPI release as pentasaccharide did not produce 

the same effect. Despite a similar molecular weight to pentasaccharide, the function of 

aprosulate differed markedly from pentasaccharide and provided a tool to differentiate 

the activity of this agent in terms of HCII activity. The clinical development of this agent 

and its analogues is in progress and is contingent upon a favorable safety to efficacy 

ratio. 

GL-522-Y-1 is an aromatic polysulfonate whose structure is markedly different 

from aprosulate and pentasaccharide. Studies with other sulfonate containing polymers, 

most notably polyvinyl sulfonate, have indicated that such agents provide an 

antithrombotic surface when they are surface immobilized. This molecule provided a tool 

where the functional properties of a different type of sulfoxide group can be studied. One 

of the objectives for studying this agent was to investigate the vascular uptake and 

endogenous binding of sulfur containing agents in the mediation of antithrombotic 

actions. 

In the GPC studies, it is clear that this agent is capable of binding to solid 

matrices. It appears that sulfonate containing molecules can also produce antithrombotic 

effects. This agent also provided evidence that the activation of HCII is not specific to 

sulfate molecules, but also sulfonate moieties. Polysulfonates have been developed as 

antiviral agents but have also shown their antithrombotic and hemostatic compromising 
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actions. These agents, therefore, can also mimic some of heparin's actions. Currently, 

polysulfonates are developed for various indications including the production of non

thrombogenic surfaces. 

Sulfate groups play an important role in mediating the biologic activities of 

glycosaminoglycans. Desulfated heparins exhibit weaker anticoagulant and antithrombotic 

activities than their normally sulfated precursors. Sulfate groups on heparin have been 

shown to interact with positively charged amino acids of ATIII. Loss of one sulfate group 

in particular has been shown to completely abrogate the anticoagulant and antithrombotic 

activity of pentasaccharide while oversulfation has been shown to increase the affinity of 

the molecule for ATIII and to increase the anti-Xa potency of this agent. Increased 

sulfate content also results in higher affinity to HCII and increases the release of TFPI 

from vascular stores. Sulfate content is also thought to detennine an agent's potential to 

cause heparin induced thrombocytopenia. Higher sulfate content leads to a larger IDT 

response (Greinacher et al., 1992). The degree and type of sulfation was observed to 

determine the effects of glycosaminoglycans on platelet and leukocyte function (Rajtar 

et al., 1993). For many of these effects, the saccharidic backbone of the agent is not as 

important as its anionic character. Other negatively charged agents such as defibrotide 

which derive their polyanionic character from phosphate groups are also known to 

modulate the vascular system. 

The synthetic analogues used in these studies were of similar size, but of 

distinctly different structure. GL-522-Y-l contains an aromatic backbone whereas 

pentasaccharide and aprosulate and saccharidic in nature. Different sugar residues make 
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up pentasaccharide and aprosulate and the conformational characteristics of the agents are 

different. The higher molecular weight of aprosulate relative to GL-522-Y-1 and 

pentasaccharide is largely due to the additional sulfate residues it contains. The distinct 

chemical structures of these agents translate into differing biologic profiles. 

Each of the synthetic analogues is single targeting with respect to the plasma 

SERPINs ATIII and HCil. In both in vitro anticoagulant assays and in vivo 

antithrombotic models, such single targeting agents were less potent than heparin. The 

importance of ATIII is observed in both models of thrombosis. In each case, the agents 

which were capable of inhibiting serine proteases vfa ATIII exhibited more potent 

antithrombotic activity than those that did not. ln this case, the single targeting of factor 

Xa provided a potent inhibition of thrombogenesis. Additional increases in the chain 

length of pentasaccharide may provide further evidence on the differential role of 

thrombin and Xa inhibition in the control of thrombogenesis. Hypersulfation of 

pentasaccharide may also further support the role of charge density in the release of TFPI 

and the interaction with HCil. Additional manipulations of the structure of 

pentasaccharide may provide a useful approach in the development of heparin analogues 

with specific therapeutic applications. 

Sole targeting of HCil produces a distinctly weaker in vivo biologic effect than 

that observed following the activation of A TIIl. This can be the result of HCil' s ability 

to only inhibit thrombin as opposed to the multiple sites of inhibition of ATIII. In 

addition, the widely differing biologic profiles of GL-522-Y-1 and aprosulate suggest the 

importance of other factors in mediating the actions of these agents. One such action may 
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be the inhibition of the factor IXa/VIIla complex. Aprosulate was observed to inhibit this 

function 20 fold more potently than GL-522-Y-l. A second possible difference in the 

mechanisms of action of these agents is their interaction with TFPI. Both agents have 

been shown to increase plasma TFPI levels following administration. Reports in the 

literature have shown that heparin and other glycosaminoglycans can potentiate the 

protease inhibitory actions of TFPI, thus making TFPI another heparin cofactor. 

Aprosulate is made of saccharidic groups and is sulfated like heparin. It can be postulated 

that based on these structural similarities, that aprosulate may also be capable of 

potentiating the actions of TFPI. No such effect has yet been shown for aromatic 

polysulfonates. 

Selectins are known to play a role in the inflammatory process (Rosen et al. , 

1994) and may also be involved in some of the cellular interactions involved in the 

hemostatic process (Turner, 1992). Heparin interaction with P- and L-selectins has been 

demonstrated (Skinner et al., 1989). The binding of heparin oligosaccharides to these 

selectins has been shown to be size dependent with a hexasulfated tetrasaccharide shown 

to be an effective inhibitor (Nelson et al., 1993). Additionally, it was shown in this study 

that tetrasaccharides with more sulfate moieties bound selectins better than those with less 

sulfate groups. It was concluded in this study that small, non-anticoagulant heparin 

oligosaccharides can effectively block neutrophil accumulation in models of acute 

inflammation. In another study, it has been shown that substitution of sulfate groups for 

sialic acid on Lewis x molecules results in enhanced selectin affinity (Yuen et al., 1994). 

These studies point to the potential use of sulfated heparin analogues for the modulation 
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of selectin function. 

From the SAR standpoint, it appears that the overall pharmacologic actions of 

heparin and its analogues depends on their molecular and structural makeup. While 

serpin affinity may be important in the case of heparin and pentasaccharide, other 

analogues such as aprosulate and GL 522-Y-1 produce several direct effects on both the 

cellular and plasmatic components. There is no report on the contribution of various 

functional groups and their relevance to the biochemical and pharmacologic effects of 

heparin and its analogues. However, it is clear that charge density, molecular weight and 

specific oligosaccharide consensus sequence interaction with ligands play a crucial role 

in the mediation of the effects of these agents. From the integrated studies carried out 

in the dissertation, it can be generalized that the serpin mteractions represent one of 

many different effects of these agents. The overall antithrombotic/anticoagulant actions 

of these agents not only depend on the structure, but also endogenous interactions and 

their relative pharmacodynamic interactions detennme the pharrnacologic actions. Thus, 

it is possible to develop selective modulators of the hemostatic process by considering 

the SAR relationship which is exhibited by these agents. 
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SUMMARY 
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1. Heparin and pentasaccharide mediated antiprotease activities via activation of ATIII. 

Due to molecular weight considerations, pentasaccharide was limited to inhibiting factor 

xa. Heparin, aprosulate, and GL-522-Y-1 promoted thrombin inhibition via HCII 

activation whereas pentasaccharide did not promote this process. 

2. Heparin exhibited the broadest anticoagulant activity due to its ability to directly and 

indirectly modulate the coagulation process at multiple sites in the coagulation network 

as measured by using various global and specific clotting tests. 

3. The anticoagulant activity of each heparin analogue was relatively weaker in 

comparison to heparin. Despite their differing specificity towards A TIII and HCII, both 

the pentasaccharide and aprosulate directed their anticoagulant activity against the 

intrinsic pathway of coagulation. GL-522-Y-1 exhibited almost no anticoagulant activity 

measurable by global clotting assays. 

4. Heparin produced the strongest inhibition of protease generation in both ATIII and 

non-ATIII mediated systems. Pentasaccharide exhibited only limited actions against Xa 

in the intrinsically activated systems whereas aprosnlate exhibited inhibition of both Xa 
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and thrombin generation in the intrinsically activated systems. 

5. GL-522-Y-1 also demonstrated a potent inhibition of protease generation in most assay 

systems used. While the complete mechanism of action for this agent remains unclear, 

this effect may be related to inhibition of the factor IXa/VIIIa complex. 

6. Heparin, aprosulate, and GL-522-Y-1 promoted an .increase in heparan sulfate by 

cultured endothelial cells. On the other hand, pentasaccharide did not produce any such 

effect. None of the agents exhibited any effects on glycosaminoglycan synthesis in 

smooth muscle cell cultures. 

7. The high degree of sulfation of aprosulate resulted in a HIT response similar to that 

produced by heparin. Despite having the same backbone as heparin, pentasaccharide did 

not produce a IIlT response. In the experimental system used, GL-522-Y-1 did not 

exhibit a IIlT response. 

8. Protease inhibition mediated by ATilI led to a strong antithrombotic effect by heparin 

and pentasaccharide. Activation of HCIT by aprosulate and GL-522-Y-1 produced a 

relatively weaker antithrombotic effect. A rank order potency of heparin > 

pentasaccharide > aprosulate > GL-522-Y-1 was observed following intravenous and 

subcutaneous administration in the rabbit stasis thrombosis model. 
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9. In the time dependent studies, the duration of antithrombotic activity was shortest for 

heparin. Following intravenous administration, pentasaccharide was observed to have the 

longest duration of action. However, following subcutaneous administration, aprosulate 

exhibited the longest duration of action. 

10. When tissue factor initiated thrombogenesis as seen in the rat model of thrombosis, 

comparatively higher doses of each agent were required to prevent clot fonnation as 

those which were effective in the stasis thrombosis model In the intravenous studies, the 

same rank order potent as in the stasis thrombosis model was observed. In the 

subcutaneous studies, pentasaccharide was observed to be more potent than heparin in 

this model. Aprosulate and GL-522-Y-l were both less potent than heparin following 

subcutaneous administration. 

11. The hemorrhagic effects of these agents appears not to be unrelated to their effects 

on SERPINs. Heparin and GL-522-Y-1 promoted blood loss in a rabbit ear bleeding 

model. Neither aprosulate nor pentasaccharide were observed to produce an increased 

blood loss relative to control. 

12. TFPI release in both human studies and animal models was observed to be dependent 

on both degree of anionic character and on molecular size as both aprosulate and GL-

522-Y -1 caused an increase in plasmatic TFPI levels following parenteral administration. 

Pentasaccharide administration did not elevate TFPI antigen levels. 
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Unfractionated heparin represents a polyphannacologic agent, targeting several 

endogenous sites including plasmatic SERPIN s, vascular modulation through the release 

of such active substances as TFPI and tPA, the modulation of leukocytic and platelet 

selectins and by altering the charge density characteristics of the vasculature. The results 

obtained with the heparin analogues studied in this investigation support this hypothesis. 

The role of A Till clearly appears to be important for the mediation of anticoagulant and 

antithrombotic effects whereas interactions with HCII play a relatively minor role in the 

mediation of the pharmacologic actions of heparin. The use of specific analogues of 

heparin with differential SERPIN interaction profiles provided unique molecular probes 

to accomplish the intended objective of this dissertation. It is concluded that 

pentasaccharide behaves as a specific analogue of heparin and it can be molecularly 

manipulated to exhibit additional properties of heparin through alteration of charge 

density and saccharidic chain extension. Additional molecular manipulation of 

pentasaccharide and related analogues in terms of increased degree of sulfation, 

positioning of the functional groups or branching of the chain may lead to agents with 

polyfunctional characteristics which may be useful in the control of the thrombotic 

process at multiple sites. 
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APPENDIX A. 

HPLC PROFILES OF HEPARIN AND ITS ANALOGUES 
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Figure 76. The HPLC elution profile of aprosulate as detected by refractive index (A.) and 
ultraviolet (B.) detectors. 
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Figure 77. The HPLC elution profile of GL-522-Y-1 as detected by refractive index (A.) and 
ultraviolet (B.) detectors. 
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Figure 78. The HPLC elution profile of heparin as detected by refractive index (A.) and 
ultraviolet (B.) detectors. 
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Figure 79. The HPLC elution profile of pentasaccharide as detected by refractive index (A.) and 
ultraviolet detectors (B.) 
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pe=ns should ba considened a:s co-:1L1thors 111 runtier publications. 

As you know, tile ?ro1ect aprosulate has been st01>1>ed and I am working on another different project. 

Nevertheless I willt~ tot:ilte tile opponunityt() meet yCJu and your co-workers at the Munich meeting. 

Looking forwaro to yCJur answer 

best regards 

~.,,~ 
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• Genelalla lllcorpomteci 
505 PemoblCOI Dli.ve 
Redwood City, Califomia 94003 
'L"'NITED STA TES r1r AMDICA 
(41.S) 369-9~00 FAX (4-15) 368--01()9 

FACSIMILE COVER. SHEET 

TO: Prof. Jawed F~ Wal1cr Jeska FROM: Bill Choy, Ph.D. 
Mmlager - Aaian Oper.itiom 

COMPA.""lY: Hemoscuis :Ruean:ll I:..ab/1..oyola U. Med Cecter 

FAX .r. 708-216-6660 
DATE; F&bruary 20, 1996 3:20pm PDST 

RE: Walter Jeslu:' d!Jaermio11 

ti OP PAGES, INCLUDING nDS ONE: 1 

I've read Chapter 3 of the tl:lo&ll. Alth~g.11 tile ;peidf!c ellU.JIJCI1Iiol ta tile figures were left 
blanlc ill the tcia:, I can '1JUI almoc all oftll= figulea vllicll tile tex1 allud=a to. On this 
basis, I ftnd the inform.atk>n ill tll.is chapter s11ppoxc, di.Iectly or indim:tly, GLS22/Y -1 aa an 
antithromboFQic apnt aa flJed l!l Gcm.labl' palelJt ;pp.llcadom. Thus, on behalf of 
Genelabs, I will allow you to ]Jlli>ll~ y ~ of tbe illfonmtion I have read. As you 
promiaed last mOllth, please sax! a. fi1Il c;.cpJ or t.llil tfleai.t to mo after tbe defense. 

cc: Jen Cheu- VP/ Asian Opcraiclm 
Mcliada Gritftth. General Ci>WUd 
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TO: 

FROM: 

DATE: 

SUBJECT: 

lllS'rX'l'V'l"I:O!IAI. JUaXAL CJUm lUID tlSB COMMITTEE 
LOYOLA OllIVEl\SITY l!EDICAL CENTER 

Interoffice Communication 
RESJ!!ARCX AOKililST!U\TIOH OFFICE 

Room 3945 -- Building 105 -- Extension 64288 

Jawed ~areed, f'~D. 
Mary .Ann ::rur,.Jl7-

March l.l., 19~3 

LU# 5737 
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TITLE: Assessment of the Antithrornbotic and Bleeding Effects of Three 
Synthetic A.naloq-ues of Heparin in Rabbits. 

INVESTIGATOR(s): ~aweed Fa.reed, Ph.D. - Pathology 
Wal.tar Jeske, M.D. - Pharmacology 

FUNDING SOURCE: Dept. Pathology, Hemostasis Research Labs 

._'he above captioned rACOC was reviewed and Al?!'ROVED at the March meeti.:1g. 

P/F# 454-3 has been issued approving- ::he experimental design submitted. Upon 
funding of this project, please contact me at ex. 64288 with the appropriate 
account numl:ler responsible for the aninal charges and an IACUC nu.'llber will be 
issued approving the purchase of t.~e animals requested. 

Please verify me Lnfornation beLo'W; if corrections are required, please 
notify me immediatel7. .1l.I!inal purchases are processed via Barbara Isdale in 
the Animal Research Facility; she can be reached at ex. 69178. 

Thank you for your cooperation. 

sl 

cc: Ms. R. O'Connor - A.RF Mgr. 
Mr. D. Boydston - G ' C 
Ms. D. Arend~iak - Off. Mgr 

LU//5737 .apr 

LU~: 5737 
CATEGORY: B 
SPECIES: Rabbits 
• ANIMALS APPR: 448 
P/F#: 454-3 
ACC'H: 
I.ACUC11: 
START/END OATES: 3/1/93-12/31/93 
ORrG REVIEW DATE: 2/9/93 
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TABLE 10 

MOLECULAR WEIGHT DETERMINATION OF HEPARIN AND 
ITS SYNTIIETIC ANALOGUES USING GEL 

PERMEATION CHROMATOGRAPHY 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Calibra.nt: Nineteen Narrow Range Fractions 
Detector: UV 

Wt. Avg. Mol. 
Wt. (Da) 

2,357 

1,291 

10,523 

1,584 

HPLC/Formula 
Weight 

0.987 

0.868 

0.917 

Dispersity 

1.017 

1.150 

1.228 

1.018 
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The molecular weight profile of aprosulate, GL-522-Y-1, heparin, and pentasacch:µide 
was determined by gel permeation chromatography. Wt. Avg. Mol. Wt. is the weight 
average molecular weight as detennined by HPLC. HPLC/Formula Weight is the ratio 
of the weight average molecular weight and the known formula weight of the agent. 
This is not determinable for heparin a5 the formula weight is not known. 



TABLE 11 

MOLECULAR WEIGHT DETERMINATION OF HEPARIN AND 
ITS SYNTHETIC ANALOGUES USING GEL 

PERMEATION CHROMATOGRAPHY 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Calibrant: Nineteen Narrow Range Fractions 
Detector: RI 

Wt. Avg. Mol. 
Wt. (Da) 

2,173 

999 

10,062 

1,407 

HPLC/Formula 
Weight 

0.910 

0.671 

0.814 

Dispersity 

1.019 

1.023 

1.329 

1.026 
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The molecular weight profile of aprosulate, GL-522-Y-l, heparin, and pentasaccharide 
was determined by gel permeation chromatography. Wt. Avg. Mol. Wt. is the weight 
average molecular weight as detennined by HPLC. HPLC/Formula Weight is the ratio 
of the weight average molecular weight and the known formula weight of the agent. This 
is not determinable for heparin as the formula weight is not known. 



TABLE 12 

MOLECULAR WEIGHT DETERMINATION OF HEPARIN AND 
ITS SYNTHETIC ANALOGUES USING GEL 

PERMEATION CHROMATOGRAPHY 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Calibrant: HMC 
Detector: RI 

Wt. Avg. Mal. 
Wt. (Da) 

1,773 

9,877 

1,103 

HPLC/Formula 
Weight 

0.742 

0.638 

Dispersity 

1.022 

1.413 

1.031 
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The molecular weight profile of aprosulllte, GL-522-Y-1, heparin, and pentasaccharide 
was determined by gel permeation chromatography. Wt. Avg. Mol. Wt. is the weight 
average molecular weight as detennined by HPLC. HPLC/Formula Weight is the ratio 
of the weight average molecular wejght and the known formula weight of the agent. This 
is not determinable for heparin as the formula weight is not known. 



TABLE 13 

MOLECULAR WEIGHT DETERMINATION OF HEPARIN AND 
ITS SYNTHETIC ANALOGUES USING GEL 

PERMEATION CHROMATOGRAPHY 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Calibrant: F913B 
Detector: RI 

Wt. Avg. Mol. 
Wt. (Da) 

1,598 

12,782 

1,013 

HPLC/Formula 
Weight 

0.669 

0.586 

Dispersity 

1.024 

1.639 

1.043 
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The molecular weight profile of aprosulate, G L-522-Y-1, heparin, and pentasaccharide 
was determined by gel permeation chromatography. Wt. Avg. Mol. Wt. is the weight 
average molecular weight as determined by HPLC. HPLC/Formula Weight is the ratio 
of the weight average molecular weight and the known formula weight of the agent. This 
is not determinable for heparin as the fonnula weight is not known. 
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TABLE 14 

t3C NMR SIGNAL ASSIGNMENTS FOR UNFRACTIONATED HEPARIN 

Chemical Shift (ppm) Assignment 

24 

56 A-C-2-NAc 

58.5 A-C-3-0S03 

60 A-C-2-NS03 

62 A-C-6-0H 

69 A-C-6-0S03 

99 A-C-1-NS03 

101 IdA-C-l-2S03 

13C NMR spectrum of unfractionated heparin was detected using a Bruker AC300 NMR 
spectrometer at 75 :MHz. All chemical shifts are relative to an internal sodium-3-
(trimethylsilyl)-propionate standard. A = glucosarnine, IdA = iduronic acid, NAc = 
N-acetlyated, OS03 = 0-sulfated, NS03 = N-sulfated. 



TABLE 15 

1H NMR SIGNAL ASSIGNMENTS FOR THE 3-0 SULFATED 
AMINOSUGAR OF PENTASACCHARIDE 

Chemical Shift (ppm) Assignment 

5.5 H-1 

3.4 H-2 

4.3 H-3 

4.0 H-4 

4.1 H-5 

4.5 H-6 
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Proton NMR spectrum of the 3-0 sulfated amino sugar of pentasaccharide was detected 
using a Bruker AMX500 NMR spectrometer at 500 MHz. All chemical shifts are relative 
to an internal sodium-3-(trimethylsilyl)-propionate standard. 
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TABLE 16 

13C-NMR SIGNAL ASSIGNMENTS FOR APROSULATE 

Chemical Shift (ppm) Assignment 

68.0 C6 

68.S C6' 

73.S cs 

77.0 C4' 

77.1 C4 

77.2 C2' 

77.S C2 

78.0 C3 

78.3 C3' 

79.S CS' 

103 Cl 

13C NMR spectrum of aprosulate was detected using a Bruker AC300 NMR spectrometer 
at 7S MHz. All chemical shifts are relative to an internal sodium-3-(trimethylsilyl)
propionate standard. C2 is carbon nucleus 2 of the closed sugar ring of aprosulate. C2' 
is carbon nucleus 2 of the open chain s.ugar of aprosulate. 
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TABLE 17 

1H-NMR SIGNAL ASSIGNMENTS FOR APROSULATE 

Chemical Shift (ppm) Assignment 

4.238 H5 

4.395 I 4.416 H6 

4.523 I 4.549 H2 

4.658 I 4/679 I 4.689 H6' 

4. 713 I 4. 722 I 41731 H3 

4.747 I 4.763 H4' 

4.800 HOD (solvent) 

5.005 I 51021 ! 51037 H3" 

5.073 j 5.082 ! 5.099 H5' 

5.146 I 5.163 H2' 

5.223 I 51233 H4 

Proton NMR spectrum of aprosulate was de1ected using a Bruker AC300 NMR 
spectrometer at 300 MHz. All chemical shifts are relative to an internal sodium-3-
(trimethylsilyl)-propionate standard. H2 is the proton on carbon 2 of the closed sugar 
ring of aprosulate. H2' is the proton on the second carbon of the open chain sugar of 
aprosulate. 
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TABLE 18 

13C NMR SIGNAL ASSIGNMENT FOR GL-522-Y-l 

Chemical Shift (ppm) Assignment 

33.0 

128.8 CH 

130.8 

138.0 C-OH 

155.5 

13C NMR spectrum of GL-522-Y-l was detected using a Bruker AC300 NMR 
spectrometer at 75 MHz. All chemical shifts are relative to an internal sodium-3-
(trimethylsilyl)-propionate standard. 
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TABLE 19 

1H NMR SIGNAL ASSIGNMENTS FOR GL-522-Y-1 

Chemical Shift (ppm) Assignment 

4.2 

4.7 HOD (solvent) 

7.7 CH 

1H NMR spectrum of GL-522-Y-1 was de1ected using a Bruker AC300 NMR 
spectrometer at 300 MHz. All chemical shifts are rela1ive to an internal sodium-3-
( trimethy lsily 1)-propionate standard. 
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TABLE 20 

SERPIN MEDIATED INillBITION OF THROMBIN AND FACTOR Xa BY 
APROSULATE 

Concentration % Inhibition 

µglmL µM ATIII/Ila ATIII/Xa HCII/Ila 

40 16.75 2.0 + 2.2 12.8 + 12.5 79.2 ± 2.2* 

20 8.38 2.5 + 2.5 7.6 + 9.5 77.4 ± 1.9* 

10 4.19 4.5 ± 3.5 4.6 + 6.3 70.9 ± 2.6* 

5 2.09 1.6 + 2.8 3.2 + 5.5 58.8 ± 4.6* 

2.5 1.05 3.2 ± 2.8 5.0 + 5.8 39.1 ± 8.0* 

1.25 0.52 1.8 ± 1.6 2.6 + 4.4 23.9 ± 5.1 * 

0.625 0.26 2.0 ± 2.5 4.5 + 7.8 15.5 ± 4.5* 

0.312 0.13 1.8 ± 2.2 3.3 ± 5.8 11.6 ± 4.3* 

All results represent the mean ± 1 standard deviation of three determinations. µM 
amounts are final assay concentrations based on a fonnula molecular weight of 2388 
Da. ATIII, antithrombin m; HCII, heparin cofactor II; Ila, thrombin; Xa factor Xa. 
All percent inhibitions were calculated based on an unsupplemented saline control. 
Statistically significant differences between treatment and control were determined by 
one way ANOV A followed by the Newman-Keuls multiple comparison test. * p < 0.05 
was considered statistically significant. ATIII/Ila: p = 0.636, dF = 26, F = 0.767. 
ATIII/Xa: p = 0.640, dF = 26, F = 0.762. HCII!Ila: p < 0.0001, dF = 26, F = 
152.9. 
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TABLE 21 

SERPIN:MEDIATED INHIBITION OF THROMBIN AND FACTOR Xa BY 
GL-522-Y-1 

Concentration % Inhibition 

µg!mL µM ATDI/Ila ATill/Xa HCII/Ila 

40 26.88 0±0 25.0 ± 9.3 77.8 ± 2.3* 

20 13.44 0.7 ± 1.2 21.7 ± 18.2 76.6 ± 1.6* 

10 6.72 2.7 ± 4.6 18.3 ± 16.0 73.9 ± 0.8* 

5 3.36 2.8 ± 2.8 15.6 ± 13.8 66.9 ± 0.5* 

2.5 1.68 3.2 ± 4.6 10.2 ± 10.6 58.0 ± 3.2* 

1.25 0.84 4.1 ± 5.1 10.6 ± 11.3 47.3 ± 2.8* 

0.625 0.42 3.9 ± 5.8 10.0 ± 11.4 31.7 ± 3.2* 

0.312 0.21 1.3 ± 2.3 5.6 ± 9.6 23.5 + 5.4* 

All results represent the mean + I standard deviation of three determinations. µM 
amounts are final assay concentrations based on a formula molecular weight of 1488 
Da. ATIII, antithrombin III; HCil, heparin cofactor II; Ila, thrombin; Xa factor Xa. 
All percent inhibitions were clllculated based on an unsupplemented saline control. 
Statistically significant differences between treatment and control were determined by 
one way ANOV A followed by the Newman-Keuls multiple comparison test. * p < 0.05 
was considered statistically signillcant. ATDl!Ila: p = 0.963, dF = 26, F = 0.283. 
ATIII/Xa: p = 0.316, dF = 26, F = 1.27. HCII! Ila: p < 0.0001, dF = 26, F = 
302.8. 
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TABLE 22 

SERPIN MEDIATED INHIBITION OF THROMBIN AND FACTOR Xa BY 
HEPARlN 

Concentration 3 Inhibition 

µg/mL µM ATIIl/Ila ATIII/Xa HCIDIIa 

40 3.81 80.9 ± 1.3* 

20 1.90 80.8 ± 0.5* 

10 0.95 80.0 ± 0.3* 

5 0.48 78.3 ± 0.4* 

2.5 0.24 76.3 ± 2.5* 

1.25 0.12 94.4 + 1.1' 98.0 + 0.3* 68.4 ± 0.7* 

0.625 0.06 93 .9 + 1.1' 95.0 + 2.6* 55.0 ± 2.0* 

0.312 0.03 93.2 + 1.1' 93.1 + 3.4* 40.0 ± 6.8* 

0.156 0.015 92.3 ± 1.2' 76.2 ± 11.0* 

0.078 0.0075 90.4 ± 0.9* 59.5 + 16.6* 

0.039 0.0038 84.0 ± 0.9* 35.2 ± 16.2* 

0.020 0.0019 69.2 + 0.9* 24.5 ± 18.6* 

0.010 0.0009 48.5 ± 1.6' 16.3 + 12.8 

All results represent the mean ± 1 standard deviation of three determinations. µM 
amounts are final assay concentrations based on a molecular weight of 10490. ATIII, 
antithrombin ill; HCII, heparin cofactor II; Ila, thrombin; Xa factor Xa. All percent 
inhibitions were calculated based on an unsnpplemented saline control. Statistically 
significant differences between treatment and control were determined by one way 
ANOVA followed by the Newman-Keuls multiple comparison test. * p < 0.05 was 
considered statistically significant. ATIII!IIa : p < 0.0001, dF = 26, F = 268.3. 
ATIII/Xa: p < 0.0001, dF = 26, F = 31.9. HCII/IIa: p < 0.0001, dF = 16, F = 
337.8. 



TABLE 23 

SERPIN MEDIATED INIIlBITION OF THROMBIN AND FACTOR Xa BY 
PENTASACCHARIDE 

Concentration % Inhibition 

µglmL µM ATilI(ITa ATIII/Xa HCII/Ila 

40 23.20 20.1 ± 3.o· 

20 11.60 13.5 + 7.7 

10 5.80 12.0 ± 7.6 

5 2.90 8.8 ± 7.0 

2.5 1.45 6.6 ± 5.8 

1.25 0.73 14.9 + 2. 1 • 97.2 ± 0.3* 4.4 ± 5.5 

0.625 0.36 11.4 + 2.3· 97.1 ± 0.8* 6.5 ± 5.6 

0.312 0.18 8.1 + 0.4" 96.3 ± 0.5* 6.1 ± 5.5 

0.156 0.09 5.2 ± 3.6 91.1 ± 4.1 * 

0.078 0.045 4.3 ± 1.9 80.5 ± 5.7* 

0.039 0.023 3.2 ± 2.8 59.6 ± 8.1 * 

0.020 0.011 2.1 ± 2.8 36.0 ± 6.3* 

0.010 0.0057 6.5 ± 3.1 21.1 ± 5.1* 
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All results represent the mean ± 1 standard deviation of three determinations. µM 
amounts are final assay concentrations based on a fonnula molecular weight of 1728 
Da. ATITI, antithrombin ill; HCil, heparin cofactor II; Ila, thrombin; Xa factor Xa. 
All percent inhibitions were calculated based on an unsupplemented saline control. 
Statistically significant differences between treatment and control were determined by 
one way ANOVA followed by the Newman-Keuls multiple comparison test.• p < 0.05 
was considered statistically significant. ATIIIfIIa: p < 0.0001, dF = 26, F = 11.4. 
ATITI/Xa: p < 0.0001, dF = 16, F = 204.2. HCIIfIIa: p = 0.0182, dF = 26, F 
= 3.24. 



TABLE 24 

IN VITRO ANTICOAGULANT ACTIVITY OF APROSULATE IN BLOOD BANK PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 41.88 

50.0 20.94 

25.0 10.47 

12,5 :5.23 

6.25 2.62 

3.12 1.31 

1.56 0.65 

0.78 0.33 

0 0 

PT 
(sec) 

14.5 ± 0.3· 

13.3 ± 0.3· 

13.3 ± 0.2* 

13.0 ± 0.4* 

12.8 ± 0.3* 

12.9 ± 0.3· 

12.4 ± 0.1 

12.2 ± 0.2 

12.0 ± 0.2 

APTT 
(sec) 

>300* 

>300" 

198.8 ± 49.5* 

138.2 ± 17.3* 

79.6 ± 2.9* 

60.5 ± 2.4 

49.0 ± 3.1 

44.6 ± 4.1 

37.3 ± 4.0 

Heptest 
(sec) 

>300* 

173.1 ± 22.1· 

133.6 ± 43_5• 

48.8 ± 4.8 

27.9 ± 2.3 

22.6 ± 3.8 

19.9 ± 1.8 

17.5 ± 1.5 

16.5 ± 0.9 

5UTI 
(sec) 

>300* 

>300" 

154.9 ± 36.r 

41.5 ± 5.8 

28.7 ± 2.4 

24.4 ± 1.8 

23.l ± 2.1 

23.1 ± 0.2 

20.2 ± 0.7 

Anti-Ila 
(% Inhib) 

41.6 ± 4.0* 

38.3 ± 1.7* 

37.5 ± 2.3* 

33.4 ± 3.2· 

31.8 ± 3.7· 

15.7 ± 3.2* 

12.9 ± 2.5· 

6.8 ± 2.6· 

0 

Anti-Xa 
(% lnhib) 

0.7 ± 0.6 

0.7 ± 0.7 

0.6 ± 0.5 

0.5 ± 0.6 

1.0 ± 1.1 

1.0 ± 0.9 

0.7 ± 0.7 

0.5 ± 0.7 

0 

All results represent the mean± 1 standard deviation of four determinations. Molar values were calculated based on a formula weight 
of 2388 Da for aprosulate and represent the plasma aprosulate concentration. Statistical analysis of the data was made using one way 
ANOV A followed by the Newman-Keuls multiple comparison test for each assay. * indicates statistical significance compared to 
unsupplemented baseline plasma (p < 0.05). PT: dF = 35, F = 30.7, P < 0.0001. APTT: dF = 35, F = 147.9, P < 0.0001. 
Heptest : dF = 35, F = 145.0, P < 0.0001. SU TI : dF = 35, F = 372.4, P < 0.0001. Anti-Ila: dF = 35, F = 152.4, P < 
0.0001. Anti-Xa: dF = 35, F = 0.726, P =0.667. w 
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TABLE 2S 

IN VITRO ANTICOAGULANT ACTIVITY OF GL-S22-Y-1 IN BLOOD BANK PLASMA 

Concentration 

(µ.g/ mL) (µ.M) 

100.0 67.2 

50.0 33.6 

25.0 16.8 

12.5 8.4 

6.25 4.2 

3.12 2.1 

1.56 1.05 

0.78 0.53 

0 0 

PT 
(sec) 

22.8 ± 1.9* 

19.5 ± 1.4· 

15.8 ± 1.4* 

14.1 ± 1.0 

12.2 ± 1.4 

12.7 ± 0.6 

12.3 ± 0.2 

12.2 ± 0.9 

12.9 ± 0.7 

APTT 
(sec) 

112.0 ± 4.4* 

79.2 ± 9.2* 

59.3 ± 6.7' 

48.8 ± 3.5* 

42.4 ± 2.7 

38.9 ± 1.3 

35.8 ± 3.1 

34.S ± 2.2 

35.4 ± 1.7 

Heptest 
(sec) 

34.0 ± 8.3' 

22.0 ± 3.8 

19.3 ± I.I 

17.2 ± 1.0 

15.6 ± 1.3 

17.5 ± 1.1 

18.0 ± 1.5 

18.2 ± 1.6 

17.0 ± 1.4 

SUTT 
(sec) 

21.S ± 8.2 

19.3 ± 5.5 

19.5 ± 4.9 

20.1 ± 5.9 

20.9 ± 5.9 

20.3 ± 5.3 

19.3 ± 8.2 

20.8 ± 5.6 

20.1 ± 3.9 

Anti-Ila 
(% Inhib) 

7.0 ± 2.3* 

5.0 ± 1.7* 

1.0 ± 0.8 

0±0 

0±0 

0±0 

0±0 

0±0 

0±0 

Anti-Xa 
(% Inhib) 

5.9 ± 2.4* 

0±0 

0±0 

0±0 

0±0 

0±0 

0±0 

0±0 

0±0 

All results represent the mean ± I standard deviation of four determinations. Molar values were calculated based on a formula weight 
of 1488 Da for GL-S22-Y -1 and represent the plasma GL-S22-Y-1 concentration. Statistical analysis of the data was made using one 
way ANOVA followed by the Newman-Keuls multiple comparison test for each assay. •indicates statistical significance compared 
to unsupplemented baseline plasma (p < 0.05). PT : dF = 35, F = 128.6, P < 0.0001. APTT: dF = 3S, F = 393.1, P < 
0.0001. Heptest: dF = 35, F = 30.7, P < 0.0001. SU TT: dF = 35, F = 0.181, P < 0.996. Anti-Ila: dF = 3S, F = 28.7, 
P < 0.0001. Anti-Xa : dF = 3S, F = 24.2, P < 0.0001 ~ 

w 
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TABLE 26 
IN VITRO ANTICOAGULANT ACTIVITY OF HEPARIN IN BLOOD BANK PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 

50.0 

25.0 

12.5 

6.25 

3.12 

1.56 

0.78 

0 

9.53 

4.77 

2.38 

1.19 

0.60 

0.30 

0.15 

0.07 

0 

PT 
(sec) 

APTT 
(sec) 

214.S ± >300* 
99.6* 

82.2 ± >300* 
44.7 

28.4 ± 6.8 >300* 

18.48 ± > 300* 
2.2 

15.1 ± 0.8 272.9 ± 31.3* 

13.8 ± 1.1 95.6 ± 21.5* 

13.8 ± 0.3 52.6 ± 5.1 

13.8 ± 2.3 40.4 ± 2.4 

14.6 ± 2.1 31.1 ± 4.0 

Heptest 
(sec) 

>300* 

>300* 

>300' 

>300* 

155.7 ± 10.8' 

96.4 ± 5.5* 

67.3 ± 4.8· 

37.3 ± 7_5· 

17.7 ± 1.0 

SUTT 
(sec) 

>300* 

>300* 

>300' 

>300* 

>300* 

>300* 

246.2 ± 107.6* 

90.5 ± 72.3* 

23.7 ± 1.5 

Anti-Ila 
(% lnhib) 

94.1 ± 0.9* 

93.6 ± 0.5* 

93.3 ± 0.3· 

92.6 ± 0.6* 

92.4 ± O.T 

87.6 ± 1.5* 

69.1 ± 6.1* 

24.8 ± 3.7· 

0±0 

Anti-Xa 
(% Inhib) 

97.4 ± 0.2· 

97.3 ± 0.3* 

96.5 ± 0.5* 

80.5 ± 0.6* 

64.8 ± 4.7* 

43.7 ± 3.7' 

27.9 ± 5.3* 

11.2 ± 3.4* 

0±0 

All results represent the mean ± 1 standard deviation of four determinations. Molar values were calculated based on a molecular 
weight of I 0492 Da for heparin and represent the plasma heparin concentration. Statistical analysis of the data was made using one 
way ANOV A followed by the Newman-Keuls multiple comparison test for each assay. * indicates statistical significance compared 
to unsupplemented baseline plasma (p < O.OS). PT : dF = 3S, F = lSS.4, P < 0.0001. APTT : dF = 3S, F = 39S.3, P < 
0.0001. Heptest: dF = 3S, F = 2474.3, P < 0.0001. SU TT: dF = 3S, F = 238.0, P < 0.996. Anti-Ila: dF = 3S, F = 808.7, 
P < 0.0001. Anti-Xa: dF = 3S, F = 696.6, P < 0.0001 ~ 
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TABLE 27 

IN VITRO ANTICOAGULANT ACTIVITY OF PENTASACCHARIDE IN BLOOD BANK PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 58.0 

50.0 29.0 

25.0 14.5 

12.5 7.25 

6.25 3.63 

3.12 1.81 

156 0.91 

0.78 0.45 

0 0 

PT 
(sec) 

13.7 ± 0.2 

12.9 ± 0.6 

12.9 ± 0.7 

12.9 ± 0.8 

12.4 ± 0.9 

12.6 ± 1.1 

12.0 ± 1.0 

12.0 ± 0.9 

12.2 ± 1.3 

APTT 
(sec) 

79.3 ± 9.3* 

60.8 ± 5.6* 

46.2 ± 9.7 

43.8 ± 6.6 

40.9 ± 5.0 

38.5 ± 5.7 

35.4 ± 5.6 

35.2 ± 5.7 

31.8 ± 3.1 

Heptest 
(sec) 

299.6 ± 0.9* 

256.8 ± 50.2* 

197.8 ± 66.9* 

163.9 ± 37. 7• 

162.4 ± 49.3* 

135.1 ± 37.9* 

112.2 ± 34_3• 

93.3±21.1" 

18.0 ± 3.4 

SUTT 
(sec) 

36.4 ± 11.2* 

28.8 ± 5.8 

27.2 ± 2.3 

25.9 ± 1.5 

25.5 ± 0.5 

24.2 ± 0.5 

23.7 ± 1.3 

23.9 ± 3.1 

22.9 ± 1.5 

Anti-Ila 
(% Inhib) 

0.7 ± 0.6 

0.5 ± 0.5 

1.4 ± 0.3 

0.7 ± 1.0 

1.1 ± 1.3 

1.0 ± 0.7 

0.4 ± 0.4 

0.4 ± 0.4 

0±0 

Anti-Xa 
(% Inhib) 

97.8 ± 0.1* 

97.8 ± 0.1* 

97.2 ± 0.2* 

96.8 ± o.r 
94.3 ± 2.1· 

85.5 ± 1.5" 

64.3 ± 3.9· 

41.9 ± 3.4* 

0±0 
All results represent the mean± 1 standard deviation of four determinations. Molar values were calculated based on a formula weight 
of 1728 Da for pentasaccharide. Statistical analysis of the data was made using one way ANOV A followed by the Newman-Keuls 
test for each assay. * indicates statistical significance compared to unsupplemented baseline plasma (p < 0.05). PT: dF = 35, F 
= 1.53, P = 0.194. APTT: dF = 35, F = 21.6, P < 0.0001. Heptest: dF = 35, F = 18.7, P < 0.0001. SU TT: dF = 35, 
F = 3.46, P = 0.0072. Anti-Ila : dF = 35, F = 1.55, P = 0.186. Anti-Xa : dF = 35, F = 1235, P < 0.0001 
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TABLE 28 

IN VITRO ANTICOAGULANT ACTIVITY OF APROSULATE IN NORMAL RABBIT PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 41.88 

50.0 20.94 

25.0 10.47 

12.5 5.23 

6_25 2_62 

3.12 1.31 

1.56 0.65 

0.78 0.33 

0 0 

PT 
(sec) 

7.4±0.1* 

7.3 ± 0.1· 

6.9 ± 0.2· 

6.8 ± 0.1 

6.8 ± 0.3 

6.2 ± 0.3 

6.5 ± 0.2 

6.4 ± 0.1 

6.3 ± 0.4 

APTT 
(sec) 

>300" 

260.6 ± 16.s· 

153.5 ± 18.4" 

122.1 ± 20.6* 

88.4 ± 2.1· 

69.2 ± 4.4 

56.7 ± 8.1 

50.5 ± 0.8 

45.0 ± 2.3 

Hep test 
(sec) 

133.7 ± 7.9* 

93.1 ± 21.7* 

45.4 ± 5.0 

38.1 ± 4.7 

33.3 ± 6.3 

29.5 ± 5.9 

27_5 ± 4.8 

27.0 ± 3.3 

25.7 ± 2.5 

5UTT 
(sec) 

>300" 

>300* 

>300· 

117.8 ± 3.1" 

45.8 ± 2.7* 

36.6 ± 5.2* 

33.1 ± 2.5* 

29.1 ± 2.0 

27.8 ± 0.5 

Anti-Ila 
(% Inhib) 

20.5 ± 2.6" 

12.1 ± 5.6" 

4.4 ± 2.4 

0.7 ± 1.2 

0 

5.1 ± 8.8 

0 

0 

0 

Anti-Xa 
(% Inhib) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

All results represent the mean ± 1 standard deviation of three determinations. Molar values were calculated based on a formula 
weight of 2388 Da for aprosulate and represent the plasma aprosulate concentration. Statistical differences versus control were 
determined for each assay using one way ANOVA followed by the Newman-Keuls multiple comparison test. *p < 0.05 vs. control. 
PT: dF = 26, F = 10.6, p < 0.0001. APTT: dF = 26, F = 211 p < 0.0001. Heptest: dF = 26, F = 55.1, p < 0.0001. SU 
TT: dF = 26, F = 8222.5, p < 0.0001. Anti-Ila: dF = 26, F = 11.2, p < 0.0001. Anti-Xa: dF = 26, F = 1.0, P = 1.0. 
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TABLE 29 

IN VITRO ANTICOAGULANT ACTIVITY OF GL-S22-Y-l IN NORMAL RABBIT PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 67.2 

50.0 33.6 

25.0 16.8 

12.5 8.4 

6.25 4.2 

3.12 2.1 

1.56 1.05 

0.78 0.53 

0 0 

PT 
(sec) 

7.0 ± 0.1 

6.6 ± 0.2 

6.4 ± 0.1 

6.8 ± 0.5 

6.3 ± 0.2 

5.9 ± 0.6 

6.0 ± 0.2 

6.0 ± 0.3 

6.3 ± 0.4 

APTT 
(sec) 

49.4 ± 1.1 

49.4 ± 0.3 

48.8 ± 1.1 

48.6 ± 0.8 

46.5 ± 1.4 

44.1 ± 3.4 

43.7 ± 2.0 

46.2 ± 3.4 

45.0 ± 2.3 

Heptest 
(sec) 

26.7 ± 5.5 

26.8 ± 3.9 

26.6 ± 3.7 

26.3 ± 3.5 

26.0 ± 3.2 

25.9 ± 2.7 

25.6 ± 2.8 

26.1 ± 2.0 

2S.7 ± 2.5 

SUTT 
(sec) 

29.6 ± 0.9 

28.4 ± 0.9 

28.3 ± 0.4 

27.7 ± 0.9 

27.2 ± 1.2 

25.7 ± 2.3 

26.1 ± 2.0 

26.1 ± 1.2 

27.8 ± 0.5 

Anti-Ila 
(% Inhib) 

9.2 ± 1.4. 

0±0 

0.7 ± 1.2 

0.5 ± 0.9 

0±0 

0±0 

0±0 

0±0 

0±0 

Anti-Xa 
(% Inhib) 

0±0 

0±0 

0±0 

0 ± 0 

0±0 

0±0 

0±0 

0±0 

0±0 

All results represent the mean ± 1 standard deviation of three determinations. Molar values were calculated based on a formula 
weight of 1488 Da for GL-S22-Y-l and represent the plasma GL-S22-Y-l concentration. Statistical differences versus control were 
determined for each assay using one way ANOVA followed by the Newman-Keuls multiple comparison test. *p < 0.05 vs. control. 
PT: dF = 26, F = , p = . APTT: dF = 26, F = 4057, p < 0.0001. Heptest: dF = 26, F = 0.0482, p = 0.9999. SU TT: 
dF = 26, F = 2.97, p = 0.0263. Anti-Ila: dF = 26, F = 58.8, p < 0.0001. Anti-Xa: dF = 26, F = 1.0, P = 1.0000. 
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TABLE 30 

IN VITRO ANTICOAGULANT ACTIVITY OF HEPARIN IN NORMAL RABBIT PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 

50.0 

25.0 

12.5 

6.25 

3.12 

1.56 

0.78 

0 

9.53 

4.77 

2.38 

1.19 

0.60 

0.30 

0.15 

0.07 

0 

PT 
(sec) 

16.9 ± 1.2* 

14.7 ± 0.4* 

11.9 ± 0.5* 

9.9 ± 0_5· 

7.9 ± 0.5· 

7.0 ± 0.2 

6.6 ± 0.3 

6.3 ± 0.1 

6.3 ± 0.4 

APTT 
(sec) 

>300* 

>300* 

>300* 

>300* 

>300' 

>300* 

104.5 ± 7.1* 

74.5 ± s.s· 
45.0 ± 2.3 

Hep test 
(sec) 

>300* 

>300* 

>300· 

>300* 

>300· 

204.4 ± 7.7· 

73.8 ± 10.0· 

39.2 ± 1.4* 

25.7 ± 2.5 

5UTT 
(sec) 

>300* 

>300* 

>300' 

>300* 

>300* 

>300' 

>300* 

>300* 

27.8 ± 0.5 

Anti-Ila 
(% Inhib) 

90.2 ± 2.2· 

90.6 ± 2.5* 

91.3 ± 0.4* 

91.7 ± 1.1* 

87.1 ± 1.9* 

76.8 ± 2.4· 

50.4 ± 1.3· 

36.3 ± 2.0· 

0±0 

Anti-Xa 
(% Inhib) 

95.6 ± 0.8* 

95.5 ± 0.4* 

93.4 ± o.s· 
90.3 ± 1.1* 

74.0 ± 2.7* 

44.2 ± 2.6* 

33.9 ± 3_5• 

8.2 ± 2.1* 

0±0 

AU results represent the mean ± 1 standard deviation of three determinations. Molar values were calculated based on a molecular 
weight of 10492 Da for heparin and represent the plasma heparin concentration. Statistical differences versus control were determined 
for each assay using one way ANOVA followed by the Newman-Keuls multiple comparison test. *p < 0.05 vs. control. PT: dF = 
26, F = 159.2, p < 0.0001. APTT: dF = 26, F = , p < 0.0001. Heptest: dF = 26, F = 2457.7, p = 0.0001. SU TT : dF 
= 26, F = 889114.1, p < 0.0001. Anti-Ila: dF = 26, F = 1041, p < 0.0001. Anti-Xa: dF = 26, F = 1225.2, P < 0.0001. 
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TABLE 31 

IN VITRO ANTICOAGULANT ACTIVITY OF PENTASACCHARIDE IN NORMAL RABBIT PLASMA 

Concentration 

(µg/mL) (µM) 

100.0 58.0 

50.0 29.0 

25.0 14.5 

12.5 7.25 

6.25 3.63 

3.12 1.81 

1.56 0.91 

0.78 0.45 

0 0 

PT 
(sec) 

6.4 ± 0.1 

6.2 ± 0.3 

6.3 ± 0.1 

6.4 ± 0.2 

6.4 ± 0.1 

6.4±0.1 

6.2 ± 0.3 

6.3 ± 0.5 

6.3 ± 0.4 

APTT 
(sec) 

110.9 ± 5.8* 

99.8 ± 2.2· 

87.3 ± 3.4* 

73.7 ± 8.8· 

65.3 ± 8.2· 

64.5 ± 0.4* 

60.9 ± 4.4' 

53.6 ± 6.4 

45.0 ± 2.3 

Heptest 
(sec) 

185.0 ± 10.7* 

164.4 ± 9.7· 

139.6 ± 0.6· 

123.6 ± 12.s· 

99.2 ± t. t• 

84.4 ± 3.1· 

65.2 ± 4.2' 

46.8 ± 2.7' 

25.7 ± 2.5 

SUTT 
(sec) 

43.9 ± 1.8* 

39.2 ± 1.4• 

38.2 ± 0.4* 

31.4 ± 1.2° 

31.1 ± 0.2· 

28.2 ± 0.5 

27.5 ± 0.4 

26.5 ± 1.0 

27.8 ± 0.5 

Anti-Ila 
(% Inhib) 

10.5 ± o.r 
10.0 ± 2.0· 

0±0 

0±0 

0±0 

0±0 

0±0 

0±0 

0±0 

Anti-Xa 
(% Inhib) 

97.8 ± 0.1 * 

97.8 ± 0.1· 

97.2 ± 0.2· 

96.s ± o.r 
94.3 ± 2.1' 

85.5 ± 1.5* 

64.3 ± 3.9* 

41.9 ± 3.4' 

0±0 

All results represent the mean ± I standard deviation of three determinations. Molar values were calculated based on a fommla 
weight of 1728 Da for pentasaccharide and represent the plasma pentasaccharide concentration. Statistical differences versus control 
were determined for each assay using one way ANOV A followed by the Newman-Keuls multiple comparison test. *p < 0.05 vs. 
control. PT: dF = 26, F = 0.283, p = 0.9643. APTT: dF = 26, F = 49.2, p < 0.0001. Heptest : dF = 26, F = 192.1, p = 
0.0001. 5U TT: dF = 26, F = 123.8, p < 0.0001. Anti-Ila: dF = 26, F = 122.9, p < 0.0001. Anti-Xa: dF = 26, F = 926.2, 
p < 0.0001. 
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TABLE 32 

EFFECT OF APROSULATE ON THE FVIlI: C MEDIATED GENERATION 
OF FACTOR Xa GENERATION 

Concentration 

µM µgfrnL % Inhibition 

41.88 100.0 98.4 ± 1.1 * 

20.94 50.0 92.6 ± 5.0* 

10.47 25.0 84.8 ± 7.2* 

5.23 12.5 74.7 ± 5.6* 

2.62 6.2 64.5 ± 9.2* 

1.31 3.1 52.9 ± 9.8* 

0.65 1.6 44.8 ± 9.6* 

0.33 0.8 28.6 ± 7.7* 

340 

All results represent the mean + 1 standard deviation of three determinations. µM 
concentrations were calculated based on a formula molecular weight of 2388 Da. All 
percent inhibitions were based on an unsupplemented control. Statistically significant 
differences between treatment and control were determined by one way ANOV A ( dF 
= 23, F = 65, p < 0.0001) followed by the Newman-Keuls multiple comparison test. 
*p < 0. 05 was considered statistically significant. 



TABLE 33 

EFFECT OF GL-522-Y-1 ON THE FVIII:C MEDIATED INIIlBITION 
OF FACTOR Xa GENERATION 

Concentration 

µM /Lg/mL % Inhibition 

67.20 100.0 99.7 ± 0.5* 

33.60 50.0 58.8 ± 4.2* 

16.80 25.0 32.8 ± 1.7* 

8.40 12.5 21.2 ± 3.3* 

4.20 6.2 18.6 ± 2.1· 

2.10 3.1 12.0 ± 3.7* 

1.05 1.6 13.7 ± 0.7* 

0.53 0.8 3.6 ± 0.0 

341 

All results represent the mean ± 1 standard deviation of three determinations. µM 
concentrations were calculated based on a formula molecular weight of 1488 Da. All 
percent inhibitions were based on an unsupplemented control Statistically significant 
differences between treatment and control were determined by one way ANOVA (dF 
= 23, F = 975, p < 0.0001) followed by the Newman-Keuls multiple comparison test. 
*p < 0.05 was considered statistically significant. 



TABLE 34 

EFFECT OF HEPARIN ON TIIE FVIIl:C MEDIATED INHIBITION 
OF FACTOR Xa GENERATION 

Concentration 

µM µ.gJmL % Inhibition 

0.038 0.4 99.7 ± 0.3* 

0.019 0.2 99.7 ± 0.3* 

0.010 0.1 99.7 ± 0.3* 

0.005 0.05 96.4 ± 2.0* 

0.0025 0.025 61.2 ± 8.0* 

0.0012 0.012 39.2 ± 8.4* 

0.0006 0.006 36.8 ± 1.0* 

0.0003 0.003 30.3 ± 0.4* 

342 

All results represent the mean ± 1 standard deviation of three determinations. µM 
concentrations were calculated based on a weight average molecular weight of 10492 
Da. All percent inhibitions were based on an unsupplemented control. Statistically 
significant differences between treatment and control were determined by one way 
ANOVA (dF = 23, F = 975, p < 0.0001) followed by the Newman-Keuls multiple 
comparison test. *p < 0. 05 was considered statistically significant. 
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TABLE 35 

EFFECT OF PENTASACCHARIDE ON TIIB FVIII: C MEDIATED INIIlBITION 
OF FACTOR Xa GENERATION 

Concentration 

µM µ,gfmL % Inhibition 

58.00 100.0 82.4 ± 10.9* 

29.00 50.0 77.3 ± 8.3* 

14.50 25.0 74.9 ± 7.7* 

7.25 12.5 70.8 ± 8.7* 

3.63 6.2 67.9 ± 7.0* 

1.81 3.1 67.9 ± 6.5* 

0.91 1.6 62.3 ± 6.8* 

0.45 0.8 52.6 ± 7.1 * 

All results represent the mean + 1 standard deviation of three determinations. µM 
concentrations were calculated based on a formula molecular weight of 1728 Da. All 
percent inhibitions were based on an unsupplemented control. Statistically significant 
differences between treatment and control were determined by one way ANOV A ( dF 
= 23, F = 346, p < 0.0001) followed by the Newman-Keuls multiple comparison test. 
*p < 0.05 was considered statistically significant. 
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TABLE 36 

EFFECT OF APROSULATE ON PROTEASE GENERATION FOLLOWING ACTIVATION 
OF THE INTRINSIC AND EXTRINSIC PATHWAYS 

Concentration % Inhibition 

µg/mL Extrinsic Ila Extrinsic Xa Intrinsic Ila 

79.5 11.1 ± 2.1 • 5.2 ± 1.5* 75.6 ± 4.8· 

39.8 8.1 ± 2.9* 0.7 ± 0.7 70.6 ± 4.6* 

19.9 2.0 ± 1.6 0.1 ± 0.1 65.4 ± 5.2 • 

9.9 0.6 ± 1.4 0±0 55.1 ± 10.6· 

5.0 0±0 0±0 17.2 ± 25.5 

2.5 0±0 0±0 0±0 

1.2 0±0 0±0 0±0 

0.6 0±0 0 ± 0 0±0 

0 0±0 0±0 0±0 

Intrinsic Xa 

91.3 ± 3.7* 

92.2 ± 3.1 • 

92.0 ± 4.2" 

91.5 ± 4.6· 

67.7 ± 24.0* 

42.7 ± 21.2· 

20.5 ± 18.7 

8.4 ± 10.0 

0±0 

All results represent the mean ± 1 standard deviation of three determinations. µM amounts are final assay concentrations based on 
a formula molecular weight of 2388 Da. All percent inhibitions were calculated based on an unsupplemented control. Statistically 
significant differences between supplemented and control samples were determined by one way ANOV A followed by the Newman
Keuls multiple comparison test (Ext Ila; dF = 26, F = 27.3, p < 0.0001. Ext Xa; dF = 26, F = 29.2, p < 0.0001. Int Ila; dF 
= 26, F = 37.9, p < 0.0001. Int Xa; dF = 26, F = 22.4, p < 0.0001). * p < 0.05 was considered statistically significant. w 
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TABLE 37 

EFFECT OF GL-522-Y-l ON PROTEASE GENERATION FOLLOWING ACTIVATION OF THE INTRINSIC AND 
EXTRINSIC PATHWAYS 

Concentration % Inhibition 

µM µg/mL Extrinsic Ila Extrinsic Xa Intrinsic Ila Intrinsic Xa 

33.3 49.6 97.7 ± 3.9* 98.3 ± 3.o· 100 ± O* 99.9 ± 0.2· 

16.7 24.8 77.8 ± 7.o· 80.4 ± 9.5* 100 ± o· 100 ± o· 

8.4 12.4 54.7 ± 5.7* 57.2 ± 5.2* 99.4 ± 1.0* 96.3 ± 3.2* 

4.2 6.2 26.6 ± 14.2" 36.8 ± 13.1" 84.0 ± 5.1* 93.8 ± 6.9* 

2.1 3.1 10.8 ± 0.1 14.6 ± 7.5 28.4 ± 33.5* 81.9 ± 7.0* 

1.05 1.5 4.7 ± 3.1 1.6 ± 1.0 0.4 ± 0.7 27.2 ± 19.8* 

0.52 0.8 0.2 ± 0.2 0.5 ± 0.6 0±0 7.4 ± 6.6 

0.26 0.4 0±0 0.2 ± 0.3 0±0 2.1 ± 3.0 

0 0 0 ± 0 0±0 0±0 0±0 

All results represent the mean ± 1 standard deviation of three determinations. µM amounts are final assay concentrations based on 
a formula molecular weight of 1488 Da. All percent inhibitions were calculated based on an unsupplemented control. Statistically 
significant differences between supplemented and control samples were determined by one way ANOV A followed by the Newman
Keuls multiple comparison test (Ext Ila; dF = 26, F = 123.2, p < 0.0001. Ext Xa; dF = 26, F = 111.3, p < 0.0001. Int Ila; 
dF = 26, F = 55.5, p < 0.0001. Int Xa; dF = 26, F = 102.9, p < 0.0001). * p < 0.05 was considered statistically significant. 
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TABLE 38 

EFFECT OF HEPARIN ON PROTEASE GENERATION FOLLOWING ACTIVATION 
OF THE INTRINSIC AND EXTRINSIC PATHWAYS 

Concentration % Inhibition 

µg/mL Extrinsic Ila Extrinsic Xa Intrinsic Ila 

349.4 100 ± o· 97.3 ± 0.9* 29.7 ± 1.7* 

174.7 98.7 ± 1.1* 96.2 ± 1.0· 29.2 ± 2.5" 

87.4 93.4 ± 2.1 • 94.9 ± o.4· 29.7 ± 2.0· 

43.7 54.2 ± 5.4· 92.6 ± 0.3· 28.9 ± 3.3· 

21.8 1.7 ± 1.9 85.6 ± 0.7* 24.1 ± 4.9' 

10.9 0±0 68.5 ± 2.3· 23.5 ± 5.9* 

5.6 0±0 47.8 ± 2.3* 7.8 ± 13.5 

2.7 0±0 27.7 ± 2.2· 0±0 

0 0±0 0±0 0±0 

Intrinsic Xa 

79.6 ± 1.0* 

80.1 ± 2.5" 

81.9 ± 1.6* 

80.1 ± 2.s· 

81.3 ± 2.8' 

84.7 ± 1.3* 

86.7 ± 2.1' 

68.3 ± 6.5' 

0±0 

All results represent the mean ± 1 standard deviation of three determinations. µM amounts are final assay concentrations based on 
a formula molecular weight of 10492 Da. All percent inhibitions were calculated based on an unsupplemented control. Statistically 
significant differences between supplemented and control samples were determined by one way ANOV A followed by the Newman
Keuls multiple comparison test (Ext Ila; dF = 26, F = 1577.5, p < 0.0001. Ext Xa; dF = 26, F = 1880.7, p < 0.0001. Int Ila; 
dF = 26, F = 16.9, p < 0.0001. Int Xa; dF = 26, F = 294.4, p < 0.0001). * p < 0.05 was considered statistically significant. 
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µM 

33.3 

16.7 

8.4 

4.2 

2.1 

1.05 

0.52 

0.26 
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TABLE 39 

EFFECT OF PENTASACCHARIDE ON PROTEASE GENERATION FOLLOWING ACTIVATION 
OF THE INTRINSIC AND EXTRINSIC PATHWAYS 

Concentration % Inhibition 

µg/mL Extrinsic Ila Extrinsic Xa Intrinsic Ila Intrinsic Xa 

57.5 0±0 0±0 0±0 53.3 ± 12.7* 

28.8 0±0 0±0 0±0 29.2 ± 13.7* 

14.4 0±0 0±0 0±0 16.3 ± 9.5 

7.2 0±0 0±0 0±0 8.9 ± 6.1 

3.6 0±0 0±0 0±0 4.1 ± 3.2 

1.8 0±0 0±0 0±0 1.2 ± 0.6 

0.9 0±0 0±0 0±0 0.4 ± 0.4 

0.4 0±0 0±0 0±0 1.3 ± 1.3 

0 0±0 0±0 0±0 0±0 

All results represent the mean ± 1 standard deviation of three determinations. µM amounts are final assay concentrations based on 
a formula molecular weight of 1728 Da. All percent inhibitions were calculated based on an unsupplemented control. Statistically 
significant differences between supplemented and control samples were determined by one way ANOV A followed by the Newman
Keuls multiple comparison test (Ext Ila; dF = 26, F = 1.0, p = 1.0 Ext Xa; dF = 26, F = 1.0, p = 1.0. Int Ila; dF = 26, F = 
1.0, p = 1.0. Int Xa; dF = 26, F = 17.9, p < 0.0001). * p < 0.05 was considered statistically significant. 
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TABLE 40 

EFFECT OF APROSULATE ON GLYCOSAMINOGLYCAN SYNTHESIS IN ENDOTHEUAL CELL CULTURE 

Dose (µM) CS Med1 HS Med2 CS Cell3 HS Cell4 

0 2.71 ± 0.43 1.06 ± 0.26 0.84 ± 0.13 1.30 ± 0.21 

0.04 1.87 ± 0.31 0.77 ± 0.12 0.76 ± 0.01 1.20±0.17 

0.41 2.22 ± 0.06 0.92 ± 0.07 0.85 ± 0.09 1.17 ± 0.10 

4.18 2.72 ± 0.13 1.32 ± 0.23 0.73 ± 0.02 1.12 ± 0.04 

20.9 2.87 ± 0.10 1.61 ± 0.28 1.02 ± 0.16 0.97 ± 0.21 

41.8 2.99 ± 0.06 2.14 ± 0.01· 1.46 ± 0.04* 0.91 ± 0.15 -----
All results represent the mean ± SEM of three individual culture dishes. Confluent rabbit endothelial cells were incubated with 
aprosulate and 35S containing buffer for 18 hours. Glycosaminog1ycan production was determined by scinti1lation counting. 1 

Chondroitin sulfate in culture media (C.P.M.'s x 105
). 

2 Heparan sulfate in culture media (C.P.M.'s x 106>. 3 Chondroitin sulfate 
on endothelial cel1s (C.P.M.'s x 105). 4 Heparan sulfate on endothe1ia1 ce11s (C.P.M. 's x 106

). Statistical comparison of the C.P.M. 's 
at each concentration with that of unsupplemented controls was made by one way ANOVA followed by the Newman-Keuls test. (CS 
Med; dF = 17, F = 10.5, p = 0.0005. HS Med; dF = 17, F = 21.2, p < 0.0001. CS Cell; dF = 17, F = 25.4, p < 0.0001. 
HS Cell; dF = 17, F = 2.56, p = 0.0847). "p < 0.05 vs. control is considered statistically significant. 
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TABLE 41 

EFFECT OF GL-522-Y-1 ON GLYCOSAMINOGLYCAN SYNTHESIS IN ENDOTHELIAL CELL CULTURE 

Dose (µM) CS Med1 HS Med2 CS Cell3 HS Cell4 

0 1.45 ± 0.12 0.33 ± 0.10 0.95 ± 0.08 0.76 ± 0.02 

0.07 1.29 ± 0.22 0.31 ± 0.06 1.31 ± 0.01 1.14 ± 0.02 

0.67 1.43 ± 0.02 0.42 ± 0.03 1.51 ± 0.11· 1.36 ± 0.04* 

6.70 1.30 ± 0.16 0.78 ± 0.08 1.30 ± 0.25 1.24 ± 0.29 

33.5 1.70 ± 0.36 1.10 ± 0.19* 1.70 ± 0.08* 1.81 ± 0.13* 

67.0 1.58 ± 0.19 1.11 ± o.1s· 1.70 ± 0.06* 1.91 ± 0. 12· 

All results represent the mean ± SEM of three individual culture dishes. Confluent rabbit endothelial cells were incubated with GL-
522-Y- l and :ns containing buffer for 18 hours. Glycosaminoglycan production was determined by scintillation counting. 1 Chondroitin 
sulfate in culture media (C.P.M. 's x 105

). 2 Heparan sulfate in culture media (C.P.M. 's x 106
). 

3 Chondroitin sulfate on endothelial 
cells (C.P.M. 's x 105

). 
4 Heparan sulfate on endothelial cells (C.P.M. 's x 106

). Statistical comparison of the C.P.M. 's at each 
concentration with that of unsupplemented controls was made by one way ANOV A followed by the Newman-Keuls test (CS Med; 
dF = 17, F = 1.80, p = 0.1867. HS Med; dF = 17, F = 31.6, p < 0.0001. CS Cell; dF = 17, F = 16.5, p < 0.0001. HS Cell; 
dF = 17, F = 28.3, p < 0.0001). *p < 0.05 vs. control is considered statistically significant. 
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TABLE 42 

EFFECT OF HEPARIN ON GLYCOSAMINOGLYCAN SYNTIIESIS IN ENDOTHELIAL CELL CULTURE 

Dose (µM) CS Med1 CS Cen3 HS Cell4 

HS Med2 

0 0.76 ± 0.05 2.60 ± 0.24 0.55 ± 0.07 8.40 ± 1.18 

0.0095 0.93 ± 0.20 2.86 ± 0.13 0.56 ± 0.07 8.44 ± 0.59 

0.095 1.08 ± 0.32 3.73 ± 0.20 0.69 ± 0.5 9.48 ± 0.66 

0.95 1.03 ± 0.22 4.21 ± 0.53" 0.88 ± 0.26 7.56 ± 2.02 

4.77 0.93 ± 0.25 5.77 ± 0.62* 0.52 ± 0.06 9.45 ± 3.03 

9.50 0.84 ± 0.07 6.76 ± 0.18* 1.05 ± 0.08 9.24 ± 0.69 

All results represent the mean ± SEM of three individual culture dishes. Confluent rabbit endothelial cells were incubated with 
heparin and 35S containing buffer for 18 hours. Glycosaminoglycan production was detennined by scintillation counting. 1 Chondroitin 
sulfate in culture media (C.P.M.'s x 105

). 
2 Heparan sulfate in culture media (C.P.M. 's x 105

). 
3 Chondroitin sulfate on endothelial 

cells (C.P.M. 's x 101
). 

4 Heparan sulfate on endothelial cells (C.P.M. 's x 105). Statistical comparison of the C.P.M. 's at each 
concentration with that of unsupplemented controls was made by one way ANOV A followed by the Newman-Keuls test (CS Med; 
dF = 17, F = 0.959, p = 0.4793. HS Med; dF = 17, F = 59.9, p < 0.0001. CS Cell; dF = 17, F = 2.44, p = 0.0950. HS Cell; 
dF = 17, F = 0.655, p = 0.6636). ·p < 0.05 vs. control is considered statistically significant. 
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TABLE 43 

EFFECT OF PENTASACCHARIDE ON GLYCOSAMINOGLYCAN SYNTHESIS IN ENDOTHELIAL CELL CULTURE 

Dose (µM) CS Med1 HS Med2 CS Cell3 HS Cell4 

0 7.70 ± 1.17 8.52 ± 0.28 6.65 ± 0.53 3.28 ± 0.54 

0.058 7.74 ± 0.30 8.61 ± 0.34 6.55 ± 1.03 3.36 ± 0.48 

0.58 7.58 ± 0.44 9.33 ± 0.04 6.80 ± 0.01 4.09 ± 0.43 

5.8 7.83 ± 0.39 9.09 ± 0.32 8.58 ± 1.38 3.85 ± 0.05 

29.0 7.53 ± 1.32 7.51 ± 0.57 8.50 ± 0.02 3.76 ± 0.40 

58.0 6.63 ± 0.28 8.84 ± 0.18 9.78 ± 0.07 4.71 ± 0.70 

All results represent the mean ± SEM of three individual culture dishes. Confluent rabbit endothelial cells were incubated with 
pentasaccharide and 35S containing buffer for 18 hours. Glycosaminoglycan production was determined by scintillation counting. 1 

Chondroitin sulfate in culture media (C.P.M.'s x 104). 2 Heparan sulfate in culture media (C.P.M.'s x Hf). 3 Chondroitin sulfate 
on endothelial cells (C.P.M. 's x 104). 4 Heparan sulfate on endothelial cells (C.P.M. 's x 1£Yi). Statistical comparison of the C.P.M. 's 
at each concentration with that of unsupplemented controls was made by one way ANOV A followed by the Newman-Keuls test (CS 
Med; dF = 17, F = 0.964, p = 0.4770. HS Med; dF = 17, F = 11.0, p = 0.0004. CS Cell; dF = 17, F = 9.86, p = 0.0006. 
HS Cell; dF = 17, F = 3.63, p = 0.0313). *p < 0.05 vs. control is considered statistically significant. 
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TABLE 44 

EFFECT OF APROSULATE, GL-522-Y-1, HEPARIN AND PENTASACCHARIDE ON AGONIST INDUCED PLATELET 
AGGREGATION IN PLATELET RICH PLASMA 

Aprosulate GL-522-Y-1 Heparin Pentasaccharide Control 

Epinephrine 68.1 ± 4.9 66.1 ± 4.1 73.9 ± 0.7 63.3 ± 7.4 66.0 ± 6.0 

ADP 1:4 72.0 ± 3.9 69.1 ± 4.5 71.6 ± 1.6 66.9 ± 4.3 65.4 ± 3.8 

ADP 1:8 61.0 ± 7.1 60.2 ± 6.4 68.6 ± 5.3 58.8 ± 1.5 53.9 ± 7.7 

Arachidonic Acid 78.5 ± 0.8 68.8 ± 7.0 77.8 ± 0.8 69.3 ± 7.1 78.3 ± I.I 

Thrombin 46.6 ± 11.3· 91.8 ± I.I 6.7 ± o.8· 89.1 ± 2.7 93.7 ± 0.9 

Collagen 76.4 ± 1.3 74.8 ± 1.3 75.5 ± 1.7 75.9 ± 1.6 74.7 ± 1.4 

All results represent the mean (± SEM) percent aggregation of 10 volunteers. All test agents were supplemented at a final 
concentration of 10 µM. Epinephrine = 10 µglmL; ADP = 1.15 and 0.58 µglmL; Arachidonic acid = 300 µg/mL; Thrombin = 
1 U/mL; Collagen = 0.8 µg/mL. All agonist concentrations represent final assay concentrations. Statistical comparisons vs. control 
for each agonist were made by one way ANOVA and the Newman Keuts test (Epinephrine; dF = 49, F = 5.98, p = 0.0006. ADP 
1:4; dF = 49, F = 6.13 p = 0.0005. ADP 1:8; dF = 49, F = 5.98, p = 0.0006. Arachidonic Acid; dF = 49, F = 12.4, p < 
0.0001. Thrombin; dF = 49, F = 532, p < 0.0001. Collagen; dF = 49, F = 2.15 p = 0.0900). •p < 0.05 was considered 
statistically significant. 
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TABLE 45 

EFFECT OF APROSULATE, GL-522-Y-l, HEPARIN AND PENTASACCHARIDE ON AGONIST INDUCED PLATELET 
AGGREGATION IN PLATELET RICH PLASMA 

Aprosulate GL-522-Y-1 Heparin Pentasaccharide Control 

Epinephrine 22.5 ± 2.7 20.7 ± 2.6 25.5 ± 2.2 21.7 ± 3.1 21.8 ± 3.5 

ADP 1:4 39.4 ± 1.8 39.5 ± 1.3 41.3 ± 1.0 38.6 ± 1.2 41.2 ± 1.9 

ADP 1:8 31.2 ± 1.8 31.8 ± 1.9 36.5 ± 2.1 30.6 ± 2.3 31.5 ± 2.8 

Arachidonic Acid 45.2 ± 2.3 42.4 ± 4.4 46.7 ± 2.2 41.8 ± 4.6 47.9 ± 2.8 

Thrombin 21.9 ± 2.8· 74.6 ± 8.0 3.8 ± 0.2· 50.8 ± 4.7 61.5 ± 3.0 

Collagen 40.9 ± 2.2 41.l ± 1.9 40.4 ± 2.0 41.0 ± 1.9 43.l ± 2.7 

All results represent the mean (± SEM) slope of the aggregation response of 10 volunteers. All test agents were supplemented at 
a final concentration of 10 µM. Epinephrine = 10 µg/mL; ADP = 1.15 and 0.58 µg/mL; Arachidonic acid = 300 µg/mL; Thrombin 
= I U/mL; Collagen = 0.8 µg/mL. All agonist concentrations represent final assay concentrations. Statistical comparisons were 
made by one way ANOVA and the Newman Keuls test (Epinephrine; dF = 49, F = 4.10, p = 0.0065. ADP 1:4; dF = 49, F = 
6.49 p = 0.0003. ADP 1:8; dF = 49, F = 11.6, p < 0.0001. Arachidonic Acid; dF = 49, F = 6.01, p = 0.0006. Thrombin; 
dF = 49, F = 410.6, p < 0.0001. Collagen; dF = 49, F = 2.32 p = 0.0710). *p < 0.05 was considered statistically significant. 
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TABLE 46 

COMPARATIVE EFFECT OF SYNTHETIC HEPARIN ANALOGUES IN A 
HEPARIN INDUCED THROM:BOCYTOPENIA SCREENING ASSAY 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

µ.g/m.L 

5.5 

11.0 

21.7 

5.5 

11.0 

21.7 

5.5 

11.0 

21.7 

5.5 

11.0 

21.7 

µM 

2.30 

4.61 

9.21 

3.70 

7.39 

14.78 

0.52 

l.05 

2.10 

3.18 

6.37 

12.73 

% Aggregation 

8.3 ± 1.1 

9.0 ± 1.9 

18.9 ± 1.6* 

21.2 ± 4.2* 

10.4 ± 3.3" 

7.8 ± 0.9 

5.0 ± 1.3 

11.6 ± 1.7* 

15.5 ± 1.4" 

22.2 ± 5.5* 

3.4 ± 0.2 

5.9 ± 0.3 

6.6 ± 1.1 

354 

Results represent the mean ± SEM of 10 volunteers. Aggregation was induced by the 
test agent and lilT positive serum. Statistical analysis was made by one way ANOVA 
followed by the Newman Keuls test (aprosulate; dF = 39, F = 70.8, p < 0.0001. GL-
522-Y-1; dF = 39, F = 13.5, p < 0.0001. heparin; dF = 39.3, F = 39.3, p < 
0.0001. pentasaccharide; dF = 39, F = 64.9, p < 0.0001). p < 0.05 represents a 
statistically significant increase in aggregation VS'. control. 



TABLE 47 

ANTITHROMBOTIC EFFECT OF SYNTHETIC HEP ARIN ANALOGUES IN 
A RABBIT MODEL OF STASIS TIIROMBOSIS 

Dose Clot Score Clot Score 

(nmol/kg) (mglkg) 10 minutes 20 Minutes 

Saline 0.1 mL/kg 2.9 ± 0.1 3.6 ± 0.3 

Aprosulate 42.0 0.10 2.8 ± 0.3 3.3 ± 0.3 
104.7 0.25 1.2 ± 0.21 3.0 ± 0.0 
209.4 0.50 0.2 ± 0.2' 2.2 ± 0.4* 

GL-522-Y-1 67.0 0.10 2.6 + 0.2· 3.4 ± 0.1 
776.0 1.00 1.6 ± 0.3* 2.9 ± 0.1 

1940.0 2.50 1.0 ± 0.31 3.2 ± 0.2 

3880.0 5.00 0.4 ± 0.21 2.8 ± 0.2 

Heparin 0.6 0.01 0.8 ± 0.2 3.6 ± 0.3 

1.2 0.01 1.8 ± 0.5 3.0 ± 0.0 

2.4 0.02 1.2 ± 0.6* 2.4 ± 0.2 

4.8 0.05 0.0 ± 0.0' 0.2 ± 0.2# 

Pentasaccharide 7.2 0.01 2.4 ± 0.3 3.0 ± 0.0 

14.5 0.02 1.8±0.4" 3.0 ± 0.0 

29.0 0.05 1.2 ± 0.2' 2.8 ± 0.2 

58.0 0.10 0.2 ± 0.21 1.2 ± 0.2# 

355 

All doses, with the exception of saline, are expressed in nmol/kg administered 5 
minutes prior to injection of the thrombogenic challenge. Clot Score 10 minutes and 
Clot Score 20 minutes are expressed as mean ± S.E.M. of the clot scores obtained 
after stasis times of 10 and 20 minutes, respectively. Each treatment group contained 
5 rabbits. Statistical comparisons were made using the Kruskal-Wallis test for each 
agent followed by the Mann-Whitney U test for specific comparisons. p < 0.05 vs. 
control. #p < 0.01 vs. control. 



TABLE 48 

ANTITHROMBOTIC EFFECT OF SYNTHETIC HEPARIN ANALOGUES IN 
A RABBIT MODEL OF STASIS 1EROMBOSIS 

Agent 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose 

(µmol/kg) (mg/kg) 

0.1 mL/kg 

1.047 

2.094 

4.188 

6.720 

13.440 

20.160 

0.024 

0.048 

0.095 

0.073 

0.145 

0.290 

2.5 

5.0 

10.0 

10.0 

20.0 

30.0 

0.25 

0.50 

1.00 

0.12 

0.25 

0.50 

Clot Score 
10 minutes 

2.9 + 0.1 

2.7 ± 0.1 

1.4 + 0.2# 

0.5 + 0.1# 

2.4 + 0.2 

1.2 + 0.4# 

0.8 ± 0.4# 

2.6 ± 0.3 

1.2 ± 0.2# 

0.0 ± 0.<1 

1.8 + 0.2# 

1.2 ± 0.2# 

0.4 ± 0.2# 

Clot Score 
20 Minutes 

3.6 ± 0.3 

2.9 ± 0.1 

2.0 ± 0.2· 

1.4 ± 0.1# 

3.6 ± 0.2 

3.2 ± 0.2 

3.8 ± 0.2 

3.4 ± 0.3 

2.5 ± 0.2 

1.0 ± 0.4# 

3.0 ± 0.5 

2.4 ± 0.4 

1.8 ± 0.4* 
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All doses, with the exception of saline, are expressed :in 1-'mol/kg administered 2 hours 
prior to injection of the thrombogenic challenge. Clot Score 10 minutes and Clot 
Score 20 minutes are expressed as mean + S.E.M. of the clot scores obtained after 
stasis times of 10 and 20 minutes, respectively. Each treatment group contained 5 
rabbits. Statistical comparisons were made using the Kruskal-Wallis test for each agent 
followed by the Mann-Whitney U test for specific comparisons. p < 0.05 vs. 
control. #p < 0.01 vs. control. 



TABLE 49 

TIME DEPENDENCE OF THE ANTITim.O:MBOTIC ACTIVITY OF 
SYNTIIBTIC HEPARIN ANALOGUES IN A RABBIT STASIS THROMBOSIS 

MODEL FOLLOWING INTRA VENOUS ADMINISTRATION 

Saline 

Aprosulate 

(209 nmol/kg; 500 
µglkg) 

GL-522-Y-1 

(3880 nmol/kg; 5 
mg/kg) 

Heparin 

( 4. 77 nmol/kg; 50 
µglkg) 

Pentasaccharide 

(58.0 nmol/kg; 100 
µglkg) 

Circulation 
Time 

5 min. 

5 min. 

60 ntin. 

120 min. 

5 min. 

60 min 

120 min. 

5 min. 

30 min. 

60 ntin. 

5 min. 

120 min. 

240 min. 

Clot Score Clot Score 
10 minutes 20 minutes 

2.9 + 0.1 3.6 ± 0.3 

0.2 ± 0.2# 2.2 ± 0.4* 

1.4 ± 0.3# 3.0 ± 0.0 

2.4 + 0.3 3.4 ± 0.3 

0.4 + 0.2# 2.8 ± 0.2 

1.4 + 0.2· 2.8 ± 0.2 

1.6 + o.i- 3.0 ± 0.0 

0.0 ± 0.0# 0.2 ± 0.2# 

1.6 ± 0.3· 2.6 ± 0.3 

2.4 + 0.3 3.2 ± 0.2 

0.2 ± 0.2# 1.2 ± 0.2# 

1.3 ± 0.3 3.3 ± 0.3 

1.8 ± 0.2· 3.2 ± 0.2 

Clot Score 10 minutes and Clot Score 20 minutes are expressed as mean ± S .E.M. 
of the clot scores obtained after stasis times of 10 and 20 minutes, respectively. Each 
treatment group contained 4-5 rabbits. Statistical comparisons were made using the 
Kruskal-Wallis test for each agent followed by the Mann-Whitney U test for specific 
comparisons. *p < 0.05 vs. control. 11p < 0.01 YS. control. 
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TABLE 50 

TIME DEPENDENCE OF THE ANTITHRO:MBOTIC ACTIVITY OF 
SYNTI:IETIC HEPARIN ANALOGUES IN A RABBIT STASIS THROMBOSIS 

MODELFOLLOWINGSUBCUTANEOUSADMINISTRATION 

Agent (dose) Circulation Clot Score Clot Score 
Time 10 minutes 20 minutes 

Saline 5 min. 2.9 ± 0.1 3.6 ± 0.3 

Aprosulate 2 hrs. 0.5 + 0.1,f 1.4 ± 0.11 

(4.19 µmol/kg; 10.0 4 hrs. 0.8 ± 0.2,f i.s ± o.s· 
mg/kg) 

6 hrs. 2.2 + 0.2 3.2 + 0.2 

GL-522-Y-1 2 hrs. 1.2 + 0.4" 3.2 ± 0.2 

(13.44 µmol/kg; 20.0 3 hrs. 1.4 + 0.3" 3.0 ± 0.0 
mg/kg) 

4 hrs. 2.4 + 0.3 3.0 ± 0.0 

Heparin 2 hrs. 1.2 ± 0.2# 2.5 + 0.4 

(0.048 µmol/kg; 500 4 hrs. 2.0 + 0.7 3.3 ± 0.4 
µg/kg) 

6 hrs. 2.4 + 0.3 3.2 ± 0.2 

Pentasaccharide 2 hrs. 1.2 ± 0.2· 2.4 ± 0.4 

(0.145 µmol/kg; 250 4 hrs. 1.5 ± 0.3· 2.8 ± 0.3 
µglkg) 

6 hrs. 2.2 + 0.2 3.4 ± 0.3 

Clot Score 10 minutes and Clot Score 20 minutes are expressed as mean ± S.E.M. 
of the clot scores obtained after stasis times of lO and 20 minutes, respectively. Each 
treatment group contained 4-5 rabbits. Statistical comparisons were made using the 
Kruskal-Wallis test for each agent followed by the Mann-Whitney U test for specific 
comparisons. ·p < 0.05 vs. control. #p < 0.01 vs. control. 
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TABLE 51 

ANTITHROMBOTIC EFFECT OF SYNTHETIC HEP ARIN ANALOGUES 
FOLLOWING IN1'RA VENOUS ADMINISTRATION IN A RAT 

WGULAR VEIN CLAMPING MODEL 

Dose 

(µmol/kg) (µg/kg) 

Saline 0.1 rnlJkg 

Aprosulate 0.105 250 

0.209 500 

0.419 1000 

1.047 2000 

GL-522-Y-1 1.941 2500 

3.882 5000 

7.764 10000 

11.646 15000 

Heparin 0.012 125 

0.024 250 

0.048 500 

0.095 1000 

Pentasaccharide 0.029 50 

0.058 100 

0.145 250 

0.290 500 

II of Clampings 

4.4 ± 0.3 

6.0 ± 0.7 

8.2 ± 0.4· 

10.6 ± o.8· 

13.0 + 1.9* 

6.4 ± 1.0 

8.8 ± 0.4* 

12.8 ± o.8· 

13.0 ± 1.1 * 

5.6 ± 0.6 
8.0 ± 0.94* 

10.8 ± 1.1 * 

> 15* 

5.6 ± o.s· 
8.4 ± 0.3* 

11.4 ± o.5· 

13.6 ± o.8· 

All doses, with the exception of saline are expressed as µmo1Jkg. ,umole dosages of 
each agent were calculated based on the formula molecular weights of 2388, 1488, 
and 1728 Da for aprosulate, GL-522-Y-1, and pentasaccharide, respectively, and a 
weight average molecular weight of I 0492 for heparin. The number of clampings 
represent the mean ± S.E.M. of 5 rats. Statistical comparisons were made by one 
way analysis of variance followed by the Newman-Keuls test. *p < 0.05 vs. control. 
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TABLE 52 

ANTITIIRO:MBOTIC EFFECT OF SYNTHETIC HEPARIN ANALOGUES 
FOLLOWING SUBCUTANEOUS ADMlNISTRATION IN A RAT 

JUGULAR VEIN CLAMPING MODEL 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose # of Clampings 

(µmol/kg) (mg/kg) 

0.1 mLfkg 

1.047 2.5 

2.094 5.0 

4.188 10.0 

8.375 20.0 

3.360 5.0 

6.720 10.0 

13.441 20.0 

20.161 30.0 

0.060 0.6 

0.119 1.25 

0.238 2.5 

0.477 5.0 

0.036 0.06 

0.073 0.12 

0.145 0.25 

0.290 0.50 

5.8 ± 0.4 

8.8 ± 0.4. 

11.2 ± 0.6· 

13.8 ± 0.9· 

6.4 ± 0.6 

7.4 ± 1.0· 

11.0 ± o.r 
12.8 ± o.r 

4.6 ± 0.3 

7.4 ± 0.5· 

10.6 ± 0.9* 

12.0 ± 0.6* 
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All doses, with the exception of saline are expressed as µmol/kg. µmole dosages of 
each agent were calculated based on the formula molecular weights of 2388, 1488, 
and 1728 Da for aprosulate, GL-522-Y-1, and penta.saccharide, respectively, and a 
weight average molecular weight of 10492 for heparin. The number of clampings 
represent the mean ± S .E.M. of 5 rats. Statistical comparisons were made by one 
way analysis of variance followed by the Newman-Keuls test. ·p < 0.05 vs. control. 



TABLE 53 

HEMORRHAGIC EFFECT OF HEPARJN ANALOGUES FOLLOWING 
INTRA VENOUS AD1\.1INISTRATION 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose 

µ.moll mg/kg 
kg 

RBC's 
5 min 

0.1 mL/kg 0.07 + 0.04 

0.42 

1.05 

2.09 

1.68 

3.36 

6.72 

0.02 

0.05 

0.10 

0.58 

1.45 

2.90 

1.0 

2.5 

5.0 

2.5 

5.0 

10.0 

0.16 + o.o4· 

0.15 + 0.06· 

0.11 ± o.o5· 

0.17 ± 0.06 

0.54 + 0.16· 

0.87 + 0.13· 

0.25 0.11 + 0.05 

0.50 0.22 ± 0.10 

1.00 0.31 + 0.19* 

1.00 0.05 + 0.02 

2.50 

5.00 

0.04 ± 0.01 

0.04 + 0.01 

RBC's 
15 min 

0.07 ± 0.03 

0.09 ± 0.02 

0.08 ± 0.01 

0.10 ± 0.05 

0.15 ± 0.05 

0.54 ± 0.11· 

1.19 ± 0.23• 

0.08 ± 0.04 

0.07 ± 0.01 

0.13 ± 0.06 

0.03 ± 0.01 

0.05 ± 0.01 

0.04 ± 0.02 

All results represent the mean ± S.E.M. blood cell loss (x la9/liter) in five rabbits 
per treatment goup. Each agent was administered intravenously via the left marginal 
ear vein. After five minutes, five standardized incisions were made in the non-vascular 
portion of the right ear. Blood cells were collected for 10 minutes. After 10 minutes, 
five incisions were made on the left ear and the blood cells collected for 10 minutes. 
Blood cells were quantitated using a hemocytometer. Statistical comparisons were 
made using one way ANOV A followed by the Newman-Keuls test. p < 0.05 vs. 
control was considered to be statistically significant. 
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TABLE 54 

HEM:ORRHAGIC EFFECT OF HEPARIN ANALOGUES FOLLOWING 
SUBCUTANEOUS ADlYIINISTRATION 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose 

~mollk mg/kg 

0.1 mL/kg 

1.05 

2.09 

4.19 

8.38 

1.68 

3.36 

6.72 

13.44 

0.24 

0.48 

0.95 

1.91 

5.80 

11.60 

2.5 

5.0 

10.0 

20.0 

2.5 

5.0 

10.0 

20.0 

2.5 

5.0 

10.0 

20.0 

10.0 

20.0 

RBC's (x 109/L) 

0.11 ± 0.04 

0.09 ± 0.03 

0.16 ± 0.04 

0.18 ± 0.05· 

0.22 ± 0.05· 

0.48 ± 0.13 

0.90 ± 0.38* 

0.97 ± 0.54. 

1.19 ± 0.55* 

0.22 ± 0.07 

0.21 ± 0.06 

o.55 ± o.2s· 

2.00 ± 0.01 • 

0.18 ± 0.04 

0.15 + 0.07 
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All results represent the mean ± S.E.M. blood cell loss (x 109/liter) in five rabbits 
per treatment group. Each agent was administered subcutaneously in the abdominal 
region. After 3 hours, five standardized incisions were made in the non-vascular 
portion of the right ear. Blood cells were collected for 10 minutes. Blood cells were 
quantitated using a hemocytometer. Statistical comparisons were made using one way 
ANOV A followed by the Newman-Keuls test. "p < 0. 05 vs. control was considered 
to be statistically significant. 



TABLE 55 

TIME DEPENDENCE ON THE HEMORRHAGIC EFFECT OF HEPARIN 
ANALOGUES FOLLOWING INTRA VENOUS ADMINISTRATION 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose 

0.1 mLJkg 

0.42 µmoUkg 

(LO mg/kg) 

6.72 µmollkg 

(10.o mg/kg) 

0.95 µmo1/kg 

(10.0 mg/kg) 

2. 90 µmol/kg 

(5.0 mg/kg) 

Tline 

5 min. 

5 min. 

30 min. 

60 min. 

120 min. 

5 min. 

60 min. 

120 min. 

5 min. 

60 min. 

120 min. 

5 min. 

30min. 

60 min. 

RBC's 
(x 109/L) 

0.10 ± 0.01 

0.15 ± 0.01* 

0.15 ± 0.01* 

0.11 ± 0.01 

0.11 ± 0.01 

0.87 ± 0.13* 

1.37 ± 0.29* 

0.39 ± 0.12* 

3.06 ± 1.4* 

0.82 ± 0.15 

0.38 ± 0.08 

0.04 ± 0.02* 

0.02 ± 0.01* 

0.01 ± 0.01 
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All results represent the mean + S.E.M. blood cell loss (x Hf/liter) in five rabbits per 
treatment group. Each agent was administered intravenously via the left marginal ear 
vein. After varying circulation times, five standardized incisions were made in the non
vascular portion of the right ear. Blood cells were collected for 10 minutes. Blood cells 
were quantitated using a hemocytometer. Statistical comparisons were made using one 
way ANOV A followed by the Newman-Keuls tes1. p < 0. 05 YS. control was considered 
to be statistically significant. 



TABLE 56 

TIME DEPENDENCE OF TIIE HEMORRHAGIC EFFECT OF HEPARIN 
ANALOGUES FOLLOWING SUBCUTANEOUS ADMINISTRATION 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Dose 

0.1 mLJkg 

2. 09 µmol/kg 

(5.0 mg/kg) 

3.36 µmol/kg 

(5.0 mg/kg) 

0.48 µmol/kg 

(5.0 mg/kg) 

Time 

3 hrs. 

1 hr. 

2 hrs. 

4 hrs. 

6 hrs. 

3 hrs. 

4.5 hrs. 

6 hrs. 

3 hrs. 

6 hrs. 

RBC's (x 109/L) 

0.11 ± 0.04 

0.16±0.01· 

0.20 ± 0.02· 

0.19 ± 0.02· 

0.13 ± 0.01 

0.90 ± 0.38. 

0.42 ± 0.16· 

0.06 ± 0.02 

0.21 ± 0.02· 

0.14 ± 0.01 
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All results represent the mean ± S.E.M. blood cell loss (x I<f!liter) in five rabbits per 
treatment group. Each agent was administered subcutaneously in the abdominal region. 
After varying absorption times, five standardized incisions were made in the non-vascular 
portion of the right ear. Blood cells were collected for 10 minutes. Blood cells were 
quantitated using a hemocytometer. Statistical comparisons were made using one way 
ANOV A followed by the Newman-Keuls test. "p < 0. 05 vs. control was considered to 
be statistically significant. 



TABLE 57 

EFFECT OF INTRAVENOUS ADMINISTRATION OF HEPARIN 
ANALOGUES ON THE CEUTE ACT IN RABBITS 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose 

100 µg!kg 

250 µg!kg 

500 µg!kg 

1.0 mg/kg 

2.5 mg/kg 

5.0 mg/kg 

6.25 µg!kg 

12.5 µg!kg 

25.0 µg!kg 

50.0 µ.g!kg 

12.5 µglkg 

25.0 µg!kg 

50.0 µglkg 

100.0 ~g/kg 

n 

5 

5 

4 

s 
s 
4 

5 

4 

3 

5 

4 

5 

5 

5 

Fold Increase 

1.01 ± 0.04 

1.05 ± 0.02 

1.12 ± 0.12 

1.11 ± 0.03· 

1.15 ± 0.02· 

1.21 ± 0.02· 

1.00 ± 0.01 

1.03 ± 0.02 

1.03 ± 0.03 

0.98 ± 0.03 

1.00 ± 0.01 

1.02 ± 0.02 

1.08 ± 0.03 

1.05 ± 0.02 

Celite activated clotting times were determined a1 baseline and at 5 minutes post
administration of the test agent to New Zealand white rabbits. Fold increases were 
calculated relative to individual baselines. Statis1icalcomparisons were made using one 
way ANOVA followed by the Newman-Keuls test. p < 0.05 vs saline treatment was 
considered statistically significant. 
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TABLE 58 

EFFECT OF SUBCUTANEOUS ADMINISTRATION OF HEPARIN 
ANALOGUES 

GL-522-Y-1 

Heparin 

Pentasaccharide 

ON THE CEUTE ACT IN RABBITS 

Dose 

10 mg/kg 

20 mg/kg 

30 mg/kg 

250 µg/kg 

500 µg/kg 

1000 µg/kg 

125 µg/kg 

250 µg/kg 

500 µg!kg 

n 

5 

4 

5 

3 

5 

5 

5 

5 

4 

Fold Increase 

1.06 ± 0.02 

1.15 ± 0.06 

1.21 ± 0.09 

1.15 ± 0.09 

1.16 ± 0.04* 

1.14 ± 0.02 

1.06 ± 0.04 

1.06 ± 0.04 

1.12 ± 0.03 
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Celite activated clotting times were determined at baseline and at 2 hours post
administration of the test agent to New Zealand white rabbits. Fold increases were 
calculated relative to individual baselines. Statistical comparisons were made using one 
way ANOV A followed by the Newman-Keuls test. "p < 0.05 vs saline treatment was 
considered statistically significant. 



TABLE 59 

EFFECT OF INTRAVENOUS ADMINISTRATION OF HEPARIN 
ANALOGUES ON THE R-TIME. 

Saline 

Aprosulate 

GL-522-Y-l 

Heparin 

Pentasaccharide 

Dose 

100 µg/kg 
250 µg/kg 
500 µg/kg 

0.1 mg/kg 
1.0 mg/kg 
2.5 mg/kg 
5.0 mg/kg 

6.25 µg/kg 
12.5 µg/kg 
25.0 µ.g/kg 
50.0 µ.g/kg 

25.0 µ.g/kg 
50.0 µ.g/kg 

100.0 µ.g/kg 

n R-time (fold increase) 

5 1.05 ± 0.22 

5 0.78 ± 0.02 
4 1.54 ± 0.35 
5 3.97 ± 1.92 

5 0.89 ± 0.49 
4 1.34 ± 0.23 
5 1.82 ± 0.29 
5 2.33 ± 0.71 

5 0.81 ± 0.18 
3 1.35 ± 0.39 
4 1.21 ± 0.21 
5 1.22 ± 0.30 

5 1.92 ± 0.54 
3 1.46 ± 0.33 
5 1.35 ± 0.22 

367 

TEG analysis of whole rabbit blood was made at baseline and after administration of 
the test agent. Fold increase was calculated relative to each rabbit's baseline. 
Statistical significance was assessed for each agent using one way ANOV A followed 
by the Newman-Keuls multiple comparison test. All p values are for treatment versus 
saline treated control animals. 

Aprosulate : p = 0.146 

GL-52-Y-1 : p = 0.168 

Heparin: p = 0.636 

Pentasaccharide : p = 0.388 



TABLE 60 

EFFECT OF SUBCUTANEOUS ADMINISTRATION OF HEPARIN 
ANALOGUES ON TIIE R-TIME IN RABBITS 

Saline 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose 

10 mg/kg 

20 mg/kg 

30 mg/kg 

250 µgfkg 

500 µg!kg 

1000 µglkg 

125 µgfkg 

250 µg/kg 

500 µg/kg 

n 

5 

4 

4 

5 

4 

5 

5 

3 

5 

4 

R-time (Fold Increase) 

1.05 ± 0.22 

1.11 ± 0.26 

1.40 + 0.68 

1.42 ± 0.26 

1.60 ± 0.39 

1.12 ± 0.21 

2.52 ± 0.75 

1.31 + 0.11 

1.18 ± 0.19 

1.58 ± 0.10 
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TEG analysis of whole rabbit blood was made at baseline and after administration of 
the test agent. Fold increase was calculated relative to each rabbit's baseline. 
Statistical significance was assessed for each agent using one way ANOV A followed 
by the Newman-Keuls multiple comparison test. All p values are for treatment versus 
saline treated control animals. 

GL-52-Y-1 : p = 0.842 

Heparin : p = 0.113 

Pentasaccharide : p = 251 



TABLE 61 

EX VIVO ANTICOAGULANT ACTIVITY MEASURED IN RABBIT 
SAMPLES USING THE PT ASSAY 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (,ug/kg) 

100 

250 

500 

1000 

2500 

5000 

12.5 

25.0 

50.0 

25.0 

50.0 

100.0 

Clotting time (fold increase) 

1.04 ± 0.10 

0.93 ± 0.05 

0.86 ± 0.02 

1.06 ± 0.02 

1.13 ± 0.17 

1.05 ± 0.03 

1.15 ± 0.06 

0.97 ± 0.03 

0.96 ± 0.02 

1.03 + 0.06 

1.04 + 0.03 

1.03 + 0.05 

1.02 ± 0.02 

All treatments were administered intravenously 5 minutes prior to administration of 
the thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. p < 0. 05 was considered statistically 
significant. 

By ANOVA: 
aprosulate; p = 0.082 
GL-522-Y-1; p = 0.836 
Heparin; p = 0.723 
Pentasaccharide; p = 0.994 
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TABLE 62 

EX VIVO ANTICOAGULANT ACTIVITY MEASURED IN RABBIT 
SAMPLES USING THE APTT ASSAY 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (µg/kg) 

100 

250 

500 

1000 

2500 

5000 

12.5 

25.0 

50.0 

25.0 

50.0 

100.0 

Clotting time (fold increase) 

0.97 ± 0.04 

1.16 ± 0.06" 

1.20 ± 0.03" 

1.51 ± 0.06" 

1.36 ± 0.37 

1.04 ± 0.17 

1.00 ± 0.07 

1.28 ± 0.09 

1.03 ± 0.15 

1.19 ± 0.16 

1.15 ± 0.06 

1.22 ± 0.12 

1.10 ± 0.09 
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All treatments were administered intravenously 5 minutes prior to administration of 
the thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. "p < 0. 05 was considered statistically 
significant. 

By ANOVA: 
aprosulate; p < 0.001 
GL-522-Y-1; p = 0.534 
Heparin; p = 0.277 
Pentasaccharide; p = 0. 22 7 



TABLE 63 

EX VIVO ANTICOAGULANT ACTIVITY :MEASURED IN RABBIT 
SAMPLES USING THE HEPTEST ASSAY 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (µg/kg) 

100 

250 

500 

1000 

2500 

5000 

12.5 

25.0 

50.0 

25.0 

50.0 

100.0 

Clotting time (fold increase) 

0.89 ± 0.06 

1.60 ± 0.26 

1.30 ± 0.26 

1.35 ± 0.11 

1.13 ± 0.11 

1.12 ± 0.02 

1.38 ± 0.20 

1.13 ± 0.12 

1.05 ± 0.04 

1.42 ± 0.16· 

1.90 ± 0.31* 

2.38 ± o.2s· 
2.72 ± 0.09· 
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All treatments were administered intravenously 5 minutes prior to administration of 
the thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. p < 0. 05 was considered statistically 
significant. 

By ANOVA: 
aprosulate; p = 0.117 
GL-522-Y-1; p = 0.070 
Heparin; p = 0.020 
Pentasaccharide; p < 0. 001 



TABLE 64 

EX VIVO ANTICOAGULANT ACTIVITY MEASURED IN RABBIT 
SAMPLES USING THE 2.5 U TT ASSAY 

Saline 

Aprosulate 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (µg/kg) 

100 

250 

500 

1000 

2500 

5000 

12.5 

25.0 

50.0 

25.0 

50.0 

100.0 

Clotting time (fold increase) 

1.14 ± 0.08 

1.17 ± 0.04 

1.38 + 0.22 

2.57 ± 0.67 

1.50 ± 0.14 

1.84 ± 0.34 

1.86 ± 0.70 

1.46 + 0.03 

2.80 ± 0.66* 

3.18 ± 0.15* 

1.19 + 0.14 

1.14 ± 0.16 

1.21 ± 0.09 
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All treatments were administered intravenously 5 minutes prior to administration of 
the thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
+ SEM of 5 rabbits. Statistical comparisons were made using one way ANOVA 
followed by the Newman Keuls test. p < 0. 05 was considered statistically 
significant. 

By ANOVA: 
aprosulate; p = 0.036 
GL-522-Y-1; p = 0.549 
Heparin; p = 0.001 
Pentasaccharide; p = 0. 967 



TABLE 65 

EX VIVO ANTICOAGULANT ACTIVITY :MEASURED IN RABBIT 
SAMPLES USING THE PT ASSAY 

Saline 

GL-522-Y-l 

Heparin 

Pentasaccharide 

Dose (mg/kg) 

10.0 

20.0 

30.0 

0.25 

0.50 

1.00 

0.125 

0.250 

0.500 

Clotting time (fold Increase) 

1.04 ± 0.10 

1.09 ± 0.05 

1.04 ± 0.03 

1.04 ± 0.03 

1.02 ± 0.04 

0.96 ± 0.08 

1.14 ± 0.06 

1.13 + 0.11 

1.07 ± 0.09 

1.23 ± 0.13 
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All treatments were administered subcutaneously 2 hours prior to administration of the 
thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. p < 0. 05 was considered statistically 
significant. 

By ANOVA: 
GL-522-Y-1; p = 0.912 
Heparin; p = 0 .403 
Pentasaccharide; p = 0.626 



TABLE 66 

EX VIVO ANTICOAGULANT ACTIVITY MEASURED IN RABBIT 
SAMPLES USING TIIB APTT ASSAY 

Saline 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (mg/kg) 

10.0 

20.0 

30.0 

0.25 

0.50 

1.00 

0.125 

0.250 

0.500 

Clotting time (fold Increase) 

0.97 + 0.04 

1.00 ± 0.13 

0.79 ± 0.14 

1.27 ± 0.19 

1.14 + 0.12 

1.21 ± 0.11 

1.34 + 0.36 

1.30 + 0.20 

1.24 + 0.21 

1.20 ± 0.09 

374 

All treatments were administered subcutaneously 2 hours prior to administration of the 
thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. ~p < 0.05 was considered statistically 
significant. 

By ANOVA: 
GL-522-Y-1; p = 0.139 
Heparin; p = 0. 623 
Pentasaccharide; p = 0.468 



TABLE 67 

EX VIVO ANTICOAGULANT ACTIVITY MEASURED IN RABBIT 
SAMPLES USING TIIB HEPTEST ASSAY 

Saline 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (mg/kg) 

10.0 

20.0 

30.0 

0.25 

0.50 

1.00 

0.125 

0.250 

0.500 

Clotting time (fold Increase) 

0.89 ± 0.06 

1.27 ± 0.13 

1.15 ± 0.10 

1.46 ± 0.18* 

1.07 ± 0.03 

1.42 ± 0.10 

2.01 ± 0.33* 

1.85 ± 0.32 

2.05 ± 0.34 

3.25 ± 0.45* 
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All treatments were administered subcutaneously 2 hours prior to administration of the 
thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of ti'le thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. p < 0.05 was considered statistically 
significant. 

By ANOVA: 
GL-522-Y-1; p = 0.036 
Heparin; p = 0.002 
Pentasaccharide; p = 0.001 



TABLE 68 

EX VIVO ANTICOAGULANT ACTIVITY :MEASURED IN RABBIT 
SAMPLES USING TIIB 2.5 U TT ASSAY 

Saline 

GL-522-Y-1 

Heparin 

Pentasaccharide 

Dose (mgJkg) 

10.0 

20.0 

30.0 

0.25 

0.50 

LOO 

0.125 

0.250 

0.500 

Clotting time (fold Increase) 

1.14 ± 0.08 

1.14 ± 0.07 

1.18 ± 0.28 

0.79 ± 0.10 

1.58 ± 0.15 

3.11 ± 0.85 

5.31 ± 1.00* 

1.16 ± 0.23 

1.37 ± 0.15 

1.25 ± 0.17 
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All treatments were administered subcutaneously 2 hours prior to administration of the 
thrombogenic challenge. Blood samples were drawn at baseline and immediately 
before administration of the thrombogenic challenge. All results represent the mean 
± SEM of 5 rabbits. Statistical comparisons were made using one way ANOV A 
followed by the Newman Keuls test. •p < 0.05 was considered statistically 
significant. 

By ANOVA: 
GL-522-Y-1; p = 0.297 
Heparin; p = 0.002 
Pentasaccharide; p = 0. 757 
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