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ABSTRACT 

Immunoglobulins (Igs) are expressed exclusively in B lymphocytes to protect 

vertebrates from invading pathogens. This dissertation is designed to better understand 

the mechanism by which B cells and plasma cells produce functional lg proteins. An lg 

molecule consists of two identical heavy and two identical polypeptide light chains. The 

genes encoding heavy and light chains are assembled from gene segments (V, D, and J) 

through DNA rearrangements during B cell development. If these rearrangements do not 

preserve the translational reading frame, the resulting lg gene very likely contains a 

premature translational stop (a nonsense codon) and is, therefore, a nonproductive gene. 

Since both lg alleles can be rearranged, a B cell might end up with a productive (i.e., 

a gene without a nonsense codon) and a nonproductive lg gene. The µ gene encodes the 

heavy chain of IgM, which is the main lg isotype produced in a primary immune 

response. Our laboratory has previously shown in hybridomas and pre-B cell lines that 

a µ gene with a nonsense codon is transcribed at the same rate as a µ gene without a 

nonsense codon. In contrast, the cytoplasmic steady-state level of µ mRNA with a 

nonsense codon is 30-100 times lower than the steady level of µ mRNA without a 

nonsense codon. Based on these data we proposed that µ mRNA with a nonsense codon 

is degraded faster than µ mRNA without a nonsense codon in B cells. 

To elucidate the mechanism of this nonsense codon-mediated reduction of lg 

mRNA, I first determined in which subcellular compartment this reduction in lg mRNA 
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level occurs. By using Northern blot analysis, I found that the level of matureµ mRNA 

containing a nonsense codon is reduced in the nucleus by approximately seven fold when 

compared to the level of µ. mRNA without a nonsense codon. In contrast, µ precursor 

RNA increases in the nucleus of hybridomas that contain nonsense codons in their µ 

genes by at least 2 fold, suggesting that a nonsense codon decreases the splicing 

efficiency ofµ precursor RNA. I also showed that the presence of a nonsense codon 

correlates with an accelerated turnover rate ofµ mRNA in the cytoplasm, suggesting that 

in the cytoplasm the reduction of µ mRNA level with a nonsense codon is, at least 

partially, due to the increased degradation rate. From these data, I conclude that the 

reduction of cytoplasmic level ofµ mRNA with a nonsense codon results from both a 

nuclear as well as a cytoplasmic event. These events may contribute to the potent 

efficiency of humoral immune response by preventing the translation of nonproductive 

lg mRNAs in B cells. 

I have also attempted to test a possible mechanism, the translational translocation 

model, which explains how a nonsense codon triggers the reduction of mRNA in the 

nucleus. From the results of three different approaches, I suggest that the translational 

translocation model is not the mechanism by whichµ mRNA with a nonsense codon is 

reduced in the nucleus of plasma cells. 



CHAPTER I 

REVIEW OF RELATED LITERATURE 

1.1 Nonsense Codon-Mediated RNA Degradation 

A nonsense codon is a premature translational termination signal that is in-frame 

with the translational initiation codon in a messenger RNA (mRNA). Nonsense codon-

mediated RNA degradation refers to the phenomenon by which nonsense codons can 

trigger the rapid degradation of a mRNA. It is a unique phenomenon because there are 

many out-of-frame stop codons in a mRNA that have no effect on RNA metabolism. 

Only those stop codons that are in-frame with the translation initiation codon in a mRNA 

can trigger RNA degradation (Daar and Maquat, 1988; Belgrader and Maquat, 1994; 

Pulak and Anderson, 1993). In other words, a single nucleotide change may result in 

RNA degradation. This is a fascinating system for cell biology because it prevents the 

production of truncated proteins. Although not all truncated proteins are disruptive to a 

cell, a cell is protected from those that are deleterious by eliminating all mRNAs 

containing nonsense codons. Nonsense codons have been reported to be responsible for 

many human diseases, such as the B-globin gene of B-thalassemia (Humphries et al. , 

1984; Takeshita et al., 1984) and the human fibrillin (FBNl) gene of Marfan syndrome 

(Diatz et al., 1993). Nonsense codons in the unc-54 myosin heavy chain gene of 

Caenorhabditis elegans have been reported to disrupt the body-wall muscle ultrastructure. 

3 
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The affected C. elegans have reduced brood size (Pulak and Anderson, 1993). 

The steady-state level of mRNA actually represents a balance between the rate of 

nuclear RNA synthesis (transcription), the rate of nuclear RNA precursor processing, the 

extent of intranuclear mRNA degradation, the rate of mRNA transport from the nucleus 

to the cytoplasm, the rate of cytoplasmic mRNA degradation, and the efficiency of 

protein translation (Ehretsmann et al., 1992; Belasco and Brawerman, 1993). Among 

them, the regulation of mRNA stability has been shown to be a major control mechanism 

in gene expression in the last decade (Atwater et al., 1990; Sachs, 1993; Decker and 

Parker, 1994). The decay rates of mRNAs can differ from each other by more than 50 

fold in eukaryotic cells (Ross, 1989; Atwater et al., 1990; Sachs, 1993). The high degree 

of stability of some mRNAs, such as the globin mRNAs, contributes to their 

accumulation to high steady-state levels (Aviv et al., 1976). Highly unstable mRNAs 

with half-lives of about 10-15 minutes, such as the lymphokine and protooncogene 

mRNAs, are normally present at low steady-state levels (Kelly et al., 1983; Greenberg 

and Ziff, 1984). Although low mRNA steady-state level could be achieved through a low 

rate of transcription, the time course of changing the mRNA level in response to a 

stimulus is determined solely by the turnover rate of the mRNA, which permits rapid 

cessation of the production of a protein and its more rapid induction (Ross, 1989). This 

is of particular importance in the case of proteins that play critical regulatory roles for 

brief periods during a development process or physiological transitions. Notably, shifts 

in mRNA stability (i.e., massive reorganization of the pattern of gene expression) 

contribute to Xenopus oocyte and early embryo development and erythroid differentiation 



5 

(Richter, 1991; Krowczynska et al., 1985); the synthesis of histones, which takes place 

only during the S phase of the cell cycle (Gallwitz, 1975). 

A nonsense codon might potentially influence the steady-state level of a mRNA 

by influencing any or all of the regulatory processes described above. Indeed, nonsense 

codons have been reported to have various effects on mRNA metabolism. Among them, 

the importance of translation to mRNA stability is particularly important for mRNAs with 

nonsense codons (see reviews in Atwater et al., 1990; Belasco and Brawerman, 1993). 

Consistent with the assumption that nonsense codons are recognized during translation 

in the cytoplasm of eukaryotic cells, the lower steady-state level of most mRNAs that 

contain nonsense codons is attributed to their increased turnover rates in the cytoplasm. 

Some examples are the yeast URA3 mRNA (Losson and Lacroute, 1979) and HIS4 

mRNA (Herrick et al., 1990), Rous sarcoma virus gag mRNA (Barker and Beemon, 

1991), human and mouse {j-globin mRNA (Maquat et al., 1981; Takeshita et al., 1984; 

Lim et al., 1992), and mouse histone mRNA (Graves et al., 1987). However, several 

recent studies suggest that nonsense codons may decrease the steady-state level of their 

mRNAs by influencing of nuclear processing, and/or transport without affecting their 

cytoplasmic stability. Several examples are human {j-globin mRNA (Humphries et al., 

1984), mouse lg heavy chain µ mRNA (Connor et al., 1994), hamster dihydrofolate 

reductase mRNA (Urlaub et al., 1989), human {j-globin mRNA under the control of the 

simian virus 40 promoter in Syrian hamster cells (Baserga and Benz, 1992), nonstructural 

protein NS2 mRNA of the minute virus of mice (MVM) (Naeger et al., 1992), human 

triosephosphate isomerase (TPI) mRNA (Cheng and Maquat, 1993), the T cell receptor 
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13 mRNA (Qian et al., 1993), v-src mRNA of avian sarcoma virus (Simpson and 

Stoltzfus, 1994), and mouse lg K light chain mRNA (Lozano et al., 1994). In all of these 

cases the exact degradation mechanism has not been elucidated; however, for 

nonstructural protein NS2 of the minute virus of mice (MVM) (Naeger et al., 1992) and 

mouse lg K light chain (Lozano et al., 1994), it has been suggested that nonsense 

mutations influence the nuclear RNA processing events by inhibiting splicing. It is 

puzzling, however, how nonsense codons can affect nuclear mRNA processing, since 

nonsense codons are recognized in a fully spliced transcript (mRNA) in the cytoplasm 

during protein synthesis. Possible mechanisms are discussed in section 1.2 in detail. 

Many cis-acting elements have been reported to be involved in nonsense codon-

mediated mRNA degradation, such as the coding regions (Cleveland, 1988; Parker and 

Jacobson, 1990; Peltz et al., 1993), introns (Cheng et al., 1994), and 3'-untranslated 

regions (Jackson, 1993). Genes encoding factors that specifically degrade certain 

mRNAs with nonsense codons, while having no effect on functional mRNA, have been 

cloned and characterized as up frameshift (UPF) genes in yeast Saccharomyces cerevisiae 

(Leeds et al., 1991; Leeds et al., 1992) and smg genes in C. elegaris (smg denotes 

.s_uppressor with morphogenetic defects on genitalia) (Pulak and Anderson, 1993). The 

mammalian gene encoding for the nonsense codon-specific degradation factor has not yet 

been cloned. 

1.2 Mechanism of Nonsense Codon-Mediated mRNA Reduction in the 
Nucleus 

Although little is known about the mechanism of nonsense codon-mediated 
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reduction of mRNA, several models have been proposed to explain nonsense codon-

mediated RNA reduction in the nucleus. Since the only identified and accepted system 

that can recognize a nonsense codon is the translational machinery in the cytoplasm of 

eukaryotic cells, it has been reasoned that mRNA with a nonsense codon should be 

recognized and degraded in the cytoplasm. Based on this assumption, Urlaub et al. 

(1989) proposed an elegant model to link the cytoplasmic translation event to the nuclear 

RNA processing and nucleus-to-cytoplasmic transport events. The essence of Urlaub's 

model suggests that the initiation of cytoplasmic µ protein translation starts before the 

completion of RNA processing in the nucleus and the nucleus-to-cytoplasm transport. 

Once the 5' end of the RNA transcript has been processed with a cap structure and 

spliced, the partially processed RNA begins transport to the cytoplasm via the nuclear 

pore. The binding of ribosome subunits and initiation factors to the free 5' end of the 

RNA transcript on the cytoplasmic side of nuclear membrane initiates µ protein 

translation. The translation in the cytoplasm serves as a force to facilitate not only the 

splicing of the 3' part of the RNA transcript but also the export of fully spliced nuclear 

mRNA from the nucleus to the cytoplasm. This model requires that recognition of a 

nonsense codon occurs after splicing in the cytoplasm, and has been best studied by 

Maquat and colleagues with human TPI mRNA. 

Maquat et al. showed that nonsense codons located within the first three-fourths 

of the coding region of TPI mRNA reduce the level of TPI mRNA to 20 to 30 % of 

normal (Cheng et al., 1990; Cheng and Maquat, 1993). This reduction is not attributable 

to a decrease in the half-life of cytoplasmic TPI mRNA (Cheng et al., 1990). Maquat et 
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al. further determined that this reduction of TPI mRNA is dependent on the 

translatability of mRNA with nonsense codons. They showed that nonsense codon­

mediated reduction of TPI mRNA is at least partially inactivated by a stem-loop in the 

5'-UTR (that acts in cis to inhibit translation initiation by the 40S ribosomal subunit), or 

by a suppressor tRNA (that acts in trans to suppress the nonsense codon (Belgrader et 

al., 1993). Maquat et al. have further shown that deletion of a 5' splice site of the TPI 

gene results predominantly in the removal (by skipping) of the upstream exon (that 

contains the nonsense codon) as a part of the flanking introns (Belgrader et al., 1994). 

Based on these data, Maquat et al. concluded that translation is required in the nonsense 

codon-mediated reduction of TPI mRNA in the nucleus, and that the recognition of a 

nonsense codon occurs after splicing. Since they did not separate the cytoplasmic 

compartment from the nuclear compartment in their studies, they did not distinguish 

whether the recognition of nonsense codons occurs in the cytoplasm or in the nucleus. 

They also did not rule out the possibility that the stem-loop in the 5'-UTR or a 

suppressor tRNA abrogated the effect of nonsense codons on TPI mRNA level by 

competitive binding to the translational machinery. Thus, I do not think they have tested 

the translational translocation model. 

A variation of the translational translocation model proposes that the recognition 

of nonsense codons in the cytoplasm sends out a degradation signal to the nucleus via the 

continuous cellular network or tracks with which both nuclear and cytoplasmic mRNAs 

may associate (Maquat, 1991; Belgrader et al., 1993). The mRNA localization pathway 

involved in processing and transport was reviewed by Wilhelm and Vale (1993); and the 
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relationship between mRNA and the cytoskeletal framework was reviewed by Pachter 

(1992). This model argues against the pulling effect of translation on RNA processing. 

I think there are two main requirements to validate this model. First, mRNA export from 

the nucleus into the cytoplasm travels in a locomotive track; and secondly, disruption of 

the transport track (such as the important components) abrogates the nonsense codon­

mediated reduction of mRNA. 

An alternative model, the nuclear scanning model, proposes that the recognition 

of a nonsense codon occurs in the nucleus and not in the cytoplasm before or at the time 

of RNA splicing (Urlaub et al., 1989; Nagger et al., 1992). The recognition of nonsense 

codons before RNA splicing is hard to imagine since it requires that the recognition 

system distinguish exons from introns and recognize the correct open reading frame in 

separate exons. There is as yet no convincing biochemical or structural data showing that 

the nucleus has translational machinery like that of the cytoplasm. Thus, no direct test 

for this model has been carried out. The best data supporting this model are that 

nonsense codons trigger exon skipping in mutated genes (Diatz et al., 1993; Belgrader 

and Maquat, 1994). If these data are true, a nuclear process is clearly involved in the 

nonsense codon-mediated mRNA degradation because exon skipping has to occur at the 

time of splicing. Recently, Maquat et al. showed that TPI mRNA with nonsense codons 

is degraded in the nucleus (Belgrader et al., 1994). This result suggests that the 

recognition of a nonsense codon occurs on the mature mRNA in the nucleus. This is a 

variation of the nuclear scanning model. In summary, to validate the nuclear scanning 

model, one needs to show that: 1) the recognition of stop codons that are in-frame with 
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the translational initiation codon on unspliced and spliced RNAs in the nucleus; and 2) 

there are, at least part of, the translational-like machinery (such as ribosomal subunit or 

tRNA) in the nucleus to perform the function of scanning. 

1.3 lg Gene Expression during B Cell Development 

Immunoglobulins (Igs) are exclusively expressed in B lymphocytes of higher 

vertebrates. An lg molecule consists of two identical heavy (H) and two identical light 

(L) polypeptide chains. In bone marrow stem cells, there are no complete genes for lg 

chains, only gene segments. During differentiation of B cells from stem cells in the bone 

marrow, these gene segments are randomly shuffled by an ordered progression of DNA 

rearrangements that are capable of generating tremendous different specificities (Alt et 

al., 1984; Okada and Alt, 1994). This tremendous diversity in lg structure allows a 

vertebrate to respond to a vast number of potential antigens (Kuby, 1994). 

For example, at the H chain locus of chromosome 12 in the mouse, there are 

about 300-1,000 VH, about 12 diversity (D~, and 4 joining (J~ gene segments. In the 

pre-B cells, a H chain gene is formed by assembling one gene segment of each type. 

Thus, there is a large combinatorial diversity for the H chains. Further diversity of lg 

molecules is mainly generated by somatic mutations (Tonegawa, 1983; Honjo, 1983). 

The mutation rate in pre-B cell line is reported to be 0.3-1 X 104 per cell generation 

(Wabl et al., 1985). B cells also rearrange light chain genes through a similar process, 

and express both heavy and light chains that are assembled into functional lg molecules. 

These lg molecules are expressed on the cell surface of B cells (Wall and Kuehl, 1983; 
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Tonegawa, 1983). Thus mature B cells are antigenically committed to specific epitope. 

When these cells encounter their corresponding antigen they become activated and 

differentiate into plasma cells that secrete more than 2,000 molecules of lg per second 

(Tonegawa, 1985). This B cell differentiation process is accompanied by a 10-100 fold 

increase in the cytoplasmic steady-state level oflg mRNA (Perry and Kelley, 1979; Jack 

et al., 1989), which is regulated by post-transcriptional mechanisms (Gerster et al., 

1986; Kelly and Perry, 1986), mainly at the level of mRNA stability (Mason et al., 

1988; Jack et al., 1989; Cox and Emtage, 1989; Genovese and Milcarek, 1990). The 

half-lives of lg mRNA increase from 2 to 5.5 hr in B cell lines to 13-34 hr in plasma cell 

lines, depending on the cell lines and the methods used (Mason et al., 1988; Cox and 

Emtage, 1989; Genovese and Milcarek, 1990). 

µ mRNA encodes the heavy chain oflgM, which is the major lg isotype produced 

during the primary response (Ku by, 1994). The µ gene consists of a leader, a VDJ, four 

constant, and two membrane exons. Generation of a functionalµ gene requires first a D­

to-J and then a V-to-DJ rearrangement event, which generates a VDJ exon. These 

rearrangements do not always preserve the correct reading frame and the resulting lg 

mRNA transcribed from that gene may encounter premature termination codons 

(nonsense codons). A B cell contains two lg alleles. If one allele rearranges 

nonproductively, the cell goes on to rearrange the other allele. In mouse, 40-80 % of B 

cells rearrange the second allele of lg genes. Thus a B cell may contain both productive 

and nonproductive lg genes (Altenburger et al., 1980; Reth and Alt, 1984; Alt et al., 

1984; Atkinson et al., 1991). If both alleles fail to rearrange productively, B cell 



12 

differentiation will be terminated (Alt et al., 1984). 

1.4 B Cells Have a Mechanism to Eliminate lg mRNA Containing Nonsense 
Codons 

Jack et al. have shown by nuclear run-on assays that both productive and 

nonproductiveµ genes are transcribed at the same rate (Jack et al., 1989); therefore, one 

would expect to find a large amount of nonproductive lg mRNAs in B cells. But by use 

of RNA dot blot analysis, they found that the cytoplasmic steady-state level of 

nonproductive µ mRNAs is 60-100 fold lower than the level of the productive µ mRNAs 

(Baumann et al., 1985; Jack et al., 1989). A similar phenomenon was also observed in 

the pre-B cell lines (Jack et al., 1989). Based on these observations, l propose that B 

cells have a mechanism to eliminate immunoglobulin RNA containing nonsense codons. 

This is consistent with emerging data in the field of that almost all cytoplasmic lg heavy 

chain mRNAs (approximately 99 % ) in peripheral B cells are productive as revealed by 

sequencing µ cDNA clones obtained from the spleen cDNA libraries. 

l reason that it is very important for B cells to have a mechanism to eliminate lg 

mRNAs that contain nonsense codons. As discussed before, the tremendous diversity for 

antigens is a phenomenon unique to lgs. It is mainly generated by assembling variable 

regions from hundreds of gene segments of H and L chain genes and by somatic 

mutation. Thus the probability for B cells to generate nonsense codons in lg genes is 

higher than for other genes. Ifµ mRNA with nonsense codons could be translated at the 

same rate as µ mRNA without nonsense codons, the resulting truncated µ protein may 

assemble with a complete µ protein and two functional light chains to form a chimeric 
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antibody. Heavy chains translated from productive and nonproductiveµ mRNAs very 

likely encode different antigen-binding specificities. The one expressed from 

nonproductive allele may be self-reactive. Thus, if B cells do not reduce the amount of 

µ mRNA with nonsense codons, they would express bi-specific antibodies on the surface, 

which may result in autoimmunity. 

It is also important for plasma cells to have a mechanism to eliminate lg mRNAs 

that contain nonsense codons. Plasma cells are terminally differentiated B lymphocytes, 

in which more than 2,000 molecules of Igs are produced per second (Tonegawa, 1985). 

In plasma cells, lg mRNA comprises about 10% of poly (A)+ mRNAs in the cytoplasm 

(Schibler et al., 1978), and accounts for 20-30% of the total protein synthesis in plasma 

cells. In the case of heavy chain µ mRNA, if both µ mRNAs with or without a nonsense 

codon could be translated intoµ chains,µ mRNA with a nonsense codon (nonproductive) 

will compete with the µ mRNA without a nonsense codon (productive) for the 

translational machinery. In addition, the truncatedµ heavy chains will compete with the 

functional heavy chains for the binding with the light chains. Thus, the amount of 

functional antibody molecule will be decreased. Since the amount of lg protein has been 

shown to be crucial for the success of an effective humoral immune response, the 

production of large amounts of truncated µ chains would interfere with an efficient 

humoral immune response. That is, the production of antibodies would not be large 

enough to eliminate the pathogen. The efficiency of the humoral immune response could 

also be decreased because the truncated proteins would lack the carboxyl-terminal ends 

that mediate important functions of Igs, such as binding to the Fe receptor, binding to 
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the heavy chain binding protein Bip (a chaperone) within the endoplasmic reticulum, or 

binding and activating complements (Kuby, 1994). In addition, the truncatedµ proteins 

could not be secreted into the extracellular environment, presumably they would be 

trapped in the endoplasmic reticulum (Li and Jack, see Chapter IV). The accumulation 

of truncated µ proteins in the endoplasmic reticulum of plasma cells might destroy the 

architecture of cells, as it has been shown in C. elegans (Pulak and Anderson, 1993). 

1.5 The Mechanism of Nonsense Codon-Mediated Reduction ofµ mRNA in 
Plasma Cells 

The main observation leading to this dissertation is that the amount of cytoplasmic 

µ mRNA with a nonsense codon is 60-100 fold lower than the amount of µ mRNA 

without a nonsense codon, although their transcriptional rates are the same (Jack et al., 

1989). The objective of this dissertation is to understand the mechanism of nonsense 

codon-mediated µ mRNA reduction in plasma cells. 

The lower cytoplasmic steady-state level ofµ mRNA with a nonsense codon 

might result from either a cytoplasmic or a nuclear event, or both. These events include 

nuclear RNA processing (capping, splicing, or polyadenylation), nuclear RNA 

degradation, nucleus-cytoplasm export of RNA, cytoplasmic RNA degradation. To 

determine whether a cytoplasmic or a nuclear event is involved in the reduction of µ 

mRNA with nonsense codons, I will isolate RNA from the nuclear and cytoplasmic 

fractions of plasma cells, and quantify the levels of µ RNA in the two cellular 

compartments by Northern blot analysis. Ifµ mRNA with a nonsense codon is reduced 

only in the cytoplasm and there is no blocking of RNA export from the nucleus to the 
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cytoplasm, I would expect to find that the nuclear RNA level is the same forµ mRNA 

with or without a nonsense codon. In contrast, if µ mRNA with a nonsense codon is 

reduced in the nucleus, I would expect to find that the nuclear µ RNA level with a 

nonsense codon is lower than that ofµ mRNA without a nonsense codon. Additionally, 

the cytoplasmic degradation could be an independent event from the nuclear degradation. 

Therefore, I will further determine whether µ mRNA with a nonsense codon is also 

degraded in the cytoplasm by measuring the cytoplasmic decay rates of endogenous µ 

genes using two well established inhibitors of RNA synthesis, Actinomycin D and DRB. 

If µ mRNA with a nonsense codon is degraded faster in the cytoplasm than µ mRNA 

without a nonsense codon, I would expect to find µ mRNA without a nonsense codon has 

a decreased half-life. The results of these experiments are presented in Chapter III. 

Knowing thatµ mRNA with a nonsense codon is degraded in both the nucleus and 

the cytoplasm of plasma cells, I modified the testable translational translocation model 

(Urlaub et al., 1989) to explain the mechanism of how a nonsense codon triggers the 

reduction of µ mRNA in the nucleus. The preliminary results of three different 

approaches to test the model are summarized in Chapter IV. 



CHAPTER II 

MATERIALS AND METHODS 

2.1 Chemicals and Reagents 

2.1.1 General Chemicals and Reagents 

All general chemicals were molecular biology grade and were purchased from 

Fisher Scientific (Pittsburgh, PA), Sigma Chemical Co. (St. Louis, MO) and Boehringer 

Mannheim (Indianapolis, IN). DRB and hygromycin B were purchased from CalBiochem 

(San Diego/La Jolla, CA); Actinomycin Cl, ampicillin (sodium salt) and potassium 

acetate from Boehringer Mannheim (Mannheim, Germany); polyacrylamide, AGR501-X8 

(D) (Mix bead resin), APS, gelatine, glycerol, TEMED, BIS and Tween 20 from Bio­

Rad (Richmond, VA); antibiotic medium, tryptone, yeast extract and Bacto-agar from 

Difeo (Detroit, MI); mycophenicol acid (MPA), Geneticin (G-418 Sulfate), cesium 

chloride (ultra pure), DTT, LB base, Penicillin-Streptomycin (500 units/ml) and RPMI 

1640 powder from Gibco BRL Life Technologies, Inc. (Gaithersburg, MD); dextran 

sulfate from Pharmacia (Uppsala, Sweden); ethyl alcohol (absolute) from Aaper Co 

(Shelbyville, Kentucky); FCS from HyClone (Logan, Utah); universal autoradiography 

enhancer (Intensify Part A and B) from DuPont NEN (Boston, MA); iodoacetamide and 

Triton X-100 (pure) from Serva (Heidelberg, Germany); Non-fat dry milk from Real 

(Los Angeles, CA); sodium hydroxide from Mallinckrodt (St. Louise, MO); scintillation 
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liquid (Econo-Safe) from RPI (Mount Prospect, IL). All solutions were prepared in 

deionized water unless otherwise indicated. 

2 .1. 2 Radiochemicals 

[a-32P] dCTP (PB.165/10165/10385) 

Redivue [a-32P]dCTP (AA0075) 

[a-35S] dATP (SJ.264/1304) 

L-[35S] Methionine (SJ. 204) 

[
14C] methylated proteins (CFA.626) 

Trans 35S-label (Cat# 51006) 

[ -y-32P] dATP (Cat# 35020) 

2.1.3 Kits 

Cytoplasmic RNA isolation kit 

DNA 5'-end labeling kit 

Magic mini prep kit 

Nick-translation kit 

pGEM-T vector system I 

Sequenase kit (version 2.0) 

Site-directed mutagenesis kit 

Amersham, Arlington Heights, IL 

Amersham, Arlington Heights, IL 

Amersham, Arlington Heights, IL 

Amersham, Arlington Heights, IL 

Amersham, Arlington Heights, IL 

ICN Biomedicals, Irvine, CA 

ICN Biomedicals, Irvine, CA 

5 Prime-+3 Prime, Inc.®, West 

Chester, PA 

Boehringer Mannheim, Germany 

Promega, Madison, WI 

Gibco BRL, Gaithersburg, MD 

Promega, Madison, WI 

United States Biochemical, 

Cleveland, OH 

Promega, Madison, WI 
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Superscript cDNA library kit GIBCO BRL, Gaithersburg, MD 

RNAzol™ B Tel-Test, Inc., Friendswood, TX 

TRizol™ Reagent GIBCO BRL, Gaithersburg, MD 
(Total RNA Isolation Reagent) 

2.1.4 Antibodies 

2.1.4.1 Antibodies Used for Immunofluorescence Analysis 

Goat anti-mouse µ-FITC Fisher Biotech, Pittsburgh, PA 

Goat anti-mouse K-Tex Red Fisher Biotech, Pittsburgh, PA 

2.1.4.2 Antibodies Used for Immunoprecipitations 

Goat anti-mouse IgM Southern Biotech, Birmingham, AL 

2.1.5 Molecular Weight Standards 

Bacteriophage c/>Xl 74 DNA markers Gibco BRL, Gaithersburg, MD 

lKb DNA Ladder Gibco BRL, Gaithersburg, MD 

A DNA/HindIII fragments Gibco BRL, Gaithersburg, MD 

0.24-9.7 Kb RNA Ladder Gibco BRL, Gaithersburg, MD 

Rainbow protein marker Amersham, Buckinghamshire, 

England 

[
14C] methylated proteins (CFA.626) Amersham, Arlington Heights, IL 
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2.2 Oligonucleotides and Linkers 

2.2.1 Oligonucleotides 

All oligonucleotide primers for the polymerase chain reaction (PCR) and site-

directed mutagenesis were designed with the aid of an oligonucleotide software analysis 

program (OligoTll, National Bioscience, Plymouth, MN) and synthesized by National 

Biosciences (Plymouth, MN). 

2.2.1.1 Sequencing 

V8 17.2.25.2: 17 bases; Tm=61.1°C 

5' -CATAAGGACA TTCCAGC-3' 

SP6 primer: 19 mer; 

5'-d(GATTTAGGTGACACTATAG)-3' 

T7 primer: 20 mer; 

5'-d(TAATACGACTCACTATAGGG)-3' 

M13 primer (-40): 17 mer; 

5' -d(GTTTTCCCAGTCACGAC)-3' 

2.2.1.2 Site-Directed Mutagenesis 

Leader mutated primer: 57 bases; Tm=92.7°C 

5'GCCCCTTCCCTGTATCCTCTTCCTCCCGGGAGTAGGT ACTCG 
Smal 

AGCTGCA TTTCA TTG-3' 

(Italized nucleotides represent the mutated sequences.) 



3'Ck.Clal: 26 bases; Tm=77.6°C 

2.2.1.3 

2.2.1.3.1 

5'-AAGATAGGATCGATCTGGGGAGCTGG-3' 
Cl al 

Polymerase Chain Reaction (PCR) 

Sense Oligonucleotides 

VH81X.Forward: 34 mer; Tm=81.6°C; 

5' -AGCGGCCGCACCATGGACTTCGGGCTCAGCTTGG-3' 
Not I 

5'Cµl.Forward: 27 mer; Tm=92.0°C 

5' -TGGCCATGGGCTGCCTAGCCCGGGACT-3' 

991µ3.Forward: 22 mer; Tm=51.6°C 

5'-ACTGACTCAAACCATGGAATGG-3' 

99lk3.Forward: 28 mer; 

2.2.1.3.2 

5'-TTGGTACCATCAGCATGAGGGTCCTTGC-3' 
BamHI 

Antisense Oligonucleotides 

Cµ2Bam.Backward: 27 mer; Tm=65.0°C; 

5'-GGGGTGTGGATCCTTTCTTCTCGATGG-3' 

3'Cµ4.Backward: 28 mer; Tm=86.0°C 

5'-GCCTGACTGAGTTCACACACAAGGAGGA-3' 

3'UT.µl: 20 mer; 

5 '-GGA'ITITI'I"I'I'A TTTCTAAT-3' 
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3'UT.µ2: 20 mer; 

5'-TATGCAACATCTCACTCTGAC-3' 

3'UT.µ3: 21 mer; 

5' -A(c)GACACCCAG(a)GGCCTGCCTGG-3' 

991µ3.Backward: 24 mer; 

5'-ATCGATTCATGACCTGAAATTCAG-3' 
Cl al 

991k3.Backward: 28 mer; 

5'-ATATCGATTAGGTAGACAATTATCCCTC-3' 
Cl al 

2.2.2 Phosphorylated Linkers 
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Clal linker [d(pGATCGATC}] and Spel linker [d(pGACTAGTCTC}] were 

purchased from New England Biolabs (Beverly, MA). Clal linker [d(pATCGAT}] was 

purchased from National Biosciences (Plymouth, MN). EcoRI linker 

[d(pCGGAATTCCG)] was purchased from Amersham (Arlington Heights, IL). Nhel 

amber stop linker with nonsense codons in all three reading frames [5 ' -

pd(CTAGCTAGCTAG)-3'] was purchased from Pharmacia (Piscataway, NJ). 

2.3 Enzymes 

Restriction endonucleases were obtained from either Boehringer Mannheim 

(Mannheim, Germany) or Gibco BRL Life Technologies, Inc. (Gaithersburg, MD); 

AmpliTaqTll DNA polymerase from Perkin Elmer Cetus (Norwalk, CT); T4 DNA ligase 
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and Klenow fragment from Pharmacia (Piscataway, NJ) or Promega (Madison, WI); 

DNase I, RNasin (40u/µl), SI nuclease and Mung bean nuclease from Promega 

(Madison, WI); RNAse A (bovine pancreas) and lysozyme from Sigma Chemical 

Company (St. Louis, MO); DNA sequenase version 2.0 from United States Biochemical 

(USB, Cleveland, OH); Proteinase K from Boehringer Mannheim (Indianapolis, IN); 

Superscript reverse transcriptase from Gibco BRL (Gaithersburg, MD). 

2.4 Bacterial Strains 

2.4.1 Bacterial Strains 

Escherichia coli (E. coli) strain HBlOl or JM109 or DH5a from Bethesda 

Research Laboratories (BRL) and BMH 71-18 mut S from Promega were made 

competent using a calcium chloride procedure (Sambrook et al., 1989). For some vectors 

(such as pGEM-Zf series and pSELECT™-1) that contain a sequence coding for the E. 

coli (j-galactosidase (lac Z) a-peptide, interrupted by a multiple cloning site, blue/white 

color selection was used for insert selection. Colonies containing plasmids with no inserts 

were blue, while those containing inserts were white when grown on Luria Broth agar 

plates (1.5% Bacto-agar in LB medium, pH 7.0) containing 100 µg/ml ampicillin, 40 

µg/ml X-Gal, and 5 mM IPTG. 

2.4.2 

2.4.2.1 

Preparation of Competent Bacterial Cells 

Solutions and Reagents 

y-a plate (per liter) 20 g Bacto-tryptone 



y-b medium (per liter) 

Tbfl 

Tbt'2 

5 g Bacto-yeast extract 

5 g MgS04 

(Adjust pH to 7.6 with KOH) 

14 g Bacto-agar 

20 g Bacto-tryptone 

5 g Bacto-yeast extract 

5 g MgS04 

Adjust pH to 7.6 with KOH. 

30mM 

100 mM 

lOmM 

50mM 

15 % 

KAc 

KCI 

CaC12 

MnC12 

Glycerol 

Adjust pH to 5.8 with 0.2 M acetic acid. 

lOmM MOPS 

75 mM CaC12 

10 mM KCl 

15 % Glycerol 

Adjust pH to 6.5 with KOH. 
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2.4.2.2 
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* All solutions were filter-sterilized through a 45-µm filter and stored at 4 °C. 

Procedure for the Preparation of Competent Bacterial Cells 

Bacteria of interest were streaked from a frozen storage onto a y-a plate. (JM 

stains must be streaked onto a minimal plate that contains no proline to maintain the F' 

episome. HB 101 might start from a fresh LB plate.) A single colony of the bacteria was 

inoculated into 5 ml of y-b media and shaken at 300 rpm overnight at 37°C (Gyrotory® 

Shaker, Model GlO, New Brunswick Scientific Co., Inc., Edison, NJ). A secondary 

culture was prepared by inoculating 500 µl of the overnight culture into 50 ml of pre­

warmed y-b media, and aerating at 300 rpm and 37°C for 2 to 4 hours until the OD550 

has reached 0.48. The culture was chilled on ice for 5 min and centrifuged at 3000 rpm 

for 5 min at 4 °C (Beckman tabletop centrifuge, Model GPR, Palo Alto, CA). Bacteria 

pellet was resuspended in 40 ml of ice-cold Tbfl and incubated on ice for 5 min. After 

pelleting, the bacteria was resuspended in 4 ml of ice-cold Tbf2 and further incubated 

on ice for 15 min. The competent bacteria were pipetted in aliquot (e.g. 250 µl) into pre­

chilled microcentrifuge tubes placed in an ethanol-dry ice bath, and stored at -70°C. 

Efficiency of transformation was determined by transforming 50 µl of competent bacteria 

with 20 ng of a plasmid DNA as described in section 2.6.8. Efficiency should approach 

1 X 108 cfu/µg supercoiled DNA. 



2.5 Plasmids and DNA Probes 

2. 5 .1 Plasmids 

pABµ-11 

pBluescript II KS + /­

pBR-H4 

pBR-VH 17.2.25 

pBS-myc 

pCR™ II 

pCEP4 

p5.1 

p-y2b(l 1)7 

pGEM-zfs 

pGEM™-T Vector System 

pGm/j-actin 

pP2-5' 
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From Dr. I. Haas (Bothwell et al., 1981) 

Strategene, San Diego, CA 

Dr. R. Grossschedl, UCSF, San Francisco, 

CA (Grossschedl and Baltimore, 1985a; 

Grossschedl et al., 1985b) 

Dr. R. Grossschedl, UCSF, San Francisco, 

CA (Grossschedl and Baltimore, 1985a; 

Grossschedl et al. , 1985b) 

Dr. Jeff Ross, University of Wisconsin, 

Madison 

Invitrogen Corp., San Diego, CA 

Invitrogen Corp., San Diego, CA 

From Dr. I. Haas (Reth et al., 1984) 

Dr. P. Tucker (Tucker et al. , 1979) 

Promega, Madison, WI 

Promega, Madison, WI 

From Dr. Joel Pachter (Tokunaga et al., 

1986) 

Dr. Nahum Sonenberg, McGill University, 

Montreal, PQ, Canada (Pelletier et al., 



pRGAPDH 

pUHDl0-1 

pSV2gpt 

pSV2neo 

pTlgpt 

pu• 

2.5.2 DNA Probes 
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1988) 

Dr. K. Marcus (Fort et al., 1985) 

Dr. H. Bujard (Deuschle et al., 1989) 

Dr. J. Murnane (Mulligan et al., 1981) 

Dr. J. Murnane (Southern et al., 1982) 

Dr. Falkner (Altenburberg et al., 1980) 

Dr. R. Grossschedl, UCSF, San Francisco, 

CA (Grossschedl and Baltimore, 1985a; 

Grossschedl et al. , 1985b) 

Jack et al. , 1992 

Li and Jack (unpublished, see section 

4.2.1.1 in Chapter IV) 

mouse {3-actin 1.9 kb HindIII/BamHI fragment from 

pGm{3-actin 

human c-myc 1 kb Clal/ Smal fragment from pBS-myc 

mouse cDNA (Cµl-4) 1.1 kb Smal/Apal fragment from pABµ-11 

enhancer probe of mouseµ gene 1.0 kb Xbal fragment from pµ•gpt 

'Y 2b 1.0 kb Asp718/BamHI or 320 bp Sstl 

fragment from pB"f2b 

ratGAPDH 1.3 kb BamHI!EcoRI fragment from 



gpt 

Histone 2b 

neo probe 

5 '-UTR of poliovirus 

VX.l 

2.6 DNA Manipulations 

2.6.1 Plasmid DNA Preparation 
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pRGAPDH 

1. 9 kb BamHII Hindlll fragment from 

pSV2gpt. 2Xhol 

Oncor. Inc. (Gaithersburg, MD) (Grandy et 

al. 1982) 

2.4 kb BamHI/Hindlll fragment from 

pSV2neo 

0. 7 kb Hindlll/EcoRV fragment from pP2-5' 

1.0 kb Hindlll/Xbal fragment 

Plasmids used for cloning and transfection were prepared by the alkaline lysis 

method for small and large scale plasmid preparation as described by Sambrook 

(Sambrook et al., 1989). A rapid, small-scale plasmid preparation method (Magic 

minipreps kit, Promega Corporation, Madison, Wisconsin) was used for restriction 

enzyme analysis of recombinant plasmids or small-scale DNA probe isolation (see section 

2.6.4.2 below). 

2.6.1.1 Solutions and Media 

1 X M9CA media 2mM 

2% Glucose 



LB-Amp medium 

Lysis buffer 

Lysozyme solution 

Alkali solution 

Potassium acetate (pH 4.8) 

(per lOOml) 

0.1 mM CaC12 

0.0025% Nicotinic Acid 

0.005 % Thiamine 

100 µg/ml Ampicillin 

2.5% LB 

0.2% maltose 

5 mM glucose 

100 µg/ml ampicillin 

1% 

lOmM 

25 mM 

glucose 

EDTA (pH 8.0) 

Tris (pH 8.0) 

30 mg/ml in lysis buffer 

1% SDS 

0.2 N NaOH 

(prepare fresh) 

60 ml of 5M KAc 

11.5 ml of glacial acetic acid 
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Proteinase K buffer 

Proteinase K stock 

RNase A stock 

Sodium acetate (3M, pH 5.2) 

TE buffer 

TE-saturated phenol/ chisam 

50mM Tris, pH 8.0 

10 mM CaC12 

10 mg/ml in proteinase K buffer 

(store at -20°C) 

10 mM Tris-HCI, pH 7.5 

15 mM NaCl 

(store at -20°C) 
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Dissolve 12.3 g NaAc (MW 82.03) in about 

40 ml deionized water (0.1 % DEPC water 

in the case of RNA solution). Adjust with 

glacial acetic acid to pH 5. 2. Bring the 

volume to 50 ml with water. 

lOmM 

lmM 

Tris-HCl, pH 8.0 

EDTA 

Thaw phenol at RT before melting at 65°C 



2.6.1.2 
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for about 30 min. Add 8-Hydroxy Qunodine 

to final concentration of 1 mg/ml phenol. 

Extract the phenol with equal volume of 1 

M Tris-HCl (pH 8.0) for 3 to 5 times until 

the pH in TE reaches pH 7-8. Then mix 1 

part of the lower, phenol phase with 1 part 

of chisam (chloroform +isoamyl alcohol = 

24+1). 

Small Scale Preparation of Plasmid DNA (Miniprep) 

A fresh, single colony was inoculated into 5 ml of LB medium (containing 

antibiotics). The cultures were aerated at 300 rpm overnight at 37°C in a shaker 

(Gyroto~ Shaker, Model GlO, New Brunswick Scientific Co., Inc., Edison, NJ). Next 

morning, 1.5-3 ml of the overnight culture was centrifuged in an Eppendorf tube for 30 

seconds at room temperature and the plasmids were isolated using a magic mini prep kit 

from Promega (Madison, Wisconsin) according to manufacturer's instructions. 

2.6.1.3 Large Scale Preparation of Plasmid DNA 

2.5 ml of a fresh overnight culture was inoculated into 250 ml of M9CA medium 

in a 1 liter flask. The bacteria culture was grown at 300 rpm and 37°C to an OD550 of 

0.5-0.6 (about 4 hours) before adding 25 mg of Chloramphenicol (final concentration is 

100 µg/ml, Sigma), and further aerated overnight. The next morning, the bacteria was 
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pelleted by centrifugation in a swinging bucket rotor in a Beckman centrifuge (Model 

GPR) at 3,500 rpm for 20 minutes at 3°C. The supernatant was discarded and the 

bacterial pellet was resuspended in 5 ml of ice-cold lysis buffer on ice. 1 ml of freshly 

prepared lysozyme solution (30 mg/ml in lysis buffer) was added to the suspension, and 

incubated at room temperature for 5 min, followed by incubation on ice for 5 min. The 

bacteria were completely lysed by incubating with 12 ml of freshly prepared alkali 

solution on ice for 10 min. Proteins and chromosomal DNA were precipitated with 9 ml 

of ice-cold potassium acetate solution for 20 minutes on ice and centrifuged in a Sorvall 

SS34 rotor at 18,000 rpm and 3°C for 30 min (Sorvall® RC-SB Refrigerated Superspeed 

Centrifuge, Du Pont Instruments, Wilmington, DE). Plasmid DNA was precipitated from 

the supernatant with 1 volume of ice-cold isopropanol on ice for 20 minutes and then 

centrifuged in a Sorvall SS34 rotor at 12,000 rpm and 3°C for 30 min. DNA pellet was 

air-dried at room temperature for approximately 20 min. RNA in the sample was digested 

by dissolving and incubating the pellet with 2 ml of TE buffer containing 50 µl of 10 

mg/ml RNAse A at 37°C for 15 to 30 min. Proteins in the sample were digested by 

denaturing with 125 µl of 10% SDS followed by incubating with 50 µl of 10 mg/ml 

proteinase Kat 42°C for 1 hour. To extract plasmid DNA, the solution was extracted 

once with an equal volume of TE-saturated phenol, twice with an equal volume of 

phenol/chisam (1+1) and once with an equal volume of chisam at room temperature. 

DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 5.2) and 2.5 

volume of ethanol and incubating on ice for at least 20 min or at -20°C overnight. 

Precipitated DNA was centrifuged at 12,000 rpm and 4 °C for 40 minutes, washed twice 
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with 1 ml of70% ethanol, dried in a Speed Vac Concentrator (Savant, Farmingdale, NY) 

and then dissolved in 250 µl of TE. 1 µl of midi-prep DNA was quantitated by restriction 

enzyme digestion as described in section 2.6.2 and 2.6.5. 

2.6.2 DNA Digestion 

Plasmid DNA was digested with restriction endonucleases. Usually, 2-5 units of 

an enzyme was added to per µg of DNA. Digestion reactions were carried out in buffers 

provided by the manufacturer for each enzyme and under reaction conditions 

recommended by the manufacturer. Reaction mixtures were run on 0.8-1.2% agarose 

gels, as described in section 2.6.3, from which purified DNA fragments were extracted, 

as described in section 2.6.4. 

2.6.3 DNA Agarose Gel Electrophoresis 

DNA fragments were separated on 0.8-1.2% (w/v) agarose gels. 1.12-1.68 g of 

agarose (weighed in an Analytical Balance, Model XL-400D, Fisher Scientific, 

Pittsburgh, PA) was dissolved in 140 ml of TAB buffer (1 X TE is 40 mM Tris-HCI, 

pH 8.0, 20 mM sodium acetate, 2 mM EDTA) by boiling in a microwave. The agarose 

solution was cooled to approximately 60°C at room temperature before 7 µl of ethidium 

bromide (EtBr) (stock solution is 10 mg/ml) was added to a final concentration of 0.5 

µg/ml. The mixture was stirred gently before it was poured into a horizontal gel casting 

tray (15 X 10 cm gel tray, 15 or 20 well comb, 1.5 mm, Bio-RAD, Richmond, CA). 

The gel was allowed to solidify at room temperature for about 20 min prior to being 
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transferred to a horizontal electrophoresis chamber (Wide Mini-SubTll DNA 

Electrophoresis Cell, Bio--RAD, Richmond, CA) filled with TAB buffer. DNA samples 

containing tracing dye (0.025% bromophenol blue in 2.5% ficoll and lX TAB) were 

loaded into the sample wells of the gel and the electrophoresis was run under constant 

voltage of 60 V (Power supply: Model FB 135, Fisher Scientific, Pittsburgh, PA) until 

the dye front migrated to the bottom of the gel. Lambda DNA cleaved with HindIII 

endonuclease and 1 kb DNA ladder (Gibco BRL) were run simultaneously to serve as the 

molecular weight standards. DNA bands were viewed under an ultra violet light box (312 

nm Variable Intensity Transilluminator, FBTIV 614, Fisher Scientific, Pittsburgh, PA) 

and photographed on a Polaroid 667 film by a Polaroid Camera (Model DS34, Polaroid 

Corp. Cambridge, MA). 

2.6.4 DNA Band Isolation from the Agarose Gel 

Digested DNA samples were size fractionated on 0. 8-1. 2 % agarose gels stained 

with ethidium bromide. DNA fragments were visualized using ultraviolet light as 

described in section 2.6.3. The appropriate fragments were cut out with a scalpel and 

extracted from the agarose using the 6 M Nal isolation method described below. 

2.6.4.1 6 M Nal Method of DNA Band Isolation 

6 M Nal was prepared by dissolving 44.97 g of Nal (FW 149.9 g/mole) in 50 ml 

deionized water at RT. The DNA-containing agarose was cut into small pieces with a 

scalpel and transferred into a pre-weighed appropriate tube (either an Eppendorf tube or 
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a 15 ml-Falcon tube). 2.5 to 3 volumes of 6 M Nal solution per µg of agarose was added 

in the tube and incubated at 45-56°C for 10 to 20 minutes until the agarose had melted. 

The tube was inverted several times during the incubation. 1 ml of Magic Mini Prep 

Resin (Promega) per 30 µg of DNA was added to the melted agarose, and incubated at 

room temperature for 5 min. The isolated DNA was eluted from the resin by the 

procedures as described in Magic Mini prep DNA preparation provided by Promega. 

2.6.5 Quantitation of DNA 

The concentration of the isolated DNA fragment or plasmid was estimated by 

DNA agarose gel electrophoresis (see section 2.6.3). At least 0.1 µg of DNA was loaded 

on 0.8-1.0% agarose/TAE gel and the intensity of its EtBr staining was compared to the 

intensity of a fragment of similar size in >. DNA/HindIII standards (Gibco BRL, 

Gaithersburg, MD) for plasmid and DNA fragments that were larger than 1.6 kb or to 

Bacteriophage c/>Xl 74 DNA markers (Gibco BRL, Gaithersburg, MD) for DNA 

fragments that were smaller than 1.6 kb. 

2.6.6 Dephosphorylation of DNA Fragment (CIP-treatment) 

A kinase reaction is required to prevent the cloning vector from self-ligation. 

Dephosphorylation mixture: 

DNA digestion mixture: 

1 Ox CIP buffer: 

20-30 µl 

5 µl 

Calf intestinal phosphatase (CIP): 0.01 unit/pmol DNA for 5' overhang) 
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Deionized H20 to 50 µl total volume 

For 5'-overhangs: the reaction mixture was incubated at 37°C for 30 min, after 

which another aliquot of CIP was added and the incubation was repeated. For 3 ' -

overhangs or blunt ends: the reaction mixture was incubated at 37°C for 15 min then at 

56°C for 15 min, after which another aliquot of CIP was added and the incubation at 

both temperatures was repeated. 

To inactivate the CIP enzyme, 20 µl of 500 mM EGTA (pH 8.0) was added to 

the reaction mixture followed by heat inactivation at 65°C for 45 min or at 68°C for 15 

min. 

2.6.7 

2.6.7.1 

DNA Ligation 

Solutions 

10 X ligation buffer 

10 X Kienow buffer 

10 X dNTPs 

250 mM 

100 mM 

100 mM 

Tris-HCl, pH 7.6 

MgC12 

DTT 

100 mM ATP 

100 mM 

500mM 

50mM 

Tris-HCI, pH 7.5 

NaCl 

DTT (optional) 

0.125 mM of each dNTPs 
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2.6.7.2 Sticky End Ligation of DNA Fragment 

A 5-10: 1 molar ratio of insert: vector DNA was used to obtain the optimal ligation 

efficiency. Usually, 0.1 µg of vector DNA was used in the total volume of 15 µl of 1 X 

ligation buffer. One Weiss unit ofT4 DNA ligase (Pharmacia) was added to each ligation 

mixture. Ligation reactions were allowed to proceed at 15°C overnight (10 to 18 hours). 

T4 DNA ligase was heat-inactivated at 70°C for 10 minutes before transformation. 

2.6.7.3 Blunt-End Ligation of DNA Fragment with Phosphorylated Linkers 

A 100-200 molar ratio ofphosphorylated linker:phosphorylated vector (see section 

2.6.6) was usually used for each ligation. Ligation reactions were performed as described 

in the above section except following the overnight incubation, the ligation reactions were 

further incubated at room temperature for 4 hours. 

2.6.7.4 Two-Step Ligation of DNA Fragments 

Two-step ligation is a procedure to ligate two fragments that are compatible with 

only one of their ends. 

A. First round ligation mixture for enzyme 1 ends: 

CIP-treated vector 

insert DNA 

10 X ligase buffer 

T4 DNA ligase 

0.5 µg 

5-10: 1 molar ratio of insert:vector 

1.5-2.0 µl 

1 unit 

to final volume 15 µl-20 µl 
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Ligation reactions were allowed to proceed at 15°C overnight. T4 DNA ligase 

was heat inactivated at 70°C for 10 minutes. (The vector self-ligation was stored at -

20°C for use as a transformation control.) 

B. Klenow enzyme filling in the remaining sticky end: 

DNA ligation mixture 

10 X Klenow buffer 

0.125 mM dNTPs 

100 mM DTT 

Kienow 

15-20 µl (from the above) 

3 µl 

3 µl 

1.5 µI 

1 unit (diluted in 1 X Klenow buffer) 

sterile H20 to final volume 30 µl 

Incubate at RT (22°C) for 30 min. 

C. Second round ligation for the blunt ends: 

1) Ligation mixture 

10 X ligase buffer 

40% PEG 

100 mM DTT 

T4 DNA ligase 

12 µl 

15 µl 

1.2 µl 

1 unit 

to final volume 120 µl 

2) the ligation mixture was added to the 30 µl of Klenow reaction mixture; 

3) the mixture was incubated at 15°C overnight; 
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4) the following morning, the mixture was incubated at RT for an 

additional 3 hours; 

5) the ligase was heat inactivated at 68°C for 10 min. 

D. The ligation mixture was transformed into competent HB 101 cells as 

described in 2.6.8. 

1) for vector+insert: 50 ng or 100 ng/100 µl HB 101; 

2) for vector control: 100 ng/100 µl HB 101. 

2.6.8 DNA Transformation 

For transformation, a 50-100 µl aliquot of competent cells (the amount depends 

on the number of cells) was measured into a cold microcentrifuge tube containing 50-500 

ng of plasmid DNA or ligation mixture. The cell/DNA suspension was mixed gently and 

incubated on ice for 20-30 min, followed by a heat shock in a 42°C water bath for 45 

seconds. The tubes were chilled on ice for 2 min and 1 ml of S.O.C. (2% Bacto­

tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgC12, 10 mM 

MgS04, 20 mM Glucose) was added. The suspension was incubated for 1 hour at 37°C 

with shaking (225 rpm) to allow expression of the antibiotic-resistant gene before plating 

onto a LB plate containing ampicillin (100 µg/ml) or tetracycline (15 µg/ml). 

Transformants were selected by standard methods described below. 



2.6.9 

2.6.9.1 

Screening for Recombinant DNA 

Blue/white Color Screening 
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JM109, which contains an F' episome that carries a nutritional requirement for 

growth (proline biosynthesis), is used for blue/white color screening of the pGEM-Z and 

pGEM-Zf plasmids (Promega). To prepare plates containing IPTG and X-Gal, 50 µl of 

2% X-Gal and 100 µl of 100 mM IPTG were spread on LB plates and allowed to absorb 

for 30 min at 37°C prior to plating transformed JM109 cells. The plates were incubated 

overnight at 37°C. Recombinant colonies were white while nonrecombinant colonies 

were blue. 

2.6.9.2 Colony Lift 

The following protocol was modified after the procedures described in 

manufacturer's instruction and Sambrook et al. (1989). LB plates with selective agent 

containing single isolated colonies were cooled at 3 °C before use. Nylon membrane 

(HyBond"'-N, Nylon, 0.45 µM, X82 mm, Cat# RPN.82N, Amersham, Arlington 

Heights, IL) was overlaid onto the agar plate to allow uniform wetting. The nylon 

membrane and agar gel were marked in several places with India ink. The nylon 

membrane was then placed on a Whatman paper (Whatman 4 filter paper, 9.0 cm, 

Whatman limited, England) soaked in denaturation solution (2 X SSC and 5 % SDS) for 

2 minutes (the colony side should be upward). The DNA was fixed to the nylon by 

microwaving the membrane at high power for 2.5 minutes (650 watts). The bacterial 

debris was rubbed off with a glove after soaking the membranes in 2- X SSC. 
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Prehybridization of the membrane was performed in a solution containing 0.5 M sodium 

pyrophosphate, 1 % BSA, 7% SDS, 1 mM EDTA at 65°C for at least 1 hour. 

Hybridization was performed overnight in the same solution as prehybridization except 

2 X 106 counts of denatured 32P-labeled DNA probe was added and incubation 

temperature was 65°C. The membrane was washed first in 2 X SSC at room temperature 

for 2-5 minutes and then in 0.1 SSC and 0.1 % SDS at 55°C until the background was 

low. The holes were labeled with a radioactive pen before autoradiography. 

2.6.10 

2.6.10.1 

Labeling of DNA Probes 

Nick Translation 

Radioactive probes were prepared by nick translation using nick translation kit and 

protocol supplied by BRL. One µg of probe was added to a mixture containing 100 µCi 

[a-32P]-dCTP (Amersham, Arlington Heights, IL), 5 µl of a 0.2 mM solution of three 

deoxyribonucleoside triphosphates (dNTPs: dATP, dGTP, dCTP), 5 µl of a solution 

containing 2 units DNA polymerase I and 200 pg DNase I in a total volume of 50 µI. 

The labeling reaction was incubated at 15°C for 1 hand then stopped by the addition of 

5 µl of 300 mM Na2EDTA solution on ice. The labeled DNA was immediately separated 

from unincorporated nucleotides by chromatography on a 0.9 X 1.5 cm G-50 Sephadex'I')( 

(Fine) column using the protocol provided by Boehringer Mannheim Corporation 

(Indianapolis, IN). The specific activity of the labeled probe is 5-10 X 107 cpm/ µg DNA. 



41 

2.6.10.2 Random Priming 

25-50 ng template DNA was added with distilled water to bring the total volume 

to 37 µl in a screw-capped microcentrifuge tube. The DNA was denatured by boiling for 

5 minutes, immediately placing the tube on ice. The following mixture was added to the 

DNA solution: 10 µl of 5 X c· buffer (containing 250 mM Tris-HCl, pH=8.0, 25 mM 

MgC12, 5 mM ,8-mercaptoethanol, 2 mM each of dA TP, dGTP and dTIP, 1 M HEPES 

(adjusted to pH 6.6 with 4 N NaOH) and 1 mg/ml random primers (mostly hexamers, 

BRL), 2 µl of 10 mg/ml BSA (BRL), 0.5 µl of [a-32P]dCTP (Amersham), and 1 unit of 

the Klenow fragment of E. coli DNA polymerase I. The reaction mixture was incubated 

at room temperature for at least 30 minutes. The specific activity of the labeled probe 

was determined by counting 1 µl of the total reaction mixture in liquid scintillation 

counter. 108-109 cpm/µg is suitable (Sambrook et al., 1989; protocols from GIBCO 

BRL). 

2.6.10.3 5' End Labeling 

100 pmol (or 50-100 ng) oligonucleotide was phosphorylated by adding 1 µl of 

T4 polynucleotide kinase (8 units/µl in the solution containing 50 mM Tris-HCl, 10 mM 

MgC12, 10 mM DTI, 1 mM spermidine, and 800 µCi ['y-32P] dATP {ICN). The reaction 

was incubated at 37°C for 30-45 minutes and the kinase was inactivated by heating at 

70°C for 10 minutes. The labeled oligonucleotide was immediately separated from 

unincorporated nucleotides by chromatography on a 0.9 X 1.5 cm of G-25 SephadexTll 

(Fine) column using the protocol provided by Boehringer Mannheim Corporation 
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(Indianapolis, IN). The specific activity of the labeled probe is 4 X HY to 1.2 X 106 

cpm/ng oligonucleotide. 

2. 7 Site-Directed Mutagenesis 

2. 7 .1 Solutions 

10 X annealing buffer 

10 X M9 solution (per liter) 

M9 agar plate (per liter) 

200mM 

100 mM 

500mM 

60 g 

30 g 

Tris-HCl, pH 7.5 

MgC12 

NaCl 

Na2HP04 (MW= 131. 96) 

KH2P04 (MW= 136.09) 

5 g NaCl 

10 g NH4Cl 

100 ml 

875 ml 

15 g 

10 X M9 solution 

distilled H20 

agar 

Autoclave, cool to 55°C and add 

1 ml 

100 µl 

10 ml 

1 ml 

MgS04 

CaC12 

20% (w/v) Glucose 

10 mg/ml Thiamine 



Phage precipitation solution 

10 X synthesis buffer 

TYP broth (per liter) 

Pour 20 ml in each plate 

20% PEG 8000 (Sigma) 

2.5 M NaCl 

100 mM 

5mM 

lOmM 

20mM 

16 g 

Tris-HCl, pH 7.5 

dNTPs 

ATP 

DTT 

Bacto-tryptone 

16 g Bacto-yeast extract 

5 g NaC12 

2.5 g K2HP04 

2. 7 .2 Preparation of Phagemid Single-Stranded DNA 
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The following protocol was modified from instructions of Promega Altered Sites 

kit protocol and an internal protocol. The DNA to be mutated was cloned into the 

pSelect-1 vector. Recombinant DNA was transformed into competent cells of JM109 or 

a similar host and selected by plating on the LB-Tet (tetracycline 15 µg/ml) and IPTG/X­

Gal plate. (The LB-Tet plate was spread with 100 µl of 0.1 M IPTG and 50 µl of 2% 

X-Gal, and these components were allowed to absorb for 30 minutes at 37°C prior to 
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plating cells.) The original pSelect-1 vector was used as a positive control and the 

pSelect-control phagemid (Promega) was used as a negative control. Several white 

colonies on the recombinant transformation plate were picked with toothpicks to do mini­

preps for confirmation of the correct recombinant clones. The overnight cultures of cells 

containing pSelect-1, pSelect-control, and correct recombinant DNAs were plated on M9-

Tet plate (15 µg/ml tetracycline) to select for the presence of F' which carries a 

nutritional requirement for growth and decreases the number of false positives. The 

incubation time was about 40 hrs. An overnight culture was prepared from each M-9 

plate by picking individual colonies on M9-Tet plates and inoculating 5 ml of TYP broth 

containing 15 µg/ml tetracycline and shaking overnight at 37°C. The next morning, 25 

ml TYP broth (15 µg/ml tetracycline) was inoculated with 500-1000 µl of overnight 

cultures. These were shaken vigorously at 37°C for 2-3 hrs until the A550 =0.5-1.0. This 

was the plating culture and could be stored at 3°C up to 1 week. The culture was 

infected with helper phage R408 (which obtains high yields when it is used in conjunction 

with the JM109 strain) at a multiplicity of infection (m.o.i.) of 10. 1 O.D. at 

A550=5Xl08 cells/ml. The cultures (10-20 ml) were incubated at 37°C for 20 minutes, 

and then shaken vigorously at 37°C for at least 6 hrs. After shaking, the cultures were 

transferred to SS34 tubes, and the culture supernatant was harvested by pelleting the cells 

at 12K rpm/4 °C/15 minutes. The supernatant was then transferred to a new SS34 tube, 

and spun again as described above. 1 ml of each supernatant was saved in 3°C 

refrigerator. The rest of supernatant was precipitated with 0.25 volume of phage 

precipitation solution (20% PEG and 2.5 M NaCl) overnight at 3 °C. The phage pellet 
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was then spun down at 12K rpm/3°C/15 min. The tubes were thoroughly drained, spun 

again for 2 min, and any liquid was removed with a pipeter. The pellet was resuspended 

in 0.5 ml of TE (pH=7.5-8.0), and transferred to a 1.5-ml microcentrifuge tube. The 

phagemid DNA was phenol extracted once; phenol:chisam extracted twice; and then 

chisam extracted once. The phagemid DNA was precipitated with 1/10 volume of 3M 

NaAc and 2.5 volume of ethanol at -20°C for 30 minutes or overnight. The pellet was 

spun down and dried in a Speedvac. The pellet was sometimes difficult to see, and was 

resuspended in 30 µl of TE. 2 µl was quantitated on 0.8-1.0% agarose gel. The helper 

phage band of R408 is 6.4 kb and pSelect-control is 5.6 kb. The single-stranded DNA 

standard from the sequencing kit (USB) may also be used as the size standard for 

estimation of single-stranded DNA. 

2.7.3 5' Phosphorylation of Oligonucleotides 

1) The following components were added to a microcentrifuge tube: 

oligonucleotide 

10 X kinase buffer 

10 X ATP (10 mM) 

T4 polynucleotide kinase 

100 pmol 

2.5 µl 

2.5 µl 

5 units 

to final volume 25 µl 

2) Incubated the reaction at 37°C for 30 minutes. 

3) Incubated the reaction at 70°C for 30 minutes to inactivate the kinase. 

4) The reaction products were stored at -20°C or added directly to the.annealing 
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reaction. 

2.7.4 Site-Directed Mutagenesis 

A phosphorylated mutagenic oligonucleotide (1.25 pmol) and ampicillin repair 

oligonucleotide (0.25 pmol, Promega) were annealed to the recombinant pSELECT-1 

ssDNA (0.05 pmol)in annealing buffer by heating to 70°C for 5 min followed by slowly 

cooling to room temperature. After extension with T4 DNA polymerase and ligation by 

T4 DNA ligase in synthesis buffer, DNA strands were used to transform the BMH 71-18 

mut S mismatch repair-deficient E. coli competent bacteria to select for ampicillin 

resistant transformants. Total plasmid DNA was prepared and transformed into the JM 

109 competent bacteria. Mutant colonies were first screened by the restriction enzyme 

specific to the site present in the mutagenic oligonucleotide and further confirmed by 

sequencing as described in section 2.9. 

2.8 Reverse Transcription Polymerase Chain Reaction (RT-PCRl 

RNA was prepared by using the GIT/CsCl method as described in section 

2.12.1.1, and cDNA was synthesized by using the Superscriptase library kit (Gibco 

BRL). 

2.8.1 

2.8.1.1 

Synthesis of cDNA Fragment by Reverse Transcriptase (RT) 

Reagents and Solutions 

Amplitaq DNA Polymerase 200 U/µl 



dNTPs 

First strand buffer (5 X) 

Oligo(dn 15 primer 

PCR buffer (10 X) 

sense oligonucleotide: 

antisense oligonucleotide: 

rRNasin® RNAse inhibitor 

2.8.1.2 Procedure 

0.1 M 

250 mM 

375 mM 

15 mM 

0.5 µglµl 

100 mM 

500mM 

25 mM 

0.1% 

50 pMole/µl 

50 pMole/µl 

40 U/µl 

Tris, pH 8.3 

KCl 

MgC12 

Tris/HCl (pH 8.0) 

KCl 

MgC12 

gelatin 
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5 µg of total cellular RNA in TE was precipitated with 1/10 volume of 3M NaAc 

(pH 5.2) and 2.5 volumes of EtOH overnight at -20°C. RNA was pelleted in a 
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microcentrifuge at 13,000 rpm for 1 hour at 3°C, washed twice in 70% EtOH, air-dried 

and resuspended in 22.5 µl of DEPC-water. The RNA was denatured in the presence of 

4 µl oligo (dT) primer (0.5 µglµl, Promega) by heating at 65°C for 3 minutes, chilled 

on ice for 2 minutes, spun briefly, followed by adding 10 µl 5 X RT buffer, 5 µl 5 mM 

dNTPs, 5 µl 0.1 M DTT, 2 µl rRNasin (40 U/µl, Promega, optional), and 1.5 µl 

Superscript Reverse Transcriptase (200 U/µl, GIBCO BRL). Incubated the samples for 

10 minutes at room temperature, followed by 1-hour incubation at 42 °C. To inactivate 

reverse transcriptase, the samples were heated for 3 minutes at 95°C in a heat block, 

chilled on ice and pulse spun. This RNA mixture was usually good for at least 10 PCR 

reactions. It was either frozen at -20°C, or immediately used for a PCR amplification 

(see section 2.8.2). 

2.8.2 PCR Amplification 

PCR was performed with 2 µl of the cDNA product from FH (0.2 µg) or 5 µl of 

the cDNA product (0.5 µg) from VXH or CH2XH in a 1.5-ml microcentrifuge tube 

containing 3.5 µl of 10 X PCR buffer, 3.5 µ12 mM dNTPs, 1.0 µl forward primer (50 

µM), 1.0 µl reverse primer (50 µM), 21 µl water, and 0.5 U AmpliTaq polymerase (Taq 

polymerase, BRL). The mixture was overlaid with 35-50 µl of mineral oil and the cDNA 

was amplified for 30 cycles under the following conditions for each segment in a DNA 

Thermal Cycler (Perkin Elmer Cetus, Model 480, Emergyville, CA): denaturation, 94 °C 

for 1 minute; annealing, 50°C for 1 minute; extension, 72 °c for 2 minutes. After the 

amplification reaction, 30 µl of the PCR products were analyzed on a standard 1 % 
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agarose TAB (or TBE) gel stained with ethidium bromide (Sambrook et al., 1989) to 

confirm the sizes of synthesized DNA fragments. 

PCR amplification of plasmid DNA fragment was performed as described above 

except that 1 ng of DNA template was used for 25-30 cycles of amplification. 

2.9 DNA Sequencin~ 

For single-stranded DNA sequencing, the gene segments of interest were 

subcloned into M 13 phage expression vector or pGEM vector (Pro mega Corp., Madison, 

WI) and the single-stranded DNA template was prepared as described before (see sections 

2.6 and 2.7.2). For double-stranded plasmid sequencing, the single-stranded template 

DNA was generated by denaturing 5-10 µg of plasmid DNA in 2 N NaOH and 2 mM 

EDTA solution at room temperature for 5 minutes. The mixture was neutralized by 

adding 0.1 volumes of 3M NH4Ac (pH=4.5) and the DNA was precipitated in ethanol 

at-70°C overnight. After washing the pelleted DNA with 70% ethanol, it was dissolved 

in 7 µl of distilled water for the sequencing reaction. Appropriate primer (see section 

2.2.1) and the reagents in the Sequenasen1 Version 2.0 Kit (United States Biochemical, 

Cleveland, OH) were used in the sequencing reactions as instructed by the manufacturer. 

The single-stranded bacteriophage M13mp18 was used as positive control for the 

sequence reaction. 

The samples were denatured at 80°C for 3-5 minutes prior to loading on 6% urea­

polyacrylamide gel. The electrophoresis was performed at 50 watts and 55°C gel 

temperature in 1 X TBE buffer. The gel was fixed in 10% methanol and 10% acetic acid 
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for 15 minutes at room temperature, transferred onto a Whatman filter and dried for 30 

minutes at 80°C (Hoefer Scientific, Model SE 1160, San Francisco, CA). The 

Fluorography was performed by exposing the dried sequencing gel to an X-ray film at 

room temperature for overnight or 1 day. 

2.10 Cell Culture Techniques and DNA-Mediated Cell Transfection 

2.10.1 Cell Maintenance 

Mouse plasmacytomas and hybridomas were maintained in RPMI 1640 medium 

supplemented with 10% (vol/vol) fetal calf serum (FCS, Hyclone Laboratories), 4 mM 

L-glutamine, 50 units or µg of a penicillin-streptomycin solution per ml, 0.05 mM {3-

mercaptoethanol and 1 mM sodium pyruvate at 37°C in a 5 % COrhumidified incubator 

(Heraeus Instrument, S. Plainfield, NJ). This media is referred to as complete RPMI 

1640 media. All cell culture reagents were from GIBCO BRL unless specifically 

indicated. 

2.10.2 Cell Lines That Were Used in the Dissertation 

Mouse pre-B cell line F (Jack et al., 1989) 

Mouse hybridoma FH (LOCB 83.13.13, Jack et al., 1989) 

Mouse hybridoma VXH (GAMO 12.8, Jack et al., 1989) 

Mouse hybridoma CH2XH (GAMO 62.12, Jack et al., 1989) 

Mouse plasmacytoma J558L (Oi et al., 1980) 

Mouse plasmacytoma NYCH.µK (Bornemann et al., 1995) 
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Mouse myeloma Ag8.653 (Kearney et al., 1979; Bornemann et al., 1995) 

2.10.3 Cell Harvesting 

Cells were harvested by centrifuging at 1, 100 rpm and 4 ° C for 5 minutes in 

polypropylene tubes (Silencer® S-103 NA, Rupp & Bowman, Tustin, CA). 

2.10.4 Freezing and Thawing of Cells 

About 2 X 107 cell were pelleted, resuspended in 1.5 ml of RPM! freezing media 

(RPMI 1640 with 30% FCS, 15% dimethyl sulfoxide, and 0.05 mM {j-ME), and 

transferred into an ice-chilled cryogenic tube (Vangard CRYOS,..., Sumitomo Bakelite 

Co., Ltd., Japan). The tubes were kept in a styrofoam box overnight at -70°C to allow 

for slow freezing and stored in liquid nitrogen (Nitrogen tank type 5k, Taylor-Wharton, 

Theodore, AL). 

To thaw cells, the frozen tubes were warmed up in a 37°C water bath until most 

of the cells were thawed, then completely thawed on ice. Then the cells were transferred 

into a 50-ml Falcon tube, washed once with 25 ml of complete RPMI 1640 media, and 

cultured in 10 ml of the complete media. 

2.10.5 Cell Counting 

Cells were diluted in an equal volume of trypan blue solution and counted in a 

Neubauer hemacytometer chamber (Bright-Line®, 0.1 mm, American Optical Co., 

Buffalo, NY). The cell number was determined by the following equation: · 
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Cells/ml = cells per large square x 2 x 104 

2.10.6 Subcloning 

Hybridoma cell lines were subcloned by limiting dilution in 96-well plates (0.15 

cells/100 µI/well, Costar, Cambridge, MA). 100 µI of the complete RPMI 1640 media 

was added to each well after 7-10 days. The wells were screened for colony growth 

under the light microscope (400 X, Labovert Inverted Microscope FS, Leitz Wetzlar, 

Germany) after 12 to 15 days. Subclones were analyzed for lg expression by cytoplasmic 

immunofluorescence analysis as described in section 2.13 .1, or the presence of µ gene 

by PCR as described in section 2.8.2. 

2.10.7 Transfection 

For electroporation, 5Xl06 cells were removed and washed twice in ice-cold 

protein-free RPMI 1640 medium (the complete RPMI 1640 media without FCS), and 

resuspended in 500 µI of the same medium. After addition of 5-20 µg DNA (in 1 X TE, 

total volume < 20 µl), the cells were incubated on ice for 10 minutes and subjected to 

1 pulse of 330 µF, 285 volts at low conductivity with a Cell Porator (BRL, Gaithersburg, 

MD). The transfected cells were immediately transferred into 50 ml-flasks and grown in 

10 ml of 20% FCS-RPMI 1640 media for 48 hours. To isolate stable transfectants, we 

grew the transfected cells that were plated in 96-well plates (Costar, Cambridge, MA) 

at the density of 5 X 1 Q4 cells per ml media, 100 µl media per well in growth media 

containing 2.5 µg of mycophenolic acid (MPA) and 250 µg of xanthine per ml for 7-10 
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days (Jack et al., 1989). The MPA positive stable transfectants were screened by 

cytoplasmic immunofluorescence forµ protein expression (see section 2.13.1). 

2.11 

2.11.1 

DNA Isolation from Mammalian Cells and Analysis 

DNA Isolation by Guanidinium Isothiocyanate (GIT)/Cesium Chloride 
(CsCl) Method 

High molecular weight DNA was isolated as described in Sambrook et al., 1989. 

Briefly, DNA bands in cesium chloride phase (see section 2.12.1.1 below) were aspirated 

into a pasteur pipette and washed twice with 10 ml of 70% ethanol in 50 ml-Falcon tube. 

After air-drying briefly, the DNA was digested with 200 µg/ml proteinase K (PK) in 10 

ml of PK buffer at 42°C overnight (about 16 hours). To remove the proteins, the DNA 

solution was extracted once with equal volume of TE-saturated phenol, twice with 

phenol/chisam (1+1) and once with chisam. The extracted DNA was then precipitated 

with 2 volumes of 100% ethanol, spooled onto a pasteur pipette, washed once in 80% 

ethanol, briefly dried, resuspended in TE (pH 8.0), and incubated overnight at 37°C to 

facilitate the dissolving process. The concentration of DNA was determined by 

photometric measurement at 260 nm as described in 2.11.2. DNA preparations were 

stored at 4 °c. 

2.11.2 Quantitation of DNA 

The concentration of DNA was quantitated by measuring the absorption or optical 

density (OD) at 260 nm (Spectrophotometer, Spectronic 20, Bausch & Lomb, Rochester, 

NY). 1 OD at 260 nm = 50 µg/ml DNA. 
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The purity of DNA was determined by the ratio of the absorbance of DNA at 260 

nm to its absorbance at 280 nm. Our samples were in the range of 1.8 to 2.2. 

2.11.3 

2.11.3.1 

Southern Blot Analysis 

Solutions 

Alkali solution 

Neutralization solution 

Washing solutions 

10 X SSC (pH 7.0) 

2.11.3.2 Procedure 

0.5 N Na OH 

1.5 M NaCl 

0.5 M Tris-HCl, pH 7.4 

3M NaCl 

1) 0.4 N 

2) 0.2 M 

2X 

0.15 M 

Na OH 

Tris-HCl, pH 7.5 

SSC 

Citric Acid 

1.5 M NaCl 

High molecular weight DNA that was prepared as described in section 2.11.1 was 

digested to completion (overnight) with the appropriate restriction enzymes, and 

electrophoresed on a 0.8% agarose gel. The gel was then denatured in 250 ml of alkali 



55 

solution under shaking at room temperature for 30 minutes and neutralized with 250 ml 

of neutralization solution for 30 minutes. The DNA was capillarilly transferred onto the 

concave side of genescreen plus• (DuPont Biotechnology System NE~ Research 

Product, Boston, MA) in 10 X SSC at room temperature overnight. The genescreen filter 

was washed first with 0.4 N NaOH for 30 seconds, and then washed with 0.2 M Tris­

HCl (pH 7.5) and 2 X SSC for 2 minutes. The filter was dried under an infrared lamp 

or between 2 Whatman papers (3MM). The filters were prehybridized in 10% Dextran 

sulfate, 1 % SDS and 1 M NaCl at 65°C for about 2 hours and hybridized with 100 µCi 

of 32P-nick-translation labeled DNA probes and 200 µg/ml of salmon sperm DNA in 10% 

Dextran sulfate, 1 % SDS and 1 M NaCl at 65°C overnight. The filter was washed as 

described in section 2.12.5 except at 65°C. 

2.12 

2.12.1 

2.12.1.1 

RNA Isolation from Mammalian Cells and Analysis 

Total RNA Isolation 

GIT/CsCl Method 

Total RNA was prepared from cells with guanidinium thiocyanate followed by 

centrifugation in cesium chloride solutions (Sambrook et al., 1989). Briefly, 1-2 X 107 

cells were removed and washed twice with ice-cold phosphate-buffered saline (PBS, 

GIBCO BRL) without calcium and magnesium. Then the cells were transferred in 1 ml 

of PBS into a 15 ml-Falcon tube and lysed in 2 ml of GIT homogenization buffer (4 M 

GIT, 0.12 M {3-Mercaptoethanol, and 25 mM Sodium acetate, pH 5. 6-6. 0). The resulting 

homogenate was then layered on a 2 ml cushion of cesium chloride (CsCl) solution (5. 7 
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M CsCl, 25 mM NaAc, pH 5.2) in a clear ultracentrifuge tube (NalgeneTll UltraTubes, 

thin wall/polyallomer, open-top, size 13 X 51 mm, Nalge Company, Rochester, NY). 

The tubes were balanced with GIT homogenation buffer. The gradient was centrifuged 

at 35 K rpm for at least 20 hours at 20°C in a Beckman SW50.1 rotor (Preparative 

Ultracentrifuge, Model L8-70, Beckman, Palo Alto, CA). After centrifugation, the DNA 

band was collected (if preparation of DNA was desired, see section 2.11.1), the 

remaining supernatant was aspirated until the CsCl layer. The rest of CsCl layer was 

poured off and briefly air-dried. The bottom of the tube was cut off with a razor blade, 

the RNA pellet (may be not visible) was resuspended in 270 µ1 (3 x 90 µ1) of TE, and 

transferred to an Eppendorf tube. 30 µ1 of 3 M sodium acetate (pH 5. 2) and 750 µ1 of 

absolute ethanol were added to precipitate the RNA at -20°C overnight. The precipitate 

was dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 

2.12.1.2 Trizol or RNAzolTll B Method 

Total RNA was rapidly isolated for the screening of hybridoma subclones by a 

single-step method (Chomczynski and Sacchi, 1987; Kedzierski and Porter, 1991) using 

TRizol Reagent (GIBCO BRL Cat No. 15596-026) and protocol supplied by BRL. 

Briefly, 5 X 106 plasmacytoma cells were pelleted by centrifugation as described in 

section 2.10.3. The cells were lysed in 1 ml of the TRizol Reagent by repetitive 

pipetting, and the samples were transferred to microcentrifuge tubes. The homogenized 

samples were then incubated for 5 minutes at room temperature to permit the complete 

dissociation of nucleoprotein complexes. 200 µl of chloroform was added to the-samples, 



57 

shaken vigorously by hand for 15 seconds and incubated at room temperature for 2 to 

3 minutes. The samples were centrifuged at 12,000 X g for 15 minutes at 4 °C, and 500 

µl of the upper aqueous phase was transferred to a fresh tube. The RNA was precipitated 

by incubating samples with an equal volume of isopropanol at room temperature for 10 

minutes and centrifuging at 12,000 X g for 10 minutes at 4 °C. The RNA pellet was 

washed once with 1 ml 70% ethanol by centrifugation, briefly air-dried, and dissolved 

in 25 µl of RNase-free water or TE by passing the solution a few times through a pipette 

tip. If the RNA pellet was not completely dissolved, the tubes were incubated for 10 

minutes at 55°C-60°C. The isolated RNA had an A2601280 ratio of 1.6-1.8. 

The isolation of RNA using RNAzolni B solution (Tel-Test, INC., Friendswood, 

TX) is based on the same principle and similar procedures as suggested by the 

manufacturer. 

2.12.2 Cytoplasmic RNA Isolation 

Cytoplasmic RNA was isolated by the Nonidet P-40/Phenol method (modified 

from Favaloro et al., 1980). Briefly, 5 X 106 cells were removed, centrifuged, washed 

with PBS once in an Eppendorf tube. Cells were lysed in 200 µl of ice-cold lysis buffer 

(5 Prime to 3 Prime, Inc.®, 0.14 M NaCl, 1.5 mM MgC12, 0.5 % Nonidet-P40, 10 mM 

Tris, pH 8.6, and 0.05 unit/ml rRNasin from Promega) for 10 minutes on ice. The 

nuclei and unlysed cells were removed by centrifugation at 13 K rpm (12,000 X g) and 

4 °C for 5 minutes. 175 µl of the supernatant was transferred to a new Eppendorf tube 

and digested with 0.2 mg Proteinase K (Boehringer Mannheim) in 175 µl of preheated 
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2 X proteinase K buffer (0.3 M NaCl, 2 mM EDTA, 2% SDS, 0.2 M Tris, pH 7.6) at 

42°C for 1-2 hours. The RNA solution was then extracted three times with 300 µl of 

phenol/chloroform (1+1) and once with 300 µl of chisam at room temperature, and 

precipitated with sodium acetate and absolute ethanol as described above. The precipitate 

was dissolved in 25 µl of TE buffer. The concentration of RNA was determined by 

measuring the absorbance at 260 nm as described in section 2.12.4. The RNA yield was 

60 µg per 5 X 106 hybridoma cells and 35-40 µg per 5 X 106 plasmacytoma cells. 

Nuclear RNA Isolation 2.12.3 

2.12.3.1 RNA Isolation for Crude Nuclei Fractions 

To prepare nuclear RNA, the nuclear pellet from NP-40 lysis method was washed 

twice with 1 ml of ice-cold PBS, then 1 ml of GIT homogenization buffer (described 

previously) was added followed by vortexing for 15 sec to completely lyse the nuclei. 

The nuclear lysate was diluted with GIT homogenation buffer and layered over a 2 ml 

cushion of 5. 7 M cesium chloride (CsCl) solution as described above. The gradient was 

centrifuged in a SW50.1 rotor at 45 K rpm for at least 20 hr at 20-24 °C (Wilkinson et 

al., 1988). The rest of the procedures were as the same as those for total RNA isolation. 

2.12.3.2 RNA Isolation for Purified Nuclei 

2.12.3.2.1 Solutions and Reagents 

PBS (GIBCO) Dulbecco' s Phosphate-Buffered Saline, 

without CaC12 and MgC12 (GIBCO) 
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2 X Isotonic high salt lysis buffer 0.02 M 

0.28 M 

0.003 M 

1 % (v/v) 

0.1% 

Tris-HCl, pH 8.4 

NaCl 

MgC12 

Nonidet-P 40 

DEPC water 

2 X 0.88 M Sucrose 

0.88 M Sucrose-Lysis buffer 

2 M Sucrose 

2 M Sucrose cushion 

Dissolve 120.49 g Sucrose (MW 342.3 

g/molar) in 200 ml 0.1 % DEPC water at 

65°C. Vigorously shake until dissolving. 

Mix equal volume of 2 X lysis buffer with 

2 X 0.88 M Sucrose 

Dissolve 136.92 g Sucrose in 200 ml 0.1 % 

DEPC water at 65°C. 

2M 

5mM 

0.1 mM 

lOmM 

lmM 

sucrose 

magnesium acetate 

EDTA 

Tris, pH 8.0 

DTT 



10% Tween 20 

10 X Tween-Doc 

DNase I buffer 

2.12.3.2.2 Procedure 

10 % (w/w) in 0.1 % DEPC water 

3.3% (v/v) of 10% sodium deoxycholate 

6.6% (v/v) of 10% Tween 20 

0.5 M 

0.05 M 

0.01 M 

NaCl 

MgC12 

Tris-HCl, pH 7.4 

(Holtzman et al. , 1966) 
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The following protocol was generated by modifying several protocols (Nevins, 

1980; Birnie, 1978; and Penman, 1966). 2.5 X 107 hybridoma cells were collected by 

centrifugation at 1,100 rpm and 4°C for 5 minutes. The pelleted cells were resuspended 

with 10 ml of ice-cold PBS (GIBCO BRL), transferred into a 15-ml polypropylene tube 

(17 X 100 mm culture tube, Gemini, Chicago, IL), and centrifuged again. The pellet of 

washed cells was suspended in 5 ml of ice-cold isotonic-high salt lysis buffer by pipetting 

the solution 10 times. The samples were incubated for 10 minutes on ice and vortexed 

gently for 5 seconds. One drop of the lysis solution was placed on a glass slide (25 X 75 

mm, 1 mm, VWR Scientific, Media, PA) overlaid with a cover slide (18 mm square, 

VWR Scientific, Media, PA), and the nuclei were examined under the phase-contrast 

microscope (1,000 X, Biological Microscope, OPTIPHOT, Nikon Corporation, Tokyo, 
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Japan) to determine whether the cells were completely lysed and whether the cytoplasmic 

components are removed from the nuclei. If the majority of cells (95 % ) were lysed and 

there was no obvious cytoplasmic contamination to the nuclei, the homogenized nuclei 

solution was layered over 5 ml of 0.88 M sucrose-lysis buffer solution in a new 15-ml 

polypropylene tube, and the nuclei were purified by centrifugation at 800 X g (2750 rpm) 

(Silencet4 S-103 NA) and 4 °C for IO min. Cell debris was found at the interface 

between the lysis buffer and 0.88 M sucrose solutions. The nuclei were found at the 

bottom of the tube after centrifugation. The lysis and sucrose solutions were removed 

phase by phase by aspiration without disturbing the nuclei. The nuclei pellet was 

resuspended very well by tapping vigorously with the hand and repetitive pipetting. In 

most cases, the pellet could not be dispersed very well. Thus it was digested with 50 µl 

of RNase-free DNase I (40 units/µl, Promega) in 500 µl DNase I buffer for 20 to 40 

minutes at room temperature. 5 ml of lysis buffer and 500 µI of Tween-Doc solution 

were then added, vortexed for 5 seconds and incubated on ice for 5 minutes. This 

mixture was overlaid with either 5 ml of 0.88 M sucrose-lysis buffer and centrifuged as 

described above, or 5 ml of 2 M sucrose cushion in a SW41 polyallomer tube (NalgeneTM 

UltraTubes, thin wall/polyallomer, open-top, size 14 X 98 mm, Nalge Company, 

Rochester, NY) and centrifuged at 25 K for 1 hour at 4 °C (Preparative Ultracentrifuge, 

Model L8-70, Beckman, Palo Alto, CA). After purification of nuclei by centrifugation, 

a drop of the lysis solution was checked under the phase-contrast microscope to 

determine whether the nuclei were still intact and free of visible cytoplasmic 

contamination. The 0.88 M sucrose cushion centrifugation was repeated until no visible 
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cytoplasmic tab was attached to the pure nuclei. To remove the sucrose from nuclei 

preparation, the nuclei were washed twice with 1 ml of lysis buffer and the RNA isolated 

from nuclei by the GIT/CsCl method as described in section 2.12.3.2. 

2.12.4 Quantitation of RNA 

The concentration of RNA was quantitated by measuring the absorption or optical 

density (OD) at 260 nm. 

1 OD at 260 nm = 40 µg/ml RNA 

The purity of RNA was determined by the ratio of the absorbance of RNA at 260 

nm to its absorbance at 280 nm. My samples were in the range of 1.8 to 2.2. The typical 

yields of different cell lines are summarized in Table 1. 



Table 1. Average Yield of RNA Isolation 

Cell lines RNA (µg/107
) 

Total Cytoplasmic Nuclear 

AgS.653 90 to 100 ND ND 

J558L 90 to 120 80 to 220 ND 

FH 180 to 220 80 to 180 12 to 15 

VXH 100 to 160 100 to 150 12 to 15 

CH2XH 100 to 120 50 to 90 12 to 15 

Values are determined from the results of several experiments 
ND, not determined. 
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2.12.5 

2.12.5.1 

Northern Blot Analysis 

Solutions 

10 X MOPS 

5 X RNA loading buffer 

RNA sampling buffer 

Gel overlay buffer 

0.2 M 

lOmM 

50mM 

0.1% 

MOPS (sodium base) 

sodium EDTA 

sodium acetate 

DEPC water 
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Adjust pH to 7.0 with glacial acid 

IX 

2.5% 

0.025% 

0.1% 

IX 

2.2 M 

50% 

0.1% 

IX 

2.2M 

O.I% 

MOPS 

Fi coll 

bromophenol blue 

DEPC water 

MOPS 

formaldehyde 

deionized formamide (dFA) 

DEPC water 

MOPS 

formaldehyde 

DEPC water 



deionized formamide (dFA) 

50 X Denhardt's reagent 
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formamide (Ultrapure, Boehringer 

Mannheim) was deionized with 5 g per 100 

ml AG 501-XS(O) and Bio-Rex MSZ 501 

mixed bed resins (Bio-Rad) by stirring very 

slowly at room temperature for about 1 

hour, filtered through 0.45-µm filter 

(Schleicher & Schuell) and stored at -20°C 

in aliquot. 

1% bovine serum albumin 

1 % polyvinylpyrrolidone 

1 % Ficoll (DL-400) 

0.1 % DEPC water 

1 M sodium phosphate buffer (NaP, pH 7.0, per liter) 

Prehybridization solution 

200 ml of 1 M NaH2P04 

600-700 ml of 1 M Na2HP04 

fill to 1 L with deionized water 

0.1% 

50% 

5X 

SDS 

dFA 

SSC 



Hybridization solution 

2.12.5.2 Procedure 
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5 X Denhardt's reagent 

50 mM sodium phosphate buffer 

0.25 mg/ml denatured sheared salmon 

0.1% 

50% 

5X 

IX 

20mM 

10% 

0.3 mg/ml 

sperm DNA (from 10 mg/ml 

stock solution) 

SDS 

dFA 

SSC 

Denhardt's reagent 

sodium phosphate buffer 

Dextran sulfate 

denatured sheared salmon 

sperm DNA 

5-10 µg RNA (with 3 µg of ethidium bromide per lane) was loaded in the sample 

wells of a formaldehyde agarose electrophoresis gel (1.2 % agarose, 2.2 M formaldehyde, 

1 X MOPS in 0.1 % DEPC water) submerged in overlay buffer. RNA size markers (RNA 

ladder, GIBCO-BRL) were usually also run on the gels. The electrophoresis was 

performed in 1 X MOPS buffer in a horizontal gel electrophoresis chamber (Model H3, 

BRL) under a constant current of 10-15 mA (about 35-40 volts) for 15-20 hours until the 
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bromophenol blue migrated to the bottom of the gel. After capillary transfer of RNA 

onto a nitrocellulose filter (0.45 µm, Schleicher & Schuell, Inc., Keene, NH) in 20 X 

SSC for overnight at room temperature, the blot was baked for 2 hours in 80°C vacuum 

oven (VWR 1410, VWR Scientific, San Francisco, CA). Hybridization was performed 

with an Omniblot system (ABN) according to the manufacturer's instructions. The 

prehybridization was performed in a 11 cm X 15 cm milliblot plastic bag (Millipore 

Corporation, Bedford, MA) at 42 °C for at least 1 hour in a 21 ml mixture of 0.1 % SDS, 

50% deionized formamide, 5 X SSC, 5 X Denhardt's reagent, 50 mM sodium phosphate 

buffer (NaP, pH 7.0), and 5 mg of denatured sheared salmon sperm DNA (from 10 

mg/ml stock solution). The radioactive DNA probe was denatured by boiling for 5 min 

and put immediately on ice. Once chilled, the probe was added to 15 ml hybridization 

solution containing 0.1 % SDS, 50% dFA, 5 X SSC, 1 X Denhardt's reagent, 20 mM 

NaP, 10% dextran sulfate, and 1.5 mg denatured sheared salmon sperm DNA. Then the 

blot was hybridized with 1-2 X 106 cpm per ml of a denatured 32P nick-translated µ 

cDNA probe (covering the region between Cµl and part of Cµ4) for 12-18 hours at 

42°C. The filter was washed consecutively with 2 X SSC and 0.1 % SDS for 10 minutes 

once and with 0.1 X SSC and 0.1 % SDS for 20-30 minutes at 55-60°C several times 

until the background detected by Geiger counter (Mini-Instrument, LTD., Model 900, 

Essex, England, through Research Products International Corp., Mount Prospect, IL) on 

the filter was low. After washing, the blot was dried briefly, and the position of RNA 

standards and ribosomal RNAs was labeled with radioactive ink. The blot was then 

wrapped with Saran wrap and exposed to X-ray film (Kodak X-OMAT"" AR or X-ONAR 
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LS, Eastman Kodak Company, Rochester, NY) between intensifying screens (Fisher 

Biotech, Pittsburgh, PA) for appropriate time at -70°C before processed by Developer 

X-Ray Film Processor (Model QX-60A, Konica, Tokyo, Japan). 

The amount of RNA on the blot was quantitated with a Betagen Radioanalytic 

imaging system (Betascope 603 Blot Analyzer, Betagen Corp., Mountain View, CA). 

The sizes of specific RNA bands were determined by measuring the distance from the 

loading well to each of the bands of RNA on the autoradiograph. The log10 of the size 

of the fragments of standard RNA was plotted against the distance migrated. The 

resulting curve was used to calculate the sizes of the RNA species detected by 

hybridization. RNA size standard used was RNA Ladder (GIBCO-BRL) and ribosomal 

rRNAs (Rogers et al., 1981). 

To control for the copy number of active transcripts of plasmids in stable 

transfectants, Northern blots from stable transfection with pµ1gpt~M plasmids, blots were 

stripped of hybridized DNA probe by washing them twice with boiled 0.1 % SDS-0.1 X 

SSC, and subsequently rehybridized to a 1.055 kb of HindIII-Apal fragment or a 1.335 

kb of Pvull-BamHI fragment of gpt gene from pSV2gpt.2Xhol (SF#189). The relative 

amount ofµ mRNA per sample was calculated by dividing the amount ofµ mRNA by 

the amount of gpt mRNA from the same blot. 

To control for RNA loading on each lane, Northern blots from hybridoma cell 

lines, the blots were rehybridized with a 1.3 kb BamHl-EcoRI fragment of rabbit 

GAPDH or a 1.918kb HindIII-EcoRI fragment of mouse {3-actin probe. 



2.12.6 
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mRNA Decay Rates Measured by Actinomycin C 1 or DRB Treatment 

Decay rates of individual mRNAs in different hybridoma cell lines were measured 

by two transcriptional inhibitors, Actinomycin Cl and DRB as described before (Jack et 

al., 1988). Briefly, cells were seeded in complete RPMI medium to a density of 5 X H>5 

cells/ml, and preincubated for 1 hr at 37°C before addition of Actinomycin Cl 

(Boehringer Mannheim, Mannheim, Germany) or DRB (Calbiochem, San Diego, CA). 

The final concentration of Actinomycin Cl was 5 µg/ml from a stock solution of 10 

mg/ml in dimethyl sulfoxide (DMSO). The final concentration ofDRB was 1.2 mM from 

a stock solution of 120 mM in DMSO. At 0, 4, and 8 hr, 20 ml (about 107
) or 10 ml 

(about 5Xla6) of cells were removed, centrifuged, and subjected to total RNA isolation 

by the GIT method and cytoplasmic RNA isolation by the NP-40/phenol method, 

respectively. Total viable cell counts at each time point were determined using 5 µg/ml 

fluorescein diacetate (FDA) stain and a hemocytometer under a fluorescence microscope 

(630 X, Leica Photofluorescence Microscope, Leitz Wetzlar, Germany). This method is 

based on the principle that only living cells cleave diacetate from FDA, which releases 

the fluorescein molecule that can be visualized under the fluorescence microscope. The 

amount of mRNA left at each time point after the addition of the transcriptional inhibitor 

was determined by Northern blot analysis as described before. The absolute amount of 

radiolabeled probe hybridized to specific bands was quantitated on a Betascope Blot 

Analyzer (Betagen, Mountain View, CA) and normalized to the amount of {3-actin 

mRNA. The efficiency of transcriptional inhibition was determined by rehybridizing the 

blot with H2b or c-myc probe, whose mRNA has a short half-life of 15 to 120-min (Old 
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and Woodlane, 1984; Dani et al., 1984a; Herrick and Ross, 1994). Thus, I should not 

detect H2b or c-myc mRNA at 2 hr after the addition of the drug. 

2.12.7 ORB Titration Experiment 

The ORB titration experiment was performed as following: FH cells were 

maintained in complete RPMI 1640 media. After counting, 2 ml of FH cells (at a density 

of 5 X 1<>5 cells/ml) were distributed into wells of 24-well Costar plate and kept for 1 hr 

at 37°C before addition of ORB (Calbiochem, San Diego, CA). The final concentration 

of ORB is 0, 0.12 mM, 0.24 mM, 0.48 mM and 0. 96 mM, respectively, from a stock 

solution of 120 mM in dimethyl sulfoxide (DMSO, Sigma). At 0 and 4 hr, 2 ml (about 

H>6) of cells were removed, centrifuged, and subjected to cytoplasmic RNA isolation by 

the NP-40/phenol method. Total viable cell counts at each time point and after overnight 

incubation were determined using 5 µg/ml fluorescein diacetate (FDA) stain and a 

hemocytometer under a fluorescence microscope (630 X, Leica Photofluorescence 

Microscope, Model LABOVERT FS, Leitz Wetzlar, Germany). The amount of H2b 

mRNAs left at each time points after the addition of the transcriptional inhibitor were 

determined by Northern blot analysis. The absolute amount of radiolabeled probes 

hybridized to specific bands was quantitated on a Betascope Blot Analyzer (Betagen, 

Mountain View, CA) and normalized to the amount of GAPDH mRNA. The inhibitory 

effect of DRB on transcription was also determined by rehybridizing the blot with a 32P 

nick-translated 1 kb Clal-Smal human c-myc cDNA probe (Dr. Jeff Ross), whose mRNA 

is transcribed from a single copy gene and has a short half-life. 



2.13 

2.13.1 

Analysis of Proteins 

Immunofluorescence Analysis 
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To detect cytoplasmic proteins, 1-5 X la4 cells in 200-300 µl of RPMI 1640 

media were centrifuged onto a glass slide at 1200 rpm for 3 minutes (Shandon centrifuge, 

London, England). After air-drying the pellets, cells were fixed in ethanol for 5 minutes, 

and rehydrated in PBSF solution (PBS - 0.1 % bovine serum albumin - 0.1 % NaN3) for 

at least 1 hr. The expression of transfected mouse heavy chain genes was detected by 

incubating the cells with 10 µl of 1 :20 diluted FITC-conjugated goat antibodies (50 

µg/ml) specific for mouse heavy chain isotypes in a wet chamber for 10 minutes at room 

temperature (Burrows et al., 1981). After mounting with Cytoseal (VWR Scientific, 

Media, PA), the fluorescence-labeled cells were examined under a fluorescence 

microscope (Leica Photofluorescence Microscope, Model LABOVERT FS, Leitz 

Wetzlar, Germany). 

To detect membrane proteins, 2 X 106 cells in suspension were incubated with 

fluorescein (FITC)-labeled goat anti-mouse IgM antibody for 20 minutes on ice. The cells 

were centrifuged and fixed onto a glass slide in absolute ethanol and overlaid with 

Cytoseal (VWR Scientific, Media, PA) as described above. 

2.13.2 Metabolic Labeling and Immunoprecipitation 

2.13.2.1 Solutions and Reagents 

RPMI labeling medium 500 ml Methionine-free RPMI 1640 

(GIBCO) 



10 X NET 

1 X NET/Triton (100 ml) 

0.1 M PMSF 

10 X NET lysis buffer 

50 ml Fetal calf serum (Hyclone) 

10 ml 200 mM L-Glutamine(GIBCO) 

0.5 ml 1 M Sodium pyruvate 
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5 ml 500 units/ml Penicillin-Streptomycin 

(GIBCO) 

2.5 ml 10 mM (1-mercaptoethanol 

500 mM Tris base, pH 7.4 

1.5 M NaCl 

50 mM NaEDTA 

1 % NaN3 

Store at -20°C 

10 ml 10 X NET 

2.5 ml 20% Triton X-100 in water 

Store at -20°C 

0.1 M in ethanol, store at -20°C 

500 mM 

1.5 M 

50mM 

Tris base, pH 7.4 

NaCl 

NaEDTA 



10% Staphylococcus aureus 

S. aureus wash buffer 

SDS sampling buffer 

1% 

0.5% 

0.1 M 

NaN3 

Triton X-100 

PMSF 

S. aureus in PBS and Azide 

50mM Tris, pH 8.2-8.5 

5mM EDTA 

0.5 mM NaCl 

0.02% NaN3 

0.1% SDS 

0.5% Triton X-100 

0.5% NaDOC 

lmM methionine 

supplemented with 1 mg/ml 

(albumin chicken egg, Sigma) 

0.0625 M Tris-HCI, pH 6.8 

5% {3-mercaptoethanol 

2.5% SDS 

0.002% bromophenol blue 

10% glycerol 
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ovalbumin 
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2.13.2.2 Procedure 

For continuous labeling, 1-3 X 106 cells were starved for 1 hr in 1 ml methionine­

free RPMI 1640 medium with 10% dialyzed FCS and then metabolically radiolabeled 

with 75 µCi/ml Trans-[35S] label (1076 Ci/mmol, ICN) for 30-180 min in 5% C02 at 

37°C. After washing, cells were lysed with NET lysis buffer supplemented with the 

protease inhibitor phenylmethylsulfonyl fluoride (PMSF, 1 mM) by incubating on ice for 

20 minutes. lg proteins were precipitated from cell culture supernatants and cell lysates 

with goat anti-mouse IgM (µheavy chain specific) (Southern Biotechnology Associates, 

Inc., Birmingham, AL). The incubation was carried out at 4 °C shaker for 2-3 hours 

(sometimes overnight), followed by with formalin-fixed and heated-denatured 10% S. 

aureus that was prepared as described by Kessler (Kessler, 1975). The S. aureus pellets 

were washed in S. aureus wash buffer for 2 to 3 times and low salt washing buffer (50 

mM Tris, pH=8.0) once (Burrow et al., 1981). The washed precipitates were 

resuspended in equal volumes of SDS sample buffer, boiled for 3 minutes, cooled in a 

water bath to room temperature, and analyzed by 10% SDS-PAGE under reducing or 

nonreducing conditions as described below. 

2.13.3 

2.13.3.1 

Protein SDS Polyacrylamide Gel Electrophoresis 

Solutions 

40% Acrylamide/1.07% BIS Solve 40 g acrylamide and 1.07 g 

bisacrylamide in about 90 ml water, heat 

slightly up to solve and make the volume to 



3M Tris, pH 8.8 

0.5 M Tris, pH 6.8 

10% APS 

10 X Laemmli electrode buffer 

2.13.3.2 Procedure 

75 

100 ml. Filter sterilizes and store at 4 °C in 

an aluminium foil-wrapped bottle. 

Solve 72.7 g Tris in 170 ml water, pH to 

8.8 with 5 N HCl and make the volume to 

200 ml. Filter sterilizes and store at 4 °c. 

Solve 6.05 g Tris in 80 ml water, pH to 6.8 

with 5 N HCl and make the volume to 100 

ml. Filter sterilizes and store at 4 °C. 

100 mg APS in an Eppendorf tube, add 1 ml 

water. Prepare fresh. 

0.25 M 

1.92 M 

1% 

Tris 

Glycine 

SDS 

The SDS polyacrylamide gel electrophoresis was carried out according to the 

method of Laemmli with modifications (Laemmli, 1970). Immunoprecipitated proteins 

from about 106 cells in sample buffer was loaded in each well. The separating· gel was 
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made of7.5-12.5% (w/v) acrylamide, 0.20-0.33% (w/v) N,N'-methylene bisacrylamide, 

0.375 M Tris-HCl (pH 8.8), 0.1 % (w/v) SDS, 0.1 % (w/v) ammonium persulfate, 0.05% 

(v/v) TEMED. The stacking gel was made of 3.8% (w/v) acrylamide, 0.09% (w/v) 

bisacrylamide, 125 mM Tris-HCl (pH 6.8), 0.1 % (w/v) SDS, 0.1 % (w/v) ammonium 

persulfate, 0.05% (v/v) TEMED. The electrophoresis was run in a vertical slab gel 

electrophoresis unit (Hoefer Scientific, Model SE 600, San Francisco, CA) under a 

constant current of 10 mA/1.5 mm gel overnight, or 40 mA/ 1.5 mm gel for 

approximately 4-5 hours. The gels were fixed by shaking in 5 % glacial acetic acid and 

5% methanol for 30 min to 1 hour. The gel was incubated with Intensify solutions 

(EN3HANCE™ Autoradiography Enhancer, E.I. DuPont de Nemours & Co., Boston, 

MA): A for 40 minutes and solution B for 40 minutes with shaking at room temperature. 

The gel was then dried at 80 °C for 2 hours under vacuum in a slab gel dryer (Hoefer 

Scientific, Model SE 1160, San Francisco, CA). The dried gel was exposed to X-ray 

films (Kodak X-Omat OR) between 2 intensifier screens at -70 °C for appropriate time. 

Selected bands were quantitated by counting the radioactivity in dried gels with a 

Betascope blot analyzer. 



CHAPTER III 

IMMUNOGLOBULIN µ mRNA WITH A NONSENSE CODON IS DECREASED 

IN BOTH THE NUCLEUS AND THE CYTOPLASM OF PLASMA CELLS 

3.1 Characterization of the Cell Lines That Are Used in This Chapter 

The 18-81 cell line is the Abelson-virus-transformed mouse pre-B cell line that 

synthesizes only H chain (as well as some that synthesize no lg chain) (Alt et al., 1982; 

Burrow et al., 1981). The majority of cells synthesize µ chain, while some cells can 

switch fromµ to -y2b chain synthesis in vitro (Burrow et al., 1983). The 18-81 cell line 

is diploid for the H chain loci (Burrows et al., 1881) on chromosome 12 (Meo et al., 

1980). Both alleles have correctly joined VDJ segments, containing either a J2 or a J3 

gene segment (Alt et al., 1982; Burrow et al., 1983). Thus the variable region alleles are 

named V2 and V3, respectively. Cells of the 18-81 line usually express only the V3 

allele, because the V2 allele contains an amber nonsense codon codon in the Cµ2 exon 

(Alt et al., 1982). However, a few cells continuously produce H Chain from both alleles 

by reversion of the amber nonsense codon (Wahl et al., 1984; Jack and Wahl, 1987). 

In order to study the expression ofµ mRNA from a single allele, variants of the 

18-81 cell line that have switched from µ to -y2b chain synthesis were fused with the 

myeloma P3X63-Ag8.653 (called Ag8.653 here after, which has lost its functional lg 

genes) to generate hybridomas (Wahl and Burrows, 1984). This switch of heavy chain 
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from µ to -y2b is accompanied by a loss of DNA sequences between the joining region 

and -y2b constant region gene segments, including the Cµ gene segments, on the V3 allele 

(Burrow et al., 1983). However, all these cells retain theµ gene without (FH) or with 

(VXH or CH2XH) a nonsense codon on the V2 allele (Jack et al., 1989). Thus, these 

hybridomas contain two alleles of lg genes: the V2 allele expresses µ transcript and the 

V3 expresses -y2b transcript. The genomic configuration of endogenous µ gene on the V2 

allele in hybridomas used in this chapter is diagrammed in Figure 1. Hybridoma FH has 

a functional µ gene that directs the synthesis of full-length µ chain. Hybridoma VXH has 

an amber nonsense codon (TAG) in its diversity (D) segment ofµ gene, and CH2XH has 

an opal nonsense codon (TGA) in the Cµ2 exon of µ gene. The gene dosage is 

approximately the same in the three hybridomas as determined by Southern blot analysis 

(Jack et al., 1989). One characteristic of the 18-81 cell line is that it has spontaneous 

deletions at the H chain locus at high rate (Jack and Wahl, 1987). The spontaneous 

deletions in the largest J8 -Cµ intron accumulate during growth in vitro (Alt et al., 1982; 

Burrow et al., 1983), and contribute to the different lengths of precursor µ transcript in 

hybridomas FH, VXH and CH2XH. The sizes of these deletions were determined by 

Southern blot analysis (Figure 2B), and are depicted in Figure la. 

Since hybridomas are polyploid cells that often lose chromosomes and 

spontaneous deletions at lg H chain locus occur at high rate, we subcloned all three 

hybridomas by limiting dilution just before using them in the experiments described 

below. The subclones were screened for the presence of the -y2b (that is expressed from 

the V3 allele) by cytoplasmic immunofluorescence (CIF) using Texas Red-labeled goat 
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anti-mouse -y2b. In the case of FH subclones, the expression ofµ chain was determined 

by CIF using FITC-labeled goat anti-mouse lgM antibodies. Since the µ chain is not 

expressed in hybridomas VXH and CH2XH. that contain nonsense codons in their µ genes 

on the V2 allele (Figure la), the presence of the µ gene in these hybridomas was 

determined by PCR using two sets of primers. Primer A and B amplified the genomic 

Cµ gene segments in the µ gene, and the resulting products are revealed in Figure 2A. 

One subclone from the µ-producing hybridoma FH, FH. 8, was used as a positive control. 

As shown in panel b of Figure 2A, we identified seven subclones of CH2XH. and five 

subclones of VXH, all of which contain the complete Cµ region of 2.0 kb (only visible 

on the original gel). The presence of variable region in all subclones was also confirmed 

by PCR using primers that are specific for the VH exon (Beck-Engeser, unpublished 

result). These data suggest that VH exon and the constant region ofµ genes are present 

in all subclones. 

To determine the size of the large JH-Cµ intron in theµ gene, we isolated cellular 

DNAs from various subclones, digested them with different restriction enzymes, and 

analyzed the DNA fragments containing lg gene segments using Southern blotting (Figure 

2B). We found thatµ gene in FH had a deletion of 1.3 kb and µgene in VXH had a 

deletion of 1. 85 kb when compared to the µ gene in CH2XH.. All these deletions are in 

the region of a 4.8 kb Hindlll fragment in the large JH-Cµ intron. However, the CH2XH. 

itself was shown to have a deletion of 4.25 kb in this region (Wabl and Burrows, 1984). 

The sizes of these deletions were determined by Southern blot analysis (Figure 2B), and 

are depicted in Figure la. 



Figure 1 
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Schematic Representations of DNA Structures, Hybridization Probes 

and p. Transcripts. (a) DNA structures of endogenous µ genes in 

hybridomas that are used in this Chapter. For the V2 allele that has a 

completely assembled µ gene, open boxed and interspersed lines 

designate, respectively, exons and introns of the mouse µ gene in 

hybridoma FH. The numbers above indicate the size of respective exons 

and introns in base pairs (not drawn to scale). Arrows above the structure 

specify the sites at which spontaneous point mutations have generated 

nonsense codons in the µ gene of hybridomas VXH and CH2XH. The 

variations of spontaneous deletions in the large JH-Cµ intron as determined 

by Southern blot analysis (Figure 2B) have also been shown with an 

inverted triangle above the structure. (b) Bold lines represent the DNA 

probes used in the hybridizations. (c) Expected sizes of precursor and 

matureµ transcripts. Pre, precursor transcript. TAG, an amber nonsense 

codon; TGA, an opal nonsense codon. 
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Figure 2A PCR Analysis to Screen for the Presence of Cµ. Gene Segments in 

Hybridoma Subclones. (a) Schematic representation of the positions of 

primers A and B used in the PCR and the expected size of PCR product. 

(b) DNA isolated from 2.5 x 104 cells of each subclone was amplified by 

PCR using 5'Cµl. Forward (Primer A) and 3'Cµ4. Backward (Primer B) 

primers (For primer sequences, see section 2.2.1.2.1) for 35 cycles under 

the following conditions for each cycle: denaturation at 94 °C for 20 

seconds; annealing at 65°C for 1 minute; extension at 72°C for 1 minute. 

The resulting products were resolved by electrophoresis in a 1 % TBE 

agarose gel and visualized by ethidium bromide staining. The Cµ gene 

segments (2.0 kb) were present in all sample lanes on the original gel, 

including lanes 5 to 8 and lanes 13 to 16 even though the bands are not 

visible in this figure. DNA isolated from F (the progenitor cell line) and 

FH (a hybridoma that contains a functionalµ gene) were used as positive 

controls. Asterisk (*) indicates nonspecific priming products of PCR. 
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Southern Blot Analysis to Identify the Deletion in the J11Cp. lntron of 

p. Gene on the V2 Allele. (a) Restriction enzyme cleavage map of the 

embryonic DNA that contains the JH and Cµ gene segments. The DNA 

probes used in the hybridizations are diagrammed below. (b and c) 

Southern Blot Analysis of the hybridomas. High molecular weight DNA 

was isolated from the various hybridomas, digested to completion with 

different restriction enzymes, electrophoresed in a 0.8% agarose gel and 

transferred to nitrocellulose filters. The filters were hybridized with a µ 

cDNA probe (b), stripped and rehybridized with the J34 probe (c). The 

size of respective bands (in kb) was determined on a semi-logarithmic plot 

of the apparent size of standard DNA fragments versus their migration 

distance (indicated in kb). A copy of the autoradiogram (exposed for 2 

weeks at -70°C) for Cµ hybridization was used in panel b because the 

original film is lost (as suggested by Dr. H.M. Jack). The autoradiogram 

for J34 hybridization was exposed for 1 week at -70°C. Ba, BamHI; H, 

HindIII; E, EcoRI; Ag, Ag8.653 (the fusion partner). 
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3.2 Nonsense Codons Decrease the Level ofµ mRNA but not Precursor µ 
RNA in Hybridomas 

To determine the level of µ RNAs expressed in the subclones, I isolated total 

cellular RNA by the Trizol method, and performed a Northern blot analysis using a Cµ 

cDNA probe (panel a in Figure 3A). The same blot was sequentially rehybridized to ')'2b 

and 13-actin probes after stripping (panel band c, respectively). Radioactivity of bands 

was determined by a betascope blot analyzer, which detects the counts per minute (cpm) 

of the bands. The relative amount ofµ mRNA ([µ]) was calculated by dividing the 

hybridization signal ofµ mRNA by the signal of 13-actin mRNA. Table 2A summarizes 

the results of Figure 3A. I found that all subclones that contain µ gene with nonsense 

codons produced less µ mRNA than the subclone that expresses productive µ gene (in 

hybridoma FH.8): subclones of hybridoma VXH produce about 30 fold lessµ mRNA, 

while subclones of hybridoma CH2XH produce about 125 fold less µ mRNA. These 

values are the averages calculated from four different subclones in Figure 3A. The 

expression ofµ mRNA also varied within subclones of the same hybridomas (e.g. lane 

7 to lane 10 in Figure 3A). The progenitor cell line 18-81 of the hybridomas acquires 

spontaneous deletions within the JH-Cµ intron during growth in vitro (Alt et al., 1982b; 

Burrow et al., 1983). Although the enhancer element in the JH-Cµ intron is not required 

for the a high level of H chain production (Wabl et al., 1984), the deletion around this 

region (Figure 2B) still might be responsible for the variation ofµ mRNA expression in 

subclones in Figure 3A. The levels of ')'2b mRNA ([')'2b] in Table 2A) also varied 

between subclones, probably for the same reason. From these data, I confirmed that the 

presence of a nonsense codon in the µ gene decreases the steady-state level ofµ mRNA 
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in plasma cells. 

In contrast to the decrease in the level of µ mRNA with a nonsense codon, I 

found that the presence of a nonsense codon did not decrease the level of precursor µ 

RNA ([preµ] in Table 2A). Since the transcriptional rates forµ gene with or without a 

nonsense codon are the same in hybridomas (Jack et al., 1989), this finding may result 

from theµ mRNA with a nonsense codon in the plasma cell being degraded faster than 

µ mRNA without a nonsense codon. Alternatively, the higher relative (rel) [preµ] level 

may result from a nonsense codon preventing the splicing of precursor µRNA. 

I also found that µ RNAs (including precursor µ RNA and µ mRNA) in 

hybridomas VXH and CH2XH (lane 5' and 7', respectively in Figure 3A) had different 

gel mobility thanµ RNAs in hybridoma FH (lane 6' in Figure 3A). Possible mechanisms 

that account for the differences in gel mobility of µ RNAs between hybridomas will be 

discussed and studied in detail in section 3. 4. 

Since the results of Northern blot analysis using total cellular RNA isolated by 

the Trizol method are sometimes not reproducible, I also isolated total cellular RNA by 

the conventional GIT/CsCl method, and quantified the levels ofµ RNAs by Northern blot 

analysis (Figure 3B). The results summarized in Table 2B are similar to those obtained 

by the Trizol method (Table 2A). The slower gel mobility of the precursorµ RNA and 

µ mRNA in hybridomas VXH and CH2XH than those in hybridoma FH is more obvious 

in Figure 3B than Figure 3A. 

In summary, the presence of nonsense codons decreases the level ofµ mRNA of 

the total cellular fraction in hybridomas by about 30 fold in VXH and about 100 fold in 
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CH2XH, when compared to the wild-type µ mRNA in hybridoma FH. Subclones FH. 8, 

VXH.10 (34 fold lower than FH. 8, calculated from the average of two experiments from 

Table 3A and 3B) and CH2XH.1 (16 fold lower than FH.8, calculated from the average 

of two experiments from Table 3A and 3B) were selected for further studies. Total 

cellular RNA will be only isolated by the GIT/CsCl method. 
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Figure 3A Northern Blot Analysis of Total Cellular RNA Isolated from Various 

Subclones. Total RNA from various subclones was isolated by the Trizol 

method. 5 µg of RNA was loaded onto each lane, electrophoresed on a gel 

(1.2% agarose; 1 X MOPS; 2.2 M formaldehyde), and transferred onto 

a nitrocellulose filter. The filter was hybridized, stripped, and 

rehybridized sequentially with 32P-labeled DNA probes. The filter was 

then washed, dried and exposed at -70°C to X-ray film between two 

intensifier screens. (a) Autoradiogram of the nitrocellulose blot that was 

hybridized with a Cµ cDNA probe, as indicated in Figure 1. Film was 

exposed for 18 hr at -70°C. The diminished exposure (film exposure was 

for 18 hr at room temperature) of lanes 5, 6 and 7 is shown on the right 

in Figure 3.1 as lanes 5', 6', and 7'. (b) The same blot was stripped, and 

rehybridized with a /j-actin probe to control for the amount of RNA 

loaded onto each lane. Film was exposed for 18 hr at room temperature. 

(c) The same blot was rehybridized with a ')'2b probe. Film was exposed 

for 24 hr at -70°C. (d) Ethidium bromide staining of the same gel 

revealed the integrity and the positions of pre-rRNA and rRNA markers. 

RNA standards used to determine the sizes of RNAs: 28S rRNA, 5.0 kb; 

18S rRNA, 1.84 kb (Rogers et al., 1981). The 4.4 kb in lane 6' (panel a) 

is present in several Northern blot analyses, although its identity is 

unknown. The results of this figure are summarized in Table 3A. 
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Table 2A Quantitation of Northern Blot Analysis in Figure 3A 

Hybridomas Method RNA Preµ µ 'Y 2b (3-actin rel [pre-µ] rel[µ] % [µ] [y 2b] 

loaded [cpm] {pre-µ/actin) (µ/actin) %FH.8 (y 2b/actin) 

FH.8 Trizol 5µg 4 1398.2 23.6 106.2 <0.1 13.2 100% 0.2 

VXH.12 Trizol 5µg 22.5 63.5 124.9 110.2 0.2 0.6 4.4% 1.1 
VXH.9 Trizol 5µg 19.2 32.6 108.7 34.8* 
VXH.10 Trizol 5µg 26.3 48.2 < 0.1 108.4 0.2 0.4 3.4% <0.1 
VXH.4 Trizol 5µg 19.5 22.7 125.8 124.8 0.2 0.2 1.4% 1.0 
VXH.1 Trizol 5µg 24.5 65.7 135.6 149.6 0.2 0.4 3.3% 0.9 

average 0.4 3.1% 

CH2XH.1 Trizol 5µg 8.2 30 16.8 132.9 0.1 0.2 1.7% 0.1 
CH2XH.12 Trizol 5µg 3.7 6.8 15.3 74.1 <0.1 0.1 0.7% 0.2 
CH2XH.13 Trizol 5µg 4.1 5.3 2.0 89.3 <0.1 0.1 0.5% <0.1 
CH2XH.11 Trizol 5µg 3.1 2.2 4.9 63.9 <0.1 0.0 0.3% 0.1 

average 0.1 0.8% 

Radioactivity of respective bands (cpm) was determined by betascope scanning of Northern blot analysis. 
Relative steady-state level ([x]) of respective RNA was calculated by dividing cpm of band x by cpm of (3-actin 
in the same lane. Background of respective bands have been subtracted. 
%[µ] is the percent of[µ] relative to that of FH.8 by setting FH.8 value equal to 100%. 
* Value is not included in the calculation for average because (3-actin hybridization is visibly not accurate. 

\0 
....... 



Figure 3B 
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Northern Blot Analysis of Total Cellular RNA Isolated from Various 

Subclones. Total RNA from various subclones was isolated by the 

GIT/CsCl method. 0.4 µ.g of RNA from FH and 8 µ.g of RNA from VXH 

and CH2XH were loaded onto each lane and Northern blot analysis was 

performed as described in Figure 3A using a Cµ. probe (panel a, film was 

exposed for 4 days at -70°C), or a /j-actin probe after stripping to control 

for the amount of RNA loaded onto each lane (panel b, film was exposed 

for 4.5 hr at -70°C), or a -y2b probe to detect the expression of -y2b 

mRNA (panel c, film was exposed for 18 hr at -70°C). In panel d, 

ethidium bromide staining of the agarose gel revealed the integrity and the 

positions of pre-rRNA and rRNA markers. Lane 7: Ag8.653 that does not 

express µ. mRNA was used as a negative control for µ. specific 

hybridization. The results of this figure are summarized in Table 3B. 

Asterisk (*) indicates an unidentified band that is hybridized to the Cµ. 

cDNA probe. 
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Table 28 Quantitation of Northern Blot Analysis in Figure 38 

Hybridomas Method RNA Preµ RNA µmRNA ~-actin mRNA relative pre-µ relativeµ 

loaded (cpm) (pre-µ/actin) (µ/actin) 

FH.8 GIT 0.4 µg 0.2 77.8 48.3 <0.1 1.6 
FH.1 GIT 0.4µg 1.1 40.6 29.0 <0.1 1.4 

VXH.12 GIT 8µg 4.6 25.5 425.3 <0.1 0.1 
VXH.10 GIT 8µg 3.8 27.4 717.2 <0.1 <0.1 

average <0.1 <0.1 

CH2XH.1 GIT 8µg 2.7 8.0 536.3 <0.1 <0.1 
CH2XH.13 GIT 8µg 1.5 13.6 711.0 <0.1 <0.1 

average <0.1 <0.1 

relativeµ 
{%) 

100.00A> 
87.0% 

3.7% 
2.5% 
3.1% 

0.9% 
1.2% 
1.1% 

\0 
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3.3 Nonsense Codons Reduce the Steady-state Level ofµ RNA in the Nucleus 

To determine whether the lower total steady-state level of µ mRNA with a 

nonsense codon results from either cytoplasmic or nuclear RNA reduction, I isolated 

RNA from the nuclear and cytoplasmic fractions, and quantified the levels ofµ RNA in 

the two subcellular compartments by Northern blot analysis. 

The isolation of nuclear RNA is a very difficult task, mainly because of its low 

abundance when compared with cytoplasmic RNA (Schilbler et al., 1978) and the 

technical difficulty in separating the nuclei from the endoplasmic reticulum in the 

cytoplasm. Endoplasmic reticulum binds the majority of cytoplasmic mRNA. Thus, I first 

compared several published methods to isolate nuclear RNA from hybridomas FH and 

CH2XH. Briefly, cell pellets from the lysate of NP-40-containing lysis buffer (the lysis 

buffer for cytoplasmic RNA isolation) were purified through 2 M sucrose cushion by 

either microcentrifugation or centrifugation, washed twice with PBS and taken as the 

crude nuclei. The nuclear RNA was isolated by either the GIT/CsCl or Trizol method, 

and quantified by Northern blot analysis (Figure 4). I found that the level of nuclearµ 

mRNA was visibly lower in CH2XH (lane 11 and 12 in panel b) when compared to that 

of FH (lane 4 to 7 in panel b). Since cytoplasmic RNA is about nine fold more abundant 

than nuclear RNA (Schilbler et al., 1978), this lower steady-state level of nuclear µ 

mRNA in CH2XH might result from either the nuclearµ mRNA level being lower, or 

the nuclear RNA measured in Figure 4 reflects the steady-state level of cytoplasmic RNA 

that was contaminated with nuclei during nuclear RNA isolation. Thus, I needed to 

establish a reliable protocol to exclude cytoplasmic RNA contamination in the procedure 



Figure 4 
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Comparison of Methods to Isolate Nuclear RNA from Hybridomas FH 

and CH2XH. Nuclei from FH and CH2XH were purified by either 

washing the pellets of NP-40 lysed homogenate twice with PBS (lane 5, 

6, 7, and 12) or centrifugation through a 2 M sucrose cushion in a 

microcentrifuge tube (lane 4 and 11). Nuclear RNA was either isolated by 

the GIT/CsCl method (lane 5, 6, and 12) or the Trizol method (lane 4, 7, 

and 11). Total RNA was isolated by either the Trizol method (lane 1 and 

8) or the GIT/CsCl method (lane 2 and 9). Cytoplasmic RNA was isolated 

by the NP-40/phenol method (lane 3 and 10). 5 µg of RNA from FH or 

10 µg RNA from CH2XH was loaded onto each lane and Northern blot 

analysis was performed as described in the legend to Figure 3A. (a) 

Ethidium bromide staining of a representative gel shows the integrity and 

the positions of pre-rRNA and rRNA markers. The identity of rRNA 

precursors (45S and 35S) is suggested by the sizes of RNAs measured on 

the autoradiogram correlate with the published sizes of precursor rRNAs 

(Penman, 1966). (b) Autoradiogram (65 hr exposure) of the nitrocellulose 

blot that was hybridized with a Cµ cDNA probe. (c) The same blot was 

rehybridized with a -y2b probe. Film was exposed for 24 hr at -70°C. (d) 

After stripping, the same blot was rehybridized with a (j-actin probe to 

control for the amount of RNA loading onto each lane. Film was exposed 

for 45 hr at -70°C. T, total cellular RNA; C, cytoplasmic RNA; and N, 

nuclear RNA. Since the hybridomas FH and CH2XH used in this 
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experiment were not subcloned after a long time in culture, the amounts 

of ')'2b expression are different from those shown in Figure 3A. 
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of nuclear RNA isolation in order to evaluate the level of nuclear RNA. Since the use 

of microcentrifugation and the Trizol method did not generate reproducible results (Li 

and Jack, unpublished results), I chose a 2 M sucrose cushion centrifugation method to 

purify the nuclei and the GIT/CsCl method to isolate nuclear RNA in future experiments. 

Since the outer membrane of nuclei is continuous with the membrane of the 

endoplasmic reticulum in the cytoplasm (Amstein and Cox, 1992), an efficient way to 

eliminate the cytoplasmic RNA contamination is to remove the outer nuclear membrane 

in the nuclear RNA isolation procedure. Thus I used ionic and nonionic detergents to 

remove the outer membrane of the nuclei (Nevins, 1980) and subsequently used 0.88 M 

(Birnie, 1978) or 2 M (Nevins, 1980) sucrose cushion centrifugation to remove the 

cytoplasmic RNA, polyribosomes, the outer membranes of nuclei and endoplasmic 

reticulum from the nuclei. As shown in Figure 5c by ethidium bromide staining of the 

agarose gel, I found that the rRNA precursors (45S and 35S) were enriched and the 

ratios of 28S rRNA to 18S rRNA were visibly increased in the nuclear RNA preparation 

of FH Oane 4 and 5). This suggested that the preparation was enriched in the nuclear 

fraction (Penman, 1966). The removal of cytoplasmic components was determined by 

phase-contrast microscopy after each step of nuclear RNA isolation. Representative 

photographs are shown in Figure 6. I found that there were no obvious cytoplasmic tabs 

in the examined fields after I purified the nuclei. I also attempted to examine the removal 

of outer nuclear membrane by electron microscopy (Holtzman, 1966) with the help of 

Dr. McNulty's laboratory. Due to the difficulty in counting enough nuclei to ensure their 

purity and DNase I-mediated disruption of the chromosome structure inside the nuclei, 
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I decided to use a novel approach to determine the removal of cytoplasmic components 

in nuclear RNA isolation. 

As discussed above, one efficient way to ensure the purity of nuclear RNA is to 

eliminate all cytoplasmic components in the procedure of nuclear RNA isolation. Since 

the nuclear and cytoplasmic fractions of the same cell type contain the same type of 

RNAs, it is hard to distinguish the nuclear RNA from the cytoplasmic RNA. However, 

hybridoma FH expresses only the heavy chain but no light chain of lg. Thus by mixing 

cytoplasmic RNA isolated from plasmacytoma J558L (that expresses only a lambda (A) 

light chain but no heavy chain) with the cell homogenate of hybridoma FH, I was able 

to determine whether my modified nuclear RNA isolation protocol can efficiently remove 

the exogenous cytoplasmic RNA. The main steps are illustrated in Figure 5A. Briefly, 

I mixed the cell homogenate from 2.5 X 107 hybridoma FH (that expresses onlyµ but 

no A mRNA) with post-nuclear supernatant containing cytoplasmic RNA either in 

polyribosome-bound form or free mRNA form isolated from same number of cells of 

plasmacytoma J558L (that expresses only A but noµ mRNA). The mixture was then 

subjected to the nuclear RNA isolation procedure, and the amount of A mRNA by 

Northern blot analysis was quantified by Northern blot analysis and betascope scanning. 

The extent of cytoplasmic RNA contamination was determined by comparing the signal 

of A mRNA in nuclear RNA isolated from FH (lane 5 in Figure 5B, panel a) to the signal 

of A mRNA in cytoplasmic RNA isolated from the same number of J558L cells (lane 6 

in panel a of Figure 5B and Table 3A). The amount of nuclear µ mRNA isolated from 

the mixture (lane 5 in panel b) was comparable to that of FH (lane 4 in ·panel b), 
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suggesting equal amounts of RNA were loaded in lane 4 and 5. These results are 

summarized in Table 3A. I found that the amount of cytoplasmic >.. RNA contamination 

in nuclear RNA isolated from FH was 0.001 % in the polyribosome-bound form of 

cytoplasmic RNA (experiment 2) and 0.009% in the free cytoplasmic mRNA form 

(experiment 1). Thus I concluded that the extent of cytoplasmic RNA contamination to 

the nuclear RNA isolation can be ignored in my modified protocol. 
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Nuclear RNA Isolation Procedure 
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Quantitation of the Extent of Cytoplasmic mRNA Contamination in 

Purified Nuclei by Northern Blot Analysis. Cell homogenate from 2.5 

X 107 hybridoma FH in 5 ml lysis buffer was mixed with either 5 ml post­

nuclear supernatant (for the polyribosome-bound cytoplasmic RNA) or 

cytoplasmic RNA extract (for the free cytoplasmic RNA) isolated from the 

same number of cells of plasmacytoma J558L, and the mixture was 

subjected to the subsequent established nuclear RNA isolation procedure 

as described in section 2.12.3.2. 8 µg of RNA was loaded onto each lane 

and Northern blot analysis was performed as described in the legend to 

Figure 3A. Table 3 summarizes the results of two independent 

experiments. (a) Autoradiogram of a representative nitrocellulose blot that 

was hybridized with a VAl probe. (b) The same blot was rehybridized 

with a Cµ cDNA probe to control for the amount of nuclear RNA (lane 

4 and 5) loaded onto each lane of the blot. (c) Ethidium bromide staining 

of the gel revealed the amount of RNA loaded on the gel, and the integrity 

and positions of pre-rRNA and rRNA markers. 
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Table 3 Quantitation of the Amount of Cytoplasmic RNA 

Contamination in the Purified Nuclei (Fig 58) 

Experiment 1 

Cell line FH FH.Nuc+ 
RNA Isolation Total Cytoplasmic Nuclear JSSSL.Cyto 

RNA loaded (µg) 8 8 8 8 
Cell# (xl05

) loaded 3.6 6.6 55.5 84.4 
At mRNA (cpm) <0.1 <0.1 0.2 2.5 
µ mRNA(cpm) 388.3 319.6 30.4 21.7 
(A.] (A./µ) <0.1 0.1 

[A.]/105 Cells <0.1 <0.1 
% (A.] left <O.l <0.1 

Experiment 2 

Cell line FH FH.Nuc+ 
RNA Isolation Total Cytoplasmic Nuclear J558L.Cyto 

RNA loaded (µg) 8 8 8 8 

Cell# (:1.105} 3.6 10.2 57.0 67.0 
At mRNA (cpm) <0.1 <0.l <O.l 3.7 
µ mRNA(cpm) 1681.7 1264.6 180.7 107.9 
[A] (A./µ) <0.1 <0.1 

(A]/105 Cells <0.1 <0.1 
% [A.] left <0.1 <O.l 

105 

JS58L 
Cyto 

8 

11.85 
1368.3 

7.8 
175.4 

14.8 
100.0 

JS58L 
c 

8 

10.0 
1014.3 

2.7 
375.7 

37.6 
100.0 
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Representative Photographs of Nuclei in the Nuclei Isolation 

Procedure. Intact cells of hybridoma FH (in panel a) were lysed in 5 ml 

NP-40 lysis buffer, and the resulting cell homogenate was centrifuged 

through a 0.88 M sucrose cushion to isolate nuclei (termed "crude 

nuclei"). Only about 5% of the crude nuclei had visible cytoplasmic tabs 

(in panel b). The outer membrane of crude nuclei was removed by ionic 

and nonionic detergents and pure nuclei were purified by centrifugation 

through either a 0.88 M or a 2 M sucrose cushion as illustrated Figure 

5A. None of the nuclei examined had visible cytoplasmic tabs. A 

representative picture is showed in panel c. All of the photographs were 

viewed at the same magnification (more than 1 OOX). 
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By the established methods diagrammed in Figure 7, I isolated RNA from 

different compartments of hybridomas and analyzed the RNA by Northern blot analysis 

as revealed in Figure S. The Northern blot was first hybridized to a Cµ cDNA probe 

(Figure Sb). The relative amounts ofµ mRNA in each lane (Figure Sb) were normalized 

to the levels of {j-actin hybridization signal (Figure Sd). The steady-state levels ofµ RNA 

in each subcellular compartment (obtained from three Northern blot analyses of two 

independent RNA isolations) are summarized in Table 4 and illustrated in a bar graph 

(Figure St). I found that in both mutant hybridomas (VXH and CH2XH), the nuclear 

levels of nonsense codon-containing µ mRNA (lane 7 and lane 10 in Figure S, 

respectively; nuclear[µ] in Table 4) were decreased by about 7 fold as compared to the 

functionalµ mRNA in hybridoma FH Qane 4, p < 0.01). This suggests that lg mRNA 

with a nonsense codon starts to decrease in the nucleus. The same parameters as 

discussed before, such as the presence of enriched rRNA precursors and the increased 

ratio of 2SS to lSS rRNA (Figure Sa) and the lack of visible cytoplasmic tabs to the 

purified nuclei as determined by phase-contrast microscopy (data not shown), were used 

to determine the removal of cytoplasmic components in the nuclear RNA isolation 

procedure. In addition, since mature histone mRNA is exported rapidly to the cytoplasm 

(Sun et al., 1992), I should find the amount of H2b is lower in the nuclear fraction than 

in the cytoplasmic fraction of RNA isolations. Thus I rehybridized the Northern blot with 

a H2b probe and found the levels of H2b mRNA in nuclear fractions were low as 

predicted (lane 4, 7, and 10 in Figure 8e; H2b in experiment 2 of Table 4). 

The presence of precursor µ RNA in all fractions of hybridomas in Figure 8b was 
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verified by rehybridizing the blot with an intron probe (1.0 kb Xbal fragment of the lgH 

enhancer in the large JH-Cµ intron) as shown in Figure 8c. The presence of precursorµ 

RNA in the cytoplasmic fraction may result from the cytoplasmic RNA being 

contaminated with nuclear RNA during the isolation procedure. This possibility could not 

be ruled out by the lack of precursor 45S and 35S rRNAs in the RNAs isolated from the 

cytoplasmic fraction (lane 4, 7 and 10 in panel a of Figure 8), since the precursor rRNAs 

are processed in the nucleolus which is unlikely affected by the removal of nuclear 

membrane (Sommerville, 1986). However, the amount of nuclear lg RNA is only about 

one ninth that of the cytoplasmic lg RNA (Schibler et al., 1978). Thus the cells loaded 

in lanes of cytoplasmic RNA were far less than those of the nuclear RNA. Therefore, 

the majority of precursor µ RNA in Figure 8b and 8c should not have resulted from 

nuclear RNA contamination. Alternatively, the presence of precursor µ RNA is a unique 

phenomenon in hybridoma cells used in this study. Usually unspliced precursor RNAs 

are not exported from the nucleus, presumably by the effect of spliceosome-retention 

(Legrain and Rosbash, 1989; Green, 1991). However, the transport of precursor RNA 

can be facilitated by some RNA-binding proteins. The best example is the Rev protein, 

which binds to a specific sequence in the precursor RNA of human immunodeficiency 

virus-1 and facilitates viral precursor RNA nuclear export (Malim et al., 1989). The 

mechanism for the presence of precursor µ RNA might also be mediated by a Rev like 

protein. 
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Northern Blot Analysis to Quantify the Steady-state Levels of RNAs 

in Subcellular Compartments of Hybridomas. Total RNA was isolated 

by the GIT/CsCl method (lane 1, 2, 5, and 8). Cytoplasmic RNA was 

isolated by the NP-40/phenol method (lane 3, 6, and 9). Nuclear RNA 

was isolated by established protocol as described in section 3.3.3.2 (lane 

4, 7, and 10). 8 µ.g of RNA was loaded on each lane and Northern blot 

analysis was performed as described in the legend to Figure 3A. Table 4 

summarizes the results from three Northern blot analyses of two 

independent RNA isolations. (a) Ethidium bromide staining of a 

representative gel shows the amount of RNA loaded, and the integrity and 

positions of pre-rRNA and rRNA markers. (b) Autoradiogram (exposure 

time was 7 days at -70°C) of the nitrocellulose blot that was hybridized 

with a Cµ. cDNA probe (as shown in Figure 1). The diminished exposure 

(16 hr) of FH RNA (lanes 2, 3, and 4) was shown on the right as lanes 

2', 3', and 4'. (c) The identity of precursor µ.transcripts was verified by 

rehybridizing the blot with an intron probe in the large J8 -Cµ. intron (as 

illustrated in Figure lb) after stripping. Film was exposed for 8 days. (d) 

The same blot was rehybridized with a (3-actin probe after stripping to 

control for the loading of RNA. Film was exposed for 6 hr. (e) The same 

blot was rehybridized with a H2b probe to determine the level of H2b 

mRNA in different fractions of RNA isolation. Film was exposed for 3 

days. Lane 1: Ag8.653 that expresses noµ. RNA was used as a negative 
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control for µ specific hybridizations. By comparing RNA to RNA size 

markers (as indicated at left), I estimated the size of each RNA (as 

indicated at right). The mechanism for precursor µ RNA present in the 

cytoplasmic fractions of hybridomas (lane 3, 6, and 9) is unknown. (t) A 

bar chart indicates the levels ofµ transcripts in subcellular compartments 

relative to the wild-type µ RNAs in FH. The means and standard errors 

were calculated from the results of three Northern blot analyses of two 

independent RNA isolations and are listed in the summary tables in Table 

4 (the levels ofµ RNAs for each experiment in FH is defined as 100%, 

see [µ] and [pre µ] in Table 4). *: p < 0.01 when compared to the 

control in FH (Newman-Keuls' multiple range test). 
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Table 4. Steady-State Levels of RNA Transcripts 

Experiment 1 

Hybridoma RNA µ ere p.4 enh 4 H2b Jl·actin (µ]2 •,4[µ]3 [pre µ]2 %[pre µ]3 [enh) [Blb) 

Loaded [cpm]1 (µ/actin) % FH.8 (µ/actin) %FH.8 

a. Total Cellular RNAs 

FB.8 0.4 µg 70.6 N.D. N.D. N.D. 19.4 3.6 100.0 100.0 

VXH.10 8µg 27.0 13.3 1.8 N.D. 403.2 0.1 1.8 <0.1 <0.1 
CH2XB.l 8 f:l8 10.4 5.9 0.9 N.D. 571.0 <0.1 0.5 <0.1 <0.1 

b. Cyto2lasmic RNAs 
FB.8 0.4 µg 33.6 N.D. N.D. N.D. 15.0 2.2 100.0 100.0 
VXH.10 8 µg 21.4 8.4 1.1 N.D. 292.6 0.1 3.3 <0.1 <0.1 
CH2XH.1 8µg 10.3 4.4 0.6 N.D. 470.0 0.0 1.0 <0.1 <0.1 

c. Nuclear RNAs 
FB.8 8µg 54.0 4.8 N.D. N.D. 23.7 2.3 100.0 0.2 100.0 
VXB.10 8µg 9.7 17.7 2.2 N.D. 34.0 0.3 12.5 0.5 257.0 0.1 
CH2XH.l 8 µg 4.6 7.8 1.4 N.D. 30.5 0.2 6.6 0.3 126.3 <0.1 
1. Radioactivity of respective bands ([ cpm]) was determined by a betascope blot analyzer. 
2. [µ]and (preµ) were calculated by dividing cpm ofband µor preµ by cpm of Jl-actin in the same lane. 
3. %(µ)and %[preµ] are the percent of[µ] and [preµ] of respective cell line related to those ofFH.8 
4. preµ, precursorµ~ enh, enhancer. 

....... 

....... 
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Table 4. Steady-State Levels of RNA Transcripts (Continued) 

A. Experiment 2 (Figure 8) 

Hybridoma RNA µ ere ll4 enh4 Hlb P-actin [µ)2 %[µ]3 [pre µ)2 %[pre µ)3 [enh] [Hlb] 

Loaded [cpm]1 (µ/actin) % FH.8 (µ/actin) %FH.8 

a. Total Cellular RNAs 

FH.8 8 µg I74 2.6 1.9 5.0 497.9 0.3 100.0 <0.1 100.0 <0.1 <0.1 

VXH.10 8 µg 4.9 2.4 5.1 7.4 553.2 <O.I 2.5 <O.I 83.I <0.1 <0.1 

CH2XH.1 8 µg 2.5 1.6 2.4 6.0 661.6 <0.1 I. I <0.1 46.3 <0.1 <0.1 

b. ~to~lasmic RNAs 
FH.8 8 µg 58.9 1.4 0.6 9.5 414.I O.I 100.0 <O.I 100.0 <O.I <O.I 

VXH.10 8 µg 3.6 1.5 2.8 5.3 335.4 <O.I 7.5 <O.I 132.3 <0.1 <0.1 

CH2XH.1 ~g 2.4 1.4 1.8 7.0 440.5 <0.1 3.8 <0.1 94.0 <0.1 <O.I 

c. Nuclear RNAs 
FH.8 8 µg 5.9 0.5 1.3 1.3 34.4 0.2 100.0 <0.1 100.0 <0.1 <0.1 

VXH.10 8 µg 2.2 3.5 7.7 I.I 64.8 <O.I 19.8 O.I 371.6 0.1 <O.I 

CH2XH.1 8 µ~ 1.5 2.4 3.6 1 44.3 <0.1 19.7 O.I 372.7 O.I <0.1 

1. Radioactivity of respective bands ([ cpm]) was determined by a betascope blot analyzer. 
2. [µ]and [preµ] were calculated by dividing cpm of bandµ or preµ by cpm of P-actin in the same lane. 

· 3. %[µ]and %[preµ] are the percent of[µ] and [preµ] of respective cell line related to those ofFH.8 
4. preµ, precursorµ; enh, enhancer. 

,..... ,..... 
VI 



Table 4. Steady-State Levels of RNA Transcripts (Continued) 

A. Experiment 3 

Bybridoma RNA 

Loaded 

µ pre 11' enh' Blb Jl-actin [µ)2 %(µ] 3 [pre µ)2 %[pre µ] 3 (enb] 

[ cpm]1 (µ/actin) % FH. 8 (µ/actin) % FH.8 

a. Total Cellular RNAs 

FH.8 8µg 2186 84.1 N.D. N.D. 656.5 3.3 100.0 0.1 100.0 

VXH.10 8 µg 60.0 23.9 N.D. N.D. 617.2 0.1 2.9 <0.1 30.2 

CHlXB.1 8 µg 30.3 8.1 N.D. N.D. 753.5 <0.1 1.2 <0.1 8.4 

b. Cytoplasmic RNAs 

FH.8 8 µg 1696 27.4 N.D. N.D. 461.5 3.7 100.0 0.1 100.0 

VXH.10 8µg 42.7 15.4 N.D. N.D. 499.5 0.1 2.3 <0.1 51.9 

CHlXB.1 8 µg 14.6 2.5 N.D. N.D. 185.l 0.1 2.1 <0.1 22.7 

c. Nuclear RNAs 

FH.8 8 µg 230.7 13.4 N.D. N.D. 58.1 4.0 100.0 0.2 100.0 

VXH.10 8mg 12.6 18.5 N.D. N.D. 38.1 0.3 8.3 0.5 210.5 

CH2XB.1 8ma 10.1 13.4 N.D. N.D. 24.8 0.4 10.3 0.5 234.3 

1. Radioactivity of respective bands ([cpm]) was determined by a betascope blot analyzer. 

2. [µ)and [preµ) were calculated by dividing cpm of bandµ or preµ by cpm of P-actin in the same lane. 
3. %[µ]and %(preµ] are the percent of[µ] and [preµ] of respective cell line related to those ofFH.8 

4. pre µ, precursor µ~ enb, enhancer. 

[Blb] 
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Summary of The Relative Steady-State Levels ofµ RNA 

Total Cellular µ Cytoplasmic µ 

FH.8 VXH.10 CH2XH.1 FH.8 VXH.10CH2XH.1 

Exp 1 100.0 1.8 0.5 100.0 3.3 1.0 
Exp2 100.0 2.5 1.1 100.0 7.5 3.8 

Exp3 100.0 2.9 1.2 100.0 2.3 2.1 

Mean 100.0 2.4 0.9 100.0 4.4 2.3 
SE 0.3 0.2 2.8 1.4 

Nuclearµ 

FH.8 VXH.10 CH2XH.1 

100.0 12.5 6.6 

100.0 19.8 19.7 

100.0 8.3 10.3 

100.0 13.5 12.2 
5.8 6.8 

,.... ,.... 
-.....l 



Quantitation of 1..1 Transcripts 

in Subcellular Compartments 
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3.4 Cytoplasmic Decay Rates ofµ. mRNA With or Without a Nonsense Codon 

Since cytoplasmic degradation could be an independent event from nuclear 

degradation, I further determined whetherµ. mRNA with a nonsense codon is degraded 

in the cytoplasm of plasma cells in addition to the reduction observed in the nucleus. The 

cytoplasmic decay rates ofµ. mRNA were measured using two transcriptional inhibitors 

(Actinomycin Cl, Figure 9A and DRB, Figure 9B). 

Actinomycin Cl is a transcriptional inhibitor that blocks all DNA-dependent RNA 

polymerases by binding to guanine-rich region of duplex DNA (Perry and Kelly, 1970). 

Although various effects of Actinomycin Cl on mRNA stability have been reported in 

the literature (Belasco and Brawerman, 1993), 5 µ.g/ml of Actinomycin Cl was shown 

to almost completely inhibit the transcription in FH cell lines within an hour as measured 

by the [3H] uridine incorporation into RNA (Jack, 1988). Cytoplasmic RNA was isolated 

from the cells at 0, 4, and 8 hrs after addition of Actinomycin Cl to the culture. The 

levels ofµ. mRNA left in the cells were determined by Northern blot analysis using a Cµ. 

cDNA probe (Figure 9Aa). The amount ofµ. mRNA was quantitated by a betascope blot 

analyzer. The size of GAPDH mRNA is smaller thanµ. mRNA. Although the amount 

of GAPDH expressed in three different hybridomas is different, it remains the same 

within the same hybridomas. Thus GAPDH was used instead of /3-actin as the control for 

RNA loading at different time points of the same hybridoma (panel bin Figure 9A). The 

results from three independent experiments are summarized in Table 5A. I found that the 

relative level ofµ. mRNA ([µ.]) with a nonsense codon decreased by about 1.5 fold in 

both VXH and CH2XH during the 8-hour drug treatment. In contrast, the relative level 
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of µ mRNA without a nonsense codon was increased in the FH cell line during the 8-

hour drug treatment. This increase probably occurs because GAPDH mRNA, which has 

a half-life of 8 hr (Dani et al., 1984b), is less stable than functionalµ mRNA (that has 

a half-life of 13-34 hr) (Mason et al., 1988; Cox and Emtage, 1989; Genovese and 

Milcarek, 1990). The almost undetectable amount of GAPDH at 8 hr after addition of 

Actinomycin Cl probably accounts for the two-phase decay rate of µ mRNA in 

hybridoma VXH. Alternatively, VXH might be more sensitive to Actinomycin Cl 

treatment. At 4 hr and 8 hr after addition of the drug, rRNAs were degraded in 

hybridoma VXH as evidenced in lane 6 and 7 of panel e in Figure 9A. Thus it would be 

wise to isolate cytoplasmic RNA between time points 0 to 4 hr while the RNA in 

hybridoma VXH are not degraded. 

DRB, an adenosine analogue, is a protein kinase inhibitor, which only blocks the 

initiation of RNA polymerase II-mediated transcription (Zandomeni et al., 1983; 

Chodosh et al., 1989; Dubois et al., 1994). It does not influence the transcription of 

tRNA and rRNA (Zandomeni et al., 1983). I used this drug as an alternative to measure 

the decay rate ofµ mRNA without or with a nonsense codon. Unlike Actinomycin Cl, 

0.12 mM of DRB was shown to inhibit only the transcription of mRNA but not rRNA 

in the FH cell line within an hour as measured by the [3H] uridine incorporation (Jack, 

1988). As shown in Figure 9B and summarized in Table 5B, the half-life ofµ mRNA 

with a nonsense codon was decreased from being relatively stable in FH to 3-4 hours in 

hybridomas VXH and CH2XH during 8 hour-treatment. 

As time went by, µ mRNA in hybridomas VXH and CH2XH migrated faster 
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through the gel (panel a in Figure 9A and 9B). The degradation of mRNA in eukaryotic 

cells is initiated by endonucleolytic cleavage, by shortening of the poly A tail, or by 

decapping. Among them, control of poly A tail length has an important effect on RNA 

degradation. For some mRNAs, decapping requires prior deadenylation (Jackson, 1993). 

Thus the progressive shortening ofµ mRNA as a result of ribonuclease digestion most 

likely results from µ mRNA deadenylation. However, premature translational termination 

in yeast can trigger deadenylation-independent mRNA decapping (Muhlrad and Parker, 

1994). Thus it is also possible that µ mRNA with a nonsense codon is degraded by 

deadenylation-independent decapping mechanism. 

The inhibitory effect of Actinomycin Cl or DRB on transcription in each 

experiment was evaluated by rehybridizing the same blot with probes that detected the 

mRNAs with short half-lives of 15 to 30 minutes, including Histone 2b (Old and 

Woodland, 1984) or c-myc (Dani et al., 1984a; Herrick and Ross, 1994) (panel c and 

d, respectively, in Figure 9A and Figure 9B). I found that the levels of c-myc mRNA 

were visibly decreased with time in panel d of both Figure 9A and 9B, suggesting that 

the transcriptional inhibitors (Actinomycin Cl and DRB) efficiently blocked the 

transcription of mRNAs in each experiment. The differences in the size of c-myc mRNA 

in different cell lines are probably attributable to differential DNA rearrangements at the 

myc oncogene locus (Shen-Ong et al., 1982). The amount of H2b mRNA decreased 

significantly after 4 hours of treatment with Actinomycin Cl, which is consistent with 

the reported half-life of H2b mRNA as discussed above. Surprisingly, the amount of H2b 

mRNA was exceptionally stable after 8 hours of treatment with DRB. 
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Figure 9A Northern Blot Analysis of Cytoplasmic Decay Rates of p. RNA in 

Hybridomas by Using the Actinomycin Cl Method. Cytoplasmic RNA 

was isolated from 5 X H>6 cells at 0, 4, and 8 hours after the addition of 

Actinomycin Cl (5 µg/ml) to the culture, and analyzed by Northern blot 

analysis as described in the legend to Figure 3A. Table 5A summarizes 

the results from three independent RNA isolations. As time went by, the 

mRNAs migrated faster through the gel because they became 

progressively shorter as a result of ribonuclease digestion. Only the 

darkest band ofµ mRNA in each lane was quantified. (a) Autoradiogram 

(exposure time was 7 days at -70°C) of a representative nitrocellulose blot 

that was hybridized with a Cµ cDNA probe. (b) The same blot was 

rehybridized with a GAPDH probe to control for RNA loading onto each 

lane of the blot. Film was exposed for 10 days. The inhibitory effect of 

Act C 1 on transcription in each experiment was determined by 

sequentially rehybridizing the blot with a H2b probe (panel c, exposure 

time was 15 hr) or a 1 kb ClaI-SmaI human c-myc cDNA probe (panel d, 

exposure time was 7 days). The virtual disappearance of H2b, c-myc 

mRNAs at 4 hr in lanes 2, 6 and 9 shows that they were degraded faster 

thanµ mRNA in FH. (e) Ethidium bromide staining of the gel revealed 

the integrity and positions of pre-rRNA and rRNA markers. Lane 4: 

Ag8.653 was used as a negative control forµ specific hybridization. 
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Table SA. Cytoplasmic Decay Rates of RNAs (the Actinomycin C1 Method) 
Hybridoma Time RNA µ H2b c-myc GAPDH [µ] %[µ] [H2b] %[H2b] 

(hr) Loaded (cpm] %t=O %t=O 

FH.8 t=O Exp 1 4 µg 262.4 12.1 0.9 5.0 52.5 100.0 2.4 100.0 
Exp 2 8 µg 297.6 83.4 N.D. 31.2 9.5 100.0 2.7 100.0 
Exp 3 8 µg 1041 161 N.D. 59.5 17.5 100.0 2.7 100.0 

FH.8 t=4 Exp 1 4 µg 289.1 1.2 0.2 4.5 64.2 122.4 0.3 11.0 
Exp 2 8 µg 239.6 0.4 N.D. 20.8 11.5 120.8 <0.1 0. 7 
Exp 3 8 µg 924.2 35.2 N.D. 60.1 15.4 87.9 0.6 21.7 
mean 
SE 

110.3 
8.7 

FH.8 t=8 Exp 1 4 µg 158.6 <0.1 0.1 1.7 93.3 177.8 <0.1 
Exp2 8µg 131.1 <0.1 N.D. 12.2 10.7 112.7 <0.1 
Exp 3 8 µg 443.5 17.6 N.D. 27.5 16.1 92.1 0.6 

VXH.10 

VXH.10 

VXH.10 

CH2XH.1 

CH2XH.1 

mean 
SE 

t=O Exp 1 8 µg 
Exp2 8µg 
Exp3 8µg 

t=4 Exp 1 8 µg 
Exp2 8 µg 

Exp3 8 µg 
mean 
SE 

t=8 Exp 1 8 µg 
Exp2 8µg 
Exp3 8µg 
mean 
SE 

t=O Exp 1 8 µg 
Exp2 8µg 
Exp3 8 µg 

t=4 Exp 1 8 µg 
Exp2 8 µg 

Exp3 8µg 
mean 
SE 

CH2XH.1 t=8 Exp 1 8 µg 
Exp2 8µg 
Exp3 8 µg 
mean 
SE 

14.5 26.8 3.0 
9.7 168 N.D. 
6.4 155 N.D. 

7.0 2.2 1.4 
2.9 21.8 N.D. 

3.7 39.3 N.D. 

1.7 <0.1 0.7 
1.5 13.8 N.D. 
2.3 24.0 N.D. 

4.9 23.3 2.3 
7.7 149 N.D. 
6.8 95.1 N.D. 

2.7 3.0 0.6 
2.4 14.7 N.D. 

2.7 47.7 N.D. 

1.4 <0.1 0.3 
0.8 13.6 N.D. 
1.5 45.2 N.D. 

7.1 
39.9 
15.2 

4.7 
19.6 

18.8 

0.6 
7.6 
9.3 

3.3 
22.6 
17.2 

2.6 
7.9 

15.7 

1.2 
4.2 
8.0 

2.0 
0.2 
0.4 

1.5 
0.1 

0.2 

2.8 
0.2 
0.2 

1.5 
0.3 
0.4 

1.0 
0.3 

0.2 

1.2 
0.2 
0.2 

127.5 
19.3 

100.0 3.8 
100.0 4.2 
100.0 10.2 

72.9 0.5 
60.9 1.1 

46.7 2.1 
60.2 

5.2 
138.7 <0.1 
81.2 1.8 
58.7 2.6 
92.9 
17.6 

100.0 7.1 
100.0 6.6 
100.0 5.5 

69.9 1.2 
89.2 1.9 

43.5 3.0 
67.5 

9.3 
78.6 <0.1 
55.9 3.2 
47.4 5.7 
60.6 

6.9 

11.1 
4.1 

<0.1 
<0.1 
23.7 

7.9 
6.1 

100.0 
100.0 
100.0 

12.4 
26.4 

20.6 
19.8 
2.8 

<0.1 
43.1 
25.4 
22.8 

8.8 
100.0 
100.0 
100.0 

16.3 
28.1 

54.9 
33.1 
8.4 

<0.1 
49.0 

102.2 
. 50.4 

19.9 
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Figure 9B 
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Northern Blot Analysis of Cytoplasmic Decay Rates of p. RNA in 

Hybridomas Using the DRB Method. Cytoplasmic RNA was isolated 

from 5 X 106 cells at 0, 4, and 8 hours after the addition of DRB (0.12 

mM) to the culture. 4 µg of RNA from FH and 8 µg of RNA from VXH 

and CH2XH were loaded onto each lane and Northern blot analysis was 

performed as described in the legend to Figure 9A. Table 5B summarizes 

the results from three independent RNA isolations. As time went by, the 

mRNAs migrated faster through the gel because they became 

progressively shorter as a result of ribonuclease digestion. Only the 

darkest band ofµ mRNA in each lane was quantified. (a) Autoradiogram 

(exposure time was 7 days) of a representative nitrocellulose blot that was 

hybridized with a Cµ cDNA probe. (b) The same blot was rehybridized 

with a GAPDH probe to control for the amount of RNA loaded onto each 

lane of the blot. Film was exposed for 8 days. The inhibitory effect of 

DRB on transcription in each experiment was determined by sequentially 

rehybridizing the blot with an H2b probe (panel c, exposure time was 15 

hr) or a c-myc probe (panel d, exposure time was 8 days). The virtual 

disappearance of H2b, c-myc mRNAs at 4 hr in lane 2 shows that they 

were degraded faster thanµ mRNA in FH. (e) Ethidium bromide staining 

of the gel revealed the integrity and positions of pre-rRNA and rRNA 

markers. Lane 4: Ag8.653 was used as a negative control forµ specific 

hybridization. 
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Table 58. Cytoplasmic Decay Rates of RNAs (the ORB Method, Figure 98) 127 

Hybridomffime 

(hr) 
RNA µ H2b c-myc GAPDH [µ] %[µ] 

Loaded [cpm] o/ot=O 

FH.8 

FH.8 

FH.8 

VXH.10 

VXH.10 

VXH.10 

t=O Exp 1 4 µg 304.2 17.9 3.6 
Exp 2 8 µg 977.6 30.8 N.D. 
Exp 3 8 µg 541.4 31.1 N.D. 

t=4 Exp 1 4 µg 316.8 15.0 1.0 
Exp 2 8 µg 921.9 23.8 N.D. 
Exp 3 8 µg 2260 70.5 N.D. 
mean 
SE 

t=8 Exp 1 4 µg 182.1 7.8 0.9 
Exp 2 8 µg 942.3 28. 7 N.D. 
Exp 3 8 µg 1926 59.1 N.D. 
mean 
SE 

t=O Exp 1 8 µg 14.1 35.6 7.4 
Exp 2 8 µg 26.8 76.7 N.D. 
Exp 3 8 µg 16.0 62.5 N.D. 

t=4 Exp 1 8 µg 
Exp2 8µg 

Exp3 8 µg 

mean 
SE 

3.7 23.1 
3.4 25.0 

12.5 124 

3.9 
N.D. 

N.D. 

t=8 Exp 1 8 µg 1.8 13.3 2.1 
Exp 2 8 µg 5.9 30. 7 N.D. 

Exp 3 8 µg 3.1 30.4 N.D. 

mean 
SE 

CH2XH.1 t=O Exp 1 8 µg 8.5 57.6 5.2 
Exp 2 8 µg 22.9 86.9 N.D. 
Exp3 8 µg 11.7 74.6 N.D. 

CH2XH.1 t=4 Exp 1 8 µg 
Exp2 8 µg 

Exp3 8µg 
mean 
SE 

2.3 42.5 2.1 
7.1 55.2 N.D. 

6.3 64.3 N.D. 

CH2XH.1 t=8 Exp 1 8 µg 1.8 31.2 1 
Exp 2 8 µg 5.2 57.2 N.D. 
Exp 3 8 µg 2.4 33.5 N.D. 

mean 
SE 

9.6 31.7 100.0 
18.0 54.3 100.0 
16.2 33.4 100.0 

5.5 57.6 181.8 
11.8 78.1 143.9 
62.9 35.9 107 .5 

144.4 
14.4 

4.7 38.7 122.3 
12.3 76.6 141.1 
57.3 33.6 100.6 

121.3 
8.0 

7.2 2.0 100.0 
29.8 0.9 100.0 
38.7 0.4 100.0 

5 
9.2 

87.4 

0.7 37.8 
0.4 41.1 

0.1 34.6 
37.8 

1.3 
3.7 0.5 24.8 

14.5 0.4 45.2 

19.2 0.2 39.1 
36.4 

4.4 
8.1 1.0 100.0 

27.2 0.8 100.0 
42.2 0.3 100.0 

5.1 0.5 43.0 
20.0 0.4 42.2 

53.2 0.1 42.7 
42.6 
0.2 

4.7 0.4 36.5 
15.8 0.3 39.1 
28.4 0.1 30.5 

35.4 
1.9 

[H2b] %[H2b] 

o/ot=O 

1.9 100.0 
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Cytoplasmic Decay Rates of p. mRNA in Hybridomas by the Use of 

Actinomycin Cl or DRB Method (Continued). 

The amount ofµ mRNA remaining in the cells after the addition of the 

drug at each time point was determined by a betascope blot analyzer, and 

normalized to the amount of GAPDH mRNA. Only the darkest band of 

µ mRNA in each lane was quantified. The relative amount ofµ mRNA 

([µ]) at 0 hr was defined as 100% and later time points were calculated 

as a percentage thereof. The log of these relative µ mRNA levels after 

addition of the drug was plotted as a function of time by SigmaPlot 5.0. 

The values represent the means of three independent RNA isolations and 

the error bars represent the standard errors of the mean. Solid circles, 

triangles and squares denote the curves obtained from the experiments 

depicted in Figure 9A and Table 5A; open circles, triangles and squares 

denote the curves obtained from the experiments depicted in Figure 9B 

and Table 5B. 
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Histone genes are intronless multicopy genes which encode small basic 

polypeptides that are essential elements of the eukaryotic nucleosome (Marzluff and 

Hanson, 1993). Unlike other eukaryotic mRNAs, histone RNAs in most organisms do 

not have poly A tails but instead contain a conserved stem-loop sequence at their 3' end 

(Marzluff and Pandey, 1988). All histone mRNAs with this 3' end stem-loop structure 

are regulated coordinately with DNA synthesis, mainly by changing the stability of 

histone mRNA (Gallwitz, 1975). Histone mRNA levels increase rapidly at the onset of 

DNA synthesis, and decline equally rapidly at the end of DNA synthesis. The levels 

varies 30- to 50-fold during the cell cycle (Marzluff and Pandey, 1988). Thus, the 

finding that the amount of H2b mRNA remained relatively stable during the 8 hour­

treatment with DRB might result if: 1) the concentration of DRB used in the experiment 

was not enough to block the transcription of abundant H2b mRNA or, 2) the regulation 

of H2b mRNA decay is different from those ofµ and c-myc mRNAs in the case of DRB 

treatment. To distinguish between these possibilities, I treated hybridoma FH with 

increasing concentrations of DRB (0, 0.12 mM, 0.24 mM, 0.48 mM and 0.96 mM, 

respectively), and quantified by Northern blot analysis the amount of H2B mRNA left 

at 0 and 4 hr after addition of DRB (Figure 10). If the concentration of DRB I used 

before (0.12 mM) was not enough to block all H2B mRNA transcription in FH, I would 

expect to find the amount of H2B mRNA left in the cells would decrease as the 

concentration of DRB increased. If the H2B mRNA is subjected to different regulation 

pathway, I would expect to find that the increased concentration of DRB has no 

significant effect on H2B mRNA level. As shown in panel a and summarized in panel 
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d of Figure 10, the increased concentration of DRB did not alter the amount of H2b 

mRNA (panel a in Figure 10). In contrast, the same amount of DRB reduced the amount 

of c-myc mRNA. From these data, I conclude that the exceptionally stable amount of 

H2b mRNA during the 8 hour-treatment with DRB is not due to DRB concentration too 

low to block the transcription of abundant H2b mRNA. Instead it might result from the 

metabolism of H2b mRNA being subjected to a different regulation pathway from that 

ofµ or c-myc mRNA. 



Figure 10 
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Northern Blot Analysis to Determine the Effect of DRB Concentration 

on the Level of H2b mRNA. After counting, 2 ml of FH cells (at a 

density of 5 X 1<>5 cells/ml) were distributed into wells of 24-well Costar 

plate and kept for 1 hr at 37°C before addition of DRB. The final 

concentration of DRB is 0, 0.12 mM, 0.24 mM, 0.48 mM and 0.96 mM, 

respectively. At 0 and 4 hr, 2 ml (about H>6) of cells were removed, 

centrifuged, and subjected to cytoplasmic RNA isolation by the NP-

40/phenol method. 8 µg of RNA was loaded onto each lane and Northern 

blot analysis was performed as described in the legend to Figure 9A. (a) 

Autoradiogram of the nitrocellulose blot that was hybridized with an H2b 

probe. (b) The same blot was rehybridized with a GAPDH probe to 

control for the amount of RNA loaded onto each lane of the blot. To 

quantify the effect ofDRB on transcription, the blot was rehybridized with 

a c-myc probe. Lane 4: Ag, Ag8.653, total RNA isolated from Ag8.653 

(that expressed no µ mRNA). (c) The amount of RNA loaded in each 

lane, and the integrity and positions of pre-rRNA and rRNA markers were 

visualized by staining with ethidium bromide. ( d) A graph. The relative 

amount of H2b or c-myc mRNA without DRB treatment at 0 hr was 

defined as 100% and later H2b or c-myc mRNA amounts were calculated 

as a percentage thereof. The relative H2b or c-myc mRNA levels after 

addition of DRB was plotted as a function of concentration by SigmaPlot 

5.0. 
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3.5 Nonsense Codons Affect the Size ofµ mRNA 

I showed previously thatµ mRNA in hybridomas VXH and CH2XH (lane 5' and 

7', respectively in Figure 3A) had slower gel mobility than µ mRNA in hybridoma FH 

(lane 6' in Figure 3A). The differences in gel mobility ofµ mRNA may be attributed to 

the different amounts of RNA loaded on the agarose gel (0.4 µg for FH and 8 µg for 

VXH and CH2XH). This possibility was further studied by a mixing experiment (Figure 

11). I made five serial dilutions of 1:5 each of 5 µg RNA isolated from FH and 

compensated for the amount of RNA in each lane to 5 µg by the addition of RNA 

isolated from Ag8.653 (that does not expressµ mRNA). With equal amounts of RNA 

loaded onto each lane, I still detected differences in the size ofµ mRNA in hybridomas 

VXH and CH2XH from FH (panel a in Figure 11). Thus, I concluded that the differences 

in gel mobility of µ mRNA in different subclones were not due to different amounts of 

RNA loaded on the agarose gel. 

Alternatively, the difference in gel mobility of µ mRNA may result from the 

observation that µ mRNA in hybridomas VXH and CH2XH is larger in size than µ 

mRNA in FH. There are several possibilities which may explain the larger size of µ 

mRNA in hybridomas VXH and CH2XH (that contain nonsense codons in theirµ genes), 

such as: 1) the µ transcripts in different hybridomas use different transcriptional start 

sites, 2) the µ transcripts in different hybridomas use different polyadenylation sites or 

the length of their poly A tail is different, or 3) the presence of a nonsense codon 

prevents the splicing of small introns that are in the constant region ofµ RNA, which 

results in the increase in the size ofµ mRNA by 300 to 500 hp. The last possibility was 
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studied here by using 3 sets of primers that are specific for the coding region of µ 

mRNA. If the presence of a nonsense codon prevents the splicing of small introns in the 

constant region ofµ RNA, I should be able to detect the RT-PCR products from 

hybridomas VXH and CH2XH as being bigger than that from hybridoma FH. As shown 

in Figure 12, all RT-PCR products detected by 3 sets of primers were the same in all 

hybridomas. Thus, I suggest that the presence of a nonsense codon does not prevent the 

splicing of small introns in the constant region ofµ mRNA, which may contribute to the 

size increase in µ mRNA with a nonsense codon in hybridomas VXH and CH2XH. 

The possibility that the presence of a nonsense codon affects the use of different 

polyadenylation sites in µ gene or the length of the poly A tail in µ mRNA was studied 

by ribonuclease H digestion. Ribonuclease H is an enzyme that digests duplex RNAs. 

Total cellular RNA isolated from different hybridomas was incubated with oligo d(T), 

which hybridizes to the poly A tail. By treating the mixture with ribonuclease H, the 

RNA-DNA duplex of poly A tail and oligo d(T) was digested away. If the larger size of 

µ mRNA in hybridomas VXH and CH2XH (that contain nonsense codons in their µ 

genes) results from it having a longer poly A tail than that ofµ mRNA in hybridomas 

FH, they should have the same gel mobility after the ribonuclease H treatment. This was 

exactly what we found (data not shown). Thus, I conclude that the presence of a 

nonsense codon can influence the length of poly A tail in µ mRNA, which contributes, 

at least in part, to the slower gel mobility ofµ mRNA in hybridomas VXH and CH2XH. 

The remaining possibility is that the length of the 5'-untranslated regions may be 

influenced by a nonsense codon. This hypothesis can be studied by RNase protection 
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analysis using a probe that is specific for the 5'-untranslated region ofµ RNA. 

All these mechanisms that account for the size differences in µ mRNA can also 

apply to the size differences in precursorµ RNA. Since the precursorµ RNA contains 

introns, the variations in the size of introns, such as different deletions in the large JH­

Cµ intron on the V2 allele as discussed before, may be attributed to the size differences 

in precursor µ RNA with or without a nonsense codon. As revealed by Southern blot 

analysis, the µ gene in FH has a deletion of about 1.3 kb and VXH has a deletion of 

about 1.85 kb when compared to that of CH2XH (Figure 2B). Based on these results, I 

suggest that the various deletions in the large JH-Cµ intron on the V2 allele attribute, at 

least partially, to the size differences between precursor µ RN As with (in hybridomas 

VXH and CH2XH) or without a nonsense codon (FH). However, the relationship between 

the presence of a nonsense codon and deletion in the large JH-Cµ intron of µ gene is 

unknown. 



Figure 11 
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Northern Blot Analysis to Test the Effect of RNA Loading on 

Mobility. Total RNA isolated from hybridoma FH. 8 was serially diluted 

at 1:5 five times (lane 2, 3, 4, 5, 6, and 7), and then the amount of RNA 

was compensated by total RNA isolated from Ag8.653 (that does not 

expressµ transcripts) for 5 µgin each sample. The same amount of total 

RNA isolated from hybridomas VXH and CH2XH was also loaded on the 

gel and Northern blot analysis was performed as described in the legend 

to Figure 3A. (a) Autoradiogram (exposed for 72 hr) of the nitrocellulose 

blot that was hybridized with a Cµ cDNA probe. (b) The same blot was 

rehybridized with a GAPDH probe to control for the amount of RNA 

loaded onto each lane of the blot. Film was exposed for 24 hr. With equal 

amounts of RNA loaded onto each lane, there are still differences in the 

size of µ mRNA in hybridomas VXH and CH2XH from FH (panel a). 
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RT-PCR ~y to Compare the Length of Coding Region inµ mRNAs 

with or without a Nonsense Codon. 5 µg total cellular RNA isolated by 

the GIT/CsCl method from each hybridoma was used for cDNA synthesis. 

1120 (0.2 µg) of cDNA product from FH and 1/10 (0.5 µg) of cDNA 

product from VXH and CH2XH were amplified by RT-PCR as described 

in section 2.8.2, and the resulting products were resolved by 

electrophoresis in a 1 % TAB agarose gel and visualized by staining with 

ethidium bromide in panel a. All RT-PCR products detected by 3 sets of 

primers are the same as expected in three hybridomas. Panel b depicts a 

schematic representation showing the positions of three sets of primers 

that were used in RT-PCR and the expected sizes of RT-PCR product. 

Asterisk(*) indicates nonspecific priming products of RT-PCR. Primer A 

and Bare the same as described in the legend to Figure 2. Primer C is the 

VH81X. Forward primer, while primer D is the Cµ2Bam. Backward 

primer. All the sequences are listed in section 2.2.1.2.1. 
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3.6 Discussion 

Nonsense codons in mRNA are known to be recognized during translation in the 

cytoplasm. Nonsense codons have been shown to decrease the cytoplasmic steady-state 

level of µ mRNA by 60 to 100 fold (Jack et al., 1989). Since metabolism of µ mRNA 

with a nonsense codon is regulated by post-transcriptional mechanisms (Jack et al. , 

1989), this lower cytoplasmic steady-state level ofµ mRNA with a nonsense codon can 

result from either a nuclear or a cytoplasmic event, or both. The data presented in this 

chapter demonstrate that µ mRNA with a nonsense codon is reduced in both the nucleus 

and the cytoplasm of plasma cells. The involvement of a nuclear process in the nonsense 

codon-mediated RNA degradation has been extensively discussed in Chapter I. Thus this 

section of the dissertation focuses on the interpretation of the results obtained in this 

chapter. 

3.6.1 lg mRNA with a Nonsense Codon Starts to Decrease in the Nucleus of 
Plasma Cells 

To determine the level of nuclear RNA, one needs to exclude the cytoplasmic 

components in the procedure of nuclear RNA isolation. Since the outer membrane of 

nuclei is continuous with the membrane of the endoplasmic reticulum in the cytoplasm 

(Amstein and Cox, 1992), the outer membrane of nuclei should be removed with the 

cytoplasmic components. An ideal way to monitor the removal of cytoplasmic 

components to use specific markers for inner and outer nuclear membranes to stain the 

nuclei before and after preparation. If the outer membrane of nuclei has been exclusively 

removed, we would expect to find no staining of outer nuclear membrane after the 
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purification procedure. Although over 1,000 proteins have been reported in the nuclear 

pore (Forbes, 1992; Rout and Wente, 1994), our laboratory does not have these specific 

markers. In addition, our laboratory does not have a specific marker to detect 

polyribosome contamination in the nuclei preparation. Thus, I used an alternative 

approach to quantify the amount of cytoplasmic RNA contamination in the modified 

nuclear RNA isolation protocol (section 2.12.3.2 in Chapter II; Nevins, 1980; Birnie, 

1978; Penman, 1966). As shown in Figure 5B and summarized in Table 3A, I found that 

the cytoplasmic contamination in nuclear RNA preparation was less than 0.01 % , 

suggesting the effect of cytoplasmic RNA contamination on nuclear RNA isolation can 

be ignored in our current protocol. The removal of cytoplasmic components was also 

determined by several parameters, such as the absence of cytoplasmic tabs as revealed 

by the phase contrast microscopy (Figure 6), the presence of enriched rRNA precursors, 

the increased ratio of 28S to 18S rRNA (Figure 8a), and the decreased level of H2b 

mRNA (Figure 8e) in the nuclear RNA samples. 

As shown in Figure 8 and summarized in Table 4, I found that the nuclear µ 

mRNA levels of µ mRNA with nonsense codons (in hybridomas VXH and CH2XH) are 

decreased by about 7 fold when compared to that ofµ mRNA without a nonsense codon 

(in hybridoma FH). This lower steady-state level ofµ mRNA in hybridomas VXH and 

CH2XH does not result from the hybridomas having defects in the expression of mRNA 

or protein, because hybridomas VXH and CH2XH express comparable amounts of -y2b, 

H2b and c-myc mRNAs (Table 4 and Table 5) and -y2b protein (Beck-Engeser, 

unpublished result). Thus, I conclude that the reduction in the level ofµ mRNA with a 
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nonsense codon starts in the nucleus of plasma cells. 

The lower nuclear level of µ mRNA with nonsense codons could result from 1) 

µ mRNA with a nonsense codon being degraded faster in the nucleus; 2) the presence 

of a nonsense codon preventing the processing of precursor µ transcripts to µ mRNA; 

or, 3) both. Due to the low abundance of nuclear RNA, I did not measure the nuclear 

decay rate ofµ mRNA by the use of a transcriptional inhibitor. However, the second 

possibility is consistent with the finding that the steady-state level of nuclear precursor 

µ RNA with a nonsense codon increases by at least 2 fold over that of precursor µ 

transcript without a nonsense codon (Table 4). It has been reported that histone pre­

mRNA is rapidly degraded if it is not productively processed (Pandey et al., 1994), 

therefore, the effect of a nonsense codon on µ RNA processing could be more severe 

than what I found. In addition, I found that the length of precursor µ transcripts is 

independent of the position of a nonsense codon in the µ gene: In both VH.stop- and 

Cµ2.stop-containing hybridomas, precursorµ RNAs retain the large JH-Cµ intron (Figure 

8c). This evidence suggests that a nonsense codon does not specifically prevent the 

splicing of its downstream sequences. Instead, the accumulation of precursor µ transcripts 

probably results from interaction between the nonsense codon recognition system with 

the splicing system. 

A similar phenomenon has also been reported by Cheng and Maquat (1993). They 

found deletion of all splice sites that reside downstream of a nonsense codon does not 

abrogate the nonsense codon-mediated reduction of TPI mRNA. I do not know, however, 

whether there is a specific sequence in the large JH-Cµ intron that is subjected to the 
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regulation of the nonsense codon recognition system. The inhibitory effect of a nonsense 

codon on the splicing of precursor RNA transcripts has also been reported in the 

literature (Naeger et al., 1992, Lozano et al., 1994). Accumulation of the precursor 

RNAs has also been noticed by other groups studying the expression of T cell receptor 

fi gene (personal communication with Dr. Miles F. Wilkinson) and AHFR gene (Kessler 

et al., 1993) in mammalian systems. 

The presence of precursor µ transcripts that are 300-500 bp smaller than the 

largest precursor µ transcript in each hybridoma suggests that the splicing of primary µ 

transcript does not occur in the 5' to 3' order. Instead, the splicing of this large intron 

at proximal 5' end may occur after the splicing of small introns in the constant region 

of the µ gene. This is consistent with studies which show that the size of the intron and 

exon influence the efficiency of splicing: in eukaryotic genes that contain large exons 

(i.e. 300 bp in Cµ exons ofµ gene), an increase in the size of an intron correlates with 

decreased splicing efficiency (personal communication with Dr. Susan Berget). Out of 

order splicing has also been reported in other systems (Beyer and Osheim, 1988; 

Bingham, 1993). 

3.6.2 µ mRNA with a Nonsense Codon is Degraded Faster Than µ mRNA 
Without a Nonsense Codon in the Cytoplasm of Plasma Cells 

The best method to measure the decay rate of a mRNA is to use metabolic 

labeling. However, our previous experiments failed because uridine is toxic to B cells 

(Jack, unpublished data). Alternatively, I used two well established inhibitors of RNA 

synthesis to measure the cytoplasmic decay rates ofµ mRNA (Figure 9). Both DRB and 
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higher concentrations of Actinomycin Cl (over 5 µg/ml) were found to inhibit the 

phosphorylation of the C-terminal domain of the largest subunit of eukaryotic RNA 

polymerase II in Hela cells exposed to heat shock, which results in inhibition of 

transcription in Hela cells (Dubois et al., 1994). In contrast to the studies that show 

nonsense codons do not influence the cytoplasmic decay rates of mRNA (see review in 

Chapter I), I found that the levels ofµ mRNA with nonsense codons are decreased by 

about 1.5 fold during the 8-hour drug treatment of Actinomycin Cl, while the level of 

µ mRNA without a nonsense codon remains relatively stable during this period (Table 

5). In the case of DRB treatment, the half-life of µ mRNA decreases from relatively 

stable in FH (that contains functional µ mRNA) to 3 to 4 hr in VXH and CH2XH (that 

contain nonsense codons in theirµ mRNAs) during the 8 hr-treatment. Based on these 

data, I conclude that µ mRNA with nonsense codons is degraded faster than that without 

a nonsense codon. This is consistent with the assumption that the only identified 

translational machinery resides in the cytoplasm of an eukaryotic cell, thus mRNA with 

a nonsense codon should be recognized and degraded in the cytoplasm. 

In addition, I noticed the differences in the half lives ofµ mRNA when they were 

measured by the two transcriptional inhibitors. I proposed that the differences are 

probably due to the fact that Actinomycin Cl reduces the levels of cytoplasmic mRNAs 

more dramatically than DRB (compareµ and GAPDH hybridizations in the Figures 9A 

and 9B). Thus, the lower level of GAPDH mRNA at 8 hour after Actinomycin Cl 

treatment is not accurate enough to serve as a loading control to normalize the level of 

µ mRNA. This problem may be overcome by the use of a stable mRNA (such as 28S 
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rRNA or /3-actin mRNA) as a loading control. The levels of 28S rRNA on the gel can 

be visibly compared in panel e of Figure 9A and 9B, where rRNAs are revealed by 

ethidium bromide staining. 

3.6.3 DRB Does Not Influence the RNA Metabolism of H2b Gene 

The fact that the amount of H2b mRNA left in FH cells did not decrease as the 

concentration of DRB was increased (Figure 10) suggests that the metabolism of H2b 

mRNA is subjected to a different regulation pathway in the presense of DRB. The DRB­

specific stabilized effect of H2b mRNA would result if: a) DRB blocks the transcription 

of a short-lived degradation factor that is specific for histone mRNA; or b) DRB, a 

nucleotide analogue of adenosine, blocks the RNA binding site on H2b-specific RNA 

degradation factor, and thus inhibits the nuclease activity of the enzyme (personal 

communication with Dr. Jeff Ross). Dr. Ross' lab has recently purified a biochemically 

activated nuclease that is specific for histone mRNA. He is going to test whether DRB 

specifically blocks the histone-specific RNA degradation by using H2b mRNA +I- DRB 

as substrates of the nuclease activity of the purified protein. If DRB blocks the histone­

specific nuclease, they should find a high level of H2b mRNA when they include DRB 

in the substrate, while a low level of H2b mRNA when there is no DRB in the substrate. 

Alternatively, c) DRB may block the translation of the H2b mRNA. It has been shown 

that the degradation of histone mRNA is mediated by a ribosome-associated nuclease. 

Translation is needed to bring the nuclease to its specific substrate on the mRNA (Graves 

et al., 1987). Thus DRB can also exert its effect by inhibiting the translation process of 
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H2b mRNA. This hypothesis can be tested by an 35S methionine pulse-chase experiment. 

If DRB blocks the translation of H2b mRNA, I would expect to see a decrease in the 

level of 35S methionine-labeled H2b protein. d) DRB may not block the transcription of 

H2b mRNA. This hypothesis may be tested by a nuclear run-on experiment. If DRB does 

not block the transcription of DRB, I would expect to see the normal 3H-uridine 

incorporation of H2b mRNA after addition of DRB. 

I have summarized the findings of this Chapter in Figure 13. Briefly, I found that 

the reduction of cytoplasmic level of µ mRNA with a nonsense codon in plasma cells 

results from both a nuclear and a cytoplasmic event. In the nucleus, the presence of a 

nonsense codon inhibits the splicing of the largest J8 -Cµ intron in precursorµ RNA. In 

the cytoplasm, degradation is attributed to the lower cytoplasmic level ofµ mRNA with 

nonsense codons. This is the first report that has shown that both nuclear and cytoplasmic 

events are involved in the nonsense codon-mediated mRNA degradation. This could be 

a very unique phenomenon for lg mRNA. Thus, B cells have more than one mechanism 

to eliminate nonproductive lg mRNAs, which may contribute to the potent efficiency of 

humoral immune response. 



Figure 13 
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A Schematic Representation of µ RNA Metabolism in Plasma Cells. 

Two different splicing pathways for functional µ RNA (left) orµ RNA 

with a nonsense codon (right) in plasma cells. The genomic organization 

of the murine µ gene is presented at the top. Exons are represented by 

open boxes, and introns by solid lines. X designates the presence of a 

nonsense codon. Forµ transcript with a nonsense codon (i.e., a functional 

µ RNA), the presence of a nonsense codon prevents the splicing of the 

largest JH-Cµ intron in primary transcript, which might contribute to the 

lower nuclear level ofµ mRNA. Lower amounts ofµ mRNA escapes to 

the cytoplasm, where it is subjected to rapid cytoplasmic degradation. The 

effect of a nonsense codon on either nuclear degradation or nucleus-to­

cytoplasm export ofµ mRNA has not been determined. 
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CHAPTER IV 

TEST OF A MODEL TO EXPLAIN THE MECHANISM BY WHICH 

JG µ mRNA WITH A NONSENSE CODON 

IS DECREASED IN THE NUCLEUS OF PLASMA CELLS 

4.1 Introduction 

In Chapter III, I found that µ mRNA with a nonsense codon is decreased in both 

the nucleus and the cytoplasm of plasma cells. The presence of a nonsense codon 

prevents the splicing of the large J8 -Cµ intron. However, I have not elucidated how a 

nonsense codon can signal the reduction ofµ mRNA in the nucleus. Several models have 

been proposed to explain the mechanism of the nonsense codon-mediated mRNA 

degradation (see Chapter I). The main objective of this chapter is to determine whether 

the modified translational translocation model (Figure 14) is the mechanism by which a 

nonsense codon triggers the reduction of µ mRNA in the nucleus. 

Based on the assumption that cytoplasmic translational machinery is the only 

identified factor that can recognize a nonsense codon, Urlaub et al. (1989) proposed a 

translational translocation model. I have modified Urlaub's model to accommodate our 

secretory µprotein. As a secretory protein, µprotein is first synthesized as a precursor 

bearing an N-terminal signal peptide (also called leader peptide) (Kuby, 1994). Shortly 

after its synthesis, the signal peptide binds to the signal recognition particle (SRP) in the 
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cytoplasm. The SRP also interacts with the ribosome in which the nascent peptide 

resides, thus pausing theµ. protein translation in the free polysome fraction. There are 

many SRP-receptors and signal sequence receptors on the surface of endoplasmic 

reticulum (ER). The binding of theµ. mRNA-ribosome-bound SRP to its receptor targets 

the µ. mRNA-ribosome complex to the surface of ER. This targeting releases the 

translational pausing effect of SRP, thus allowing µ. protein translation to continue 

efficiently on the surface of ER (Amstein and Cox, 1992). Protein translation on the 

surface of ER not only facilitates the splicing of the 3' part of the RNA molecule in the 

nucleus, but also pulls the µ. mRNA into the cytoplasm. If translation is prematurely 

terminated by a nonsense codon, the splicing of the 3' part of RNA in the nucleus is 

inhibited. In addition, ribosomes fall off the RNA, thus the ribosomes cannot facilitate 

the export of RNA to the cytoplasm. The 'trapped' unspliced RNA in the nucleus is 

degraded, which leads to the reduction of nuclear µ. RNA and subsequently cytoplasmic 

RNA. 

Once the matureµ. mRNA is in the cytoplasm, its steady-state level is regulated 

by a cytoplasmic mRNA degradation event. This is consistent with my finding that µ. 

mRNA with nonsense codons have a shorter half-life than that of µ. mRNA without a 

nonsense codon. Mason et al. (1988) have shown that the change of µ. mRNA 

cytoplasmic location from the ER-membrane bound fraction to the free polysome fraction 

decreases its stability by about 6 fold. Additionally, protein translation on the surface of 

ER might increase the stability ofµ. mRNA, presumably by protecting the instability 

sequences downstream of the nonsense codon from attack by cytoplasmic degradation 
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factors. 

There are several predictions from our model. If a nonsense codon decreases the 

steady-state level of µ mRNA by inhibiting the nuclear splicing of downstream 

sequences, then: 

1) when a nonsense codon is present in different exons of a µ gene, the size of 

partially spliced µ transcripts should correlate with the position of a nonsense 

codon; 

2) when I introduce a nonsense codon in the last exon, the steady-state level of 

µ mRNA should not be affected since no downstream splicing is required for 

RNA processing; 

3) when I replace the genomic sequences downstream of the nonsense codon with 

their corresponding cDNA sequences, the steady-state level ofµ mRNA should 

be restored to its wild-type level since no downstream splicing is required for 

RNA processing; 

4) the presence of a nonsense codon should not influence the steady-state level of 

µ mRNA when it is derived from a cDNA clone since no intron splicing is 

required forµ mRNA expression. 

The first prediction is challenged by my finding that precursor µ transcripts in 

hybridoma CH2XH still contain the large JH-Cµ intron that resides upstream of the 

nonsense codon (see Chapter III). In this chapter, I have tested the other predictions by 

analyzing the RNA expression of functionally rearranged wild-type or in vitro modified 

µgenes that have been stably introduced into terminally differentiated B lymphocytes. 



Figure 14 
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A Modified Translational Translocation Model. I have modified 

Urlaub's model to accommodate our secretoryµ protein. Ribosomes begin 

to translate aµ RNA as it emerges from a nuclear pore and before the 

completion of its 3' processing. Protein translation on the surface of ER 

not only facilitates the splicing of the 3' part of the RNA molecule in the 

nucleus, but also pulls theµ mRNA into the cytoplasm. If translation is 

prematurely terminated by a nonsense codon, nuclear splicing of the 3' 

part of the RNA is inhibited. Ribosomes then fall off the RNA, and the 

ribosomes cannot facilitate the export of RNA to the cytoplasm. The 

'trapped' unspliced RNA in the nucleus is degraded, which leads to the 

reduction of nuclear µ RNA and subsequently cytoplasmic RNA. 
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4.2 Results 

4. 2 .1 Construction of Plasmids 

All the constructs used in this study are generated in a pµ• based expression vector 

(Figure 15). The functionally rearranged murine µ gene isolated from the hybridoma 

17.2.25 contains the following sequences starting from the 5' end: a short leader exon, 

an intron, a joined VDJ (V iJ exon, a large JH-Cµ intron, and a series of constant gene 

exons of "a" allotype in genomic configuration (Loh et al., 1983; Grosschedl and 

Baltimore, 1984; Grosschedl et al., 1985). The insertion of E. coli enzyme, guanosyl­

phosphoribosyl transferase (gpt), into the expression vector allows the selection of stable 

transfectants in the media containing xanthine and mycophenolic acid (MPA). The 

expression of gpt mRNA was used as an internal control for the copy number of active 

transcripts of the plasmid. Several restriction endonuclease sites have been engineered 

into the pµ•gpt.dM vector for the purpose of convenient cloning. 

4.2.1.1 Deletion of the Membrane Exons in the pµ•gpt Plasmid 

The membrane exons in the µ gene were deleted to eliminate the effect of 

alternative splicing on the stability ofµ mRNA (Peterson, 1994). The plasmid pµ•gpt was 

linearized with EcoRV that cut between Cµ4 and membrane exons. After 

dephosphorylation treatment with CIP, the plasmid was re-ligated in the presence of a 

Spe I linker. Thus, the membrane exons were within a Spel fragment of 0.92 kb, which 

was subsequently deleted by Spel digestion and religation of the modified plasmid. The 

resulting plasmid is designed as pµ•gptAM. 



Figure 15 A Schematic Representation of the Plasmid pµ•gptAM. 
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4.2.1.2 cDNA Replacement and Deletion of Downstream Sequences of the 
Nonsense Linker in the pµ•gptAM Plasmid 

To study the effect of a nonsense codon on the splicing of downstream sequences, 

I replaced genomic sequences downstream of a nonsense codon with their corresponding 

cDNA sequences. A 3.316-kb Xbal-Spel fragment that includes sequences in Cµ exons 

was isolated from the pµ•gptAM vector and subcloned into pGEM9zf(-). The subcloned 

plasmid was then linearized with BamHI enzyme that cut in the middle of Cµ2 exon, and 

the BamHI ends were blunted with Kienow enzyme (Pharmacia). A Nhel-containing 

amber stop linker [5'-pd(CTAGCTAGCTAG)-3', Pharmacia, Lot # 2067220011] that 

includes three amber nonsense codons in each open reading frame was cloned into the 

Kienow blunted-BamHI site in the middle of Cµ2 exon. The plasmids were screened for 

the presence of amber stop linker by Nhel digestion. Then the 3.4-kb EcoRI-Spel 

fragments without or with a stop linker were cloned back to the pµ•gptAM vector, 

resulting in the deletion of a 3.512-kb EcoRI-Xbal fragment in the large V8 -Cµ intron 

(construct A and B in Figure 16a). 

The 1.244-kb BamHI-Nhel fragment that includes genomic sequences from the 

Cµ2 to Cµ4 exon was replaced by its corresponding 0. 862-kb cDNA sequence from 

plasmid 5.1 (Reth and Alt, 1984) in the Xbal-Spel subclone. The introduction of the 

Nhel-amber stop linker into the Cµ2 exon and the subsequent cloning procedure are the 

same as described above (construct G and Hin Figure 16a). To make construct J and L 

(in Figure 16a), a 0.86-kb Nhel fragment that contains the sequences downstream of the 

stop linker was deleted or was cloned back in opposite orientation. The accuracy of 

cloning was confirmed by several restriction enzyme digestions (Figure 16b). 
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4.2.1.3 Introduction of a Nonsense Linker into Four Exons of Constant Region in 
the pµ•gp~M Plasmid 

To determine whether the position of a nonsense codon influences the steady-state 

level ofµ mRNA in plasma cells, I generated DNA constructs containing wild-type and 

modifiedµ genes with a nonsense linker at different exons of theµ gene (Figure 17). The 

subclone plasmid that contains the 3.316-kb XbaI-SpeI fragment of Cµ exons in genomic 

configuration (as described in section 4.2.1.2) was linearized with SmaI, BgllI, BstXI, 

or ApaI, respectively. The 3'-overhangs of ApaI or BstXI were blunted with T4 DNA 

polymerase, and the 5'-overhangs of BgllI was blunted with Kienow enzyme. After 

dephosphorylation treatment with CIP, each plasmid was ligated in the presence of a 

Nhel-containing amber stop linker. The 3.328-kb XbaI-SpeI fragments of Cµ exons that 

contain nonsense codons in different Cµ exons were subsequently cloned back to the 

pµ•gp~M vector (Figure 17a). The presence of the Nhel-containing nonsense linker at 

the proper positions was confirmed by NheI digestion (Figure l 7b). 

4.2.1.4 Generation of a Pcmv-µ cDNA Clone With or Without a Nonsense Linker 

To determine whether the presence of a nonsense codon influences the splicing 

of precursor µ transcript, I generated aµ cDNA clone with or without a nonsense codon. 

Since µ cDNA clone does not express efficiently under the authentic IgH promoter, l 

replaced the IgH promoter with the human cytomegalovirus immediate early promoter 

(pCMV). A µ1 cDNA sequence, which was cloned from 991 hybridoma cells (Balb/c) 

into the pCR™ II vector, was cut out as 1.9 kb of EcoRI-NheI fragment and cloned into 

EcoRI/XbaI sites in pUHDl0-1.gpt expression vector by a two-step ligation as described 
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in Chapter II (Construct Min Figure 22a). The parent pUHDl0-1 vector contains a 746-

bp fragment of pCMV (Deuschle et al., 1989). A BstEII site in Cµ2 exon of µs cDNA 

was destroyed by Klenow treatment and cloned into a Nhel-containing amber stop linker 

[5'-pd(CTAGCTAGCTAG)-3', Pharmacia, Lot# 2067220011] (construct Nin Figure 

22a). 

4.2.1.5 Generation of Stable Transfectants Containing Modified µ Genes 

Plasmid DNAs containing modified functional rearranged µgenes were introduced 

into a mouse plasmacytoma cell line J558L (µ->.. +) by electroporation. The cells were 

maintained in MPA-containing growth media to select for the expression of gpt. The 

expression ofµ gene was screened by cytoplasmic immunofluorescence (CIF) using goat 

anti-IgM antibody:µ protein was detected in stable transfectants containing constructs A, 

C, F, G and J (data not shown). Further experiments were carried out using pools that 

were generated from 30-33 independent clones. 



Figure 16 
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Restriction Analysis of DNA Constructs Containing Wild-Type and 

Modified p. Genes. (a) Schematic representations of wild-type and 

modified µ. gene constructs, showing a nonsense linker (arrow) in the 

middle of the Cµ.2 exon and the cDNA replacement of genomic sequences 

downstream of the nonsense codon. Double lines depict the positions of 

the restriction endonuclease sites. Photographs of ethidium bromide­

stained 1.0% agarose gels are shown in panels b to d. All plasmids were 

diluted and quantitated to the same concentration for further experiments. 

1 µ.g DNA of each construct was digested with 0.2-0.5 units of enzyme 

and the digestion reaction was performed according to the manufacturer's 

instructions. DNA standards used to determine the size of DNA 

fragments: 1 kb DNA ladder (lane 1) and A!HindIII (lane 8). In panel b, 

the integrity of the constant region ofµ. gene was confirmed by EcoRI­

Spel digestion; In panel c, the accuracy of cDNA replacement in the 

constant region ofµ. gene was confirmed by BstEII digestion; and, in 

panel d, the presence of Nhel-containing nonsense linker at the proper 

positions was confirmed by Nhel digestion. All the digests had the 

predicted sizes as indicated on the right. The fragment (*) in lane 3 was 

not digested in panel b, but yielded expected products in an independent 

digestion. 
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Restriction Analysis of DNA Constructs Containing Wild-Type and 

Modified p. Genes Containing a Nonsense Codon at Different Positions 

of the Constant Region of p. Gene. (a) Schematic representations ofwild­

type and modifiedµ gene constructs, showing the nonsense linker (arrows) 

in different exons of the µ gene. Double lines depict the positions of 

restriction endonuclease sites. (b) A photograph of an ethidium bromide­

stained 1.0% agarose gel. All plasmids were diluted and quantified to the 

same concentration for further experiments. 1 µg DNA of each construct 

was digested with 0.2-0.5 units of Nhel and the digestion reaction was 

performed according to the manufacturer's instructions. The presence of 

the Nhel-containing nonsense linker at the proper positions was confirmed 

by Nhel digestion. The resulting digests have the predicted sizes as 

indicated at left. The integrity of the constant region of µ gene was 

confirmed by the EcoRI-SpeI digestion (data not shown). DNA standards 

used to determine the size of DNA fragments: 1 kb DNA ladder (lane 1) 

and "A/ HindIII (lane 8). 
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4.2.2 Positional Effect of a Nonsense Codon on the Steady-State Level ofµ. 
mRNA. 

Total RNA in stable transfectants was isolated by the GIT/CsCl method and 

analyzed by Northern blot analysis using a Cµ. probe. Results of two independent 

experiments with similar findings are shown in Figures 18A and 18B. In Figure 18A, the 

relative steady-state level ofµ. mRNA ([µ.])was calculated by dividing the hybridization 

signal fromµ. mRNA by the signal of gpt mRNA (panel c). I found that the levels ofµ. 

mRNA with nonsense codons in the middle of Cµ.l, Cµ.2, and Cµ.3 exons were decreased 

by at least 5 fold (lane 3, 5, and 6, respectively, in Figure 18A) when compared to 

control level (lane 2 in Figure 18A). In contrast, the level ofµ. mRNA with a nonsense 

codon in the middle of Cµ.4 exon (lane 7 in Figure 18A) was comparable to controlµ. 

mRNA (lane 2 in Figure 18A). These data are consistent with the translational 

translocation model. However, the level of µ. mRNA with a nonsense codon at the end 

of Cµ.l exon (construct C, lane 4 in Figure 18A) was about 80% of total[µ.] detected in 

µ. mRNA without a nonsense codon (construct A, lane 2 in Figure 18A). The relatively 

stable level ofµ. mRNA in stable transfectants containing construct C might result from: 

a) a cloning or transfection error; b) the mRNA has skipped the exon that contains a 

nonsense codon (i.e., Cµ.l exon in this case); or c) the translational translocation model 

is not the mechanism by whichµ. mRNA with a nonsense codon is degraded. This is 

because the translational machinery in the cytoplasm should recognize the nonsense codon 

and send out a degradation signal no matter where it is in the open reading frame. 

To distinguish among these possibilities, I performed immunoprecipitations using 

goat anti-IgM antibody. As shown in Figure 19, the presence of the nonsense codon at 
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F ofµ gene decreases the coding region ofµ mRNA by 142 nt, which results in the 

truncated protein being about 47 amino acids shorter (that correlates to 5.2 KD deletion 

in molecular mass) than the completeµ chain (lane 9 in Figure 19). For C-containing 

transfectants, the 1013 kb nucleotide sequence downstream of the nonsense codon 

correlates with 338 amino acids shorter in the truncated protein of 32 KD (lane 6 in 

Figure 19). Consistent with the lower levels ofµ mRNA expression (Figure 18A and 

18B), there were no detectable µ proteins in lysates isolated from stable transfectants 

containing constructs B, D and E (lane 5, 7 and 8, respectively, in Figure 19). Thus, I 

conclude that the size of truncated proteins are consistent with the expected products 

predicted from the positions of the nonsense codon. These data ruled out the possibility 

of a cloning or transfection error, or exon skipping. However, these truncated proteins 

were not secreted into the supernatant (lane 12 and 15, respectively). 

The multiple bands of µ mRNA in lanes 2 and 7 in Figure 18A were not 

reproducible, as shown in lanes 3 and 4 in Figure 18B. The different sizes ofµ mRNA 

might result from the alternative use of either a membrane or a secreted poly A site. This 

may result from the presence of two polyadenylation sites in the plasmid pµ•gp~M 

(Figure 15), although the membrane exons have been deleted. The distance between the 

two poly A sites is about 350 bp, which may account for the difference in size of 

multiple bands I found in Figure l 8A. Alternatively, the differences in the size of µ 

mRNA might result from the presence of a nonsense codon. This is unlikely because the 

multiple bands were also found in stable transfectants containing functional µ gene (lane2 
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Figure 18A Analysis of p. mRNA Expression in J558L Transfectants Containing a 

Nonsense Codon at the Different Positions of the Constant Region in 

the Gene. (a) Schematic representations of wild-type and modified µ 

gene constructs, showing the nonsense linker (arrows) at different 

positions of Cµ exons. (b) A representative autoradiogram of the 

nitrocellulose blot hybridized with a Cµ cDNA probe (as shown in Figure 

1). Total RNA (10 µg) from pooled J558L transfected cells was isolated 

by the GIT/CsCl method and subjected to Northern blot analysis as 

described in the legend to Figure 3A. The same blot was rehybridized 

with a gpt probe to control for the loading of RNA. (c) The radioactivity 

of the bands was determined by a betascope blot analyzer, and relative 

amounts of µ mRNA (indicated sizes of µ mRNA were scanned in each 

lane) were calculated by dividing the µ signal by the gpt signal. The 

presence of a nonsense codon in the middle of Cµl (construct B, 17%), 

Cµ2 (construct D, 15%), and Cµ3 (construct E, 20%) decreases the [µJ 

by at least 5 fold when compared to the control [µ] (construct A, setting 

to 100% ). The presence of a nonsense codon at the end of the Cµl exon 

(construct C, 135%) and in the middle of the Cµ4 exon (construct F, 

83 % ) did not decrease the [µJ when compared to the control. Lane 1, 

non-transfected J558L cells were used as a negative control. Arrows on 

the left indicate the positions of ribosomal RN As; on the right indicate the 

positions of µ and gpt mRNAs. 
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Figure 18B Analysis of p. mRNA Expression in J558L Transfectants Containing a 

Nonsense Codon at the Different Positions of the Constant Region in 

the Gene. (a) Schematic representations of wild-type and modified µ 

gene constructs, showing the nonsense linker (arrows) at different 

positions in Cµ exons. (b) A representative autoradiogram of the 

nitrocellulose blot hybridized with a Cµ cDNA probe (as shown in Figure 

1). Total RNA (10 µg) from pooled transfected J558L cells was isolated 

by the GIT/CsCl method and subjected to Northern blot analysis as 

described in the legend to Figure 3A. The same blot was rehybridized 

with a gpt probe to control for the loading of RNA. Lanes 5 and 8, 

nontransfected J558L cells were used as a negative control. Arrows on the 

right indicate the positions of precursor µ RNA and µ mRNA. The 

hybridization signals in this Figure were not quantitated. 
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Analysis of Intracellular and Secreted p. Heavy Chain Expr~ion in 

J558L Transfectants Containing a Nonsense Codon at the Different 

Positions of the Constant Region in the Gene. (a) Schematic 

representations of wild-type and modified µ genes, showing the nonsense 

linker (arrows) at different exons in µ gene. (b) A fluorograph of an 

immunoprecipitation experiment. [35S]-methionine biometabolically labeled 

cell extracts and supernatant of J558L transfectants were incubated with 

goat antisera against mouse IgM, followed by S. aureus. Solubilized 

proteins were analyzed by SDS-PAGE on a 10% acrylamide gel, and 

labeled proteins were detected by fluorography. Lane 1, J558L 

plasmacytoma cells; lane 2, NYCH.µK cells that express µand K chains; 

lanes 4 to 15, different pools of J558L cells transfected with wild-type and 

modified µ genes as depicted in a. The protein with a molecular weight 

(MW) of 32 KD (lane 6) was identified as ..::1Cµl-4, because it has the 

predicted MW of a nonsense codon at C site in panel a. For the same 

reason, a protein of 63.8 KD has been identified as ..::1Cµ4. All these 

truncated proteins are not secreted outside the cell (lane 11 and 15, 

respectively). 
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in panel b of Figure 18A. Thus the presence of multiple bands that hybridized to aµ 

cDNA probe is probably not due to the presence of a nonsense codon, and it may result 

from use of an alternative poly A site. 

4.2.3 cDNA Replacement of Sequences Downstream of a Nonsense Codon Does 
Not Restore its Steady-State Level of lg µ mRNA to Its Wild-type 

Another approach to test whether a nonsense codon decreases the steady-state 

level ofµ mRNA by inhibiting the splicing of downstream sequences is to replace the 

genomic sequences downstream of the nonsense codon with their corresponding cDNA 

sequences, and analyze its effect on the steady-state level ofµ mRNA. 

Total RNA in stable transfectants was isolated by the GIT/CsCl method and 

analyzed by Northern blot analysis using a Cµ probe (panel bin Figure 20A and 20B). 

The relative steady-state level ofµ mRNA was calculated by dividing the hybridization 

signal from µ mRNA by the signal of gpt mRNA (panel b of Figure 20A and 20B), and 

are summarized in panel c. G1 and G2 represent RNA isolated from stable transfectants 

that were generated by two independent constructs from the same cloning process (i.e., 

the genomic sequences downstream of the nonsense codon had been replaced by their 

corresponding cDNA sequences). G represents RNA isolated from the stable transfectant 

that was generated by mixing equal amount of G1 and G2• The undetectable level ofµ 

mRNA in G2 (lane 6 in Figure 20A and lane 4 in Figure 20B) might result from an 

unnoticed mutation in its DNA construct. The levels ofµ mRNA ([µ])in the transfectants 

of construct G and G1 (lane4 and 5 in Figure 20A, respectively) were 2 to 4 times lower 

than that of wild-type (lane 2). This might result from either another cloning or 
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transfection error, or small introns between Cµ2-3 and/or Cµ3-4 are required for good 

expression ofµ mRNA (See detailed discussion below). 

The level ofµ mRNA in the transfectants of construct H (cDNA replacement with 

a nonsense linker in the middle of Cµ2 exons) was at least 20 fold lower (lane 7 in 

Figure 20A and lane 5 in Figure 20B) when compared to the control (lane 2 in Figure 

20A and 20B). This result can be explained in two ways. One is that there is a cloning 

error. This possibility was excluded by the result of the immunoprecipitation, in which 

I found truncated µ protein in the lysate of H transfectants (lane 6 and 9, respectively, 

Figure 21) was 40 KD. Their sizes were consistent with the expected products predicted 

from the positions of the nonsense codon (that is, a deletion of 790 nucleotides 

correlating with the loss of 263 amino acids). These data also ruled out the possibility 

of a cloning or transfection error, or exon skipping. Since I have repeated these 

experiments twice, it is unlikely that the same error has been repeated. The other 

possibility is that this result also argues against the translational translocation model. 



174 

Figure 20A Analysis ofµ. mRNA Expression in J558L Transfectants Containing 

Modified µ. Genes. (a) Schematic representations of wild-type and 

modified µ. genes, showing a nonsense linker (arrow) in the middle of the 

Cµ.2 exon and the cDNA replacement of genomic sequences downstream 

of the nonsense codon. (b) Northern blotting of µ. mRNAs. Total RNA 

(10 µ.g) from J558L cells stably transfected with various µ. genes was 

isolated by the GIT/CsCl method and subjected to Northern blot analysis 

as described in the legend to Figure 3A. Nontransfected J558L cells were 

used as a negative control (lane 1). G1 and G2 represent RNA isolated 

from stable transfectants that were generated by two independent 

constructs of the same cloning process. G represents RNA isolated from 

a stable transfectant that was generated by mixing equal amounts of G1 

and G2• The presence of a nonsense codon in the middle of Cµ.2 exon 

(lane 3) decreases the[µ] by about 30 fold when compared to the control 

[µ] (lane 2). The levels ofµ. mRNA ([µ]) were 2 to 4 fold lower in the 

transfectants containing construct G and G1 (lane 4 and 5, respectively); 

4 fold lower in the transfectants containing construct J (lane 8); and 50 

fold lower in transfectants containing construct L (lane 9), than that of 

wild-type control (lane 2). The [µ] in transfectants containing constructs 

G2 and H was below the detectable limit ( < 0.1 % of the [µ] in 

transfectants containing construct A). 
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Figure 20B Analysis of p. mRNA Expression in J558L Transfectants Containing 

Modified p. Genes. (a) Schematic representations of wild-type and 

modifiedµ genes, showing a nonsense linker (arrow) in the middle of the 

Cµ2 exon and the cDNA replacement of genomic sequences downstream 

of the nonsense codon. (b) Northern blotting of µ mRNAs. Total RNA 

(10 µg) from transfected J558L cells was isolated by the GIT/CsCl method 

and subjected to Northern blot analysis as described in the legend to 

Figure 3A (upper panel). The same blot was rehybridized with a gpt probe 

to control for the loading of RNA (lower panel). (c) The relative steady­

state level ofµ mRNA was calculated by dividing the hybridization signal 

from µ mRNA by the signal to gpt mRNA on the same lane. Lane 1, 

non-transfected J558L cells were used as a negative control. Arrows on 

the left indicate the positions of ribosomal RN As; on the right indicate the 

positions of precursorµ RNA,µ mRNA and gpt mRNA. 
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Analysis of Intracellular p. Heavy Chain Expression in J558L 

Transfectants Containing Modified p. Genes. (a) Schematic 

representations of the wild-type and modified µ genes, showing a nonsense 

linker (arrow) in the middle of the Cµ2 exon and the cDNA replacement 

of genomic sequences downstream of the nonsense codon. (b) A 

fluorograph of an immunoprecipitation. [35S]-methionine biometabolically 

labeled cell extracts of J558L transfectants were first incubated with goat 

antisera against mouse IgM, followed by S. aureus. Solubilized proteins 

were analyzed by SDS-PAGE on a 10% acrylamide gel, and labeled 

proteins were detected by fluorography. The protein with a MW of 40 KD 

(lane 5, 10 and 11) was identified as ~Cµ2-4, because it has the predicted 

MW of a nonsense codon in the middle of Cµ2. Lane 1, J558L 

plasmacytoma cells; lane 2, NYCH.µK cells that expressesµ and" chains; 

lanes 4 to 15, different pools of J558L cells transfected with wild-type and 

modifiedµ genes as depicted in a. Mand N are RNA isolated from cell 

lines containing µ cDNA under the control of Pcmv (see panel a in Figure 

22 for illustration and section 4.2.4 for discussion). 
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4.2.4 Removal of Intron Sequences from lg µ. Gene Does Not Protect Its mRNA 
from Nonsense Codon-Mediated RNA Degradation. 

To determine whether a nonsense codon affects the steady-state level ofµ. mRNA 

by interfering with its splicing process, I cloned a µ. cDNA clone with or without a 

nonsense codon in the middle of the Cµ.2 exon into a cytomegalovirus promoter (pCMV)-

based expression vector and analyzed the steady-state level of µ. mRNA in stably 

transfected cells. 

While the level of µ. mRNA derived from a cDNA clone under the Pcmv (lane 

4 in Figure 22) was only 5 % of the level of genomic µ. gene under the IgH promoter 

(lane 2 in Figure 22), the level ofµ. mRNA derived from the µ. cDNA clone with a 

nonsense codon was undetectable (lane 5 in Figure 22). If these results are reproducible, 

they suggest that the removal of introns from the µ. gene cannot abrogate the effect of a 

nonsense codon on theµ. mRNA level. Thus, these data argue against the effect of a 

nonsense codon on splicing, at least as the only mechanism, inµ. mRNA metabolism. 

However, the low level of total µ. mRNA with a nonsense codon derived from a Pcmv 

may result from either the nuclear-cytoplasmic transport ofµ. mRNA being blocked, or 

the mature µ. mRNA with a nonsense codon being subjected to the effect of other nuclear 

or cytoplasmic degradation events. The effect of cytoplasmic RNA degradation is 

supported by my previous finding that additional cytoplasmic degradation contributes to 

the low steady-state level ofµ. mRNA with a nonsense codon (see Chapter III). 
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Expr~ion of p. mRNA Transcribed from Pcmv-µ cDNA with or 

without a Nonsense Codon in J558L Transfectants. (a) Schematic 

representations ofµ. mRNA transcribed from Pcmv-cDNA with or without 

a nonsense codon, showing a nonsense linker (arrow) in the middle of the 

Cµ.2 exon. (b) Northern blotting ofµ. mRNAs. Total RNA (10 µ.g) from 

J558L cells stably transfected with various µ. genes was isolated by the 

GIT/CsCl method and subjected to Northern blot analysis as described in 

Materials and Methods and in the legend to Figure 3A. Nontransfected 

J558L cells were used as a negative control (lane 1). Lanes in this figure 

are pasted together from the same RNA agarose gel in Figure 20A. The 

autoradiogram of gpt hybridization is not shown here. The larger size of 

µ. mRNA in lane 4 results from the size of Pcmv is about 0.5-kb bigger 

than that of Pig (Deuschle et al. , 1989; Grosschedl and Baltimore, 1985). 
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4.3 Discussion 

4.3.1 A Nonsense Codon Does Not Affect the Steady-State Level ofµ mRNA 
by Preventing the Splicing of Its Downstream Sequences 

The level of µ mRNA with a nonsense codon at the end of the Cµ 1 exon 

(construct C) when compared to its wild-type counterpart (construct A) strongly argues 

against the translational translocation model (Figure 18A and 18B). This is strengthened 

by the finding that neither a cDNA replacement of downstream sequences to the nonsense 

codon (Figure 20A and 20B) nor cDNA clone with a nonsense codon expressed under 

a Pcmv (Figure 22) restored the level ofµ mRNA to its wild-type counterpart. Together 

with the data in Chapter III, in which I found long precursorµ transcripts in hybridomas 

VXH and CH2XH that contain nonsense codons in their µ genes, I suggest that 

degradation ofµ mRNA with a nonsense codon involves more complicated mechanisms 

rather than simply the cytoplasmic translational machinery sending out signals to inhibit 

the nuclear splicing process. An alternative explanation for the finding that a nonsense 

codon affects splicing of µ RNA is via nuclear scanning rather than cytoplasmic 

recognition: The nonsense codon is recognized by a nuclear degradation factor before, 

or at the time of, RNA splicing. Since the spliceosome or other nuclear RNA binding 

protein are bound to the RNA transcript in the nucleus (Green, 1991; Dreyfuss et al., 

1992), they might sequester the nonsense codon from recognition by a nuclear scanning 

system. However, I could not rule out the possibility of recognition being independent 

of RNA splicing and somehow interacting with the splicing process (see discussion in 

Chapter III). This hypothesis needs to be further tested. 

Consistent with my finding in Chapter III that the presence of a nonsense codon 
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reduces µ mRNA level by increasing the cytoplasmic turnover rate, I found that the level 

of µ mRNA derived from a µ cDNA with a nonsense codon in the middle of Cµ2 exon 

under the control of Pcmv was undetectable when compared to that of its wild-type 

counterpart. This suggests that an additional cytoplasmic event degrades µ mRNAs with 

nonsense codons even if they can escape the nuclear degradation event. However, this 

cytoplasmic degradation factor probably has a very short half-life or it only acts as a 

secondary surveillance after the nuclear degradation event (see discussion in Chapter III). 

Alternatively, the presence of a nonsense codon may also prevent the nucleus-cytoplasm 

transport of µ mRNA. It might be important for B cells to have more than one 

surveillance pathway to eliminate the lg mRNA with nonsense codons, and thus ensure 

an effective humoral immune response. 

4.3.2 Introns Are Required for Effective Expression ofµ Gene 

The difference between the µ mRNA steady-state levels of construct G and A was 

unexpected (Figure 20), and might argue that small introns between Cµ2-3 and Cµ3-4 

are required for effective expression ofµ mRNA. This is consistent with a study which 

showed that an intron is required for optimal expression of cytoplasmic µ mRNA 

(Neuberger and Williams, 1988). This intron requirement is not specific for a particular 

intron, but has a cumulative effect, i.e. as long as an intron is present in the expression 

vector, the steady-state level of cytoplasmicµ mRNA is increased; and the more introns 

that are present in the expression vector, the higher the steady-state level of cytoplasmic 

µ mRNA. Cooperation between introns has been reported to increase both the specificity 
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and the efficiency of splicing (Neel et al., 1993). On the other hand, this intron 

requirement has also been shown to be promoter-dependent: An intron is required in the 

case of lg or P-globin promoters, but not in the case of cytomegalovirus or heat-shock 

promoters (Neuberger and Williams, 1988). Furthermore, this intron requirement is also 

cell-type independent since it is also needed in fibroblast transfectants (Neuberger and 

Williams, 1988). 

lntron requirement has also been shown to be necessary for effective expression 

of other eukaryotic genes (Reviewed by Liu, 1994), such as human, mouse and rabbit 

P-globin (Hamer and Leder, 1979; Buchman et al., 1988; Collis et al., 1990), mouse 

dihydrofolate reductase (Gasser et al., 1982; Buchman et al., 1988), human 

triosephosphate isomerase (Nesic et al., 1993 and 1994), SV40 late transcripts (Ryu and 

Mertz, 1989), human purine nucleoside phosphorylase (Jonsson et al., 1992), mouse 

thymidylase synthase (Deng et al., 1989), and maize alcohol dehydrogenase-1 (Callis et 

al., 1987; Ryu and Mertz, 1989). In contrast, many cellular and viral genes do not 

contain introns, and introns are not needed for effective expression from most cDNA 

clones. I do not know what features of a gene determine the intron requirement of 

effective production of cytoplasmic mRNA. However, it is very interesting to find that 

at least four of the genes (lg, P-globin, and dihydrofolate reductase, TPI) degrade their 

nonsense codon-containing mRNAs via a unique nuclear mechanism, i.e. RNA 

processing and/or transport. Thus, I speculate that the intron requirement for effective 

gene expression might be a common feature for genes that are subjected to nonsense 

codon-mediated mRNA degradation via a nuclear process. 
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It has been shown that for most genes, the presence of introns does not 

significantly influence their transcriptional rates (Hamer and Leder, 1979; Ryu and 

Mertz, 1989; Ryu and Mertz, 1989; Collis et al., 1990); rather, their presence has very 

dramatic post-transcriptional effects on mRNA metabolism, including stabilization of 

primary transcripts within the nucleus, excision of introns, polyadenylation, and transport 

of mature mRNA to the cytoplasm (Hamer and Leder, 1979; Buchman and Berg, 1988; 

Ryu and Mertz, 1989; Collis et al., 1990; Huang and Gorman, 1990). When an intron 

cannot provide the function required for efficient precursor RNA processing, its own 

excision occurs inefficiently (Ryu et al., 1994). 

The mechanism of intron requirement in gene expression is only speculative. 

Introns might influence post-transcriptional processes via their sequences associating with 

appropriate ribonucleoprotein (Dreyfuss et al., 1992; Jarmolowski et al., 1992). For 

example, their promoter dependence might result from different promoters being 

transcribed at different locations in the nucleus via specific transcriptional factors. I 

propose that for certain promoters, such as CMV and heat shock, transcripts are 

synthesized near the nuclear pore and can be readily exported. However, in the case of 

lg and fj-globin promoters, they might transcribe their primary mRNAs far from the 

nuclear pore, which makes their RNA export difficult. In these cases, factors that bind 

to introns might not only help to stabilize or splice the RNA, but also help to locate the 

RNAs on a track towards the nuclear pore and facilitate RNA export. If small introns 

such as intron 4 and/or 5 ofµ gene in construct G are missing, even if there is no 

nonsense codon, µ transcript is degraded in the nucleus because it could not be 
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transported outside the nucleus. This also argues against the importance of the pulling 

effect of translation proposed by the translational translocation model (Urlaub et al., 

1989). The similar results from construct H, J and K might result from a scanning 

system that recognizing the nonsense linker as the authentic termination codon and the 

downstream sequences as different lengths of 3' untranslated region. Since there are no 

introns downstream to hold the RNA in the nucleus, µ transcripts might be easily 

exported. This is supported by the finding that the use of different RNA polymerase II 

promoters influences the cytoplasmic stability of fi-globin mRNA (Enssle et al., 1993). 

This possibility argues against the use of other promoters with or without cDNA clones 

in the study of nonsense codon-mediated mRNA degradation of the genes that require 

intron for efficient expression. 

4.4 Proposed Further Experiments 

4.4.1 For the Result of Positional Effect of a Nonsense Codon 

I showed that the presence of a nonsense codon at the end of Cµ 1 ex on did not 

decrease the µ mRNA level when compared to that of its wild-type counterpart. To test 

whether this results from RNA binding protein sequestering (e.g. spliceosome) the 

nonsense codon at the end of an exon, one can introduce a nonsense codon at the 

beginning or the end of the Cµ2 exon, and repeat all the experiments. According to the 

current central dogma of splicing, both the 5' end and 3' end of an exon participate in 

the formation of a spliceosome (see reviews in Green, 1991; Lamond, 1993). If the 

spliceosome sequesters the recognition of nonsense codons by nuclear degradation factor, 
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one should find that the amount of µ mRNA is comparable to that of its wild-type 

counterpart when the nonsense codon is present at either end of the Cµ2 exon. However, 

the final proof might come from the characterized degradation factor or splicing factor 

that is bound to the µ mRNA from the construct C-containing transfectant. The other 

obstacle is that we also do not have a way to dissect the nuclear and cytoplasmic 

compartments. Further plans depend on the results of these experiments. 

4.4.2 For the Result of cDNA Replacement on µ mRNA Expression 

To better control for the copy numbers between different transfectants, one might 

perform a nuclear run-on experiment to measure the transcriptional rate of µ gene in 

construct A, G and H. 

To rule out the possibility of unnoticed mutations in the H DNA construct that 

might affect our results, I have generated eight other independent clones. It would be 

unlikely that independent clones have the same unnoticed phenotype as observed before. 

4.4.3 For the Effect of a Nonsense Codon in µ mRNA Derived from Pcmv-µ 

cDNA 

Since µ gene expression in mammalian cells is promoter-dependent and intron­

dependent, the use of a Pcmv to express the µ gene from its corresponding cDNA clone 

might not reflect the µ gene expression from its genomic sequence under the lg 

promoter. Thus, one should be more cautious in interpreting data that are obtained from 

the use of a cDNA clone. 
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To better understand whether the use of a Pcmv to express µ gene represents in 

vivo µ gene expression, one can quantify the levels of nuclear µ mRNA and cytoplasmic 

µ mRNA by Northern blot analysis as described in Chapter III: 

Expected results: 

Result A 

Result B 

µ mRNA (WT): 

Total RNA 

Nuclear RNA 

Cytoplasmic RNA 

Nuclear RNA 

Cytoplasmic RNA 

cDNA 

lX 

lX 

lX 

lX 

lX 

cDNA+a stop 

decreased 

decreased 

decreased 

lX 

decreased 

Result A suggests that the nuclear degradation event is independent of the splicing 

process. Result B might result from either the presence of additional cytoplasmic 

degradation machinery that can degrade matureµ mRNA, or the blockage of nuclear­

cytoplasm transport ofµ mRNA derived from the Pcmv-cDNA clone. 

To determine whetherµ cDNA clone with a nonsense codon is degraded faster 

than its wild-type counterpart, one could use the Actinomycin C or DRB method as 

described in Chapter II and III. But one obstacle is that the amount ofµ cDNA expressed 

under the Pcmv is only 0.5% of the corresponding genomicµ gene expressed from lg 

promoter. Thus, one would probably start with too littleµ mRNA. 



SUMMARY 

In summary, I have demonstrated that the presence of a nonsense codon reduces 

µ mRNA levels in both the nucleus and the cytoplasm of plasma cells. In the nucleus, 

the presence of a nonsense codon prevents the splicing of the largest J H-Cµ intron in 

precursor RNA. In the cytoplasm, the presence of a nonsense codon reduces µ mRNA 

level by increasing the rate ofµ mRNA turnover. Thus, there are distinct cytoplasmic 

and nuclear mechanisms for the reduction of µ mRNA with nonsense codons. The 

probability of producing nonproductive lg mRNAs in the process of generating 

tremendous lg diversity is higher than most of other mRNAs; therefore, the existence of 

at least two mechanisms to prevent the translation of nonproductive lg mRNAs might be 

unique to B cells. However, the mechanism is much more complicated than one can 

imagine! To date, no model has been proposed that accounts for all the results emerging 

in the field. I think the main obstacle yet to be resolved is to determine whether the 

recognition of a nonsense codon occurs only in the cytoplasm, or only in the nucleus, or 

in both. 
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