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ABSTRACT 

Androgens, testosterone (T) and 5a-dihydrotestosterone (DHT), have profound 

modulatory roles in the mammalian central nervous system by specifically binding to 

androgen receptors (ARs) in target cells. The studies contained in this dissertation 

were designed to characterize AR expression in the hippocampus, a central structure 

of the limbic system, and to determine if this area is a neural target for androgen's 

actions. In the first series of experiments, AR and AR messenger ribonucleic acid 

(mRNA) levels in the adult male rat hippocampus were found to compare closely to 

levels found in the hypothalamus, and AR mRNA expression was primarily 

concentrated in the CAl pyramidal cell region of the hippocampus. Hippocampal AR 

and AR mRNA expression were uniquely autoregulated following the removal of 

circulating androgen in adult male rats, and in old male rats with reduced circulating 

levels of T. Next, the effect of selective AR activation on the constitutive expression 

of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) genes in the 

hippocampus were investigated. As compared to castrated control rats, DHT 

treatment of castrates decreased GR mRNA levels, but not MR mRNA levels, in the 

CAl region of the hippocampus. Transcriptional cross-talk or interactions between 

AR and GR may mediate some aspects of androgen action on hippocampus-mediated 

behaviors. The final study in this dissertation investigated the influence of androgens 
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on the pattern and magnitude of inducible cellular immediate early gene (cIEG) 

expression in the rat hippocampus following exposure to a novel open field; a 

paradigm which stimulates the hippocampus. The induction of hippocampal c-jun, 

jun-Band zij268 mRNA were not affected by androgen status, however, DHT 

treatment attenuated, and castration increased, novelty-induced c-fos mRNA 

expression in the CAI region. These data suggest that AR activation changes the 

active properties of hippocampal neurons to incoming signals. 

In summary, these studies have begun to define the sensitivity of the adult 

male rat hippocampus to androgens and provide a foundation for further investigation 

of androgen's roles in hippocampal function and hippocampally-mediated behaviors. 

" 
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CHAPTER I 

INTRODUCTION 

Androgens have a wide range of biological effects in peripheral and central 

tissues that are exerted primarily through the activation of androgen receptors (AR) 

within target cells. For the most part, studies in the brain have concentrated on 

androgen action in hypothalamic regions, where testosterone (T) and 

dihydrotestosterone (DHT) have clear roles controlling aspects of reproductive 

behavior (Feder, 1984) and hormonal feedback mechanisms (Messi et al., 1988). In 

recent years, the cloning of AR as well as the development of techniques that provide 

greater anatomical resolution have led the way to the discovery of abundant AR 

expression in many areas of the adult mammalian brain. Some of these areas include 

the amygdala, cortex, striatum and hippocampus (Sar and Stumpf, 1974; Handa et al., 

1987a; McLachlan et al., 1991; Burgess and Handa, 1993a; Osada et al., 1993). 

This widespread localization of AR in the central nervous system (CNS) suggests a 

much broader physiological importance for androgens than initially anticipated. 

Furthermore, since AR acts as a ligand-activated transcription factor, thereby 

increasing or decreasing the transcription of many target genes within a cell, the 

potential activational effects of androgens in neural tissue are many. 

In mammals, gender differences exist not only in the levels of circulating 

androgen and sex behavior, but also in several non-reproductive behaviors. These 
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include aggressive tendencies, spatial ability, verbal ability, activity level, and certain 

cognitive functions. Because adult males produce much higher levels of the gonadal 

hormone, T, whereas the main circulating hormone in females is estrogen, it has been 

suggested that these gonadal hormones act in the brain to sexually differentiate 

behavior throughout life. However, currently there is little information regarding 

where in the brain or through what mechanism gonadal hormones exert these 

physiological effects. 

Additional evidence implicating androgens as modulators of neural function 

comes from studies examining human subjects who abuse anabolic-androgenic 

steroids. Anabolic-androgenic steroids are synthetic variants of the endogenous male 

hormones, T and DHT. These steroids promote both androgenic (male sexual 

characteristics) and anabolic (muscle building) effects by specifically binding to 

intracellular ARs in target tissues. The use of supraphysiologic doses of anabolic

anabolic steroids to enhance athletic performance and physical appearance has become 

a serious social problem in recent years. In addition to the many peripheral side 

effects of these drugs, psychiatric evaluations of anabolic steroid abusers have 

revealed a wide range of adverse emotional and behavioral problems that are closely 

linked to steroid use or withdrawal (Katz and Pope, 1990; Uzych, 1992). The 

psychological ramifications of high level androgen use also suggest that some limbic 

areas of the brain may be sensitive to increasing levels of AR activation. Despite 

these many reports, little is known about the biological and cellular mechanisms of 

action of androgens, especially in neural tissues. 
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The hippocampus, a central structure of the limbic system, has been implicated 

in influencing a variety of behaviors including learning and memory formation (Teyler 

and DiScenna, 1985; Whishaw, 1987; Zola-Morgan and Squire, 1990; Eichenbaum 

and Otto, 1992), emotion (Derryberry and Tucker, 1992), spatial mapping (O'Keefe 

and Nadel, 1974; Olten, 1977; Olten et al., 1979; Nadel and McDonald, 1980; 

Sutherland et al., 1982; Bouffard and Jarrard, 1988; Best and Thompson, 1989), and 

cognition (O'Keefe and Dostrosvsky, 1971). Relatively high levels of AR expression 

have been detected in the mammalian hippocampal formation (Sar and Stumpf, 1973; 

McLachlan et al., 1991; Burgess and Handa, 1993a; Kerr et al., 1995), however, 

their physiological significance is unknown. Recently, androgenic compounds have 

been shown to influence hippocampus-mediated learning behavior (Flood et al., 1992) 

and neuronal plasticity of hippocampal pyramidal cells (Pouliot et al., 1995) in 

rodents. Although cellular mechanisms were not investigated in these studies, the 

authors suggested that such long-lasting neuronal events may result from AR-mediated 

modulation of cellular immediate early gene (cIEG) expression or alterations in 

membrane receptor-meidated actions. 

Based on these observations, it was hypothesized that the adult 

hippocampus is a neural target for androgens. Furthermore, androgens act 

through the AR to change the basal and active properties of hippocampal 

pyramidal cells. Thus, either higher than normal levels of circulating androgen or 

the complete removal of circulating androgen by gonadectomy (GDX) may alter 

transcriptional activity in these neurons which may lead to changes in neuronal 
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plasticity or behavior. 

The first series of experiments performed for this dissertation characterized 

AR and AR messenger ribonucleic acid (mRNA) expression in the adult male rat 

hippocampus using a multidisciplinary approach. AR and AR mRNA levels were 

quantitated in the hippocampus and compared to levels in other brain and peripheral 

tissues known to be sensitive to androgens. Saturation analysis of 3H-DHT binding in 

various brain tissues was performed to determine receptor affinity and compare AR 

binding characteristics in the cortex, hypothalamus and hippocampus. In addition, the 

ability of hippocampal AR to regulate its own expression following the removal of 

circulating androgen in adult male rats and in old male rats who have reduced 

circulating levels of T was determined. 

The second study in this dissertation was designed to investigate the effect of 

selective AR activation on the expression of the highly and constitutively expressed 

mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) genes in 

hippocampal pyramidal and granule cell layers. Both MR and GR are members of 

the steroid hormone receptor/transcription factor family and are known to mediate 

many important physiological effects in the hippocampus. Transcriptional cross-talk 

or interaction between AR and these co-localized, structurally related steroid hormone 

receptors may mediate some aspects of androgen's actions on hippocampal-mediated 

behaviors. 

The third study in this dissertation investigated the influence of androgens on 

the pattern and magnitude of inducible cIEG expression in the rat hippocampus 



following novel open field exposure, which stimulates the hippocampus. The 

induction of cIEGs serves as a marker for cellular activation. Thus, androgen 

modulation of cIEG induction following a stimulus would suggest that AR activation 

changes the active properties of hippocampal neurons to incoming signals. 

5 

Together, these studies have begun to define the sensitivity of the adult male 

rat hippocampus to androgens and provide the foundation for further investigation into 

androgen's roles in hippocampal physiology and hippocampal-mediated behaviors. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Mechanisms of Androgen Action 

The HllJothalamic-Pituitacy-Testicular Axis 

Androgens have many biological effects on accessory sexual organs, a broad 

range of effects on metabolic processes, as well as important organizational and 

activational effects on behavior and cognition. In males, the secretion of androgens 

from the testes is under tight control by the brain via the hypothalamic-pituitary

testicular (HPT) axis. The closed feedback neuroendocrine loop of this axis consist of 

several anatomical structures including the central nervous system, the anterior 

pituitary gland, the testes, and the target organs where androgens ultimately exert 

their biological effects. As depicted in figure 1, the hypothalamus is under positive 

and negative influences by neurotransmitters from higher brain centers including the 

cortex and limbic system, as well as auditory, visual and olfactory centers. These 

signals coordinate the pulsatile release of gonadotropin releasing hormone (GnRH) 

from the medial basal hypothalamus into the hypophyseal-portal blood system 

(Belcheltz et al., 1978). GnRH, in tum, regulates the pulsatile secretion of two 

anterior pituitary gonadotropic hormones, follicle stimulating hormone (FSH) and 

6 
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luteinizing hormone (LH) (Clayton, 1987). Following secretion, these hormones act 

directly on the testes to stimulate the production of sex steroids that function locally to 

promote spermatogenesis or are released into the circulation where they act on many 

peripheral and central tissues. 

The principal hormone of the testes, T, is a C19 steroid with a hydroxyl group 

at the 17 position. As shown in figure 2, T is synthesized from cholesterol in Leydig 

cells and, in humans, is also formed from androstenedione secreted from the adrenal 

cortex. In adult males, more than 95 % of circulating T is of testicular origin and has 

a normal production rate of approximately 6-7 mg per day (Coffey, 1988). Females 

secrete very small amounts of T, probably originating from the ovary and adrenal 

gland (Botella-Llusia et al., 1980; Higuchi and Espey, 1989). T circulates bound to 

albumin ( - 33 % ) and sex hormone binding globulin (SHBG, - 65 % ) as well as in a 

free form ( - 2 % ). T bound to albumin or in its free form are generally available for 

end target action, whereas the fraction bound to SHBG is less functionally active 

(Winters, 1990). In contrast, circulating T in rodents is primarily found in its free 

form. 
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hydroxytriptamine; NE, norepinephrine; GABA, -y-aminobutyric acid; GnRH, 
gonadotropin releasing hormone; LH, luteinizing hormone; FSH, follicle stimulating 
hormone. 
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Within target cells, T has several fates. It can directly bind to AR to exert its 

biological action, or it may be reduced by the intracellular enzyme, 5a-reductase, into 

DHT which specifically binds to the AR with higher affinity than T (Wilbert et al., 

1983). Thus, DHT formation is a way of locally amplifying the action of Tin target 

tissues. DHT is found in the circulation of adult men in levels about one tenth those 

of T (30 to 80 ng/dl). Alternatively, in some cells where the enzyme aromatase is 

present, T can be converted into 17.6-estradiol (see figure 2). This locally produced 

estrogen can then interact with estrogen receptors (ER) if present in the cell. 

To complete the HPT axis and tightly regulate its own production, Tacts at 

the level of the pituitary (Sheckter et al., 1989), hypothalamus (Messi et al., 1988), 

and possibly higher brain centers such as the hippocampus to inhibit further 

production and release of GnRH and LH (figure 1). Although T negatively regulates 

LH secretion, it has little effect on plasma FSH. This differential secretion led to the 

search for inhibin, a glycoprotein produced by the testes that negatively regulates FSH 

secretion at the level of the anterior pituitary gland (Abeyawardene and Plant, 1989). 

Intracellular Actions of Androgens: The Androgen Receptor 

The magnitude of T action in target cells is determined by various factors 

including: the amount of diffusion of free hormone into the cells, the extent of 

metabolic conversions within the cells, the number of receptor proteins available for 

interaction with the steroids, and finally, receptor action at the transcriptional level. 

The transcriptional actions of androgens (T and DHT) in both peripheral and central 
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tissues have been linked in part to their ability to specifically bind and activate AR. 

The AR is a member of a superfamily of nuclear transcription factors which also 

includes other steroid hormone receptors such as the GR, MR, ER, thyroid hormone, 

and progesterone receptor (PR) (Evans, 1988). This structurally related superfamily 

also includes receptors for vitamin D, retinoic acid, as well as the newly described 

orphan receptors which share amino acid sequence homology of steroid hormone 

receptors but for which no known ligands have been found (Ribeiro et al., 1995). All 

of these receptors when bound by ligand influence gene transcription via direct 

interactions with deoxyribonucleic acid (DNA) (Godowski and Picard, 1989). Protein 

chemistry (Wrange and Gustafsson, 1978; Carlstedt-Duke et al., 1988) and 

complementary DNA (cDNA) cloning studies (Hollenberg et al., 1985; Kumar et al., 

1986; Rusconi and Yamamoto, 1987; Lubahn et al., 1988) have confirmed that each 

member of the steroid hormone receptor superfamily is structurally organized into at 

least three specific domains: a highly variable N-terminal region thought to be 

involved in transcriptional activation, a short and well-conserved cysteine-rich central 

domain responsible for DNA binding, and a high homology C-terminal end necessary 

for binding with a specific steroid hormone (Evans, 1988). The domain structure of 

AR will be discussed in more detail later in this review (see pp 36-42). 

Despite the diversity of androgen target tissues, the basic sequence of events 

leading to androgen's effects on gene transcription are thought to be consistent from 

tissue to tissue. AR follows the traditional model of steroid action (O'Malley and 

Tsai, 1992; Tsai and O'Malley, 1994) as diagrammed in figure 3. This pathway 
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involves the passive diffusion of T into cells where it either binds directly to AR or is 

first enzymatically converted into DHT. Once T or DHT binds to the AR, the 

protein undergoes a conformational change and chaperone proteins, such as the 90 

kDa heat shock protein (HSP90), dissociate from the receptor (Marivoet et al., 1992). 

This transformation process exposes dimerization motifs and a zinc-finger DNA 

binding domain within the AR molecule. As a result, AR has the propensity for 

homodimerization with a second activated AR and it is this homodimer that has a high 

affinity for DNA (Forman and Samuels, 1990a; Truss and Beato, 1993; Wong et al., 

1993). Specifically, the activated AR complex binds to specific DNA sequences, 

termed hormone response elements (HREs), which flank target genes (Beato, 1989). 

Once anchored to the HRE, the complex is capable of modulating transcriptional 

activity either in a positive or negative fashion (Rundlett et al., 1990). The activated 

DNA-bound receptor does not act alone to regulate transcription of a target gene, but 

rather secures a complex arrangement of specific stabilizing proteins, transcription 

factors and ribonucleic acid (RNA) polymerases which act together to ultimately 

increase or suppress the transcription process (Rundlett et al. , 1990; Adler et al. , 

1993; Kupfer et al., 1993). These events occur as quickly as 5 minutes after steroid 

injection into an animal, but measurable changes in steady state mRNA levels may 

take between 15 min and several hours (Spelsberg et al., 1989). 
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Figure 3. Schematic representation of the molecular pathway for androgen 
action in target cells. T, testosterone; DHT, dihydrotestosterone; AR, androgen 
receptor; HRE, hormone response element; hsp90, heat shock protein. 
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Non-Genomic Actions of Androgens 

It has become apparent in recent years that not all actions of sex hormones 

involve "slow" gene transcription regulation. Rapid effects of steroid hormones and 

steroid precursor molecules on electrophysiological and neurochemical parameters 

have been reported (reviewed by McEwen, 1991). Although unique membrane 

receptors for steroid hormones have yet to be found, it is has been shown that some 

steroids allostericly interact with the )'-aminobutyric acidA (GABAA) ligand-gated ion 

channel receptor and modulate its activity (Majewski, 1992). The most potent 

naturally occurring steroids with allosteric GABAA -agonistic features are 

tetrahydroprogesterone, tetrahydrodeoxycorticosterone, and the T precursor, 

androsterone (Majewski et al., 1986; Lambert el al., 1987; Turner et al., 1989). In 

contrast, some steroid molecules behave as noncompetitive antagonists at this 

receptor. Pregnenolone sulfate and the sulfate derivative of the T precursor, 

dehydroepiandrosterone (DHEA) belong to this latter category (Majewski and 

Schwartz, 1987; Mienville and Vicini, 1989; Majewski et al., 1990). Interestingly, 

these latter compounds have been found to be synthesized de novo locally within the 

brain at concentrations much greater than those in plasma (LaCroix et al., 1987). 

Thus, these neuroactive steroid metabolites and precursors have been termed 

"neurosteroids" (Baulieu and Robel, 1990). 

Most recently, two anabolic-androgenic steroids, stanozolol and 17 a

methyltestosterone, were found to modulate benzodiazepine binding to the GABAA 

receptor in the male and female rodent brain (Masonis and McCarthy, 1995). This 

14 
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was the first report of direct membrane-bound receptor effects of androgens that are 

also known activators of intracellular ARs. The authors speculate that these 

membrane-bound receptor effects may account for some of the psychotropic responses 

following high doses of anabolic steroids. These findings certainly leave the door 

open for possible rapid membrane-bound receptor effects of T and DHT, however, to 

date, such reports are few (Teyler et al. , 1980). 

Localization of Androgen Receptors 

AR expression has been detected in a wide range of tissues by various methods 

including in vivo autoradiography with radioactive T or DHT, in vitro binding assays, 

in situ hybridization, polymerase chain reaction (PCR), and immunocytochemistry. In 

peripheral tissues, AR expression has been found in accessory male sex glands (e.g. 

ventral prostate (VP), seminal vesicles, and epididymis; Mangan et al., 1968; 

Anderson and Liao, 1968; Sar et al., 1970; Hansson and Tveter, 1971; Husmann et 

al., 1990; Prins et al., 1991; Blok et al., 1992a), skeletal muscle (Saartok et al., 

1984), male external genitalia (e.g. penis and testes; Takane et al., 1990; Blok et al., 

1991, 1992a), bone (Colvard et al., 1989), adrenal gland (Osada et al., 1993), uterus 

(Giannopoulos, 1973), as well as several other organs (e.g. kidney, lung, and liver; 

Roy et al., 1974; Dube and Tremblay, 1974) and glands (e.g. anterior pituitary, 

sweat, and sebaceous; Choudhry et al., 1992; Osada et al., 1993). This anatomical 



distribution coincides with the regions known to mediate important peripheral 

androgen-dependent functions such as the development and maintenance of the male 

genitalia and secondary sex characteristics, hypertrophy of skeletal muscle, 

spermatogenesis, mineralization of bone and male-patterned hair growth (or loss) 

(Winters, 1990). 

16 

Many studies have also localized AR expression to specific areas of the CNS 

including the hypothalamus, medial preoptic area, cortex, amygdala, thalamus, bed 

nucleus of the stria terminalis, hippocampus, motor nuclei and brain stem (Sar and 

Stumpf, 1973, 1974; Barley et al., 1975; Banda et al., 1986, 1987a; Roselli et al., 

1989; Simerly et al., 1990; Sarrieau et al., 1990; Clancy et al., 1992, 1994; Burgess 

and Handa, 1993a; Osada et al., 1993). Several studies have confirmed that the 

distribution of AR mRNA in the brain and peripheral tissues match the distribution of 

the AR protein (Simerly et al., 1990; Quarmby et al., 1990; Takane et al., 1991; 

Blok et al., 1992a; Menard and Harlan, 1993). Most studies have focused on the 

areas of the brain involved in reproductive behaviors or endocrine feedback 

mechanisms. The reports of AR expression in extrahypothalamic regions such as the 

hippocampus and cortex have been meager. Interestingly, studies have found no 

dramatic sexual differences in AR mRNA distribution or AR binding levels in the 

adult rat brain (Simerly et al., 1990; Handa et al., 1986). Together, these findings 

suggest an important role of androgens in CNS function. An overview of androgen 

action in the brain will be covered in the following section. 

As methods to detect AR have become more sensitive, it has become harder to 
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find tissues that fail to express AR at some level. However, a few tissues, including 

the spleen, are considered to be AR negative (Takada et al., 1990; Osada et al., 

1993). Thus, it appears that sensitivity to androgens may be a function of the 

changing AR level in cells and the hormonal milieu, than strictly the presence or 

absence of AR expression. 

Physiological Actions of Androgens in the CNS: Organizational Versus Activational 

Effects 

Such widespread localization of AR in the brain suggests that androgens 

influence the action of most neurons (Mooradian et al., 1987). Typically, the 

physiologic effects of gonadal steroids have been divided into those that are 

organizational, which occur during fetal development and the early neonatal period, 

and those that are activational, which occur later in life (Pheonix et al., 1959, Young 

et al., 1964). The former effects are considered relatively permanent changes in the 

size or connectivity of neural pathways, metabolism or steroid responsiveness of 

neurons and result in the development of sexually dimorphic brain structures and sex

typed behavior (Arnold and Breedlove, 1985). For example, in rodents, the amount 

and timing of gonadal steroid release in the perinatal period determines whether the 

male copulatory behavior, mounting, or the female behavior, lordosis, will manifest 

in adulthood (Sodersten, 1978). A possible correlate for this behavioral change 



18 

comes from studies demonstrating that androgen exposure in the late fetal or early 

neonatal period in the male leads to the enlargement of a sexually dimorphic preoptic

anterior hypothalamic nucleus (Gorski et al., 1978). Additionally, castration of male 

fetuses or neonatal male rats results in a decrease in size of this nucleus and 

corresponding changes in sexual behavior (Raisman and Field, 1973; Arnold and 

Gorski, 1984). In humans, LeVay (1991) reported a sex difference in one of several 

interstitial nuclei of the anterior hypothalamus, termed INAH-3. His finding that 

INAH-3 was larger in healthy heterosexual men compared to healthy females or 

homosexual men with acquired immunodeficiency syndrome (AIDS) suggested that 

homosexual men may have brain organizational development closer to that of women 

than men. Some researchers have argued that these findings in homosexual men may 

have resulted from AIDS-related pathology, so studies are currently underway in 

homosexual men who have died from other causes. Several other studies have 

reported significant structural differences in male and female brain anatomy that may 

be the result of hormonal influences in early development and may account for some 

of the sexually dimorphic behaviors discussed below (Swaab and Fliers, 1985; 

Holloway and de Lascoste, 1986; Allen and Gorski, 1986, 1987; Allen et al., 1989). 

Although the relative contribution of androgen binding to AR or the necessity of 

aromatization to estrogen and thus, ER action, to brain organizational processes is 

still a matter of debate (Feder, 1984; Breedlove, 1992), it appears that AR activation 

plays some part in the hard wiring of neuronal circuits during development (Goldfoot 

and van der Werff ten Bosch, 1975; Baum eJ af., 1982; Meaney and McEwen, 1986). 



Studies examining the activational effects of androgens on neural systems 

throughout puberty and adulthood have lagged behind the studies pinpointing 

hormonal influences during development. This is partially due to the ambiguity of 

measurable endpoints such as "motivation", "emotion", "spatial ability" and 

"learning" in animal models and also partially due to the difficulty in removing 

external environmental influences that may compensate for the effects of steroids. 

Additionally, some of the discrete functions of androgens cannot be assigned to one 

particular brain region, which makes studying the relationship between androgen 

action and behavior more difficult. 
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Hormonal effects in adulthood are termed "activational" because they activate 

neural pathways which are already present and presumably, relatively static in nature. 

In general, activational effects are considered transient and fluctuate in accordance 

with the level of circulating hormone. For example, in the rodent, the expression of 

male sexual behavior is partially dependent on the appropriate circulating levels of 

androgens, as castration of the adult male rat eliminates or reduces the frequency of 

male sexual behavior, and the administration of T can reinstate the sexual response to 

the appropriate sensory cues (Mitchell and Stewart, 1989; Baum, 1992). The link 

between circulating androgen levels and sex behavior in humans is more tenuous. 

Although castration has shown to reduce libido, this varies dramatically among 

individuals (Carter, 1992). Studies of sexual behavior in normal men is difficult as 

well. Certainly, sexual behavior is under the control of powerful external influences, 

such as partner preference and sexual partner availability. In every day life, these 
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influences may overcome individual variations in circulating hormone levels to control 

sexual behavior patterns. 

Like sexual behavior, the effect of androgens on aggression, appears to have 

organizational and activational components (Swerdloff et al., 1992). Male laboratory 

animals typically exhibit more aggressive behaviors than females (see review by 

Beatty, 1984). This sex difference is controlled by the presence or absence of T 

during certain critical developmental periods, as well as during puberty and 

adulthood. Edwards (1968) showed that male mice were relatively nonaggressive if 

castrated during early life and given androgen replacement therapy in adulthood. He 

also showed that genetically female mice would become as hostile as male mice if 

given T during fetal development and into adulthood. The development of aggression 

in male mice corresponds to the increases in circulating Tat the time of puberty 

(McKinney and Desjardins, 1973; Gandelman, 1973). Adult castration reduces this 

behavior, while T administration restores it (Gandelman and vom Saal, 1975). 

Female rodents also display aggressive behaviors if given Tin adulthood, however the 

administration of very high levels of androgen for prolonged periods was necessary to 

consistently elicit the response (Svare et al., 1974; Barkley and Goldman, 1977). 

These studies suggest that the female rodent brain architecture is capable of 

responding to androgen but is generally less sensitive to the stimulus. Several reports 

indicate that both DHT and estrogen are important in stimulating intermale aggression 

and infanticide (Finney and Erpino, 1976; Svare, 1979) suggesting that both AR and 

ER activation are influential in the process. 
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Research examining the involvement of androgens in human aggressive 

behavior is somewhat more limited and, at best, correlative in nature. Studying 

healthy young males, Persky et al. (1971) showed a positive correlation between 

circulating levels of T and measures of dominance, hostility and aggressive behavior. 

Another study reported no such correlations (Brown and Davis, 1975). More 

recently, reports of violent behaviors associated with the abuse of anabolic-androgenic 

steroids (Strauss et al., 1982; Haupt and Rovere, 1984; Lubell, 1989; Telander and 

Noden, 1989; Svare, 1990) also suggest some correlation between circulating 

androgen level and aggressive behavior in humans. It is still unclear as to the exact 

areas of the CNS most involved in the expression of aggressive behavior, however, 

the amygdala (Luiten et al., 1985; Meaney and McEwen, 1986), hypothalamus and 

hippocampus (Siegal and Edinger, 1983) have been implicated. 

Other behaviors that have been found to be modified by androgen action in the 

CNS include activity level (Broida and Svare, 1984), food intake (Bell and Zucker, 

1971), sensation and perception (Pietras and Moulton, 1974), mood (Pope and Katz, 

1988), and learning (Beatty and Beatty, 1970; Chambers, 1976; Flood et al., 1992). 

As with aggressive behavior, the brain areas most associated with these functions have 

not been well defined. Despite this, such widespread effects of androgens on many 

defined behaviors implicate a physiological role for AR in higher brain centers such 

as the cortex and hippocampus. 

The effects of sex steroids exclusively on hippocampal mediated behaviors and 

physiology are discussed below. 
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Hippocampal Structure and Function: Effects of Gonadal Hormones 

Anatomy of the Hippocampus 

The hippocampus is a centrally-located component of the limbic system and 

has been implicated in wide variety of behaviors. In the rodent, the hippocampus is a 

cashew-shaped structure situated along the curvature of the lateral ventricle (figure 4). 

Early neuroanatomists thought that the hippocampus resembled a seahorse, which is 

how it got its name (hippocampus is Greek for seahorse). 

The cellular organization of the hippocampus is relatively simple in 

comparison to other brain regions which makes it uniquely suited for 

electrophysiologic study. The hippocampus proper is composed of three regions: the 

subiculum (adjacent to the entorhinal cortex), the Comu Ammonis (CA1-CA3) 

pyramidal cell regions, and the dentate gyros (DG) which contains granule cells. 

Pyramidal cells are found in a narrow layer, 3-5 cells thick, extending the length of 

the horn. The CAI field is composed of densely-packed, medium-sized cells. The 

CA2 and CA3 regions contain larger, more loosely packed cells. The cells of the 

CA2 region differ from those of the CA3 field; they do not have dendritic spines on 

their apical dendrites. The DG contains one layer of very compacted granule cells 

stacked 4-10 cells deep (Amaral and Witter, 1989). Although this area has been best 

studied in the rodent model, the same basic pattern of organization is found in higher 

species. 

Studies examining the connectivity of hippocampal neurons have revealed a 
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"trisynaptic circuit" with readily identifiable cell populations (reviewed by Amaral and 

Witter, 1989). The location, internal circuitry and defined regions of the rat 

hippocampus are depicted in figure 4. The main input to the hippocampus comes 

through the perforant path from the overlying region of the cortex, called the 

entorhinal cortex. Stimulation of the entorhinal inputs (perforant path) results in the 

activation of granule cells in the DG. These cells, in turn, activate the pyramidal 

cells of the CA3 region through the mossy fiber system. The axons of the CA3 

pyramidal cells bifurcate, sending efferent stimuli out through the fimbria to the 

fornix as well as sending collateral branches (Schaffer collaterals) which synapse on 

the apical dendrites of the CA 1 pyramidal cells. The efferents arising from CA 1 

pyramidal cells and exiting to the subiculum provide the major output for the 

hippocampal formation and complete the unidirectional open-loop circuit. These 

intrinsic connections have been verified electrophysiologically (Swanson et al., 1982). 

As currently understood, this loop is important in receiving information and 

integrating the outgoing signals from the hippocampus. Therefore, interruption of this 

loop at any point might ultimately disrupt or alter function. 

The extrinsic projections of the CA 1 field are extensive and include the 

subiculum, lateral septa! nucleus, olfactory bulb, nucleus accumbens, perirhinal 

cortex, prefrontal cortex, amygdala, hypothalamus, and the contralateral hippocampus 

(Swanson and Cowan, 1977; Van Groen and Wyss, 1990). In addition, the 

projections of the CA 1 field are topographically organized with the septa! third of 

CAl projecting to different cortical regions than the temporal third of CAl (Van 
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Groen and Wyss, 1990). Interestingly, many of these projections to the neocortex are 

reciprocal and enable this structure to ultimately compare and integrate incoming 

information with previously stored information (Squire and Zola-Morgan, 1988). 

Hippocampal afferents are as widespread as it's efferents. Neurons from every level 

of the diencephalon and brainstem project directly to some part of the hippocampus 

(Wyss et al., 1979). 

After examining the extensive connections of the hippocampus, it is not 

surprising that this structure has been implicated in a variety of behavioral functions. 

These include emotion (Derryberry and Tucker, 1992), motivation (Jarrard, 1973), 

memory and learning (Teyler and DiScenna, 1985; Whishaw, 1987; Zola-Morgan and 

Squire, 1990; Eichenbaum and Otto, 1992), spatial mapping (O'Keefe and Nadel, 

1974; Olten, 1977; Olten et al., 1979; Nadel and McDonald, 1980; Sutherland et al., 

1982; Bouffard and Jarrard, 1988; Best and Thompson, 1989), and cognition 

(O'Keefe and Dostrosvsky, 1971). The hippocampus has also been implicated as an 

important target for neuronal hormonal feedback regulation (reviewed by Jacobson 

and Sapolsky, 1991; Morano et al., 1994). 
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Figure 4. The hippocampus in the rat brain. The top illustration shows the general 
position of the hippocampus in the rat brain. A coronal section of one half of the 
hippocampus is enlarged to depict the cell body fields and trisynaptic circuit. The 
perforant pathway (pp) arrives from the overlying cortex and perforates the dentate 
gyrus (DG). The mossy fibers of the DG synapse on CA3 pyramidal cells which 
send Schaffer collaterals (Sch) that either exit through the fimbria (fim) or synapse 
onto the apical dendrites of CAl pyramidal cells. Efferents from CAl neurons exit to 
the subiculum (Sub) to complete the circuit. 
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SYxual Dimorphisms in Hippocampal Structure: Organizational Androgens 

As earlier described for certain hypothalamic nuclei, many sex differences in 

the mammalian CNS are developmentally influenced by androgens. There is a 

growing body of literature demonstrating a relationship between gonadal hormones 

and gender differences in spatial ability (Beatty, 1984; Gaulin and Fitzgerald, 1986; 

Roof, 1993; Luine, 1994). Unfortunately, there are few studies describing the 

possible anatomical substrates through which gonadal hormones may produce this 

effect. The hippocampus is a likely candidate due to its proposed involvement in 

spatial navigation (O'Keefe and Nadel, 1974; Olten, 1977; Olten et al., 1979; Nadel 

and McDonald, 1980; Sutherland et al., 1982, 1983; Bouffard and Jarrard, 1988; 

Best and Thompson, 1989) as well as its sensitivity to hormones during development 

(Pfaff, 1966; O'Keefe and Handa, 1990). Studies have found that the levels of 

several neurotransmitters, and their receptors, in the hippocampal formation are 

sexually dimorphic (reviewed by Loy, 1986) and could contribute to sex differences 

in behavior later in life. Several other studies have demonstrated morphological 

differences in the hippocampi of male and female rodents. Unfortunately, the 

measurements used by the various investigators are somewhat convoluted and, thus, 

the data are difficult to interpret. Wilmer and Wilmer (1985) showed that, in certain 

strains of mice, females had fewer granule cells than males. Yanai (1979) did not 

observe this dimorphism in rats. Juraska and colleagues have made extensive size 

measurements of hippocampal granule neuron dendritic arbors that are believed to 

reflect the number of synapses (reviewed by Juraslca, 1991). Subtle differences 
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between similarly treated, postpubertal male and female littermates were observed, 

but more interestingly, the change in the size of dendritic tree branching was in 

opposite directions following environmental enrichment of male and female rats 

(Juraska et al., 1985). Castration of male rats at birth resulted in female-like 

dendritic branching patterns of granule cells and suggested that T, acting either during 

early life or at puberty alters dendritic tree plasticity (Juraska et al., 1988). Recently, 

Roof (1993) also reported a sexual dimorphism in the DG of pre-pubescent rats. In 

this study, the granule cell layer of male and T-treated (at postnatal days 3 and 5) 

females was 8-9% greater in width and length and was asymmetrical as compared to 

untreated females. Additionally, the size of the DG correlated with performance on a 

spatial task (Morris water maze). Overall, males with the larger DG layer performed 

better. These anatomical and behavioral differences were still present in adult rats 

similarly treated soon after birth (Roof and Havens, 1992). Since little to no AR or 

ER expression have been found in the DG of the adult rat hippocampus (Stumpf and 

Sar, 1978; Loy et al., 1988; Maggi et al., 1989; Simerly et al., 1990), it is not clear 

how the effects on granule cells manifest. Most speculate that they are a function of 

transsynaptic influences, however, there is little information on the distribution of AR 

and ER expression in the hippocampus during development. 

Strangely, few studies have examined other cell body regions of the 

hippocampus for sexual dimorphisms. Meyer et al. (1978) demonstrated that pre

puberal castration of male rats resulted in an altered number of synaptic spines on 

CAI pyramidal cells, but not on granule cells of the DG. Since hippocampal AR and 



ER are highly expressed in the CAI region (Simerly et al., 1990; Maggi et al., 

1989), Meyer's findings could be attributed to a more direct effect of androgen or 

estrogen on hippocampal dendritic morphology. 
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Whether such differences in hippocampal structure occur in humans and play a 

part in the well documented sex differences in spatial abilities and verbal skills 

(Jarvik, 1975; Kimura, 1992) has yet to be elucidated and will be difficult to ascertain 

because of the inability to manipulate the hormonal milieu in the human fetus. Some 

clues have come from female fetuses exposed to high levels of adrenal androgens due 

to congenital adrenal hyperplasia and those unknowingly exposed to the synthetic 

estrogen, diethylstilbestrol. Later in life, these girls exhibited "masculinized" 

behavior patterns such as superior spatial skills and lower verbal I. Q. scores (Hines 

and Shipley, 1984; Resnick et al., 1986; Nass and Baker, 1991). Although far from 

conclusive, these data do implicate gonadal hormones in the hard-wiring of higher 

neuronal systems, of which, the hippocampus is a likely candidate. 

Hippocampal Neuronal Plasticity 

No one has established conclusively how the brain forms new memories or 

generates such complex outcomes as emotion or cognition. However, it is known that 

neurons, especially those in the hippocampus, can change their pattern of dendritic 

synaptic connections and/or electrophysiological responses following a learning 

experience (Doyere et al., 1993; Lisman and Harris, 1993) or damage (Onodera et 

al., 1990; Levisohn and Isacson, 1991). These changes are referred to collectively as 
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neuronal plasticity. The role gonadal hormones play in neuronal plasticity in areas of 

the brain not associated with reproduction are just beginning to be explored. 

The actions of estrogen, the primary circulating gonadal hormone in females, 

have been studied within the rat hippocampal formation to a greater extent than 

androgen. Striking examples of estrogen action in the adult rat hippocampus were 

demonstrated by Woolley and McEwen (1992, 1993) and Gould et al. (1990). These 

investigators found that estrogen increased the dendritic spine density of CA 1 neurons 

and that these changes fluctuated in accordance to the 4-5 day menstrual cycle of the 

adult female rat. In addition, the removal of circulating estrogen by ovariectomy 

resulted in dramatic decreases in dendritic spine density. These effects were specific 

for CAl pyramidal cells, as ovariectomy or steroid replacement did not affect spine 

density in CA3 pyramidal cells or granule cells of the DG. Similar changes in spine 

density in response to estrogen have been described in ventromedial hypothalamic 

neurons (Frankfurt et al., 1990); an area where estrogen likely acts to control some 

aspects of reproductive behavior and hormone secretion. Since changes in the number 

or size of hippocampal dendritic spines appears to be correlated with changes in the 

synapses that they receive, as well as with altered neuronal electrophysiology (Chang 

and Greenough, 1984), and possibly the modification of behavior or learning 

(Purpura, 1974; De Voogd et al., 1985; Popov and Bocharova, 1992), these studies 

provide an exciting anatomical correlate to fluctuating behavior patterns and sexually 

dimorphic behavior in adulthood. Interestingly, women did not perform as well on 

certain spatial tasks during the preovulatory estrogen surge as compared to other times 
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of the menstrual cycle characterized by lower estradiol levels (Komenich et al., 1978; 

Hampson and Kimura, 1988, 1992; Hampson, 1990). Although the morphological 

alterations in hippocampal neurons in response to estrogen have only been 

demonstrated in a female rat model, these data provide a strong basis for establishing 

the relationship between circulating gonadal hormones and behavior. 

In addition to the modulation of dendritic spine density, estrogens have been 

found to rapidly (within 20 minutes) alter CAI cell neuronal excitability in response 

to the stimulation of glutaminergic Schaffer collaterals (Teyler et al., 1980; Wong and 

Moss, 1992). Additionally, two days following subcutaneous estrogen injections, both 

glutamate and GABA receptor binding were upregulated in this area (Schumacher et 

al., 1989; Weiland, 1992). These effects may contribute to estrogens known part in 

the lowering of the threshold for seizures originating in the hippocampus (Terasawa 

and Timiras, 1968). There is also a considerable amount of evidence to suggest that 

estrogen enhances mood in women (Ditkoff et al., 1991; Palinkas and Barrett-Conner, 

1992; Sherwin, 1994). Although the mechanisms underlying this effect have not been 

investigated, areas in the limbic system, including the hippocampus, are likely targets 

for estrogen action. Taken together, these studies further indicate that estrogen has 

long term activational effects on hippocampal physiology. 

Studies examining androgen effects on hippocampal plasticity have not been as 

plentiful as those performed with estrogen, even though it appears that the 

hippocampus contains a higher concentration of AR mRNA than ER mRNA (Simerly 

et al., 1990). Flood and Roberts (1988) demonstrated that a single subcutaneous 
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injection of the largely adrenal-derived, androgenic precursor steroid, DHEA (see 

figure 2), as well as its sulfated derivative, DHEAS, strikingly improved T-maze 

footshock active avoidance training (F AAT) in middle-aged and old mice. The same 

group later showed that immediate post-training intracerebroventricular administration 

of various androgenic compounds including pregnenolone, DHEA, androstenedione, T 

and DHT all improved retention for FAAT (Flood et al., 1992). The authors have 

speculated that the memory-enhancing effects of steroids lasting long after fast neural 

events have ceased may have been through their modulation of the rate of 

transcription of cIEGs. In contrast, Goudsmit et al. (1990) found that T 

administration did not reverse age-related spatial memory deficits in rats and may 

actually impair retention in middle-aged rats. Clark et al. (1995) also did not observe 

any improvements or impairments in the acquisition or retention of the Morris water 

maze when male rats were given high levels of anabolic-androgenic steroids for 12 

weeks. These conflicting data are difficult to resolve since there is very little 

consistency in the length and mode of androgen administration, as well as in the 

behavioral "learning" tasks employed. 

The underlying cellular mechanisms of androgen action on hippocampal 

physiology are just beginning to be explored. For example, Kus et al. (1995) have 

found that treatment of castrated adult male rats with the AR-selective androgen, 

dihydrotestosterone propionate (DHTP), decreased the binding of the N-methyl-D

aspartate (NMDA) receptor antagonist, [3H]MK-801, in CAl pyramidal cells. 

NMDA receptors are known to mediate the actions of glutamate, the major excitatory 
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neurotransmitter in the hippocampus and, in particular, the Schaffer collaterals 

synapsing on CAl pyramidal cells. Although far from being well understood, these 

data suggest that in vivo AR activation can alter normal adult hippocampal physiology 

and may affect learning. 

The most direct evidence for androgenic effects on hippocampal neurons has 

been demonstrated using an in vitro hippocampal slice preparation. Gonadal steroids 

have been shown to increase neuronal excitability in the female rodent hippocampal 

CAl pyramidal cells (Teyler et al., 1980). However, in this study no consistent 

effects were found in males. In conjunction with studies being performed in our 

laboratory, Pouliot et al. (1995) demonstrated that DHTP prevents NMDA's 

excitotoxic electrophysiologic effects in CAl pyramidal cells. These events are likely 

AR mediated since the effects were only observed after several hours of androgen 

treatment. These findings are consistent with the NMDA receptor binding studies of 

Kus et al. (1995) and may be an important underlying mechanism for behavior since 

it has been shown that the activation of hippocampal glutamate receptors mediate 

processes involved in the synaptic plasticity associated with learning and memory 

(Morris et al., 1986; Tonkiss et al., 1988) epileptogenesis (Gilbert, 1988) and 

schizophrenia (Collinge and Curtis, 1991). 

The effects of androgens on hippocampal physiology are also seen following 

damage. When the hippocampus is deafferented, the surviving neurons rapidly form 

new branches and new connections to compensate for the loss. This process is called 

sprouting and is considered another form of neuronal plasticity. Since learning is also 
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believed to utilize this type of plasticity, it is a convenient model to employ when 

examining the role of gonadal hormones in cognition. As had been found with 

dendritic branching in the undamaged rat hippocampus, estrogen was found to be 

critical for maintaining the sprouting response to differentiation in females (Morse et 

al., 1992; Scheff et al., 1988a). Androgens did not appear to act similarly in males. 

Neither castration nor adrenalectomy alone had any effect on the sprouting response 

(Scheff et al., 1988b; Scheff and Dekosky, 1989). However, if males were both 

castrated and adrenalectomized, sprouting was decreased. In this instance, it appears 

that the hormones secreted from the gonads and adrenal gland serve complementary 

functions which maintain sprouting. The interaction of gonadal and adrenal derived 

hormones should likely be taken into greater consideration when examining effects in 

the hippocampus since this area is rich in several types of steroid receptors (Van 

Eekelen et al., 1988; Simerly et al., 1990; Kerr el al., 1995a). 

Few studies have examined the direct effects of androgens on human adult 

hippocampal function probably due to the fact that men do not show large natural 

fluctuations in circulating T levels over a set period of time (unlike women whose 

estrogen levels fluctuate throughout the menstrual cycle). Thus, correlating androgen 

levels and behavior is much harder in men. In spite of these limitations, Hampson 

and Kimura (1988) found that spatial reasoning in men varied in relation to small 

Yearly fluctuations of their circulating T levels. Additionally, studies in men have 

demonstrated a positive correlation between circulating T levels and spatial ability, 

cheerfulness, and some mood traits (Adler et al., 1986; Hubert, 1990). A negative 



correlation between T and DHT levels and verbal ability (O'Carroll et al., 1985; 

Christianse and Krussman, 1987) and anxiety (Altschuler et al., 1990) in men has 
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also been reported. Interestingly, women having above average plasma levels of free 

T scored lower on a visual memory task; this task is typically performed better by 

women than men (Phillips and Sherwin, 1991). These data fit well with a comparison 

of spatial ability, mathematical reasoning, and perceptual speed in both men and 

women revealing that women with higher than normal T levels, and men with lower 

than average T levels, performed best on tests which are hippocampally mediated 

(Shute et al., 1983; Gouchie and Kimura, 1991; Kimura, 1992). These data suggest 

that an undefined "optimum" level of Tis required for superior cognitive function and 

that either too little or too much is detrimental to performance. In support of these 

studies, T supplementation to older men, who naturally have up to a 40% decline in 

free circulating T levels (Davidson et al., 1983; Vermeulen, 1991), has proved 

beneficial for spatial cognition, but was not effective in the improvement of verbal or 

visual memory, motor speed, cognitive flexibility, or mood (Janowski et al., 1994). 

This latter study also implies that the hippocampus remains sensitive to androgens 

during aging. 

Many of the behavioral studies mentioned in this section suggest subtle 

activational effects of androgen on hippocampal function throughout life, however, 

few actually pinpoint the exact location of the androgenic effect and do not fully 

elucidate the cellular mechanisms involved. Further studies are needed to elucidate 

the processes involved in androgen modulation of hippocampal synaptic events and 
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neuronal plasticity. The use of molecular tools to study the transcriptional effects of 

steroid receptors and their interactions with various second messenger systems and 

other intracellular pathways should allow progress in this complex area of study. 

Structure of the Androgen Receptor 

Although both the human and rat androgen receptors have been studied using 

biochemical methods for many years, the androgen receptor has been cloned only 

recently (Chang et al., 1988; Lubahn et al., 1988; Tan et al., 1988; Trapman et al., 

1988; Brinkmann et al., 1989; Faber el al., 1989; Tilly et al., 1989; Gaspar et al., 

1990; He et al., 1990). DNA sequence analysis confirmed that the androgen receptor 

has the same functional domain structure as other steroid hormone receptors 

(discussed in detail below) and both the rat and human androgen receptors share 

complete amino acid sequence identity in their DNA-binding and steroid-binding 

domains (Tan et al., 1988). The rat androgen receptor, has a cDNA sequence 4191 

base pairs in length, and encoding for 902 amino acids which results in a protein of 

approximately 98 kilodalton molecular weight (Tan et al., 1988). The complete 

androgen receptor gene encompasses at least 90 lcilobases of DNA in the q 11-12 

region of the X chromosome (Lubahn et al., 1988; Brinkmann et al., 1989) and 

includes eight exons and seven intervening introns (Jarme and Shan, 1991). 
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Domain Structure of the AR 

As with the other members of the steroid hormone receptor superfamily, the 

AR can be divided into four distinct functional regions. Starting from the N-terminal 

the regions are as follows: the transactivation domain, the DNA-binding region, the 

hinge region and the ligand binding sequence (reviewed by Godowski and Picard, 

1989 and Jfume et al., 1993). This characteristic domain organization of AR is 

depicted in figure 5. Although the AR gene and protein may appear modular in 

nature, each part works in concert with the others such that disruption of one activity 

can severely cripple the normal action of AR. A brief description of each of the 

functional domains follows. 

The Transactivation Domain 

The transactivation domain, also termed the A/B region or hypervariable 

domain, is the least understood region as its function has not been delineated in great 

detail for any of the intracellular receptors. This domain has the least conserved 

amino acid sequence among the superfamily of intracellular receptors. The 

hypervariability renders this area the most immunogenic part of the protein and it is 

likely to play a role in the specificity of receptor action. Data from studies examining 

the two distinct PR forms that differ solely in the length of their A/B domain suggest 

that this area optimizes the transactivation process of the receptor as well as 

determines target gene specificity (Tora et al., 1988; Kastner et al., 1990). The 

entire coding sequence for the 559 amino acid-long ARN-terminal domain, along 
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with a 1-Kb-long 5'-untranslated sequence (Tilley et al., 1990a) was found to be 

present in the large first exon of the AR gene (Faber et al., 1989; Kuiper et al., 

1989). Interestingly, the N-terminal domains of AR, MR, GR and PR make up 

approximately half the size of each of the receptors. This is exceptionally large as 

compared to other nuclear receptors and coincides with the observation that AR, MR, 

GR and PR all share the same HRE sequence on DNA (Forman and Samuels, 1990b; 

Freedman and Luisi, 1993). Several studies have demonstrated that particular 

stretches of the transactivational region of the AR are critical for cell- and receptor

specific regulation of target genes presumably by interacting with components of core 

transcriptional machinery, coactivators, or other transactivators (Simental et al., 1991; 

Adler et al., 1992; Palvimo et al., 1993; Kupfer eJ al., 1993; Jenster et al., 1995). 

This may help to explain the large size of this region and how four receptors that 

have the potential to bind to the same HRE can elicit different effects through the use 

of their divergent N-terminal domains. It has also become apparent from the analysis 

of AR deletion mutants and AR!GR chimeras that sequences within the long 

transactivation domain also have specific roles in stabilizing the AR by slowing the 

rate of ligand dissociation and preventing AR degradation (Zhou et al. , 1995), in 

modulating nuclear import of the receptor complex (Simental et al., 1991; Wilson et 

al., 1991; Zhou et al., 1994a) and AR dimerization (Wong et al., 1993). 
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Figure 5. Schematic representation of the domain structure of the androgen 
receptor. Amino acid length is based on the human receptor sequence published by 
Lubahn et al. (1988). 
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.QNA Bindin~ Domain 

All steroid receptors, including the AR, recognize specific DNA sequences 

with a well-conserved functional domain encompassing 66-68 amino acid residues 

termed the DNA binding domain (DBD). This cysteine-rich region folds into two 

motifs that are variations of "zinc fingers" found in other nucleic acid binding 
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proteins (Miller et al., 1985). Each finger is comprised of two pairs of cysteine 

residues that coordinate in a tetrahedral fashion around a single zinc atom (Freedman 

et al., 1988). The N-terminal zinc finger is largely responsible for DNA recognition, 

whereas the second finger appears to modulate the dimerization of the two receptor 

molecules during its association with DNA (Green et al., 1988; Danielsen et al., 

1989; Umesono and Evans, 1989; Luisi el al., 1991). The AR DBD displays 

tremendous amino acid homology with that of the MR, GR and PR. As a result, all 

four receptors recognize the same 15 basepair palindromic-like nucleic acid sequence 

flanking target genes. This sequence (5'-GGTACANNNTGTTCT-3') was first 

described as the consensus glucocorticoid response element (GRE) (Beato, 1989; 

Roche et al., 1992; Zilliacus el al., 1995), but now has been more generally termed 

an HRE. Research is currently underway to determine how four receptors with 

obviously different functions can distinguish a common HRE upstream of target genes 

(Adler et al., 1993; Robins et al., 1994). This distinction would be especially critical 

in areas like the hippocampus where AR, MR and GR are all highly expressed and 

are likely co-localized within certain neurons (Kerr et al., 1995b). As discussed 

above, findings indicate that the divergent N-terminal domain likely makes protein-
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protein interactions that specifies transcriptional regulation to some degree. It has 

also become apparent that HRE orientation within the enhancer region of target genes 

affects hormone receptor stringency (Adler el al., 1993). Additionally, it can not be 

ruled out that some overlap of target gene expression may occur in cells containing 

more than one of these receptors. 

The Hinge Region 

Next to the DBD, a variable hinge region exists (region D) in the AR protein. 

This area may allow the AR protein to bend or alter its conformation and has also 

been shown to contain part of a nuclear targeting signal (Zhou el al., 1994a). 

Although not yet well studied specifically for the AR, the analysis of the action of the 

highly homologous GR has demonstrated that the hinge region also affects the affinity 

of the receptor for DNA (Rusconi and Yamamoto, 1987). 

Steroid Binding Domain 

The C-terminal region of the AR spans about 250 amino acid residues (653-

910) and is primarily involved in ligand binding. This region, termed the steroid 

binding domain (SBD), forms a hydrophobic pocket that exhibits high affinity for 

androgens. Surprisingly, the SBD of AR displays a 50-55 % homology with similar 

domains in GR and PR (Trapman et al. , 198 8; Hollenberg el al. , 1985; Mishari el 

al., 1987). This homology may account for a few reports of promiscuous binding of 

androgens, progestins and glucocorticoids with more than one receptor type (Mayer 



and Rosen, 1975; Janne and Bardin, 1984a, 1984b; Ahima and Harlan, 1992; 

Kemppainen et al., 1992). In addition to hormone binding, a 54 amino acid stretch 

of AR's SBD is required for the interaction of the large docking heat shock protein, 

HSP90 (Marivoet et al., 1992). 

AR Messen~er Ribonucleic Acid 
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The exact size and number of the androgen receptor mRNA isoforms have 

been controversial and vary depending on the species and tissue analyzed. A major 

form, approximately 11 kb in length, has consistently been reported in peripheral 

tissues including prostate, skeletal muscle, liver, kidney, seminal vesicle, epididymis, 

anterior pituitary gland and coagulating gland (Tan et al., 1988; Trapman et al., 

1988; McLachlan et al., 1991; Burgess and Banda, 1993a). In addition to this, a 

novel 9.3 kb transcript has been detected in rat neural tissues (McLachlan et al., 

1991; Burgess and Banda, 1993a). The smaller form was prominent in the cortex, 

cerebellum, and brain stem; while in the hippocampus and hypothalamus, both the 

larger and smaller transcripts were expressed to a similar degree. It is thought that 

the two mRNA species differ in part in the length of their 5'-untranslated region (5'

UTR), but complete sequence analysis is still necessary. The significance of the 

smaller form found predominantly in the CNS is not known. The 5 '-UTR of the 

human AR mRNA, that spans about 1100 bp, has been shown to play an essential role 

in the induction of AR translation (Mizokami and Chang, 1994). This 5'-UTR is one 

of the longest reported 5'-UTR in mammalian systems (Trapman et al., 1988). 
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Whether both transcripts found in the rat CNS encode for fully functional androgen 

receptor proteins and are regulated or translated similarly are questions remaining to 

be answered. Although some earlier studies suggested a two receptor system for the 

binding of T and DHT (Sheridan, 1981, 1991), it appears unlikely that two unique 

ARs are translated from each of the mRNA transcripts as virtually all well-controlled 

biochemical studies have found a single androgen binding site in both peripheral 

tissues and the brain (Wilson and French, 1976; Tilley et al., 1990b). 

The AR Protein: Steroid Binding. Receptor Recycling and Metabolism 

The AR is a large phosphoprotein that is found within peripheral target cells in 

relatively low abundance (2000-6000 receptors/cell and less than 100 femtomoles 

DHT binding sites per milligram protein) as compared to most membrane-bound 

receptors (Fang and Liao, 1971). In brain tissue, AR concentration is generally an 

entire order of magnitude less than that found in peripheral reproducive tissues. A 

striking feature of AR is its extreme !ability and rapid degradation (t112 = 1-1.5 h) in 

the absence of agonist ligand binding (Kemppainen et al. , 1992; Zhou et al. , 1995). 

In the presence of androgen, AR is degraded at a ~omewhat slower rate (t112 = 6 h). 

In comparison, ligand-free GR degrades with a half-time of 4-6 h, about 5-fold slower 

than AR, and in the presence of dexamethasone, degradation can be slowed to 16 h 

(Zhou et al., 1995). This instability has made AR exceptionally difficult to study in 

vitro and potent proteolytic inhibitors were required to stabilize AR in its intact 100-

120 kDa form (Wilson and French, 1979). As a result, studies on AR binding 
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properties, metabolism and recycling still lag behind those exploring the other steroid 

hormone receptors. 

The study of AR binding kinetics of T and DHT, as well as of antiandrogens 

such as hydroxyflutamide, have been followed with great interest with hopes of 

elucidating how these hormones sometimes exert differential physiological effects. It 

has been well established that DHT is 2.5 to 10 times more potent in bioassays and, 

in broken cell preparations, DHT binds to the AR with a several-fold higher affinity 

than T (approximately 0.25 - 2 nM versus 0.4 - 5 nM) (Wilbert et al., 1983; Winters, 

1990). Wilson and French (1976) demonstrated that despite relative affinity constants 

that are nearly equivalent, T binds and dissociates from AR about three times faster 

than DHT. Presently, it is unclear how altered binding kinetics translate to 

differences in transcriptional activity; however, the authors speculated that AR nuclear 

retention time may be longer with DHT binding. Interestingly, at ten-fold higher 

concentrations than DHT, T was able to overcome this rapid dissociation rate by 

simple mass action (Grino et al., 1990). This finding suggests that when localized T 

concentrations are undiluted (i.e. paracrine actions of T within testes) it can be as 

physiologically potent as DHT. AR degradation was also differentially affected by T 

and DHT binding (Kemppainen et al., 1992; Zhou et al., 1995). These observations 

suggest that DHT initiates a slightly different conformational change in the receptor 

complex that promotes its stabilization, and possibly, its transcriptional efficiency. 

Interestingly, antagonists of the AR, which compete with agonists for AR binding, but 

do not permit the receptor to assume a transcriptionally active form, initiated distinct 
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conformations of the AR complex as detected by proteolytic digestion (Wong et al., 

1993; Kallio et al., 1994; Kuil and Mulder, 1994). Additionally, AR antagonists 

including hydroxyflutamide and cyproterone acetate were not able to stabilize AR and 

prevented agonist-induced stabilization even at a 100-fold molar excess (Kemppainen 

et al., 1992). Thus, it appears that a precise conformation is required for maximal 

receptor stabilization and the induction of transcriptional activation. DHT appears to 

be the ligand most likely to generate this conformation. 

In the last ten years controversy has abounded in endocrinology over whether 

steroid receptors are found exclusively in the cytoplasm in the unoccupied form and 

translocate to the nucleus only following ligand binding. This had been the original 

hypothesis following discoveries using in vitro binding techniques on broken cell 

preparations and high speed centrifugation to separate cell fractions (Jensen et al., 

1968). The recent development of specific antibodies for each of the hormone 

receptors has spawned most of this controversy; as it is now possible to clearly 

identify the intracellular localization of steroid hormone receptor labelling both in the 

presence and absence of circulating hormone, without disrupting membrane integrity. 

Using such histological studies, several groups determined that both bound and 

unbound ER, PR and GR were primarily confined to the nucleus (King and Greene, 

1984; Welshons et al., 1984, 1985; Gase et al., 1989). Since this initial observation, 

several reports have described cytoplasmic staining of unbound ER (Fox et al. , 1991; 

Blaustein et al., 1992), PR (Blaustein et al., 1992) and GR (Ahima and Harlan, 

1991), adding further confusion. Some of the discrepancies may be the result of non-
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specific antibodies, or it has been proposed that some of these antibodies may not 

reliably recognize both the bound and unbound conformational states of the receptors. 

The recent characterization of AR immunohistochemical localization in transfected 

cos cells indicate that in the absence of androgens, AR immunoreactivity (ARIR) is 

located predominately in the cytoplas. The addition of androgen shifts ARIR to the 

nucleus (Simental et al., 1991; J enster el al. , 1993). This latter finding has also been 

observed in vivo in the male hamster brain (Wood and Newman, 1993). Taken 

together, these data indicate that androgen is one factor that regulates the partitioning 

of the AR to the nucleus, however, it can not be ruled out that the equilibrium of AR 

intracellular distribution can vary with cell or tissue type (Husmann et al., 1990). 

The physiologic significance of AR intracellular partitioning is not known, however, 

it could potentially affect the ease by which AR "sees" its ligand within the cell. 

Regardless of the cytoplasmic or nuclear localization of unbound AR, hormone 

binding serves to anchor the AR receptor complex in nuclei. 

Earlier studies examining skeletal muscle suggested that physiological levels of 

T were sufficient to fully occupy and transform all available AR (Wilson, 1988). In 

contrast, studies done in neural tissue have demonstrated that only a fraction (30-

50%) of total AR in the cell are transformed to the nuclear, DNA-bound form under 

physiological conditions (Handa et al., 1987a; Roselli et al., 1989). These 

observations suggest that circulating androgen levels are an important component 

regulating the magnitude of androgen action in the CNS and suggests that very high 

levels of circulating androgen can transform a greater proportion of neural cytosolic 
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AR and possibly elicit a greater transcriptional response. 

Regulation of Androgen Receptor Gene Expression 

As discussed earlier, a functional AR gene is essential for normal male 

development. However, the distribution, timing and magnitude of AR expression 

during development and throughout adulthood are also important determinants of 

androgen sensitivity. Thus, it has become imperative to analyze how the AR gene is 

regulated in concert with androgen regulation of target genes. The 5' flanking 

regions of the rat, mouse and human AR gene have been cloned (Baarends et al. , 

1990; Tilley et al., 1990a; Faber et al., 199la,b; Kumar et al., 1992; Song et al., 

1993; Mizokami et al., 1994), allowing for the detailed examination of molecular 

mechanisms controlling AR gene expression. In this section, current understanding of 

the AR gene promotor region as well as various endocrine and non-endocrine factors 

that act to regulate the AR gene are reviewed. 

The AR Gene Promoter 

The major site of transcription initiation is approximately 1.1 kb upstream of 

the initiation codon in the human AR mRNA (Tilley et al., 1990a; Mizokami et al., 

1994) and this appears to be similar for the rat AR gene (Song et al., 1990). 

Sequence analysis of rat, human and mouse AR promoter regions have confirmed that 



47 

all three lack typical "TATA" or "CAAT" sequence motifs, but instead, each of the 

promoter regions lies in a GC-rich region and contains a putative SPl binding site that 

is characteristic of a "housekeeping" promoter (Baarends et al., 1990; Tilley et al. , 

1990; Faber et al., 1991a,b; Kumar et al., 1992; Song et al., 1993; Mizokami et al., 

1994). 

The complete sequence analysis of 2656 bp of the rat AR upstream region has 

revealed consensus DNA-binding sequences for numerous known transcription factors 

(Song et al., 1993). Several half-palindrome sites for AR/PR/GR (TGTTCT) and one 

half-site for the ER (AGGTCA) were detected. Although steroid receptors could 

potentially bind to these half-sites and confer steroidal regulation of AR expression, 

their true physiological significance has not been investigated. Also identified were 

the potential binding sites for the transcription factors SPl, C/EBP, Pu.1, Zeste (a 

Drosophila homeobox protein), zij268 (a zinc finger motif cIEG protein), PEA3 (an 

enhancer protein), NFKB and for the Fos/Jun heterodimer. The presence of these 

binding regions strongly suggests that multiple factors, including AR itself, have the 

potential to modulate AR expression. Further delineation of the regulatory regions of 

the AR gene will prove to be beneficial in the understanding of the interplay of 

various transcription factors in the tissue-specific expression and regulation of the AR 

gene. 
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Autologous Regulation of AR Expression 

Several studies have examined the regulation of AR synthesis in response to 

hormonal manipulation in both neural and non-neural tissues. In the majority of 

peripheral tissues studied, AR expression (as measured by steady state mRNA levels) 

was increased by short term castration (l-4 days) and decreased by androgen 

treatment (Tan et al., 1988; Shan et al., 1990; Talcane et a., 1990; Quarmby et al., 

1990; Blok et al., 1991, 1992a; Abdelgadir et al., 1993). AR is not autoregulated in 

in peripheral tissues in testicular feminized rats; a genetically engineered animal strain 

where the AR gene is mutated so that the resulting AR protein is unable to bind 

androgen (Quarmby et al., 1990). Similarly, AR was not regulated in skin fibroblasts 

from patients with androgen insensitivity syndrome (Kaufman et al., 1981). This 

syndrome also involves a genetic mutation of the AR gene that renders the AR protein 

unable to bind ligand. The absence of AR autoregulation in individuals who do not 

have functional AR, but normal levels of circulating androgen, supports a receptor

mediated process. In the human prostate carcinoma cell line LNCaP, nuclear run-on 

analysis demonstrated that androgen treatments prompted a 75 % reduction in AR 

transcription initiation (Blok et al., 1992b; Wolf et al. , 1993 ). In accordance with 

these findings, recent studies by Prins and Woodham (1995) have shown castration

induced increases in AR mRNA levels in rat VP, however, this regulation was lobe 

specific and was shortlived in some areas. In addition, nuclear run-on assays 

demonstrated that these increases were due to an increase in the rate of AR 

transcription. Thus, in most peripheral tissues, it appears that the AR gene is 
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autologously regulated, at least on an acute basis, such that the activated androgen 

receptor-hormone complex primarily acts on the genome to prevent the transcription 

of new AR mRNA. The binding of activated AR complexes to the half-site HREs 

found in the AR promoter region (Song et al., 1993) could potentially mediate this 

response. Conversely, positive regulation of AR and AR mRNA levels by androgens 

have been reported in isolated smooth-muscle cells from the rat penis (Gonzci.lez

Cadavid et al., 1993) and in human genital skin fibroblasts (Gad et al., 1988) 

suggesting that particular cell types may be genetically programmed to respond 

differently to androgen at certain developmental stages. Additional! y, the 

aromatization of T to estradiol also appears to affect AR mRNA levels and could 

account for this tissue-specific regulatory pattern (Lin et al., 1993). 

Immmunoblot analysis of corresponding AR protein changes in the rat VP and 

several cell lines under similar experimental conditions that had caused several-fold 

increases in AR mRNA revealed that androgen withdrawal by castration elicited 

modest or no increases in immunoreactive receptor protein content (Shan et al., 1990; 

Wolf et al., 1993). Additionally, Krongrad et ai. (1991) have shown that androgen

mediated down-regulation of AR mRNA is associated with a transient up-regulation of 

AR protein in the human prostate cancer cell line, LNCaP. These data support the 

recent finding that androgens stabilize the AR protein (Zhou et al., 1995). 

Ultimately, AR concentrations are likely controlled through multiple mechanisms 

including the rate of transcription, mRNA stability, mRNA translational efficiency, 

and the turnover rate of the protein. 
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Studies of autologous AR regulation in brain tissue have been sparse and much 

more difficult to interpret. Using northern blot analysis, Quarmby et al. (1990) 

demonstrated a three-fold increase in AR mRNA in whole rat brain four days after 

castration as compared to the intact animal. The administration of T propionate one 

day before sacrifice prevented this increase. Consistent with these data, Burgess and 

Randa (1993a) demonstrated significant increases in hypothalamic-preoptic area AR 

mRNA content four days after castration when measured by ribonuclease (RNase) 

protection assay. This effect was reversed by DHT treatment one day prior to 

sacrifice. In contrast, McLachlan et al. (1991) did not observe any changes in the 

amount of either the 9. 3 or 11 kb AR mRNA forms in rat cortex one and three days 

following castration, however, their densitometric analysis of northern blots may not 

have been sensitive enough to detect small changes. Using a more sensitive RNase 

protection assay, Abdelgabir et al. (1993) reported no effects of 2, 4 or 7 day 

treatment with T, DRT or estrogen on AR mRNA levels in the rat hypothalamus, 

preoptic area, cortex, hippocampus or amygdala. Unfortunately, these data must be 

interpreted cautiously as they are based on one or two animals per group. In contrast, 

Randa et al. (1995) have demonstrated acute increases in AR mRNA in the medial 

preoptic area of the hypothalamus following castration. However, after two month 

castration, these increases in AR mRNA Levels were dramatically reduced or absent. 

These effects of castration were reversed by DHT and estrogen. Conversely, rats 

treated with 14 daily injections of high-dose anabolic-androgenic steroids showed 

increases in AR immunoreactivity in most AR-positive brain regions, including the 
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CAl region of the hippocampus (Menard and Harlan, 1993). Whether the androgen 

treatment truly upregulated AR numbers or simply translocated more AR to the bound 

conformational state of the receptor that could have been preferentially recognized by 

their antibody was not determined. 

The inconsistent findings in brain tissue suggest that a unique, tissue-specific 

AR regulatory process may be occurring in the CNS as compared to most non-neural 

reproductive tissues. Taken together, it appears doubtful that circulating androgen 

levels are the sole determinant of AR mRNA levels in neural tissue. Other factors 

such as the length of androgen treatment, the mode of steroid administration, and the 

presence of tissue-specific regulatory proteins may play important roles in determining 

neural AR mRNA expression. Whether changes in brain AR mRNA translate into 

similar changes in the receptor protein have not been determined and may be 

complicated by the fact that two AR mRNA transcripts are found in neural tissue. A 

much clearer understanding of AR regulation in the brain is necessary to predict the 

responsiveness of neural tissue to androgens. 

AR Regulation by Other Factors 

Recently, it has become apparent that the AR gene is influenced by several 

other regulatory signals, including peptide hormones, growth factors, 

neurotransmitters and other steroid hormone receptors. Additional data suggest that 

the AR gene is regulated by membrane associated second messengers commonly 

stimulated by neurotransmitters or peptide hormones. For example, FSH, a hormone 
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whose actions are mediated via cyclic 3' ,5'-adenosine monophosphate (cAMP) and 

activates the protein kinase A pathway, or the addition of cAMP analogs alone, 

increased both AR protein and AR mRNA in Sertoli cells (Verhoeven and Cailleau 

1988; Blok et al., 1989, 1992b, 1992c). Additionally, cAMP stimulated a mouse AR 

5 '-chloramphenicol acetyltransferase construct in mouse and rat pituitary cell lines 

(Lindzey et al., 1993). Similarly, epidermal growth factor, which activates the 

protein kinase C second messenger pathway, decreased AR mRNA levels in LNCaP 

cells (Mizokami et al., 1992). Some of these effects could potentially be mediated 

directly via the calcium (Ca2+)/cAMP-response-element-binding protein (CREB), the 

activating transcription factor, AP2 (lmagawa el al., 1987; Montminy et al., 1990), 

or indirectly via induction of other transcription factors such as the activator protein 

(APl) components, Fos and Jun. The localization of several of these transcription 

factor binding sites within the 5' promoter regions of the human, rat and mouse AR 

genes support such mechanisms (Baarends et al., 1990; Tilley el al., 1990a; Faber et 

al., 1991a,b; Kumar et al., 1992; Song et al., 1993; Mizokami et al., 1994). 

Additionally, cellular Ca2+ levels may also play a part in AR expression. The 

progressive lowering of Ca2+ concentrations significantly decreased AR protein levels 

in rat Leydig cell culture (Nakhla et al., 1989), and incubation of LNCaP cells with 

the Ca2+ ionophore, A23187, or the intracellular endoplasmic reticulum Ca2+ 

adenosine triphosphatase inhibitor, thapsigargin, down-regulated AR mRNA and AR 

protein levels in a time- and dose-dependent manner (Gong et al., 1995). 

Several studies have suggested that the e:xpressiDn of one steroid hormone 



53 

receptor may interfere with or alter the transcriptional activity of another steroid 

hormone receptor expressed in the same cell line (Meyer et al., 1989; Bansal and 

Latchman, 1990; Kumar et al., 1994). In particular, the overexpression of ER 

significantly inhibited AR transcriptional activity with the addition of androgen and 

estrogen to the cell culture (Kumar et al., 1994). The authors proposed that high 

levels of DNA-bound ER may compete for some unknown factor also necessary for 

transcriptional activation to occur through AR. Whether such an interaction could 

result in decreased transcription of the AR gene has yet to be determined. Estrogen

induced down-regulation of the AR in the adult rat VP has been demonstrated in vivo 

(Rennie et al., 1988; Prins, 1992), however, estrogen induced !!12regulation of AR has 

been repeatedly demonstrated in other tissues (Handa eJ al., 1987a, 1987b, 1995; 

Handa and Rodriguez, 1991). In some circumstances, estrogen may directly regulate 

AR expression through the estrogen response element half-site found in the promoter 

region of the rat AR gene (Song eJ al., 1993). Although no studies have looked at 

alternate factors regulating AR in neural tissue, interactions between AR and other 

ligand-activated transcriptions factors or second messenger pathways could be 

particularly important in brain areas like the hippocampus that express high levels of 

certain membrane receptors and multiple types of intracellular steroid receptors. 
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Androgen-Regulated Gene Networks 

It is now widely accepted that steroid receptors initiate their diverse biological 

responses through selective regulation of cell-specific gene networks (Yamamoto, 

1985; Meisfield, 1989). In order to understand the function and mechanism of action 

of androgens, androgen-responsive genes from a variety of cell types need to be 

identified. However, despite androgen's many physiological effects in peripheral and 

central tissues and the estimation that almost every tissue or organ possesses an 

androgen-regulated gene (Mooradian et al., 1987), surprisingly few androgen

regulated genes have been characterized. 

In the periphery, the rat prostate gland has served as an important target tissue 

for the study of androgen dependent gene expression. Natural growth and 

maintenance of the rat VP is dependent upon androgen, and castration initiates 

epithelial cell apoptosis (Isaacs, 1984; Kyprianou and Isaacs, 1988; Rennie et al., 

1988). The study of androgen action in this tissue is clinically relevant for the 

potential improvements in the diagnosis and treatment of prostate cancer -- the second 

leading cause of cancer-related death in American men (Coffey, 1993). Several 

prostate-specific androgen-regulated genes have been characterized, including prostatic 

steroid binding protein (the principle secretory protein of the rat VP) (Page and 

Parker, 1982; Allison et al., 1989), probasin (a single-polypeptide protein that may be 

a ligand carrier) (Spence et al., 1989; Rennie et al., 1993), human glandular 

kallikrein-1 (a serine protease) (Morris, 1989; Murtha et al., 1993), and prostate 
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specific antigen (a serine protease that is an important marker for prostate cancer) 

(Lilja, 1985; Riegman et al., 1991). All these genes appear to be regulated by AR 

complexes through HRE sequences present in their promoter regions (Riegman et al. , 

1991; Murtha et al., 1993; Rennie et al., 1993). 

The expression of a more ubiquitous glycoprotein, termed sulfated 

glycoprotein 2 (SGP-2), has also been demonstrated to be under the control of 

androgen in variety of tissues (Bettuzzi et al., 1989). In the rat VP, SGP-2 mRNA 

levels increased 16-fold 4 days after castration (Bettuzzi et al., 1989) and also 

increased in association with programmed cell death (Buttyan et al., 1989). 

Subtraction hybridization analysis determined that the transcription of this gene 

accounts for the majority (92 %) of castration-induced mRNAs in the rat VP (Briehl et 

al., 1990) and suggests that the androgen gene network in this tissue is relatively 

small. SGP-2 is also the major glycoprotein secreted by Sertoli cells (Collard and 

Griswold, 1987) and, at least in male reproductive tissues, appears to have a role in 

sperm function. Interestingly, SGP-2 was also found to be produced in the rat brain 

(Bettuzzi et al., 1989; Day et al., 1990), and the homologous human RNA species 

was increased in the hippocampus during Alzheimer's disease (May et al., 1990). 

SGP-2 was first shown to increase in the rat hippocampus following entorhinal cortex 

lesions suggesting a role for this protein in either the cell death process or in the 

regenerative phase involving synaptogenesis or axonal reorganization. More recently, 

Day et al. (1990, 1993) demonstrated that 3 weeks after castration, there was 

increased SGP-2 expression [along with glial fibrillary acidic protein (GFAP)] 
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specifically in astrocytes within the molecular layer of the rat hippocampus. Since no 

studies have detected AR expression in this area of the hippocampus, the mechanism 

of androgens' actions in astrocytes is unclear; but the authors speculated that 

androgen-mediated changes in pyramidal cell neural activity could account for the 

results. Androgens have also been found to upregulate the expression of two major 

neuronal cytoskeletal elements, /3-tubulin and ,6-actin, in androgen-sensitive spinal 

motomeurons (Matsumoto et al., 1992, 1993). As androgens appear to play a role in 

hippocampal synaptic reorganization and sprouting (Morse et al., 1988; Scheff et al., 

1988) as well as promote axonal regeneration and synaptic input in other CNS loci 

(Matsumoto et al., 1988; Jones, 1993), androgen-regulated SGP-2, GFAP and 

cytoskeletal protein expression may prove t"°·be important markers for such processes. 

Few other studies have examined androgen regulated genes in the brain, 

however, androgens have been shown to positively regulate GnRH mRNA (Park et 

al., 1988) and aromatase cytochrome P450 mRNA levels (Abdelgadir et al., 1994) in 

the rat hypothalamus, as well as negatively regulate D-2 dopamine receptor content in 

the rat striatum (Watanabe et al., 1989) and NMDA receptor levels in the 

hippocampus (Kus et al., 1995). The continued identification of androgen-regulated 

genes will provide additional clues to the cell-specific events initiated by AR and will 

help to elucidate androgen's ultimate function in target tissues. 
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Hiwocampal Glucocorticoid Receptors: Action. Location. and Regulation 

Glucocorticoids are adrenal steroid hormones typically secreted in response to 

stress (Munck et al., 1984). This secretion is controlled by the brain via the 

hypothalamic-pituitary-adrenal (HPA) ax.is. This axis is a closed-loop endocrine 

system in which the end product, the adrenal glucocorticoids, feedback onto various 

brain regions including the hippocampus, hypothalamus and pituitary to inhibit the 

release of adrenocorticotropin hormone (ACTH) from the anterior pituitary gland. 

In the rat, corticosterone (CORT) is the major circulating glucocorticoid 

hormone. It's effects on the body are widespread and, for the most part, are 

beneficial. CORT is a potent anti-inflammatory agent and also acts to mobilize 

energy stores and maintain osmotic balance in time of need (Baxter and Forsham, 

1972; Axelrod and Reisine, 1984; Munck et al., 1984). In the central nervous 

system, CORT has been found to induce changes in the Levels of several 

neurotransmitter receptors (Jhanwar-Uniyal and Leibowitz, 1986; Martire et al., 

1989; Clark and Cotman, 1992) and in the regulation of second messenger pathways 

(Harrelson and McEwen, 1987). These changes may be the mechanism by which 

CORT influences certain aspects of behavior including mood, attention, learning and 

adaptation (reviewed by McEwen et al., 1986). 

The actions of CORT are mediated in the brain and periphery through its 

binding to specific intracellular receptors (McEwen et al. , 1986). Radioligand 

binding studies have demonstrated that CORT acts through two types of receptors (De 
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J(loet et al., 1975; Reul and De Kloet, 1985). The first, termed the Type I receptor, 

or MR, has a very high affinity for CORT (~ = 0.5nM) as well as aldosterone (1't 

== 1.5 - 2.0nM) and dexamethasone (Kd = 0.8 - 2.6nM). The second receptor, 

termed the Type II, or GR, is distinguishable by its much lower affinity for CORT 

(Kd = 2.5 - 5.0nM) and aldosterone (~ > 25nM), yet much higher affinity than the 

Type I receptor for the synthetic glucocorticoid RU 28362. MR, having a high 

affinity and low capacity for endogenous glucocorticoids, is thought to be occupied at 

low basal levels of CORT and thus mediate the effects of glucocorticoids on ongoing 

neural activity. In contrast, GR is thought to occupied only after increases in CORT 

occur, such as following stress. 

More recently, MR and GR have been distinguished by their molecular 

characteristics (Arriza et al., 1987; Hollenberg el al., 1987; Patel et al., 1989). Both 

receptors are members of the superfamily of steroid hormone receptors (along with 

AR), which when bound to ligand, are able to act as transcription factors as discussed 

earlier in this review. The rat MR and GR share considerable amino acid sequence 

homology which likely contributes to some of the overlap in ligand binding and 

transcriptional activity between them, yet both are products of distinct MR and GR 

genes. 

In addition to their structural and binding characteristics, GR and MR differ in 

their neuroanatomical distribution (Fuxe et al., 1985; Reul and De Kloet, 1985; Van 

Eekelen et al., 1987; Sarrieau et al., 1988). MR is predominantly localized in 

septum and hippocampus. In contrast, the distribution of GRs over the brain is much 
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more widespread. GR is found in brain regions including the hippocampus, septum, 

paraventricular nucleus, supraoptic nucleus, and the medial amygdala. Recent in situ 

hybridization analysis has revealed distinct patterns of expression of GR and MR 

mRNA within the various regions of the rat hippocampus (Van Eekelen et al., 1988). 

MR mRNA was demonstrated in all pyramidal cell fields (CAl-4) of the hippocampal 

formation and the granule cells of the DG. In contrast, GR mRNA was mainly 

restricted to CAl and CA2 pyramidal cells and the DG. GR-like immunoreactivity 

mapping has demonstrated similar hippocampal distribution of the GR protein in male 

and female intact rats (Ahima et al., 1992). These high levels of corticosteroid 

receptors expressed in the hippocampus are thought to mediate glucocorticoid effects 

on neuronal proliferation and differentiation, neuronal death, membrane potential, and 

neuroendocrine feedback mechanisms (McEwen et al., 1986). Interestingly, the 

distribution of MR, GR and AR mRNA in the hippocampus overlap, with especially 

high levels of all three receptors in almost all pyramidal cells of CA 1. Such cellular 

overlap in expression may suggest some interactive function or cooperativity of AR 

and GR in hippocampally-mediated behaviors. 

Corticosteroids are known to modulate the expression of their own receptors as 

evidenced by numerous in vitro studies demonstrating GR autoregulation in several 

different types of cell culture systems (Cidlowski and Cidlowski, 1981; Svec and 

Rudis, 1981; Mcintyre and Samuels, 1985; Berkovitz et al., 1988). More recently, 

the in vivo regulation of GR by glucocorticoids has been characterized in the 

hippocampus. In most cases, adrenalectomy (ADX) caused an increased level of GR 
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mRNA in the hippocampus within one day (Reul et al., 1989; Sheppard et al., 1990). 

These increases were returned to intact levels by dexamethasone administration 

(Sheppard et al., 1990). Using in situ hybridization, anatomical specificity of this 

regulation has been demonstrated. Eight days following ADX, elevated levels of GR 

and MR mRNA are found in the CAl-2 subfields of the hippocampus (Herman et al., 

1989). In contrast, a similar treatment has been found to decrease GR-like 

immunoreactivity in these areas (Ahima et al. , 1992). The exact reasons for such 

discrepancies between protein and mRNA levels is unclear, however, several studies 

have found a role of glucocorticoids in modulating the stability of the receptor protein 

(Mcintyre and Samuels, 1985; Dong et al., 198 8; Hoeck et al. , 1989). Autologous 

regulation of GR also appears to be exerted at the level of GR mRNA synthesis (see 

review by Burnstein and Cidlowski, 1992). Several experiments have found that the 

GR cDNA contains intragenic signals that activated GR complexes can bind to and 

subsequently act by repressing transcription initiation or blocking elongation 

(Burnstein et al., 1990, 1991; Okret et al., 1986). The exact nature of these 

intragenic sequences has not been investigated. 

The actions of other steroid hormones on hippoca.mpal GR regulation have 

been investigated recently. Estrogen, the prominent circulating sex steroid in 

females, has been found to alter the regulation of CORT receptor mRNAs in the 

female hippocampus (Burgess and Ha.nda, 1993b). In this study, estrogen treatment 

resulted in a loss of the GR's ability to down-regulate its mRNA. 

Sex differences have recently been observed in the regulation of the 
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intracellular location of hippocampal GR-like immunoreactivity of ADX rats by 

CORT and progesterone (Ahima et al., 1992). In this study, estradiol treatment of 

ADX male or female rats did not significantly alter staining intensities in any area of 

the hippocampusas compared to the untreated ADX male or female rats. Similarly, 

recent evidence has demonstrated upregulation of rat GR immunoreactivity in the 

pyramidal cell layer of CAl and granular layer of the DG of the rat hippocampus 

after a one week treatment with anabolic-androgenic steroids (Ahima and Harlan, 

1992). These data suggest a link between AR activation and GR regulation in the 

areas of the hippocampus which contain high levels of both of these receptors. It is 

not known if these anabolic steroids are transactivating ARs which in turn alter the 

transcriptional rate of the GR gene or are acting through some other mechanism in 

hippocampal cells. It is possible, however, that the behavioral changes observed 

during anabolic-androgenic steroid abuse may be mediated in part through its effects 

on GR regulation and resulting changes in hormonal feedback mechanisms. 

Cellular Immediate Early Genes 

Despite accumulating molecular data on steroid hormone-receptor complex 

action on individual HREs, the steps leading from hormonal signals to the modulation 

of neuronal activity remain poorly defined. New avenues to approach such questions 

have resulted from the observation that neuronal stimulation rapidly activates the 

transcription of several cIEGs. Most of the cIEGs encode for proteins which act as 
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transcription factors and regulate, in a hierarchial fashion, the transcription of target 

genes that determine the overall behavior or phenotype of the cell (reviewed by 

Morgan and Curran, 1991). In essence, cIEG protein products are the "third 

messengers" of the stimulus-transcription coupling cascade that produce the long-term 

or "hard-wired" changes in neurons (reviewed by Morgan and Curran, 1989). 

In general, clEGs share several characteristics. First, they are expressed in 

very low or undetectable amounts in quiescent ceJls, but are rapidly transcribed within 

minutes of cellular activation. Second, their transcriptional activation is short-lived 

and does not require new protein synthesis, however protein synthesis is necessary to 

shut-off the transcriptional process. Last, cIEG mRNAs and proteins have short half

lives (minutes to a few hours), and thus, are characteristic of an early signalling 

system that triggers further regulation of gene expression (Sheng and Greenberg, 

1990). 

cIEG Forms and Mechanisms of Induction 

To date, the best studied cIEG is c-fos, but others, including several c-fos 

family members ifosB and Fos related antigen, fra), several jun family members (c

jun, junB, junD), zij268 (also known as NGFT-A, krox24, TTS-8 and Erg-1), c-myc, 

and c-Ha-ras are also expressed in neuronal tissue and are currently being examined. 

The c-fos gene encodes a nuclear protein, Fos, that has an apparent molecular weight 

of 62 kDa and is subject to extensive post-translational modifications (Schilling et al., 

1991). Using a leucine-zipper motif and surrounding basic regions, the Fos and Jun 



63 

family member proteins bind to DNA regulatory regions either as homodimers (Jun

Jun dimers) or heterodimers (Fos-Jun dimers) to form the transcription factor known 

as AP-1 (reviewed by Curran and Franza Jr., 1988; Cohen and Curran, 1989). In 

this case, additional regulation of gene transcription occurs depending on the relative 

amounts of Fos and Jun expressed in the cell after stimulation (Chiu et al., 1989; 

Schutte et al., 1989; Diamond et al., 1990). 

The three known Jun proteins (Jun, JunB and JunD) differ from each other in 

their transactivation properties, binding affinities, and cellular function (Chiu et al., 

1989; Ryseck and Bravo, 1991). c-jun andjunB are considered classical cIEGs in 

that they are rapidly and transiently expressed in cells following various stimuli 

(reviewed by Sheng and Greenberg, 1990). In contrast, junD is constitutively 

expressed in considerable amounts in many tissues and exhibits delayed and prolonged 

induction following certain stimuli (Gass et al., 1992; Demmer et al., 1993; 

Herdegen et al., 1995). Functionally, Jun has been linked to the promotion of cell 

growth, whereas JunB and JunD act to inhibit cell proliferation (Schlingensiepen et 

al., 1994). The zij268 gene, which encodes for a lone-acting, zinc-finger-containing 

transcription factor, was initially found to be rapidly induced in mammalian neurons 

following seizures (Saffen et al., 1988), although, it was also found to be 

constitutively expressed in some areas of the brain (Schlingensiepen et al., 1991; 

Hughes et al., 1992; Herdegen et al., 1995). 

The expression of c-fos was initially studied in PC 12 pheochromocytoma cells 

and was found to be induced by neurotrophic factors (Greenberg et al., 1985), agents 
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that activate classical neurotransmitter receptors (Greenberg et al., 1986), 

depolarizing conditions (Morgan and Curran, 1986), and a variety of agents that 

provoke Ca2+ influx through voltage-gated channels (Morgan and Curran, 1986). 

These findings prompted researchers to look for inducible c-fos (as well as its closely 

related cIEGs) in the nervous system. Although a precise function for Fos and other 

cIEG proteins has yet to be established, they have been implicated in diverse 

processes such as neuronal differentiation, proliferation, cell death, and signal 

transduction (Muller et al., 1985, Schlingensiepen el al., 1994). 

cIEG Expression in Neural Tissue 

Recently, many studies have examined cIEG induction in neuronal tissue of 

intact animals. In summary, cIEG expression, as measured by immunocytochemistry 

or mRNA content in neuronal tissue, has been shown to increase by pharmacological 

(Morgan et al., 1987, Sonnenberg et al., 1989), electrical (Dragunow and Robertson, 

1987), surgical (White and Gall, 1987), and physiological stimuli (Bullitt, 1990, 

Senba et al., 1994). Related findings have been comprehensively reviewed by 

Morgan and Curran (1989, 1991). 

Although it may appear that the cJEG induction is a non-specific, ubiquitous 

phenomenon in response to cellular activation, in fact, the pattern of cIEG expression 

in the brain, and the specificity in which cIEGs are induced, are very dependent on 

the given stimulus. For example, sexual behavior increased Fos immunoreactivity 

selectively in the male rat medial preoptic area of the hypothalamus and nucleus 
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accumbens (Robertson et al., 1991). Coincidentally, neurotransmitter release in both 

of these areas have been implicated in the control of male sexual behavior (Mas et 

al., 1990; Warner et al., 1991). Taken together, the examination of these gene 

products serve as a useful tool for mapping specific neuronal populations which are 

activated following a stimulus (Sagar et al., 1988) and distinct combinations of cIEGs 

could confer specificity in the cellular response to different stimuli. 

The study of cIEG expression in the hippocampus following physiological 

stimuli has been particularly useful in identifying specific roles for these protein 

products. One popular model of neuronal plasticity in the mammalian CNS is long

term potentiation {LTP). LTP is a lasting enhancement of synaptic efficacy in 

hippocampal neurons following brief high-frequency perforant pathway stimulation 

(Bliss and Gardner-Medwin, 1973). LTP has been shown to persist from days to 

months in the absence of any further stimulation which makes it an attractive model to 

study the mechanisms responsible for long-term memory (Teyler and Discenna, 

1984). Such a prolonged time course of LTP decay has led researchers to implicate 

transcriptional changes in the maintenance of this phenomenon; cIEGs being among 

the first genes to be examined. Several clEGs have been found to be induced in DG 

granule cells following LTP induction (Abraham eJ al. , 1991; Richardson et al., 

1992). In these studies, the most consistently induced cIEG, zij268, correlated best 

with LTP persistence (Richardson et al., 1992; Williams et al., 1995). Members of 

the c:fos and c-jun gene families were also induced in the hippocampus under these 

conditions, but did not correlate with LTP induction or stabilization (Demmer et al., 
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l993). The induction of LTP, as well as the corresponding cIEG induction, both 

appeared to be dependent on hippocampal NMDA receptor activation (Demmer et al., 

1993). Interestingly, zij268 was also basally expressed in CAl pyramidal cells 

(Hughes et al., 1992) and this basal expression in CAl neurons was largely NMDA

receptor mediated (Worley et al., 1991). zij'268 expression may be involved with new 

learning, inasmuch as destruction of CAl neurons (Kubo et al., 1993) and NMDA 

antagonists injected into the hippocampus (Ohino et al., 1992) impaired learning. 

Consistent with these findings linking cIEGs induction with the learning process, 

brightness discrimination training, learning a bar-pressing task, as well as two-way 

active-avoidance behavioral training elevated cIEG mRNA levels, namely c-fos, c-jun 

and zif268 mRNA, in the rodent hippocampus (Tischmeyer et al., 1990; Nikolaev et 

al., 1992; Heurteaux et al., 1993). 

In addition to learning and memory, other forms of hippocampal plasticity 

have been correlated with cIEG induction. Distinct induction patterns for c-fos, c-jun, 

junB and NGFI-B were demonstrated in each cell body region of the rat hippocampus 

following transient forebrain ischemia, which may relate to the delayed neuronal death 

of CAl neurons following anoxia as compared to other hippocampal cell body regions 

(Neumann-Haefelin et al., 1994). Fos protein expression also immediately preceded 

the appearance of ribosomes and structural remodeling of dendritic spines of partially 

deafferented dentate granule cells (Chen and Hillman, 1992). In primary rat 

hippocampal cultures, the selective inhibition of c-jun expression using antisense 

oligonucleotides prevented neuronal cell death and promoted neuronal survival 
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suggesting a role of Jun in programmed cell death in this brain area (Schlingensiepen 

et al., 1994). Additionally, several studies have demonstrated that the induction of c

fos mRNA and protein in the hippocampus is prominent in the CAl pyramidal cell 

layer following exposure to a novel environment (Banda et al., 1993; Papa et al., 

1995). Thus, c-fos mRNA induction may be a good marker for CAI pyramidal cell 

activity. 

Interaction of cIEGs and Steroid Hormone Receptors 

Although the majority of evidence to date relates cIEG induction through 

neural excitation via membrane receptors for glutamate (Sonnenberg et al., 1989; 

Lerea and McNamara, 1993; Wan et al., 1994; Papa et al., 1995), adrenergic 

compounds (Gubits et al., 1989), opiates (Chang and Harlan, 1990) or acetylcholine 

(Greenberg et al., 1986), the possibility of direct and/or indirect hormonal modulation 

of cIEGs is now emerging (see reviews by Landers and Spelsberg, 1992; Schuchard 

et al., 1993; Hyder et al., 1994). Estrogen treatment has been shown to cause a 

rapid and transient increase in c-fos mRNA in the uterus (Loose-Mitchell et al., 1988) 

and hypothalamus (Insel, 1990) of ovariectomized rodents. This very rapid induction 

appears to be a direct effect of the transformed estrogen receptor complex acting on 

estrogen response elements that flank the cfos gene (Weisz and Rosales, 1990; Hyder 

et al., 1991a, 1991b). To date, response elements for the androgen receptor have not 

been identified upstream of cIEG genes, however, studies in prostate and prostatic 

cell lines have demonstrated androgen-induced changes in several cIEGs including c-
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myc and cjos (Quarmby et al., 1987; Buttyan et al., 1988; Rennie et al., 1989; Wolf 

et al., 1992). One recent study found no effects of androgen treatment on mating

induced Fos immunoreactivity in hypothalamic brain regions of castrated male rats 

(Baum and Wersinger, 1993). Whether androgens can affect cIEG induction in other 

cell types or brain areas is not presently known. Potentiation of cjos and c-jun 

mRNA content in the hippocampus (Li et al., 1992) and hypothalamus (Jacobson et 

al., 1990) have been demonstrated following ADX; an effect the authors attribute to 

the removal of circulating glucocorticoid hormone. It is likely safe to assume that a 

mechanism of androgen modulation of cIEG expression is available in the CNS, 

especially in areas of the hippocampus where there is an anatomical overlap of AR 

synthesizing cells with those cells where cIEGs are induced following various 

physiologic stimuli. Androgen modulation of cIEG expression would implicate 

androgens in the long term alteration of hippocampal function and would suggest that 

the hormonal status of the animal affects the active response of hippocampal cells to 

incoming information. 

Clinical Implications 

The study of androgen action in the hippocampus has the potential to impact 

several areas of clinical medicine. There is growing concern over the health risks and 

psychological problems associated with the long term abuse of anabolic-androgenic 



69 

steroids. Few studies on how high-doses of androgen affect brain tissue have been 

performed. Essentially, anabolic-androgenic steroids are synthetic derivatives of T 

and DHT which act through the AR to elicit many of their effects. When taken in 

high doses and combined with rigorous training and a high protein diet, anabolic 

steroids can produce large increases in muscle mass in a relatively short period of 

time (Haupt and Rovere, 1984). Such results have led to a dramatic surge in anabolic 

steroid abuse by professional, college, high school and recreational athletes in order 

to enhance their performance or body appearance. Currently, both males and females 

use anabolic steroids and it is estimated that there are at least one million users in the 

United States alone (Marshall, 1988). Typically, steroid abusers take multiple forms 

of hormone at once and thus provide circulating androgen 10-200 times physiological 

levels (Narducci et al., 1990). Common peripheral side effects of such steroid abuse 

include testicular atrophy, virilization (females), increased risk of heart disease, acne, 

and hepatotoxicity (Narducci et al. , 1990). In addition, recent clinical evidence 

suggests various psychotropic effects of high dose anabolic steroids. These include 

violent behavior, hyperactivity, psychoses, hallucinations, depression, suicide 

ideation, antisocial behavior, and panic disorders (Lubell, 1989; Katz and Pope, 1990; 

Uzych, 1992). These psychological changes appear to be the result of chronically 

high levels of androgen reaching the brain, however, the underlying mechanisms are 

unknown. Limbic areas of the brain that control aggression and emotion, including 

the amygdala and hippocampus, are likely targets for androgen action. Although the 

clear answer to these problems is the prevention of anabolic-androgenic steroid abuse, 
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tissue may aide in the treatment of those individuals who still choose to illegally use 

these drugs. 

The increasing number of studies touting the beneficial androgenic effects on 
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hippocampal plasticity, memory and overall well-being throughout adulthood have 

recently prompted studies examining T supplementation in older men. Typically, 

circulating androgen levels decline with age in both men (Davidson et al., 1983; 

Vermeulen, 1991; Vermeulen and Kaufman, 1995) and women (Zumoff et al., 1995). 

Whether T replacement to levels found in younger :individuals can improve certain 

memory skills, mood and libido are just beginning to be explored (Goudsmit et al., 

1990; Janowski et al., 1994; Tenover, 1994). Currently, not much information exists 

on androgen sensitivity in brain or peripheral tissues during the aging process 

(Goudsmit et al., 1988; 1990b). Such research would certainly shed light on the 

validity and safety of such treatments in older men and women. 

Summary 

The increasing number of reports of psychological side effects of anabolic

androgenic steroid abuse, as well as the possible beneficial effects of physiological 

levels of androgens on neuronal plasticity, have prompted a heightened research 

interest into the intracellular mechanisms of androgens in brain tissue. The presence 

of relatively high levels of androgen receptors and their mRNAs in the CAI 
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pyramidal cells of the hippocampus suggests that this area is a major neural target for 

androgens. Subsequently, changes in androgen sensitivity in hippocampal pyramidal 

neurons, which form a major output of the hippocampus to limbic and cortical areas, 

may underlie some of the behavioral effects of anabolic-androgenic steroids. The 

quantification and regulation of AR and its mRNA in the hippocampus following 

various androgen treatments were determined to begin to examine the responsiveness 

of the hippocampus to circulating androgen. The action of the AR at the 

transcriptional level is also not well understood. Changes in the expression of various 

constitutively expressed or inducible genes are possible mechanisms that could alter 

the way in which hippocampal pyramidal cells respond to incoming signals. 

Therefore, a multidisciplinary approach was used to characterize the hippocampal AR, 

its regulation and its effects on constitutive and inducible gene expression following 

androgen removal and replacement. Together, these studies have begun to define the 

sensitivity of the adult hippocampus to androgens and serve as a basis for further 

investigation of activational androgenic effects on hippocampally-mediated behaviors, 

such as cognition, memory formation and spatial ability. 



CHAPTER III 

DISTRIBUTION AND HORMONAL REGULATION OF 
ANDROGEN RECEPTOR (AR) AND AR MESSENGER RNA 

IN THE RAT HIPPOCAMPUS 

Abstract 

The action of androgens in both peripheral and central tissues are linked in 

part to their ability to specifically bind and activate ARs. ARs have been well studied 

in the rat hypothalamus and peripheral reproductive tissues, where they are directly 

involved in endocrine feedback mechanisms and reproduction. Previous studies have 

revealed relatively high levels of AR and AR mRNA in the rat hippocampus; 

however, the action of androgen in this brain region remains unclear. To begin to 

address this issue, a multidisciplinary approach was used to quantitate hippocampal 

AR and AR mRNA levels and to investigate AR autoregulation following various 

hormonal manipulations. In vitro binding assays revealed a single, saturable, high 

affinity binding site for androgen in hippocampal cytosols. Western immunoblot 

analysis of hippocampal, hypothalamic, cortical and ventral prostate cytosol 

preparations using an AR specific antibody showed a primary signal at approximately 

110-140 kilodaltons suggesting a single AR species in both brain and peripheral 
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tissues. The expression of AR mRN A in the intact adult male rat hypothalamus and 

hippocampus was quantified using a RNase protection assay. Comparable levels of 

AR mRNA were found in the hippocampus and hypothalamus. In addition, in situ 

hybridization analysis revealed a unique distribution of AR mRNA in the 

hippocampus. AR mRNA was found predominately in the CAl pyramidal cells which 

form the major signal output of the hippocampal trisynaptic circuit. RNase protection 

assay demonstrated a significant decrease in AR mRNA content in the hippocampus of 

animals killed four days following castration, or in intact rats after four daily 

injections of the AR antagonist, flutamide (15 mg/animal), as compared to mRNA 

levels in intact controls (P<0.01). In contrast, a 35% increase (P<0.05) in the 

hippocampal AR mRNA content was found in old (22 month-old) male rats as 

compared to young (5 month-old) male rats. In both cases, [3H]-DHT binding to the 

cytosolic preparation did not parallel the changes observed in the AR mRNA content. 

In summary, these data demonstrated that hippocampal cells containing AR can 

respond to circulating androgen to alter AR gene expression. Furthermore, AR 

mRNA autoregulation was be both age and tissue specific and did not directly follow 

the regulatory patterns previously described for other steroid hormone receptors found 

in the hippocampus. 
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Introduction 

T and its Sa-reduced metabolite, DHT, are the major circulating androgenic 

hormones in males. Androgen action is linked in part to its ability to specifically bind 

and activate ARs. In neural tissue, AR are distributed in a pattern consistent with 

androgenic effects on the regulation of gonadotropin secretion and reproductive 

behaviors (Sar and Stumpf, 1973; Lieberburg et al., 1977; Randa et al., 1986; 

Roselli, 1991). 

Studies revealing relatively high levels of AR and its mRNA in 

extrahypothalamic brain areas such as the cortex, lateral septum and the hippocampus 

of the rat (Sar and Stumpf, 1974, 1977; Randa et al., 1987a; Roselli et al., 1989; 

Simerly et al., 1990; McLachlan et al., 1991; Zhou et al., 1994b) present the 

possibility that androgen action in the brain is not limited to the expression of some 

reproductive behaviors and endocrine feedback mechanisms. Recently, androgenic 

compounds have been shown to influence some hippocampal-mediated learning and 

memory tasks in rats (Roofs and Havens, 1992; Flood et al., 1992) as well as 

modulate NMDA receptor levels (Kus et al., 1995) and NMDA receptor-mediated 

electrophysiological properties (Pouliot et al., 1995) in hippocampal pyramidal cells. 

In humans, sex-related differences in certain memory skills as well as other cognitive 

functions (Kimura, 1992) implicate gonadal hormones as important organizational 

modulators of hippocampal physiology. Fluctuations in gonadal hormone levels 

during the normal monthly cycle in women or the seasonal cycle in men (Hampson 
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and Kimura, 1992) as well as T supplementation in older men (Janowsky et al., 1994) 

have been shown to significantly alter cognitive ability. These studies suggest an 

active role of gonadal hormones on hippocampal function throughout life; however, 

their mechanism of action is not understood. 

In aging male rats, a gradual decline in circulating levels of T has consistently 

been reported (Ghanadian et al., 1975; Bethea and Walker, 1979; Kaler and Neaves, 

1981). Androgen-mediated behaviors decline similarly with age in the male rat; 

however, restoration of circulating T levels equivalent to the young male will not 

fully restore behavior, suggesting that age-related deficits in behavior are probably 

due to changes in androgen responsiveness in certain brain areas (Chambers and 

Phoenix, 1984; Goudsmit et al., 1990; Chambers et al., 1991). Studies examining 

other steroid hormone receptors have shown significant decreases in hippocampal GR 

and MR density in aged rats (Sapolsky et al., 1983; Van Eekelen et al., 1991). How 

the aging process and its associated decline in circulating androgen levels affects AR 

expression in the hippocampus has not been explored. 

Based on these data, it was hypothesized that the hippocampus is a major 

neural target for androgens. In the studies reported here, a multidisiplinary approach 

was used to characterize, quantify and localize AR and AR mRNA in the rat 

hippocampus. Furthermore, the responsiveness of the hippocampal AR and AR 

mRNA expression to removal of circulating androgen by castration as well as to 

naturally occurring deficits in circulating androgens such as those found in the aging 

male rat were examined. 

~----------......... 



Materials and Methods 

,Animals and Tissue 

Young (3- to 5-month-old) and old (22- to 24-month-old) male Fischer 344 

rats (Harlan Inc, Indianapolis, IN) were maintained on a 12-h light, 12-h dark cycle 

(lights on at 0700 h) and given free access to food and water. Bilateral GDX was 

performed under ether anesthesia and all animals were sacrificed by decapitation. 

Brain dissections of the hypothalamus, hippocampus and cortex were performed as 

previously described by Randa et al. (1986). 

Experiment 1: Characterization. Quantification and Localization of AR and AR 

mRNA in the Hiwocampus of Youn& Male Rats 
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To confirm the presence of AR in the rat neural tissues hippocampal AR were 

characterized using in vitro binding of [3H]-DHT to hippocampal, cortical and 

hypothalamic cytosols obtained from rats castrated 24 h before death. Prior castration 

was necessary to ensure that all available AR were free of ligand and unbound to 

DNA. In addition, western immunoblot analysis was performed on cytosolic protein 

extracts from intact rat hippocampus, hypothalamus and cortex to determine the 

approximate size of the AR protein found in these neural tissues. To determine 

whether the location of the expression of AR mRNA in neural tissue mimicked that of 

its protein, total RNA isolated from the cortex, hypothalamus, and hippocampus of 

intact young rats was assayed by RNase protection assay. The distribution of AR 



mRNA in the hippocampus of the intact rat was further analyzed using in situ 

hybridization. 

Experiment 2: Regulation of Hippocampal AR and AR mRNA 

77 

In this experiment the regulation of AR and AR mRNA after androgen 

removal or AR antagonism was examined. Young animals were left intact, 

gonadectomized for 4 days, or subcutaneously injected daily with 15 mg of the AR 

antagonist, flutamide (30 mg/ml; dissolved in sesame oil), for 4 days. Total RNA 

was isolated from each hippocampus and assayed for steady state levels of AR mRNA 

using the RNase protection assay. In vitro binding of [3H]DHT to hippocampal 

cytosols from animals gonadectomized for 12 h, 24 h, or 4 days was used to 

determine whether changes in AR protein levels mimic the changes in mRNA levels 

under similar conditions. To estimate total receptor numbers in intact rats, castration 

12 h prior to sacrifice was performed to ensure that all AR were free of ligand and 

not bound to DNA and, thus, could be obtained in the cytosolic fraction. 

Experiment 3: Hippocampal AR Levels in Aged Rats 

To investigate the effect of naturally occurring reductions in T on hippocampal 

AR and mRNA content, I compared steady state levels of AR and AR mRNA in the 

hippocampus of young vs. old intact rats. In vitro binding and RNase protection 

assay were used for the quantification of AR and AR mRNA levels, respectively. 

Saturation analysis of [3H]DHT binding were also performed to analyze possible age-
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related changes in AR binding affinity. 

In vitro Binding Assay 

Tissue was analyzed for concentration of cytosolic AR as previously described 

(Handa et al., 1986). Briefly, brains were rapidly removed from the skull and placed 

on crushed ice for dissection. Each brain region was homogenized in 600 µl of 

TEGMD buffer (10 mM Tris, 1.5 mM EDTA, 10% glycerol, 25 mM molybdate, 1 

mM dithiothreitol; pH 7.4); for saturation analysis, six hippocampi were pooled and 

homogenized in 1. 5 ml of TEGMD buffer. The homogenate was centrifuged at 

100,000 x g for 15 min in a TFT 80.4 rotor in a Sorval OTD55B ultracentrifuge 

(Sorval, Norwalk, CT) at 4°C to obtain a pure cytosolic fraction. For single point 

assay, 100 µl of the cytosolic fraction was incubated with 2 nM of [3H]DHT 

(l,2,4,5,6,7-3H(N)-5a-Androstan-17fi-ol-3-one, 110-150 Ci/mmol, New England 

Nuclear (NEN) Research Products, Boston, MA) for 20-24 hat 0-4°C for 

determination of total AR binding (total incubation, 150 µl). A 400 nM concentration 

(200-fold excess) of radioinert AR specific agonist, methyltrienolone (Rl881, NEN 

Research Products), was incubated in parallel tubes with [3H]DHT to determine 

nonspecific binding. For saturation curves, purified cytosolic fractions were aliquoted 

(100 µl) into 1.5 ml conical tubes containing [3H]DHT (0.05 nM to 2 nM). A 

parallel set of incubation tubes containing an additional 200-fold excess of unlabelled 

R1881 were used to determine nonspecific binding. Following the overnight 

incubation at 4°C, all samples were passed through Sephadex LH-20 columns to 
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separate bound from free ligand. Six hundred microliters of eluate containing bound 

radioactivity were collected. Four milliliters of UltimaGold scintillation fluid 

(Packard, Downers Grove, IL) was added to the eluate, and the radioactivity was 

counted in a Packard 1900 LA liquid scintillation counter at 37% efficiency. Specific 

binding was calculated by subtracting nonspecific binding from total binding. Ten 

microliters of the remaining cytosol was used for measurement of protein levels by 

the method of Lowry et al. (1951). All receptor data are expressed as femtomoles 

(fmol) per mg protein. Scatchard transformations were generated by computer using 

The LIGAND program (version 3.0, Elsevier North Holland, Amsterdam, The 

Netherlands). 

RNA Isolation 

Dissected brain regions were homogenized separately in 4 M guanidinium 

isothiocyanate (Boehringer Mannheim, Indianapolis, IN) buffer containing 50 mM 

sodium citrate, pH 7.0, 0.5% sarkosyl and 0.1 M fi-mercaptoethanol. Total RNA 

was isolated as previously described by Chirgwin et al. (1979), by pelleting through a 

5.7 M CsCl cushion for 14-16 hat 147,000 x g at 15<>C. The resuspended RNA 

pellet was phenol-chloroform-isoamyl alcohol (24:24: 1) extracted, and the aqueous 

phase was then further purified by ethanol precipitation. The resultant pellets were 

washed with 70% ethanol, resuspended in diethylpyrocarbonate-treated H20 and 

stored at -70<>C until used for the RNase protection assay. RNA content was 

determined by UV absorbance at 260 nm. 
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RNase Protection Assay 

In vitro solution hybridization of AR mRNA was performed as previously 

described by Burgess and Handa (1993a). To generate antisense radiolabelled RNA 

probes, a 141 basepair fragment of the rat AR2 cDNA (Tan et al., 1988) was 

subcloned into a pGEM 3Z plasmid vector (Promega), as depicted in figure 6A. A 

radiolabelled antisense RNA probe was transcribed following linearization of these 

vectors with EcoRl and transcription with SP6 DNA-dependent RNA polymerase in 

the presence of a-32P-labeled CTP (800 Ci/mmol; Amersham, Arlington Heights, IL). 

This procedure and subsequent RNase protection assay are outlined in figure 6B. 

The resulting antisense probe had a specific activity of more than 109 cpm/ µg. 

Aliquots of the transcribed RNAs were analyzed on denaturing 5% acrylamide, 7.5 M 

urea gels to confirm their integrity. Only 32P-1abeled cRNA transcripts that were 

more than 90% full length were used in subsequent assays. Sense strand RNAs were 

transcribed from the same construct, using the T7 polymerase, following linearization 

with Pst I. Dilutions of in vitro synthesized sense strand RNA ( > 99 % full length) 

were used to generate the standard curves performed in each assay. 

Either 10 µg sample RNA or dilutions of in vitro transcribed sense strand 

RNA [50, 25, 12.5, 5 and 2.5 attomoles(amol)] were hybridized in solution to a 

molar excess (100,000 cpm) of 32P-labeled antisense RNA (total incubation volume, 

30 µl). The standard curves generated were linear, with correlation coefficients 

consistently greater than 0.99. Ten micrograms of transfer RNA were used as a 
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negative control. Following hybridization overnight and digestion of unprotected 

fragments with RNases A and Tl (40 µg/ml and 2 µg/ml, respectively), the protected 

fragments were phenol-chloroform-isoamyl (24:24: 1) extracted, ethanol precipitated 

and resuspended in 10 JLl formamide load buffer (80% formamide, 10 mM EDTA, 1 

mg/ml Bromophenol blue, 1 mg/ml xylene cyanole). Resuspended fragments were 

electrophoresed through 5 % acrylamide-7. 5 M urea gels at 300 V. Gels were fixed 

in 7% acetic acid and dried. Radioactivity in the gels was counted directly by a 

Betascope 6000 analyzer (Betagen, Waltham, MA). Values are expressed as fmol 

protected probe per mg input RNA. Each sample was run in duplicate in each assay, 

and the resulting values were averaged to obtain a final value for each animal. 

Autoradiograms were obtained by exposing the dried gels to Hyperfilm (Amersham, 

Lake Forest, IL) at -7<J'C for 4-7 days. Validation of the assay and a typical standard 

curve (cpm in the protected band vs. amol of sense stand added) are shown in figures 

7A and 7B. 



A/B 

5' II 

532 

141 
I I AR2S 

EcoR1 Sal 1 

EcoR1 i 

5' 

EcoR1 
I 

3' 

Linearized Vec1or 

c D E 

Rat AR cDNA 

Sa/1 
I 

SP6 promo1er 

5' cRNA probe (170 nucleotides) 

141 nucleotides 
RNase Protected Fragment 

82 

Figure 6. (A) Schematic representation of the AR2S cDNA construct prepared by 
subcloning a 141 nucleotide fragment of the rat AR cDNA, corresponding to the 5'
translated region. (B) The RNase protection assay process. The plasmid is 
linearized with EcoRl and in vitro transcribed with SP6 RNA polymerase to produce 
a uniformly labelled antisense cRNA transcript of 170 bases. This probe hybridizes 
to AR mRNA and following digestion of all single stranded RNA and purification, the 
resulting 141 nucleotide protected fragment was left. 
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Figure 7. Verification of the AR RNase protection assay. Sense strand RNA were 
hybridized to excess 32P-labelled antisense RNA probe and digested with RNase as 
described in Methods. (A) Respresentitive autoradiogram of gel electrophoresis. 
Lanes 1 to 5 represent decreasing amounts of added sense strand RNA [50, 25, 12.5, 
5 and 2.5 attomoles (10-18

)]. Lane 6 is the transfer RNA control, and lanes 7 and 8 
demonstrate representitive duplicate bands from 1 Oµ.g added hippocampal RNA. (B) 
AR RNase protection assay standard curve. Protected counts (as measured by the 
Betascope) plotted versus the amount of added sense strand RNA. 
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In Situ Hybridization 

Jn situ hybridization was performed using the in vitro transcribed AR cRNA 

probe as described above, but labeled with [35S]UTP (800 Ci/mMol, Amersham, 

Arlington Heights, IL). Completeness of transcription was determined by 5 % 

acrylamide-7.5 M urea gel electrophoresis. The specific activity of the probes 

averaged 1 x 109 cpm/ µg. Only probes greater than 90% full length were used for in 

situ hybridization. 

Whole brains were rapidly removed from skull and immersed in cold 

isopentane (-30°C). Brains were stored frozen at -80()C until sectioned. Brains were 

sectioned at 16 µmin a Leitz 1600 cryostat and mounted onto Superfrost plus slides 

(Fisher Scientific, Pittsburgh, PA). In situ hybridization using the 35S-labelled cRNA 

probe was performed according to the method previously described by Handa et al. 

(1993). Approximately 85 µl of a 20 x 106 cpm!ml hybridization solution (50% 

formamide, 20% dextran sulfate, 1.2 M NaCl, 20 mM Tris, 0.04% Denharts 

solution, 2 mM EDTA, 0.02% salmon sperm DNA, 0.1% yeast RNA, 0.1 % sodium 

thiosulfate, 100 mM dithiothreitol (DTT), 0.1 % sodium dodecyl sulfate (SDS)) were 

added to each slide, coverslipped and allowed to hybridize in a humidified incubator 

for 16 h at 65°C. Slides were rinsed in 2 x saline sodium citrate (SSC) and 

nonhybridized RNA was digested with RNase A (20 µg!ml: 37()C for 30 min). Slides 

were washed to a final stringency of 0.1 x SSC at 60'C. Autoradiograms were 

obtained by exposing slides to X-ray film (Hyperfilm B-max, Amersham, Arlington 

Heights, IL) for 21 days. Following film exposure, slides were dipped in nuclear 
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tract emulsion (Kodak NTB-3) and exposed for 35 days before development and 

cresyl violet staining. These sections were examined under bright- and darkfield 

illumination using a Zeiss Axioplan microscope (Zeiss, New York, NY). Resulting 

images were digitized from photographic slides. Composite figures were made using 

Adobe Photoshop software. 

Western Immunoblot Analysis 

Freshly dissected tissues were homogenized in 300 - 600 µI of Tris-EDTA 

buffer, pH 7.4, supplemented with 0.2 mg/ml Aprotinin, 1 mM DTT and 0.1 % SDS. 

Cytosolic extracts were made by centrifuging at 100,000 x g for 30 min in an TFT 

80.4 rotor in a Sorval OTD55B ultracentrifuge at 4°C. Protein levels in the cytosol 

were determined by the method of Lowry et al. (1951). After boiling for 5 min, 50 

µg of the denatured cytosolic extracts were electrophoresed on 1.5 mm SDS

polyacrylamide gels consisting of a 5% stacking gel and an 8% resolving gel. Protein 

was electrophoretically transferred to polyvinylidene difluoride membrane 

(Polyscreen™, NEN Research Products, Boston, MA) at room temperature for 1 hat 

200 amps in a buffer containing 0.048 M Tris, 0.039 M glycine, 0.037% SDS and 

20% methanol. Membranes were incubated overnight at room temperature in 

blocking buffer (5% Carnation nonfat dry milk in 1 X TBS, 0.05% Tween-20, and 

0.02% sodium azide) and then incubated for 1 h with purified PG-21 antisera (1 

µg/ml). This is a rabbit antiserum raised against a synthetic peptide corresponding to 

the first 21 amino acids of the rat and human AR (generously supplied by Dr. Gail 
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Prins, University of Illinois College of Medicine). A preabsorption control consisting 

of 1 µg/ml PG-21 and a 10-fold molar excess of the antigenic peptide AR21 (0.2 

µg/ml) was incubated on corresponding membranes to demonstrate specificity. All 

membranes were incubated at room temperature in biotinylated goat antibody to rabbit 

IgG (2 µg/ml) in 5% dry milk and 0.05% Tween-20 (TBST) for 1 h. After each 

incubation, membranes were washed with TBST (2 X 15 min) at room temperature. 

Immunoreactive bands were visualized using Renaissance™ western blot 

chemiluminescence reagent (NEN Research Products, Boston, MA; 0.125 ml/cm2 

membrane for 2 min) and exposed to autoradiographic film (Reflection TM, DuPont, 

Boston, MA) for 5 - 10 min. 

Statistical Analysis 

All data were analyzed by a one-way analysis of variance followed by the 

Student-Newman-Keuls multiple comparisons test. P <0.05 was considered 

significant. 



Results 

Characterization. Quantification and Localization of AR and AR mRNA in the Rat 

Hippocampus 
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To determine whether the binding characteristics of AR in the hippocampus 

were similar to that previously reported in other neural tissues, such as the 

hypothalamus, we examined the in vitro binding of [3H]DHT to hippocampal, cortical 

and hypothalamic cytosols obtained from young male rats castrated one day prior to 

sacrifice. Scatchard analysis of [3H]DHT binding to AR in each of the three cytosols 

(figure 8) demonstrated a saturable, high affinity binding site which was best fit by a 

single site model and had an apparent Kc1 of 0. 2 nM. The highest concentration of 

AR binding was found in the hypothalamus with an approximate binding capacity 

(Bmax) of 4.5 fmol/mg protein, followed closely by hippocampal binding with an 

approximate Bmax of 3.9 fmol/mg protein. Cortical tissue had the lowest AR 

concentration of the three tissues with a Bmax of approximately 1.4 fmol/mg protein. 

Western immunoblots were performed to characterize and compare rat AR 

immunostaining in neural and peripheral tissues believed to express relatively high 

levels of AR. A prominent specific AR protein approximately 110-140 kilodalton 

(kDa) in size was detected in ventral prostate, hippocampus, hypothalamus, cortex 

and pituitary gland using the PG-21 antibody (figure 9, lanes 1-5, respectively). This 

corresponds well to the known molecular weight of the rat AR. In ventral prostate 

and hypothalamus, smaller immunoreactive bands approximately 45-85 kDa in size 
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were visible and are thought to be a cleavage products of AR (figure 9, lanes 1 and 

3). All bands were completely competed by excess antigenic AR21 peptide (figure 9, 

lanes 6 and 7, ventral prostate and hippocampus shown). Quantification of the 

resulting autoradiograph bands would not be meaningful due to potential differences in 

degradation or cleavage rates of AR in the tissues studied. Efforts to minimize 

degradation through the addition of molybdate, multiple protease inhibitors, and 

increased SDS concentrations were unsuccessful in eliminating all of the degradation 

products. The extreme labile nature of AR protein, especially in the absense of 

ligand, has been reported by others (Kemppainen et al., 1992; Zhou et al., 1995). 

Additionally, studies in rat peripheral tissues have detected multiple bands upon AR 

immunoblot analysis and these authors cited region-specific degradation as the 

probable cause of multiple smaller bands (Shan et al., 1990; Prins et al., 1991). The 

addition of excess ligand, as well as the believed relative stability of the steroid 

binding region of the AR protein, makes AR binding analysis more suitable for the 

measurement of AR concentrations in neural and peripheral tissues. 

Quantification of AR mRNA levels in neural tissue using the RNase protection 

assay paralleled our findings of AR binding levels. Similar steady state levels of AR 

mRNA were found in young male hypothalamus and hippocampus with values of 557 

± 56 and 539 ± 54 amol/mg input RNA, respectively. AR mRNA levels in the 

cortex were significantly lower than in both hippocampus and hypothalamus (310 ± 

32 amol/mg input RNA, P<0.01). 

'• 
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Figure 8. Scatchard analysis of specific [3H]DHT binding in rat brain. Cytosolic 
preparations were analyzed from the hypothalamus(•), hippocampus (0), and cortex 
(•)of young male rats castrated 24 hours prior to sacrifice. Tissues from 6 rats 
were pooled to obtain cytosolic preparations. Cytosols were incubated with 0.05 
nM - 2 nM [3H]DHT with and without a 200-fold excess of unlabelled Rl881 to 
obtain saturation isotherms. Scatchard transformations and dissociation constants (~ 
were generated by computer using the LIGAND program. A~ value of 0.22 nM 
were obtained for all three tissues studied. Reprinted, by permission, from J.E. Kerr, 
R.J. Allore, S. G. Beck, R.J. Randa. Distribution and hormonal regulation of 
androgen receptor (AR) and AR messenger RNA in the rat hippocampus. 
Endocrinology, 136(8):3213-3221, 1995. ~The Endocrine Society. 
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Figure 9. Western immunoblot analysis of AR using the PG-21 antisera in 
cytosolic preparations from young adult male rat ventral prostate (lanes 1 and 6), 
hippocampus (lanes 2 and 7), hypothalamus (lane 3), cortex (lane 4) and pituitary 
gland (lane 5). Proteins were separated by SDS-polyacrylamide gel electrophoresis 
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on a 8 % gen and transferred to polyvinylidene difluoride membrane. Strips were 
incubated with PG-21 antisera (l~g/ml) in the absence (lanes 1-5) or presence (lanes 6 
and 7) of a 10-fold molar excess of the antigenic peptide AR21 • Bands were 
visualized using chemiluminescence. The position of the molecular weight markers 
(kDa) are shown on the left. The major immunoreactive band is at - 110-140 kDa. 
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Further investigation of AR mRNA in the hippocampus demonstrated that it is 

not expressed equally in all cellular regions. The examination of emulsion-coated 

tissue sections following in situ hybridization revealed that AR mRNA is 

predominately expressed in the CA I pyramidal cell region of the intact male rat 

hippocampus. For comparison, AR mRNA was expressed in near equivalent levels in 

the ventromedial nucleus and arcuate nucleus of the hypothalamus where AR is known 

to play a role in hormonal feedback and sexual behavior (figure 10). The 

examination of the hippocampus at high magnification revealed that virtually all CAI 

neurons expressed AR mRNA (figure llA). Much lower expression of AR mRNA 

was detected in the CA3 region (figure llB) and expression was absent in the DG 

(figure llC). The level of exposed silver grains over the CAI pyramidal cells is 

comparable to levels found over the cells of the ventromedial nucleus of the 

hypothalamus (figure llD). 
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Figure 10. Localization of AR mRNA in rat brain using in situ hybridization. 
Darkfield photomicrographs (magnification = lOOX) illustrating the distribution of 
AR mRNA in the hippocampus (A) and the ventromedial nucleus (VMN)/arcuate 
nucleus (Arc) of the hypothalamus (B) in the young male rat. AR mRNA expression 
is highest in the CA 1 pyramidal cell region of the hippocampus and comparable levels 
are found in the VMN/ Arc. Images were digitized from photographic slides and 
composite figures were generated using Adobe Photoshop software. 3V, Third 
ventricle. Reprinted, by permission, from J.E. Kerr, R.J. Allore, S.G. Beck, R.J. 
Handa. Distribution and hormonal regulation of androgen receptor (AR) and AR 
messenger RNA in the rat hippocampus. Endocrinology, 136(8):3213-3221, 1995. 
(C) The Endocrine Society. 
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Figure 11. Localization of AR mRNA in hippocampal and hypothalamic neurons 
of young intact male rats. Digitized brightfield photomicrographs (magnification = 
lOOOX) show exposed silver grains over tissue following in situ hybridization of 35S
labelled cRNA probe to AR mRNA. Cresyl violet darkly stains cell nuclei, whereas 
perikarya are pale to invisible due to RNase treatment of the tissue during in situ 
hybridization. Dense labelling is evident over cells of the CAI region of the 
hippocampus (A) and ventromedial nucleus of the hypothalamus (D). Little to no 
labelling is found over the CA3 pyramidal cell region (B) and dentate gyrus (C) of the 
hippocampus. Reprinted, by permission, from J.E. Kerr, R.J. Allore, S.G. Beck, 
R.J. Randa. Distribution and hormonal regulation of androgen receptor (AR) and AR 
messenger RNA in the rat hippocampus. Endocrinology, 136(8):3213-3221, 1995. 
<0 The Endocrine Society. 
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Short Term Regulation of Hippocampal AR 
=---

As measured by RNase protection assay, animals castrated 4 days previously 

and animals injected for 4 days with the androgen receptor antagonist, flutamide, had 

decreased hippocampal AR mRNA concentrations as compared to intact animals 

(P<0.02, figure 12). Castration l day prior to death did not alter AR mRNA levels 

in the hippocampus as compared to that in intact controls. In contrast, [3H]DHT 

binding to hippocampal cytosols was increased in 1- and 4-day castrates compared to 

that in control animals castrated 12 h prior to sacrifice (P < 0. 05, figure 13). 

Age-Related Changes in Hii:wocampal AR Expression 

To determine whether hippocampal AR levels are altered in the old rat with 

physiologically relevant reductions in circulating androgen, AR mRNA content as 

well as AR binding levels and kinetics were examined in young and old intact male 

rats. Using the RNase protection assay, hippocampal AR mRNA concentration was 

539 ± 54 amol mRNA/mg input RNA in the young animals as compared to 729 ± 

46 amol mRNA/mg input RNA in the old rats (figure 14). This represents a 35 % 

age-related increase (P<0.05). Age-related differences were not found in the cortex 

or hypothalamus (figure 14). In contrast, in vitro binding studies revealed no 

significant changes between total cytosolic [3H]DHT binding in the hippocampi of 

young and old animals ( 4.4 7 ± 0. 25 and 5 .19 ± 0. 3 fmol bound/mg protein, 

respectively; figure 15), and no alterations in AR binding affinity (Kd = 0.24 and 

0.26 nM, respectively; data not shown) were detected. 
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Figure 12. Hippocampal AR mRNA regulation. Effect of castration and AR 
blockade on the concentration of AR mRNA in the hippocampus of young male 
Fischer 344 rats. Animals were left intact, bilaterally gonadectomized for 4 days (4 
day GDX), or injected daily with the AR antagonist, flutamide (15mg/day), for 4 days 
(4 day Flutamide). One-way ANOVA revealed a significant effect of treatment 
(F=8.0, df =2; P < 0.004). *Indicates significantly different (P < 0.01) from intact 
value, as determined by post-hoc analysis. Data are expressed as attomoles of 
protected probe ( cAR mRN A) per mg input RNA. Each bar represents the mean + 
SEM of 6-7 determinants. Reprinted, by permission, from J.E. Kerr, R.J. Allore, 
S.G. Beck, R.J. Handa. Distribution and hormonal regulation of androgen receptor 
(AR) and AR messenger RNA in the rat hippocampus. Endocrinology, 136(8):3213-
3221, 1995. ©The Endocrine Society. 
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Figure 13. [3H]DHT binding to cytosolic preparations of the hippocampus from 
young male Fischer 344 rats killed 12 hours (12 h GDX), 1 day (1 day GDX), or 
4 days (4 day GDX) after castration. One-way analysis of variance revealed a 
significant effect of treatment (F =6.5, df =2; P < 0.01). *, Significantly different 
(P < 0.05) from 12 hour castrates, as determined by post-hoc analysis. Each bar 
represents the mean ± SEM of 8 determinants. Reprinted, by permission, from J.E. 
Kerr, R.J. Allore, S.G. Beck, R.J. Handa. Distribution and hormonal regulation of 
androgen receptor (AR) and AR messenger RNA in the rat hippocampus. 
Endocrinology, 136(8):3213-3221, 1995. «:)The Endocrine Society. 
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Figure 14. AR mRNA concentration in various tissues of intact young (3- to 5-
month old) and old (22- to 24-month old) intact male Fischer 344 rats. A two
tailed t test revealed a significant effect of age in the hippocampus (*, P < 0.05). 
Data are expressed as attomoles of protected probe (cAR mRNA) per mg input RNA. 
Each bar represents the mean ± SEM of 5-7 determinants. Reprinted, by permission, 
from J.E. Kerr, R.J. Allore, S.G. Beck, R.J. Handa. Distribution and hormonal 
regulation of androgen receptor (AR) and AR messenger RNA in the rat 
hippocampus. Endocrinology, 136(8):3213-3221, 1995. (0 The Endocrine Society. 
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Figure 15. [3H]DHT binding to hippocampal cytosolic preparations from young 
(3- to 5- month old) and old (22- to 24-month old) male Fischer 344 rats castrated 
24 hours prior to sacrifice. Each bar represents mean ± SEM of 16 determinants. 
There were no significant differences. Reprinted, by permission, from J.E. Kerr, 
R.J. Allore, S.G. Beck, R.J. Randa. Distribution and hormonal regulation of 
androgen receptor (AR) and AR messenger RN A in the rat hippocampus. 
Endocrinology, 136(8):3213-3221, 1995. ci The Endocrine Society. 



Discussion 

In these studies a multidisciplinary approach was used to characterize and 

quantify AR in the rat hippocampus. The presence of high levels of AR and AR 

mRNA in the hippocampus was demonstrated by RNase protection assay, in situ 

hybridization, western immunoblot and in vitro binding analysis suggesting that this 

area is a major neural target for androgen. 
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The significance of the finding that the majority of AR mRNA is found in the 

hippocampal CAl region is unclear. However, as these neurons complete the 

unidirectional trisynaptic circuit and provide the major output for the hippocampal 

formation to other cortical and limbic structures (Van Groen and Wyss, 1990), the 

high density of AR mRNA in practically every cell in this region suggests a role for 

androgens in the modulation of hippocampal output. Recent electrophysiologic and 

binding studies have found androgen-mediated changes in NMDA sensitivity (Pouliot 

et al., 1995) and NMDA receptor number (Kus et al., 1995) in hippocampal CAl 

pyramidal cells. This modulation of NMDA receptors may be one mechanism by 

which androgens could phenotypicall y alter the response of hippocampal CA 1 neurons 

to incoming signals. 

The distribution of AR mRN A overlaps the distribution of ER, GR and MR 

mRNA in the hippocampus, in that all mRNAs are found in the CAl region (Simerly 

et al., 1990; Van Eekelen et al., 1988). Consequently, AR may synergize with these 

receptors in regulating hippocampal functions known to be sensitive to adrenal 
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hormones (see review, de Kloet et al., 1993a) or estrogen (see review, Becker, 

1992). Consistent with this notion, androgen has been shown to inhibit ACTH and 

corticosterone responses to stress in a fashion similar to corticosterone (Randa et al., 

1994a). 

Western immunoblot analysis was performed to further characterize AR in 

central tissues. The specific AR signal observed at approximately 110-140 kDa in rat 

central tissues, as well as in the rat VP, corresponds well to the known mol wt of the 

rat AR. This mol wt parallels the findings of other published AR western 

immunoblots of protein samples obtained from a variety of species or cell lines, 

various peripheral tissues and using a multitude of antibodies (Zhou et al., 1994b; 

Young et al., 1988; Prins et al., 1991; Wolf et al., 1993). This single band in rat 

brain cytosols confirms previous studies (Barley et al. , 1975; Roselli, 1991) 

suggesting a single AR despite the presence of two AR mRNA forms in neural 

tissues. We believe that the smaller bands ranging from 45-85 kDa that were 

observed in ventral prostate and hypothalamus are degradation or cleavage products of 

the intact AR protein for two reasons. First, all the bands were completely competed 

by excess antigenic AR21 peptide suggesting that these are AR protein fragments and 

are not the result of non-specific antibody binding. Secondly, when the prepared 

protein samples were left for any length of time, or frozen prior to electrophoresis we 

observed a greater proportion of the lower molecular weight bands and a dramatic 

decrease of the large 110-140 kDa band. Other studies in rat peripheral tissues have 

also detected these degradation products (Zhou et al., 1994b; Prins et al., 1991). 
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our finding that AR mRNA levels in the hippocampus were decreased after 4 

days of castration or AR antagonism is unusual. Most previous studies examining AR 

mRNA regulation in brain (Quarmby et al., 1990; Burgess and Handa, 1993a) and 

peripheral tissues (Tan et al., 1988; Quarmby et al., 1990; Takane et al., 1990; Blok 

et al., 1991, 1992a) have found that steady state AR mRNA levels increase following 

castration; however, discrepancies do exist (McLachlan et al., 1991; Gonzcilez

Cadavid et al., 1993; Abdelgadir et al., 1993). Earlier studies revealed an increase 

in AR mRNA in the medial preoptic area of the hypothalamus shortly after castration, 

but AR mRNA levels were significantly decreased in the same area in rats castrated 8 

weeks prior to sacrifice (Handa et al., 1993b). Burgess and Randa (1993a) reported 

apparent increases in hippocampal AR mRNA expression, as measured by Northern 

blot analysis, in rats castrated for 7 weeks before death. This latter study, along with 

our present findings, suggest a unique biphasic regulatory pattern of AR mRNA that 

appears to be both time- and tissue-specific. Unfortunately, the measurement of 

steady state levels of AR mRNA gives us little information as to where AR may 

confer its transcriptional control. Evidence for steroid receptor modulation at 

transcriptional (King, 1992) and post-transcriptional (Nielsen and Shapiro, 1990) 

stages have been reported, and changes in AR mRNA synthesis as well as changes in 

mRNA stability or turnover in response to androgen removal could account for our 

results. 

The fact that changes in AR binding do not parallel changes in AR mRNA 

levels can be interpreted in several ways. First, due to the nature of the cytosolic in 
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vitro binding assay, and the necessity to castrate the control animals 12 h prior to 

sacrifice, it is possible that this time frame was not sufficient enough to allow for 

previously bound AR to cycle out of the nucleus and be measured in the cytosolic 

fraction. This would result in a false low control level and would not compare 

correctly to the AR binding levels in the 1- and 4-day castrates. Although no detailed 

studies of the rate of AR recycling following androgen removal have been done in 

hippocampus, the studies of Krey and McGinnis (1990) in rat hypothalamus suggest 

that the time it takes for AR to cycle out of the nucleus following T removal is 

relatively rapid (within 4 h) and renders this explanation for our results unlikely. 

Alternatively, androgen removal may enhance hippocampal AR protein stability to 

alter androgen sensitivity during fluctuations in circulating hormone. A rapid increase 

in AR stability 1 day after androgen removal may trigger the down-regulation of AR 

mRNA that we observed after 4 days of hormonal depletion. Although this 

mechanism could be occurring locally within the hippocampal neurons, recent 

evidence points to the enhanced stability of AR by ligand (Kemppainen et al., 1992; 

Zhou et al., 1995). 

Discrepancies between steroid hormone receptor mRNA and protein levels 

following hormone manipulations have been shown in human breast and prostate 

tumor cell lines (Krongrad et al., 1991; Wolf et al., 1993). These studies suggest 

that neither the measurement of steady state mRNA, nor protein levels alone, can 

adequately determine hormonal sensitivity. ln the hippocampus, where AR expression 

is predominantly found in the CA 1 pyramidal cell region, it may be necessary to 
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measure AR and AR mRNA changes with much greater anatomical acuity using 

immunocytochemical and in situ hybridization analysis rather than from extracts of 

whole hippocampal homogenates. The possibility of differential regulation of AR in 

individual pyramidal cell regions exists. Furthermore, the finding that both the 

neural-specific 9.3-kb AR mRNA and the more widely distributed 11-kb AR mRNA 

are expressed in approximately equal amounts in the hippocampus (McLachlan et al., 

1991; Burgess and Handa, 1993a) allows for the possible differential regulation of 

these forms following hormonal manipulations. A recent study describing the 

differential regulation of three variants of the MR mRN A within the hippocampus 

after ADX (Kwak et al., 1993) supports this possibility. Presently, methods to 

accurately quantitate and localize AR mRNA forms independently have not been 

developed, and the use of northern blot hybridization to detect subtle changes in AR 

mRNA levels in brain tissue, where expression is relatively low, is difficult. 

Complete sequence analysis of the 9. 3-kb transcript, and the generation of probes 

directed at detecting this form, would prove useful to elucidate hippocampal AR 

regulatory mechanisms. 

The physiologic significance of the relatively small changes ( - 35 % ) in 

hippocampal AR and AR mRNA levels following short-term castration remains to be 

elucidated. The changes in AR expression that were observed do not parallel the 

reported 2- to 10-fold induction of AR mRNA in rat whole brain and peripheral 

tissues following similar treatment (Quarmby et al., 1990). However, these reported 

increases are based entirely on film density and do not accurately represent molar 
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amounts as does the RNase protection assay. Additionally, few studies have 

quantitatively investigated AR and AR mRNA regulatory mechanisms in discrete 

brain nuclei that contain relatively low levels of AR as compared to the accessory 

sexual organs. In brain areas such as the hippocampus where moment-to-moment 

fine-tuning of hormonal feedback may be necessary, small and rapid changes in AR 

expression could have great functional significance. 

To further investigate the regulatory actions of AR, we used old intact male 

rats as a physiologically relevant model of long term deficits in circulating androgen. 

The upregulation of hippocampal AR mRNA levels in intact old rats compared to 

their young counterparts was an intriguing finding; however, subsequent changes in 

AR binding were not detected. Serum T levels in old male Fischer 344 rats are less 

than half that in young rats (Chambers et al., 1991; Gruenewald el al., 1992). This 

deficit alone could have triggered the autologous up-regulation of AR mRNA that was 

observed. Other hormonal changes in aging rats, including increased serum CORT 

(Landfield et al., 1978), progesterone, and estrogen (Gruenewald et al., 1992), have 

been reported and may be responsible for altered AR mRNA levels in the old 

hippocampus. Alternatively, low levels of aromatase, the enzyme responsible for the 

intracellular conversion of T to estrogen, have been found in the rat hippocampus 

(Abdelgadir et al., 1994). Age-related decreases in aromatase activity have been 

shown in the preoptic area of the male rat (Chambers et al., 1991). Although yet 

unexplored, alterations in hippocampal aromatase activity leading to changes in the 

availability of T to bind to AR, could contribute to altered AR autoregulation and our 



105 

observed increases in AR mRNA. Unfortunately, at present, little is known about the 

interactions between the steroid receptors and aromatase activity in hippocampal 

neurons. 

Despite AR mRNA increases, it appears that AR remains constant in the 

hippocampus during long-term deficits in circulating androgen, and that androgen 

sensitivity is maintained in this region. These data differ from those of previous 

studies that have shown dramatic losses of hippocampal GR and GR mRNA as well as 

MR and MR mRNA expression in the aged male rat (McEwen, 1992). These GR and 

MR losses appear to be related to cell death and occur mainly in the CA3 pyramidal 

cell region (Sapolsky et al., 1990). It is possible that the age-related maintenance of 

AR content that was observed may be related to the sparing of CAl neurons. This 

sparing of CAl neurons with the concomitant age-related loss of other hippocampal 

cells could explain the increases were observed in AR mRNA concentrations, because 

data from the RNase protection assay are expressed as AR mRNA per µg of total 

hippocampal RNA. Without the use of individual cell counts and techniques with 

greater cellular resolution, it is premature to speculate as to whether androgens have a 

protective role in the hippocampus with aging. Unfortunately, the extreme density of 

CAI neurons in the rat hippocampus makes individual cell counting virtually 

impossible in this region. Additionally, the use of thinner slices to try to overcome 

the density problem would likely push AR mRNA levels too low to be detected 

reliably with in situ hybridization. Regardless, studies using other models have 

implicated androgens as important modulators of axon regeneration following injury 
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(Jones, 1993) or of hippocampal neuron survival after stress (Mizogushi et al., 1992). 

The maintenance of hippocampal AR, and perhaps androgen sensitivity, may prove to 

be beneficial in maintaining cognitive ability during the aging process. 

In summary, these studies have demonstrated high levels of functional AR in 

the hippocampus and argue strongly for a direct transcriptional effect of androgens in 

hippocampally mediated behaviors. Consequently, changes in the levels of AR in this 

area due to hormonal manipulation or normal aging would have a profound influence 

on the expression of these behaviors. The regulation of AR expression in the 

hippocampus did not appear to follow the well described regulatory pattern of other 

steroid hormone receptors either after short term hormone removal or during the 

aging process. These studies point to the importance of maintaining AR numbers 

regardless of hormone status and suggest a reliance on the action of androgen in the 

hippocampus throughout life. 



CHAPTER IV 

ANDROGENS MODULATE GLUCOCORTICOID RECEPTOR mRNA, BUT NOT 
MINERALOCORTICOID RECEPTOR mRNA LEVELS, 

IN THE RAT HIPPOCAMPUS 

Abstract 

AR, MR and GR are ligand-activated transcription factors that alter gene 

expression and have a wide variety of effects in the CNS. High levels of AR, MR 

and GR mRNA have been found in the CA 1 pyramidal cell region of the rat 

hippocampus and all three of these proteins bind to a similar HRE in DNA suggesting 

the possibility of common receptor function or cross-talk between these receptors at 

the level of transcription. To begin to investigate this hypothesis, we examined the 

regulation of AR, MR and GR mRNA expression in the rat hippocampus following 

treatment with androgens in combination with GDX andJor ADX. Three month old 

male Sprague-Dawley rats were either castrated for three weeks, castrated and 

immediately implanted with two Silastic capsules filled with the non-aromatizable 

androgen, DHTP, or left gonadally intact. Four days prior to sacrifice, these animals 

were either adrenalectomized or sham operated. GR, MR and AR mRNA were 

measured in the hippocampal subfields using in situ hybridization. In the CAl 

region, DHTP treatment of castrates decreased GR mRNA levels to 69 percent of 

107 
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levels found in gonadally intact rats and prevented the ADX-induced increases in GR 

mRNA observed in the gonadally intact and castrated animals. No changes in GR 

mRNA were observed in the CA3 region or DG, where AR expression is low or 

absent. There was no effect of androgen treatment on MR mRNA levels nor did 

GDX or androgen replacement alter the increases in MR mRNA following ADX. AR 

mRNA levels in the CA 1 region were unchanged across all treatment groups. In vitro 

binding studies revealed almost complete nuclear occupancy of hippocampal AR in 

DHTP-treated castrates. No appreciable in vitro binding of DHT to hippocampal MR 

or GR (~ = 1500 nM) was observed which suggests that androgen regulation of GR 

mRNA in the hippocampus is occurring through AR binding. These data demonstrate 

a functional similarity of androgens and glucocorticoids in the regulation of GR 

mRNA levels in an area where AR and GR are colocalized. Androgen-mediated 

downregulation of GR expression may prove to be an important event in the adaptive 

responses of CA 1 pyramidal cells to hormonal stimuli. 

Introduction 

Adrenal corticosteroids and gonadally-derived androgenic steroids have 

profound effects on stress responses, memory, mood and hormonal homeostasis (Roof 

and Havens, 1992; De Kloet et al., 1993a; Dubrovski et al., 1993; Randa et al., 

1994b). These hormones exert their effects by specifically binding to intracellular 

receptors, which, following transformation and interaction with HREs of target genes, 
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either activate or repress transcription (Beato, 1989). The receptors for these 

hormones have been mapped throughout the mammalian CNS. Two types of 

corticosteroid receptors have been identified based on affinity and distribution (Reul 

and De Kloet, 1985). The type I or MR is characterized by its high affinity for 

CORT and is selectively localized in the hippocampal formation and other limbic 

regions (Beaumont and Fanestil, 1983). The type II receptor, or GR, has a ten-fold 

lower affinity for corticosteroid, but is present in nearly all tissues (Veldhuis et al., 

1982). A single form of AR has been reported in neural tissues including the 

hypothalamus, cortex, amygdala and hippocampus (Sar and Stumpf, 1977; Kerr et al., 

1995a). 

Although GR, MR and AR are all expressed in the hippocampus, each shows a 

unique pattern in relative density across hippocampal subfields (Reul and De Kloet, 

1985; Kerr et al., 1995a). Particularly high levels of GR, MR and AR mRNA and 

protein have been found in the CAl pyramidal cell region (Van Eekelen et al., 1988; 

Kerr et al. , 1995a). These neurons complete the hippocampal trisynaptic circuit and 

form the major efferents to cortical and limbic areas of the brain (Van Groen and 

Wyss, 1990). The overlapping expression of these three receptors in the CAI area is 

interesting because all three presumably bind and activate the same HRE (Chandler et 

al., 1983; Beato, 1989). This suggests the possibility of common receptor functions 

within cells or cross-talk at the transcriptional level. 

Regarding the functional aspects of hippocampal MR, GR, and AR, numerous 

studies point to an involvement of MR and GR in glucocorticoid feedback inhibition 



110 

of the HPA axis (Ratka et al., 1989; Jacobson and Sapolsky, 1991). Presently, little 

is known about the functional role of AR in the hippocampus; however, androgens 

have also been shown to inhibit HPA axis function (Handa et al., 1994a) and to 

modulate several hippocampal-mediated behaviors including emotionality (Hubert, 

1990), memory formation (Roof and Havens, 1992) and the response to novelty (see 

Chapter V and Kerr et al., 1995c). 

In many rat tissues, levels of AR, GR and MR are autologously regulated by 

their respective ligand. For example, depletion of endogenous glucocorticoids by 

ADX elicits an increase in GR and MR (Herman, 1993); whereas prolonged elevation 

of circulating glucocorticoids, such as following chronic stress, results in 

downregulation of brain corticosteroid receptors (Sapolsky et al., 1984). Similarly, in 

peripheral tissues and whole brain, AR expression is increased following GDX and 

these increases are reversed by androgen treatment (Quarmby et al., 1990; Blok et 

al., 1992a). However, exceptions to these rules have been reported (Sheppard et al., 

1990; Peiffer et al. , 1991; Abdelgadir et al., 1993; Herman, 1993; Kerr et al. , 

1995a) and it appears that the regulation of AR, GR and MR expression differs 

depending on the tissue, as well as length of time following treatment and mode of 

steroid administration. Several studies have demonstrated heterologous regulation of 

brain GR levels by other hormones including insulin (Tornello et al., 1982), 

vasopressin (Veldhuis and De Kloet, 1982a), ACTH (Veldhuis and De Kloet, 1982b), 

thyroid hormone (Meaney et al., 1987) and estrogen (Ferrini and DeNicola, 1991; 

Burgess and Randa, 1993b) which suggest that many factors may ultimately determine 
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steroid receptor levels in a given tissue. Compelling evidence for the involvement of 

hippocampal adrenal steroid receptors in the treatment of affective disorders (Seckl 

and Fink, 1992), hippocampal cell death (Sapolsky et al., 1988) and altered regulation 

of the HPA axis (De Kloet et al. , 1991) renders mechanisms that modulate 

hippocampal MR and GR concentrations of great clinical relevance. 

Recently, studies have demonstrated sex differences in hippocampal 3H-CORT 

binding (Turner and Weaver, 1985) and GR mRN A concentrations (Bohn et al., 

1994), as well as androgen-mediated changes in nuclear GR immunoreactivity in 

selected regions of the rat hippocampus (Ahima and Harlan, 1992). Collectively, 

these data suggest that androgen status may influence adrenocorticoid receptor 

expression in the hippocampus. To examine this possibility, we tested the hypothesis 

that androgen treatment could alter GR or MR mRN A levels in a fashion similar to 

previously described autoregulatory mechanisms. This was accomplished using in situ 

hybridization histochemistry to quantitate steroid hormone receptor mRNA levels in 

each hippocampal subfield under conditions of selective or combined occupation of 

AR, GR and MR. This methodology circumvents the pitfalls of in vitro radioligand 

binding studies which require prior ADX or GDX to clear steroids from already 

occupied binding sites. These studies also begin to explore possible mechanisms 

mediating cross-talk between steroid hormone receptors coexpressed in the 

hippocampus. 
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Materials and Methods 

Animals 

Three month old male Sprague-Dawley rats (Charles River, Inc., Portage, MI) 

were housed in environmentally controlled quarters and maintained on a 12: 12 h light 

dark schedule (lights on at 0700 h) with food and water available ad libitum. 

Bilateral GDX and ADX, or sham ADX, were performed under ether anesthesia. At 

the time of GDX, some rats received hormone replacement by the subcutaneous 

implantation of two Silastic capsules (2.5 cm long, 0.07" i.d., 0.125" o.d.) filled with 

the non-aromatizable androgen, DHTP, (Steraloids, Inc., Wilton, NH). Previous 

studies in our laboratory have shown that these capsules provide a constant level of 

circulating DHT that is 2-5 fold higher than DHT levels found in intact male rats 

(Pouliot et al., 1995), but is similar to total circulating androgen levels (Bingamen et 

al., 1994). Following ADX, rats maintained with 0.9% NaCl in their drinking water. 

All rats were sacrificed by decapitation between 09:00 and 11:00 h. 

Experimental Procedures 

In the first series of experiments, we examined the effects of androgen 

removal or replacement on the steady-state levels of hippocampal GR, MR and AR 

mRNAs in ADX and sham ADX male rats. Androgen treatments (intact, GDX, and 

GDX + DHTP) lasted for three weeks, and each rat was either ADX or sham 

operated in the morning four days prior to sacrifice. At the time of sacrifice, trunk 
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blood was collected and brains were rapidly removed from the skull, frozen in pre

chilled isopentane (-30°C), and stored at -70°C until sectioned and processed for in 

situ hybridization. Brains were sectioned in the coronal plane and three series of 

brain sections from the same animals were used for determining GR, MR and AR 

mRNA. Serum CORT was measured using radioimmunoassay (RIA) as previously 

described (Burgess and Handa, 1992). The completeness of the ADX procedure was 

determined by the absence of CORT and any presumably ADX animal that showed 

detectable levels of serum CORT were removed from the study. 

To evaluate the levels of circulating androgen reaching the hippocampus in the 

intact, GDX and GDX + DHTP groups, we determined the level of hippocampal AR 

occupancy obtained following these androgen treatments. Animals were left intact, 

GDX or GDX and implanted with two Silastic capsules of DHTP at the time of 

surgery as described earlier. Rats were sacrificed three weeks after the onset of 

treatment and their brains were rapidly removed and placed on ice. The hippocampus 

was dissected out of each brain and homogenized for in vitro binding analysis with 

3H-DHT. Anterior pituitary glands from selected animals were also taken for binding 

analysis because this tissue contains a very high concentration of AR and thus served 

as an inter-assay control. 

To assess the selectivity of binding in hippocampal cytosols, we examined the 

ability of DHT, CORT, RU 28362 (a GR specific agonist), and dexamethasone to 

compete for 3H-dexamethasone labelled MR and GR sites (Burgess and Handa, 1992) 

in hippocampal cytosolic fractions using an in vitro binding assay. Rats were ADX'd 
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24 h prior to sacrifice to allow for glucocorticoids to clear from the circulation and 

leave MR and GR binding sites unoccupied. Following sacrifice, whole hippocampi 

were dissected out of the brain, homogenized and cytosolic extracts were purified for 

in vitro competition binding analysis. 

Jn Situ Hybridization 

For the in situ hybridization procedure, antisense 35S-labelled riboprobes were 

used to detect GR, MR and AR mRN A. The GR and MR riboprobes were reverse 

transcribed as previously outlined by Burgess and Handa (1993b) using 35S-UTP as 

the radioactive nucleotide (800 Ci/mmol, Amersham, Arlington Heights, IL). 

Briefly, the original rat GR cDNA construct (Meisfield et al., 1986) was kindly 

provided by Dr. K. Yamamoto, UC San Francisco. A 1072 basepair fragment, 

corresponding to the ligand-binding domain and beginning of the 3' untranslated 

region, was subcloned into a pGEM 3Z plasmid vector. Following linearization with 

Dra I and reverse transcription with T7 RNA polymerase, a 262 basepair GR 

riboprobe was generated. A rat MR cDNA pGEM 4Z construct corresponding to 

nucleotides 2809-3321 (Arriza et al., 1987) was kindly provided by Dr. R Evans, 

Salk Institute. This construct generated a 196 basepair riboprobe complementary to 

the ligand-binding domain and beginning of the 3' untranslated region of the rat MR 

mRNA following linearization (Stu I) and reverse transcription with SP6 RNA 

polymerase. A 141 basepair long in vitro transcribed AR cRNA complementary to 

the 5' translated region (nucleotides 963-1104) of the rat AR mRNA (Tan et al., 
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1988) was generated as previously described (Kerr et al., 1995a). All cRNA probes 

had specific activities averaging 109 cpm/ug. Aliquots of all probes were analyzed on 

denaturing 5% acrylamide, 7.5 M urea gels to confirm their integrity. Only those 

probes > 90% full length were used for in situ hybridization. 

The in situ hybridization procedure used in the present study was based on the 

method described by Handa et al. (1993) with slight modifications. Briefly, coronal 

brain sections (16 µm) were made with a Leitz 1600 cyrostat, mounted onto 

superfrost plus slides (Fisher Scientific, Pittsburgh, PA), and stored at -7CfC until 

use. The sections were brought to room temperature, pretreated in 4 % buffered 

formaldehyde, acetylated in acetic anhydride (0.25 % in triethylamine), dehydrated in 

ethanols, and delipidated in chloroform. Slides were air dried. For hybridization, the 

probe was heated to 65°C for 5 min and diluted in hybridization buffer containing 

50% formamide, 20% dextran sulfate, 1.2 M NaCl, 20 mM Tris, 0.04% Denhart's, 2 

mM ethylenediaminetetraacetic acid (EDTA), 0.02 % salmon sperm DNA, 0.1 % yeast 

RNA, 0.01 % yeast tRNA, 0.1 % sodium thiosulfate, 100 mM dithiothreitol (DTT), 

0.1 % sodium dodecyl sulfate (SDS) to a final concentration of 20 x Ht cpm/ml. 

Approximately 85 µl of the hybridization buffer was applied to each slide and 

coverslipped. Hybridization was carried out in a 65°C humidified incubator for 16-20 

h. Following hybridization, the coverslips were removed and the sections were 

repeatedly rinsed in 2 x SSC then subjected to RNase A treatment (20 µg/ml at 37°C 

for 30 min) to digest any nonhybridized RNA. The sections were washed to a final 

stringency of 0.1 x SSC at 65°C and dehydrated in increasing concentrations of 
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ethanol. Autoradiographs were obtained by exposing slides to x-ray film (Hyperfilm 

{3-max, Amersham, Arlington Heights, IL) for 9 days (MR mRNA and GR mRNA) 

or 21 days (AR mRNA). After film exposure, slides were dipped in nuclear tract 

emulsion (Kodak NTB-3, Eastman Kodak, Rochester, NY) and exposed for 21-35 

days before development and cresyl violet staining. Sections were examined under 

darkfield illumination using a Zeiss Axioplan microscope (Zeiss, New York, NY). 

Image Analysis 

Quantification of steady-state levels of mRNAs coding for GR, MR and AR 

was accomplished by digitizing autoradiographic images with the Macintosh-based 

software NIH IMAGE v.1.54. Optical densities were converted into dpm/mg protein 

by a third order polynomial equation based on 35S standards co-expressed on each 

film. This method has been described in more detail by Brady et al. (1992). 

Hybridization density in cell body regions of the dorsal hippocampus were 

obtained by individually tracing the upper blade of the DG granule cell layer, as well 

as the entire CA 1, CA2 and CA3 pyramidal cell layers defined in accordance with the 

stereotaxic atlas of Paxinos and Watson (1982). Both the left and right hemispheres 

were measured. A background sample from the molecular layer of the hippocampus 

was subtracted from each measurement. Measurements from four sections from each 

animal were averaged to obtain a final density value for each hippocampal subfield. 

The large scale of these experiments necessitated the use of multiple film 

autoradiographs for the MR and GR probes. To minimize error between film 
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autoradiographs, hybridization density values were transformed to the percent of the 

mean obtained from the gonadally-intact, sham ADX rat sections included on each 

film. Percent data were then grouped and subjected to statistical analysis. For AR 

mRNA in situ hybridization, the sections were processed together using the same 

probe and a single film. Therefore, these data were expressed as dpm/mg protein. 

Jn vitro Androgen Receptor Binding Assay 

Cytosolic (ARc) and nuclear (ARn) AR were measured using modifications of 

previously described methods (Randa et al., 1986). All procedures were carried out 

at 0-4°C. Hippocampi and pituitaries were placed into chilled Dounce tissue grinders 

(Wheaton Scientific, Millville, NJ) and homogenized in 500 µl (hippocampus) or 200 

µl (pituitary) TEGMD buffer (10 mM Tris, 1.5 mM EDTA, 10% glycerol, 25 mM 

molybdate, 1 mM DTI, pH 7.4). The homogenates were transferred with an 

additional 200 µl wash to ultracentrifuge tubes and centrifuged at 1500 x g for 15 

min. The purified cytosols were prepared from the resultant supernatants by 

recentrifugation at 100,000 x g for 30 min. The high speed supernatant was saved to 

measure ARc levels and 10 µl was used to determine protein content by the method of 

Lowry et al. (1951). 

The crude nuclear pellets obtained from the first low speed spin were further 

purified by resuspending the pellets in 400 µ1 of Low sucrose buffer (Buffer A, 1 mM 

KH2P04 , 0.32 M sucrose, 3 mM MgCli, I mM DTT, 10% glycerol) containing 

0.25% triton x-100 and then were centrifuged at 1500 x g for 15 min to separate. 
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The supernatant was discarded and the pellet was washed with 400 µ1 Buffer A 

(without triton x-100) and centrifuged (1500 x g, 15 min). The supernatant was 

discarded and 400 µl of high sucrose buffer (Buffer B, 1 mM KH2P04 , 2.1 M 

sucrose, 3 mM MgC12 , 1 mM DTT, 10% glycerol) was added. The tubes were 

vortexed and centrifuged at 50,000 x g for 30 min to obtain a purified nuclear pellet. 

ARn complexes were salt extracted from each nuclear pellet by adding 250 µ1 TEBD 

buffer (10 mM Tris, 1.5 mM EDTA, 0.5 mM bacitracin, 1 mM DTT, pH 7.4) and 5 

min later adding an equal volume of TEBDK (TEBD containing 1.6 M KCl). Tubes 

were vortexed repeatedly for an additional 25 min and the suspension was again 

centrifuged (37 ,000 x g for 15 min) to separate the nuclear extract (supernatant) from 

DNA material (pellet). DNA content in each pellet was measured using a modified 

version of the method of Burton (1956). Single point receptor measurements were 

made using 5a-( 1, 2,4,5, 6, 7-N-3H)androstan-17,B-ol-3-one (3H-DHT, 110-150 

Ci/mmol; New England Nuclear Research Products, Boston, MA) as the specific AR 

ligand. The 3H-DHT was stored in 100% ethanol and was purified by thin layer 

chromatography to assure low levels of non-specific binding. 

Total binding was measured using 100 µ.l aliquots of the cytosolic and nuclear 

extracts that were incubated with 2 nM and 5 nM 1H-DHT, respectively. To 

determine non-specific binding, 1 µM (200-500 fold excess) of radioinert Rl881 (an 

AR specific agonist) was incubated in parallel tubes with 1H-DHT and cytosols. 

Cytosolic and nuclear samples were incubated at 4°C for 24 h and 48 h, respectively. 

To separate bound from free ligand, samples were passed through miniature Sephadex 
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LH-20 columns using 600 µl of the appropriate buffer. Four ml of Ultima Gold 

scintillation fluid (Packard Inc., Downers Grove, IL) was added to each eluate and 

the radioactivity was counted for 5 min in a Packard 1900 LA liquid scintillation 

counter (Packard Instruments, Downers Grove, IL) at approximately 37% efficiency. 

Specific binding was determined by subtracting non-specific from total binding. 

Receptor data were expressed as femtomoles (fmol) per mg protein (ARc) or per mg 

DNA (ARn). 

In vitro Competition Binding Assay 

To determine whether DHT binds to MR or GR in the hippocampus, we 

examined the binding of [l,2,4,6,7-3H]Dexamethasone (3H-Dex, 92 Ci/mmol, 

Amersham, Arlington Heights, IL) to hippocampal cytosols in competition with 

increasing concentrations of radioinert 5a-DHT (0.1 - 10,000 nM, Steraloids, Inc., 

Wilton, NH). Specificity of 3H-Dex binding was determined by competition of 3H

Dex with increasing concentrations (0. l - 10 nM) of radioinert CORT (Steraloids, 

Inc.), RU 28362 (Roussel-UCLAF, Romainville, France), and dexamethasone 

(Sigma, St. Louis, MO). Hippocampal cytosolic fractions from ADX male rats were 

prepared as described above and were pooled together. Purified cytosol (100 µl) was 

incubated with 2 nM 3H-Dex with or without competitor at 4<>c overnight. Bound and 

free ligand were separated by Sephadex LH-20 column chromatography and 

radioactivity counted as described for the ARc assay. Data were converted to percent 

of total 3H-Dex binding. 
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fil_atistics 

Data from in situ hybridization histochemistry were analyzed using a two-way 

analysis of variance (ANOV A) with androgen treatment (intact, GDX, GDX + 

DHTP) and corticosteroid treatment (ADX, sham ADX) as main factors. Subsequent 

analyses used a one-way ANOVA across treatment groups followed by Student 

Newman-Keuls' post-hoc tests. AP value less than 0.05 was considered significant. 

Results 

GR. MR and AR mRNA Regulation in the Hippocamgus 

As shown in figure 16, in situ hybridization analysis demonstrated unique 

patterns of MR, GR and AR mRNA expression in the hippocampus of control rats 

(gonad and adrenal intact). Consistent with several earlier studies (Van Eekelen et 

al., 1988; Herman et al., 1989; Seckl and Fink, 1991), high levels of GR mRNA 

were found in the CAl and DG cell body regions of the hippocampus and expression 

was somewhat lower in the CA2 and CA3 pyramidal cell regions. MR mRNA levels 

were high in all regions with particularly dense hybridization in CA2 pyramidal cells. 

AR mRNA was also uniquely distributed across hippocampal subfields with high 

levels present in the CAl area, lower levels in CA2/CA3 cells and little to no 

expression in DG granule cells. 
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GR 

MR 

AR 

Figure 16. In situ hybridization autoradiographic films demonstrating the 
distribution of GR mRNA (A), MR mRNA (B) and AR mRNA (C) in the male 
rat hippocampus. Overlapping expression of AR, GR and MR mRNA is evident in 
the CA 1 pyramidal cell region. CA 1 = CA 1 pyramidal cell region, CA3 = CA3 
pyramidal cell region, DG = dentate gyrus granule cell region. 
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Quantitative densitometric analysis of film autoradiographs revealed region and 

treatment specific regulation of hippocampal GR mRNA. The large scale of the MR 

and GR mRNA experiments required the use of multiple film autoradiograms and 

riboprobes which can generate variability between films and from study to study. 

Therefore, it was necessary to transform the mean dpmfmg protein values from each 

animal to percent of the intact + sham ADX mean from each film autoradiogram. 

As shown in figure 17A, ADX treatment upregulated GR mRNA levels in the CAI 

region an average of 33% as compared to the sham operated control. In the CAl 

region, DHTP treatment of castrates significantly decreased GR mRNA to 69 percent 

of levels found in gonadally intact rats (P < 0.01) and prevented the ADX-induced 

increases in GR mRNA observed in the gonadally intact and castrated animals (P < 

0.01). In the CA2 and CA3 subfields where GR mRNA levels were considerably 

lower, ADX increased GR mRNA expression as compared to sham operated controls 

(P < 0.01), however androgen treatment had no effect (data not shown). In contrast, 

GR mRNA levels in the DG were unaltered by androgen status or ADX (figure 17B). 

MR mRNA levels in ADX animals were significantly increased above sham 

operated control values in the CAI, CA2 and CA3 pyramidal cell regions, however, 

androgen treatment or GDX failed to modulate MR mRNA expression (figure 18A, 

CAl region data shown). Similar to GR mRNA, MR mRNA levels in the DG were 

unchanged by ADX or androgen treatments (figure 188). 
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CA1 

DG ii INTACT 
LI GDX 
EJ GDX + DHTP 

INTACT+ 
SHAM POX 

Figure 17. Effects of three week castration (GDX) or dihydrotestosterone 
propionate treatment of castrates (GDX + DHTP) on GR mRN A levels in the 
hippocampal CAl and DG cell regions of sham operated (SHAM ADX) or 
adrenalectomized (ADX) male rats. *, Significantly different from intact + sham 
ADX value, @, significantly greater than DHT + sham ADX value, and#, 
significantly different from intact + ADX value as determined by Newman-Keuls' 
post-hoc analysis (P < 0.01). In situ hybridization densities are expressed as percent 
of intact + sham ADX mean from individual film autoradiograms (100%, black line). 
Each bar represents the mean ± SEM of 3-5 animals. 
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Figure 18. Effects of three week castration (GDX) and dihydrotestosterone 
propionate treatment of castrates (GDX + DHTP) on hippocampal MR mRNA 
levels in sham operated (SHAM ADX) and male rats adrenalectomized four days 
prior to sacrifice (ADX). (A) Hippocampal CAI pyramidal cell region. (B) Dentate 
gyrus granule cell region (DG). Density values are expressed as percent of the intact 
+ sham ADX control mean obtained from the corresponding in situ hybridization 
autoradiogram. Each bar represents the mean ± SEM from 3-5 rats. *, Denotes 
significantly different from corresponding sham ADX value (P < 0.05). Androgen 
treatment had no effect on MR mRNA levels. 
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AR mRNA levels were also examined in hippocampal sections from the same 

animals. These sections were all processed together using one AR ribopobe and were 

developed on a single film autoradiogram. Therefore, the dpm/mg protein 

hybridization density means from each hippocampal subfield in each animal could be 

directly compared and statistically analyzed. In the CAl region which contains the 

highest concentration of AR mRNA of all the hippocampal subfields, steady state AR 

mRNA levels were not altered by 3 week androgen removal or replacement either 

alone or in combination with ADX 4 days prior to sacrifice (Figure 19). AR mRNA 

levels also remained constant in the CA2, CA3 and DG regions (data not shown). 

Differential AR Occupancy by GDX and DHT Treatment 

To confirm that the androgen treatments used in this study were sufficient to 

occupy AR in the hippocampus, we examined ARc (cytosolic, unbound form) and 

ARn (nuclear, bound form) concentrations in purified extracts from the hippocampus 

and of intact, GDX and GDX + DHTP treated rats (figure 20). Three weeks after 

GDX there were significantly higher ARc Levels as compared to intact controls. 

Concomitant decreases in ARn following GDX did not reach statistical significance. 

In contrast, the administration of DHTP to castrates resulted in the dramatic 

accumulation of ARn (P < 0.05). The appearance of AR in the nuclear fraction of 

DHTP treated animals was accompanied by decreased AR in the cytosolic fraction 

(P < 0.05). As inter-assay controls, ARc and ARn concentrations were also 

measured in the anterior pituitary gland of selected rats. Mean ARc and ARn 



concentrations in intact rat pituitary were 4- to 20-fold higher than found in the 

hippocampus (ARc: 6.3 ± 0.7 vs. 1.5 ± 0.2 fmol/mg protein and ARn: 193.6 ± 

25. l vs. 10.54 ± 4.5 fmol/mg DNA). Regardless of the differences in overall AR 

content in the pituitary and hippocampus, the relative changes in AR occupancy 

following androgen treatment or castration were similar in both tissues. 

3H-Dexamethasone Competition Binding 
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To test the possibility that DHT might be promiscuously binding MR or GR in 

the hippocampus we incubated hippocampal cytosol with 3H-Dex and several 

radioinert corticosteroids or DHT (figure 21). In the presence of 50-fold molar 

excess of DHT, 3H-Dex binding was decreased only slightly. A 500-fold molar 

excess of DHT (1000 nM) was necessary to achieve any appreciable competition for 

3H-Dex binding (Approximate Ki= 1500 nM). RU 28362, CORT and dexamethasone 

were all excellent competitors of 3H-Dex for the corticosteroid receptor with 

approximate Ki values in the 2-8 nM range. 
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Figure 19. Effect of castration (GDX) and dihydrotestosterone propionate 
treatment of castrates (GDX + DHTP) on the magnitude of AR mRNA 
expression in the CAl region of the hippocampus from adrenalectomized (ADX) 
and sham operated (SHAM ADX) male rats. Results from semi-quantitative 
densitometry of in situ hybridization histochemistry are shown. Each bar represents 
the mean + SEM from 3-5 animals. No changes in AR mRNA were observed. 
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Figure 20. Quantification of AR in purified cytosolic (A) and nuclear (B) extracts 
from male rat hippocampus. Animals were left intact, gonadectomized (GDX) or 
GDX and implanted with two Silastic capsules of dihydrotestosterone propionate at 
the time of surgery (GDX + DHTP). All treatments lasted for three weeks. AR 
binding was determined using 3H-DHT as the specific Ligand. Each bar represents the 
mean ± SEM from 9 rats. *, Significantly different from intact value (P < 0.05). 
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Figure 21. Competition of various radioinert steroids with the binding of 3H
dexamethasone (3H-Dex) in hippocampal cytosolic extracts from male rats 
adrenalectomized one day prior to sacrifice. ,H-Dex was used at a concentration of 
2 nM. Binding is expressed as percentage of that obtained in the presence and 
absence of cold competitor. Each point represents the mean of two replications. 
Approximate Ki values: 2 nM for RU 28362; 4 nM for dexamethasone (DEX); 8 nM 
for corticosterone (CORT); and 1500 nM for dihydrotestosterone (DHT). 
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Discussion 

In the present study we have demonstrated a downregulation of GR mRNA by 

androgen treatment which occurs selectively in the CAl pyramidal cell region of the 

hippocampus. In contrast, androgen treatment did not change MR or AR mRNA 

levels in any cell body region of hippocampus. Our results provide a plausible 

mechanism to explain recent studies by Bohn et al. (1994) showing lower GR mRNA 

content in the adult male hippocampus as compared to the female. These 

observations of message abundance are interesting when considered in conjunction 

with data from binding studies that show lower adrenocorticoid receptor binding 

capacity in the male rat hippocampus (Turner and Weaver, 1985). Whether our 

observed decline in CAl pyramidal cell GR mRNA content following androgen 

treatment is translated into similar changes in GR protein has yet to be examined. 

However, the fact that data from in vivo receptor autoradiography using GR-selective 

ligands, and in situ hybridization with GR riboprobes have shown parallel distribution 

patterns of GR binding and GR mRNA in the hippocampus implies a correlation 

between GR mRNA expression and the level of expression of functional protein. 

Our findings concerning downregulation of GR mRNA levels by androgen 

treatment are interesting in light of earlier work by Ahima and Harlan (1992) showing 

that the daily injection of high doses of anabolic-androgenic steroids increased the 

nuclear localization of GR immunoreactivity in the CAI and DG regions of the male 

hippocampus. These authors suggested that circulating androgen present at levels 



131 

over and above that necessary to saturate hippocampal AR may bind non-specifically 

to GR thereby causing increased nuclear GR occupancy. These increases in GR 

occupancy could result in a downregulation of GR mRNA, as seen in our studies, 

however, our competition binding studies do not point to any appreciable binding of 

DHT to the hippocampal GR. The possibility of promiscuous binding of androgen to 

GR following extremely high levels of androgen cannot be ruled out. Additional 

studies examining the effects of various androgen concentrations on GR mRNA and 

protein levels are necessary to further elucidate the mechanism of this interaction. 

Although we have not directly assessed the mechanisms governing androgen

mediated downregulation of GR mRNA observed in this study, we believe that DHT 

altered GR mRNA levels via AR binding and not through non-specific interactions 

with adrenocorticoid receptors. This is based on our results demonstrating that: 1) 

the majority of hippocampal AR was located in the nuclear fraction following DHTP 

treatment, 2) androgen treatment decreased GR mRNA levels selectively in the CAI 

pyramidal cell region where AR mRNA expression predominates, and androgen 

treatment had no effect in area CA3 where GR mRNA is high, but AR mRNA is low 

and 3) there was little in vitro competition by DHT for hippocampal dexamethasone 

binding. Furthermore, the treatment of castrates with the non-aromatizable androgen, 

DHTP, eliminated the possibility of an estrogen receptor mediated effect that has been 

observed by others (Ferrini and DeNicola, 1991; Burgess and Randa, 1993b). 

Since AR is a ligand-activated transcription factor, it is plausible that AR

mediated downregulation of GR expression is occurring at the level of gene 
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transcription. Although methological difficulties have prevented the direct 

colocalization of AR and GR expression in CAl pyramidal cells, earlier work in our 

laboratory showing AR mRNA in most, if not all, CAI neurons (See Chapter III and 

Kerr et al., 1995a), and the current finding of even higher expression of GR mRNA 

in virtually every neuron in the CAI region render colocalization of these two 

receptors in the majority of CAI cells highly likely. It is known that AR, MR and 

GR regulate gene transcription by binding to an identical HRE (Beato, 1989; 

Chandler et al., 1983). Since the GR gene contains this HRE sequence which likely 

mediates its autologous regulation (Burnstein and Cidowski, 1992), then activated AR 

complexes could act directly at this HRE to halt or repress transcription of the GR 

gene. Not surprisingly, activated MRs have been shown to regulate normally GR

responsive genes through a similar mechanism (O'Donnell and Meaney, 1994). If AR 

can act non-discriminately as an activated GR would at the same HRE, it is unclear 

why MR expression was not similarly affected. However, a consensus HRE has not 

been examined within or upstream of the rat MR gene. 

Recently it has become apparent that MR mRNA autoregulation in the rodent 

hippocampus may be much more complex than originally thought. Similar to the 

finding of two distinct AR mRNA isoforms in the rat brain (McLachlan et al., 1992), 

multiple MR mRNA forms that vary in their 5' untranslated regions have been found 

to exist in rat neural tissues (Kwak et al., 1993). Interestingly, these three different 

sized MR mRNA isoforms were found to be unequally expressed in each subfield of 

the rodent hippocampus, and the expression of only one of these mRNA forms was 
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upregulated following ADX (Kwak et al., 1993). As our MR riboprobe could not 

distinguish these three mRNA variants, limited regulation of just one form by GDX 

or DHTP treatment may not have been detected using our in situ hybridization 

methodology. 

It appears that glucocorticoid regulation of brain adrenocorticoid receptors is 

complex. In these studies, ADX differentially affected hippocampal GR and MR 

mRNA expression in a subfield-specific manner. The moderate increases (30-45%) in 

GR and MR mRNA in each pyramidal cell field and no changes in MR mRNA levels 

in the DG region of the hippocampus following ADX were consistent with previous 

studies (Herman et al., 1989; Herman, 1993). In contrast to our findings, earlier 

studies have demonstrated ADX-mediated increases in GR mRNA in the DG, 

however, the variability in the length of ADX appears to play a crucial role in the 

magnitude of the measured response. Taken together, the hippocampus shows diverse 

responses to glucocorticoid removal across its functionally heterogeneous subfields. 

These findings strengthen the hypothesis that multiple factors likely control 

adrenocorticoid receptor balance in this region. 

The lack of hippocampal AR mRNA regulation by castration, androgen 

treatment for three weeks, or short-term ADX was intriguing, yet not unexpected. 

Upregulation of AR expression following GDX and decreases in AR expression by 

androgen treatment have been found in peripheral male reproductive tissues such as 

the testes and ventral prostate (Blok el al., 1992a; Abdelgadir el al., 1993). 

However, studies examining autologous regulation of AR mRNA in brain regions are 
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more difficult to interpret. In particular, earlier studies have detected attenuated AR 

mRNA levels in the whole male rat hippocampus following four day castration, 

whereas in the aged rat, AR mRNA content was increased (See Chapter III and Kerr 

et al., 1995a). In both cases, concomitant changes in AR binding levels were not 

found. As the present studies suggest, AR expression can be maintained in the 

hippocampus after three week androgen removal or treatment. 

Previous studies have demonstrated many different effects of androgen on 

hippocampal physiology (Roof and Havens, 1992; Banda et al., 1994a, Kerr et al., 

1995c, Pouliot et al., 1995, Hampson and Kimura, 1992). Some of these androgenic 

effects are similar to reported glucocorticoid effects in the brain (Roof and Havens, 

1992; Banda et al., 1994a), whereas others are very different (Kerr et al., 1995c, 

Pouliot et al., 1995) from effects attributed to glucocorticoids (reviewed in De Kloet 

et al., 1993b; Dubrovsky et al., 1993; McEwen et al., 1994). Based on my results, 

the effects of androgen in the hippocampus may be, in one respect, to mimic that of 

glucocorticoids, as evidenced by the reduction of GR mRNA in a fashion similar to 

that seen after glucocorticoid administration. An example of this is demonstrated by 

our recent studies showing that androgen treatment can inhibit stress-related 

corticosterone secretion, presumably by acting at the level of the hippocampus or 

hypothalamus (Banda et al., 1994a). Conversely, androgens may act to antagonize 

glucocorticoid action by decreasing the synthesis of GR, and thus, sensitivity to 

circulating glucocorticoids. This possibility has been evidenced by studies 

demonstrating increased cell death in hippocampal pyramidal cells following chronic 



stress of gonadectomized animals, but not intact or androgen treated animals 

(Mitzoguchi et al., 1992). 
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In summary, it appears that AR, GR and MR are embedded in a complex 

network of transcriptional regulatory factors and our studies indicate some level of 

interaction of these networks in hip:pocampal CA 1 pyramidal cells. The process of 

androgen-induced GR mRNA downregulation may prove to be an important influence 

on the ability of hippocampal CAl pyramidal cells to adapt appropriately to hormonal 

stimuli, especially at times of heightened stress or during the aging process when 

hippocampal neurons are more susceptible to damage by glucocorticoids (McEwen, 

1992). Further study of AR, GR and MR expression and regulation at the gene, 

mRNA and protein level following various hormonal challenges is necessary to 

determine the exact functional significance of the potential molecular interactions of 

AR, GR and MR in defined neuronal circuits. 



CHAPTER V 

ANDROGENS SELECTIVELY MODULATE c-fos mRNA 
INDUCTION IN THE RAT HIPPOCAMPUS FOLLOWING NOVELTY 

Abstract 

Earlier studies have shown that ARs are found in high concentrations in 

hippocampal CA 1 pyramidal cells. To begin to explore the possible roles for AR in 

this area of the brain, the effects of endogenous and exogenous androgen on the 

behaviorally-induced expression of cIEG mRNAs were examined. Adult male Fischer 

344 rats were either gonadectomized, gonadectomized and given two Silastic capsules 

of DHTP at the time of surgery, or left intact. Three weeks later, animals were 

placed into a novel open field for twenty minutes. This behavioral paradigm caused 

region- and gene-specific increases of cfos, jun-B, c-jun and zif268 mRNA in the 

hippocampus as determined by semi-quantitative in situ hybridization histochemistry. 

The removal of circulating androgen by GDX potentiated, whereas DHTP treatment 

of castrates attenuated, the behaviorally-induced expression of cfos mRNA in the 

CAI region of the hippocampus. No changes in c-fos mRNA expression were 

detected in the CA3 or DG regions where AR levels are low. Androgen status did 

not affect either the basal or stimulated expression ofjun-B, c-jun or zif268 mRNA in 
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any of the three cellular regions of the hippocampus examined. 

These results implicate ARs in modulating the active response of hippocampal 

neurons to a behaviorally relevant stimulus. Since the products of cIEGs can function 

to alter an array of downstream genes, the modulation of these genes in the 

hippocampus by gonadal hormones may have important ramifications for hippocampal 

function. 

Introduction 

Androgens have a profound modulatory role in the mammalian CNS by not 

only directing the formation of neuronal pathways during fetal development (for 

reviews, see McEwen, 1983; Breedlove, 1992), but also through the maintenance and 

modulation of existing neural circuitry in adults (Arnold and Breedlove, 1985; Randa 

et al., 1994b). Androgens initiate many of these effects by specifically binding to AR 

in the cytoplasm and nucleus of target cells (Barley et al. , 1975). These hormone

receptor complexes act as ligand-activated transcription factors at specific DNA 

sequences, termed RREs, upstream of target genes (Beato, 1989; Roche et al., 1992). 

Recent studies have found similar levels of AR mRNA and AR binding in the 

hypothalamus and hippocampus of the male rat (Burgess and Randa, 1993a; Kerr et 

al., 1995a). In the hippocampus, AR expression was found to be particularly 

concentrated in the CAI pyramidal cells (Kerr el ar., 1995a). These neurons form 

the major efferents of the hippocampal formation to various cortical and limbic areas 
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of the brain (Van Groen and Wyss, 1990). In the rat hypothalamus, androgen action 

has been well characterized and is known to mediate some aspects of reproductive 

behavior (Davidson, 1966) and hormonal feedback (Messi et al., 1988; Zeitler et al., 

1990; Randa et al., 1994b). Presently, the role of AR in the hippocampus is unclear, 

however, androgens have been shown to modulate some hippocampal-mediated 

behaviors including learning and memory (Flood et al. , 1992; Hampson and Kimura, 

1992; Roof and Havens, 1992; Janowsky et al., 1994) and emotionality (Hubert, 

1990; Lumina et al., 1994). 

Despite accumulating molecular data on the interaction of steroid hormone

receptor complexes actions with HREs, the cellular machinery initiated by hormonal 

signals which leads to neuronal plasticity remains poorly defined. The identification 

of target genes in the brain whose expression is modulated by androgens would begin 

to clarify the role this hormone plays in selected brain areas, such as the 

hippocampus. Recent approaches to such questions have led to the observation that in 

vivo and in vitro stimulation of neurons causes the production of second messengers 

that rapidly activate the transcription of a family of genes termed cIEGs (for review, 

see Morgan and Curran, 1989). The protein products of these genes function as 

transcription factors that regulate the expression of additional genes over extended 

periods of time (for review, see Morgan and Curran, 1991). Both the pattern and 

magnitude of cIEG expression in the brain appears to be dependent on the stimulus 

employed (Bartel et al., 1989; Wisden et al., 1990) and the relative concentrations of 

cIEG protein products likely confers some level of specificity in the long-term cellular 
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response (Rausher et al., 1988; Schutte et al., 1989; Lin et al., 1993b). In the rodent 

hippocampus, several cIEGs including the fos and jun family members, and zij268 

(also known as NGFI-A, krox-24 or egr-1) are of particular interest as they are readily 

induced following stimulation paradigms relating to seizure (White and Gall, 1987; 

Wisden et al., 1990; Gass et al., 1992), memory formation (Tischmeyer et al., 1990; 

Wisden et al., 1990; Nikolaev et al., 1992; Richardson et al., 1992; Demmer et al., 

1993; Heurteaux et al., 1993) and stress (Randa et al., 1993; Imaki et al., 1993; also 

see review, Robertson, 1992). Thus, the high levels of AR in neuronal populations 

that express cIEGs following various behavioral stimuli strongly suggests the presence 

of cross-talk between these two signal transduction pathways. Therefore, it was 

hypothesized that androgen status may alter cIEG induction in the hippocampus. 

In the following study in situ hybridization was used to examine the pattern 

and magnitude of c-fos, jun-B, c-jun, and zij268 mRNA induction in the male rat 

hippocampus following behavioral testing in the novel open field; a paradigm which 

has previously been shown to activate hippocampal neurons (Handa et al., 1993). 

The novel open field has been used to monitor changes in fear, emotionality, anxiety 

and depression in rats (Denenberg, 1969). As a consequence of the exposure to a 

novel environment, rats show mild stress responses as measured by increases in 

ACTH and CORT secretion (Handa et al., 1994a). In addition, the influence of the 

removal and subsequent addition of circulating androgens on the level of expression of 

these clEGs was explored in discrete cellular regions of the hippocampus. Such 

modulation would implicate androgen in the alteration of hippocampal function and 
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would suggest that the hormonal status of the animal can affect the active response of 

hippocampal cells to incoming information. 

Materials and Methods 

Animals 

Three month old Fischer 344 rats (Harlan Inc., Indianapolis, IN) were used in 

these studies. Animals were maintained in temperature (72 · C) and humidity 

controlled rooms on a 12 h light/dark cycle (lights on at 0700 h) and were given free 

access to food and water. Bilateral GDX was performed under ether anesthesia. 

Some gonadectomized rats received hormone replacement by the subcutaneous 

implantation of two, 2.5 cm long Silastic capsules (0.07" i.d., 0.125" o.d.) containing 

the non-aromatizable androgen, DHTP (Steraloids Inc., Wilton, NH), immediately 

following GDX (GDX + DHTP group). These capsules have previously shown to 

provide a constant level of DHT 2-5 times that of circulating DHT found in intact 

male rats (Pouliot et al., 1995). All androgen treatments lasted for three weeks. All 

rats were handled daily (2-5 min) for at least 10 days prior to sacrifice to reduce any 

stress responses associated with handling. Animals were killed by decapitation and 

their brains were removed immediately, frozen in isopentane (-30'C), and stored at -

70'C. 

Behavior testing was performed by placing animals in the center of the novel 

open field and allowing them to roam free for 20 min. The novel environment 
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apparatus consists of a wooden box measuring 100 cm x 100 cm x 40 cm high. The 

floor is painted white and divided into 25 squares with thin black lines. Four holes 

(3.5 cm diameter) are located in the four corner squares of the central nine squares. 

The open field was placed in a dark, quiet room next to the animal quarters and was 

illuminated by a 40W bulb positioned over the center of the chamber. Behaviors in 

the open field were monitored by a remote videocamera and videotaped for later 

analysis. Scores for a) the number of squares entered in the first 5 min, b) the total 

number of squares entered during the 20 min testing, c) the number of rears, and d) 

the number of nose pokes (rat enters snout into one of the holes) were tabulated for 

each animal. 

Experiment 1. Time-course of cIEG mRNA Induction in the Hippocampus Following 

Novel Open Field. 

With the exception of c-fos mRNA (Randa ti al., 1993), no previous studies 

have examined the time-course of cIEG expression in the hippocampus following 

exposure to a novel environment. Therefore, a preliminary experiment was 

performed to examine the levels of c{os, c-jun, jun-B, and zij268 mRNA induction in 

the hippocampus of intact male rats using in situ hybridization and to determine the 

time point where cIEG induction is maximal for later studies. Animals were 

sacrificed either directly from their home cage (HC), immediately following 20 min in 

the open field environment (20 min OF), or at 0.5 h (20 min OF + 0.5h), 2 h (20 

min OF + 2h), or 8 h (20 min OF + 8h) following open field and return to the home 
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cage. Hybridization density from film autoradiograms of the CAl, CA3 and DG 

regions of the hippocampus were quantitated using an image analysis system. Each 

treatment group contained two animals. 

Experiment 2. Effect of Castration and Androgen Replacement on novelty induced 

cIEG mRNA levels in the Hiwocampus and Behaviors in the Open Field. 

To determine if androgen status modulated the pattern or magnitude of clEG 

mRNA induction in the hippocampus, intact, castrated, and castrated + DHTP treated 

rats (3 week treatment) were sacrificed either directly from their home cage or were 

exposed to the novel open field and sacrificed immediately upon removal from the 

apparatus (n = 6-13 rats per group). In situ hybridization to detect c-jun, c-fos, jun

B, and zif268 mRNAs was performed on separate series of brain sections from each 

animal. The resulting film autoradiographs were analyzed using an image analysis 

system to quantitate hybridization density in the CA1, CA3 and DG cell regions of 

the hippocampus. To determine whether androgen status effects the behavioral 

response to novelty (which in turn could effect the magnitude of cIEG induction); 

intact, castrated or castrated + DHTP rats (3 week treatment, n = 6 per group) were 

scored in the novel open field environment as described above. 
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l!1 situ Hybridization 

For the in situ hybridization experiments, oligonucleotide probes were used to 

detect c-jun mRNA [48mer, probe sequence 5'-GGCGTTGAGGGCATCGTCGTAGA 

AGGTCGTTTCCATCTTTGCAGTCAT-3'; complementary to bases 353-400 of the 

rat c-jun mRNA (Sakai et al., 1989)], jun-B mRNA [45mer, probe sequence 5'

GAAGGCGTGTCCC TTGACCCCTAGCAGCAACTGGCAGCCGTTGCT-3'; 

complementary to bases 1278-1322 of the ratjun-B mRNA (Ryder et al., 1988)], and 

zij268 mRNA (40mer, Oncogene Science). Each probe was 3' end-labelled with 35S

dATP and terminal deoxynucleotidyltransferase (Promega, Madison, WI). A 35S

labelled cRNA probe to detect c-fos mRNA was reverse transcribed as previously 

described by Randa et al. (1993). This probe was complementary to nucleotides 

1838-2116 of the rat c-fos mRNA. 

Coronal brain sections (16 µm) were made with a Leitz 1600 cryostat and 

mounted onto superfrost plus slides (Fisher Scientific, Pittsburgh, PA) and stored at 

-70°C. In situ hybridization using the oligonucleotide and cRNA probes were 

performed as previously described by Hammer et al. (1993) and Handa et al. (1993), 

respectively. Briefly, tissue was postfixed in 4% buffered formaldehyde, acetylated 

with acetic anhydride (0.25 % in TEA), dehydrated in ethanols and delipidated in 

chloroform. Approximately 85 µI of a 20 x IOr; cpm/mL hybridization solution (50% 

formamide, 20% dextran sulfate, 1.2 M NaCl, 20 mM Tris, 0.04% Denhart's, 2 mM 

EDTA, 0.02% salmon sperm DNA, 0.1% yeast RNA, 0.01% yeast tRNA, 0.1% 

sodium thiosulfate, 100 mM DTT, 0 .1 % SDS) were placed on each slide, 
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coverslipped and incubated for 16 hat 65°C (for cRNA probe) or at 45°C (for 

oligonucleotide probes). cRNA-hybridized probes were rinsed in 2 x SSC, subjected 

to RNase A treatment (20 µglml at 37°C for 30 min) to digest any nonhybridized 

RNA, and washed to a final stringency of 0.1 x SSC at 65 'C. Oligonucleotide 

probes did not undergo RNase A digestion and were washed to final stringency of 2 x 

SSC/50% formamide at 40°C. Autoradiographs were obtained by exposing slides to 

x-ray film (Hyperfilm /jmax, Amersham, Arlington Heights, IL) for 9-15 days. 

Image Analysis 

NIH Image software was used to analyze film autoradiography. Hybridization 

density in the brain area of interest was expressed in terms of dpm/mg protein. To 

obtain a standard curve, a brain mash standard was made using increasing amounts of 

35S/mg protein. Co-exposure of this curve alongside a C14 plastic standard curve and 

subsequent exposure of the C14 standard in the cassette with hybridized tissue allowed 

for quantitation of density. This method has been described by Brady et al. (1992). 

Brains were analyzed at the level of the dorsal hippocampus. Hybridization 

density within cell body regions of the hippocampus were obtained by separately 

tracing the entire upper blade of the DG granule cell layer, as well as the entire CAl 

and CA3 pyramidal cell layers as defined by the atlas of Paxinos and Watson (1982). 

A background sample taken from the molecular layer of the hippocampus was 

subtracted from every measurement from each brain section. For each section, both 

the right and left hemispheres of the hippocampus were sampled. Values from four 
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brain sections were averaged to obtain a final density for each hippocampal field in 

every animal. To confirm our observations, experiment 2 was repeated three times 

for cjos mRNA measurement. Thus, the use of multiple film autoradiographs for the 

analysis of c-fos mRNA expression necessitated the transformation of hybridization 

density values to the percent of the mean obtained from the gonadally intact rats on 

each film. Percent of intact data from all films were then grouped and subjected to 

statistical analysis. 

Statistics 

Statistical analysis was performed using a two-way analysis of variance 

(ANOV A) with treatment (intact, GDX, GDX + DHTP) and testing (HC vs. OF) as 

factors. Subsequent analyses used a one-way ANOV A across treatment groups and 

Student Newman-Keuls post-hoc tests. AP value less than 0.05 was considered 

significant for all tests. 

Results 

Experiment 1. cIEG mRNA Time-course. 

As shown in figure 22, a preliminary time-course study indicated that open 

field behavior induced the rapid and transient expression of cjos, jun-B, c-jun and 

zij268 mRNAs in the CAl region of the rat hippocampus. cIEG mRNA levels were 
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low to non-existent in the hippocampus of home cage (HC) rats except for c-jun and 

zif268 mRNAs which had relatively high constitutive expression (figure 22). For all 

four of the cIEGs studied, mRNA induction reached between 853 and 1003 of 

maximum immediately following the removal of the animal from the open field 

environment (20 min OF, figure 22, only CAl region shown). Subsequently, in all 

later experiments, animals were sacrificed immediately following removal from the 

open field when it was now known that cIEG mRNA was at or near its peak 

expression in all areas of the hippocampus. All but zif268 mRNA returned to HC 

levels within 8 h after open field exposure (20 min OF + 8h, figure 22). 
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Figure 22. The time-course of cIEG mRNA induction in the CAl pyramidal cell 
region of the hippocampus following introduction to a novel open field. Rats were 
sacrificed from their home cage (HC), after 20 min in the open field (20 min OF), or 
0.5 h (20 min OF + .Sh), 2 h (20 min OF + 2h), or 8 h (20 min OF + 8h) 
following open field and return to their home cage. Hybridization densities from film 
autoradiographs were obtained using a computerized image analysis system. Each 
point represents the mean of two animals. Due to enormous differences in basal 
levels between cIEGs, the time point at which the highest mean hybridization density 
value for each cIEG was obtained was considered 100% (maximal induction) and all 
other densities were transformed to percent of this maximal level for each cIEG. 
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Experiment 2. Effects of Castration and Androgen Treatment on cIEG mRNA Levels 

in the Hippocampus Following Novelty and Behavior in the Open Field. 

As depicted in figure 23, in situ hybridization analysis revealed unique 

patterns of cIEG mRNA expression in response to novel open field testing in the 

intact male rat. c-fos mRNA was undetectable in the hippocampus of home cage 

animals, and was found in moderately high levels in the CAI and DG regions of the 

hippocampus following novelty. The levels of both jun-B and zif268 mRNA were low 

to moderate in the hippocampus of home cage animals and open field behavior 

resulted in increases in all areas. zif268 mRNA levels were particularly high in the 

CAl region. In contrast, c-jun mRNA was constitutively expressed in the CA3 and 

DG regions in home cage rats and no observable increases occurred as a result of 

behavioral testing. Neither castration nor androgen treatment altered the basal levels 

or distribution patterns of cIEG mRNA expression in the hippocampus. 
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Figure 23. cIEG mRNA expression in home cage animals (HC, left panel) and in 
animals removed immediately following 20 min in the novel open field (OF, right 
panel). In the control hippocampus, c{os mRNA was virtually absent. Novelty 
induced c{os, jun-Band zifl,68 mRNA in distinct regions of the hippocampus and 
cortex. c-jun mRNA is constitutively expressed at high levels in the CA3 and dentate 
gyrus cell regions of the hippocampus. Autoradiographs were digitized. 
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Quantitative densitometric analysis of jun-B and zif268 mRNA from film 

autoradiographs demonstrated that the open field stimulus induced both jun-B (figure 

24A) and zij268 (figure 248) mRNA above home cage levels regardless of androgen 

treatment (P < 0.05). However, there were no effects of castration or DHTP 

treatment in any region of the hippocampus in either home cage or open field rats 

(CAl and DG shown). In contrast, c-jun mRNA levels were unchanged by open field 

or androgen treatment in the CA3 and DG cell regions, where constitutive c-jun 

mRNA expression was high (figure 24C). The very low levels of c-jun mRNA in the 

CA 1 region of both home cage and open field rats made quantitation of hybridization 

density in this area difficult. Since none of the density values obtained fell on the 

linear part of the film standard curve, statistical analysis of these data was not 

performed. In a single study of 6 rats per group, c-fos mRNA induction after novel 

open field was dramatically increased above home cage levels in the CAI and DG 

regions (figure 24D). Essentially, cfos mRNA hybridization was not above 

background levels in the hippocampus of home cage animals. In addition, c-fos 

mRNA levels in the CAl region were attenuated in castrates treated with DHTP as 

compared to the castrate controls (figure 24D, P < 0.05). There were no effects of 

androgen treatment on any cIEG mRNA expression level in the CA3 or DG regions. 

The finding that cfos mRNA induction was attenuated by DHTP treatment in 

the CAI region were consistent in three separately run groups of animals, therefore, 

combining the groups was warranted. However, due to variations in film 

autoradiogram intensities and the use of a newly transcribed c-fos cRNA probe for 

-



151 

each in situ hybridization run, it was not possible to compare dpm/mg protein 

hybridization densities between films without introducing an enormous amount of 

variability. To circumvent this problem, the results were expressed as percent of the 

density of gonadally intact mean for each film autoradiograph then these data were 

combined and statistically analyzed to generate the graph depicted in figure 25 (only 

open field c-fos mRNA levels in the CA 1 and DG regions are shown). When the 

studies were merged, thereby raising the number of animals per group to 11-13, 

androgen treatment significantly affected c-fos mRNA induction in the CAl region 

(ANOVA: F(2,33) = 12.32, P = 0.0002). GDX increased inducible c-fos mRNA 

levels in the CAl region of the hippocampus by 32% as compared to intact controls 

(P < 0.05) and DHTP treatment of castrated. males prevented the effect of GDX and 

lowered c-fos mRNA expression to 69% of intact values (figure 25, P < 0.05). No 

effect of androgen treatment were found in the DG (ANOVA: F(2,33) = 1.552, 

p = 0.23). 



TABLE 1. 

Effect of androgen treatment on open field activity measures 
in the male F344 rat. 

Total Squares Entered 

Treatment n First 5 min 20 min Rears Nose Pokes 

INTACT 6 21 ±9.1 102±27.9 22 ±4.4 11 ±4.2 

GDX \If 6 44±8.8 * 133±27.4 28±7.5 14±4.3 

GDX + DHTPcp 6 9±3.3 60±21.1 20±4.0 4±1.6 

Data are presented as group mean± SEM. 
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* Significantly different (p < 0.05) from intact group (ANOVA followed by Newman-Keuls' test). 
\jl Gonadectomized 3 weeks prior to testing. 
<p Gonadectomized and given two 2.Scm Silastic capsules of dihydrotestosterone 

propionate (DHTP) at time of surgery. 

Castrated males showed significant increases in exploratory behavior during 

the first 5 minutes of testing as compared to intact or hormone-replaced male rats 

(Table 1). This effect of hormone treatment was not present when data were 

examined over the entire 20 minute period. Androgen treatment did not significantly 

affect any other measures of open field behavior. 

Correlation analysis of total squares entered within the first 5 min of open 

field exposure, as well as total squares entered within the entire 20 min, with the 

corresponding CAl c-fos mRNA density in individual rats (n = 18) revealed R2 values 

of only 0.19 and 0.52, respectively (nonsignificant, data not shown). 
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Figure 24. Quantitation of cIEG mRNA expression in the rat hippocampus. 
Effect of long-term castration (GDX) and DHTP treatment of castrates (GDX + 
DHTP) on the magnitude of (A) jun-B, (B) zif268, (C) c-jun, and (D) c-fos mRNA 
induction in the hippocampus of rats removed from their home cage (solid bars) or 
immediately following 20 min in the open field (hatched bars). Results from 
quantitative densitometry of in situ hybridization histochemistry in the CAI region 
(left) and dentate gyrus (DG, right) are shown. Each bar represents the mean ± SEM 

from 6 animals. *, Significantly greater than home cage value (P < 0.05) and#, 
significantly different from each other (P < 0.05). 
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Figure 25. Effect of castration (GDX) and DHTP treatment of castrates (GDX + 
DHTP) on the magnitude of hippocampal c-fos mRNA induction foil owing 20 min 
in the novel open field. CAl = hippocampal CAl pyramidal cell region; DG = 
dentate gyros granule cell region. c-fos mRN A hybridization data were combined 
from three separately run studies. Due to inter-assay variability between the film 
autoradiograms, densitometry values from each animal are expressed as percent of the 
intact mean obtained from each film autoradiogram. Each bar represents the mean + 
SEM from 11-13 rats. #, Significantly different from intact value (P < 0.05). 
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Discussion 

The purpose of this study was to determine if androgens modulate the in vivo 

expression of cIEGs in the rat hippocampus following novelty. The hippocampus is a 

likely target for androgens based on earlier studies showing that AR and AR mRNA 

were expressed in this region with the greatest levels being found in the CA 1 

pyramidal cell region, lower levels in the CA3 region, and no expression in the DG 

granule cells. 27 Quantitative densitometry of in situ hybridization histochemical 

labelling detected by film autoradiography provided a means of assessing c-fos, c-jun, 

jun-B, and zij268 mRNA levels in the densely packed cell body layers of the 

hippocampus. Since open field exploratory behavior had previously shown to 

stimulate c-fos mRNA (Randa et al., 1993), as well as enhance the binding of 

hippocampal transcription factors to their DNA recognition elements (Kinney and 

Routtenberg, 1993), it was suspected that this behavior would be a simple, non

intrusive method of inducing cIEG expression in the hippocampus. In addition, 

scores for general activity in the open field apparatus could be tabulated and later 

related to gene induction. 

Initially, novel open field exposure caused rapid increases of c-fos, jun-B, c

jun and zij268 mRNA levels. However, there was also a region and gene specific 

pattern of expression which would argue against the possibility that this behavioral 

stimulus activates all hippocampal neurons leading to global, non-specific increases in 

mRNA transcription. In general, hippocampal c1os andjun-B mRNA levels 
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increased more after novelty than did zij268 or c-jun mRNA levels. The lower 

stimulation of c-jun and zij268 mRNA levels appeared to be due to their relatively 

high basal expression; a finding that has been noted by others (Worley et al., 1990; 

Gass et al., 1992; Hughes et al., 1992). zif268, the cIEG best correlated with the 

induction and maintenance of the hippocampal memory stimulus paradigm, LTP 

(Worley et al., 1990; Richardson et al., 1992), showed the longest time-course of 

expression of all the cIEGs studied. Hippocampal zij268 mRNA levels were still 

higher than home cage levels 8 h after open field behavior and this protracted 

expression may play a role in memory formation. Preliminary studies demonstrated 

that novelty elicits specific cIEG signals in each hippocampal region. Since many of 

the cIEG protein products work in concert with each other to control transcription 

(Chiu et al., 1988), this transcriptional network likely leads to the fine tuning of 

transcriptional activation of target genes. 

To investigate the modulatory role of androgen on cIEG expression, GDX was 

used to eliminate endogenous androgen and hormone replacement of castrates with the 

non-aromatizable androgen, DHTP, was used to stimulate hippocampal ARs and 

isolate AR-mediated effects. The intact rat, which has high circulating levels of the 

aromatizable androgen, T, served as a physiological control. Castration of adult male 

rats for three weeks potentiated the behaviorally-induced c-fos mRNA levels in the 

CAl region of the hippocampus as compared to intact rats. Furthermore, DHTP

treatment attenuated c-fos mRNA induction to 70% of the level found in intact rats, 

and to only 52 % of that found in castrated animals. Since no significant changes in c-
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fos mRNA occurred in the DG, where AR are not found (see Chapter III and Kerr et 

al., 1995a), this finding strongly suggests that androgen acts through an AR-mediated 

process to initiate these effects. The intermediate expression of c-fos mRNA in intact 

rats may reflect the actions of the less potent androgen, T, on hippocampal AR 

activation or the possible counteractive effects of estrogen through estrogen receptors 

by the localized aromatization of T to estrogen in the hippocampus (Abdelgadir et al., 

1994). Unfortunately, RNase treatment of the tissue and the extreme density of cells 

in the CA 1 cell body layer of the hippocampus makes examination of c-fos expression 

at the single-cell level difficult. In order to elucidate possible mechanisms of 

androgen action, it would be informative to know whether the decreases in 

behaviorally-induced c-fos mRNA levels that we have observed were the result of 

lower expression per cell, or if fewer CAI cells expressed c-fos mRNA. 

The findings concerning c-fos mRN A in these studies were perhaps in contrast 

to earlier work showing that seven days after castration or treatment with DHT, 

mating-induced Fos immunoreactive cell numbers were not altered in several areas of 

the rat brain (Baum and Wersinger, 1993). However, these researchers used a 

shorter androgen treatment duration which may not have allowed for the necessary 

AR-mediated changes in the cells to occur. Also, Fos was examined in hypothalamic 

brain areas, not in the hippocampus, and Fos immunireactivity was measured 

following a different stimulus (mating versus novelty). Finally, the androgenic effects 

on c-fos mRNA concentration that were observed in this study may not directly 

correlate with numbers of Fos-immunoreactive cells. To better understand this 
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cascade of cellular events and make assumptions on the role of Fos in hippocampal 

neuronal plasticity, as opposed to using cfos mRN A induction strictly as a marker for 

neuronal activation, as was done in this study, it would be necessary to investigate 

whether changes in c-fos mRNA led to subsequent changes in Fos protein levels. In 

this regard, studies by Shultz et al. (1994) demonstrated that the induction of Fos 

immunoreactivity closely followed the induction of cfos mRNA in the rat brain 

following novelty. This observation suggests that Fos protein levels would likely 

follow the same pattern of expression that was observed for c-fos mRNA. 

The observation that castrated animals had increased activity in the novel open 

field during the first 5 min was intriguing. These increases in activity paralleled c-fos 

mRNA induction patterns in the CAI region of the hippocampus and raised the 

possibility that main effects of c-fos were solely due to changes in activity. However, 

analysis of activity and the magnitude of CAI cfos mRNA levels on an individual 

animal basis revealed no significant correlations. Additionally, if treatment group 

differences in activity were the sole determinants of c-fos expression, then one would 

of expected to see significant changes in the CA3 and DG regions as well. The fact 

that the levels of jun-B mRNA, which was highly inducible by this behavioral 

stimulus, did not correlate with activity in individual animals, and did not change in 

response to androgen removal or treatment, also argues against activity level being the 

only factor regulating cIEG expression. 

Earlier studies have revealed AR mRN A expression in virtually every 

hippocampal CAI neuron (see chapter rrr and Kerr et al., 1995a). This finding 
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enhances the probability that AR is present in the same CAl neurons expressing c-fos, 

jun-Band zij268 mRNA following novelty. Co-localization of mating-induced Fos 

and AR immunoreactivity has been described in the male hamster brain (Wood and 

Newman, 1993) and provides further evidence that these two transcriptional pathways 

are intertwined in several areas of the central nervous system. It is difficult to assess 

from these data why androgen status only affected c-fos mRNA levels, and not c-jun, 

jun-B, or zij268 mRNA levels. Clearly, since c-fos was the most highly inducible 

mRNA following novelty, its expression had the greatest room for modulation by 

androgens. Since c-jun mRNA was not induced in the CAl region, where AR 

expression is highest, it was not suprising that androgen had no effect on the 

expression of this cIEG. It can only be speculated that the cellular events triggering 

zij268 and jun-B expression in CAl neurons differ from that of c-fos and are not 

similarly altered by AR activation. 

The consequences of altered cjos expression in CA l neurons are likely 

diverse. Earlier work has shown that Fas proteins must dimerize with Jun family 

member proteins to initiate its transcriptional regulation (Chiu et al., 1988), and shifts 

in the relative concentrations of Fos and Jun can communicate very different messages 

in the cell nucleus (Diamond et al., 1990). For example, differences in the amount of 

Fos expressed in cells in vitro relative to Jun expression allows for discrimination of 

transcriptional activation from transcriptional repression by GR acting at a composite 

HRE (Pearce, 1994). These studies suggest that changes in c-fos expression, without 

corresponding changes inc-jun, could alter Fos)Jun ratios, and thereby add another 
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level of transcriptional control within neurons. 

Although the mechanisms accounting for the repression of c-fos mRNA levels 

by androgens were not explored in the present experiments, it appears likely that the 

long-term activation of AR in Fos-expressing CAl cells was involved. Unlike what 

has been found for estrogen receptors (Weisz and Rosales, 1990), there is no evidence 

for a direct effect of androgen on the c-fos gene through the binding to an upstream 

HRE. Therefore, AR activation may lead to cellular changes which alter the ability 

of CAl neurons to respond to in vivo stimuli and accounts for the observed changes 

in c-fos mRNA induction. Recently, it has been shown that DHT treatment attenuates 

the binding of MK-801, an NMDA receptor antagonist, in the CAl region of the rat 

hippocampus (Kus et al., 1995), and may subsequently inhibit the electrophysiological 

responses of CAl pyramidal cells to NMDA. This decrease in membrane-bound 

excitatory receptor concentration is one possible mechanism by which androgens 

could alter synaptically mediated CAI neuronal depolarization and/or lower the 

production of second messengers, thereby decreasing cIEG induction. The present 

findings concerning c-fos mRNA complement a recent study showing that removal of 

glucocorticoid hormones by ADX potentiated kainate-induced cIEG mRNAs in the 

hippocampus (Li et al., 1992). Thus, androgen modulation of glucocorticoid receptor 

mediated events in the hippocampus are a possibility and are currently being 

investigated. If these mechanisms are occurring in CAI hippocampal neurons, it is 

not yet clear why c-fos expression was preferentially affected. 

In summary, these data have demonstrated that androgen modulates the 
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inducibility of certain cIEGs following a behaviorally relevant stimulus, most 

probably by acting through the androgen receptor. This may have been the result of 

changes in the excitability of existing neural circuits. Androgen modulation of 

behaviorally-induced cIEG levels within hippocampal neurons may result in large 

variations in transcription factor networks and may serve to fine tune androgen

mediated processes at the molecular level. In the hippocampus, these functions may 

include memory formation, cell maintenance, as well as cell survival. 



CHAPTER VI 

DISCUSSION 

Growth, differentiation and plasticity of neurons involve the coordinated 

expression of many genes in a precise temporal sequence. In these studies, the 

expression of the receptor for androgens was characterized in the adult male rat 

hippocampus and this area of the brain was found to be sensitive to this potent class 

of steroids. This was emphasized by the fact that hormonal manipulations, in 

particular, selective, high level stimulation of AR for relatively prolonged periods, 

altered the expression of certain target genes within CAl pyramidal cells. 

Briefly, to summarize the results of this dissertation, it was shown that the 

male rat hippocampus contains a single, saturable, high-affinity binding site for 

androgen, and that this receptor has the same size and affinity characteristics as the 

AR found in other areas of the brain, and in peripheral tissues. AR and AR mRNA 

was expressed in the hippocampus in amounts comparable to that found in the 

hypothalamus -- an area where androgens act to control aspects of reproductive 

function and hormonal feedback. In situ hybridization revealed that AR mRNA 

expression is not uniformly distributed within the hippocampus. AR mRNA was 

concentrated in CAl pyramidal neurons, and very little expression was found in the 

DG. Short term GDX and AR antagonism downregulated AR mRNA in the whole 
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hippocampus; however, AR levels (as determined by in vitro [3H]DHT binding) were 

slightly elevated following similar treatment. These data suggest a unique AR 

autoregulatory process in hippocampal neurons. Additionally, steady state AR mRNA 

levels, but not AR binding levels, were higher in the hippocampus of old rats as 

compared to their young counterparts suggesting, at least, a maintenance of androgen 

sensitivity in this tissue throughout life. Sub-chronic treatment of young rats with the 

AR-selective androgen, DHTP, significantly decreased steady state GR mRNA 

expression, and prevented ADX-induced GR mRNA upregulation, selectively in the 

CAl region of the hippocampus. Neither MR or AR mRNA levels were altered by 

the same androgen treatments. Finally, inducible gene expression was characterized 

in the hippocampus following exposure to novelty. Of the four cIEGs studied, c-fos 

mRNA was the most highly induced in the hippocampus by this stimulus, and DHTP 

treatment attenuated c-fos mRNA induction selectively in CAl pyramidal cells. 

As with most scientific endeavors, many questions have arisen from these 

studies. Certainly, two fundamental questions remain. 1) Through what cellular 

mechanisms does the ligand-activated AR regulate the expression of GR, c-fos and, 

possibly, other genes in hippocampal CAI pyramidal neurons? 2) How might 

androgen-mediated regulation of GR and cjos expression lead to physiologically 

relevant changes in hippocampal plasticity and, ultimately, affect hippocampal 

regulated behaviors? Unfortunately, at the current level of understanding neither of 

these questions can be answered definitively. Much of the following discussion is a 

theoretical scheme of potential molecular mechanisms and ramifications of androgen 
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action in the hippocampus. To support these theories, evidence from recent studies 

examining interactions among the several classes of transcription factors and cIEG 

protein products in neurons, cell culture and other molecular systems is discussed. 

Mechanisms of Androgen Receptor Action 

These dissertation studies have demonstrated that AR activation for sub

chronic periods attenuates steady state levels of constitutively expressed GR mRNA 

and behaviorally-induced c-fos mRNA selectively in hippocampal CAl pyramidal 

cells. As neither c-jun, junB, zij268, MR or AR mRNA levels were similarly altered 

by this treatment, it is doubtful that generalized decreases in transcriptional efficiency 

would account for these results. More likely, other mechanisms account for the effect 

of androgens on the transcription of selective target genes in CAl neurons. Potential 

mechanisms to explain AR-mediated decreases in GR mRNA levels include: direct or 

indirect androgen-induced alterations in the ability of GR to mediate its own 

transcriptional regulation, changes in GR mRNA processing or stability, and/or by 

direct AR inhibition of GR gene transcription through a simple HRE. Androgenic 

effects on inducible c-fos mRNA expression following a behavioral stimulus may be 

occurring through androgen modulation of membrane receptor levels, changes in other 

second messenger systems that have known effects on cIEG transcription, multi

synaptic changes in neuronal excitability, and! or direct modulation of cIEG 



transcription or mRNA stability. A more detailed discussion of some of these 

theoretical mechanisms, and any available evidence for them, follows below. 

Cellular Interactions Between Andro~en and Glucocorticoid Receptors 
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AR and GR may be interacting in CAI pyramidal cells at several levels of 

their transcriptional pathways to regulate GR gene expression. Three plausible 

mechanisms to account for androgen modulation of GR mRNA levels are depicted in 

figure 26. Activated AR may act non-discriminately at a simple HRE within or 

upstream of the GR gene and block its transcription (figure 26A). In this scenario, 

AR mimics the normal GR effect and, at high enough levels, AR may displace GR 

dimers at this site. Both AR and GR have been shown to activate transcription in 

vitro from the simple HRE contained in the mouse mammary tumor virus promoter 

(Shemshedini et al., 1991) which lends some support to this theory. However, most 

AR-regulated genes thus far (including probasin and mouse sex-limited protein) 

contain complex response elements that were specific for AR as a result of selective 

protein-protein interactions and response element spacing within the promoter region 

(Adler et al., 1993). Further characterization of the HRE controlling steroid 

regulation of GR transcription would help to determine whether this mechanism could 

also occur in CAl neurons. 

Alternatively, as depicted in figure 26B, high levels of activated AR may use 

transcription factors and/or accessory proteins also necessary for normal GR gene 

transcription. One such protein, designated receptor accessory factor (RAF; later 
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found to have complete amino acid identity with insulin degrading enzyme), has been 

shown to directly interact with and enhance DNA binding of both AR and GR peptide 

fragments (Kupfer et al., 1993). This finding suggests that RAF may play a role in 

the transcriptional activity of these receptors. Along these lines, overexpression of 

ER significantly inhibited AR transcriptional activity in cell culture (Kumar et al., 

1994) prompting the authors to suggest that these two receptors must compete for 

some unknown factor necessary for their transcriptional activity. Several studies have 

demonstrated that GR interacts with many other transcriptional activators in vitro, 

including Fos, Jun, and octamer transcription factor I (Yang-Yen et al., 1990; Jonat 

et al., 1990; Schille et al., 1990; Kutoh et al., 1992). Although AR protein-protein 

interactions have yet to be studied in depth, the overlapping use of transcription 

factors by AR and GR may serve an important regulatory function in hippocampal 

pyramidal cells. 

Due to the long-term nature of the androgen treatments used in these 

dissertation studies, it is also possible that AR activation could have altered GR 

expression through more indirect means than discussed above. As mentioned earlier, 

there is mounting evidence that the transcriptional activity of GR is modulated by its 

interaction with other transcription factors traditionally thought to be stimulated by 

cell surface receptor signal transduction (Diamond et al., 1990; Hoeck et al., 1990; 

Jonat et al., 1990; Lucibello et al., 1990; Yang-Yen et al., 1990; Schiile et al., 1990; 

Shemshedini et al., 1991; Shiile and Evans, 1991; Unlap and Jope, 1994). In 

Particular, the protein-protein interaction of GR with the AP 1 transcription factor may 



repress or activate the transcriptional activity of GR depending on the relative 

concentrations of clEG family members, Fos and Jun, in the complex (Diamond et 
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al. , 1990). Since the studies present in this dissertation have revealed decreased 

levels of behaviorally-induced c-fos mRNA in the CA 1 region of the hippocampus of 

DHT-treated castrates, this potential modulation of the Fos:Jun ratio within CAl 

pyramidal cells following three week androgen treatment may in tum alter how GR 

acts at its HRE within or upstream of its own or other target genes (figure 26C). 

Along these lines, expression of Ha-ras and v-mos oncogenes in GR-expressing NIH 

3T3 cells enhanced ligand-induced down-regulation of GR (Hoeck et al., 1990). 

Taken together, androgen modulation of such intermolecular interactions between GR 

and other transcription factors may be another mechanism mediating GR 

transcriptional activity, conferring steroid hormone specificity, or fine-tuning gene 

expression at the HRE resulting in our observed decreases in GR mRNA levels. It is 

also possible that AR-mediated downregulation of GR expression enhances androgen 

sensitivity within cells that express both GR and AR, as this mechanism would 

enhance the probability of AR action at HRE sites used by both AR and GR. Many 

additional studies examining the cross-talk between these signal transduction pathways 

are necessary to ascertain which, if any, of the previously mentioned mechanisms are 

occurring in CAl neurons. 
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Figure 26. Schematic representation of three possible mechanisms by which 
activated androgen receptors (AR) could interact or interfere with glucocorticoid 
receptor(GR)-mediated autoregulation. Bent arrow thickness indicates strength of 
gene transcription. 
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Mechanisms of Androgen Modulation of Cellular Immediate Early Genes 

Few studies have examined specific AR interactions with cIEG protein 

products, however, as mentioned above, there is increasing evidence that nuclear 

hormone receptor pathways do cross-talk with the cIEG pathways, thereby modulating 

each other's activity (see review by Hyder et al., 1994). 

At our current level of understanding, the most plausible mechanism to explain 

androgen mediated attenuation of cfos mRNA induction in the CA 1 region is through 

the modulation of the function of a stimulating receptor in these neurons. In the CAl 

region, the best example of a stimulatory receptor is the NMDA receptor. The 

expression of these receptors is highly concentrated in CAl neurons (Mackler and 

Eberwine, 1993; Kus et al., 1995) and glutamate is thought to be the principle 

excitatory neurotransmitter in the hippocampal formation (Jahr and Stevens, 1987). 

In addition, rapid cfos expression has been observed in the hippocampus following 

NMDA receptor activation (Sonnenberg et al., 1989). Similarly, studies have 

demonstrated that the administration of the NMDA receptor antagonist, MK801, 

strongly attenuates the rise in cfos mRNA and protein in the DG following a kindling 

stimulus, but has a lesser effect on jun-B and c-jun mRNA and protein and does not 

markedly attenuate zij268 mRNA and protein levels (see review by Hughes and 

Dragunow, 1995). This selectivity of the NMDA receptor for c-fos expression 

strongly suggests that NMDA sensitivity may play a key role in androgen modulation 

of c-fos expression. Studies are currently underway to investigate androgen regulation 

of NMDA receptor expression and action in the hippocampus. In support of this 
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hypothesis, initial studies by Kus et al. (1995) have found that androgen 

administration decreases MK801 binding in CAl pyramidal cells. In accordance with 

these findings, Pouliot et al. (1995) have demonstrated that androgen treatment 

attenuates NMDA's excitotoxic electrophysiologic responses in CAl neurons. In 

contrast, estrogen has been shown to increase NMDA agonist sites in the CAl 

pyramidal cell region (Weiland, 1992). Such polarized effects of androgen and 

estrogen may underlie sex differences in hippocampus-mediated behaviors. 

It can not be ruled out that other pyramidal cell membrane receptors could also 

be regulated by androgens thereby affecting neuronal excitability and cIEG induction. 

Interestingly, the induction of c-jos by administration of the nonselective muscarinic 

agonist, pilocarpine, was localized to the CAI and CA2 cell body regions of the 

hippocampus (Hughes and Dragunow, 1993, 1994). Unfortunately, no studies have 

yet explored androgen regulation of muscarinic receptors to determine if such 

mechanisms could account for our results. 

Alternatively, androgens may regulate the levels of second messenger 

molecules or transcription factors known to activate or control the rapid induction of 

cIEGs. Such possibilities include the protein kinase C-dependent serum response 

factor (SRF) and the Ca2+/cAMP-activated CREB protein; both of which bind to 

upstream response elements in the Fos gene and stimulate its expression (Treisman, 

1985; Sheng et al., 1990). Although androgen withdrawal has been shown to 

decrease CREB transcript in the adult rat testis (West et al., 1994), no such studies 

have been performed in brain tissue. Thus, it is still too early to predict if androgen 
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acts through this mechanism in CAI pyramidal neurons. 

Androgen may also be acting at a site distant from the hippocampus, but 

through multi-synaptic connections alters CAI cell excitability and, in tum, modulates 

c-fos expression following a behavioral stimulus. Certainly when one considers the 

widespread connectivity to and from the hippocampus, such a complex process can 

not be ruled out. Future studies using more localized administration of androgen into 

the hippocampus, cultured pyramidal cells, or the hippocampal slice preparation will 

help to elucidate if androgen's actions are multi-synaptic. 

Functional Implications of Androgen Sensitivity in the Hippocampus 

Due to the fact that only subtle changes in gene expression following relative 

extreme alterations in circulating androgen levels were observed, it appears that 

androgens act in the adult hippocampus to fine-tune selective transcriptional 

responses. Interestingly, the presence of functional AR in the body is not necessary 

for life or normal intelligence. This information has been attained from genetic XY 

individuals who are born with mutations in the AR gene, and thus, are insensitive to 

androgen's developmental and activational effects despite having high levels of 

circulating T. In most cases, these individuals have severely malformed sexual 

organs and are typically raised as females, but, otherwise have normal IQs (lmperato

McGinley et al., 1991) and life spans (McPhaul et al., 1991). These findings 
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suggest that androgen's actions in the brain are delicate, or, it is possible that other 

mechanisms may compensate for a lack of direct androgen action in the brain. In 

light of these data, androgen insensitive individuals have been found to perform worse 

on hippocampally-mediated visuospatial tests as compared to both normal males and 

their own unafflicted sisters (Imperato-McGinley et al., 1991); and curiously, T 

supplementation to female-to-male transsexuals was associated with an increase in 

their spatial ability, and had a deteriorating effect on their verbal fluency (Van 

Goozen et al., 1994). These findings further support the studies in this dissertation 

suggesting subtle activational effects of androgens in the hippocampus. 

Functional Implications of Androgen Regulation of GR and c-tos Expression 

Although the studies in this dissertation did not explore the functional or 

behavioral significance of androgen-mediated changes in GR and c-fos mRNA 

expression in hippocampal pyramidal cells, it is still possible to speculate how 

changes in the expression of these genes may affect hippocampal function using 

evidence from studies that have investigated GR- and Fos-mediated functions within 

the hippocampal formation. 

Activation of GRs in the hippocampus has been associated with decreased 

excitability within CAl neurons (Joel and De Kloet, 1992), and in the process of 

information storage (Oitzl and De Kloet, 1992). Jn addition, the activation of 
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hippocampal GRs at high levels of circulating CORT contributes to the HPA axis 

hormonal feedback inhibition process, resulting in the termination of the stress 

response (Ratka et al., 1989). Potentially, all of these physiologic outcomes could be 

indirectly modulated by fluctuations in androgen levels. It has also been well 

documented that prolonged exposure to high levels of glucocorticoids, especially in 

older rats, is neurotoxic; with preferential injury to the hippocampus (Landfield et al., 

1978; Sapolsky et al., 1985; Meaney et al., 1988; Woolley et al., 1990). In addition, 

exposure to physiological levels of glucocorticoid:s can "endanger" the hippocampus, 

making its neurons less likely to survive coincident challenges such as hypoxia

ischemia (Sapolsky and Pulsinelli, 1985; Morse and Davis, 1990), seizures (Sapolsky, 

1985), and NMDA receptor-mediated excitotoxicity (Supko and Johnston, 1994). If 

androgen treatment proves to be effective in decreasing GR protein levels in CAl 

pyramidal cells, such a mechanism may, in turn, be protective to these neurons. 

The use of androgens to control the magnitude of c-fos induction in the 

hippocampus following a stimulus or stres:sor may also prove to be a useful tool to 

prevent cell loss or injury. The debate continues a:s to whether the induction of c-fos 

after stress, seizure or neurotoxin exposure is involved with the neuroprotective 

regeneration process, or if it sets into motion the genetic program for cell death. 

When this process is better understood, androgen :sensitivity may play out to be an 

important modulator of this process. 
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Conclusion 

These studies have demonstrated relatively high levels of functional AR in 

hippocampal CAI pyramidal cells of the adult male rat. In addition, it was found that 

these receptors are sensitive to changes in circulating androgen levels by altering AR 

occupancy and the modification of selective transcriptional responses within these 

neurons. Although, it is still difficult at this time to pinpoint the functional 

significance of AR expression in the hippocampus, the preceding observations unveil 

a solid foundation for further investigation of the activational roles of androgen in 

hippocampal pyramidal cells and the cellular interactions between steroid hormone 

receptors and other transcription factor responses within neurons. Undoubtedly, AR 

action is complex and involves multiple signal transduction pathways. Future studies 

clarifying the molecular cascade of events following AR activation, as well as the 

precise behavioral outcomes of androgen manipulation, will provide crucial 

information in the aim of understanding androgen action in the brain. 
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