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CHAPTER I 

INTRODUCTION 

Fetal alcohol syndrome (FAS) refers to the characteristic anomalies found in the 

children born to alcoholic women. It is composed of facial dysmorphology, pre- and 

post-natal growth retardation and central nervous system (CNS) abnormalities. FAS is 

one of the leading causes of mental retardation in the western world. In the United States 

alone, more than 1200 children are born with FAS each year (Abel and Sokol, 1991). 

As children grow, facial abnormalities and retarded growth become less marked. 

However, CNS abnormalities, especially abnormal behavior, learning and memory 

deficits, and mental retardation, become persistent devastating problems. 

During the last 20 years, neuroanatomical and neurochemical studies in animal 

models of FAS have been performed in order to understand the underlying causes of 

abnormal behavior and mental retardation. These studies have shown that many brain 

structures and major neurotransmitter systems were abnormally developed. The 

serotonergic system, one of the most expansive neurotransmitter systems in the brain, has 

been shown to be affected by in utero ethanol exposure at the level of the concentrations 

of the neurotransmitter and its metabolites, uptake sites and certain receptors (Rathbun 

and Druse, 1985; Druse et al., 1991; Druse and Paul, 1989; Tajuddin and Druse, 1989). 

However, the mechanism by which ethanol acts on the developing serotonergic 

system is unknown. The purpose of this dissertation is to assess two potential underlying 
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mechanisms by which in utero ethanol exposure contributes to the abnormal development 

of the serotonergic system. (1) The decreased serotonin (5-hydroxytryptamine, 5-HT) 

content in ethanol-exposed fetuses (Druse et al., 1991) could lead to decreased 

stimulation of raphe 5-HT1A receptors and astroglial 5-HT1A receptors. Decreased 

stimulation of raphe 5-HT1A receptors may result in altered development of serotonergic 

neurons. Decreased stimulation of astroglial 5-HT1A receptors leads to decreased 

production of neurotrophic factors for fetal 5-HT neurons (Azmitia et al., 1990; 

Whitaker-Azmitia et al., 1990). (2) In addition, a generalized decrease in astroglial 

protein synthesis and content (Guerri et al., 1990; Snyder et al., 1992) could lead to 

decreased production of important astroglial growth factors, which are essential for 

neuronal growth and differentiation. Thus, the hypothesis of this dissertation is that part 

of abnormal development of serotonergic system caused by in utero ethanol exposure 

may be due to in part a decreased level of essential growth factors such as serotonin 

and/or astroglial-derived growth factors. 

In order to examine this hypothesis, an in vivo animal model and in vitro cell 

culture studies were used. In the in vivo rat model, quantitative autoradiographic studies 

were performed. Specifically, I examined the effects of in utero ethanol exposure on the 

extent of abnormalities in 5-HT reuptake sites and 5-HT1A receptor sites in offspring. In 

addition, I assessed the possibility that maternal treatment with a 5-HT1A receptor agonist, 

buspirone, could prevent abnormalities involving 5-HT reuptake and 5-HT1A receptors in 

ethanol-exposed rats. In in vitro cell culture studies, the effects of ethanol treatment on 

the production of astroglial-derived growth factors were studied. Conditioned media from 
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control and ethanol-treated astroglia were used to culture fetal serotonergic neurons. The 

effects of the conditioned media on the growth of serotonergic neurons was determined. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Fetal Alcohol Syndrome (FAS) 

Human Studies 

A characteristic pattern of anomalies was found in children whose mothers 

chronically abused alcohol during pregnancy. These symptoms were described as FAS 

(Jones and Smith, 1973). FAS is characterized by facial dysmorphology, growth 

deficiency and signs of CNS dysfunction (Jones et al., 1973; Clarren and Smith, 1978; 

Clarren et al., 1978; Kyllerman et al., 1985; Aronson et al., 1985; Streissguth et al., 

1988). It has been recognized that all infants exposed to prenatal alcohol may not develop 

the full spectrum of symptoms. Affected infants may show symptoms ranging from mild 

to severe. The lesser affected infants may be described as having fetal alcohol effects 

(FAE). The facial abnormalities in FAS include malformations in the major components 

of the face: short palpebral fissures, low nasal bridge, upturned nose, indistinct philtrum, 

thin upper lip, and flat midface (Jones and Smith, 1973). Malformations of other organs 

also occur in the children with FAS. These include cardiac, genital and renal 

malformations (Sandor et al., 1981; Clarren and Smith, 1978). The growth retardation 

of FAS children exhibited by decreased weight, height and head circumference, starts 

4 
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prenatally and persists throughout adolescence (Clarren and Smith, 1978; Golden et al., 

1982; Streissguth et al., 1985). Intrauterine growth retardation is directly proportional 

to the degree of maternal alcohol intake (Streissguth et al., 1980). 

There are a number of CNS abnormalities associated with FAS. Microcephaly, 

reflecting deficient brain growth, has been observed in greater than 80 % of children with 

FAS. The microcephaly has a prenatal onset and becomes quite apparent as the child 

matures (Clarren and Smith, 1978). Neural tube defects such as anencephaly and 

meningomyelocele also occur at a higher rate in FAS children (Freidman, 1982). Other 

neurological abnormalities such as altered cerebellar function, hypotonicity and increased 

incidence of cerebral palsy and seizure are also found in FAS children (Burd and 

Martsolf, 1989; Hanson et al., 1978; Olegard et al., 1979). Behaviorally, newborns born 

with FAS usually show irritability, tremulousness, and poor suckling and eye-hand 

coordination (Golden et al., 1982; Hanson et al., 1976). Young children with FAS show 

hyperactivity, emotional instability, and poor motor skills and eye-hand coordination 

(Aronson and Olegard, 1987; Harris et al., 1993; K yllerman et al., 1985; Steinhausen 

et al., 1993). In addition, FAS children have higher rates of speech and language 

problems and visual-perceptual problems (Aronson et al., 1985; Greene et al., 1990). 

Mental retardation is one of the most common and serious problems associated with in 

utero ethanol exposure. IQ studies of FAS children showed an average score of around 

65 with a range from 16 to 105 (Streissguth et al., 1988). There is a close association 

between the severity of physical abnormalities and the severity of intellectual deficits. 

However, brain malformation and intellectual deficits also occur in the absence of 
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detectable physical abnormalities in the offspring of moderate drinking mothers (Clarren 

et al., 1978; Peiffer et al., 1979; Conry, 1990; Streissguth et al., 1990). 

Animal Studies 

In human studies it is extremely difficult to separate the effects of alcohol from 

other complicating factors because chronic alcoholic women are frequently malnourished, 

are heavy smokers, and may abuse other drugs (Abel, 1984). These factors could also 

independently affect the fetal development. Animal models make it possible to control 

the compounding variables of human research. Among the animal species, mice and rats 

have been popularly used to study fetal alcohol effects because of their inexpensiveness 

and short gestation periods. 

Ethanol is administered in animal models using a number of different methods. 

Alcohol has been administered in drinking water (Borges and Lewis, 1982), in a liquid 

diet (Barnes and Walker, 1981), by vapor inhalation (Phillips and Cragg, 1982) or by 

stomach intubation (Abel et al., 1983; West et al., 1981). Since most animals do not 

voluntarily consume sufficient quantities of ethanol to obtain and sustain blood alcohol 

levels comparable to those of human alcoholics, administration of alcohol in drinking 

water is considered the least preferable procedure. By the intubation method high blood 

alcohol levels can be achieved. However, the procedure is stressful and may cause an 

irritation of the gastrointestinal tract, which leads to inhibited absorption of essential 

nutrients. The intubation procedure has been reported to significantly reduce maternal 

body weights compared to rats given the same quantity of alcohol by liquid diet (Vorhees 
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and Butcher, 1982). This may have an adverse effect on fetal development that is 

unrelated to the direct effect of ethanol. Therefore, the most appropriate method seems 

to be a liquid diet procedure which is not stressful to the animal and provides stable 

intoxicating blood alcohol levels as well as adequate nutrition. In addition, this method 

allows one to control alterations of food intake by using a pair-feeding paradigm. 

In the rat model of FAS neonatal alcohol exposure has also been studied because 

the first postnatal week of the rat pups is equivalent to the third trimester in humans. 

This time period corresponds to the brain growth spurt (Dobbing and Sands, 1979). 

Postnatal alcohol exposure in rats has been accomplished using a variety of techniques: 

through the milk of lactating alcohol-consuming mother (Abel, 1974), through gastric 

intubation (Diaz and Samson, 1980) and artificial rearing (Bonthius and West, 1990; 

Grant et al., 1983). The artificial rearing technique seems to be the best because it allows 

stable blood alcohol levels and adequate nutrition. This technique involves maintaining 

the rat pup in a cup which floats in the 37°C water bath. Alcohol-containing milk formula 

is infused into the pup through an implanted intragastric feeding tube. 

Many of the symptoms seen in human infants prenatally exposed to alcohol, have 

also been found in animal models of FAS (Chernoff, 1977; Randall et al., 1977). These 

include microcephaly (Tze and Lee, 1975; Randall et al., 1977; Lancaster et al., 1982; 

Miller, 1987), hyperactivity as measured in the open-field (Bond and DiGiusto, 1976, 

1977; Branchey and Friedhoff, 1976; Shaywitz et. al., 1979) and impairment in learning 

and memory (Abel, 1979; Lochry and Riley, 1980; Shaywitz et. al., 1979). Prenatal 

alcohol exposure also impairs maternal behavior in rats. Adult female rats that had been 
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exposed to alcohol prenatally, displayed poor nest building and pup-retrieving behaviors 

(Hard et al., 1985a). 

In addition, ethanol-exposed offspring exhibit abnormalities of neuroendocrine 

responses which are associated with hypothalamic neuronal activity. Adrenocortical 

responses to stressor or drug challenges were disturbed in rats exposed to ethanol in 

utero. These disturbances induced by in utero ethanol exposure were found in two 

opposite directions: the stress responses were decreased in both neonatal and prepubertal 

ages (Taylor et al., 1986; Weinberg, 1989), but the responses were increased in 

adulthood (Weinberg, 1988; Taylor et al., 1982). Male rats exposed to ethanol in utero 

had a feminized pattern of sexually dimorphic reproductive (Parker et al., 1984) and 

nonreproductive behaviors (McGivem et al., 1984). Fetuses and neonates exposed to 

ethanol in utero had a decreased testosterone surge (McGivern et al., 1988, 1993; Redei 

and McGivern, 1988). Since testosterone plays a role in the masculinization and 

defeminization of sexually dimorphic behavior and brain morphology (Dohler et al., 

1984, 1986), the reduced size of the sexually dimorphic nucleus of the preoptic area 

(SDN-POA) in male rats prenatally exposed to ethanol (Barron et al., 1988) may be the 

result of a decreased testosterone surge. 

In Utero Ethanol Effects on Brain Structures 

The evidence that in utero ethanol exposure results in abnormalities of learning 

and motor function suggests that ethanol-induced defects may be caused by abnormalities 

in the neocortex, hippocampus and cerebellum. Anatomical investigations have confirmed 
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this hypothesis. 

In prenatal ethanol-exposed rats, the total number of neurons and glia is 

decreased in the somatosensory cortex. These changes are accompanied by decreased 

neuronal and increased glial cell body size. The noted changes result in a decrease of 

overall volume of the somatosensory cortex (Miller and Potempa, 1990). The decreased 

number of neurons could be due to either a decrease in neuronal generation, or an 

increase in neuronal death, or both. In the cerebral cortex, neurons are generated 

between embryonic day (ED; day of insemination= EDO) 12 and ED 21. These neurons 

are generated by the proliferation of neuronal precursors particularly within the 

ventricular and subventricular zones (Angevine and Sidman, 1961). In ethanol-exposed 

rats generation of cortical neurons was decreased between ED12 and ED19, but after 

ED19 more neurons were generated (Miller, 1988). Decreased neurogenesis between 

ED12 to ED19 corresponds to the decreased cell proliferation in the ventricular zone, 

whereas increased neurogenesis after ED19 corresponds to the stimulated cell 

proliferation in the subventricular zone (Miller, 1989). Overall neuronal generation in the 

cortex of developing ethanol-exposed rats appears to be delayed. In contrast, specific 

neurons such as corticospinal neurons are increased in the ethanol-exposed rat offspring. 

This suggests that in utero ethanol exposure may also affect the process of axonal 

pruning (Miller, 1987). 

Disturbed neuronal migration has also been observed. Normally, neuronal 

migration occurs in an inside-to-outside pattern, which means that early-generated 

neurons reside in deep layers and late-generated neurons migrate along the earlier 
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neurons, and ultimately reside in the outer layer of cortex (Angevine and Sidman, 1961; 

Rakic, 1972). However, in ethanol-exposed rat offspring, late-generated neurons are 

found in the deep cortical layer (Miller, 1988). In addition, dendritic arborization of 

cortical pyramidal cells was stunted and less matured by in utero ethanol exposure 

(Hammer and Scheibe!, 1981; Schapiro et al., 1984; Stoltenburg-Didinger and Spohr, 

1983). 

A number of abnormalities have been found regarding hippocampal and dentate 

gyms neurons. Anatomical and electrophysiological vulnerability of the hippocampal 

formation to the neurotoxic effects of alcohol may contribute to the learning and 

cognitive deficits seen in FAS (Hoff, 1988). Although no change was observed in the 

number of hippocampal CA3 and dentate gyms (DG) granule cells, the neuronal 

connections between CA3 and DG were affected. Mossy fibers are the axons of granule 

cells of the dentate gyms innervating pyramidal cells of CA3. The mossy fibers were 

hypertrophied in rat offspring exposed to ethanol in utero (West et al., 1981). Prenatal 

alcohol exposure also delayed the appearance of complex synapses and multiple synaptic 

contacts on single neurons in dentate gyms (Hoff, 1988). In addition to these 

morphological disturbances, electrophysiological responses of the hippocampal neurons, 

such as long-term potentiation and potassium-induced excitability, were impaired 

(Swartzwelder, et. al., 1988). In contrast to the CA3 and DG regions, the number of 

pyramidal neurons in the hippocampal CAI region is decreased, and the dendritic 

morphology of these neurons is altered in rats exposed to ethanol prenatally (Barnes and 

Walker, 1981; Abel et al., 1983). Excitability of the neurons in the CAI region was 
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increased in rats exposed to ethanol in utero (Hablitz, 1986; Tan et. al., 1990). 

Behaviorally, these rats exhibit impaired passive avoidance learning (Tan et. al., 1990). 

In the cerebellum, Purkinje cells are generated prenatally and granule cells are 

generated postnatally. Ethanol exposure during the gestation period decreased the number 

of Purkinje cells, and delayed both the maturation of those cells and synaptogenesis in 

the molecular layer (Volk et al., 1981; Volk, 1984). Purkinje cell loss has been also 

shown in rats exposed to ethanol during the neonatal period, a time when these neurons 

are in the process of maturation. The influence of neonatal ethanol exposure on the 

degree of Purkinje cell loss in different regions correlates with the maturational state of 

the cells. The lobules I, IX, and X, in which Purkinje cells tend to mature early, were 

the most severely affected. In contrast, lobules VI and VII, in which Purkinje cells tend 

to mature late, were the least affected (Bonthius and West, 1990). In contrast to the 

hippocampus where no granule cell loss occurred, there is a loss of cerebellar granule 

cells in rats exposed to ethanol neonatally (Borges and Lewis, 1983; Bonthius and West, 

1990). 

Ethanol has been shown to affect neurogenesis, neuronal migration and/or 

neuronal cell death (Borges and Lewis, 1983; Bonthius and West, 1990). However, the 

effects of ethanol on the development of neurons appear to depend on the brain regions 

where the cells are located and the timing of ethanol exposure relative to the birth or 

development of the neurons. 

In Utero Ethanol Effects on the Development of Serotonergic System 
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Neurotransmitters and their receptors play an important role in neuronal activity. 

The effects of ethanol on the adult alcoholic brain have been studied in terms of the 

metabolism, turnover, storage and uptake of neurotransmitters, and receptor 

concentration (Rawat, 1974; Walsh et al., 1970; Kuriyama, et al., 1971). Similarly, the 

effects of in utero ethanol exposure on the levels of neurotransmitters, their metabolites 

and receptors have been studied in developing brains of animal models of FAS in order 

to elucidate the underlying causes of the CNS disorders associated with FAS. These 

studies have reported that development of many neurotransmitter systems are disturbed 

by in utero ethanol exposure (see Druse, 1992 for review). The serotonergic system, the 

most expansively distributed system throughout the brain (Tork, 1990), is one of the 

affected neurotransmitter systems. 

A number of studies suggested that the behavioral changes in FAS may be 

associated with altered serotonin activity. In utero ethanol-exposed mice and rats have 

shown hyperactivity, aggression, decreased sensory-motor responses and altered maternal 

behavior, all of which are signs of decreased 5-HT activity. In fact, the same animals 

have decreased brain serotonin content (Krsiak et al., 1977; Hard et al., 1985a, 1985b). 

Rat offspring exposed to ethanol prenatally have also been shown to have a significant 

decrease in the content of serotonin and its metabolites in its cell body region (the brain 

stem) and in its terminal regions, motor and somatosensory cortex at PN19 and PN35 

(Rathbun and Druse, 1985; Druse et al., 1991). One of the serotonergic terminal regions, 

motor cortex, also has decreased 5-HT uptake sites in prenatally ethanol-exposed rats 

(Druse and Paul, 1989). In addition, 5-HT1 receptors are decreased in the motor and 
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somatosensory cortex (Tajuddin and Druse, 1989). Cortical 5-HT2 receptors, however, 

are not affected by in utero ethanol exposure (Tajuddin and Druse, 1989a). 

Interestingly, the deficit of serotonin in the brain stem, cell body region, has been 

found as early as ED15. Since fetal serotonin plays an important role for the development 

and maturation of the serotonergic neuron and its target areas (Whitaker-Azmitia and 

Azmitia, 1986; Whitaker-Azmitia et al., 1987; Lauder and Krebs, 1978, 1984; Chubakov 

et al., 1986), the early deficiency of 5-HT may disturb the outgrowth of 5-HT fibers, and 

lead to abnormal CNS development seen in FAS. 

Effects of Ethanol on Astrocytes 

Astrocytes exert important roles in neuroembryogenesis by promoting neuritic 

growth over the astroglial surfaces and by providing trophic factors for the survival and 

functional maintenance of neurons (reviewed by Manthorpe et al., 1986). Abnormalities 

in the development of radial glial cells and astroglial cell dysfunction caused by ethanol 

treatment may contribute to the abnormal CNS development as in FAS. This may happen 

by disrupting neurite outgrowth and/or neuronal survival. Radial glial cells transform into 

astroglial cells after they serve as guides for migrating neurons (Schmechel and Rakic, 

1979). In utero ethanol exposure has been shown to induce premature degradation of 

radial glia, and accelerate the transformation of radial glia into astrocytes (Miller and 

Robertson, 1993). This may cause abnormal migration of cortical neurons seen in 

ethanol-exposed rats (Miller, 1988). Ethanol-exposed astrocytes exhibit abnormal 

morphology. They have a smoothened cell surface, less developed processes, decreased 
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content of glial fibrillary acidic protein (GFAP) and ultrastructural alterations (Babu et 

al., 1994; Davies and Cox, 1991; Mayordomo et al., 1992; Renau-Piqueras et al., 1989). 

In addition to the morphological changes, the activity of astroglial glutamine synthetase 

has been decreased by ethanol treatment (Babu et al., 1994; Davies and Vemadakis, 

1984). 5-HT uptake by astroglial cells was also decreased by ethanol exposure. The 

decrement of 5-HT uptake was due in part to decreased protein content in astroglial cells 

because 5-HT uptake was reduced to the same extent as astrocytic proteins (Lokhorst and 

Druse, 1993b). Astrocytes, cultured in the presence of ethanol, or astrocytes from 

ethanol-treated rats, cultured in the absence of ethanol have decreased protein content and 

decreased synthesis of DNA, RNA and protein (Babu et al., 1994; Davies and 

Vemadakis, 1984; Guerri et al., 1990; Snyder et al., 1992). Since astrocytes are known 

to synthesize and secrete neurotrophic factors which are essential for neuronal survival 

and growth, any alteration in the synthetic machinery may result in abnormal production 

of neurotrophic factors, which, in tum, can cause abnormal development of neurons. 

Possible Mechanisms 

Many clinical reports have demonstrated that ethanol can induce a wide range of 

detrimental effects on the developing fetus. Recently, many possible mechanisms by 

which in utero ethanol exposure adversely affects the development of CNS have been 

proposed. 

These effects of ethanol on the developing fetus could arise indirectly through 

the actions on the mother. For example, ethanol could affect maternal hormonal or 
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nutritional status, or altered placental function. The placental abnormalities can affect the 

developing fetus because it is totally dependent on the maternal oxygen and nutrient 

supply through placenta. Decreased placental transport of 14C-valine and placental

facilitated diffusion of glucose have been observed. The latter has been correlated with 

intrauterine growth retardation (Henderson et al., 1981; Snyder et al., 1986). Since 

ethanol has been shown to decrease fetoplacental blood flow and cause umbilical artery 

spasm (Jones et al., 1981; Altura et al., 1983; Savoy-Moore et al., 1989), fetal hypoxia 

has been suggested as a mechanism by which in utero ethanol exposure causes the 

abnormal development of the brain (Michaelis, 1990). The regions of cell loss induced 

by in utero ethanol exposure include the CAl region of the hippocampus and cerebellar 

Purkinje cells (Barnes and Walker, 1981; Volk, 1984). Interestingly, cell loss in these 

regions is similar to those induced by hypoxia or ischemia (Jorgensen and Diemer, 1982; 

Auer et al., 1989). 

Ethanol is a lipophilic molecule which freely crosses the placental barrier 

(Waltman and Iniquez, 1972; Idanpaan-Heikkila, et al., 1972; Cook et al., 1975). In the 

human, the transfer of ethanol occurs within a minute and the alcohol concentration in 

the fetus can be as high as that in the mother (Idanpaan-Heikkila, et al., 1971; Waltman 

and Iniquez, 1972). In comparison with adults, fetuses have a relatively low activity of 

alcohol dehydrogenase, an ethanol-metabolizing enzyme (Pikkarainen, 1971). Thus, 

elimination of fetal alcohol depends on passive diffusion along the concentration gradient 

generated by effective maternal elimination of alcohol. Furthermore, it has been also 

reported that alcohol elimination from the amniotic fluid takes a much longer time than 
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from the maternal circulation (Brien et al., 1983). Thus, ethanol can be present for a 

longer period of time in the fetus than in the mother. Indeed, the direct effect of ethanol 

on fetal development has been shown in the chick embryo (Heaton et al., 1992). In 

addition, an investigation which cultured rat embryos in an ethanol-containing medium 

showed impaired development of the fetus in an ethanol concentration-dependent manner 

(Brown et al., 1979). 

Another possible mechanism by which ethanol can directly affect the fetal CNS 

may be through the alteration of either second messenger systems or the level of 

neurotransmitters. Neurotransmitters, such as serotonin, dopamine and norepinephrine, 

and second messengers, such as cyclic AMP, diacylglycerol, inositol phosphates and ca+2 

are important mediators of cell proliferation and differentiation (reviewed by Lauder, 

1993). In fact, ethanol-exposed fetuses and neonates had a decreased level of cyclic AMP 

and decreased cyclic AMP binding to the regulatory subunit of protein kinase A 

(Pennington, 1988). 3H-Forskolin binding sites (associated with cAMP) and [3H]-phorbol 

ester binding sites (associated with protein kinase C) were increased in the hippocampus 

and cortex of rat offspring exposed to ethanol in utero (Nio et al., 1991). 

Direct inhibition of protein synthesis in the fetal tissue by ethanol may also 

contribute to the damage associated with FAS. In utero ethanol administration has been 

shown to inhibit the synthesis of protein, RNA and DNA in fetal and neonatal brain 

tissue (Rawat, 1975; Sharma and Rawat, 1989). The neuronal cell loss in ethanol

exposed rats may be due in part to decreased DNA synthesis (Michaelis, 1990). In 

addition, diminished neuronal growth and differentiation may be related to decreased 
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synthesis of proteins such as the astroglial growth factors (Dow and Riopelle, 1985; 

Heaton et al., 1992; Walker et al., 1990). 

In utero ethanol exposure may alter gene expression. Fetuses of the ethanol

treated mice showed hypomethylation of DNA, and decreased nuclear methylase activity 

(Garro et al., 1991). Generally, hypermethylated regions of DNA are not transcribed, 

but hypomethylated regions are transcribed (Cedar, 1988). Thus, alterations of DNA 

methylation during embryogenesis can affect normal fetal gene expression, and thus fetal 

development. In vitro ethanol treatment has been shown to increase gene expression in 

neuronal cell lines. In NlE-115 neuroblastoma cells, ethanol increased tyrosine 

hydroxylase mRNA expression in a dose-dependent manner (Gayer et al., 1991). Ethanol 

also induced the gene transcription of the stress protein, Hsc70, and two related 

molecules, GRP94 and GRP78, in the NG 108-15 neuroblastoma x glioma cell line (Miles 

et al., 1991; Wilke et al., 1994). In the pheochromocytoma cell line (PC12) chronic 

ethanol exposure increased expression and function of dihydropyridine-sensitive calcium 

channels and enhanced neurite outgrowth induced by nerve growth factor (Roivainen et 

al., 1994). These effects of ethanol appear to be mediated through the activation of 

protein kinase C (Roivainen et al., 1994). Altered gene expression by prenatal ethanol 

exposure was also demonstrated in in vivo. Myelin basic protein mRNA levels (Kojima 

et al., 1994) and the mRNA for insulin-like growth factors I and II (Singh et al., 1994) 

were decreased in ethanol-exposed rat offspring. 

The Serotonergic Neurotransmitter System 



18 

Serotonin Receptors 

Fourteen serotonin receptor subtypes have been identified so far. It has been 

recently suggested that serotonin receptors could be classified according to the amino acid 

sequence homology, pharmacological properties, and transductional components 

(Humphrey et al., 1993). Thirteen serotonin receptor subtypes belong to the G protein

linked superfamily and one belongs to the ligand-gated ion channel superfamily. Those 

which belong to the G protein superfamily can be divided into two subfamilies, the 5-HT1 

and 5-HT2 receptor families, based on the second messenger system with which they are 

coupled. The 5-HT1 receptor family is linked to the inhibition of adenylyl cyclase and 

includes 5-HT1A, 5-HTrn, 5-HT10, 5-HTrn, and 5-HTiF· The 5-HT2 receptor family is 

linked to the stimulation of phospholipase C and includes 5-HT2A, 5-HT28 , and 5-HT2c. 

The serotonin receptors linked to a ligand-gated ion channel are the 5-HT3 receptors. The 

other subtypes which are linked to G proteins are 5-HT4, 5-HT5A, 5-HT58 , 5-HT6, and 5-

HT7. Among these, three (5-HT4, 5-HT6 and 5-HT7) subtypes are linked to the stimulation 

of adenylyl cyclase. 

Binding affinity for spiperone was initially used to discriminate high affinity 5-

HT1A receptors from the low affinity 5-HTrn sites (Pedigo et al., 1981). Now, a more 

selective agonist, 8-hydroxy-2-(N,N-dipropylamino)tetralin (8-0H-DPAT), can be used 

to label the 5-HT1A receptor sites. The regional distribution of 5-HT1A receptors is similar 

in many species including rat, mouse, guinea pig, calf, cat, pig, monkey, and humans 

(Pazos and Palacios, 1985; Waeber et al., 1989; Kohler et al., 1986; Pazos et al., 1987). 

The highest density of 5-HT1A receptors are localized in limbic structures such as 
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hippocampus, septum, amygdala and entorhinal cortex. Astroglia cells in the septum and 

hippocampus of adult rats have been shown to express dense 5-HT1A receptors (Whitaker

Azmitia et al., 1993). 5-HT1A receptors are present on the serotonergic cell bodies in 

dorsal and median raphe nuclei (Hall et al., 1985; Verge et al., 1985) where they serve 

as somatodendritic autoreceptors regulating 5-HT neuronal cell firing activity and thus 

serotonin release (Sprouse and Aghajanian, 1987). In the terminal region, for example, 

hippocampus and cortex, 5-HT1A receptors are located postsynaptically (Hall et al., 1985; 

Verge et al., 1986). These postsynaptic receptors are involved in the modulation of the 

release of other neurotransmitters. Stimulation of 5-HT1A receptors enhances acetylcholine 

release in the rat cortex (Sinniscalchi et al., 1990). In addition, postsynaptic 5-HT1A 

receptors are involved in the hypothalamo-hypophyseal axis. Stimulation of postsynaptic 

5-HT1A receptors results in the release of adrenocorticotrophin (ACTH), corticosterone, 

corticotrophin-releasing factor, prolactin and ~-endorphin (reviewed by Van de Kar, 

1991). 

5-HTrn sites have previously been identified by their low affinity for spiperone. 

Few drugs can bind to the 5-HTrn receptors with a nanomolar affinity. 5-HTrn sites are 

found only in some species such as rat and mouse brain in which they are densely 

localized in the substantia nigra and glob us pallidus (Pazos and Pallacios, 1985; Hoyer 

et al., 1985). 5-HTrn sites have been demonstrated to be presynaptic terminal 

autoreceptors in the frontal cortex, where they regulate the release of 5-HT (Middlemiss 

et al., 1988; Engel et al., 1986). These receptors are also located postsynaptically in the 

terminals of cholinergic fibers in the hippocampus, where they modulate the release of 
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acetylcholine (Maura and Raiteri, 1986). 

5-HT2A receptors are the classical 5-HT2 receptors. Initially PH]-spiperone was 

used to label the 5-HT2 sites. A high density of 5-HT2 receptor sites is found in the 

cortex. Low levels are present in the hippocampus, caudate, putamen and nucleus 

accumbens (Pazos et al., 1985; Biegon et al., 1986). 5-HT2 receptors are involved in the 

release of other neurotransmitters in a region-specific way. In the cortex and 

hippocampus activation of 5-HT2 receptors inhibits the K+ -evoked acetylcholine release 

(Muramatsu et al., 1988), whereas in the striatum 5-HT2 receptor agonists increase the 

basal release of acetylcholine and inhibit dopamine release (Bianchi et al., 1989; 

Muramatsu et al., 1988a). 

The receptors previously named as 5-HT1c have characteristics similar to the 5-

HT2 receptor family in terms of the nucleotide sequence homology, pharmacological 

profiles and second messenger system (Hoyer, 1988; Hartig et al., 1990). The 5-HT1c 

receptor has been renamed the 5-HT2c receptor. These receptors are highly localized in 

the choroid plexus and control the exchange between CNS and cerebrospinal fluid (Hartig 

et al., 1990). Low levels of 5-HT2c receptors are also present in the substantia nigra, 

globus pallidus, cortex and olfactory tubercles (Pazos et al., 1985a). 

5-HT3 receptors are ligand-gated ion channels, composed of four hydrophobic 

transmembrane regions (Maricq et al., 1991). 5-HT3 receptors are localized highly in the 

area postrema and some other areas such as cortex, amygdala, hippocampus, nucleus 

accumbens, thalamus and hypothalamus (Kilpatrick et al., 1987; Waeber et al, 1989a). 

Activation of 5-HT3 receptors facilitates the nonselective movement of monovalent 
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cations, resulting in the depolarization of cells (Yakel and Jackson, 1988; Neijt et al., 

1988). Activation of 5-HT3 receptors seems to stimulate the release of dopamine in the 

nucleus accumbens and amygdala (Hagan et al., 1990; Imperato and Angelucci, 1989). 

Roles of Serotonin in Various Regions 

5-HT and the Basal Ganglia 

The striatum and substantia nigra (SN) receive serotonergic projections mainly 

from the dorsal raphe (Dray et al., 1976; Fibiger and Miller, 1977; Palkovits, et al., 

1974; Steinbusch, 1981a). A majority of 5-HT terminals in the SN appear to be 

collaterals of the dorsal raphe-striatal projection (Van der Kooy and Hattori, 1980; Imai 

et al., 1986). In the striatum, dorsal raphe stimulation or local application of 5-HT 

suppresses spontaneous firing activity of most striatal neurons (Olpe and Koella, 1977). 

Selective destruction of 5-HT fibers entering the striatum decreased dopamine turnover 

and tyrosine hydroxylase activity within the striatum, suggesting that 5-HT terminals in 

the striatum facilitate dopamine transmission (Giambalvo and Snodgrass, 1978). These 

observations were extended by behavioral studies. Generally, animals tum towards the 

side where nigrostriatal neurons are less stimulated (Pycock, 1980). Striatal infusion of 

the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), facilitated turning 

behavior towards the ipsilateral side which implies that destruction of 5-HT terminals 

with 5, 7-DHT results in less stimulation of nigrostriatal dopamine neurons (Jacobs et al., 

1977). 
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In the SN, dorsal raphe stimulation inhibits the activity of most compacta cells 

and some reticulata cells (Fibiger and Miller, 1977). Serotonergic terminals in the SN 

synapse onto dopaminergic dendrites (Nedergaard et al., 1988). Microiontophoretic 

application of 5-HT increased dendritic calcium conductance of dopaminergic neurons 

in SN, which could result in dendritic dopamine release (Nedergaard et al., 1988; Trent 

and Tepper, 1991; Williams and Davies, 1983). Dopamine, released from dendrites 

following stimulation by 5-HT, may interact with somatodendritic D2 autoreceptors, and 

then cause decreased somatodendritic excitability of dopaminergic neurons (Groves et 

al., 1975; Bunney and Aghajanian, 1978). Behavioral effects caused by alterations of 5-

HT transmission in the SN have been studied. Local infusion of 5,7-DHT into the SN 

facilitated spontaneous locomotor activity (Carter and Pycock, 1979). Unilateral infusion 

of 5,7-DHT or p-chlorophenylalanine (pCPA) elicited turning behavior towards the 

contralateral side (Giambalvo and Snodgrass, 1978). Raphe nuclei lesions or pCPA 

treatment also facilitated amphetamine-induced locomotor hyperactivity (Costall et al., 

1979). It has been demonstrated that microinjection of the 5-HT uptake blocker, 

fluoxetine, into SN exerts an anticonvulsant action in the forebrain (Pasini et al., 1992). 

Behavioral studies, thus, suggest that 5-HT terminals in the SN play an important 

inhibitory role in controlling motor behavior. 

In the basal ganglia the actions of 5-HT appear to be modified by other 

neurotransmitters and 5-HT itself. Several neurotransmitters such as glutamate, GABA, 

substance P, acetylcholine, and dopamine have been shown to modify 5-HT release in 

the SN (Reisine et al., 1982; Soubrie et al., 1981; Hery et al., 1980). For example, SN 
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contains high levels of GABA, which is localized in nerve terminals of the striato- and 

pallido-nigral neurons (Di Chiara et al., 1980; Ribak et al., 1980). GABA tonically 

inhibits 5-HT transmission in the SN (Soubrie et al., 1981) through GABA receptors 

located on nigral 5-HT terminals (Gale, 1979). 5-HT itself released from dendrites in the 

raphe nuclei controls the terminal 5-HT release in the SN through the activation of the 

somatodendritic autoreceptors (Adell et al., 1993; Ferre and Artigas, 1993). 

5-HT and the Hippocampus 

Although the hippocampus receives fibers from both the median raphe and dorsal 

raphe, the median raphe is its major source of serotonergic innervation (Azmitia and 

Segal, 1978). 5-HT fibers from the median raphe project to the Comu Ammons (CA) 

areas and polymorphic layers of dentate gyrus (DG) where they innervate calbindin- and 

calretinin-containing GABAergic neurons (Freund et al., 1990; Acsady et al., 1993). 

Dorsal raphe neurons project to the molecular layer of DG where 5-HT fibers innervate 

dendrites of the granule cells (Azmitia and Segal, 1978). 

Either stimulation or application of 5-HT to the median raphe elicits long lasting 

inhibition of spontaneous activity of hippocampal pyramidal cells through an increase in 

potassium conductance (Segal, 1975, 1976; Beck and Choi, 1991). Lesioning of 

hippocampal serotonergic innervation results in hyperexcitability of granule cells in DG 

(Richter-Levin et al., 1994). 

The hippocampus appears to play an important role in the learning and memory 

process. The long-term potentiation (LTP) of synaptically evoked responses, believed to 
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be the cellular mechanism of learning and memory, has been described in a number of 

excitatory pathways in the hippocampus (Bliss, 1979; Milner, 1972). LTP can be 

recorded in the granule cells of DG and in the pyramidal cells of the CA3 by the 

electrical stimulation of the perforant path and mossy fibers, respectively. Studies with 

serotonergic fiber lesioning and raphe tissue grafts confirmed that serotonergic 

modulation of hippocampal activity is important in cognitive function. LTP in the DG 

was decreased in the rats treated with 5,7-DHT (Bliss et al., 1983). The activation of 5-

HT3 receptors seems to inhibit the induction of LTP in the CA3 (Maeda, et al., 1994). 

Lesioning of hippocampal serotonergic innervation results in impairment of spatial 

learning (Richter-Levin et al., 1994). There is a recovery of learning when rap he tissue 

is grafted into the hippocampus of animals which had combined serotonergic and 

cholinergic lesions (Richter-Levin et al., 1993). However, these results were not 

consistent. There is a report that serotonergic deafferentation of the hippocampus 

enhances spatial discrimination learning in rats (Altman et al., 1990). 

5-HT and the Amygdala 

The amygdala receives serotonergic inputs from both rostral and caudal raphe 

groups. Especially, the basolateral nucleus of the amygdala uniformly receives dense 5-

HT input from the dorsal raphe (Imai et al., 1986). Electrical stimulation or iontophoretic 

application of 5-HT on dorsal raphe inhibited the spontaneous firing of amygdaloid cells 

(Wang and Aghajanian, 1977). This inhibition was prevented in 5,7-DHT or pCPA 

treated rats. A marked decrease of 5-HT and 5-HIAA in pCPA-treated rats was 
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associated with increased sexual activity and aggressive behavior (Ferguson et al., 1970). 

Also, lesions of the amygdala showed alterations in sexual and aggressive behavior 

(Goddard, 1964). The inhibitory influence of dorsal raphe nucleus on amygdaloid cells, 

thus, has been connected with its important influence over sexual and aggressive 

behavior. 

5-HT and the Lateral Hypothalamus 

The lateral hypothalamic area contains medial forebrain bundle and the lateral 

hypothalamic nucleus (Sipe and Moore, 1977). The lateral hypothalamic nucleus (LHN) 

receives input from the brainstem reticular formation, medial hypothalamus, other lateral 

hypothalamus and basal forebrain (Millhouse, 1969; Nauta and Haymaker, 1969; 

Raisman, 1970). The neurons of LHN project into the adjacent medial hypothalamic 

zone. The LH is involved in the regulation of behaviors such as feeding (Baillie and 

Morrison, 1963; Teitelbaum and Epstein, 1962), locomotor activity (Balagura et al., 

1969; Gladfelter and Brobeck, 1962), sensorimotor integration (Marshall et al., 1971; 

Turner, 1973) and reward (Ols, 1973: Rolls, 1975). LH also contains serotonergic 

terminals (Moore, et al., 1978; Steinbusch, 198la; Heym and Gladfelter, 1982; Kai et 

al., 1988). 5-HT in LH plays an inhibitory role in food intake (Blundell, 1979; Coscina 

et al., 1972). 

5-HT and the Septum 

The septum is a part of the limbic system (Kohler et. al., 1982; Swanson and 
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Cowan, 1979) and is involved in the process of learning and memory, and 

neuroendocrine and autonomic regulation (De France, 1976). The septum can be divided 

into two parts, the lateral septa! and the medial septa! nuclei (Raisman, 1966; Chafetz 

et al., 1981). The lateral septum contains dense 5-HT terminals whereas the medial 

septum receives 5-HT fibers en route to other parts of the septum (Dinopoulos, et al., 

1993; Kohler et al., 1982). The lateral septum sends efferents to dorsal and medial raphe 

nuclei (Staiger and Nurnberger, 1991). Functionally, 5-HT in the lateral septum seems 

to play a role in memory consolidation. Direct infusion of the 5-HT uptake blocker, 

fluoxetine, into the lateral septum enhanced memory in rats (Lee et al., 1992). In the 

medial septum 5-HT appears to be involved in the regulation of neuronal discharge of 

both the medial septum and hippocampus. Some neurons in the medial septum discharge 

in an irregular manner which is synchronous with hippocampal theta spikes (Apostol and 

Creutzfeldt, 1974). Repetitive stimulation of the median raphe nucleus disrupts the 

bursting discharge of septa! neurons and hippocampal theta spikes (Assaf and Miller, 

1978). 

5-HT and the Frontal Cortex 

Serotonergic fibers innervate whole cortex, but the motor regions in the frontal 

lobe receive a lower extent than other cortical areas (Azmitia and Gannon, 1986). 

Laminar distribution of 5-HT fibers in monkeys shows that the highest densities are in 

layer I and IV (Azmitia and Gannon, 1986; Morrison et al., 1982). In adult rat brain, 

serotonergic fibers are localized in layer V whereas layer IV is densely innervated in the 
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developing brain (Blue and Molliver, 1985). 5-HT fibers projecting to cortex have been 

distinguished by the morphology and origin (Kosofsky and Molliver, 1987; Tork, 1990). 

One type is the thick fibers with large, spherical varicosities. These fibers arise from the 

median raphe nuclei and innervate equally to parietal, occipital and frontal cortex 

(O'Hearn and Molliver, 1984). Another type of 5-HT fibers is the thin fibers with small 

varicosities. These axons arise from the dorsal raphe nucleus and project heavily to 

frontal cortex (O'Hearn and Molliver, 1984). The exact functional role of dual 

serotonergic projections to the frontal cortex is unknown. However, serotonergic 

projections from the dorsal raphe nucleus to the frontal cortex could be involved with 

basal ganglia-motor system since frontal cortex is associated with motor function and DR 

nucleus also project to the caudate putamen (Steinbusch et al., 1980, 1981b). Additional 

studies suggest that the serotonergic system in the frontal cortex is associated with 

affective disorders and cognitive function (Stanley and Mann, 1983; Stanley et al., 1982; 

Bennett et al., 1979; Morris et al., 1993). 

Development of The Brain Serotonergic System 

Ontogeny 

5-HT containing neurons in the rat brain first appear at the ventricular zone along 

the border between the metencephalon and the rostral myelencephalon, and develop as 

bilateral superior and inferior cell groups (Lidov and Molliver, 1982; Wallace and 

Lauder, 1983; Aitken and Tork, 1988). Autoradiographic studies showed that 
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neurogenesis of 5-HT neurons in the superior cell groups occurs between EDll and 

ED 15 in the rat. 5-HT immunopositive cells in the superior cell group can be identified 

as early as ED12 (Lauder and Bloom, 1974; Levitt and Moore, 1978; Lidov and 

Molliver, 1982; Lauder et al., 1982; Aitken and Tork, 1988). The results of 

immunohistochemistry and [3H]-thymidine autoradiography studies indicate that 

serotonergic neurons synthesize their transmitter soon after they have completed their 

terminal mitosis (Lauder et al., 1982). 5-HT neurons in the superior cell group then 

differentially migrate during ED14 - ED19 to form subgroups of cells. These subgroups 

correspond to rostral raphe nuclei; dorsal raphe, median raphe, caudal linear raphe 

nuclei, and the B9 group in the adult rat brain. Midline fusion of bilateral superior cell 

groups starts at ED18. 

In contrast to the superior cell group, 5-HT immunoreactive cells in the inferior 

group are first detected at sites away from the ventricular zone around ED 14 in rat 

embryo (Lidov and Molliver, 1982). Thus, inferior 5-HT cells seem to complete much 

of their initial migration prior to the onset of phenotypic expression. These inferior cells 

give rise to the raphe magnus, raphe obscurus, and raphe pallidus and B3 group, found 

in the medulla of adult rat brain. Around the end of the embryonic period changes in the 

surrounding brainstem structures re-shape both the superior and inferior 5-HT cell groups 

to resemble that of adult 5-HT nuclei (Aiken and Tork, 1988; Lidov and Molliver, 

1982). In addition, most of these 5-HT neurons acquire more complex dendritic trees and 

undergo decreased cellular packing density. 

Nearly all ascending projections of the raphe nuclei are derived from the rostral 
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group of 5-HT neurons, whereas neurons in the caudal group give rise to the majority 

of descending fibers. Ascending projections seem to begin at ED13 and enter the basal 

forebrain as axons in the medial forebrain bundle (MFB) (Lidov and Molliver, l 982a; 

Lauder, 1990). According to the whole mount study of Aiken and Tork (1988), the 5-HT 

fibers contained within the MFB appear to be segregated into medial and lateral 

components which project to different regions of the forebrain. The medial part of the 

MFB contains fibers destined for the frontal pole of the telencephalon, whereas the lateral 

part contains fibers which project medially into the hypothalamus and cross in the 

supraoptic commissure. 5-HT axons reach the vicinity of all structures in the brain that 

are to receive a serotonergic innervation by ED19 and arrive at the cerebral cortex by 

the end of gestation. However, parieto-occipital areas of the cerebral cortex remain 

devoid of 5-HT fibers until the first postnatal week. The branching or arborization of 

axon terminals develop during the postnatal period. Initial development of ascending 5-

HT axons seems to follow a very circumscribed and directional growth. In all primary 

sensory areas of the cortex, dense patches of serotonergic innervation are seen in the rat 

brain from the neonatal period to postnatal day 21. This innervation pattern becomes 

more uniform in the adult rat neocortex (D' Amato, et al., 1987). By adulthood, 5-HT 

axons ramify extensively and innervate most of the brain (Steinbusch, 1981). 

Descending projections from the caudal raphe nuclei to the spinal cord course in 

the marginal zone along the ventricular and lateral funiculi and adult pattern of cord 

innervation seems to be achieved by postnatal day 21 (Rajaofetra et al., 1989). 
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5-HT Synthesis 

Although 5-HT-containing neuroblasts first appear as early as the twelfth day of 

gestation in the rat central nervous system, as shown using histofluorescence and 

immunohistochemistry (Olson and Seiger, 1972; Lauder et al., 1982; Lidov and 

Molliver, 1982), measurable amounts of 5-HT are first detected at ED15 (Liu et al., 

1987). This low concentration of 5-HT remains almost constant until the end of gestation. 

At birth, the concentration of whole brain 5-HT increases dramatically (Liu, et al., 1987; 

Herregodts, et al., 1990). However, its levels are still 25-50% of those in adult rats 

(Zeisel et al., 1981; Baker and Quay, 1969; Lauder and Bloom, 1974; Tissari, 1973). 

5-HT levels in the cell body and terminal regions show differences in the developmental 

profile. In the brain stem, the cell body region, 5-HT levels at birth are 32-75 % of those 

found in the same region of adult rats (Bourgoin et al., 1977; Nomura et al., 1976). The 

levels increase progressively till the end of the third postnatal week to a value slightly 

higher than those of adult rats. After that they level off to the adult level. In the 

forebrain, one of the terminal regions of 5-HT neurons, 5-HT levels at birth are about 

22 % of those in adult rat brain. 5-HT levels increase much more slowly in the forebrain 

region than in the brain stem, and are only 75 % of the adult levels at the end of the fifth 

postnatal week (Bourgoin et al., 1977). 

The developmental changes in 5-HT content seem to parallel the changes in the 

activity of tryptophan hydroxylase (TPH), the rate-limiting enzyme in the synthesis of 

5-HT (Schmidt and Sansers-Bush, 1971). Low levels of whole brain TPH activity have 

been detected at ED16 with in vitro assay (Renson, 1973) and ED15 with in vivo assay 
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(Liu et al., 1987). At birth, brain stem TPH activity is about 30-50% of that in adult rats 

(Deguchi and Barchas, 1972; Hamon and Bourgoin, 1982). The activity rapidly increases 

and reaches peak activity at the end of third postnatal week. It then decreases to adult 

levels (Park et al.,1986; Hamon and Bourgoin, 1982; Deguchi and Barchas, 1972). In 

the terminal regions, TPH activity is much lower than that in the cell body region, and 

reaches adult levels at around postnatal day 30 (Park et al., 1986; Hamon and Bourgoin, 

1982; Deguchi and Barchas, 1972). The apparent Km of the TPH in the newborn is about 

twice as high as in adult rats. The concentration of tryptophan, the substrate for TPH, 

is very high in the brain of newborn rat. For the first 2 days following birth, the brain 

tryptophan concentration is four to eight times higher than in adult rats (Zeisel et al., 

1981; Bourgoin et al., 1974). In the adult brain, the tryptophan concentration is between 

30 and 40 µM which is close to the Km value (50 µM) of TPH (Kaufman, 1974). The 

ratio of the tissue concentration of tryptophan to the apparent ~ of TPH is considered 

as an index of the saturation state of the enzyme (Bourgoin et al., 197 4). Although the 

affinity of TPH is low in neonate brain, the enzyme is in a highly saturated state 

compared to that of the adult because the concentration of the substrate is very high in 

the neonate brain. 

Such a high concentration of tryptophan is characteristic of the developing brain. 

The high tryptophan is due in part to the high activity of the tryptophan carrier in brains 

of newborn rats. In addition, the binding of circulating tryptophan to serum albumin is 

extremely low during the early postnatal period (Bourgoin et al., 1974). Therefore, free 

serum tryptophan is almost totally available for the tryptophan carrier. The increased 
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activity of the tryptophan carrier seems to be associated with an increased V max since the 

apparent affinity of the tryptophan uptake carrier is similar to that of adults (Hamon and 

Bourgoin, 1979). 

5-HT Metabolism 

5-HT is taken up by the serotonin transporter after it is released from the neuron. 

It is then degraded to 5-hydroxyindolacetic acid (5-HIAA) by monoamine oxidase 

(MAO). In vitro synaptosomal uptake of 5-HT increases rapidly in various brain regions 

for the first 2 weeks following birth (Kirksey and Slotkin, 1979). The Km values for 5-

HT reuptake are indistinguishable from adult values (Nomura et al., 1976). The 

increment in the 5-HT reuptake in the developing brain has been associated with an 

increase in the number of nerve endings or reuptake sites per ending (Kirksey and 

Slotkin, 1979) during the critical period of a developmental stage of the rat brain 

(Davison and Dobbing, 1968). 

The level of 5-HIAA is higher than that of 5-HT in the developing brain of rats. 

5-HIAA levels can be detected at ED17 and increase significantly around birth (Ribary 

et al., 1986). At birth, 5-HIAA levels are already as high as that of adults in the brain 

stem and about 50% of the adult value in the forebrain (Bourgoin et al., 1977). 5-HIAA 

levels increase progressively during the first three postnatal weeks in both the brain stem 

and the forebrain. Especially in the brain stem, the levels are significantly higher (85 % ) 

than adult values at the end of the third postnatal week (Bourgoin et al., 1977; Zeisel et 

al., 1981). Thereafter, the levels decrease to adult values by the sixth postnatal week. 
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The ratio of 5-HIAA/5-HT is very high during the fetal period and the first three 

postnatal weeks. During this period the ratio of 5-HIAA/5-HT remains two to four times 

higher than in adult rats (Herregodts et al., 1990; Bourgoin et al., 1977). In adult rats, 

the ratio of 5-HIAA/5-HT is dependent on the electrical activity of serotonergic neurons 

(Aghajanian et al., 1967). Similarly, the high value of the 5-HIAA/5-HT ratio in young 

brain may be the consequence of an enhanced rate of neuronal firing. However, the 

neurons of the dorsal raphe in neonate brain showed a regular discharge pattern, and the 

firing rate is not significantly different from that of the adult neurons (Lanfumey and 

Jacobs, 1982; Gallager, 1982). Alternatively the high turnover of 5-HT in the young 

brain may be due to either poor storage capacity of vesicles or enhanced enzymatic 

degradation. However, poor storage capacity may not play a role in the high turnover 

of 5-HT in newborn rat brain, since the conversion of PH]5-HT into [3H]5-HIAA is 

faster in the newborn than in adult rats even after reserpine treatment, which depletes 5-

HT storage capacity in tissues (Bourgoin et al., 1977). Rather, the high rate of enzymatic 

degradation of 5-HT seems to be the main cause of the high 5-HT turnover in developing 

rat brain. In fact, monoamine oxidase (MAO) activity peaks around birth. At ED15, total 

activity of MAO is composed of an equal proportion of MAO type A and type B (Liu 

et al., 1987). The activity of MAO A increases faster than that of type B. The high MAO 

A activity found in young rats seems to be associated with a high V max (Nelson et al., 

1979). The apparent affinity of MAO A for 5-HT does not change significantly 

throughout the development (Bourgoin et al., 1977). 
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Receptors 

In the human brain, 5-HT1A binding shows a prenatal peak (Bar-Peled et al., 1991) 

and decreases with age in the cortex, hippocampus and raphe nuclei (Dillon et al., 1991). 

However, in the rat brain, the levels of 5-HT1A receptors in the cortex, hippocampus and 

septum, are increased during the first three weeks after birth (Daval et al., 1987; Gozlan 

et al., 1990). In the cerebellum, high levels of 5-HT1A receptors are present at birth but 

disappear with age, suggesting that 5-HT1A receptors are involved in the regulation of the 

brain development (Daval et al., 1987; Hamon et al., 1990). Transcripts of 5-HT1A 

receptors are detected as early as ED 12 in the rat. The level of transcripts reaches its 

maximum concentration at ED 15 and decreases progressively to very low concentrations 

at ED20 (Hillion et al., 1993). Even though the level of 5-HT1A receptor mRNA at 

postnatal day (PN) 18 is higher than at ED18, its level is still markedly lower than at 

ED15. 

In the developing rat brain, 5-HT18 receptors appear in a vibrissa-related pattern 

in the primary somatosensory cortex. This pattern is no longer present in the adult brain 

(Leslie et al., 1992). The developmental profile of the 5-HT18 receptor is closely matched 

to that of 5-HT fiber immunoreactivity, which implies 5-HT18 receptors are expressed in 

the terminals of the developing 5-HT fibers (Leslie et al., 1992). The expression of 5-

HT18 receptor mRNA is detected at ED17 in whole brain (Voigt et al., 1991). The 

mRNA level is unchanged during development, whereas high levels of 5-HT18 receptor 

mRNA are expressed in the striatum, thalamus, and cerebellum at birth up to PN 12 and 

then remarkably decreases at adulthood (Voigt et al., 1991). 
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The 5-HT2 receptors are present prenatally in the rat cortex, hippocampus, 

caudate, pontine tegmentum (Morilak and Ciaranello, 1993). The expression of 5-HT2 

receptors in the developing brain parallels mRNA levels. 5-HT2 transcripts are detected 

as early as ED14 (Hellendall et al., 1993), and the expression of 5-HT2 receptor mRNA 

in whole brain increases 13-fold between ED 17 and PN 5 (Roth et al., 1991). The 

increase of the number of 5-HT2 receptors is about 8-fold between ED 17 and PN13 and 

then the number is reduced by 50% at PN 27 (Roth et al., 1991). These 5-HT2 receptors 

in immature brain are functionally active. 5-HT2 receptor-induced phosphatidyl inositide 

breakdown was greater in immature rat cortex than in adult (Claustre et al., 1988). 5-

HT1c receptor mRNA is also detected at ED14 (Hellendall et al., 1993). 5-HT1c receptor 

levels increased 2-fold between ED17 and PN13 and its mRNA levels increased 5-fold 

between PN2 and PN13 (Roth et al., 1991). 

Serotonin as a Developmental Signal 

In the developing brain, monoamine neurotransmitters appear early, especially one 

to several days before the generation of their target cells (Lauder and Bloom, 1974). 

These monoamines are believed to act as developmental signals in fetal brain before they 

act as neurotransmitters. Neurotransmitters seem to be released from the growing axon 

terminals into the surrounding environment (Hume et al, 1983; Young and Poo, 1983). 

They regulate neurite outgrowth of neighboring axons and the morphology of target cells 

during development (Handa et al., 1986; Lankford, 1987). 

The specific actions of serotonin as an extrinsic factor for the growth cone have 
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been demonstrated in cultures of identified neurons from the CNS of the snail helisoma. 

Application of serotonin to the culture medium inhibited growth cone motility, neurite 

elongation and electrical synaptic connections of identified snail buccal neurons (Haydon 

et al., 1987; McCobb et al., 1988). Altered 5-HT fiber growth was also observed in the 

snail nervous system by treating snail embryo with 5,7-DHT, which transiently lowers 

5-HT levels (Goldberg and Kater, 1989). 

Serotonin also regulates the growth of its own neurons (Whitaker-Azmitia and 

Azmitia, 1986). In co-cultures of fetal serotonergic neurons and target cells, low 

concentrations of 5-methoxytryptamine (5-MT) inhibited the growth of 5-HT neurons, 

whereas high concentration of 5-MT stimulated the growth of 5-HT neurons. These dual 

effects of serotonin on the growth of its own neurons were also demonstrated in whole 

animal studies, in which 5-HT terminal density was decreased with a low concentration 

of 5-MT treatment and increased with a high concentration of 5-MT (Shemer et al., 

1991). Serotonin has been shown to initiate and autoamplify its own synthesis in 

embryonic hypothalamic neurons (De Vitry et al., 1986). The autoregulatory function of 

5-HT is further demonstrated by the observation that Drosophila mutants, incapable of 

5-HT synthesis, exhibit altered branching of serotonergic axons (Budnik et al., 1989). 

The involvement of 5-HT in the target cell morpho-functional development was 

demonstrated in organotypic cultures. When 5-HT was added to cultured neurons from 

5-HT target tissues (e.g. cerebral cortex or hippocampus), it stimulated growth and 

differentiation of neurons, and enhanced synaptogenesis (Chumasov et al., 1980; 

Chubakov et al., 1986). The role of 5-HT in the target cell differentiation in vivo has 
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also been studied by manipulating the content of 5-HT in the embryonic brain. Maternal 

administration of pCPA, a 5-HT synthesis inhibitor, delayed neurogenesis of 5-HT target 

cells (Lauder and Krebs, 1978). 

These actions of 5-HT as a developmental signal seem to be mediated through 5-

HT receptors in the developing brain. 5-HT receptors are expressed in the fetal brain 

(Hillion et al., 1993; Hellendall et al., 1993; Morilak and Ciaranello, 1993; Roth et al., 

1991), and the number of 5-HT1 receptors was altered in the offspring treated with 

maternal pCPA or 5-MT (Whitaker-Azmitia et al., 1987). Also, stimulation of 5-HT1A 

receptors has been shown to modify neuritic branching of developing rat cortical neurons 

in vitro (Sikich et al. , 1990). 

The effect of serotonin on neuronal development can also be mediated through 

astroglia. Cultured astroglia possess a high affinity 5-HT uptake system (Katz and 

Kimelberg, 1985), serotonin binding proteins (Hertz and Tamir, 1981), the serotonin 

degrading enzyme, MAO (Fitzgerald et al., 1990), and 5-HT receptors (Fillion et al, 

1980, 1983; Whitaker-Azmitia and Azmitia, 1986a). Serotonin decreases the levels of 

GFAP and its mRNA in cultured astroglia derived from rat brainstem (Le Prince et al., 

1990). Application of a 5-HT1A receptor agonist shifted astroglial morphology to a more 

mature state (Whitaker-Azmitia et al., 1990). Stimulation of 5-HT1A receptors on 

cultured astroglial cells caused increased synthesis and release of a serotonergic growth 

factor, SlOOP (Whitaker-Azmitiaetal., 1990; Azmitiaetal., 1990). Theeffectof5-HT 

on the production of glial-derived trophic factors for dopaminergic neurons has also been 

demonstrated. The growth of dopaminergic neurons in the presence of mesencephalic glia 
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cells was stimulated by addition of 5-HT to the culture medium (Liu and Lauder, 1992), 

but no such effect was found in neurons cultured on the polylysine substrate (Liu and 

Lauder, 1991). 

The Effects of Buspirone on the CNS 

Buspirone is a non-benzodiazepine anxiolytic drug which has been used clinically 

for the treatment of anxiety (Feighner et al., 1982). Buspirone has little or no affinity 

for any of the major CNS receptors except dopamine D2 and 5-HT1A receptors. Binding 

of 3H-buspirone occurs in the regions rich in 5-HT1A receptors (Matheson and Tunnicliff, 

1991). Electrophysiological studies have shown that either systemic administration or 

iontophoretic application of buspirone produces a dose-dependent inhibition of the 

activities of serotonergic raphe neurons (VanderMaelen et al., 1986). Acute 

intraperitoneal administration of buspirone in rats reduces the synthesis of 5-HT in the 

brain (Hjorth and Carlsson, 1982). These effects of buspirone are due to the activation 

of 5-HT1A autoreceptors in the dorsal raphe. In addition, buspirone treatment results in 

increased plasma levels of corticosterone and reduced hippocampal rhythmical slow 

activity, both of which are mediated through the activation of the postsynaptic 5-HT1A 

receptors (Coop and McNaughton, 1991; Cowan et al., 1990). 

Buspirone also binds to dopamine D2 autoreceptors as an antagonist, and thus 

enhances dopaminergic neurotransmission (reviewed by Riblet et al., 1984). In the 

striatum where dopamine autoreceptors have been identified, buspirone increases tyrosine 

hydroxy lase activity and levels of dopamine metabolites (McMillen et al., 1983). 
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Although buspirone does not alter the activities of striatal choline acetyltransferase or 

acetylcholinesterase, buspirone reduces acetylcholine levels in the striatum (Kolasa et al., 

1982). Since dopamine inhibits the firing of acetylcholine neurons, the decreased level 

of acetylcholine induced by buspirone can be attributed to its antagonistic action on D2 

receptors. Buspirone has been shown to increase plasma prolactin levels (Metzer et al., 

1982; Urban et al., 1986), but this increase was only significant from postnatal day 12 

onward (Hocld et al., 1993). 



CHAPTER III 

METHODS 

In Vivo Studies 

Animals and Diet 

Virgin female Sprague-Dawley rats (Harlan) weighing 180 to 200 grams, were 

housed in individual cages and maintained at 23°C - 25°C and on a light/dark cycle 

(12/12 hour). The rats were allowed to adjust to the environment for 2 days before 

initiating liquid diets. 

On the first day of diet administration, all rats were given the control liquid diet. 

The caloric composition of the diet was 21 % protein, 29% fat, and 50% carbohydrate. 

The caloric concentration was 1 kcal/ml (Noronha and Druse, 1982). Water was given 

ad libitum. After 3 days of adjustment to the liquid diet, rats were divided into two 

weight-matched groups: i) ethanol-consuming dams; ii) pair-fed dams. The ethanol-fed 

rats were given liquid diet containing 6.6% (v/v) ethanol, while pair-fed rats received a 

volume of control liquid diet equal to the volume consumed by the ethanol-fed rats 

during the previous day. Ethanol accounts for approximately 35 % of the total calories 

in the ethanol diet, and replaces isocaloric amounts of carbohydrates (e.g. maltose

dextrin) in the control diet. Diets were replenished daily. An ad libitum control group 

40 



41 

which was fed with control diet ad libitum was included in experiments of specific aim 

1. The ethanol and control diets were pair-fed to rats for 5-6 weeks prior to breeding and 

during gestation. 

Female rats were mated. Breeding was confirmed by the detection of sperm in 

vaginal smears; that day was defined as embryonic day 0 (EDO). At parturition, rat 

mothers were given free access to chow plus either the control liquid diet (pair-fed 

controls) or half-strength (3.3% v/v) ethanol-liquid diet. On the third day after 

parturition, all rats were fed standard lab chow exclusively and litters were adjusted to 

9 pups. 

Drug Treatment 

Buspirone (RBI, Natick, MA) was administered from ED13 to ED20, when 5-HT 

neuronal differentiation and growth take place. Buspirone was dissolved in 0.9% sterile 

saline solution at a concentration of 3 mg/ml. After weighing, control- and ethanol-fed 

rats in drug treatment groups were given either a subcutaneous injection of saline or 

buspirone, at a dose of 4.5 mg/kg body weight. Injections were made once a day 

between 2 pm and 3 pm. Rats were monitored for a minimum of 30 minutes for any 

visible side effects. 

Blood Ethanol Level 

Blood ethanol levels were determined by using an enzymatic kit (Sigma St. Louis, 

MO). This kit measures ethanol by assessing the formation of reduced nicotinamide 
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adenine dinucleotide (NADH) in the oxidation-reduction reaction, in which ethanol plus 

nicotinamide adenine dinucleotide (NAD) are converted, respectively, to acetaldehyde 

and NADH. Alcohol dehydrogenase (ADH) catalyzes this reaction. The increase in 

absorbance at 340 nm occurs when NAD is converted to NADH, is directly proportional 

to the ethanol concentration in the sample. 

Blood samples were obtained from the tail vein two hours after the introduction 

of a fresh ration of diet to rats that had been fasted for 12 hours. Blood samples were 

collected in heparinized tubes (Becton Dickinson Inc., Lincoln Park, NJ) and 

deproteinized by the addition of trichloroacetic acid (6.25% w/v). Each tube was tightly 

capped and allowed to stand at room temperature for 5 minutes. The tube was then 

centrifuged at 2000 rpm for 5 minutes (Sorvall RT6000). One hundred microliters of 

supernatant were added to 2.9 ml of the NAD-ADH solution. The latter solution is 

prepared by adding 16 ml of glycine buffer to a multi-assay vial containing NAD-ADH. 

Mixed solutions were incubated for 10 minutes at room temperature. The solutions were 

transferred to cuvets, and the absorbance was measured at 340 nm (Gilford Response 

spectrophotometer). 

Dissection and Tissue Sectioning 

Rat offspring were sacrificed by decapitation on either postnatal day 5 (PN5), 

PN19 or PN35. The brains were quickly removed and frozen on dry ice. To obtain 

brains from ED19 rats, mothers were decapitated, and the uterine horn was removed and 

placed on an ice-cold glass plate. The brains from the fetuses were quickly removed and 
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frozen. Frozen brains were stored at -80 °C. Rats were sacrificed between 7 am and 9 

am. 

Twenty micron thick coronal sections of brains were cut at -18 °C using a cryostat 

(Leitz, Germany). Sections were thaw-mounted onto gelatin-coated microscope slides 

(Fisher, Pittsburg, PA). Four consecutive sections were put on one slide and every fifth 

section was set aside for staining with cresyl violet . These sections were put in an air

tight slide box and stored at -8D°C until use. 

Staining of Tissue Sections 

Every fifth section was stained with a 0.5 % (w/v) cresyl violet (Sigma, St. Louis, 

MO) solution. These sections were compared with those in an atlas (Paxinos and Watson, 

1986) for identification of anatomical structures. In radioligand binding assays, brain 

sections from the same anatomical levels were selected. 

Tissue sections were warmed to room temperature and dehydrated by sequentially 

immersing the sections for 5 minute intervals in each of the following: xylene, xylene, 

100% (v/v) ethanol, 95% (v/v) ethanol, and 70% (v/v) ethanol. Slides were then dipped 

in distilled water and stained in the 0.5% (w/v) cresyl violet in acetate solution (0.06 M 

sodium acetate and 0.34 M glacial acetic acid, pH 3.9) for 25 minutes. Following 

staining, excess cresyl violet was removed by dipping the sections twice in distilled water 

for 3 minutes. Slides were then dehydrated by immersing them in 70% (v/v), 95% (v/v), 

and 100% (v/v) ethanol respectively. After dehydration, slides were put in xylene. A 

coverslip coated with Depex mounting medium (BDH Laboratory Suppliers, England) 
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was affixed to each slide. 

Labeling of 5-HT Recognition Sites 

5-HT Reuptake Sites 

Serotonin reuptake sites were measured according to the method of D 'Amato et 

al. (1987a). Slide-mounted tissue sections were brought to room temperature and 

preincubated for 15 minutes in 50 mM Tris buffer (pH 7.4) containing 120 mM NaCl, 

5 mM KCl and 0.001 % bovine serum albumin (BSA), in order to remove endogenous 

ligands. Tissue sections were then incubated for 60 minutes at room temperature in the 

incubation buffer containing 0.8 nM or 2.4 nM [3H] citalopram (NEN, Boston, MA). 

The K0 for [3H]citalopram is approximately 0.8 nM (D'Amato et al., 1987a). A 

concentration approximately three times the K0 concentration was used to estimate the 

binding at the Bmax. Non-specific binding was determined in the presence of 1 µM 

paroxetine (gift from Smith Kline Beecham Pharmaceuticals). Sections were then dipped 

(1-2 seconds) and washed twice for 10 minutes in ice-cold preincubation buffer, dipped 

in ice-cold distilled water for a few seconds, and dried in a cold air stream. Radiolabeled 

sections and a tritium-radiolabeled reference microscale were exposed to tritium sensitive 

Hyperfilm (Amersham, Arlington Heights, IL) at 4 °C for 4 weeks (for PN19 and PN35 

brain sections) or 60 days (for ED19 and PN5 brain sections). 

5-HT1A Receptor Sites 
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5-HT1A receptor sites were labeled with PH]8-hydroxy-2-(N,N-di-n-propylamino) 

tetralin ([3H]8-0H-DPAT; NEN) according to a modified protocol of Marlier et al. 

(1991). Slides were warmed to room temperature and preincubated in 170 mM Tris 

buffer (pH 7.6) containing 4 mM CaCl2 , 0.01 % ascorbic acid, and 0.001 % BSA. Tissue 

sections were then incubated for 60 minutes at room temperature in the incubation buffer 

containing 1 µM paroxetine, 10 µM pargyline, and 1.1 nM or 2. 75 nM [3H]8-0H

DPAT. Non-specific binding was determined in the presence of 1 µM 5-HT. Paroxetine 

was included to prevent [3H]8-0H-DPAT binding to 5-HT reuptake sites. Pargyline was 

used to prevent degradation of 5-HT. Following incubation, sections were washed twice 

for 5 minutes in ice-cold preincubation buffer, dipped in ice-cold distilled water for 5 

seconds and dried in a cold air stream. Radiolabeled sections and [3H]-reference 

microscales were exposed at room temperature to tritium sensitive Hyperfilm for 4 weeks 

(for PN19 and PN35 brain sections) or 60 days (for ED19 and PN5 brain sections). 

Development of PH]-Exposed Film 

Autoradiograms were generated by developing the [3H] exposed film in the 

developing solution for X-ray film (Doehren Co., IL) for 40 seconds, washed in water 

for 20 seconds and fixed for 5 minutes at room temperature. Films were then rinsed in 

running water for 15 minutes and air-dried. 

Analyses of Autoradiograms 

The illuminated image of each autoradiogram was collected by a solid state 
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camera (Sony CCD Video Camera, Japan) and quantitated using a Macintosh-based 

image analysis system, NIH Image. The optical density of the reference microscale was 

interpolated to the radioactivity (DPM/mg protein) using tritium labeled brain mash 

standards. The optical density of tissue sections was converted to radioactivity based 

upon the calibration curve of the reference microscale. The radioactivity of tissue 

sections was then converted to pmol/mg protein depending on the specific activity of the 

radioligand. Brain structures on autoradiograms were identified in reference to the rat 

brain atlas (Paxinos and Watson, 1986). 5-HT reuptake sites were analyzed in the regions 

of raphe nuclei, lateral hypothalamus, substantia nigra, medial septal area, CA3 and 

frontal cortex. 5-HT1A receptor sites were examined in the raphe nuclei, amygdala, 

dentate gyros, CAl, lateral septal area and frontal cortex. 

In Vitro Cell Culture Studies 

Astroglial Cell Cultures 

Astroglial-conditioned media was obtained by the modified protocol of Rudge et 

al. (1985). Primary cultures of astroglial cells were prepared from the cerebral cortex of 

embryos from timed-pregnant Sprague-Dawley rats (Harlan) at 20 days of gestation 

(ED20; day of insemination = EDO). 

The uterine horn was aseptically removed from the body of a decapitated rat and 

placed into a sterile petri dish containing cold calcium- and magnesium-free Hank's 

balanced salt solution (CMF-HBSS; 5.4 mM KCl, 0.4 mM KH2P04, 4.2 mM NaHC03, 
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140 mM NaCl, 0.34 mM Na2HP04 , 5.6 mM glucose). The embryos were removed from 

the uterus and transferred twice to the other petri dishes containing fresh cold CMF

HBSS. The brain was separated from the fetus; meninges were carefully removed under 

the dissecting microscope (Zeiss, Germany). Cerebral hemispheres were dissected and 

cleaned by removing the olfactory bulbs, striatum and hippocampal formation. Cortical 

tissues were cut into small pieces and collected in sterile CMF-HBSS. Minced cortical 

tissues were transferred to the CMF-HBSS containing 0.25% (w/v) trypsin/0.02% (w/v) 

EDTA (Sigma, St. Louis, MO) and 0.1 % (w/v) DNAse (Boehringer Mannheim, 

Indianapolis, IN), and incubated for 30 minutes at 37 °C. An equal volume of medium 

containing 10% fetal bovine serum (PBS; Gibco, Grand Island, NY) was added to 

inactivate trypsin. After centrifugation at 1000 g for 2 minutes, cells were resuspended 

and tritulated in a D-valine substituted Eagle's minimum essential medium (MEM), 

containing 10% FBS (heat-inactivated at 56°C for 1 hour) (MEM-FBS). D-Valine 

substituted MEM was used to inhibit the growth of fibroblasts. The media was modified 

to contain 26.4 mM NaHC03 (Sigma), 33.3 mM glucose (Sigma), 25 mM HEPES 

(Gibco), 25 µg/ml gentamicin (Gibco) and 0.25 µg/ml amphotericin (Gibco). Tritulated 

cells were filtered through a sterile 70 µ.m nylon mesh (Falcon, Lincoln Park, NJ). The 

number of viable cells was determined by trypan blue exclusion using a hemacytometer. 

Trypan blue excluding cells were placed in 162 cm2 flasks (Costar, Cambridge, MA) at 

the density of 7 x 1Q4 cells/cm2 (11.34 x 106 cells/flask). The cultures were maintained 

in a humidified atmosphere containing 5% C02. The culture medium was changed with 

fresh MEM-FBS on the day following seeding, and on every third day thereafter. After 
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2 weeks, astrocytes were subcultured. 

The day before subculture, 6-well plates (Costar, Cambridge, MA) were coated 

with poly-omithine (0.1 mg/ml in 1.15 M borate buffer) at room temperature. Two hours 

later, poly-omithine (PORN; Sigma) solution was aspirated and plates were washed three 

times with sterile water. Plates were then covered with 0.001 % fibronectin (FN; Sigma, 

St. Louis, MO.) and placed in a 37°C overnight. The plates were carefully washed three 

times with MEM and then covered with MEM until use (Plates should not be air-dried). 

On the day of subculture, astrocyte cultures were washed two times with warm 

CMF-HBSS and treated with 0.05% trypsin/ 0.02%EDTA/ 0.1 % DNAse solution for 15 

minutes. Trypsin action was stopped with MEM-FBS and the lifted cells were gently 

tritulated, pooled and centrifuged at 1000 g for 5 minutes. Cells were resuspended in 1 

ml of ovalbumin (1 % v/v)-containing MEM. After the number of viable cells were 

determined, the cell suspension was diluted with serum- and ovalbumin-free MEM to a 

density of 3 x 1()5 cells/ml. The density of 4.5 x 1()5 cells (1.5 ml) was added to each 

well, coated with PORN-FN. After 2 hours of incubation, media was changed to remove 

any residual ovalbumin and FBS. 

On the next day, the culture medium was changed and a portion of the cells were 

treated with ethanol (100 mM). Conditioned media from either control astroglia (CCM), 

or ethanol treated astroglia (ECM) were collected at the second and fourth day of ethanol 

treatment. CMs were centrifuged at 3500 rpm for 10 minutes and the supematants were 

preserved at -80 °C until use. 
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Neuronal Cell Cultures 

Primary neuronal cell cultures were generated from rhombencephalon of ED 14 

fetuses from timed pregnant Sprague-Dawley rats (Harlan). The same dissecting protocol 

used for the astroglial cultures was used for the rhombencephalic neuronal cultures. 

Rhombencephalon from between the rhombencephalic isthmus and the cervical flexure 

was dissected into small pieces in CMF-HBSS. The tissues were incubated with a 0.05% 

trypsin/EDTA/DNAse solution at 37 °C. After 30 minutes, an equal volume of 0.05% 

(w/v) soybean trypsin inhibitor was added to stop the trypsin action. The cells were 

centrifuged at 1000 g for 5 minutes. Precipitated cells were resuspended and tritulated 

in serum-free medium. Serum-free medium was made of Dulbecco's modified Eagle's 

medium and Ham's nutrient F-12 (DMEM/Fl2) containing 1 % penicillin-streptomycin 

(Sigma) and Bottenstein's N2 supplements (N2), 5 µglml insulin (Sigma), 100 µg/ml 

transferrin (Sigma), 20 nM progesterone (Sigma), 100 µM putrescine (Sigma) and 30 nM 

sodium selenite (Sigma). After the number of viable cells was determined, cells were 

seeded in the poly-D-lysine (33 µg/ml, Sigma) coated wells at a density of 8 x 1()4 

cells/cm2 (7.6 x 105 cells/well). Five hours later, 6 µM fluorodeoxyuridine (ICN, 

Cleveland, OH) and 12 µM uridine (Sigma) solution were added to inhibit proliferation 

of mitotic cells. 

On the day following seeding and on every other day thereafter, neuronal media 

was changed to either absolute N2 media or N2 media containing 30% CCM (30-CCM), 

60% CCM (60-CCM), 30% ECM (30-ECM), 60% ECM (60-ECM). On the fifth and 

sixth day of culture, neuronal cells were assayed. 
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Immunohistochemistry 

Pure astroglial cultures were identified by staining glial fibrillary acidic protein 

(GFAP), an astrocyte marker protein, using a peroxidase immunohistochemistry kit 

(Sigma). Astrocyte cultures were washed three times with warm phosphate-buffered 

saline (PBS: 2. 7 mM KCl, 1.5 mM KH2P04, 137 mM NaCl, 8 mM Na2HP04, 0.5 mM 

MgCl2, 0.9 mM CaCl2) and fixed with cold 4% paraformaldehyde for 1 hour. To block 

non-specific binding, cultures were incubated for 10 minutes with blocking reagent 

containing 1 % normal goat serum in PBS. After the blocking reagent was removed, 

cultures were incubated with primary anti-GFAP for 1 hour. Cultures were then washed 

three times with PBS and incubated with a biotinylated secondary antibody for 20 

minutes. After washing with PBS, cultures were incubated with peroxidase reagent for 

20 minutes, washed, and exposed to peroxidase substrate solution, containing chromogen, 

3-amino-9-ethylcarbazole (ABC) in N,N-dimethylformamide. 

Serotonin containing neurons were stained with anti-serotonin (lncstar, Stillwater, 

MN) using the peroxidase vectastain ABC kit (Vector Laboratory Inc., Burlingame, CA). 

Neuronal cultures were incubated with 100 µM L-tryptophan (Sigma) and 10 µM 

pargyline (Sigma) for 24 hours before staining. The staining procedures were the same 

as that for GFAP. For the 5-HT staining peroxidase substrate was composed of 0.03% 

H20 2 and 0.01 % diaminobenzidine (Sigma) in O. lM Tris buffer. 5-HT immunostained 

neuronal cultures were photographed using a Nikon inverted microscope at a 

magnification of 200x. The percentage of 5-HT immunopositive neurons was determined 

by counting the number of positively stained and unstained neurons. 
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Measurement of Neurite Length 

The neurite length was measured on the film negatives using the Macintosh based 

image analysis system, NIH Image. The longest neurite of each neuron was measured 

starting from the cell body to the end of neurite. 

5-HT Uptake 

5-HT uptake was determined by measuring the accumulation of [3H]5-HT by the 

neuronal cultures. Neuronal cultures were washed three times with warmed Hank's 

balanced salt solution (HBSS; 5.4 mM KCl, 0.4 mM KH2P04, 4.2 mM NaHC03 , 140 

mM NaCl, 0.34 mM Na2HP04 , 0.5 mM MgCl2, 1.26 mM CaCl2 , 0.41 mM MgS04 , 5.6 

mM glucose) and then incubated with 60 nM [3H]5-HT (Amersham) in HBSS containing 

0.1 mM L-cysteine (Sigma) for 20 minutes at 37 °C. Nonspecific uptake was determined 

using 10 µM fluoxetine (Lily, Indianapolis, IN). After incubation, the [3H]5-HT 

containing solution was removed and the cultures were washed three times with ice-cold 

HBSS. Cultures were then air-dried, and extracted with 1 ml of 95 % (v/v) ethanol for 

1 hour. At the end of extraction procedure, cells were scraped from the bottom and the 

wells were rinsed with 0.5 ml of 95 % ethanol. Two extracts were combined prior to 

tritium counting. An aliquot was saved for protein determination. 

Neuronal Number 

The number of surviving neurons was determined by counting with a 

hemacytometer. Neuronal cultures were rinsed with CMF-HBSS and incubated with 500 
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µl of 0.05% trypsin/EDTA/DNAse for 30 minutes at 37 °C. An equal volume of FBS-

MEM was added to stop the action of trypsin. Lifted cells were tritulated with 10 ml 

pipet and 9 inch Pasteur pipet. Dissociated cells were counted with hemacytometer. 

DNA Content 

DNA content was measured using a colorimetric assay developed by Burton 

(1956). Cultures were rinsed three times with HBSS. To each well of neuronal cultures 

was added 800 µl of 1 N NaOH. The bottom of each well was scraped after 30 minutes. 

Duplicate aliquots of 250 µl were transferred to test tubes. The remaining 300 µl was 

saved for protein determination. Standard DNA (Sigma), dissolved in 1 N NaOH was 

used at 10 different concentrations. Samples and standards were hydrolyzed for 30 

minutes at room temperature using 250 µ1of20% perchloric acid. During incubation, 

the acetaldehyde stock solution (16 mg/ml in distilled water) was diluted 1: 10. After the 

30 minute incubation, 500 µl of diphenylamine (40 mg/ml in glacial acetic acid) and 25 

µl of acetaldehyde (1.6 mg/ml) were added and the tubes were mixed. Test tubes were 

capped and shaken overnight in a 30 °C waterbath. The tubes were then centrifuged at 

800 g (Sorvall RT6000) for 10 minutes. The optical density of the samples and standards 

was read at 595 nm on a spectrophotometer (Gilford). 

Protein Determination 

Protein content was measured by a micromodification of the Lowry method 

(1951). Samples for protein measurement were previously collected from the same 
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cultures used for DNA measurements. Standards containing 0 and 25 µg protein were 

generated. Samples and standards were hydrolyzed in 100 µl of 1 N NaOH for 30 

minutes. During the incubation 1 % (w/v) cupric sulfate, 2 % (w/v) potassium-sodium 

tartrate and 2 % (w/v) sodium carbonate were mixed at a ratio of 0.1:0.1:10 (v/v/v) 

(solution A). To each sample and standard, 1 ml of solution A was added. The tubes 

were then vortexed. After 10 minutes 100 µl of Polin-phenol reagent was added and 

allowed to react for 30 minutes. The optical density of the standards and samples was 

read at 700 nm on a Gilford spectrophotometer. 

Statistical Analysis 

In the study of in utero ethanol effects on the development of 5-HT reuptake sites 

and 5-HT1A sites the results were analyzed using a two way analysis of variance 

(ANOVA) and a post-hoc Tukey's protected t test. The ANOVA with randomized block 

design was used. Each experiment was a block. In each experiment, samples from a 

given brain region from age-matched dietary groups were included. The results of cell 

culture studies were analyzed using a one way ANOVA followed by Tukey's protected 

t test. P values less than 0.05 were considered statistically significant. 



CHAPTER V 

RESULTS 

In Vivo Studies 

Maternal Weight Gain and Blood Alcohol Levels 

After 6 weeks of diet consumption, the average blood alcohol level (BAL) of 

ethanol-consuming rats was - 100 mg/dl; the BALs ranged from 75 to 120 mg/dl. 

Although the female rats consumed an increasing quantity of diet as pregnancy 

progressed, the amount of ethanol consumed (g/kg body weight) was constant because 

the maternal weight gains paralleled the increased diet consumption (Figure 1). During 

pregnancy (EDO to ED21) the maternal weight gain by pair-fed and ad lib controls (C

PF, C-AD) and ethanol-fed rats (E-PF) was comparable (Table 1). The weights of 

offspring from these rats were also comparable. 

Effects of In Utero Ethanol Exposure on the Development of 

5-HT Reuptake Sites 

Since 5-HT reuptake sites are localized in nerve terminals, their concentration has 

been used as an index of serotonergic nerve fiber innervation of discrete brain areas. 5-

HT reuptake sites were radiolabeled with [3H]citalopram, a specific blocker of 5-HT 
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Fig. 1. Maternal weight gain and diet and ethanol consumption during pregnancy 
(EDO-ED21) in the ethanol-fed rats. The results are presented as the mean values 
obtained from five dams. The error bars represent SD. The asterisk denotes values which 
are significantly different from those of EDO (p<0.05). ED represents embryonic day. 
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TABLE 1 

EFFECTS OF IN UTERO ETHANOL EXPOSURE ON MATERNAL WEIGHT 
GAIN DURING PREGNANCY (EDl - ED21) AND ON OFFSPRING WEIGHTS 

Weight (g) 

C-PF (n) E-PF (n) C-AD (n) 

Maternal 115.7±18.1 (7) 108.6±20.5 (7) 153.0±47.3 (4) 

~ 
9.6±2.1 (6) 11.0±0.8 (8) 8.9±1.4 (4) 

Offspring 
PN19 

51.0±6.1 (8) 48.2±5.1 (8) 50.6±6.0 (3) 

All the data are presented as the mean ± SD. 
Abbreviations are as follows: C-PF, pair-fed control; E-PF, pair-fed ethanol; C-AD, ad 
libitum control; PN, postnatal day. 
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reuptake sites. Binding was done at 2 ligand concentrations. Binding at 0. 8 nM 

[3H]citalopram approximated the K0 , and that at 2.4 nM was used as an estimate of 

binding at the Bmax. Figure 2 depicts autoradiograms of brain regions from control rats, 

which were radiolabled with [3H]citalopram. Table 2 summarizes the specific binding of 

0.8 nM and 2.4 nM [3H]citalopram to brain regions from control rats, aged PN5 to 

PN35. In this table, the mean and standard deviation of all control values are provided. 

Data from the three groups of offspring are presented in Figures 3-10. These figures 

depict the binding in ethanol-exposed and ad lib offspring in comparison with that of age

matched control offspring that were analyzed in the same experiment. Multiple (6 - 8) 

individual experiments were performed. Rather than pooling the values obtained from all 

experiments, each experiment was analyzed as a block. The results of a 2-way analysis 

of variance (ANOV A) using a randomized block design is summarized in the legends to 

the figures. 

On PN5, 5-HT reuptake sites could be quantitated in both the PCx and DR. 

However, binding was below the sensitivity of our method in other serotonergic brain 

areas at this age. By PN19, binding had increased in both the PCx and DR, as well as 

in the other brain regions listed in Table 2. At this age, the highest binding was found 

in the DR and MnR. The rank order of binding was DR - MnR > LH > SN > 

AMG > CA3 > PCx - FCx. With few exceptions the rank order of binding was 

similar at PN19 and PN35. Other than one data point (of a total of 18), the values for 

the specific binding of 0.8 nM and 2.4 nM [3H]citalopram to serotonergic brain regions 

was comparable in ad lib (C-AD) and pair-fed control rats (C-PF). 



Fig. 2. Autoradiographic images of serotonin reuptake sites in rat brain labeled with [3H)citalopram. 
Images of 20 µm thick coronal sections, labeled with 0.8 nM [3H]citalopram, are presented. A - D represent 
the level of forebrain (A-B), midbrain (C) and brainstem (D) of PN35 rats. E - F represent the level of forebrain 
(E) and brainstem (F) of PN5 rats. G represents a coronal section of brain stem from embryonic day 19 fetuses. 
H represents image of PN35 brain section showing nonspecific binding of [3H]citalopram in the presence of 
1 µM paroxetine. The color scale and corresponding radioactivity (DPM/mg protein) is shown on the right side. 
The warmer colors (red and yellow) correspond to higher densities and the cooler colors (blue and violet) 
correspond to lower densities. Abbreviations are as follows: FCX, frontal cortex; PCX, parietal cortex; MS, 
medial septum; STR, striatum; LH, lateral hypothalamus; BAL, basolateral nucleus of amygdala; CA3, 
hippocampus Comu Ammon 3; SN, substantia nigra; DR, dorsal raphe; MNR, median raphe. 
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TABLE2 

SPECIFIC BINDING OF [3H)-CITALOPRAM IN CONTROL PAIR-FED RA TS 

Specific binding (pmol/mg protein equivalent) 

0.8nM [3H]-citalopram 2.4nM [3H]-citalopram 
Region Age (n) (n) 

FCx PN19 0.286±0.094 (6) 0.507±0.197 (6) 
PN35 0.301±0.090 (6) 0.616±0.172 (6) 

PCx PN5 0.119±0.080 (6) 0.196±0.104 (6) 
PN19 0.343±0.120 (6) 0.530±0.152 (6) 
PN35 0.271±0.073 (6) 0.509±0.159 (6) 

CA3 PN19 0.541±0.301 (8) 0.910±0.268 (8) 
PN35 0.714±0.284 (8) 1.103±0.277 (8) 

LH PN19 1.249±0.313 (7) 1.671±0.335 (7) 
PN35 0.959±0.234 (7) 1.557±0.344 (7) 

AMG PN19 0.903±0.378 (8) 1.288±0.280 (8) 
PN35 1.128±0.291 (8) 1.698±0.245 (8) 

SN PN19 0.798±0.312 (6) 1.441±0.184 (7) 
PN35 1.105±0.312 (6) 1.53 7±0.395 (7) 

DR PN5 0.515±0.224 (6) 0.838±0.313 (6) 
PN19 1.713±0.160 (8) 2.098±0.174 (8) 
PN35 1.571±0.179 (8) 2.079±0.188 (8) 

MnR PN19 1.459±0.420 (7) 2.071±0.162 (7) 
PN35 1.129±0.194 (7) 1.803±0.193 (7) 

All the data are presented as the mean± SD. 
Abbreviation: FCx, frontal cortex; PCx, parietal cortex; CA3, hippocampus comu ammonis 
3; LH, lateral hypothalamus; AMG, amygdala; SN, substantia nigra; DR, dorsal raphe; MnR, 
median raphe; PN, postnatal day. 
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Fig. 3. Effects of in utero ethanol exposure on the binding of [3H)citalopram in the 
dorsal raphe. Results are expressed as percent of the specific binding obtained from the 
pair-fed control group at each age. The pair-fed control values are given in Table 2. The 
asterisk (*) denotes values which are significantly different from those in the age-matched 
pair-fed control group (F = 19.4, p = 0.0004), and the pound(#) denotes values which are 
significantly different from those in the age-matched ad libitum control group (F = 19.4, 
p = 0.0004). Abbreviations are as follows: C-PF, pair-fed control; E-PF, pair-fed ethanol; 
C-AD, ad libitum control; PN, postnatal day. 
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Fig. 4. Effects of in utero ethanol exposure on the binding of [3H]citalopram in the 
median raphe. Results are expressed as percent of the specific binding obtained from the 
pair-fed control group at each age. The pair-fed control values are given in Table 2. The 
asterisk (*) denotes values which are significantly different from those in the age-matched 
pair-fed control group (F = 7.7, p = 0.0071). Abbreviations are the same as those in Fig. 
3. 
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Fig. 5. Effects of in utero ethanol exposure on the binding of [3H)citalopram in the 
lateral hypothalamus. Results are expressed as percent of the specific binding obtained 
from the pair-fed control group at each age. The pair-fed control values are given in Table 
2. The asterisk (*) denotes values which are significantly different from those in the age
matched pair-fed control group, and the pound(#) denotes values which are significantly 
different from those in the age-matched ad libitum control group (at PN19, 0.8 nM 
[3H]citalopram: F = 12.2, p = 0.0013; at PN19, 2.4 nM [3H]citalopram: F = 8.2, p = 
0.006; at PN35, 0.8 nM [3H]citalopram: F = 5.3, p = 0.02; at PN35, 2.4 nM 
[

3H]citalopram: F = 12.1, p = 0.001). Abbreviations are the same as those in Fig. 3. 
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Fig. 6. Effects of in utero ethanol exposure on the binding of [3H]citalopram in the 
substantia nigra. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 2. 
The asterisk (*) denotes values which are significantly different from those in the age
matched pair-fed control group, and the pound(#) denotes values which are significantly 
different from those in the age-matched ad libitum control group (at PN19, 2.4 nM 
[
3H]citalopram: F = 17.8, p = 0.0005; at PN35, 0.8 nM [3H]citalopram: F = 6.6, p = 0.01). 

Abbreviations are the same as those in Fig. 3. 
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Fig. 7. Effects of in utero ethanol exposure on the binding of [3H]citalopram in the 
basolateral nucleus of amygdala. Results are expressed as percent of the specific binding 
obtained from the pair-fed control group at each age. The pair-fed control values are 
given in Table 2. In utero ethanol exposure did not affect the binding of [3H]citalopram 
in this region at either age. Abbreviations are the same as those in Fig. 3. 
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Fig. 8. Effects of in utero ethanol exposure on the binding of [3H]citalopram in the 
hippocampal CA3. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 2. 
In utero ethanol exposure did not affect the binding of [3H]citalopram in this region at 
either age. Abbreviations are the same as those in Fig. 3. 
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Fig. 9. Effects of in utero ethanol exposure on the binding of [3H]citalopram in the 
parietal cortex. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 2. 
In utero ethanol exposure did not affect the binding of [3H]citalopram in this region at all 
ages. Abbreviations are the same as those in Fig. 3. 

66 



~ C-PF - E-PF Im C-AD 

100 -0 .... -c 
0 80 (.) 

';fl. -C> 
c 60 =s 
c :c 
(.) 

40 It: ·u 
Q) 
c. 

en 
20 

0.8nM CIT 2.4nM CIT 0.8nM CIT 2.4nM CIT 

PN19 PN35 

Fig. 10. Effects of in utero ethanol exposure on the binding of [3H]citalopram in the 
frontal cortex. Results are expressed as percent of the specific binding obtained from the 
pair-fed control group at each age. The pair-fed control values are given in Table 2. In 
utero ethanol exposure did not affect the binding of [3H]citalopram in this region at either 
age. Abbreviations are the same as those in Fig. 3. 
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Several significant abnormalities were found in the developing ethanol-exposed 

offspring. There was a transient increase in [3H]citalopram binding in the DR at PN5 

(Fig. 3), and in the MnR on PN35 (Fig. 4). There was also a decrease in binding in the 

LH at PN19 and PN35 (Fig. 5). In the SN (Fig. 6), binding was decreased at both PN19 

and PN35. In some cases, the significantly altered binding was detected at one but not 

both ligand concentrations. At the other ligand concentrations, a similar, though 

nonsignificant trend was noted. 

Effects of In Utero Ethanol Exposure on the Development of 

5-HT1A Receptors 

5-HT1A receptors were radiolabeled with either 1.1 nM or 2. 75 nM [3H]-8-0H

DPAT, a specific 5-HT1A receptor agonist. Figure 11 depicts autoradiograms of control 

brain regions from rats aged PN5 and PN35. Table 3 contains the values for the mean 

and standard deviations for the specific binding of [3H]-8-0H-DPAT to brain regions 

from control rats. In each binding assay, samples from C-PF, C-AD, and E-PF rats were 

included. The radiolabeled sections from a given experiment were exposed to a single 

film. The results of the multiple experiments were compared using the randomized block 

design, in order to adjust for differences between individual experiments. Figures 12 -

17 depict the values for C-AD and E-PF rats as a percentage of the values for C-PF rats, 

included in the same experiment. Statistical differences were calculated using a 2-way 

ANOV A with random block design. 

At PN5, binding of [3H]-8-0H-DPAT was detectable only in the DG. However, 



Fig. 11. Autoradiographic images of 5-HT1A receptor sites labeled with [3H]-8-0H-DPAT. Images of 
20 µm thick coronal sections, labeled with 1.1 nM [3H]-8-0H-DPAT, are presented. A - C represents 
sections of forebrain (A and B) and brainstem (C) of PN35 rats. D represents the section of forebrain of 
PN5 . Nonspecific binding of [3H]-8-0H-DPAT in the presence of 1 µM 5-HT is shown in E. The color scale 
and corresponding radioactivity are shown in F. The warmer colors (red and yellow) correspond to higher 
densities and the cooler colors (blue and violet) correspond to lower densities. Abbreviations are as follows : 
FCX, frontal cortex; PCX, parietal cortex; LS, lateral septum; DG, dentate gyrus; DR, dorsal raphe; MNR, 
median raphe. 
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TABLE3 

SPECIFIC BINDING OF [3H]-8-0H-DPAT IN CONTROL PAIR-FED RA TS 

Specific binding (pmol/mg protein equivalent) 

1.lnM [3H]-8-0H-DPAT 2.75nM [3H]-8-0H-DPAT 
Region Age (n) (n) 

FCx PN19 0.099±0.033 (7) 0.164±0.076 (6) 
PN35 0.166±0.042 (7) 0.242±0.069 (6) 

PCx PN19 0.154±0.070 (7) 0.226±0.071 (7) 
PN35 0.212±0.057 (7) 0.279±0.084 (7) 

LS PN19 0.580±0.168 (6) 0.709±0.180 (6) 
PN35 0 .5 3 5±0. 066 (6) 0.658±0.119 (6) 

DG PN5 0.232±0.071 (6) 0.265±0.089 (6) 
PN19 0.584±0.132 (6) 0.737±0.185 (6) 
PN35 0. 731±0.073 (6) 0.825±0.191 (6) 

DR PN19 0.575±0.142 (6) 0.685±0.191 (6) 
PN35 0.581±0.140 (6) 0.646±0.100 (6) 

MnR PN19 0.270±0.080 (6) 0.354±0.115 (6) 
PN35 0.150±0.040 (6) 0.245±0.082 (6) 

All the data are presented as the mean± SD. 
Abbreviation: FCx, frontal cortex; PCx, parietal cortex; LS, lateral septum; DG, dendate 
gyrus; DR, dorsal raphe; MnR, median raphe; PN, postnatal day. 
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Fig. 12. Effects of in utero ethanol exposure on the binding of [3H]-8-0H-DPAT in 
the dentate gyrus. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 3. 
The asterisk (*) denotes values which are significantly different from those in the age
matched pair-fed control group (F = 3.8, p = 0.058), and the pound (#) denotes values 
which are significantly different from those in the age-matched ad lib control group (F 
= 6.5, p = 0.01). Abbreviations are the same as those in Fig. 3. 
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Fig. 13. Effects of in utero ethanol exposure on the binding of [3H]-8-0H-DPAT in 
the parietal cortex. Results are expressed as percent of the specific binding obtained 
from the pair-fed control group at each age. The pair-fed control values are given in Table 
3. The asterisk (*) denotes values which are significantly different from those in the age
matched pair-fed control group (at PN35, 1.0 nM [3H]-8-0H-DPAT: F = 4.2, p = 0.04; 
at PN35, 2.7 nM [3H]-8-0H-DPAT: F = 4.3, p = 0.04). Abbreviations are the same as 
those in Fig. 3. 
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Fig. 14. Effects of in utero ethanol exposure on the binding of [3H]-8-0H-DP AT in 
the frontal cortex. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 3. 
In utero ethanol exposure did not affect the binding of [3H]-8-0H-DP AT in this region 
at either age. Abbreviations are the same as those in Fig. 3. 
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Fig. 15. Effects of in utero ethanol exposure on the binding of [3H]-8-0H-DPAT in 
the lateral septum. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 3. 
In utero ethanol exposure did not affect the binding of [3H]-8-0H-DPAT in this region 
at either age. Abbreviations are the same as those in Fig. 3. 
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Fig. 16. Effects of in utero ethanol exposure on the binding of [3H]-8-0H-DPAT in 
the dorsal raphe. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 3. 
Jn utero ethanol exposure did not affect the binding of [3H]-8-0H-DPAT in this region 
at either age. Abbreviations are the same as those in Fig. 3. 
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Fig. 17. Effects of in utero ethanol exposure on the binding of [3H]-8-0H-DPAT in 
the median rap he. Results are expressed as percent of the specific binding obtained from 
the pair-fed control group at each age. The pair-fed control values are given in Table 3. 
In utero ethanol exposure did not affect the binding of [3H]-8-0H-DPAT in this region 
at either age. Abbreviations are the same as those in Fig. 3. 
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by PN19 5-HT1A receptors could be quantitated in several brain areas. At both PN19 and 

PN35 binding was highest in the DR, DG and LS. Somewhat lower binding was noted 

in the MnR, PCx and FCx. With one exception, there were no significant differences in 

the binding of PH]-8-0H-DPAT to tissue from pair-fed and ad lib control offspring. 

However, in ethanol-exposed offspring there was a transient increase in PH]-8-0H-DPAT 

binding in the DG (PN19, Fig. 12) and a transient decrease in binding in the PCx (PN35, 

Fig. 13). 

Effects of Buspirone Treatment on the 

Ethanol-Associated Developmental Abnormalities in 

5-HT Reuptake Sites and 5-HT1A Receptors 

Previous investigations from this laboratory (Druse et al., 1991) indicated that 5-

HT content was decreased by -50% in the brain stem of ED15 rats. Since fetal 5-HT 

appears to function as an essential trophic factor for the development of serotonergic as 

well as other types of neurons, it was hypothesized that the ethanol-induced fetal deficit 

of 5-HT could contribute to the subsequent abnormal development of serotonergic 

neurons by decreasing stimulation of 5-HT1A receptors. In order to test this hypothesis, 

pregnant control and ethanol-fed dams were treated with buspirone, a 5-HT1A agonist, 

from ED13 to ED20 to determine whether treatment with a 5-HT1A agonist could prevent 

or reverse ethanol-associated developmental abnormalities. Additional control and 

ethanol-fed dams were treated with saline instead of buspirone. The offspring of these 

dams were used for analysis of 5-HT reuptake and 5-HT1A receptors. All rats used in 
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these studies were distinct from those described in sections 2 and 3. Nonetheless, a 

portion of these studies replicated the work reported in those sections. In addition, it 

expanded the earlier studies to include additional brain regions and/or ages, and 

strengthened the observations by including a large sample number. 

Following subcutaneous injection of buspirone, the pregnant rats sometimes 

exhibited brief and mild symptoms of the serotonin syndrome (Smith and Peroutka, 

1986). These rats exhibited a flattened body posture and outstretched forepaws. In 

addition, the buspirone-treated control (CB) dams exhibited a smaller weight gain than 

that noted in either of the pair-fed groups (Table 4). In contrast, the weight gain in both 

of the ethanol-treated groups (ethanol-saline, ES; ethanol-buspirone, EB) was comparable 

to that of the control-saline (CS) group. Despite the noted effects on the dams, the weight 

gain in the offspring of buspirone-treated control- and ethanol-fed rats was not 

significantly different at PN5, PN19 and PN35 (Fig. 18). 

Table 5 contains the values for the specific binding of 0.8 nM and 2.4 nM 

[3H]citalopram to brain sections obtained from the offspring of saline-treated, pair-fed 

control rats (CS). Specific binding was readily detected in the DR by ED19 and in the 

PCx by PN5. On PN19 and PN35 the highest binding was found in the DR and MnR. 

The rank order of binding was DR > MnR > LH - SN - AMG > MS - CA3 > 

Striatum - PCx - FCx. This pattern was generally similar to that noted in the earlier 

experiment (Table 2). 

When [3H]citalopram binding was compared in the offspring of pair-fed control 

and ethanol dams, we noted that the ethanol-exposed offspring had a significant decrease 
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in binding in several regions. Binding was decreased at one or both ligand concentrations 

in the FCx (PN19, Fig. 19), PCx (PN19, Fig. 20), LH (PN19 & PN35 Fig. 21), SN 

(PN19 & PN35, Fig. 22), MS (PN19, Fig. 23) and striatum (PN19 & PN35, Fig.24). 

In contrast, binding was increased in the DR (Fig. 25) on PN5 and MnR (Fig. 26) on 

PN19 and PN35. The noted observations in the DR, LH and SN confirm earlier findings; 

those in the MS and ST expand the first study which did not examine the latter brain 

areas. It should also be noted that in both investigations, we did not detect any ethanol

associated changes in the hippocampus (CA3, Fig. 27) or amygdala (Fig.28). A few 

significant differences were noted in one, but not both studies. For example, the latter 

study detected significantly decreased [3H]citalopram binding in the frontal and parietal 

cortex. A similar, though nonsignificant trend was found in the frontal cortex in the first 

investigation. 

When the PH]citalopram binding was compared in the offspring of saline- and 

buspirone treated dams, maternal treatment with buspirone prevented or reversed some 

of the ethanol-associated developmental abnormalities in 5-HT reuptake sites. Buspirone 

prevented the decline in binding of PH]citalopram at either the low or high concentration 

noted in the FCx (PN19, Fig. 19), LH (PN19 & PN35, Fig. 21), SN (PN35, Fig. 22), 

and MS (PN19, Fig. 23). Similarly, buspirone treatment reversed the ethanol-associated 

increase in binding in the DR (PN5, Fig. 25) and MnR (PN19, Fig 26). In contrast, 

maternal buspirone treatment had no effect on the decreased number of reuptake sites in 

the PCx (Fig. 20) and Striatum (Fig. 24). Buspirone treatment alone had little effect on 

[3H]citalopram binding to reuptake sites. 



TABLE4 

WEIGHT INCREASE DURING PREGNANCY 
(From EDl to ED20) 

n Weight increase (g) 

cs 5 136.0±13.4a 
CB 5 110.4±14.3* 
ES 5 124.8±14.3 
EB 5 118.4±11.7 

aData are presented as the mean± SD. 
*p<0.05 compared to CS. 
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Fig. 18. Effect of buspirone treatment on the weight of offspring at PN5, PN19 and 
PN35. The results are presented as the mean values obtained from pups of eight different 
dams. The error bars represent SD. Abbreviations are as follows: CS, saline treated pair
fed control; CB, buspirone-treated pair-fed control; ES, saline-treated ethanol-fed; EB, 
buspirone-treated ethanol-fed; PN, postnatal day. 
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TABLES 

SPECIFIC BINDING OF [3H]-CITALOPRAM IN THE CONTROL SALINE GROUP 

Specific binding (pmol/mg protein equivalent) 

0.8nM [3H]-citalopram 2.4nM [3H]-citalopram 
Region Age (n) (n) 

FCx PN19 0.194±0.116 (7) 0.509±0.180 (6) 
PN35 0.243±0.141 (7) 0.719±0.208 (6) 

PCx PN5 0.278±0.147 (5) 0.334±0.223 (8) 
PN19 0.325±0.172 (6) 0.607±0.260 (6) 
PN35 0.290±0.151 (6) 0.687±0.159 (6) 

MS PN19 0.619±0.245 (7) 1.045±0.306 (7) 
PN35 0.570±0.304 (7) 1.103±0.286 (7) 

Striatum PN19 0.322±0.155 (7) 0.701±0.173 (7) 
PN35 0.343±0.170 (7) 0.713±0.208 (7) 

CA3 PN19 0.441±0.219 (8) 0.922±0.265 (8) 
PN35 0.534±0.277 (8) 0.981±0.242 (8) 

LH PN19 1.091±0.397 (7) 1.919±0.397 (7) 
PN35 0.975±0.264 (7) 1.658±0.327 (7) 

AMG PN19 0.781±0.303 (7) 1.298±0.489 (7) 
PN35 1.013±0.322 (7) 1.626±0.425 (7) 

SN PN19 1.129±0.309 (7) 1.629±0.474 (7) 
PN35 1.071±0.227 (7) 1.710±0.278 (7) 

DR ED19 0.386±0.207 (6) 0.471±0.282 (6) 
PN5 0.330±0.109 (5) 0.320±0.188 (7) 
PN19 1.769±0.209 (7) 2.547±0.582 (7) 
PN35 1.757±0.214 (7) 2.485±0.308 (7) 

MnR PN19 1.592±0.234 (6) 2.400±0.405 (7) 
PN35 1.343±0.263 (6) 1.910±0.315 (7) 

All the data are presented as the mean± SD. 
Abbreviations are same as in Table 2 except MS, medial septum. 
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Fig. 19. Effects of buspirone treatment on the binding of [3H]citalopram in the 
frontal cortex. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 5. Statistical 
analysis was performed on the specific binding values. The asterisk (*) denotes values 
which are significantly different from those in the age-matched control saline group. 
Abbreviations are as follows: CS, control saline; CB, control buspirone; ES, ethanol 
saline; EB, ethanol buspirone; ED, embryonic day; PN, postnatal day. 
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Fig. 20. Effects of buspirone treatment on the binding of [3H]citalopram in the 
parietal cortex. Results are expressed as percent of the specific binding obtained from 
the control saline group at each age. The control saline values are given in Table 5. 
Statistical analysis was performed on the specific binding values. The asterisk (*) denotes 
values which are significantly different from those in the age-matched control saline 
group (PN19, 0.8 nM [3H]citalopram: F = 8.7, p = 0.03). Abbreviations are the same as 
those in the Fig. 19. 
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Fig. 21. Effects of buspirone treatment on the binding of [3H]citalopram in the 
lateral hypothalamus. Results are expressed as percent of the specific binding obtained 
from the control saline group at each age. The control saline values are given in Table 
5. Statistical analysis was performed on the specific binding values. The asterisk (*) 
denotes values which are significantly different from those in the age-matched control 
saline group (PN19, 0.8 nM [3H]citalopram: F = 13.7, p = 0.01; PN19, 2.4 nM 
[
3H]citalopram: F = 7.4, p = 0.03). The pound(#) denotes values which are significantly 

different from those in the age-matched ethanol saline group (PN35, 0.8 nM 
[
3H]citalopram: F = 12.5, p = 0.01). There was also a significant ethanol x buspirone 

interaction at PN19, 0.8 nM [3H]citalopram (F = 10.0, p = 0.02) and at PN35, 0.8 nM 
[
3H]citalopram (F = 11.6, p = 0.01). Abbreviations are the same as those in the Fig. 19. 
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Fig. 22. Effects of buspirone treatment on the binding of [3H]citalopram in the 
substantia nigra. Results are expressed as percent of the specific binding obtained from 
the control saline group at each age. The control saline values are given in Table 5. 
Statistical analysis was performed on the specific binding values. The asterisk (*) denotes 
values which are significantly different from those in the age-matched control saline 
group (PN19, 0.8 nM [3H]citalopram: F = 27.0, p = 0.002; PN19, 2.4 nM [3H]citalopram: 
F = 12.1, p = 0.01). The dollar sign($) denotes values which are significantly different 
from those in the age-matched control buspirone group (PN19, 0.8 nM [3H]citalopram: 
F = 27.0, p = 0.002; PN19, 2.4 nM [3H]citalopram: F = 12.1, p = 0.01). Abbreviations 
are the same as those in the Fig. 19. 
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Fig. 23. Effects of buspirone treatment on the binding of [3H]citalopram in the 
medial septum. Results are expressed as percent of the specific binding obtained from 
the control saline group at each age. The control saline values are given in Table 5. 
Statistical analysis was performed on the specific binding values. The asterisk (*) denotes 
values which are significantly different from those in the age-matched control saline 
group (PN19, 0.8 nM [3H]citalopram: F = 8.0, p = 0.03). The pound (#) and the dollar 
signs ($) denotes values which are significantly different from those in the age-matched 
ethanol saline and control buspirone, respectively (PNl 9, 2.4 nM [3H]citalopram: F = 7.1, 
p = 0.04). There was a significant ethanol x buspirone interaction (PN19, 0.8 nM 
[
3H]citalopram: F = 6.4, p = 0.04). Abbreviations are the same as those in the Fig. 19. 
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Fig. 24. Effects of buspirone treatment on the binding of [3H]citalopram in the 
striatum. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 5. Statistical 
analysis was performed on the specific binding values. The asterisk (*) denotes values 
which are significantly different from those in the age-matched control saline group (at 
PN19, 0.8 nM [3H]citalopram: F = 8.7, p = 0.02; PN35, 2.4 nM [3H]citalopram: F =7.3, 
p = 0.04). The dollar sign($) denotes values which are significantly different from those 
in the age-matched control buspirone group (PN19, 0.8 nM [3H]citalopram: F = 8.7, p = 
0.02; PN35, 2.4 nM [3H]citalopram: F = 7.3, p = 0.04). Abbreviations are the same as 
those in the Fig. 19. 
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Fig. 25. Effects ofbuspirone treatment on the binding of [3H]citalopram in the dorsal 
raphe. Results are expressed as percent of the specific binding obtained from the control 
saline group at each age. The control saline values are given in Table 5. Statistical 
analysis was performed on the specific binding values. The asterisk (*) denotes values 
which are significantly different from those in the age-matched control saline group (F 
= 6.4, p = 0.045). Abbreviations are the same as those in the Fig. 19. 
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Fig. 26. Effects of buspirone treatment on the binding of [3H]citalopram in the 
median raphe. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 5. Statistical 
analysis was performed on the specific binding values. The asterisk (*) denotes values 
which are significantly different from those in the age-matched control saline group 
(PN19, 0.8 nM [3H]citalopram: F = 30.2, p = 0.027; PN35, 2.4 nM [3H]citalopram: F = 

9.3, p = 0.02). Abbreviations are the same as those in the Fig. 19. 
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Fig. 27. Effects of buspirone treatment on the binding of [3H]citalopram in the CA3. 
Results are expressed as percent of the specific binding obtained from the control saline 
group at each age. The control saline values are given in Table 5. Statistical analysis was 
performed on the specific binding values. Abbreviations are same as those in the Fig. 19. 
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Fig. 28. Effects of buspirone treatment on the binding of [3H]citalopram in the 
amygdala. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 5. Statistical 
analysis was performed on the specific binding values. Abbreviations are same as those 
in the Fig. 19. 
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The PH]-8-0H-DPAT binding study was also conducted in order to see whether 

maternal treatment with a 5-HT1A agonist, buspirone, prevents or reverses ethanol

associated developmental abnormalities in 5-HT1A receptors. Table 6 contains the values 

for the specific binding of 1.0 nM and 2. 7 nM PHJ-8-0H-DPAT to brain sections 

obtained from the offspring of CS rats. The binding pattern of PHJ-8-0H-DPAT at PNl 9 

and PN35 was similar to that observed in earlier experiments (Table 3). The binding was 

high in the DG, DR, LS and low in the MnR, PCx and FCx. 

Compared to the binding in the offspring of CS, ethanol-exposed offspring had 

a transient increase of [3H]-8-0H-DPAT binding in the DG (Fig. 29) at PN19 and a 

decrease of binding in the PCx (Fig. 30) at PN35. These observations confirm the earlier 

findings. The binding in the DR (Fig. 31) and MnR (Fig. 32) was unaffected by in utero 

exposure in both the first and second experiments. The changes in the binding of [3H]-8-

0H-DP AT in the LS (Fig. 33) and FCx (Fig. 34) were significant in this experiment; a 

similar, though nonsignificant trend was found in the earlier investigation. 

Maternal treatment with buspirone appeared to prevent ethanol-associated 

developmental abnormalities in 5-HT1A receptors. Buspirone seemed to reverse the 

ethanol-associated increase in the binding of [3H]-8-0H-DPAT in the DG at PN19. 

Buspirone also appeared to prevent the decreased binding of either the 1.0 nM or 2. 7 nM 

[3H]-8-0H-DPAT in the PCx and LS of PN35 ethanol-exposed rats. Buspirone treatment 

during the embryonic period did not significantly affect the binding of PHJ-8-0H-DPAT 

in most brain regions examined in the postnatal rats. The only exception was found in 

the LS on PN35. 



TABLE6 

SPECIFIC BINDING OF [3H]-8-0H-DPAT IN THE CONTROL SALINE GROUP 

Specific binding (pmol/mg protein equivalent) 

l .OnM [3H]-8-0H-DPAT 2.7nM [3H]-8-0H-DPAT 
Region Age (n) (n) 

FCx PN19 0.081±0.065 (6) 0.095±0.040 (6) 
PN35 0.186±0.109 (6) 0.223±0.100 (6) 

PCx PN19 0.102±0.062 (6) 0.129±0.035 (6) 
PN35 0.214±0.096 (6) 0.212±0.058 (6) 

LS PN19 0.354±0.080 (7) 0.448±0.183 (7) 
PN35 0.472±0.182 (7) 0.634±0.200 (7) 

DG PN5 0.135±0.036 (5) 0.162±0.034 (8) 
PN19 0.485±0.135 (7) 0.512±0.170 (7) 
PN35 0.618±0.111 (7) 0. 722±0.132 (7) 

DR PN19 0.592±0.134 (5) 0.659±0.054 (5) 
PN35 0.659±0.145 (5) 0.745±0.265 (5) 

MnR PN19 0 .464±0 .104 (4) 0.429±0.074 (4) 
PN35 0.246±0.025 (4) 0.333±0.126 (4) 

All the data are presented as the mean ± SD. 
Abbreviations are same as in Table 3. 

94 



C:J CS .. CB - ES ~ EB 

140----~===============================-----

-~ 120 
Ci 

"' 0100 
.b 
c: 
0 

" 80 ';!!. -en 
c: 60 
"C 
c: 
.c 
~ 40 
·c:; 
Q) {/; 20 

0 

* 

1.0nM DPAT 2.7nM DPAT 1.0nM DPAT 2.7nM DPAT 1.0nM DPAT 2.7nM DPAT 

PN5 PN19 PN35 

Fig. 29. Effects of buspirone treatment on the binding of [3H)-8-0H-DP AT in the 
dentate gyrus. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 6. Statistical 
analysis was performed on the specific binding values. The asterisk (*) denotes values 
which are significantly different from those in the age-matched control saline group 
(PN19, 2.7 nM [3H]-8-0H-DPAT: F = 9.4, p = 0.02). Abbreviations are the same as those 
in the Fig. 19. 
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Fig. 30. Effects of buspirone treatment on the binding of [3H]-8-0H-DPAT in the 
parietal cortex. Results are expressed as percent of the specific binding obtained from 
the control saline group at each age. The control saline values are given in Table 6. 
Statistical analysis was performed on the specific binding values. The asterisk (*) denotes 
values which are significantly different from those in the age-matched control saline 
group (PN35, 1.0 nM [3H]-8-0H-DPAT: F = 8.9, p = 0.03; PN35, 2.7 nM [3H]-8-0H
DPAT: F = 8.5, p = 0.03). Abbreviations are the same as those in the Fig. 19. 
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Fig. 31. Effects of buspirone treatment on the binding of [3H]-8-0H-DP AT in the 
dorsal raphe. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 6. Statistical 
analysis was performed on the specific binding values. Abbreviations are the same as 
those in the Fig. 19. 
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Fig. 32. Effects of buspirone treatment on the binding of [3H]-8-0H-DPAT in the 
median rap he. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 6. Statistical 
analysis was performed on the specific binding values. Abbreviations are the same as 
those in the Fig. 19. 
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Fig. 33. Effects of buspirone treatment on the binding of [3H]-8-0H-DPAT in the 
lateral septum. Results are expressed as percent of the specific binding obtained from 
the control saline group at each age. The control saline values are given in Table 6. 
Statistical analysis was performed on the specific binding values. The asterisk (*) denotes 
values which are significantly different from those in the age-matched control saline 
group (PN35, 1.0 nM [3H]-8-0H-DPAT: F = 9.6, p = 0.02). Abbreviations are the same 
as those in the Fig. 19. 
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Fig. 34. Effects of buspirone treatment on the binding of [3H]-8-0H-DPAT in the 
frontal cortex. Results are expressed as percent of the specific binding obtained from the 
control saline group at each age. The control saline values are given in Table 6. Statistical 
analysis was performed on the specific binding values. The asterisk (*) denotes values 
which are significantly different from those in the age-matched control saline group 
(PN35, 1.0 nM [3H]-8-0H-DPAT: F = 9.6, p = 0.02). The pound(#) denotes values which 
are significantly different from those in the age-matched ethanol saline. There was a 
significant ethanol x buspirone interaction (PN35, 1.0 nM [3H]-8-0H-DPAT: F = 9.4, p 
= 0.03). Abbreviations are the same as those in the Fig. 19. 
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In Vitro Cell Culture Studies 

It was hypothesized that ethanol exerts some of its damaging effects on the 

developing serotonergic neurons by decreasing the concentration of serotonin and other 

essential trophic factors. The first portion of this dissertation discussed ethanol's effects 

on serotonergic neurons and the role of 5-HT1A receptors. This section concentrates on 

the effects of ethanol on trophic factors produced by astroglia. Astroglia from a target 

region (e.g. the cortex) were cultured in the presence or absence of 100 mM ethanol. 

The purity of the astroglial cultures was assessed by the presence of GF AP as shown Fig. 

35-A. Media from these astroglial cultures was collected. This media was assumed to 

contain trophic factors that were synthesized and secreted by astroglia. This conditioned 

media (CM) was then used at a concentration of 30% or 60% to culture control fetal 

rhombencephalic neurons, which contain the developing serotonergic neurons. 

Serotonergic neurons stained with 5-HT antibody are shown in Fig. 35-B. The effects of 

added CM (CCM or ECM) was noted on the development of several measurements of 

total neuronal development (cell number, DNA content, protein content, neurite 

outgrowth) and 5-HT neuronal development (5-HT immunopositive cells, 5-HT 

reuptake). 

The results of these studies demonstrate that addition of CM increased the 5-HT 

uptake (Fig. 36), total DNA content (Fig. 37), total number of surviving neurons (Fig. 

38) and the number of 5-HT immunopositive neurons (Fig. 39). CM also increased the 

number of neurons which had longer neurites (Fig. 40). These observations support the 



Fig. 35. Photographs of astroglial cells stained with GFAP antibody (A) and neuronal cells 
stained with 5-HT antibody (B). Cultures were stained with antibody as described in the Methods 
section. Cultures were photographed using a phase contrast microscope. 
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hypothesis that astroglia, derived from a target region, produce trophic factors which are 

necessary for normal neuronal development. 

When neuronal cultures maintained in CCM were compared with those 

maintained in ECM, several significant differences were noted. That is, neuronal 

cultures maintained in ECM have a decreased total DNA content (Fig. 37), total number 

of surviving neurons (Fig. 38) and number of neurons with longer neurites (Fig. 40). 

More importantly, the number of 5-HT immunopositive neurons (Fig. 39) and 5-HT 

reuptake (Fig. 40) were decreased in the cultures maintained in the ECM. In contrast, 

total protein content was not changed (Fig. 42). 
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Fig. 36. Dose-dependent effect of astroglial-derived conditioned media (CM) on 
neuronal [3H]5-HT uptake. Fetal rhombencephalic neurons were cultured in the presence 
of conditioned media obtained from astroglial cultures. Results are expressed as the 
percentage of the value in control cultures grown in chemically defined media. In the 
control cultures the mean uptake of [3H]5-HT was 0.226 pmol/well/20 min. The error bars 
represent the SD (n = 3 experiments. In each experiment 4 different wells were averaged 
to get an n of 1.). 
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Fig. 37. Effects of CCM and ECM on total DNA content. Fetal rhombencephalic 
neurons were cultured in the presence of conditioned media obtained from astroglial 
cultures. CCM and ECM were derived from astroglial cultures grown for 4 days in the 
absence or presence of 100 mM ethanol. Results are expressed as the percentage of DNA 
in control cultures grown in chemically defined media (CDM). In the CDM cultures the 
mean DNA content was 2.99 µg/well. Each column and the error bar represent the mean 
± SD in one experiment. The findings were replicated in a second experiment. *p<0.05 
compared to CCM. 
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Fig. 38. Effects of CCM and ECM on total cell number. Fetal rhombencephalic 
neurons were cultured in the presence of conditioned media obtained from astroglial 
cultures. CCM and ECM were derived from astroglial cultures grown for 4 days in the 
absence or presence of 100 mM ethanol. Results are expressed as the percentage of 
surviving cell number in the control cultures grown in chemically defined media (CDM). 
In the CDM cultures the mean was 4.47 x 104 cells/well. Each column and the error bar 
represent the mean ± SD in one experiment. The findings were replicated in a second 
experiment. *p<0.05 compared to CCM. 
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Fig. 39. Effects of CCM and ECM on the number of 5-HT immunopositive cells. 
Fetal rhombencephalic neurons were cultured in the presence of conditioned media 
obtained from astroglial cultures. CCM and ECM were derived from astroglial cultures 
grown for 4 days in the absence or presence of 100 mM ethanol. Results are expressed 
as the ratio of the number of 5-HT immunopositive cells to the total number of neurons. 
Each column and the error bar represent the mean ± SD in one experiment. The findings 
were replicated in a second experiment. *p<0.05 compared to CCM. 
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Fig. 40. Effects of CCM and ECM on neurite length. Fetal rhombencephalic neurons 
were cultured in the presence of conditioned media obtained from astroglial cultures. 
CCM and ECM were derived from astroglial cultures grown for 4 days in the absence or 
presence of 100 mM ethanol. The longest neurite on each neuron was measured from cell 
body to the end of neurite. The results are expressed as the relative number of neurons 
which had a neurite length in the categories, less than 250 µm, 250 - 500 µm or greater 
than 500 µm. 
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Fig. 41. Effects of CCM and ECM on neuronal [3H]5-HT uptake. Fetal 
rhombencephalic neurons were cultured in the presence of conditioned media obtained 
from astroglial cultures. CCM and ECM were derived from astroglial cultures grown for 
4 days in the absence or presence of 100 mM ethanol. Results are expressed as the 
percentage of the [3H]5-HT uptake in control cultures grown in chemically defined media 
(CDM). In the CDM cultures the mean [3H]5-HT uptake was 6.32 pmol/mg protein/20 
min. Each column and the error bar represent the mean ± SD in one experiment. The 
findings were replicated in a second experiment. *p<0.05 compared to CCM. 
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Fig. 42. Effects of CCM and ECM on neuronal protein content. Fetal rhombencephalic 
neurons were cultured in the presence of conditioned media obtained from astroglial 
cultures. CCM and ECM were derived from astroglial cultures grown for 4 days in the 
absence or presence of 100 mM ethanol. Results are expressed as the percentage of 
protein in control cultures grown in chemically defined media (CDM). In the CDM 
cultures the mean protein content was 17.49 µg/well. Each column and the error bar 
represent the mean ± SD in one experiment. The finding was replicated in the second 
experiment. 
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CHAPTER V 

DISCUSSION 

Animals 

The FAS model used in this dissertation included rats which were fed alcohol 

chronically before conception and throughout the gestation. Since maternal malnutrition, 

especially protein deficiency, is known to affect brain development (Druse et al., 1980; 

Smith and Druse, 1982), protein-rich, and nutritionally well-balanced diets (Norohona 

and Druse, 1982) were pair-fed to control and ethanol consuming rats. The comparable 

weight gains of mothers and of offspring in the pair-fed groups indicate that these two 

groups of rats were comparably nourished. Although the ad lib control rats consumed 

more diet and had a greater apparent weight gain during pregnancy, the weights of their 

offspring were not significantly different from those of the offspring of pair-fed control 

rats. Moreover, we rarely found any significant differences in terms of 5-HT reuptake 

and 5-HT1A binding sites between the offspring of pair-fed and ad lib control rats. 

Buspirone treatment did not affect diet consumption. This is consistent with a 

previous report in which subcutaneous injections of low doses of buspirone (up to 1.25 

mg/kg) increased food intake, but a higher dose (2.5 - 5 mg/kg) such as used in this 

study did not affect food consumption (Fletcher and Davies, 1990). Even though 
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buspirone-treated saline rats had a decreased maternal weight gain, the number of 

pups/litter and the pup weight were not different. 

Blood alcohol levels were in the physiological range for humans. Our values 

ranged from 75 to 120 mg/dl. In most states one is arrested for drunken driving with a 

BAL of 100 mg/dl or less. Since it has been recognized that heavier ethanol exposure 

leads to more severe effects in human FAS (Streissguth et al., 1988), one might expect 

higher BALs to cause more damage than that seen in our studies. 

5-HT Reuptake Sites and 5-HT1A Receptor Sites 

In order to quantitate the 5-HT nerve terminals, quantitative autoradiography 

(QAR) of PH]citalopram-labeled serotonin reuptake sites was used. 5-HT reuptake sites 

are highly localized on the 5-HT nerve terminals (Kuhar and Aghajanian, 1973) and 

citalopram selectively binds to the 5-HT reuptake sites (D 'Amato et al., 1987a; Duncan 

et al., 1992). Compared to binding assays using membrane homogenates, QAR provides 

improved localization and quantitation of reuptake sites in small, anatomically defined 

regions of the brain (Young and Kuhar, 1979; Palacios et al., 1981; Pazos and Palacios, 

1985). 

The 5-HT reuptake sites in the dorsal raphe seem to reach a peak density at about 

3 weeks after birth, and at this age the dorsal raphe contained the highest concentration 

of 5-HT reuptake sites among the regions (Pranzatelli and Martens, 1992). A dense patch 

of 5-HT reuptake sites was found in the parietal cortex at PN5 and PN19. This 

observation resembles the innervation pattern of 5-HT immunopositive fibers observed 
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by D' Amato et al. (1987b). 

Ligand binding was assessed at 2 concentrations; one concentration approximates 

the K0 and the second concentration was three times the K0 • Any changes of ligand 

binding at the concentration approximating K0 can potentially detect changes in the both 

affinity and density of receptors, whereas abnormalities detected at the higher 

concentration can detect changes only in the density of receptors. In some regions 

ethanol-associated differences are found at one but not both concentrations. However, 

generally a similar trend was found at the other ligand concentration, suggesting that 

perhaps a greater n was needed to demonstrate significance at other concentration. 

The results of quantitation of 5-HT reuptake sites showed that in the offspring 

of ethanol-fed rats 5-HT reuptake sites were increased in the dorsal raphe at PN5, and 

in the median raphe at PN19 and PN35. In contrast to those cell body regions, the 

reuptake sites were decreased in the frontal cortex, parietal cortex, lateral hypothalamus, 

substantia nigra, medial septum and striatum at PN19. The decreased 5-HT reuptake sites 

were also found in the lateral hypothalamus and substantia nigra at PN35. Ethanol

associated changes of 5-HT reuptake sites in dorsal raphe, lateral hypothalamus and 

substantia nigra were consistently found in both the first and second investigation. The 

changes in the frontal cortex were significant in the second study; similar trends were 

found in the first study. In contrast, significant changes in the parietal cortex and median 

raphe may not be meaningful because the changes were only significant in one study and 

at only one concentration. The results of the first and second studies on 5-HT reuptake 

sites were summarized in Table 7. In a previous study from this laboratory, 5-HT 
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reuptake sites were measured in few, gross brain regions of the rat off spring (Druse and 

Paul, 1989). In that study, 5-HT uptake was decreased in the motor cortex of ethanol

exposed rats at both PN19 and PN35. Similarly, decreased 5-HT reuptake sites in the 

frontal cortex were found in the present study. In addition, the present study considerably 

expands the earlier study by including many more regions and even including fetal brain 

tissue. 

5-HT reuptake sites were increased in the dorsal raphe of the ethanol-exposed 

rats. This finding could indicate 5-HT hyperinnervation (sprouting) due to the ethanol

associated deficit of serotonin, because a similar hyperinnervation of 5-HT fibers has 

been observed in the brainstem of neonatal rats that have been treated with 5,7-DHT, a 

5-HT neurotoxin (Pranzatelli and Martens, 1992). 

In contrast to the raphe region, 5-HT reuptake sites were decreased in the 

terminal regions (e.g. frontal cortex, lateral hypothalamus, substantia nigra, medial 

septum and striatum). Decreased reuptake sites may indicate the delayed development of 

serotonergic fibers in ethanol-exposed rats. This is supported by the observations that the 

catch-up growth of 5-HT fibers was found in some regions at later ages. Delayed 

development may be caused by either decreased number of raphe 5-HT neurons, or 

decreased projections from raphe to target areas or both. In utero ethanol exposure has 

been demonstrated to decrease cell number in many regions such as somatosensory 

cortex, the hippocampal CA3 region and the cerebellum (Barnes and Walker, 1981; 

Bonthius and West, 1990; Miller and Potempa, 1990). Decreased 5-HT projections could 

be caused by either alterations in cell adhesion molecules (CAM) or altered levels of 
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trophic factors (e.g. 5-HT) or chemotactic factors which guide projecting nerve fibers. 

Interestingly, in the cell line (neurolastoma x glioma hybrid) ethanol inhibited the cell

cell adhesion by altering the level of N-CAM and Ll (Charness et al., 1994). 

In utero ethanol may indirectly affect the development of 5-HT neurons possibly 

through the modulation of trophic factors, such as 5-HT. Previous studies from this 

laboratory as well as others demonstrated that serotonin content was decreased in the 

offspring of ethanol-exposed animals (Druse et al., 1991; Elis et al., 1976, 1978; 

Rathbun and Druse, 1985). More importantly, the decreased serotonin content was 

observed in the fetuses as early as ED15 in the brainstem and ED19 in the cortex (Druse 

et al., 1991). Fetal 5-HT acts as a developmental signal (Lauder, 1990). In addition to 

influencing growth cone elongation and neurite outgrowth to target areas (Haydon et al., 

1984, 1987), 5-HT has been demonstrated to regulate the normal development and 

maturation of serotonergic neurons in the fetal brain (Budnik et al., 1989; De Vitry et 

al., 1986; Whitaker-Azmitia and Azmitia, 1986; Whitaker-Azmitia et al., 1987). The 

effects of serotonin on its own neurons seem to be mediated through interaction with 5-

HT1A receptors (Whitaker-Azmitia and Azmitia, 1986; Whitaker-Azmitia et al., 1987). 

Treatment of pregnant rats with buspirone, a 5-HT1A receptor agonist, prevented the 

abnormal development of 5-HT terminals in the dorsal raphe (PN5), medial septum 

(PN19), frontal cortex (PN19), substantia nigra (PN35) and lateral hypothalamus (PN19 

and PN35) in the offspring of ethanol-exposed rats. This suggests that at least part of the 

abnormalities in the 5-HT terminal density induced by in utero ethanol exposure were 

due to decreased stimulation of 5-HT1A receptors. The effects of ethanol and buspirone 
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on citalopram binding to 5-HT reuptake sites were summarized in Table 7. These results 

are consistent with a previous report that the cortical deficit of 5-HT and its metabolite, 

5-HIAA, in ethanol-exposed offspring was prevented by maternal treatment with 

buspirone (Tajuddin and Druse, 1993). 

There could be possible mechanisms by which in utero ethanol alters 5-HT 

content. Serotonin synthesis depends on the concentration of tryptophan, the substrate for 

tryptophan hydroxy lase (Tong and Kaufman, 1975). The amount of tryptophan transport 

may be decreased, since ethanol impairs placental nutrient transport (Schenker, 1989). 

In utero ethanol exposure may indirectly affect 5-HT content by affecting other systems 

such as the production of corticosterone. Pregnant rats fed with alcohol-containing diet 

increased plasma corticosterone (Weinberg and Bezio 1987). It has been also shown that 

rats exposed to ethanol in utero have elevated plasma and brain corticosterone levels at 

birth (Kakihana et al., 1980; Taylor et al., 1982a). Alteration of corticosterone level in 

fetus as well as mother may affect the normal development of tryptophan hydroxylase, 

a serotonin synthesizing enzyme since corticosterone is required for the normal 

development of tryptophan hydroxylase (Sze, 1980). 

The results of the present experiments also indicate that in utero ethanol exposure 

has region- and age-specific effects on the development of 5-HT fibers. Similar region

specific effects of in utero ethanol exposure have been observed in the hippocampus. 

Hippocampal pyramidal cells in the CAI region are decreased by prenatal ethanol 

exposure, whereas the cells in the CA3 region were not affected (Barnes and Walker, 

1981). The present studies also indicate that many of the detected developmental 
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abnormalities are transient. Transient, age-specific ethanol effects have also been 

demonstrated in the cerebellum (Volk, 1977). 

In some regions (e.g. the parietal cortex and striatum) buspirone did not prevent 

or reverse the abnormalities of 5-HT terminal density. This may be due to differences 

between the timing of the buspirone treatment (ED13 to ED21) and key developmental 

processes in the unaffected regions. Alternatively, ethanol-associated 5-HT terminal 

abnormalities in these regions may be due to factors other than the fetal deficit of 

serotonin. In utero ethanol exposure may affect the production of trophic factors, which 

consequently affect the development of 5-HT terminals. This effect may be mediated by 

ethanol's action on astroglial cells. Astroglial cells are known to produce growth factors 

which are essential for the neuronal survival and differentiation during brain development 

(Manthorpe et al., 1986). 

The development of postsynaptic 5-HT1A receptors were increased in the dentate 

gyros at PN19 and decreased in the parietal cortex at PN35 by ethanol exposure in utero. 

In contrast, the development of 5-HT1A receptors in the raphe at both PN19 and PN35 

was not affected. Although the binding of PH]-8-0H-DPAT in the raphe regions of the 

fetal brain was not measurable in this study, membrane homogenate binding studies from 

this laboratory demonstrated that the binding of 10 nM [3H]-8-0H-DPAT was 

significantly increased in ethanol-exposed rat fetuses on ED19 (Druse et al., 1991). Thus, 

in utero ethanol exposure adversely affects the developmental pattern of 5-HT1A receptors. 

Decreased fetal serotonin may contribute to the developmental abnormalities in 

5-HT1A receptors. This hypothesis is supported by studies that found delayed 5-HT target 
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differentiation in the offspring brain, when pregnant rats were treated with pCPA, a 5-

HT synthesis inhibitor (Lauder and Krebs, 1978). The expression of 5-HT1 receptors in 

those offspring was affected in both brainstem and forebrain regions (Whitaker-Azmitia 

et al., 1987). However, buspirone treatment during the embryonic period did not always 

prevent the effects of in utero ethanol exposure on 5-HT1A receptors. Table 8 summarized 

the effects of ethanol and buspirone on 8-0H-DPAT binding to 5-HT1A receptors. This 

suggests that the abnormal development of 5-HT1A receptors in ethanol-exposed rats may 

be due to more than the decreased stimulation of 5-HT1A receptors on developing raphe 

neurons. There may also be altered levels of other trophic factors such as astroglial

derived growth factors or decreased stimulation of other fetal brain 5-HT receptors (e. 

g. 5-HT2 receptors). 

The mechanism by which buspirone exerts its effects on the fetal brain is 

presently unknown. However, the effects of buspirone in the adult brain are mediated 

through its interaction with 5-HT1A receptors. Buspirone binds to 5-HT1A receptors with 

high affinity as indicated by an IC50 of 9.5 nM for displacing PH]-8-0H-DPAT 

(Peroutka, 1985). In addition, the binding pattern of in vivo PH]buspirone 

autoradiography is remarkably similar to the distribution pattern of 5-HT1A receptors 

(Matheson and Tunnicliff, 1991). Electrophysiological, biochemical and pharmacological 

studies demonstrated that buspirone acts as a full agonist on the 5-HT1A receptors of 

serotonergic dorsal raphe neurons (Meller et al., 1990; VanderMaelen et al., 1986). In 

the hippocampus buspirone acts as a partial agonist on the postsynaptic 5-HT1A receptors 

(Andrade and Nicoll, 1987; Yocca et al., 1986). Since 5-HT1A receptors and mRNA are 
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present in the fetal rat brain (Daval et al., 1987; Hillion et al., 1990), the effects of 

maternal buspirone treatment are presumably mediated through its action on fetal 5-HT1A 

receptors. Buspirone not only acts on the neuronal receptors, but may also act on the 

astroglial 5-HT1A receptors, whose activation stimulates the production of serotonergic 

growth factors, such as SlOOJ} (Azmitia et al., 1990; Whitaker-Azmitia and Azmitia, 

1989; Whitaker-Azmitia et al., 1990). 

There is also the possibility that the effects of buspirone could be mediated 

through other neurotransmitter systems. Although its binding affinity to D2 receptors is 

low as indicated by an IC50 of 260 nM for displacement of [3H]spiperone from striatal 

membranes (Riblet et al., 1982), buspirone can act on dopamine D2 receptors as an 

antagonist. The latter effect consequently increases dopaminergic neurotransmission 

(Riblet et al., 1984). One also can not exclude the possibility that buspirone treatment 

elevates maternal ACTH, corticosterone and prolactin (Gilbert et al., 1988; 

Montefrancesco et al., 1990; Meltzer et al., 1991), and that these changes contribute to 

the protective effects of buspirone. In fact, ACTH stimulates the development of 

serotonergic neurons in culture (Davila et al., 1986). 

Effects of Astroglial Cells on the Survival and 

Differentiation of 5-HT Neurons In Vitro 

During brain development astroglial cells play an important role in the proper 

maturation of the nervous system. For example, radial glial cells guide the migration of 

immature neurons (Rakic, 1972). Astroglial cells secrete soluble molecules which are 
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essential for neuronal growth and survival (Banker, 1980; Kadle et al., 1988; Lieth et 

al., 1989; Manthorpe et al., 1986; Muller and Seifert, 1982). Prenatal exposure to 

ethanol induces premature degradation of the network of radial glial fibers in the cortex 

(Miller and Robertson, 1993). 

Ethanol exposure has been shown to alter the function of astroglial cells. For 

example, ethanol decreases glutamine synthetase activity in astroglial cells (Babu et al., 

1994; Davies and Vernadakis, 1984) as well as hexose uptake (Singh et al., 1990). It 

appears that astroglial cells are more susceptible to ethanol than neurons in terms of their 

function (Babu et al., 1994; Davies and Vernadakis, 1984; Guerri et al., 1990; Snyder 

et al., 1992). When rhombencephalic astroglial cells and neurons were cultured in a 

serum-containing media, ethanol decreased rhombencephalic astroglial protein content 

and astroglial 5-HT uptake (Lokhorst and Druse, 1993b), while having no effect on the 

rhombencephalic neuronal protein and 5-HT uptake (Lokhorst and Druse, 1993b). In 

addition, glutamine synthetase activity was decreased in the astroglial cells derived from 

the ethanol-treated rats, whereas the neuron specific enolase activity was not affected in 

the neurons derived from the same animal (Babu et al., 1994). The ethanol-associated 

decrement in astroglial protein content and synthesis may be indicative of decreased 

astroglial production of neurotrophic factors. 

The results of the present cell culture study indicate that conditioned media (CM), 

derived from target astroglia, contained neuronal growth factors since CM enhanced the 

number of neurons and 5-HT immunopositive neurons, total DNA content, and 5-HT 

uptake. The effect of CM on 5-HT immunopositive neurons and serotonin uptake suggest 
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that target astroglial cells produce growth factors essential for serotonergic neurons as 

well as other neurons. 

Total number of neurons, total DNA content and the number of 5-HT 

immunopositive neurons were decreased in the cultures grown in the conditioned media 

derived from astroglial cells treated with 100 mM ethanol for 4 days (ECM). Serotonin 

uptake was also decreased in the cultures grown in the ECM. The cultures showed a 

disturbed pattern of neurite outgrowth; the relative number of neurons having medium 

length neurites was decreased. This demonstrates that astroglial exposure to ethanol 

decreases the astroglial production of growth factors which are involved with neuronal 

survival and growth. The possible neurotrophic factors which could be affected by 

ethanol include SlOOB, fibroblast growth factor (FGF), epidermal growth factor (EGF) 

and insulin-like growth factors I and II (IGF-1 & IGF-11). SlOOB is synthesized and 

secreted mainly by astrocytes and acts on CNS neurons (reviewed by Walicke, 1989). 

Serotonergic neurons are among those which respond to SlOOB. FGF appears to be 

synthesized by astrocytes (Ferrara et al., 1988). Basic FGF (bFGF) has been shown to 

promote neuron survival and neurite extension in hippocampal (Walicke et al., 1986), 

cortical (Morrison et al., 1986) and mesencephalic neurons (Ferrari et al., 1989) in vitro. 

EGF immunoreactivity and EGF receptors have been demonstrated in the frontal and 

parietal cortex, and striatum of developing rats (Fallon et al., 1984; Quirion et al., 

1988). EGF promotes the maturation of telencephalic neurons (Monnet-Tschudi and 

Honegger, 1989). The receptors for IGF-1 and IGF-11 are found in fetal and adult 

mammalian brain (reviewed by Baskin et al., 1988). IGF-1 promotes survival and neurite 
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outgrowth of fetal hypothalamic neurons (Torres-Aleman et al., 1990). 

There are several possible mechanisms by which ethanol affects astroglial 

function, including the production of growth factors. Chronic ethanol exposure has been 

shown to alter phosphoinositide (Pl) hydrolysis in astrocytes (Ritchie et al., 1988). PI 

hydrolysis generates diacylglycerol which functions as an essential cofactor for protein 

kinase C, and inositol triphosphate which regulates ca+2 mobilization. Thus, altered PI 

hydrolysis may lead to the alteration of Ca +2 and protein kinase C levels. Both Ca +2 and 

protein kinase C are important mediators of cell proliferation and differentiation 

(reviewed by Clapham, 1995; Clemens et al., 1992; Nishizuka, 1992; Rosen et al., 1995; 

Whitaker, 1995). Cytosolic ca+2 levels seem to be quantitatively correlated with 

transcription factor expression (Negulescu et al., 1994). Intracellular Ca+2 levels are also 

involved in cell death such as programmed cell death (Nicotera et al., 1994) and 

excitotoxicity (Schanne et al., 1979; Dugan and Choi, 1994). Therefore, effects of 

ethanol on the alteration of PI hydrolysis may be ultimately involved in gene regulation 

and/or cell death. Ethanol may alter gene regulation by acting through alterations of 

second messengers, and by disturbing gene transcription. In fact, ethanol exposure has 

been shown to increase the transcription rate of the stress protein Hsc70 and tyrosine 

hydroxylase in neural cell lines in culture (Miles et al., 1991; Gayer et al., 1991). In 

primary cultures of cortical astrocytes ethanol has been also shown to increase the GF AP 

mRNA levels (Fletcher and Shain, 1993). 

Concluding Remarks 
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The present study demonstrates that in utero ethanol exposure adversely affects 

the development of 5-HT reuptake sites and 5-HT1A receptors. This study also 

demonstrates that ethanol exposure decreases astroglial production of neurotrophic 

factors. Maternal treatment with buspirone, a 5-HT1A agonist, has been shown in this and 

a prior study to overcome or prevent some of the damaging effects of ethanol. Therefore, 

the mechanism by which ethanol causes these abnormalities may be due partly to the 

decreased stimulation of 5-HT1A receptors and decreased production of astroglial cell

derived growth factors that are essential for normal development of 5-HT and other 

neurons. Decreased stimulation of raphe 5-HT1A receptors may result in altered 

development of 5-HT terminals as seen in altered 5-HT reuptake sites. Decreased 

stimulation of astroglial 5-HT1A receptors potentiates the ethanol effect on the decreased 

production of astroglial cells. 

However, additional studies are needed to assess buspirone's effects on other 

neurotransmitter systems which were affected by in utero ethanol exposure. In addition, 

more studies are needed to address the mechanism by which in utero ethanol exposure 

decreases the serotonin content and astroglial growth factors in the fetal brain. A 

schematic diagram summarizing the postulated action mechanism of ethanol and 

buspirone is presented in Fig. 43. 



TABLE 7 

EFFECTS OF ETHANOL AND BUSPIRONE ON CITALOPRAM BINDING TO 5-HT 
REUPTAKE SITES 

0.8 nM 2.4nM 
Region Age Study 1 Study 2 Buspirone Study 1 Study 2 Buspirone 

FCx PN19 -.!.- .i -.!.- .i 
PN35 -.!.-

PCx PN5 
PN19 .i .i 
PN35 

MS PN19 .i .i .i .i 
PN35 

Striatum PN19 .i .i -.!.- -.!.-
PN35 .i 

CA3 PN19 
PN35 

LH PN19 .i .i .i .i .i 
PN35 .i .i .i -.!.-

AMG PN19 
PN35 

SN PN19 -.!.- .i .i .i .i .i 
PN35 .i .i -.!.-

DR ED19 -t- t 
PN5 t -t- -t- t 
PN19 
PN35 

MnR PN19 t 
PN35 t t t 

The solid arrows ct' .i) indicate that values from ethanol-exposed offspring were significantly different from 
those of control saline-treated offspring (P < 0.05). The broken arrows (-t-, -.!.-) indicate nonsignficant 
trends (P > 0.05). The dotted lines (---) are used to demonstrate that in utero ethanol exposure had no effect 
on 5-HT reuptake sites. Abbreviations are same as in Table 5. 
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TABLE 8 

EFFECTS OF ETHANOL AND BUSPIRONE ON 8-0H-DPAT BINDING TO 5-HT1A 

RECEPTORS 

Region 

FCx 

PCx 

DG 

LS 

DR 

MnR 

Age 

PN19 
PN35 

PN19 
PN35 

PN5 
PN19 
PN35 

PN19 
PN35 

PN19 
PN35 

PN19 
PN35 

1.1 nM 2.75 nM 

Study 1 Study 2 Buspirone Study 1 Study 2 Buspirone 

"' 
-t- t t t t 

This table summarizes the results obtained in two experiments in which [3H)-8-0H-DPAT was 
used to radiolabel 5-HT1A receptors. The solid arrows (t, t) indicate that values from ethanol
exposed offspring were significantly different from those of control saline-treated offspring (P < 
0.05). The broken arrows (-t-, -t-) indicate nonsignficant trends (P > 0.05). The dotted lines 
(---) are used to demonstrate that in utero ethanol exposure had no effect on 5-HT IA receptors. 
Abbreviations are same as in Table 3. 
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Astroglia 

5-HT1A 

Target Neuron 

Fig. 43. Proposed action mechanisms of ethanol and buspirone on the serotonergic 
system. Ethanol decreases serotonin content and astroglial production of neurotrophic 
factors. Decreased serotonin less stimulates raphe 5-HT1A receptors, which results in 
altered development of serotonergic fibers. Decreased serotonin also less stimulates 
astroglial 5-HT IA receptors, which potentiates ethanol's effect on the decreased production 
of neurotrophic factors. Buspirone prevents ethanol-associated abnormal development of 
serotonergic fibers by stimulating both raphe and astroglial 5-HT1A receptors. However, 
further studies are required for the effects of buspirone acting on D2 receptors as an 
antagonist, which, in turn, affects the development of 5-HT fibers. Abbreviations are as 
follows: D2, dopamine D2 receptor; 5-HT1A, 5-HT1A receptor; NTF, neurotrophic factor; 
TR, tryptophan. 
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APPENDIX 

STATISTICAL SIGNIFICANCE LEVEL OF BINDING ASSAY RESULTS 

Figure Region Age [Ligand] F-ratio P value 

[
3H)Citalopram 

3 DR PN 5 0.8 nM 19.4 0.0004 
2.4 nM 2.6 0.12 

PN19 0.8 nM 0.1 0.9 
2.4 nM 2.6 0.1 

PN35 0.8 nM 1.4 0.3 
2.4 nM 0.4 0.7 

4 MnR PN19 0.8 nM 1.2 0.3 
2.4 nM 0.6 0.6 

PN35 0.8 nM 7.7 0.0071 
2.4 nM 0.4 0.7 

5 LH PN19 0.8 nM 12.2 0.001 
2.4 nM 8.2 0.006 

PN35 0.8 nM 5.3 0.02 
2.4 nM 12.1 0.0013 

6 SN PN19 0.8 nM 2.4 0.1 
2.4 nM 6.6 0.01 

PN35 0.8 nM 17.8 0.0005 
2.4 nM 2.9 0.09 

7 Amygdala PN19 0.8 nM 0.2 0.8 
2.4 nM 1.3 0.3 

PN35 0.8 nM 1.2 0.3 
2.4 nM 1.4 0.3 

8 CA3 PN19 0.8 nM 0.1 0.9 
2.4 nM 0.7 0.5 

PN35 0.8 nM 0.8 0.5 
2.4 nM 0.2 0.8 

9 PCx PN5 0.8nM 0.1 0.9 
2.4 nM 0.3 0.8 

PN19 0.8 nM 0.3 0.8 
2.4 nM 1.5 0.3 
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Figure Region Age [Ligand] F-ratio P value 

PN35 0.8 nM 1.4 0.3 
2.4 nM 0.1 0.9 

10 FCx PN19 0.8 nM 0.9 0.43 
2.4 nM 1.3 0.3 

PN35 0.8 nM 0.6 0.6 
2.4 nM 1.5 0.3 

[
3H)-80H-DPAT 

12 DG PN5 1.1 nM 3.8 0.6 
2.75 nM 2.0 0.2 

PN19 1.1 nM 1.0 0.4 
2.75 nM 4.0 0.05 

PN35 1.1 nM 0.4 0.7 
2.75 nM 0.1 0.9 

13 PCx PN19 1.1 nM 1.0 0.4 
2.75 nM 1.4 0.3 

PN35 1.1 nM 4.2 0.04 
2.75 nM 4.3 0.04 

14 FCx PN19 1.1 nM 0.2 0.8 
2.75 nM 1.7 0.2 

PN35 1.1 nM 1.9 0.2 
2.75 nM 1.2 0.3 

15 LS PN19 1.1 nM 1.3 0.3 
2.75 nM 1.0 0.4 

PN35 1.1 nM 0.4 0.7 
2.75 nM 2.0 0.2 

16 DR PN19 1.1 nM 2.3 0.2 
2.75 nM 1.3 0.3 

PN35 1.1 nM 0.1 0.9 
2.75 nM 0.3 0.8 

17 MnR PN19 1.1 nM 0.9 0.5 
2.75 nM 0.6 0.6 

PN35 1.1 nM 0.7 0.5 
2.75 nM 1.9 0.2 
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Figure Region Age [Ligand] Group F-ratio P value 

[
3H]Citalopram 

19 FCx PN19 0.8 nM Ethanol 4.2 0.09 
Buspirone 0.3 0.6 
Interaction 2.8 0.1 

2.4 nM Ethanol 1.3 0.3 
Buspirone 0.002 1.0 
Interaction 7.0 0.045 

PN35 0.8 nM Ethanol 0.5 0.5 
Buspirone 2.0 0.2 
Interaction 2.3 0.2 

2.4 nM Ethanol 0.5 0.5 
Buspirone 0.03 0.9 
Interaction 0.9 0.4 

20 PCx PN5 0.8 nM Ethanol 0.5 0.5 
Buspirone 0.3 0.6 
Interaction 1.5 0.3 

2.4nM Ethanol 0.4 0.6 
Buspirone 0.4 0.6 
Interaction 0.2 0.6 

PN19 0.8 nM Ethanol 8.7 0.03 
Buspirone 0.6 0.5 
Interaction 0.1 0.8 

2.4 nM Ethanol 0.04 0.8 
Buspirone 0.2 0.7 
Interaction 0.03 0.9 

PN35 0.8 nM Ethanol 0.03 0.9 
Buspirone 1.4 0.3 
Interaction 2.2 0.2 

2.4 nM Ethanol 0.3 0.6 
Buspirone 0.9 0.4 
Interaction 1.8 0.2 

21 LH PN19 0.8 nM Ethanol 13.7 O.Ql 
Buspiron 2.3 0.2 
Interaction 9.8 0.02 
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Figure Region Age [Ligand] Group F-ratio P value 

2.4 nM Ethanol 7.4 0.03 
Buspirone 0.1 0.7 
Interaction 0.1 0.7 

PN35 0.8 nM Ethanol 1.7 0.2 
Buspirone 12.5 O.Ql 
Interaction 11.6 O.Ql 

2.4 nM Ethanol 1.83 0.2 
Buspirone O.Ql 0.9 
Interaction 2.2 0.2 

22 SN PN19 0.8 nM Ethanol 27.0 0.002 
Buspirone 0.2 0.6 
Interaction 0.99 0.4 

2.4 nM Ethanol 12.1 O.Ql 
Buspirone 0.2 0.7 
Interaction 3.8 O.l 

PN35 0.8 nM Ethanol 5.9 0.05 
Buspirone 3.8 0.1 
Interaction 1.0 0.4 

2.4 nM Ethanol 20.4 0.004 
Buspirone 0.5 0.4 
Interaction 0.17 0.7 

23 MS PN19 0.8 nM Ethanol 8.0 0.03 
Buspirone 0.3 0.6 
Interaction 6.4 0.04 

2.4 nM Ethanol 5.7 0.05 
Buspirone 7.1 0.04 
Interaction 2.3 0.2 

PN35 0.8 nM Ethanol 0.05 0.8 
Buspirone 0.7 0.4 
Interaction 0.5 0.5 

2.4 nM Ethanol 0.4 0.5 
Buspirone 1.1 0.3 
Interaction O.l 0.8 
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Figure Region Age [Ligand] Group F-ratio P value 

24 Stria tum PN19 0.8 nM Ethanol 8.7 0.03 
Buspirone 1.3 0.3 
Interaction 0.5 0.5 

2.4 nM Ethanol 38.7 0.0008 
Buspirone 0.003 0.96 
Interaction 0.1 0.8 

PN35 0.8 nM Ethanol 0.03 0.9 
Buspirone 0.3 0.6 
Interaction 0.4 0.6 

2.4 nM Ethanol 7.3 0.04 
Buspirone 3.3 0.1 
Interaction 0.3 0.6 

25 DR ED19 0.8 nM Ethanol 0.01 0.9 
Buspirone 0.9 0.4 
Interaction 0.6 0.5 

2.4 nM Ethanol 0.05 0.8 
Buspirone 0.3 0.6 
Interaction 0.4 0.5 

PN5 0.8 nM Ethanol 4.3 0.1 
Buspirone 1.9 0.2 
Interaction 0.3 0.6 

2.4 nM Ethanol 6.4 0.045 
Buspirone 0.2 0.7 
Interaction 1.4 0.3 

PN19 0.8 nM Ethanol 0.8 0.4 
Buspirone 0.5 0.5 
Interaction 0.5 0.5 

2.4 nM Ethanol 0.3 0.6 
Buspirone 0.0002 0.99 
Interaction 1.8 0.2 

PN35 0.8 nM Ethanol 0.08 0.8 
Buspirone 0.001 0.98 
Interaction 5.0 0.07 

2.4 nM Ethanol 3.0 0.1 
Buspirone 0.9 0.4 
Interaction 0.002 0.97 
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Figure Region Age [Ligand] Group F-ratio P value 

26 MnR PN19 0.8 nM Ethanol 0.2 0.7 
Buspirone 2.2 0.2 
Interaction 2.2 0.2 

2.4 nM Ethanol 30.2 0.003 
Buspirone 0.00 0.999 
Interaction 4.6 0.09 

PN35 0.8 nM Ethanol 9.3 0.02 
Buspirone 1.9 0.2 
Interaction 2.2 0.2 

2.4 nM Ethanol 0.4 0.5 
Buspirone 0.2 0.7 
Interaction 0.007 0.9 

27 CA3 PN19 0.8 nM Ethanol 2.5 0.2 
Buspirone 0.2 0.7 
Interaction 0.1 0.7 

2.4 nM Ethanol 0.06 0.8 
Buspirone 0.08 0.8 
Interaction 0.0097 0.9 

PN35 0.8 nM Ethanol 0.3 0.6 
Buspirone 0.02 0.9 
Interaction 0.5 0.5 

2.4 nM Ethanol 0.6 0.5 
Buspirone 0.2 0.7 
Interaction 0.3 0.6 

28 Amygdala PN19 0.8 nM Ethanol 4.4 0.08 
Buspirone 8.6 0.03 
Interaction 0.2 0.7 

2.4 nM Ethanol 32.0 0.001 
Buspirone 0.0053 0.9 
Interaction 0.0083 0.9 

PN35 0.8 nM Ethanol 0.2 0.7 
Buspirone 0.03 0.9 
Interaction 0.9 0.4 

2.4 nM Ethanol 0.4 0.5 
Buspirone 0.07 0.8 
Interaction 0.09 0.8 
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Figure Region Age [Ligand] Group F-ratio P value 

[
3H]-8-0H-DP AT 

29 DG PN5 1.0 nM Ethanol 0.1 0.7 
Buspirone 1.8 0.2 
Interaction 0.6 0.5 

2.7nM Ethanol 0.09 0.8 
Buspirone 0.5 0.5 
Interaction 0.5 0.5 

PN19 1.0 nM Ethanol 5.0 0.07 
Buspirone 0.8 0.4 
Interaction 2.5 0.2 

2.7nM Ethanol 9.4 0.02 
Buspirone 0.07 0.8 
Interaction 2.02 0.2 

PN35 1.0 nM Ethanol 0.2 0.7 
Buspirone 0.04 0.8 
Interaction 0.2 0.7 

2.7 nM Ethanol 0.03 0.9 
Buspirone 0.4 0.6 
Interaction 0.2 0.7 

30 PCx PN19 1.0 nM Ethanol 0.3 0.6 
Buspirone 0.2 0.7 
Interaction 0.3 0.6 

2.7 nM Ethanol 1.3 0.3 
Buspirone 6.7 0.05 
Interaction 0.8 0.4 

PN35 1.0 nM Ethanol 8.9 0.03 
Buspirone 1.4 0.3 
Interaction 3.0 0.1 

2.7 nM Ethanol 8.5 0.03 
Buspirone 3.4 0.1 
Interaction 2.8 0.2 

31 DR PN19 1.0 nM Ethanol 0.3 0.6 
Buspirone 0.04 0.8 
Interaction 0.6 0.5 
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Figure Region Age [Ligand] Group F-ratio P value 

2.7 nM Ethanol 2.8 0.1 
Buspirone 0.5 0.5 
Interaction 0.2 0.7 

PN35 1.0 nM Ethanol 0.0004 0.98 
Buspirone 0.2 0.6 
Interaction 0.1 0.7 

2.7 nM Ethanol 0.4 0.5 
Buspirone 0.6 0.5 
Interaction 0.1 0.7 

32 MnR PN19 1.0 nM Ethanol 0.32 0.58 
Buspirone 0.119 0.74 
Interaction 0.7 0.4 

2.7 nM Ethanol 0.006 0.9 
Buspirone 0.1 0.7 
Interaction 0.1 0.8 

PN35 1.0 nM Ethanol 0.4 0.5 
Buspirone 0.2 0.7 
Interaction 0.007 0.9 

2.7nM Ethanol 0.2 0.7 
Buspirone 0.03 0.9 
Interaction 0.00 0.998 

33 LS PN19 1.0 nM Ethanol 0.02 0.9 
Buspirone 0.4 0.6 
Interaction 1.7 0.2 

2.7nM Ethanol 0.02 0.9 
Buspirone 0.03 0.9 
Interaction 3.9 0.1 

PN35 1.0 nM Ethanol 9.6 0.02 
Buspirone 0.003 0.96 
Interaction 6.8 0.04 

2.7 nM Ethanol 0.9 0.4 
Buspirone 2.4 0.2 
Interaction 20.0 0.0042 
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Figure Region Age [Ligand] Group F-ratio P value 

34 FCx PN19 1.0 nM Ethanol 0.004 0.96 
Buspirone 0.3 0.6 
Interaction 2.9 0.2 

2.7 nM Ethanol 0.4 0.5 
Buspirone 0.2 0.6 
Interaction 4.4 0.09 

PN35 1.0 nM Ethanol 0.9 0.4 
Buspirone 4.2 0.1 
Interaction 9.4 0.03 

2.7 nM Ethanol 0.4 0.5 
Buspirone 1.7 0.2 
Interaction 1.8 0.2 
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