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CHAPTER I 

INTRODUCTION 

Septic shock, as a consequence of an invasive, nosocomial, Gram-negative 

bacterial infection often signals the end of a hospitalized patient's life. The entire 

spectrum of pathophysiological events that occur in the evolving septic state are 

now known to be orchestrated by a sequential, interacting cascade of endogenous 

mediators from both the endocrine and immune systems. The endogenous 

metabolic dyshomeostasis of sepsis initiated early in the host response to 

infection has long been related to the production of stress hormones such as 

catecholamines, insulin, glucagon and cortisol. In addition, immunological 

mediators such as tumor necrosis factor, (TN Fa), interleukin 1, (IL-1) and 

interleukin 6, (IL-6) have also been recently implicated to incite the sequence of 

pathophysiological steps characteristic of a fatal prognosis. Individually, the 

endocrine hormones and cytokines are able to disrupt cellular metabolism in the 

same tissue; however, the interaction between hormonal factors and the 

subsequent effects on the regulation of cytokine production have not been well 

established. 

The performance of many organs such as the lung, spleen and liver are 

severely impaired during septic shock by the production of cytokines from resident 

populations of macrophages. The liver is considered to be a biologically strategic 
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organ in the septic cascade. It is necessary metabolically for the maintenance of 

blood and tissue euglycemia by its unique ability to convert gluconeogenic 

precursors to glucose. As the first organ to "see" and to process endotoxin 

originating from the bowel, the liver may also be a front-line, primary producer of 

cytokines from its resident population of macrophages, the Kupffer cells. 

Endotoxin activation of second messenger pathways regulates the 

production of TNF and IL-6 by macrophages. The parallel increase in sepsis­

induced hormones may also stimulate two or more second messenger pathways 

that converge with the endotoxin-mediated signal to either up or down regulate 

the production of a gene product. One may postulate that the merging of the 

endocrine and immune signals may propagate the vicious cycles that can 

ultimately trigger lethal shock and tissue injury through a process of signal 

convergence conflict. 

The main focus of this thesis is to examine the interactive effects of insulin 

and glucocorticoids on TNF and IL-6 production during endotoxicosis. The specific 

aims include: 

1) to assess the effects and interactions of insulin and glucocorticoids on 

morbidity and mortality during sepsis. 

2) to evaluate the effects and interactions of insulin and glucocorticoids on 

metabolic parameters during sepsis. 

3) to examine specifically, the interactions between glucocorticoid and insulin 

and their effects on the production of TNF and IL-6. 



4) to examine possible mechanisms of glucocorticoid and insulin regulation of 

TNF and IL-6 production. 

3 

These aims will be accomplished by experiments at three biological levels 

of investigation. The effects of insulin and glucocorticoid during sepsis will initially 

be examined in an in vivo, endotoxic rat model in order that the response of the 

whole organism can be analyzed. The second model, the ex vivo isolated 

perfused rat liver will examine the contribution of the septic liver to the circulating 

levels of TNF and IL-6. The third level of examination investigates the endocrine 

regulation by the specific cells that produce TNF and IL-6 in vitro. Two isolated 

macrophage cell lines and two primary macrophage cultures will be tested as 

well as possible second messenger sites of regulation of glucocorticoid and 

insulin modulation of cytokine production. 

This dissertation aspires to reinforce the physiological importance of 

hormonal alterations during septic shock to the survival of the organism. Also, this 

research will contribute to the growing body of evidence that significant 

communication exists between the endocrine and the immune systems during 

situations of physiological stress such as septic shock. The notion of "classical" 

hormones, such as insulin, as only a metabolic regulator is challenged as insulin 

can be shown to propagate immunological activity during endotoxicosis. 



A. Introduction 

CHAPTER II 

LITERATURE REVIEW 

The pathophysiological mechanisms of septic shock are multifarious, 

involving the direct and indirect effects of microbial agents and the activation of 

host endogenous mediators. The inappropriate activation and regulation of the 

cells of the endocrine system, especially the sympathetic-adrenal axis, the 

pancreas, and the cells of the immune system, which acts collectively as a 

"pseudoendocrine" system, are responsible for the release of mediators into the 

circulation in high concentrations. This excess of circulating endogenous factors 

act as lethal autotoxins which work collectively against the host. Corticosteroids 

and insulin are two endocrine hormones produced early after endotoxin 

stimulation. The cytokines, TNF and IL-6 are also produced in the early phases 

of the septic cascade. 

This chapter is designed, to furnish the reader initially, with a basic 

understanding of the biology of endotoxin, TNFa and IL-6 and their roles during 

sepsis. Secondly, the literature pertaining to corticosteroids and insulin with 

respect to septic shock will be reviewed. The currently amassed literature 

4 
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concerning these topics, especially TNFa and IL-6, is immense and grows 

exponentially on a monthly basis. Therefore, this review will be limited to those 

references which further the background and the rationale for the research 

described in this dissertation. This review cites literature up to and including 

references from February 1994. 

B. Endotoxin 

1. Structure 

Lipopolysaccharide (LPS) is one of the amphiphilic macromolecules that 

constitutes the outer wall of Gram negative bacteria and is necessary for bacterial 

viability (272). Endotoxin is a generic term which includes LPS from all species 

of Gram-negative bacteria. LPS consists of four covalently interlinked segments 

as illustrated in fig. 1. 

The 0-specific chain is a carbohydrate polymer consisting of up to 50 

oligosaccharide repeating units. LPS of wild type Salmonella or Escherichia coli 

exhibit a bimodal distribution of 0-specific chains. The bulk of the 0-specific 

chains are of high molecular weight and the remaining chains are of low 

molecular weight in 1-8 repeating units. The chemical composition of the sugar 

units and the degree of the polymerization gives heterogeneity to the molecule. 

The oligosaccharide units function confer the serological 0-specificity of the LPS 

and the bacteria containing them (as reviewed in 266, 267). 
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Outer Core 
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Fig. 1. Structure of Salmonella sp. lipopolysacharide. 
(adapted from C.R. Raetz, 1991 ) 
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The core region is divided into the outer core, which binds to the 0-specific 

chain and the inner core which binds to the Lipid A moiety. The structurally 

variability of the core region is limited. Salmonella sp. has only one core structure 

for all serotypes and E. coli has 5 core structures for over 100 serotypes. The 

outer core, is composed of common hexoses that form a branched 

pentasaccharide region. This region determines the outer core specificities and 

acts as a receptor site for bacteriophages. The inner core is the most conserved 

region of LPS and is characterized by uncommon heptose sugars arranged mainly 

in the L-glycero-0-manno configuration. Also present in the inner core is at least 

one a-linked pyranosidic or furanosidic, KOO, (2-keto-3-deoxyoctonic acid) region 

that occupies the lipid A proximal position. The inner core acts as a possible 

modulator of Lipid A biological activity and is essential for bacterial survival. 

bacteria with a defective inner core are not viable. KOO and LPS in general are 

essential for microbial growth and multiplication (as reviewed in 266, 267). 

The Lipid A region is composed of gluco-configurated and pyranosidic 0-

hexosamine residues present as P(1-6)-linked disaccharide . This structure has 

not been identified in other natural occurring compounds and is unique to Lipid 

A. The disaccharide is linked to both a glycosidic and a nonglycosidic phosphoryl 

group and in ester and amide linkages and to medium to long chain (R)-3-hydroxy 

fatty acids (C10 to C28), some of which are acylated at their 3-hydroxyl groups. 

The lipid A molecule usually carries four mole equivalents of fatty acids. Lipid A 

represents the least conserved region of LPS among bacterial species. The 
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resulting R-3-acyloxyacyl residues are found in distinct evolutionary groups of 

Gram negative bacteria and is characteristic of Lipid A. Lipid A is essential for 

bacterial viability and virulence and for the remarkable spectrum of endotoxic 

activities. This region is responsible for initiating the classical complement 

cascade as well as binding to receptors on monocytes/macrophages and other 

host cells (as reviewed in 266, 267, 323). 

2. LPS Stimulation of TNFa and IL-6 Production 

As the main surface antigen (0-antigen) of Gram-negative bacteria, LPS 

is a potent stimulator of immune cells : neutrophils (86), lymphocytes (352), 

monocytes and macrophages (3, 120). LPS is postulated to interact non­

cytotoxically with these cells and the consequences are the synthesis and 

secretion of a variety of cytokines and proinflammatory mediators (311). The 

macrophage appears to play a pivotal role in endotoxin induced lethality 

(96, 145,323,347). 

The cytokines secreted by macrophages in response to LPS include TNFa, 

IL-1 and IL-6 and are well documented; however, the receptor and signalling 

mechanisms by which LPS triggers cytokine production by macrophages remain 

unresolved (2, 120,363). Within the past 5 years evidence has accumulated which 

indicates that several pathways are employed by LPS for the activation of TNFa 

production by macrophages (145). 

As demonstrated with chemically synthesized constructs, Lipid A accounts 
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for the effects of endotoxin in animals and cultured cells (266). Several studies 

(96, 158, 319, 327, 352) suggest the existence of receptors for Lipid A on animal 

cells. The finding of acylated LDL or scavenger receptors which bind LPS on 

macrophages by Hampton et al., 1991 (146) suggested a possible site for 

macrophage activation. This binding facilitated the ability of cells to take up and 

dephosphorylate Lipid IVA at the 1 position thereby, greatly reducing the potency 

of endotoxin. However, Freeman et al., 1990, (119) found that although acylated 

LDL blocked the binding of LPS completely, it did not block the toxic effects of 

endotoxin and, therefore, may not be directly involved with the induction of 

cytokine synthesis. 

CD18, a heterodimeric complex found on the surface of macrophages, has 

been identified to bind particulate LPS on the surface of cells (as reviewed in 

352). The LPS-CD18 interaction results in the phagocytosis of particulate LPS. 

There is no strong evidence that CD18 participates in the LPS activation of TN Fa 

production by macrophages and monocytes. Patients with CD18 deficiency 

demonstrate a normal pattern ofTNFa production and a normal priming response 

to LPS. Also, antibodies directed against CD18 do not prevent monocyte 

synthesis of TNFa (352). 

Lipopolysaccharide binding protein, LBP, is a 60 kDa glycoprotein often 

referred to as an acute phase protein because it is synthesized by hepatocytes 

(127). LBP is found in normal serum and increases in response to endotoxin and 

acute phase protein synthesis. LBP binds specifically to the Lipid A moiety of 
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LPS. LBP functions to opsonize the LPS particles and activate neutrophils and 

macrophages(127) LBP-LPS particles have been shown to bind avidly to 

macrophages. LPS-LBP has been shown to be 1000 fold more active in the 

induction of the production of TNFa and IL-1 than LPS alone (352). This complex 

also raises the levels of mRNA transcribed and the TNFa protein released. 

The receptor for LBP-LPS has been demonstrated to be CD14 (352). CD14 

is a 55 kDa glycoprotein originally described as a myeloid differentiation antigen 

on monocytes and macrophages (13,352). CD14 has also been found free in 

human plasma. LPS upregulates CD14 production (192). Marchant et al., 1992, 

(208) demonstrated that LPS stimulated an increase in CD14 within 30 minutes 

after LPS stimulation. Surface antibodies against CD14 on macrophages 

efficiently block LBP-LPS binding. When normal rabbit serum was depleted of 

LBP, a substantial inhibition of TNFa production was observed. The blocking of 

CD14 by monoclonal antibodies also blocked TNFa synthesis (352). 

The results from these experiments support the model illustrated in fig. 2. 

The presence of endotoxin stimulates LBP synthesis. LPS can bind to CD18 or 

the scavenger receptor whereby the LPS can be phagocytosed by the 

macrophage and neutralized or processed for antigen presentation to T-cells. T­

cells respond to presented LPS by differentiating and synthesizing interferon y. 

Interferon r synergizes with endotoxin to enhance TNFa synthesis. LPS binds to 

LBP to form a complex that can bind to CD14. By an unknown second messenger 

pathway, CD14-LPS-LBP interaction stimulates TNFa synthesis and release. 
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Fig. 2. Proposed role of LBP and CD14 in the activation of TNF production by macrophages. 
( Raetz et al., 1990 ) 
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c. Tumor Necrosis Factor 

1. Background 

Over 100 years ago in separate clinical studies, Coley (67) and Chekhov 

(78) demonstrated that injections of endotoxin administered to cancer patients 

significantly reduced tumor growth. In 1943 Shear et al., (294) isolated the active 

component from Gram negative bacteria, a complex of lipid and sugar residues 

which they referred to as lipopolysaccharide. Shear believed that LPS directly 

induced the hemorrhagic necrosis of tumors observed in the Coley studies. 

O'Malley et al., 1962, (246) demonstrated that the serum from normal mice treated 

with Serratia marcescens LPS caused a dose dependent increase in the necrosis 

of tumors from tumor bearing mice. In 1975 Carswell et al. (62) using BCG 

stimulated murine serum, suggested that a serum factor produced by 

macrophages was responsible for the cytolytic activity towards tumors, and it was 

not LPS directly. In the mid 1980s research by both Beutler and Cerami described 

TNF and these authors are credited with pioneering cytokine biology. Agarwal et 

al., 1985, (5) succeeded in purifying and sequencing human TNFa and another 

tumorlytic protein produced by lymphocytes called lymphotoxin which is 30% 

homologous with TNF at the amino acid level and shares the same receptor. 

Several lines of evidence point to the macrophage as the principle source of TNF. 

Cerami and colleagues delineated the basic mechanism of cachexia associated 

with chronic disease states. Rouzer and Cerami, 1980, (277) demonstrated that 
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trypanosome-induced wasting in rabbits was accompanied by a paradoxical 

hypertriglyceridemia due to an endogenous mediator. Mice treated with LPS also 

demonstrated hyperlipidemia. These authors noted that endotoxin stimulated 

macrophages to produce a hormone capable of suppressing lipoprotein lipase 

essential for clearing plasma triglycerides. Beutler et al., (41) purified cachectin 

to homology and observed the murine cytokine had strong homology with reported 

human TNFa. 

2.Structure 

TNFa is the product of a single gene that resides within the major 

histocompatibility complex (short arm chromosome 6 human; chromosome 17 

mouse). The gene consists of four exons and spans 3 kilobases. The TNFP or 

lymphotoxin gene is present downstream on the same gene, separated by 1100 

base pairs. TNFP is subject to an entirely different form of regulation suggesting 

that TNF promoter/enhancer region lies downstream in this 1100 base pair region 

(5,322). 

The TNFa gene encodes a protein of 26 and 17 kDa molecular weight as 

determined by SDS PAGE (322). The cDNA and the genomic sequences are 

highly conserved among species. Table 1 summarizes the structural protein 

properties of TNF among different species. Human TNF is produced as a 

precursor molecule with a presequence region of approximately 79 amino acids 

(5). The precursor molecule also contains a conserved region 26 amino acids in 
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Table 1--TNF protein comparisons between species. 

Leader Mature 
peptide peptide 

Species Amino Acids lsoelectric Glycosylation Reference 
Point Sites 

Human 79 157 5.3 no 120 

Mouse 76 156 3.9 yes 135 

Rabbit 80 154 4.0 no 135 

Rat 78 156 n/d yes 161 

n/d = not determined 
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length and a hydrophobic region possibly important for secretion or processing. 

The very long leader sequence is thought to function as a transmembrane 

domain. The mature TNF consists of 157 amino acids. TNF has two cysteine 

residues conserved at positions 69 and 101. These residues are involved in a 

single intermolecular disulfide bond. This bond is important for biological activity 

as gene mutations that lack this disulfide bond have decreased cytotoxicity, 

macrophage activation and inhibition of lipogenesis without alterations in 

secondary or tertiary structure (5). Human TNF does not contain a glycosylation 

site which has been found at position 7-9 of murine TNF. The function of the 

glycosylation site is unknown as both peptides display equivalent biological 

activity. 

The active form of TNF consists of dimer, trimer or higher oligomer 

complexes. Variations in conformation have been attributed to the methods of 

analysis and species differences. Smith and Baglioni, 1987, (299) have 

demonstrated that the human and murine forms that bind to cellular receptors and 

evoke cell death in L929 cells exits as a trimer. Crystallographic analysis has 

revealed that each subunit an antiparallel p sandwich forms a trimeric molecule 

through edge to face packing (322). 

3.TNF Receptor 

Two distinct receptors, R1 and R2 have been found for TNF (227,276). 

They have a molecular mass of 55 and 75 kDa, respectively, and both bind 
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lymphotoxin. 

The amino acid sequence of the 55 kDa receptor contains 426 amino acids 

with a single membrane span. The extracellular domain contains 182 amino acids 

and the intracellular domain is 221 amino acids. N-linked glycosylation is 

responsible for the deviation of the predicted mass from the cDNA and the actual 

mass (276). 

The 75 kDa receptor is also a single membrane spanning protein 

comprised ofl 439 amino acids. The extracellular domain is 235 amino acids and 

the intracellular domain is 17 4 amino acids. Both N and 0 linked glycosylation 

sites have been found on the R2 receptor (276). 

Both R1 and R2 are considered distinct receptors as they share only 28% 

homology in the extracellular domain and no homology in the intracellular domain. 

This suggests that different signalling pathways exist for both receptors. The 

observation that the intracellular domains also do not share homology with any 

known protein further complicates the definition of TNF transduction pathways 

(276). 

Most tissues express both types of TNF receptors (17, 126). With the use 

of monoclonal antibodies, Tartaglia et al., 1993, (315) demonstrated that the 

binding of TNF to TNF-R1 results in the induction of NF-KB , MnSOD and 

cytotoxicity. The binding of TNF to TNF-R2 results in thymocyte proliferation and 

differentiation (322). As illustrated in fig. 3, TNF binding to receptors exerts 

multiple effects on many cell types. As has been demonstrated with other cytokine 
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receptors, the TNF-R1 and TNF-R2 are shed from the surface of cell.s and 

function as soluble TNF binding proteins in plasma (33,301,276). The release of 

these receptors has been postulated to bind excess TNF in plasma. Treatment 

with recombinant TNFRs partially protected mice from LPS induced lethality. The 

production of both receptors by cells is increased by trauma, TNF and LPS (312). 

Spinas et al., 1992, (301) demonstrated that three hours after E.coli administration 

to human volunteers, a four to five-fold increase in TNF-R1 and TNF-R2 

concentrations in plasma was observed. Pretreatment of the volunteers with 

ibuprofen slightly increased concentrations of TNF receptors. Bemelmans et al., 

1993 (33) have also suggested that the protective effect of LIF during endotoxic 

shock may occur via the ability of LIF to stimulate an increase in TNFR 

production. 

4. Regulation of TNF Production 

.fil Molecular Regulation 

TNFa is synthesized by many cell types including macrophages, 

monocytes, lymphocytes, NK cells, astrocytes, microglial cells, Kupffer cells, 

fibroblasts, endothelial cells ( as reviewed in 334) and eosinophils (72). A wide 

variety of infectious and inflammatory agents can trigger TNF synthesis including 

LPS, staphylococcus/streptococcus exotoxin, enterotoxin, toxic shock syndrome 

toxin, mycobacteria, viruses, CSa, fungal, parasitic infection, hemorrhage, IL-1 and 

TNF ( as reviewed in 334). With such a diverse group of stimulatants of TNF, 
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regulation of TNFa is under stringent regulation. Over the last 5 years, Beutler 

and coworkers, have contributed greatly to the current understanding of TNFa 

regulation at the gene level (41,42,43). 

The TNFa promoter region is responsive to LPS stimulation within primary 

macrophages. However, the intracellular journey from the membrane to the gene 

remains uncharted. Four NFKB regions have been identified within the promoter 

region that appear to be necessary for LPS enhancement of expression. 

Mutations that remove two or more of these sites abolish LPS stimulated TNFa 

production (42). However, several genes unresponsive to LPS contain the same 

NFKB region, suggesting that other factors or flanking regions on the gene are 

also required. A purine rich motif (PU box) that exits within the promoter region 

has the potential for determining tissue specific expression. SP-1 and TFllD 

regions confer "housekeeping" functions related to the initiation of transcription 

(41,42). 

TNFa is regulated at the level of transcription. Several studies 

(41,271,324,339) have demonstrated that TNFa mRNA is significantly increased 

after LPS stimulation up to 100 fold. The TN Fa protein, surprisingly is increased 

by 10,000 fold. Therefore, TNFa is also regulated at the level of translation (43). 

The identification of post transcriptional regulatory regions within the cDNA for the 

mouse TNF offered further explanation to the disparity between mRNA and 

protein levels. Caput et al., 1986, (59) noted repeated and intercleaved octomeric 

units of TT A TT AT in the 3' untranslated regions of the cDNA for both murine and 
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human TNF cDNAs. This region has also been found in the UTR 3' regions 

specifying other cytokines (IL-1, IFNy, several proto-oncogenes, GM-CSF) and 

more recently the inducible form of nitric oxide synthase (iNOS) (99). Shaw and 

Kamen, 1986, (293) identified this TTATT region as a pentameric unit and thus 

identified it to exist in a larger population of cytokine genes. From experiments in 

which this sequence was spliced into the UTR 3' region of the rabbit p globulin 

gene, Shaw and Kamen determined that the rate of transcription was not altered; 

however, the normal p globulin mRNA, which is extremely stable had a half-life 

of only 15 minutes (293). They postulated that the UA rich region confers 

message instability. This finding appears to be cell specific as transfected 

lymphocytes with modified message did not express mRNA instability (293). 

The observation of superinducibility may also be ascribed to the UA rich 

regions. Cells treated with an inhibitor of translation, such as cycloheximide, 

overexpress mRNA (65,247). The overexpression of mRNA thus results in the 

over production of the protein coded by the specific mRNA. This is also observed 

in modified 6 globulin mRNA (293). Superinduction has been accredited to 

unstable repressors of transcription which are destroyed and unreplenished in the 

presence of cycloheximide (43,65,247). Superinduction may also be ascribed to 

the existence of labile ribonucleases that specifically target such mRNA 

sequences. Beutler et al., 1992, have recently demonstrated that RNAase A found 

in macrophages selectively hydrolyses the UA dinucleotide linkages found in TNF 

mRNA (44). 
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Ql Regulators of TNFa Production 

Over the last 8 years, many researchers have investigated numerous 

pharmacological and physiological compounds that alter TN Fa production in many 

cell types. Table 2 is a compilation of the compounds and agents that have been 

examined as regulators of TNFa. As illustrated in table 2 the number of 

substances tested is extensive and, therefore, in the interest of brevity, two 

stimulatory compounds, IFN'Y and PMA as well as two inhibitors, PGE2 and IL-10 

will be discussed in the context of this review. Glucocorticoid inhibition of TNFa 

production will be discussed in detail in a later section of this chapter. 

Interferon 'Y also called macrophage activating factor is produced and 

secreted by T lymphocytes and large granular lymphocytes in response to 

antigens and T cell mitogens (212). IFN'Y stimulates macrophages to increase 

antimicrobial activity and secrete various inflammatory mediators. IFNysynergizes 

with LPS to produce augmented levels of TN Fa both in vivo and in vitro. Doherty 

et al.,1992, (85) demonstrated that TNFa and IFN-y, when administered to mice, 

were well tolerated individually; however, when given together, the combination 

caused a significant increase in mortality associated with increased plasma IL-6 

concentrations. The C3H/HeJ mouse carries the lpsd mutation which confers 

endotoxin resistance and the inability to produce TNFa in comparison with the 

wild type strain (309). Adi et al.,1992, (4) have shown that administration of IFN-y 

to C3H/HeJ mice restores TNFa production by both the liver and the spleen. Matic 

et al., 1992, (212) have also shown that IFN-y relieved the suppression of TNFa 



Table 2--Summary of pharmacological and biological modulators of TNF 
production. 

cycloheximide (247) LPS (334) 

PMA (66) interferon y (212) 

A23187 (345) growth hormone (91) 

okadaic acid (310) ACTH (292) 

INCREASES indomethacin (209) nitric oxide (99) 

TNF calcyclin A (310) pertussis toxin (361) 

calphostin (310) 

staurosporine (66) 

H-7 (66) 

FK565 (150) 

taxol (280) 

MDL201112 (250) adenosine (250) 

cyclosporin (238) TNF inhibitor (251) 

ibuprofen (196) PGE2 (209) 

cimetidine (196) glucocorticoids (339) 

diphenylhydramine (196) interleukin 6 (3) 

DECREASES taurine Cl (249) interleukin 1 ( 195) 

TNF N-acetylcysteine (255) TGF p (88) 

glutathione (255) interleukin 10 (113) 

E330 (228) G-CSF (138) 

puromycin (150) LIF (33) 

actinomycin D (365) arachidonic acid (174) 

polymyxin B (66) TNF receptor (301) 

pentoxyphylline ( 148) fatty acids (344) 

thalidomide (281) 

22 



23 

synthesis induced by LPS induced tolerance in macrophages. They suggested 

that IFNy opposes endotoxin tolerance through its action on a PKC dependent 

pathway (212). 

Glucocorticoids are potent inhibitors of the synthesis of many cytokines. 

The inhibition of TNFa by glucocorticoids occurs both at the transcriptional and 

the posttranscriptional level (43). Interferon 'Y causes a reversal of 

dexamethasone-induced suppression of TNFa message and to a lesser extent 

TNF protein production (205). IFNy stimulation of TNFa synthesis and reversal 

of dexamethasone suppression also occurs at a transcriptional level. Dunham et 

al.,1990, (88) have also found that IFNy was able to relieve TGFP suppression 

of TNFa synthesis. 

Another potential mechanism of IFNy control is by regulation of TNFa 

receptor synthesis. Aggarwal et al., 1985, (5) have shown that IFNy increases 

TNFa receptor number in several cell lines without increasing TNFa receptor 

affinity. 

LPS has been shown to stimulate phospholipase C and to activate protein 

kinase C in macrophages (40,66,343). PMA is the most potent tumor promoter 

known and is a stimulant of PKC, which induces adherence and the synthesis of 

superoxide and peroxide radicals by monocytes (214). In murine Kupffer cells LPS 

stimulation of TNFa and IL-1 is attenuated by the PKC inhibitor, H-7 (345). PMA 

alone will not stimulate TNF production, however, in combination with LPS, PMA 

has been demonstrated to augment both TNFa and IL-1 production by 
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macrophages (129,259). Coffey et al.,1992, (66) observed a paradoxical 

stimulation and inhibition by PMA and H-7 based on the concentration used to 

treat human monocytes in vitro. Concentrations of PMA greater than 3nM 

inhibited TNFa production, whereas, concentrations between 0.3 and 3 nM 

augmented LPS induced TNFa production. H-7 addition (10-30 µM) augmented 

TNFa production, and higher concentrations of H-7 inhibited LPS induced TNFa 

production. The disparity in this report was suggested to be the result of activation 

of different PKC isozymes that may mediate stimulatory as compared to inhibitory 

effects of PKC on TNFa production (66). 

LPS stimulates the production of prostaglandin E2 and prostacyclin 12 (78). 

In vitro, PGE2 production occurs after TNFa production and once initiated TNFa 

production begins to plateau and decline, suggesting that PGE2 acts to inhibit 

TNFa synthesis. The addition of cycloxygenase inhibitors such as indomethacin, 

results in augmented TNFa production and results from several studies 

demonstrated that addition of PGE2 or prostacyclin to LPS stimulated 

macrophages results in a dose dependent reduction in TNFa production 

(180,345). PGE2 blocks TNFa production at the level of transcription (345). PGE2 

increases the intracellular cAMP concentration because its effects can be 

mimicked by the addition of dibutyrl cAMP, forskolin and phosphodiesterase 

inhibitors. Feedback control of TNF production is likely at a local level in in vitro 

studies as the role of PGE2 in vivo is not as clear (78). Administration of PGE2 

in vivo has been shown to have little effect on preformed TNFa and the addition 
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of PGE2 to LPS treated animals causes toxic responses (78). In fact, the use of 

cycloxygenase inhibitors has been shown to be beneficial in reducing the toxic 

effects of TNFa and LPS (78). Marcinkiewicz, 1991, (209) has shown that PGE2 

and PGl2 effectively inhibit TNFa and enhance IL-6 levels in peritoneal cells. 

Interleukin 10 was first described as a cytokine produced by subsets of T 

cells. IL-10 inhibits macrophage APC-dependent cytokine synthesis by Th1 Th 

cells. Ralph et al.,1992, (268) found that IL-10 is also produced by melanoma, 

epidermoid and fibroblast cell lines. IL-10 is also produced by LPS stimulated 

monocytes and inhibits IL-1, TNFa, IL-6, IL-8, G-CSF and class II MHC in purified 

monocytes (268). Gerad et al., 1993, (132) demonstrated in mice that IL-10 

pretreatment reduced TNF levels by 92%, reduced LPS hypothermia and 

significantly decreased mortality. Recently, Corradin et al., 1993, (71) 

demonstrated that IL-10 stimulated induction of NO synthase mRNA in LPS/IFN-y 

cells and increased NO synthesis. 

5. TNFa: Role in septic shock. 

TNFa has been implicated in the pathogenesis of many disease states 

such as ARDS, reperfusion injury, graft vs. host disease and rheumatoid arthritis. 

The contribution of TNFa to the pathology of these diseases is reviewed in 

several recent review articles (78, 126, 134,334 ). 

More literature exists on the role of TNFa in septic shock than any other 

cytokine. TNFawas implicated many years ago as causing many of the symptoms 
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of Gram-negative sepsis. 

Endotoxin administration to human volunteers results in a rapid and early 

increase in plasma TNFa concentrations as illustrated in fig. 4. The pattern and 

time course of cytokine appearance in vivo is remarkably consistent among 

species (116, 182, 271, 337). In comparison to the other cytokines, IL-1 and IL-6 

which appear 2 to 3 hours after endotoxin, TNFa is measurable in the circulation 

within the first 30 minutes (116). When injected into human volunteers, endotoxin 

stimulates increases in TN Fa within one hour which thereafter decline to baseline 

after 3 hours (116). The TNFa burst is an early event during endotoxemia as 

Galley et al., 1993 (128) have shown that the increase in TNFa message occurs 

within 5 minutes after stimulation of human monocytes with LPS. Remick et al. 

1989, (271) have also shown that the peak expression of message by peritoneal 

macrophages occurs one hour after LPS injection. 

Clinical studies have implicated TNFa as an important mediator in septic 

shock. Detectable levels of TNFa are found in the serum of patients with 

meningococcal disease and sepsis. Patients with serum levels greater than 0.1 

ng/ml subsequently died (as reviewed in 78). Recently, Casey et al. 1993. (60) 

observed that 45% of patients with sepsis syndrome exhibited increases in 

plasma TNFa concentrations. Increased plasma TNFa levels did not, however, 

correlate with death of these patients. This finding has been confirmed by several 

studies. The discrepancy may exist due to the inclusion criteria in the study or 

due to other injuries. Hemorrhagic shock and trauma dramatically alter the 
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cytokine profile as compared to that found in pure gram negative sepsis (60). 

The administration of highly purified recombinant TNFa causes shock and 

injury in every mammal studied. The list of species tested includes rat, mouse, 

rabbit, dog, pig, sheep, cow, monkey, baboon, and man. TNFa administration 

causes a syndrome almost indistinguishable from septic shock. Although other 

cytokine, IL-1 and IL-6 can induce some of the symptoms of septic shock, TN Fa 

administration is the best reproduces the septic state, not only because of its own 

pathological activities but also because of its ability to induce the production of 

other cytokines that are pathological. Hypotension, fever, hypoglycemia, increases 

in stress hormones and acidosis are only a few of the symptoms observed after 

TN Fa treatment. Sakurai et al., 1993, (278) recently demonstrated that high doses 

of TNFa injected into dogs caused a fall in arterial pressure, pulmonary artery 

pressure and cardiac index. They also concluded that TNFa caused a shift 

towards carbohydrate as an energy substrate by decreasing the availability of 

FFAs and decreasing lipid oxidation, while simultaneously increasing glucose 

production and clearance (278). Others have also shown that TNFa increases 

glucose oxidation especially in non-insulin dependent tissues such as Kupffer cells 

(223,224). 

TNFa has been implicated as the factor responsible for the lethal 

hypoglycemia observed during sepsis (337). Chajek-Saul et al., 1990, (63) 

demonstrated that rTNFa injected into adrenalectomized rats resulted in increased 

endotoxin sensitivity . Pretreatment with dexamethasone or glucose protected 
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these animals from death (63) A significant reduction in PEPCK activity was also 

observed (63). Satomi et al., 1985, (284) also found a strong negative correlation 

between plasma glucose concentration and plasma TNFa. 

Tumor necrosis factor has been shown to alter liver enzyme profiles. 

lntraperitoneal injections resulted in a 20-50% reduction in hepatic 

aminotransferases and a 50-200% increase in alkaline phosphatase (354). 

Yasmineh et al 1992. (355) demonstrated that TNFa administration in the rat had 

differential effects on the enzymes of gluconeogenesis. A significant reduction in 

kidney 1,6 diphosphatase, PEPCK and glucose-6-phosphatase was observed after 

TNFa administration (355). Hill and McCallum, 1992, (161) confirmed the findings 

of this group by demonstrating that PEPCK is transcriptionally negatively 

regulated by TNFa in mice and in H 4 II Reuber hepatoma cells. 

Protection against endotoxic or bacteremic shock has been achieved by 

passive immunization with anti-TNFa antibodies and anti-IL-6 antibodies. 

Controversy exists as to the efficacy of TNFa antibodies in septic therapy. 

Polyclonal antibodies administered to endotoxic mice and monoclonal antibody 

therapy in baboons have been shown to be efficacious in preventing endotoxic 

shock (as reviewed in 78). Recently Zanetti et al. 1992, (360) demonstrated that 

antibodies against TN Fa administered to a 100% mortality model in mice was 

extremely effective in reducing mortality as well as reducing the plasma 

concentrations of TNFa, IL-1 and IL-6. However, Eskarandi et al. 1992, (97) 

demonstrated that in a CLP sepsis model and during endotoxemia that anti-TNFa 
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Abs failed to prevent lethality. Results from clinical trials are currently ongoing, 

and anti-TNF Abs may possibly prove to be a useful clinical modality (89). As 

TNFa antibody therapy alone was shown to be ineffective in preventing death 

from sepsis syndrome, Mullen et al., 1993, (233) using a septic porcine model 

concluded that combination therapy with ibuprofen and antiTNFa antibody therapy 

provided greater protection from acute lung injury and hemodynamic failure. 

With the recent identification of soluble receptors for TNFa found in the 

plasma and urine of patients (312), another clincal modality is currently under 

review. Spinas et al., 1992 (301) have shown that partial protection against 

endotoxin induced lethality in mice can be achieved with TNFaR therapy. The 

TNFaR is thought to act like a "sponge" and neutralize the bioavailable TNFa 

present in the plasma. 

D. Interleukin 6 

1. Background 

Interleukin 6 is probably unique among cytokines because it was cloned 

inadvertently long before the discovery of its major biological activities (76). 

Weisenbach et al., 1980, (346) isolated two cDNA clones derived from 1.3 kb 

mRNA in a fibroblast cell line in search of the sequence for interferon p, calling 

this species interferon p2. Content et al., 1982 (68) cloned the same 1.3 kB 

mRNA species concluding that the protein synthesized which they named 26K 
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had no antiviral activity and was unrelated to interferon p. Simultaneously 

Teranishi et al., 1982, (316) observed that the activated T-cells produced a B cell 

differentiation factor called BSF-2. The cloned sequence was found to be identical 

for the sequence described for 26K (316). 

The existence of growth factors for plasmacytoma and hybridomas 

although unsuccessfully characterized, had been known since the 1970s. With the 

availability of stable growth factor dependent cell lines, these factors were easily 

characterized (76). Van Snick et al. (331) purified a factor from helper-T cells 

known as IL-HP1, and Nordan et al. 1986 (241) purified PCT-GF from the 

supernant of cultured macrophages. Van Damme et al., 1987, (328) purified a 

human hybridoma/plasmacytoma growth factor (HPGF) from the medium 

conditioned by IL-1 osteosarcoma cell line. It was eventually determined that 

these hybridoma growth factors all shared sequence homology with IFN-82 26K 

and BSF-2 and were collectively referred to as IL-6 (331). Later, Gauldie et al., 

(130) discovered that antibodies to IL-6 blocked the activity of a monocyte derived 

protein termed HepSgF which has been shown to activate acute phase synthesis 

by hepatocytes. As described in a review by Van Snick (331), IL-6 existed in the 

scientific world for many years by the following aliases: 

IFNP2 = 26K = BSF2 = PCT-GF = ILHP1 = HPGF = CDF = IL-6 

2. Structure 

The interleukin 6 gene has been cloned from human (10), mouse (314), rat 
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(48) and more recently from the pig (273). IL-6 is a single copy gene and in all 

species contains 5 exons and four introns with conservation among species of the 

intron exon borders. The interleukin 6 gene is located on chromosome 5 in the 

mouse and on chromosome 7 in man (10, 314). The cDNA share homology as 

illustrated in the table 3 with subsequent differences in the amino acid sequence 

of the protein. Messenger RNA transcripts are initiated from several cap sites on 

the human gene. The rat gene has 2 cap sites, however, only one site appears 

to be utilized during transcription (48). From the human gene, two species of 

mRNA are transcribed that are 1.3 kilobases long (10). Two polyadenylation 

signals which are 78 bases apart are utilized. In the mouse, however, only mRNA 

is produced from similar transcriptional signals (314). The rat gene codes for two 

species of mRNA, 1.2 and 1.35 kilobases in length (48). The transcript content 

of AUUUA regions which confer stability of the message, varies among the 

species (76). 

The IL-6 gene codes for a 211 amino acid protein in both the rat and the 

mouse and a 212 amino acid protein in human (10,48,314). The signal peptide 

is cleaved to yield a mature 183-185 amino acid protein. Human IL-6 has 2 N­

glycosylation sites and several 0-glycosylation sites. The mouse and rat IL-6 

proteins are not glycosylated. The absence of glycosylation sites in rodent IL-:-6 

may account for the inability of mouse IL-6 to bind to the human IL-6 receptor 

{6,7,28). All species studied to date have four cysteine residues at conserved 

sites on the protein. The rat has an additional free cysteine at position 103 whose 
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Table 3-- Comparison of species similarities with respect to the cDNA and the 
protein for IL-6 (76). 

Comparison cDNA homology Amino acid homology 

rat to mouse 92% 93 % 

rat to human 65% 58% 

mouse to human 68% 42% 

pig to human 83% 62% 

pig to mouse 61% 42% 
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function is yet to be determined (48). The N terminal region of the peptide is not 

necessary for bioactivity. Residues 1-28 can be removed without substantial 

alterations in action. The removal of as few as two amino acid residues from the 

carboxyl terminus of the protein results in significant loss of bioactivity (6,76). 

3. IL-6 Receptors 

An abundance of cell types express surface IL-6 receptors (6,300) . 

Petersen et al. 1990 (253) found that 1125 labelled IL-6 was quickly taken up from 

the circulation by the spleen. Approximately 60% of this binding was found to be 

by spleen macrophages. IL-6 was also shown to bind avidly to rat peritoneal 

macrophages in vitro (253). 

The IL-6 receptor has a molecular mass of 80 kDa and is highly 

glycosylated (6,28,313). It is structurally unique in comparison to other cytokine 

receptors. The extracellular portion consists of two domains. One domain is a 

member of the cytokine receptor family with a distinct region, and the other 

domain is a member of the immunoglobulin gene superfamily (28). The 

cytoplasmic domain is 82 amino acids in size and contains no known sequences 

that might mediate signal transduction (184). Taga et al. 1989, (313) determined 

that signal transduction by the IL-6 receptor occurs via the interaction with a 130 

KDa protein (gp130) at the extracellular domains. The structure of gp130 is similar 

to the G-CSF receptor, and IL-6R-gp130 association results in the transformation 

from a low to a high affinity receptor (184). Other cytokines such as IL-3, GM-CSF 
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and the IL-5 receptor also function in a similar manner. Signal transduction by the 

interaction with gp130 may explain the functional pleotrophy and redundancy of 

the many cytokines. The signal transduction mechanism for gp130 is unknown; 

however, evidence of tyrosine kinase autophosphorylation has been documented 

(184). 

4. Regulation of IL-6 Production 

fil Molecular Regulation 

The investigation of the molecular regulation of IL-6 production is a 

very recent area of study. Stimulation of IL-6 production has been demonstrated 

by at least three different intracellular pathways. The production of cAMP, 

diacylglycerol and an increase in intracellular of calcium are implicated in the 

upregulation of IL-6 synthesis (76) . Tanabe et al. 1988, (314) have described a 

highly conserved region in both the human and mouse IL-6 genes approximately 

350 base pairs upstream of the initiation site that acts as the IL-6 promoter 

region. The different regions of the IL-6 promoter region are illustrated in fig. 5. 

Within the promoter is the MRE region which contains several smaller segments 

that are responsible for activation by different substrates. The SRE is found in the 

-113 to -225 region and is necessary for oncogene activation by c-fos (7). The 

region at -145 to -158 is known as the NFIL-6 region. NFIL-6 is a nuclear factor 

whose synthesis is stimulated by LPS, IL-1, and IL-6. NFIL-6 belongs to the 

C/EBP family of nuclear binding proteins (7). This group of proteins includes 
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C/EBP, IL-6DBP, lg/EBP-1 and NF-IL6P. They recognize the same nucleotide 

sequence in a gene but exhibit distinct patterns of expression among different 

cells (7). The CRE is also found in the MRE region. The NFKB region is found 

between the -63 to -73 positions and is necessary for induction of transcription 

(7). Matsusaka et al., 1993, (213) recently described the synergistic activation by 

NF-IL6 and NFKB of the IL-6 promoter. 

Negative regulation of IL-6 synthesis by glucocorticoids has been described 

by Ray et al., 1990, (269). DNase footprinting demonstrated that the glucocorticoid 

receptor bound across the MRE, TATA box and the INr. At least two GRE regions 

have been described in the IL-6 promoter (7). Two AP1 sites have also been 

described on the promoter, however, the function of these sites remains 

unresolved (7). 

Ql Regulators of IL-6 Production 

Most nucleated cells studied, including transformed cells, are capable of 

producing IL-6 (76,154). Since IL-6 has not yet achieved the same degree of 

research notoriety as TNF, the substances tested to date as possible regulators 

of IL-6 synthesis are limited. Also, activation of IL-6 synthesis by endotoxin, 

growth factors and pharmacological compounds is dependent on the cell type 

examined (76,288). In fibroblasts the most potent stimulator of IL-6 production is 

IL-1 and TNFa. In macrophages the most potent stimulator of IL-6 is LPS and the 

phorbol ester, PMA (76). 
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IL-6 production in vivo is significantly augmented by LPS induced TNF 

production (290, 326, 338). Many studies in vitro have also concluded that the 

production of TNF is closely followed by the production of IL-6 (95, 116, 290). 

Therefore, substances which alter TNF production also alter IL-6 production in the 

same direction. Shalaby et al., 1989, (290) demonstrated in vivo that injections of 

both TNF and IL-1 could stimulate IL-6 production by mice. The administration of 

both TNF and IL-1 resulted in a synergistic increase in IL-6 production. 

Administration of TNF antibodies also partially attenuated IL-6 production in LPS 

stimulated mice (290). However, reports from in vitro studies with transformed cell 

lines (211) and isolated primary liver endothelial cells (101) indicate that IL-6 

production is not coupled to the presynthesis of TNF. 

The activation of protein kinase C by PMA results in IL-6 production by 

macrophages (76,283). Mengozzi et al. 1991, (220) have also demonstrated that 

PMA could reverse LPS tolerant suppression of IL-6 production, but not TNF 

production in mice. They also observed that IFN-y could also partially restore IL-6 

production in this model (220). Recently, Sironi et al.,1993 (296) found that PMA 

could also reverse LPS tolerance in a mouse glioma cell line. The restoration of 

cytokine production by PMA was also specific for IL-6 as TNF production was not 

restored by PMA treatment. From this study the authors concluded that down 

regulation of IL-6 production during LPS tolerance occurred at the level of 

transcription by down regulation of PKC or another PMA-induced signalling 

pathway (296). 
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5. IL-6 Function and Regulation during Sepsis 

As illustrated in fig. 6, IL-6 is a polyfunctional cytokine that plays a central 

role in many host defense mechanisms. The impact of IL-6 on the cell types 

illustrated can be found in a recent comprehensive report by Van Snick (331). 

IL-6 has been implicated in vivo to be one of the mediators of the host 

response to trauma, infection and sepsis, as several authors have demonstrated 

that LPS administration stimulates the production of IL-6 ( 15, 16,24, 46, 81, 94, 

115, 116, 168, 181, 185). Fong et al., (116) demonstrated that E.coli administration 

to human volunteers stimulated IL-6 production. Moreover, recent clinical studies 

(80,244,359) have described a strong correlation between elevated plasma IL-6 

concentrations and both postoperative complications and increased mortality of 

septic patients. Patients with Pseudomonas pseudomallei sepsis, whose serum 

IL-6 levels were greater than 1 ng/ml had a 75% increased mortality rate (123). 

Casey et al. 1993, (60) demonstrated similar results. Septic syndrome patients 

who died had significantly elevated plasma IL-6 concentrations. Plasma tumor 

necrosis factor and IL-1 concentrations did not correlate with an increased 

mortality rate (60). 

IL-6 administration to animals results in the physiological sequelae 

observed during sepsis, such as acute phase protein synthesis, fever, 

hypoglycemia and hypotension (27). 

IL-6 is the cytokine predominately responsible for the production of acute 

phase proteins (APP) by the liver (27,53,155). LPS stimulates Kupffer cells and 



plasma cells 
immunoglobulins 

proliferation 

I proliferation t 
B cells 

\ 

I 
PC12 cells 

differentiation 

myeloma / 

cytotoxic T cell 

/ T cells acute phase 

/ / protein synthesis 

hepatocyte 

/ 

--1~.. macrophage 

inhibit 
TNF synthesis 

_____--P" 
--..._ myeloid leukemia 

macrophage 
differentiation 

~ stemcells 

\ megakaryocytes 

keratinocytes ~ 

+ 
growth 

~ multipotent 
colony formation 

thrombopoietin 
synthesis 

Fig. 6. Polyfunctional nature of IL-6. ( Akira et al., 1992 ). 

" 40 



41 

the hepatic endothelial cells to produce IL-6, and a paracrine activation of APP 

synthesis by hepatocytes is initiated (76). The proteins specifically induced by IL-6 

include cysteine proteinase inhibitor, a2-macroglobulin, fibrinogen, a 1-

antiproteinase inhibitor, haptoglobin, a1-antichymotrypsin, ceruloplasmin and C1 

esterase. In combination with IL-1, IL-6 also stimulates the synthesis of other 

acute phase proteins such as C3 and C-reactive protein (103,210). Maximal 

production of APP by hepatocytes requires the presence of glucocorticoids. 

Glucocorticoids enhance the production of APP by stimulating the upregulation of 

IL-6 receptors on hepatocytes. IL-6 also inhibits the production of corticosteroid­

binding protein, CBG, thus increasing the availability of the glucocorticoid to the 

hepatocyte (23). Regulation of APP by IL-6 is via increased transcriptional activity 

(76,131). An IL-6RE has been described by Baumann et al.,1990 (26) in the 5' 

promoter region of the a2 macroglobulin gene. This region contains nucleotide 

sequences similar to that described to bind NFIL-6 (6,7). Perlstein et al., 1991, 

(256) reported that interleukin 6 administration directly into the CNS of conscious 

rats stimulated the production of ACTH. The stimulation of ACTH production 

occurred through increased CRF secretion by the hypothalamus (235, 256). 

ACTH secretion would subsequently stimulate cortisol production by the adrenals 

and augment APP production by the liver. 

The cells of the central nervous system, primarily astrocytes and microglial 

cells produce interleukin 6 (58,296) . Elevated IL-6 concentrations in the cerebral 

spinal fluid of patients with meningitis and sepsis have been documented (80). 
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The ability of IL-6 to cross the blood brain barrier has not been described. The 

production of IL-6 within CNS has been postulated to be responsible for the 

induction of LPS induced fever and anorexia. Damas et al., 1992 ,(80) found a 

strong correlation between increased body temperature and plasma IL-6 levels. 

LeMay et al., 1990 ( 197, 198) have shown that intracerebroventricular injections 

of IL-6 to rats stimulated a dose-dependent increase in body temperature. 

Identical doses administered either i.p. or i.v. did no cause fever. Prostaglandin 

synthesis mediated the fever observed as indomethacin completely blocked IL-6 

induced fever. A direct link between IL-6 and neural degeneration was recently 

described by Campbell et al., 1993 (58). Transgenic mice that overexpressed IL.:.6 

in the central nervous system, exhibited severe neurodegenerative disease, 

tremors, ataxia and seizures (58). 

Alterations in carbohydrate and protein metabolism are characteristic 

observations in patients with sepsis (122). TNF and IL-1 have been implicated as 

mediators of hypoglycemia and weight loss in these patients (93). Gershewald 

et al. 1990. (133) observed that immunization against IL-1 type I receptor 

attenuated not only cachexia and anorexia but also significantly reduced plasma 

IL-6 concentrations. The reduction of plasma IL-6 concentrations could also have 

been responsible for the reduction of symptoms observed. Oldenburg et al., 1993, 

(245) found that IL-6 receptor blockade prevented weight loss and anorexia to the 

same extent as that observed with IL-1 blockade. They concluded that the 

influence of IL-1 on cachexia is in part mediated by IL-6. Recently, Strassmann 
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et al. 1993, (308) illustrated that the administration of anti-IL-6 antibodies in vivo 

significantly decreased LPS induced hypoglycemia and weight loss. However, the 

administration of TNF antibodies reduced LPS induced hypertriglyceridemia and 

had a lesser effect on LPS induced hypoglycemia. 

E. Glucorticoids and Insulin Physiology during Sepsis 

Whether endotoxin directly stimulates endocrine cells or the stimulation of 

cytokine production and inflammatory mediators indirectly initiates the 

endocrinological stress responses, remains unknown (318). The hypothalamic­

pituitary-adrenal axis responds primarily to endotoxin induced hypotension by 

increasing plasma concentrations of ACTH, catecholamines, cortisol and 

aldosterone (295,318). The pancreas responds to increased plasma cortisol and 

glucose concentrations by increasing plasma insulin and glucagon concentrations 

(31,295,318). 

1. Glucocorticoids and Sepsis 

Glucocorticoids are important to the natural host defense against endotoxin. 

Sepsis increases plasma glucocorticoids, such as corticosterone and cortisol (167, 

295) A measurable increase in plasma corticosteroids occurs within the first one 

half hour after an endotoxin challenge (116, 248, 257). At the level of the pituitary 

gland, ACTH also increases in response to endotoxin. This increase ultimately 
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results in an increase in plasma cortisol. During physiological stress, such as 

sepsis, glucocorticoids are important for providing amino acids as substrates for 

gluconeogenesis in the liver and for the up regulation of enzymes necessary for 

gluconeogenesis (36,37). Cortisol also acts to maintain blood pressure and 

cardiac output as well as modulating an activated immune system. 

Several aspects of glucocorticoid physiology are impaired by endotoxin and 

sepsis. Under normal conditions, the increases in plasma glucocorticoids 

observed during stress initiate feedback inhibition at the level of the hypothalamus 

and the pituitary by inhibiting CRF and ACTH (167). However, recently, Perrot et 

al. 1993., (257) demonstrated in a group of septic patients in which elevated 

cortisol and p lipotrophin concentrations were refractory to the suppressive effects 

of dexamethasone infusion. This finding suggests that other factors are interfering 

with the normal feedback mechanisms (257). 

Corticosteroids exert their activity by binding to cytoplasmic glucocorticoid 

receptors (22,25). The binding of cortisol and corticosterone results in a structural 

and conformational change in the receptor converting it from the inactive to the 

active form (22, 25). The activated receptor then translocates to the nucleus 

where it binds to the GRE of a particular gene to either upregulate or inhibit 

transcription. The positive or negative modulation of transcription is determined 

by the interaction of the glucocorticoid-GRE complex with other nuclear regulatory 

proteins such as AP1 or NFKB (25). 

Endotoxin wields a dichotomous impact on glucocorticoid receptors 
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depending on the cell type influenced. During an endotoxin challenge, several 

authors (8, 159,304,305,332) have shown that glucocorticoid receptors in liver and 

cultured hepatocytes decrease. McCall um et al., 1983 (215) hypothesized that the 

hypoglycemia observed during sepsis occurs because of the inhibition of 

glucocorticoid mediated enzyme induction. This is due to the down regulation of 

cytosolic glucocorticoid receptors (215). Ali et al., 1990, (8) found that 24 hours 

after subcutaneous E.coli injection glucocorticoid receptor binding declined by 

40%. The glucocorticoid receptor mRNA declined by 30%. Transformation of the 

receptor from the inactive to the active form was unaffected during sepsis (8). 

In other cell types, for example, macrophages, glucocorticoid receptors are 

increased. Salkowski et al. 1992. (280) demonstrated that in RAW 264.7 and 

primary macrophages, endotoxin stimulated an increase in glucocorticoid receptor 

number without altering receptor affinity. The observed increase was present as 

early as 4 hours after stimulation and was maximal at 12 hours after stimulation 

(280). These findings suggest that LPS sensitizes the macrophage for both the 

positive and negative regulation of cytokine production. 

In spite of increased plasma glucocorticoid concentrations during septic 

shock, the induction of hepatic gluconeogenic enzymes, glucose-6-phosphatase, 

fructose 1,6-bisphosphatase and phosphoenolpyruvate carboxykinase (PEPCK) 

are decreased during endotoxicosis (11, 12,83, 160). The pharmacological 

administration of synthetic glucocorticoids such as dexamethasone has proven 

effective in restoring gluconeogenesis and euglycemia when administered prior 
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or concurrently with endotoxin (37,38, 167,358). The benefits of glucocorticoid 

treatment are negated when endotoxin is administered. Berry and Smythe 

observed that glucocorticoid mediated protection could be removed by the 

administration of actinomycin D and other inhibitors of protein synthesis (295). 

They proposed that protection was related to the ability of corticosteroids to 

induce the synthesis of certain liver enzymes (38). PEPCK converts oxaloacetate 

to PEP, is considered to be the rate limiting step in gluconeogenesis (140), and 

is subject to regulation by several hormones including insulin, glucocorticoids, 

thyroxine and glucagon (140). Granner et al., 1990 (141) have confirmed that 

distinct regulatory sites exist on the PEPCK gene for the positive modulation by 

corticosteroids (176, 254) and the negative modulation by insulin (242,243). 

Therefore, the effect of glucorticoids may act to increase PEPCK transcription in 

normal and in stress situations such that euglycemia may be maintained in the 

organism. 

PEPCK activity is significantly altered by endotoxin. Berry introduced the 

concept that LPS induced mediators released from immune cells, primarily 

macrophages, were culpable for antagonizing the positive effects of 

glucocorticoids (229, 295). The inhibitory activity derived from LPS-stimulated 

macrophages was termed , GAF, glucocorticoid antagonizing factor (230). Berry 

further investigated the properties of the antagonizing factor of endotoxin. He 

determined that GAF possessed protein-like properties and was derived from 

macrophages with a molecular weight of 150,000 (230,295). Berry also 
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postulated that glucocorticoids may act to control GAF production by 

macrophages (295). Although GAF was never identified specifically as one of the 

many cytokines known today, some scientists have postulated that GAF could 

have been a oligomeric complex of TNFa (295). Recently, Hill and Mccallum, 

1991 (160) demonstrated that rats treated with endotoxin exhibited lower rates of 

PEPCK transcription. They also found that both TNFa and IL-6 altered PEPCK 

transcription rates (160). 

2. Glucocorticoid Regulation of Immune Function 

For many years physicians have known that clinically, glucocorticoids 

posses the ability to reduce inflammation in conditions such as arthritis, trauma 

and injury (142). The reduction in inflammatory activity is attributed to the ability 

of corticosteroids to influence the activity of almost every immune cell type (142). 

Glucocorticoids in pharmacological doses suppress hematopoiesis, induce 

apoptosis in T cells and reduce neutrophil chemotaxis and phagocytosis 

(22,31, 142). Glucocorticoids also have a potent effect on monocyte and 

macrophage activity. Increases in plasma cortisol cause decreased differentiation, 

margination, emigration/ and phagocytosis by macrophages (151, 171, 

236,297,335). 

The research conducted over the last ten years has uncovered the 

fundamental rationale of corticosteroid's powerful anti-inflammatory activity. 

Glucocorticoids block the production of many cytokines including, IL-1, IL-2, G-
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CSF, INFy, IL-6 and TNFa(39,75,175,189,205,219,234,239,252). Glucocorticoids 

have the ability to alter cytokine production by binding directly to the regulatory 

elements of the cytokine gene and altering transcription or by altering the rate of 

translation (22). Indirectly, glucocorticoids alter cytokine production by regulating 

the production of other biological modifiers of cytokines such as prostaglandins 

(236). 

TNFa stimulates the production of other cytokines such as IL-1P, IL-2, INFy 

and IL-6 by macrophages and other immune cells. Glucocorticoids have been 

shown to significantly suppress TNFa production both in vitro (252) and in vivo 

(21,39, 248,271,339). Remick et al. 1989, (271) investigated the in vivo dynamics 

of TNFa mRNA production and the effects of dexamethasone suppression in 

mice. They determined that TNFa protein and mRNA are rapidly induced following 

an endotoxic challenge. Time course studies indicated that 4 hours pretreatment 

with dexamethasone (4 mg/kg) significantly suppressed TNFa; however, post 

treatment as short as 20 minutes after endotoxin administration did not alter TN Fa 

production in comparison with endotoxic control mice. Pretreatment with 

dexamethasone did not entirely suppress mRNA, indicating only partial inhibitory 

effects at the level of transcription (271 ). 

Dexamethasone can also abolish TNFa synthesis without entirely 

eliminating TNFa mRNA accumulation (44, 365) . At the level of transcription, 

glucocorticoids exert strong inhibitory influence by reducing mRNA by 80% 

(42,44). However, the effect appears to be more effective at the level of 
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translation. Greater than 99% inhibition can be achieved at the protein level in 

peritoneal macrophages (44). Using nuclear runoff assays which measure the rate 

of message degradation, Remick et al., 1989, (271) determined that the slope of 

message degradation over time was sharply increased in the presence of 

dexamethasone. TNFa, other cytokines and fast inducible genes such as NO 

synthase contain UA rich regions in the 3' untranslated region of the gene. This 

region is believed to confer message instability. Using TNFa promoter:CAT 

constructs as well as CAT-TNFa 3' UTR constructs in transfected cells, Han et al. 

1991 (147, 148) demonstrated that dexamethasone treatment hinders the 

expression of TNF. Both regulation in the promoter and in the 3' untranslated 

region of the TNF gene was observed. 

Glucocorticoids significantly depresses IL-6 production in macrophages, 

fibroblasts and endothelial cells (144,340). Waage et al., 1990, (340) showed that 

dexamethasone completely abolished IL-6 production in isolated human 

monocytes and RAW 264.7 macrophages. Dexamethasone substantially reduced 

IL-6 mRNA levels, indicating that the suppressive effect occurred primarily at the 

level of transcription (340). Akira et al. 1992. (7) have found GRE responsive 

elements in the promoter region of the IL-6 gene. Dexamethasone binding to its 

receptor occludes the inducible elements of the MRE enhancer region and the 

TATA box (start site) of the IL-6 gene (269). The presence of unstable UAUA 

regions on IL-6 mRNA is currently controversial. From experiments involving 

translational inhibitors of cytokine synthesis such as cycloheximide, IL-6 does not 
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appear to be regulated at the level of translation (65). Therefore, the inhibitory 

action of dexamethasone with respect to IL-6 production is currently limited to the 

transcriptional level (65). 

3. Glucocorticoids and Clinical Sepsis 

Controversy still exists in clinical studies as to the efficacy of glucocorticoid 

in the prevention of septic shock induced mortality (289, 298,). Authors have 

demonstrated in animal models (18,39,164) that pretreatment with glucocorticoid 

significantly reduces endotoxin-mediated mortality. Also, the adminstration of a 

glucocorticoid receptor antagonist, RU3486, has been shown to increase mortality 

during experimental endotoxicosis (50, 153,216). Hinshaw and coworkers, in a 

series of papers, examined the protective effects of corticosteroid administration 

in LD100 canine and baboon models septic shock (77, 162, 163, 164, 165,348). They 

concluded that high dose corticosteroid administration prior or early in the septic 

trial protected the animals from hypotension, hypoglycemia, tissue necrosis and 

mortality. The prognosis for survival was especially good when the steroids were 

administered early and in conjunction with antibiotics (167). 

Although these and numerous other authors have demonstrated the 

protective effect of corticosteroid therapy in animal models, the efficacy of 

corticosteroid use in clinical sepsis remains unproven (298). Early studies by 

Schumer et al., 1976, (289) found that the administration of corticosteroids 

provided protection to septic patients. However, in two later and rather 
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significantly cited clinical trials (47, 166), the use of high dose methylprednisolone 

was shown to be ineffective and partially detrimental to septic patients. The 

factors that have been ascribed to the differences observed between the human 

and the animal studies include species differences, health and immune status of 

the clinical patients, preshock complications, the choice of the steroid and the 

dosage, inotropic and metabolic support, and primarily the failure of early 

recognition of sepsis (21,167,298). One of the distinct conclusions of all animal 

research was the early administration of corticosteroids, primarily for the reduction 

of TNFa synthesis. One of the inclusion criterion for clinical trials by both Bone 

and Hinshaw was the appearance of fever. The clinical appearance of fever is 

preceded by cytokine production (117, 197) and therefore, corticosteroid therapy 

would be ineffective. Unfortunately, the early and possibly corticosteroid 

modifiable stages of clinical sepsis cannot be detected with present clinical 

techniques (167). 

4. Insulin and Sepsis 

A marked disturbance in substrate metabolism is one of the classic 

characteristics of Gram negative septic shock (107). Changes in plasma energy 

substrates such as glucose and amino acids have been reported to occur after 

lethal doses of endotoxin in several mammalian species used as experimental 

models of septic shock (4, 116, 122,350,353). The alterations in plasma 

metabolites have been attributed to the presence of endogenous mediators and 
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elevated circulating hormones. 

Several authors have reported that endotoxin administration alters plasma 

concentrations of glucagon and insulin (11,12,83, 104, 105, 187, 270, 306). The 

in vivo response to endotoxin is associated with a profound hyperglycemia and 

hyperinsulinemia which is often followed by a lethal hypoglycemic phase (107). 

Buchanan and Filkins, 1976, (52) found that serum insulin levels were significantly 

elevated 90 minutes post intravenous endotoxin. In response to a glucose 

challenge, insulin values were inappropriately elevated when compared to the 

control values (180 vs. 55 µU/ml). Although insulin levels return to pre-endotoxin 

values by eight hours, the values are significantly elevated above control values 

between two and six hours post endotoxin (52). Knowles et al. 1986, (187) 

observed that rats administered S. typhimurium endotoxin exhibited increases in 

plasma insulin and glucose concentrations. In rats made septic by cecal ligation 

and puncture Ardawi et al. 1989, (11) 1990, (12) also measured significantly 

elevated plasma insulin and glucagon concentrations. 

As stated above, within the first two hours after endotoxin administration, 

a hyperglycemic, hyperinsulinemic phase has been observed in several species 

(11, 104, 107). Even in the presence of significantly elevated plasma insulin, 

peripheral tissues such as muscle and adipose are unresponsive to insulin­

stimulated glucose uptake and thus, plasma glucose remains elevated 

(122, 187,221,222). This observation has been classically cited as "sepsis-induced 

insulin resistance" (193,221). Both sepsis and burn injury produce clinical states 
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characterized by a poor response to insulin and a glucose intolerance. Shangraw 

et al. 1989. (291) investigated the difference between septic and postburn insulin 

resistance. They concluded that septic and postburn insulin resistance differ in 

that peripheral tissue glucose uptake in sepsis is refractory to pharmacological 

insulin stimulation. Nonseptic burn injury patients exhibited a normal response to 

insulin administration and insulin-induced potassium uptake is unchanged in both 

conditions (291). 

The role of endotoxin as the direct stimulator of insulin secretion remains 

controversial. The hyperglycemia and possibly other endogenous factors have 

been suggested as key factors responsible for glucose dyshomeostasis (4,82, 104, 

110, 111, 112) . The hyperinsulinemia observed during sepsis is not always related 

to the increase in plasma glucose concentrations. Cornell, 1989, (70) 

demonstrated that low dose endotoxin stimulated hyperinsulinemia and 

glucagonemia without hyperglycemia. Rayfield et al.,1977, (270) observed fever 

and subsequent increases in plasma insulin and glucagon with little change in 

plasma glucose concentrations during acute nonlethal endotoxicosis in fasted 

human subjects. Yelich and Filkins, 1980, (356) demonstrated that the liver's 

capability of removing endotoxin from the circulation was unimpaired during 

endotoxicosis and that the mechanism for increased plasma insulin was due to 

hypersecretion by the endotoxic pancreas. In subsequent studies, these authors 

also observed that the media from inflammatory exudate cells stimulated insulin 

release from the isolated perfused pancreas (111,357). The acronym, MIRA, 
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(macrophage insulin releasing activity) was attributed to the monokine producing 

this response (108). MIRA eventually was purified and found to be interleukin 1 

(108) . Cornell 1989 (70) demonstrated that the cytokine IL-1 was the mediator 

of the hyperinsulinemia observed during endotoxicosis. Hyperinsulinemia was 

observed 30 minutes after injection of recombinant human IL-1 into rats (70). 

The lethal phase of hypoglycemia observed in the study by Buchanan and 

Filkins and other authors, occurs two to six hours after endotoxin administration 

when insulin levels are not markedly elevated (52). The hypoglycemia is the result 

of a negative balance between the production of glucose by gluconeogenesis and 

the disposal of glucose by the peripheral tissues (107). The prior hyperinsulinemic 

phase may have altered both the tissue sensitivity to insulin and the liver enzymes 

responsible for gluconeogenesis (107). Filkins and Figlewicz 1979, (109) 

demonstrated that the epididymal fat pads from endotoxic rats manifested 

increased basal glucose oxidation. Moreover, an enhanced increase in glucose 

oxidation of the endotoxic tissues was observed to several insulin doses (109). 

Lang and Dobrescu, 1991 (193) observed that injections of live E.coli into rats 

increased whole body disposal of glucose by 53% in comparison to controls. 

Sepsis induced glucose uptake by the liver, spleen, lung, ileum and skin under 

hypoglycemic-insulinopenic conditions was augmented (193). This observation 

suggests that the non-insulin dependent tissues (ie. macrophages and Kupffer 

cells) requirement for glucose is enhanced during sepsis (55, 73,74). Insulin may 

not directly alter glucose uptake in these tissues; however, insulin may alter other 
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factors related to the enhanced septic glucose utilization (73,74,333). 

During sepsis hepatic gluconeogenesis is severely impaired in the liver and 

in the kidney (9,106,173,187,188). Ardawi et al., 1990, (12) observed that the 

maximal activities of glucose-6-phosphatase, fructose-1,6-bisphosphatase, 

pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) were 

markedly decreased in kidneys obtained from septic rats. PEPCK activity in the 

liver is severely depressed during sepsis. McCallum et al. 1983 (215) observed 

that following endotoxin challenge hepatic PEPCK activity dropped rapidly and 

was consistent with the overall hypoglycemia which subsequently appeared. The 

upregulation of PEPCK activity by glucocorticoid therapy was negated by 

endotoxin pretreatment (215). Recently, Hill and McCallum, 1991, (160) have 

shown that the PEPCK transcription rate was significantly reduced by endotoxin 

pretreatment. Insulin is a negative modulator of the PEPCK gene by affecting a 

15 base pair sequence (242,243). This group has also shown that insulin and 

phorbol esters exert dominant regulation, since both prevent stimulation of PEPCK 

transcription in the presence of the inducers cAMP or glucocorticoid. Although 

phorbol esters and insulin de-induce PEPCK gene transcription through distinct 

signal pathways, the final target of both substances is the same DNA element 

(243). The hyperinsulinemia observed during sepsis may exert dominant 

suppression of PEPCK activity, thus causing hypoglycemia. Recently, Hill and 

Mccallum 1992, (161) challenged the role of insulin as a modulator of PEPCK 

activity during sepsis. Using diabetic rats, they found no alterations in PEPCK 
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activity suggesting that a cytokine mediator was responsible for the alterations in 

PEPCK transcription observed. 

Insulin can exacerbate endotoxin lethality. Buchanan and Filkins, 1976, (51) 

have shown that an exogenous dose of insulin given at the same time as 

endotoxin can increase mortality from 20 to 97%. Tolbutamide, a stimulator of 

endogenous insulin secretion can also increase mortality (51). Endotoxin in 

combination with phorbol esters (PMA) also results in an increase in mortality 

(177). The animals in the above studies are hypoglycemic and have elevated 

lactates prior to death (178). Satomi et al., 1985, (284) have observed that 

glucose administered to correct the endotoxin-induced hypoglycemia is ineffective 

and death is quickened. Insulin may produce or affect other mediators that initiate 

hypoglycemia and are unresponsive to restoring euglycemia. 

5. Insulin Regulation of Immune Function 

Does insulin regulate immune function and cytokine production ? Cornell, 

1989, has documented that cytokines, primarily IL-1 stimulate insulin secretion 

(70). However, whether insulin can modulate cytokine secretion normally or during 

sepsis remains unknown. Several pieces of indirect evidence and a few in vitro 

studies suggest a possible role for insulin as a cytokine modulator. 

Insulin receptors have been classically associated with metabolically active 

cells such as hepatocytes, myocytes and adipocytes (362). With the use of 

radiolabelled insulin as a ligand, insulin receptors have been identified on 
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erythrocytes, platelets and lymphocytes (321). Several authors (20,29,30,321,364) 

have demonstrated that insulin receptors are present on monocytes. Tsibris et 

al., 1980, (321) found that human monocytes contain approximately 50,000 insulin 

receptors per cell, suggesting that insulin may be important for the metabolism 

and function of this cell class. Bautista et al.,1987 (29), 1989 (30) also found 

insulin receptors on the surface of peritoneal macrophages and demonstrated 

down regulation of insulin receptors in Propionibacterium acnes activated 

macrophages. Bierger et al., 1980, (45) demonstrated that insulin binding to 

monocyte receptors can initiate a specific reaction increasing hexose 

monophosphate enzyme activity and antimicrobial activity . 

Certain hormone receptors associate with MHC Class I antigens (201). The 

insulin receptor and MHC Class I appear to be situated in close proximity in the 

cell membrane as evidenced by coimmunoprecipitation the presence of insulin in 

the media also increases MHC I and insulin receptor association on monocytes 

(201). Insulin receptor affinity appears to correspond with MHC class I alleles. 

Helderman et al., 1992, (156) have discovered a monocyte insulin regulatory 

protein (MIRRF), a small molecular weight peptide that stimulates the upregulation 

of insulin receptors on lymphocytes and is derived from monocytes stimulated with 

insulin. Insulin is necessary for lymphocyte proliferation and activation (201) .. 

Insulin has been shown to act as a growth factor, as some cell lines require 

it for growth and survival in vitro (69,100,122). Freund et al., 1993 (122) 

demonstrated that insulin and IGF-1 can increase mitogenesis and glucose 
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metabolism in the multiple myeloma cell line RPMI 8226. The regulation of 

mitogenesis and glucose metabolism by insulin was postulated to potentiate 

malignancy (122). 

The immunologic activities of peripheral leukocytes is altered by insulin 

(264). The polymorphonuclear cell functions such as adherence, chemotaxis, 

phagocytosis and superoxide production are impaired in diabetic patients (135). 

The in vivo administration of insulin to diabetic patients improves immunological 

activity. Cavot et al. 1992 (61) demonstrated in vitro that increasing 

concentrations of insulin from 40 to 320 nM increased PMN chemotaxis. 

Insulin increases PGE2 binding to P388D1 macrophages (265). PGE2 is a 

potent inhibitor of macrophage TNF production. However, Doherty et al., 1992, 

(84) observed that murine peritoneal macrophages in the presence of LPS (10 

µg/ml) and insulin concentrations from 0.2 µU/ml to 400 µU/ml increased TNFa 

production as assessed by L929 bioassay and ELISA above that of controls. IL-6 

bioactivity was increased by insulin and LPS. Insulin had no effect on IL-1 

production. The transcription of TNFa was slightly reduced in the insulin treated 

cells suggesting the site of regulation is post-translational. IL-6 gene transcription 

was unaltered from the control (84). Recently, Halan and Minowada, 1992, (172) 

reported that insulin, IGF-1 and IGF-11 stimulated IL-1P production in LPS 

stimulated monomyelocytic cell lines, although none of the hormones stimulated 

IL-1 production alone. This affect appears to specific to monocytic cell lines as T­

cell lines tested were unresponsive to LPS and insulin treatment (172). 
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The effects of insulin on cytokine production may be due to its ability to 

cross react with the IGF-1 receptor, which has been found on macrophages (179, 

275, 364). Rom and Paako, 1991, (275), have demonstrated that human alveolar 

macrophages express IGF-1 receptors only when activated with LPS or asbestos. 

The structural similarity between the IGF-1 and the insulin receptor indicates that 

insulin can cross react weakly with the IGF-1 receptor (124, 179, 364). Insulin-like 

growth factors (IGF-1) and (IGF-2) are peptide hormone homologous to insulin 

that have rapid insulin-like and slow-growth promoting actions in vivo 

(232,240,282). The circulating plasma pool of IGF-1 is derived primarily from 

hepatocytes under the influence of pituitary growth hormone (282); however, other 

cells such as macrophages, endothelial cells and fibroblasts can produce IGF-1 

under the influence of growth hormone and other currently unknown stimuli 

(14,91, 170,275). 

Currently the role of IGF-1 as a mediator of cytokine production or the role 

of IGF-1 in sepsis remains sparsely documented. Edwards et al., 1991 (90,91) 

have demonstrated that GH serves a protective action against the lethal effects 

of Salmonella typhimurium in vivo . In the above studies plasma IGF-1 was not 

measured, and it could not be concluded whether the protective action of GH was 

direct or indirectly modulated by IGF-1. They also demonstrated that 

hypophysectomy in rats altered TNFa production (90). GH treatment of endotoxic 

macrophages in vitro has been shown to enhance TNFa production (92). One 

preliminary report has shown that plasma IGF-1 is not increased in septic patients 
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in response to a 48 hour infusion of GH (79). Fu et al., 1990, (125) have 

demonstrated in vitro that GH and IGF-1 are both potent signals in 

polymorphonuclear cells (PMNs) superoxide generation. PMNs have also been 

shown to synthesize GH and IGF-1 and may be able to activate superoxide 

generation in an autocrine fashion (125). 

6. Insulin and Clinical Sepsis 

The hyperinsulinemia characteristic of experimental septic shock is not 

always detected in the hospitalized septic patient (64, 116, 122, 183). The 

observation of hyperinsulinemia appears to depend on several factors such as 

severeity and stage of sepsis, the plasma glucose concentrations, the 

administration of dextrose or total parenteral nutrition (203) and the timing of the 

blood samplings (336). However, most clinicians agree that the septic patient 

does have an altered sensitivity to insulin (237,291). In spite of plasma insulin 

concentrations that should theoretically prevent lipolysis, stimulate peripheral 

glucose uptake and prevent protein breakdown, the opposite scenario of 

hypertriglygeridemia, hyperglycemia and protein catabolism is often documented 

(64, 122, 270). Freund et al. 1978 (122) found in a group of 15 septic patients a 

significant elevation in plasma aromatic amino acids, phenylalanine and tyrosine 

concentrations at an insulin/glucagon ratio of 3.6. Sauerwein et al. 1991 (285) 

concluded as well that significantly higher insulin concentrations were necessary 

to obtain equal values for endogenous glucose production and glucose tissue 
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uptake in septic patients compared to control subjects. The cellular mechanisms 

for the sepsis-induced altered sensitivity to insulin remain unknown; however, 

from these and other clinical studies the authors have determined that muscle 

tissue exhibits a greater degree of insulin resistance in comparison to adipose 

tissue (284,285,286). 

Insulin administered therapeutically has profound systemic effects, 

especially with respect to plasma potassium concentrations (291). Therefore, in 

contrast to glucocorticoids, insulin has not been routinely used as a 

pharmacological modality in patients with shock. Insulin administration is indicated 

only if the patient exhibits significant hyperglycemia. Bronsveld et al. 1985 (49) 

observed that an infusion of the combination of glucose-insulin-potassium (GIK) 

to septic patients in cardiac failure significantly improved survival. They concluded 

that because GIK increased cardiac output and decreased systemic vascular 

resistance, and improved 02 consumption, its administration may be considered 

when conventional volume loading and vasoactive medication have failed (49). 

Insulin administration to septic patients may reduced muscle catabolism. Mitchell 

and Norton, 1990, (226) demonstrated in an in vitro system that insulin could 

protect against the muscle proteolysis induced by plasma from septic patients. 

The clinical use of insulin as an anabolic agent has not been seriously explored 

in comparison to other anabolic hormones such as IGF-1 (87,232) and growth 

hormone. 
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E. Summary 

Insulin and glucocorticoids circulate within the organism in a precarious 

balance regulating metabolic activity. The fundamental determinant of 

homeostasis is the appropriate "ying and yang" of these hormones. Under the 

influence of physiologic stress, such as sepsis, the balance between these two 

hormones is significantly disturbed, thus inducing an ominous metabolic 

dyshomeostasis. The ability of elevated circulating glucocorticoids to induce 

gluconeogenesis and restore euglycemia as well as to modulate and supress 

immune activity is profoundly impaired during septic shock. 

The findings of Granner (242,243) are important to the research proposed 

in this dissertation for two reasons: 

1) since insulin is a dominant regulator of PEPCK activity, one could 

hypothesize that the elevated insulin concentration observed during sepsis may 

overide the stimulatory activity of glucocorticoids, thereby inducing hypoglycemia 

and death. 

2) the control of PEPCK gene expression is modulated in opposite 

directions by two hormones, and this glucocorticoid-insulin regulation of gene 

expression is not limited to PEPCK (204). Glucocorticoids suppress TNF and IL".'6 

production. Sepsis-induced insulin production may also modulate the production 

of TNF and IL-6 in a manner similar to PEPCK. 

Therefore, the purpose of the following studies is to examine the ability of 
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insulin to alter the metabolic status of the animal as well as the production of TNF 

and IL-6 in endotoxic and dexamethasone-protected models of septic shock. 



A. Animals 

CHAPTER Ill 

MATERIALS AND METHODS 

Male Holtzman viral antibody free rats were used for all experiments. The 

body weight range for the initial in vivo studies was 400 to 450 g. The liver 

perfusion studies used rats of 500 to 600 g in order to facilitate the surgical 

procedures. The rats were obtained from Harlan (Madison.WI) or Sasco (St. 

Louis, Mo). They were housed in pairs in plastic containers covered with filtered 

hoods in order to minimized airborne infections. Environmental conditions were 

a temperature of 24°C, a humidity of 45-50% and a 12 hour light and dark cycle 

(7:00 am to 7:00 pm CDT). The rats had ad libitum access to Purina rat chow and 

fresh water. Prior to the initiation of experiments, the rats were acclimatized to the 

facility for at least 7 days. The rats were moved to the laboratory from the animal 

facility the evening before the experimental procedures in order to reduce stress­

induced alterations in plasma hormones that would result during transportation. 

All experiments were initiated between 10:00 am and 2:00 pm. When fasting was 

required, food, but not water was removed at 4:00 pm on the day prior to the 

experiment. 

64 
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1. Cell Lines 

The cell lines used for experimentation were obtained from the laboratory 

of Elizabeth Kovacs. PhD, Dept. of Cell Biology, Neurobiology and Anatomy, 

LUMC. The ANA 1 cell line (75) is a murine macrophage cell line obtained from 

the bone marrow of the C57 /BL mouse which was transformed with a J2 retrovirus 

expressing v-myc/v-raf oncogene (L. Varesio, Laboratory of Molecular 

lmmunoregulation, National Cancer Institute, Fredrick, MD). RAW 264.7 cells are 

macrophages from the BALB/c mouse, which were transformed with Abelson 

leukemia virus and supplied by American Type Culture Collection, Rockville, MD. 

Two cell lines were used to bioassay the cytokines TNF and IL-6 in 

plasma, media and perfusate samples of rat origin. IL-6 was measured using the 

89 cells, obtained from Dr. Jack Gauldie, Department of Pathology, McMaster 

University, Hamilton, Ontario, Canada. 89 cells are a murine B-cell hybridoma cell 

line dependent on IL-6 for growth (1,194). TNF was measured using the L929 

cytotoxicity bioassay. L929 mouse myeloma cells are an adherent fibroblast cell 

line, obtained from the American Type Culture Collection, Rockville, MD. The 

cytokine bioassays are described in detail in the assay section of this dissertation. 

2. Primary Cells 

Primary macrophage cultures were also used for several experiments. 
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Peritoneal macrophages and Kupffer cells were obtained from male, fed Holtzman 

rats which had body weights of 400 to 450 g. The procedures required for the 

isolation of these cells are described in detail later in this dissertation. 

C. Agents 

1. Endotoxin 

Lyophilized Salmonella enteritidis lipopolysaccharide Boivin, lot # 764190, 

was utilized for all experiments and was purchased from Difeo, Detroit, Ml. The 

endotoxin was suspended in 0.9 % sodium chloride prior to injection. For cell 

culture studies, the endotoxin was serially diluted to the desired concentrations 

in sterile calcium and magnesium free phosphate buffered saline (PBS)(Gibco, 

Grand Island, NY). 

2. Dexamethasone 

For the in vivo and liver perfusion experiments, dexamethasone 21-acetate 

(Sigma, St. Louis, Mo.) was suspended in 0.9% sterile sodium chloride and 

sonicated for 5 minutes using a Bransonic 12 sonicator (VWR Scientific, USA). 

For cell culture studies, sterile dexamethasone sodium phosphate 

( Sigma, St. Louis, Mo) at an initial concentration 4 mg/ml, was then diluted to 

the required concentrations using sterile phosphate buffered saline without 

calcium or magnesium (Gibco, Grand Island, NY). 
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3. Insulin 

Humulin R (Lilly, Indianapolis, IN), human insulin of recombinant origin was 

used in all experiments. For in vivo experiments, insulin was diluted in 0.9% 

sodium chloride and 0.5% bovine serum albumin (BSA) (Sigma, St. Louis, Mo.). 

For cell culture experiments, insulin was initially diluted in 0.5% BSA and further 

diluted in sterile PBS . The endotoxin content of the insulin was determined to be 

below the detectible limits (< 0.001 ng/ml) of the Limulus Amoebocyte Lysate 

Assay (see assay section). 

4. Tolbutamide 

Tolbutamide, (Upjohn, Kalamazoo, Ml), tolbutamide sodium, was used as 

a stimulator of endogenous insulin secretion. The tolbutamide was diluted for 

injection in sterile 0.9% sodium chloride. 

5. Tumor Necrosis Factor 

Recombinant murine tumor necrosis factor (Genzyme, Cambridge, MA) was 

used as the TNF standard in both the L929 cytotoxicity assay and the ELISA. 

The TNF was reconstituted with endotoxin free water and diluted further with 

sterile PBS. 

Recombinant murine TNF was also used to test the stability of TNF in the 

perfusion apparatus. TNF was reconstituted with endotoxin free water (Sigma, St. 

Louis, Mo) and added to 100 ml of KRB with 5% albumin for this procedure. 
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Endotoxin content of the reconstituted TNF was determined to be less than 0.01 

ng/ml by the Limulus Amoebocyte Lysate test (Whittaker, Walkersville, MD). 

6. Interleukin 6 

Recombinant human interleukin 6 (Endogen, Boston, MA) was added to the 

B9 cells culture media in order to maintain growth. Recombinant rat IL-6, ( Dr. J. 

Gauldie, McMaster University, Hamilton, Ont., Canada) was utilized to generate 

the standard curve in the B9 proliferation bioassay. The IL-6 was diluted in 

lscove's Minimal Essential Media with 5% fetal bovine serum (FBS). Endotoxin 

content was determined to be less than 0.01 ng/ml by LAL testing. 

7. Phorbol myristate acetate (PMA) 

PMA (Sigma, St. Louis, Mo) was utilized as a stimulator of protein kinase 

C (PKC) in tissue culture experiments involving the ANA1 and RAW 264.7 

macrophages. PMA was initially dissolved in dimethyl sulfoxide (DMSO) and 

diluted further in PBS. 

8. 1-(5-isoquinolinyl sulfonyl)-2-methyl-piperazine (H-7) 

H-7, (Calbiochem, San Diego, CA), an inhibitor of protein kinase C and 

other kinases was utilized in tissue culture experiments involving ANA 1 cells, 

RAW 264 cells and peritoneal macrophages. H-7 was dissolved in DMSO at a 

concentration of 1 mg/ml. Further dilutions were performed using sterile PBS. 
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9. lndomethacin 

lndomethacin (Sigma, St. Louis, Mo), an inhibitor of cycloxygenase and 

thus, prostaglandin synthesis, was utilized in cell culture experiments involving the 

ANA1, RAW 264.7 and peritoneal macrophages. lndomethacin was dissolved in 

70% ethanol at a concentration of 1 mg/ml. Further dilutions were performed with 

sterile PBS. 

10. Insulin-like Growth Factor 1 (IGF-1) 

IGF-1 was used in cell culture experiments to determine if insulin was 

acting similar to this growth factor. Lyophilized recombinant human IGF-1 

(Gropep, Adelaide, Australia) was reconstituted to 1 mg /ml with sterile saline 

containing 3% BSA. Further dilutions were performed with sterile PBS. 

11. Okadaic Acid 

Okadaic acid, an inhibitor of serine phosphatase activity and, hence, a 

promoter of PKC actions, was used in cell culture experiments to determine its 

effect on cytokine production. One hundred micrograms of okadaic acid was 

reconstituted in 10 ml of 70% ethanol and further diluted with sterile PBS. 

12. Cycloheximide 

Cycloheximide, a non-specific inhibitor of protein synthesis, was utilized in 

tissue culture experiments involving the ANA 1, RAW and peritoneal macrophages. 
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Cycloheximide was reconstituted and diluted to the required concentrations in 

PBS. 

D. In Vivo Projects 

1. The Effect of Exogenous Insulin Administration on Lethality and Glucose 

Homeostasis. 

To investigate if insulin could alter dexamethasone protection against the 

lethal effects of endotoxicosis in vivo, the following experiments were designed. 

Overnight, fasted male Holtzman rats were assigned to control and 

treatment groups as illustrated in table 4. The rats initially received either 

dexamethasone (DEX) at a dose of 0.33 mg/kg dexamethasone acetate, i.p., or 

an equal volume of saline. Three hours later, endotoxin (EXT) or saline, was 

administered at a dose of 20 mg/kg , i.p. One hour post-endotoxin, the rats were 

given either insulin or saline at 1.0 U, s.c. The animals were followed over a 12 

hour time period and time of death was recorded. Prior to death, which was 

assessed to be the time the righting reflex was lost, a blood sample of 1 ml was 

taken and analyzed for glucose, lactate and insulin concentrations. 

2. The Effect of Insulin Dose on Mortality 

To determine the minimum effective dose of insulin needed to alter 

dexamethasone action in the endotoxic rat, male Holtzman rats were assigned to 
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Table 4-- Treatment groups for exogenous insulin experiments. 

GROUP DEXAMETHASONE ENDOTOXIN INSULIN 

1. - - -

2. - + -
3. - + + 

4. - - + 

5. + - -
6. + + -
7. + + + 

8. + - + 
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treatment groups illustrated above. The treatment protocol was identical to that 

used in the first experiment except three doses of insulin were tested, 1 U, 0.5 U 

and 0.25 U in order to determine the minimum effective dose. The animals were 

followed over a 12 hour time period and time of death was recorded. 

3. The Effect of Endogenous Insulin Secretion on Lethality and Glucose 

Metabolism 

The ability of endogenous insulin to alter dexamethasone protection 

against endotoxicosis was tested by administering sodium tolbutamide, (Orinase, 

Upjohn, Kalamazoo, Ml), a sulfonyl urea stimulator of insulin secretion. Male 

Holtzman rats were assigned to treatment groups as illustrated in table 5. The 

same treatment protocol as that illustrated in fig. 7 and discussed previously was 

followed, however instead of insulin, 66 mg/kg tolbutamide was administered s.c. 

1 hour post-endotoxin. The animals were then followed over a 12 hour time 

period, and time of death was recorded. Prior to death, a blood sample was taken 

by cardiac puncture and analyzed for glucose, lactate and insulin concentrations. 

4. The Effect of Restoring Euglycemia on Mortality 

In order to determine if the hypoglycemia resulting from the treatment 

protocol was responsible for the mortality in these animals, 5% dextrose solution 

was administered i.p. to a each treatment group after insulin administration to 

determine if mortality could be altered. Plasma glucose was monitored initially 
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Table 5-- Treatment groups for endogenous insulin experiments. 

GROUP DEXAMETHASONE ENDOTOXIN TOLBUTAMIDE 

1. - - -
2. - + -

3. - + + 

4. - - + 

5. + - -

6. + + -
7. + + + 

8. + - + 



DEXAMETHASONE ACETATE 
( 0.33 mg/kg ) 

3 hr. 

ENDOTOXIN ( S. enteriditis) 
( 20 ng/ kg) 

INSULIN 
( 46 ug/kg) 

---• - mortality 
- plasma for: 

glucose 
lactate 
insulin 
TNF 
IL-6 

analyses 

TOLBUTAMI DE 
( 66 mg/kg) 

---• - mortality 
- plasma for: 

glucose 
lactate 
insulin 

Fig. 7. Basic treatment protocol for the in vivo experiments. 

.. 
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every 15 minutes for two hour and then at 1 hour intervals during the treatment 

period. One ml of dextrose was administered if plasma glucose concentrations fell 

below 70 mg/dl . Mortality was assessed at the end of 12 hours. 

E. In Vivo Cytokine Measurements 

1. The Effect of Insulin on Cytokine Production in the Endotoxic Rat 

In order to evaluate the effects of insulin on TNF and IL-6 production in a 

dexamethasone-protected endotoxic rat model, fasted male Holtzman rats (n=8/ 

group) were weighed and administered either DEX or saline 3 hours prior to 

endotoxin administration. At the end of the 3 hours, the rats were anesthetized 

with 50 mg/kg pentobarbital i.p. and placed supine on a warming pad heated to 

37°C. A baseline tail-snip blood sample was obtained, and then 20 mg/kg 

endotoxin or an equal volume of 0.9% saline was injected, i.p. Blood samples 

were then taken every 15 minutes for a period of 2 hours. After 1 hour 1 U of 

either insulin, s.c., or saline was given. Blood samples were collected every 15 

minutes for 2 hours post insulin. Blood was collected in heparinized microtubes 

and placed on ice until samples were centrifuged and the plasma was removed. 

Plasma was analyzed for glucose, lactate, TNF and IL-6. 

2. The Effect of Insulin- Induced Hypoglycemia on Cytokine Production 

To observe the effect of insulin-induced hypoglycemia on TNF and IL-6 
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production, one group of male Holtzman rats was anesthetized and given SU of 

insulin s.c. Blood samples were taken every 15 minutes for 2 hours. Plasma was 

analyzed for TNF and IL-6. 

F. Ex Vivo Liver Perfusion Studies 

The liver is a biologically strategic organ in sepsis. The liver is necessary 

metabolically for the maintenance of euglycemia and the location as the first 

organ to process endotoxin from the bowel, may also make it a primary producer 

of cytokines from its resident population of macrophages, the Kupffer cells. The 

following experiment was designed to determine if the endotoxic liver was able to 

produce TNF and IL-6 and also to observe if the production of these cytokines 

could be modulated by dexamethasone and insulin. 

1. Animal Preparation 

Male Holtzman rats (500-600 g) were fasted overnight, but had ad libitum 

access to water prior to experimentation. The rat was injected with either 0.33 

mg/kg dexamethasone acetate or saline, i.p .. Three hours post dexamethasone, 

the rat was injected with Salmonella enteritidis endotoxin (20 mg/kg) or saline, 

i.p .. Insulin (1 U) or saline was administered, s.c. one hour post endotoxin. The 

animal was anesthetized with 50 mg/kg sodium pentobarbital i.v. in preparation 

for excision of the liver. 
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2. Liver Perfusion Apparatus 

Liver perfusion experiments were performed in a specially designed 

perfusion-aeration apparatus (Medical Research Apparatus; Clearwater FL) (fig. 

8) as originally described by Miller et al., 1951 (225). Prior to the perfusions, all 

glassware was disinfected and autoclaved and all tubing was gas sterilized. Krebs 

bicarbonate buffer ( KRB; 118 mM NaCl, 4.7 mM KCI, 2.5 mM CaCl2-2H20, 1.2 

mM KH2P04, 1.2 mM MgS04-7H20 and 25 mM NaHC03; pH 7.4) containing 5 

mg/ml bovine albumin (BSA) (RIA Grade; Sigma) was continuously recirculated 

through the system using a Masterflex peristaltic pump (Cole-Palmer Instruments 

Co., Chicago, IL). The KRB used in all experiments was filter- sterilized through 

a 0.2 µM filter and stored in sterilized 500 ml glass bottles at 4 °C. The endotoxin 

content of the buffer was determined to be < 0.01 ng/ml by Limulus Amoebocyte 

Lysate Assay (Whittaker, MA). For each experiment 100 ml of KRB was 

recirculated through the system. Temperature was maintained at 36-37 °C by a 

system of heating coils. The perfusate was oxygenated continuously with 95% 0/ 

5% C02 by passing over a gas exchange lung. To remove particulate or fibrous 

material produced during the perfusion, a sterile lucite filter lined with silk mesh 

was placed in the system. Between perfusions the apparatus was dismantled and 

washed with Micro disinfectant, rinsed and dried in a 300 °F oven. The apparatus 

was reassembled and rinsed twice with 150 ml of sterile irrigation normal saline. 

Prior to initiation of experiments, the empirical determination of TNF and 

IL-6 stability during the perfusion period was required. Recombinant murine TNF 
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or recombinant murine IL-6 was added to KRB + 5% BSA at a concentration of 

1 ng/ml was recirculated through the system under the normal perfusion 

conditions without the presence of a liver for one hour. 100 µI of perfusate was 

removed every 5 minutes and immediately frozen. The perfusate was then 

analyzed for TNF and IL-6. 

3. Liver Removal 

Removal of the liver was performed under sterile conditions. All 

instruments, gauze sponges, suture and cannulas were previously gas sterilized 

or autoclaved to reduce contamination. 

Fasted, treated rats were injected i.p. with sodium pentobarbital to induce 

pain insensivitity. The level of anesthetic was assessed by unresponsiveness to 

a tail pinch. The rat was placed supine on a prewarmed metal tray and the 

abdomen was swabbed with betaine and 70% ethanol. A midline incision was 

made from the level of the pubic symphysis caudally to the xiphoid process just 

below the diaphragm. Two lateral incisions were made below the diaphragm left 

along the ribcage to the distal edge of the spleen and right along the ribcage to 

the distal edge of the liver. The intestines and mesentery were reflected to the 

animal's left and placed on sterile gauze soaked in sterile normal saline. This 

procedure exposed the portal vein. The connective tissue ligature attaching the 

posterior lobule of the right lobe of the liver to the fascia surrounding the 

abdominal vena cava was cut, and a 5 cm 3-0 suture was placed around the vena 
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cava above the renal veins but not tied. Another 5 cm suture was placed around 

the distal end of the portal vein but not tied. A final 5 cm suture was placed 

around the proximal end of the portal vein above the termination of the lineal vein. 

Heparin (Upjohn, Kalamazoo, Ml) (500 U/rat) was injected into the dorsal penile 

vein and allowed to circulate for 6 minutes prior to continuation of the surgery. 

During this time period the anterior lobule of the right lobe and the Spigelian lobe 

were freed from the surrounding connective tissue. At the end of 6 minutes, the 

sutures surrounding the vena cava and the distal end of the portal vein were 

securely tied. A small incision was made in the portal vein, and a cannula (PE 

260 tubing) was inserted into the portal vein and securely tied. The cannula was 

immediately flushed with warm KRB. The chest cavity was opened to expose the 

heart, and a suture was placed around the thoracic inferior vena cava. A 1 cm 

cannula (PE 280 tubing) was inserted through the right atrium into the inferior 

vena cava and tied with a suture. The liver was quickly excised from the 

abdominal cavity and continuously flushed with warm, KRB until the fluid from the 

liver was free of red blood cells. The liver was then placed into the perfusion­

aeration apparatus chamber within 4 minutes of the tying of the first suture 

surrounding the vena cava. 

4. Liver Perfusion 

Prior to the introduction of the liver into the perfusion-aeration apparatus, 

the perfusion reservoir was filled with 100 ml of KRB + 5% BSA which circulated 



81 

through the system until the buffer reached a temperature of 37 °C. The excised 

liver was placed on moistened sterile gauze on a glass platform. The inflow 

cannula was connected to the perfusion tubing, and flow was established. The 

outflow was adjusted such that all lobes of the liver were perfused without undue 

distension. The temperature of the liver was maintained at 37 °C as measured by 

a thermistor placed between the lobes of the liver. Perfusion flow was kept 

constant between 30 - 35 ml/min. Flow did not fluctuate during the one hour 

perfusion period. 

Once flow had been stabilized(< 2 minutes), a 200 µI sample of perfusate 

was removed from the reservoir at 0, 5, 10, 15, 20, 25, 30, 40, 50, and 60 

minutes after the initiation of flow. Flow was measured at 10 minute intervals 

during the perfusion. The perfusate samples were kept on ice and frozen at -20 

°C until analysis. At the conclusion of the experiment, the liver was removed and 

gently dried with absorbent paper and weighed. Perfusate samples were 

analyzed for glucose, lactate, TNF and IL-6. 

G. In Vitro Studies 

The in vivo response to endotoxicosis is a complicated progression of 

metabolic, cardiovascular, neural and immunological events that blend into an 

infinite number of combinations and permutations. To determine the contribution 

of a particular cell population to the response and to study the cellular 
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mechanisms of these interactions in vivo often represents an insurmountable task. 

In an effort to elucidate the mechanisms of action of insulin and dexamethasone 

on TNF and IL-6 production by macrophages, the following series of experiments 

was designed and tested initially in two cell lines as well as in two primary 

macrophage populations. 

1. Cell Preparation and Cell Lines 

ANA1 or RAW 264.7 cells were maintained in 75 ml tissue culture stock 

flasks in RPMI 1640 with 5% fetal calf serum, 100 U/ml penicillin and 100 µg/ml 

streptomycin (1X antibiotics) and 2 mM glutamine. The cells were split at a 1 :30 

dilution upon reaching confluence, approximately once a week. For experiments, 

a stock flask was pipetted into a 50 ml conical centrifuge tube and centrifuged for 

10 minutes at 3000 rpm. The medium was removed, and fresh medium was 

added to the cells. A 200 µI sample of cells was taken and diluted to 1 ml with 

400 µI of RPMI 1640 and 400 µI 10% trypan blue and vortexed. A sample was 

placed on a hemocytometer, and viable cells were microscopically counted. 

The cells were then diluted in medium to 106 cells per ml and plated in 24 

well cell culture plates at 1 ml total volume /well. The cells were "rested" for 24 

hours, the old media was aspirated, and new medium was added. 

2. Experimental Design 

The basic experimental design is illustrated in fig. 9. Cells were initially 
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treated with 100 nM dexamethasone phosphate or an equal volume of PBS. At 

3 hours post-dexamethasone, 1 or 10 ng/ml S. enteritidis endotoxin or saline was 

administered to the cells. Finally, at one hour post-endotoxin, insulin (100 µU/ml) 

or saline was added to the cells. The medium in each well was then harvested at 

16 hours after endotoxin addition. In the time course experiments, media was 

harvested at 2, 4, 8, 12, 16 and 24 hours post endotoxin. The medium samples 

were frozen at -20 °C until analysis for TNF, IL-6, glucose and lactate. 

In a separate set of experiments, designed to elucidate the mechanisms 

of insulin action in these cells, several agents were employed in combination with 

the basic protocol illustrated in fig. 9. To examine the role of PGE2 in this system, 

indomethacin (1 µM) was added with insulin. H-7 (1 µM) an inhibitor of protein 

kinase C was added with insulin. PMA was added to examine if insulin was acting 

as a phorbol-mimetic. Cycloheximide ( 1 µM) was added to examine if insulin 

was acting via synthesis of RNases. Okadaic acid was added to establish if the 

blocking of a phosphatase, which regulates PKC actions, was involved. IGF-1 was 

added to examine if insulin was acting like IGF-1 as a stimulator of cytokine 

production. 

3. Primary Cultures 

.fil Peritoneal Macrophages 

Peritoneal macrophages were obtained using a modified method described 

by Doherty et al., 1992, (84). Male Holtzman rats were injected i.p. with 10 ml of 
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10% thioglycollate broth (Difeo, Detroit, Ml). Four days post injection, the animals 

were killed by C02 narcosis and the abdomens were lavaged with 60 ml of sterile 

PBS. The lavage fluid was centrifuged for 10 minutes at 3000 rpm, and the fluid 

was aspirated leaving a cell pellet. To remove contaminant red blood cells, the 

pellet was washed with 2 ml of ACK Lysing Buffer ( Quality Biological, Inc. 

Gaithersburg, MD) and resuspended in 20 ml RPMI 1640. Ten ml of Lymphocyte 

Separation Media (LSM) (Organon Teknika, Durham, NC) was carefully added to 

the cell suspension as an under layer. This mixture was then centrifuged at 3000 

rpm for 30 minutes to remove dead cells and contaminating debris. The cells were 

aspirated from the interface between the LSM and the RPMI and resuspended in 

RPMI with 3 times normal concentration of antibiotics (3X), washed and 

centrifuged 3 times in RPMI with 3X antibiotics. After the third centrifugation the 

medium was aspirated and the cells were resuspended in RPMI with antibiotics. 

An aliquot of the cells was removed to determine total number of cells and also 

to determine cell types present in the peritoneal lavage fluid. The cells were 

diluted to 106 cells/ml, and 1 ml of cell suspension was added to each well of 24 

well tissue culture plates. Two hours later, the medium was aspirated from each 

well to remove nonadherent cells and 1 ml of fresh RPMI was added to each well. 

Twenty-four hours later, the media was again removed from the wells and fresh 

medium was added. The cells were then allowed to incubate for 24 hours prior 

to experimentation. 

The treatment protocol illustrated in figure 9 was utilized for experiments 
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on the peritoneal macrophages cells. To examine the roles of second messenger 

systems in these cells the compounds described above were utilized. 

Q}. Kupffer Cells 

Kupffer cells were obtained according to the procedure described by Pilaro 

et al., 1989, (261). Male Holtzman rats were anesthetized and the liver was 

isolated and excised according to the procedure described in the liver perfusion 

experiments. The liver was initially perfused for 5 minutes at 20 ml/min with 100 

ml of Hanks Balanced saline (HBSS) (Ca2+/Mg2+ free) buffered with 25mM HEPES 

and contained 0.5mM EGTA at pH 7.2. The pump was then stopped; the tubing 

was attached to a second reservoir containing 100 ml of Leibovitz's (L-15) 

medium buffered with 25 mM HEPES, pH 7 .2, which contained 300 mg pronase 

E, 20,000 U collagenase type IV, 10,000 IU penicillin and 10,000 µg streptomycin. 

The pump was restarted and perfusion of the liver was continued for 10 minutes 

or until the parenchymal cell mass separated away from the liver capsule. The 

perfusion was stopped, and the liver was transferred to a sterile petri dish 

containing 20 ml of L-15 media. 

The liver capsule was cut with sterile scissors, and a sterile wide toothed 

metal comb was dragged through the liver to obtain a uniform cell suspension. 

The cell suspension was transferred to a sterile Erlenmeyer flask containing 20 

ml L-15, pronase E and a small stir bar. The volume was brought to 100 ml with 

L-15 and incubated for 15 minutes in a 37 °C water bath. Five ml of 1 mg/ml 
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DNase (Sigma, St. Louis Mo) was added to the mixture and digestion continued 

until no visible tissue remained (45 minutes). The suspension was filtered through 

60-70 µm nylon mesh into two 50 ml sterile centrifuge tubes and centrifuged at 

50 x g for 1 minute at 4 °C to remove the hepatocytes. The supernant was 

transferred to sterile 50 ml centrifuge tubes and centrifuged at 300 x g for 5 

minutes at 4 °C to pellet the nonparenchymal cells. The hepatocyte pellets were 

resuspended in 1 O ml of L-15 and centrifuged at 50 x g for 1 minute. The 

supernant was removed and centrifuged to pellet the nonparenchymal cells. Each 

nonparenchymal pellet was resuspended in 10 ml of L-15 and combined. The 

suspension was centrifuged for 10 minutes to pellet the nonparenchymal cells. 

The cells were washed 4 times in total. After the last wash, the pellet was 

resuspended in 5 ml of L-15 in preparation for gradient centrifugation. 

A two step gradient was used to separate the Kupffer cells from other 

nonparenchymal cells. A 30% metrizamide solution, pH 7.5, was made by adding 

30 g metrizamide to 100 ml of NaCl-free Gey's balanced salt solution. In a 15 ml 

sterile tube, 3 ml of 30% metrizamide and 2 ml of L-15 was added to form the 

18% bottom layer. The 13% top layer was formed by adding 5 ml of cells to 4 ml 

of 30% metrizamide and mixed well. This layer was gently layered on top of the 

18% layer. The gradients were centrifuged at 1400 x g, 16 °C for 20 minutes. The 

Kupffer cells were collected from bands in the interface between the two gradients 

and reconstituted to 50 ml with L-15. The cells were centrifuged at 500 x g for 5 

minutes to pellet the cells. 
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The cells were resupended in 10 ml and an aliquot was taken for 

differential staining and counting. The remaining suspension was diluted to 106 

cells per ml in DMEM, 10% FBS, 4mM glutamine and 1 % penicillin/streptomycin 

and plated into 96 well tissue culture plates. This isolation procedure resulted in 

a 83% yield of Kupffer cells as assessed by peroxidase staining. 

The cells were allowed to attach for 4 hours, and the medium was removed 

and new medium was added. The cells incubated for 48 hours prior to 

experimentation. The cells were treated with the basic treatment protocol used for 

the ANA1 cells described previously in fig. 9. 

H. Assays 

1. Glucose and Lactate Measurements 

A YSI model 2300A glucose/lactate monitor was utilized to analyze plasma, 

perfusate and cell culture media samples. The sensor technology is based on the 

principles conceived by Dr. Leland Clark, Children's Hospital Foundation, 

Cincinnati, OH. The instrument contains two probes fitted with a three layer 

membrane containing immobilized glucose oxidase or L-lactate oxidase in the 

middle layer. The sample (25 µI) is injected into a buffer filled chamber (600 µI) 

where the tip of the probe is situated. The substrate diffuses through the 

membrane and on contact with the enzymes is oxidized producing hydrogen 

peroxide (H20 2). 



D-glucose + 0 2 -------- > glucono-k-lactone + H20 2 
glucose oxidase 

L-lactate + 0 2 ---------.> pyruvate + H20 2 
L-lactate oxidase 
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The hydrogen peroxide is in turn oxidized at a platinum electrode producing 
electrons. 

------> 2H+ + 0 2 + 2e· 
platinum electrode 

The electron flow is linearly proportional to the steady state H20 2 concentration 

and, therefore, proportional to the concentration of glucose or lactate. To prevent 

the oxidation of substances other than hydrogen peroxide from adding to the 

sensor current, the membrane contains an inner layer consisting of a very fine 

film of cellulose acetate. However, this film passes H20 2 readily, and excludes 

compounds with molecular weights greater than 200. 

Prior to analysis of the samples, the instrument is calibrated with two 

standards. One standard contains 500 mg/dl glucose, lactate free; the other 

standard contains 15 mmol/L lactate, glucose free. 

2. Insulin 

Insulin was measured in plasma for the in vivo experiments. This procedure 

involved the use of a double antibody radioimmunoassay ( Binax, South Portland, 

Maine) This assay had a sensitivity level of 2.0 µU/ml and an interassay 

coefficient of variability of less than 5%. 
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3. Tumor Necrosis Factor 

fil Enzyme-Linked lmmunoadsorbent Assay (ELISA) 

Tumor necrosis factor was measured in plasma, perfusate and cell culture 

medium using a specific test kit for murine TNFa. The Factor-Test mTNF-a ELISA 

( Genzyme, Cambridge, MA) is a solid-phase enzyme immunoassay employing 

the multiple antibody sandwich principle. A hamster monoclonal antibody specific 

for murine TNFa is coated on microtiter wells in a 96-well plate. TNF present in 

standard samples and unknown specimens is captured by the solid-phase 

monoclonal antibody. A goat anti-murine TNF antibody, which binds to multiple 

epitopes on the TNF contained on the solid-phase is added. A third antibody, 

horseradish peroxidase-conjugated donkey anti-goat lg is used to bind to the anti­

murine TNF:murine TNF immune complexes. The peroxide enzyme reacts with 

peroxide substrate and a chromagen (OPD) to produce a yellow color proportional 

in intensity to the amount of TNF present. Color intensity is quantitated by 

measuring absorbance at 492 nm using an ELISA plate reader (Titertek, ICN, 

Irvine, CA). A reference standard curve is plotted using the mean absorbance of 

several concentrations of TNF ranging from 0.05 ng/ml to 3.2 ng/ml (fig. 10). The 

TNF levels in the experimental samples were determined from the linear 

regression equation generated from the standard curve. 

At the time of these experiments, rat TNFa was unavailable for complete 

validation of the TNF ELISA. Since the monoclonal antibody against murine TNF 

is of hamster and not rat origin, and Estler et al.,1992, (98) have recently 
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demonstrated that a 92 % homology exists between the biologically active forms 

of mouse and rat TNF , we feel confident that rat TNF can be measured in this 

system. 

Ql Bioassay 

Selected samples of rat perfusate, plasma and cell culture medium were 

analyzed using the L929 cytotoxicity assay (114, 258) and compared to the 

results obtained in the ELISA. The cytotoxicity assay measures the effect of TN Fa 

on the L929 mouse myeloma cells as described previously by Flick et al., 1984, 

(114). Briefly, L929 cells are cultured in 96 well microtiter plates at a 

concentration of 150,000 cells/ml in DME + 5% FBS for 24 hours. 100 pl of 

medium is added to the first three wells. The rest of the plate received 50 pl of 

4 pg/ml actinomycin D (Calbiochem, San Diego CA) to inhibit DNA synthesis. 50 

pl of murine TNF standard protein was added at several dilutions to generate a 

standard curve, and 50 pl of test sample was added in triplicate to the rest of the 

wells. A typical standard curve is illustrated in fig. 11. The plate was incubated 

for 18 hours at 37 °C. The wells were washed twice with PBS and 100 pl of 0.2% 

crystal violet in 2% ethanol and stained for 1 O minutes. The plate was rinsed with 

tap water and then air dried. The stained cells were solubilized with 200 pl 1 % 

sodium dodecyl sulfate (SOS). Absorbance was determined at 550 nm using an 

ELISA plate reader (Titertek, ICN, Irvine, CA). The TNF concentration was 

determined from the standard curve from each assay. 
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The interleukin 6 content of media from experiments involving ANA 1 and 

RAW 264.7 cells was measured using an ELISA specific for murine interleukin 6 

(Endogen, Boston, MA). The principle of this assay is similar to that described for 

the ELISA for murine TNFa. A representative standard curve for this assay is 

illustrated in fig. 12. 

Ql Bioassay 

Samples of rat plasma, perfusate and cell culture medium from the 

peritoneal and Kupffer cells were analyzed for IL-6 using the 89 proliferation 

assay as described by Aarden et al., 1987 (1). 89 cells are murine hybridoma 

cells dependent on IL-6 for growth (194). 89 cells were cultured in lscove's 

Modified Dulbecco's Medium (IMDM) with 5% FBS, 5x10-5 M 2-mercaptoethanol 

and 1 % penicillin-streptomycin. The medium was supplemented with IL-6 at 10-

100 U/ml for maintaining the cells. For the assay, cells were washed 3 times to 

remove all residual IL-6 and 2500 cells in 50µ1 of IMDM were added to each well 

of 96 well microtiter plates. Samples and standards were diluted to a minimum 

dilution of 1: 1 O and 50 µI is added to each well. Rat interleukin 6 (courtesy of Dr. 

J. Gauldie) and recombinant human interleukin 6 were used to generate standard 

curves for this assay. (fig. 13). The plates were incubated for 72 hours at 37 °C 

in 5% C02• After 72 hours 10 µI of 3-[4, 5-dimethylthiazol-2-yl] -2,5-
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diphenyltetrazolium bromide (MTT) were added to each well and incubated for 4 

hours. 50 µI Triton X was added to each well until color has fully developed 

(overnight). Absorbance was measured at 550 nm. 

5. Endotoxin 

Endotoxin content of perfusates and pharmacological reagents used in the 

experiments was determined using the Limulus Amebocyte Lysate Assay (LAL) 

(Whittaker, Walkersville.MD). The chromogenic LAL assay is a quantitative 

measure for gram-negative bacterial endotoxin. This assay is based on the 

principle developed by Levin and Bang,(1964), that endotoxin catalyses the 

activation of the proenzyme of LAL to the active form. The initial rate of activation 

is determined by the concentration of endotoxin present. The activated enzyme 

catalyzes the formation of p-nitroaniline (a yellow colored compound) from a 

colorless peptide substrate, Ac-lle-Ala-Arg-pNA. The p-nitroanaline is measured 

photometrically at 405 nM. The assay is linear between the 0.02-0.10 ng/ml 

range. The concentration of endotoxin in the samples was calculated from the 

standard curve (fig.14). 

1. Statistics 

Results are reported as mean ± standard error of the mean. Chi squared 

analysis was performed on the lethality data. A one way Anova followed by a 
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Tukey's post hoc test was performed on plasma glucose, lactate and insulin data 

from the in vivo experiments and on the data from the cell culture studies. A 

multiple variate analysis (treatment, time) with repeated measures was performed 

on the in vivo measurements and on the data from the liver perfusion 

experiments. In each case significance was accepted at p<0.05. 



A. In Vivo Projects 

CHAPTER IV 

RESULTS 

1. The Effect of Exogenous Insulin Administration and Endogenous Insulin 

Secretion on Lethality and Glucose Homeostasis. 

The graphs used to illustrate the effects of exogenous and endogenous 

insulin on mortality and metabolic homeostasis are depicted in figs. 15, 16, 17 

and 18. Each treatment group contained 8 to 15 animals. Mortality was 

determined after 12 hours, and the metabolic parameters, plasma glucose, lactate 

and insulin were measured approximately two hours after insulin administration 

as two of the treatment groups survival time was only within the two hour window 

after insulin. Dexamethasone, DEX, or saline was administered at 0.33 mg/kg, 

i.p., 3 hours prior to an injection of 20 mg/kg S. enteritidis endotoxin, ETX, or 

saline, i.p. One hour after ETX, insulin, INS, (1 U) or saline was injected, s.c. To 

determine the effect of endogenously produced insulin in this system, tolbutamide, 

TOL, was administered (66 mg/kg) in substitution for insulin. Insulin, 

dexamethasone and tolbutamide were tested for endotoxin contamination using 

LAL tests. The endotoxin contamination for these substances was ~ 0.1 ng/ml. 

100 
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Fig. 15 depicts the mortality observed among the treatment groups. 

In this particular study 20 mg/kg of S. enteritidis endotoxin administered 

intraperitoneally resulted in a 66% mortality over 12 hours. Insulin ( 1 U) 

administered one hour after endotoxin increased mortality to 100 %. All rats died 

within two hours after insulin administration. Laparotomy revealed that both the 

upper and lower intestinal tracts were dark purple and congested with petechiae 

and hemorrhages for both the ETX and the ETX/INS treatment groups. 

Tolbutamide treatment alone had no lethal effects on the rats. However , 

ETX/TOL treatment resulted in 100% mortality after 12 hours. These animals died 

within the 12 hours, however, later than the two hour period observed in the 

ETX/INS group. The examination of the intestinal tract in these animals revealed 

large regions of hemorrhage similar in degree to that observed in the ETX/INS 

group. 

The administration of 0.33 mg/kg dexamethasone 3 hours prior to 

endotoxin administration significantly reduced mortality to 6.25%. When insulin 

was administered to a dexamethasone protected group, DEX/ETX/INS, mortality 

was significantly reversed and increased to 75%. The appearance of the bowel 

on autopsy also exhibited increased areas of petechiae and hemorrhaging in 

comparison to the DEX/ETX group which demonstrated only minimal and isolated 

areas of petechiae. However, the bowel pathology observed in the DEX/ETX/INS 

group was not of a comparable degree of intensity as that observed in the 

ETX/INS group. Administration of tolbutamide to dexamethasone protected rats, 
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DEX/ETX/TOL, significantly increased mortality from 6.25% to 58%. These 

animals exhibited only limited areas of petechiae on pathological examination of 

the intestinal tract. The control groups illustrated in fig.15, insulin, INS, 

dexamethasone, DEX, and the combination, DEX/INS did not die as a result of 

the treatments. These groups did not have any gross evidence of bowel 

pathology upon autopsy. 

The plasma glucose concentration of the saline control group was 101. 7 

± 6.2 mg/dl. As illustrated in fig. 16 insulin treatment alone caused a mild 

hypoglycemia and resulted in a plasma glucose of 77.8 ± 6.5 mg/dl. This value 

was not significantly different from the plasma glucose concentration (81.8 ± 6.9 

mg/dl) in the ETX treated animals. Endotoxin and insulin in combination 

significantly decreased plasma glucose concentrations (8.1 ± 3.3 mg/dl) and a 

profound hypoglycemia was observed . TOL administration caused a decrease in 

glucose (83.8 ± 5.8 dl) that was not significantly different from ETX or INS 

alone. Plasma glucose concentration of the ETX/TOL group was significantly 

reduced to 5.9 ± 2.2 mg/dl. 

The DEX/ETX animals exhibited a mild hyperglycemia (135.6 ± 8.1 mg/dl) 

which was not significantly different from the DEX alone treatment group (129.2 

± 5.1 mg/dl). Insulin treatment resulted in a significantly reduced the plasma 

glucose level in the DEX/ETX/INS group (16.7 ± 6.6 mg/dl). Tolbutamide 

substituted for insulin resulted in a similar decline in plasma glucose in the 

DEX/ETX/TOL group (31.4 ± 3.8 mg/dl) however, not to the same intensity as 
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that observed in the DEX/ETX/INS group. 

The mean plasma lactate concentration of the saline treated animals was 

1.8 ± 0.06 mmol/L. Endotoxin treatment significantly increased plasma lactate 

values to 2.75 ± 0.35 mmol/L as depicted in fig. 17. ETX/INS treatment and 

ETX/TOL treatments profoundly elevated plasma lactate concentrations to 7.9 ± 

1.19 mmol/L and 6.8 ± 1.34 mmol/L respectively. Insulin or tolbutamide without 

endotoxin did not alter plasma lactate concentrations. 

Dexamethasone pretreatment of the endotoxic group did not significantly 

alter lactate values above those of ETX alone (2.5 ± 0.28 mmol/L). Insulin 

posttreatment of the DEX/ETX group significantly increased plasma lactates to 7.4 

± 1.5 mmol/L. However, TOL, posttreatment did not alter plasma lactates (2.28 

± .41 mmol/L ) above those of the ETX group. 

Plasma insulin concentrations illustrated in fig. 18 indicated that saline 

treated animals had a fasting insulin level of 18.5 ± 8.1 µU. Endotoxin elevated 

plasma insulin concentrations to 40.2 ± 5.4 µU. All treatment groups administered 

insulin exogenously had significantly elevated levels of plasma insulin. INS alone 

increased plasma insulin to 85 µU. Plasma insulin concentration of the ETX/INS 

group was 165 ± 27.6 µU. Tolbutamide did increase plasma insulin in the 

ETX/TOL group ,(68.3 ± 7.0 µU) however, not statistically above that of endotoxin 

alone. 

The DEX/ETX group had elevated plasma insulin concentrations (65.8 ± 

5.6 µU) however, these were not different from the ETX group. DEX/ETX/INS 
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treatment elevated plasma insulin to 136 ± 27.7 µU. DEX/ETXITOL treatment 

however, only mildly increased plasma insulin (54.8 ± 4.3 µU). DEX alone 

suppressed insulin secretion and DEXITOL treatment caused plasma insulin 

concentrations to equal that observed by ETX treatment (44.4 ± 4.4 µU vs. 40.2 

± 5.4 µU). 

2. The Effect of Insulin Dose on Mortality 

Table 6 summarizes the results of administering three different doses of 

insulin, 1 U, 0.5 U or 0.25 U of insulin on mortality 12 hours after insulin injection. 

Insulin administered without endotoxin was not lethal to the rats at any of 

the three doses. Dexamethasone and insulin in combination was also obsereved 

to be not lethal. Endotoxin mortality as shown in figure 15 was 61 %. With the 

addition of 1 U or 0.5 U of insulin to endotoxic rats mortality was increased to 

100%. The addition of 0.25 U resulted in mortality that was not different from 

endotoxin treatment alone. Dexamethasone pretreatment of endotoxic rats 

reduced mortality from 61 % to 6.25%. The addition of 1 U of insulin to the 

dexamethasone protected group increased mortality to 75%. This increase in 

mortality (75%) was also observed with the addition of 0.5 U of insulin to the 

dexamethasone-protected group. However, the mortality observed when 0.25 U 

of insulin was administered to dexamethasone-protected rats was not significantly 

altered from that observed with endotoxin treatment alone. 



Table 6 --The effect of insulin dose on mortality in endotoxic 
and control rats 

Insulin dose 1 u 0.5 u 0.25 u 
INS 0 % ( 0/15) 0% ( 0/8) 0% ( 0/8) 

ETX/INS 100%15/15) 100 %( 8/8) 63% ( 5/8) 

DEXIETX/INS 75% (11/15) 75 % (6/8) 63% (5/8) 

D/INS 0 % ( 0/15) 0% ( 0/8) 0% ( 0/8) 

ETX = endotoxin; INS = insulin; DEX = dexamethasone. 
( ) = mortality per group 
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3. The Effect of Restoring Euglycemia on Mortality 

Profound hypoglycemia was observed in the ETX/INS and the 

DEX/ETX/INS treatment groups. To determine if restoring euglycemia would be 

effective in countering the lethal effects of these treatment regimes, 5% dextrose 

solution was injected intraperitoneally and plasma glucose was monitored for 2 

hours post insulin treatment. 

Table 7 compares mortality rates in the treatments administered dextrose 

during the experiment and the plasma glucose concentrations immediately prior 

to death. It was almost impossible to maintain euglycemia over the two hour 

period and plasma glucose concentrations fluctuated dramatically in the ETX/INS 

and the DEX/ETX/INS groups. As shown in table 7 administration of dextrose did 

not alter mortality in the E/I treated and DIE/I treated groups even though plasma 

glucose concentrations were 71.8 ± 9.4 mg/dL and 86.5 ± 5.3 mg/dL respectively. 

Dextrose treatment also significantly increased plasma glucose (122.6 ± 8.2 

mg/dL) and mortality in the ETX treatment group. 

4. The Effect of PMA and H-7 on Mortality 

To determine if the effect of insulin on mortality was via the activation of 

the protein kinase C pathway, two experiments were designed. First, phorbol 

myristate acetate, PMA, a PKC activator, was substituted for insulin in the 

protocol described above. Secondly, H-7, a blocker of protein kinase C activity, 

was coadministered with insulin to examine if insulin action could be altered.' 
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Table 7-- Effect of dextrose (05) treatment on plasma glucose concentrations 
and mortality . 

Plasma Glucose (mg/dl) Mortality 

Treatment - 05 + 05 - 05 

ETX 81.8 ± 12.9 122.6 ± 8.2 * 11/15 

ETX/INS 8.1 ± 3.2 71.8 ± 9.4 * 15/15 

DEX/ETX/INS 16.6 ± 6.5 86.5 ± 5.3 * 12/15 

ETX = endotoxin; INS = insulin; DEX = dexamethasone. 
* p < 0.05 compares no dextrose (-05) to dextrose ( + 05). 

ns no significant difference. 

Mortality 

+ 05 

616 .. 

616 .. 

5/6 1111 
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Table 8 depicts the effect of this treatment regime on mortality over 12 hours. 

PMA treatment did not cause mortality nor did the DMSO based diluent used to 

dissolve the PMA. ETX/PMA treatment produced 100% mortality. DEX/ETX/PMA 

treatment increased mortality from 6.25% in the DEX/ETX group to 80 %. 

When H-7 was administered with insulin, H-7 was unable to reduce or alter 

mortality in any of the test groups. H-7 also had no effect on the survival of the 

groups that did not receive insulin. 

8. In Vivo Cytokine Measurements 

1. The Effect of Insulin on Cytokine Production in the Endotoxic Rat. 

In this study the effect of insulin on TNF and IL-6 production in an in vivo 

setting was evaluated. Initially, however, plasma glucose and lactate 

concentrations were obtained. Fig. 19 illustrates the plasma glucose responses 

of the various treatments groups over 180 minutes. Endotoxin treatment 

stimulated a rapid increase in plasma glucose to a maximum value of 161 ± 5.8 

mg/dl, approximately 90 minutes post endotoxin. This hyperglycemia was then 

observed to decrease over time to within normal range by the end of the 180 

minute sampling period. Insulin post-treatment (ETX/INS) incited a profound 

hypoglycemia (10.3 ± 3.79 mg/LI at 120 minutes) such that the rats died prior 

to the 150 minute sampling point. Dexamethasone pretreatment of endotoxic rats 



Table 8--The effect of PMA and H-7 on mortality in endotoxic and 
dexamethasone protected endotoxic rats. 

Treatment Mortality 

PMA 0% (0/6) 

ETX/PMA 93% (13/14) 

DEX/PMA 0% (0/6) 

DEX/ETX/PMA 80% (12/15) 

ETX/H-7 63% (5/8) 

ETX/1NS/H-7 100% (8/8) 

DEX/ETX/H-7 12.5% (1/8) 

DEX/ETX/I NS/H-7 75% (6/8) 
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(DEX/ETX) did not alter glucose above that of endotoxin treatment (169.5 ± 16.3 

mg/dl), however, the dexamethasone induced hyperglycemia persisted until 180 

minutes even though the plasma glucose concentration of the ETX group was 

declining. Insulin post-treatment of dexamethasone-protected endotoxic rats 

(DEX/ETX/INS) markedly decreased plasma glucose concentrations over time. 

The decline in plasma glucose was less dramatic than without dexamethasone 

pretreatment and the rats in this group survived to the end of the 180 minute 

sampling period. Insulin ,INS, alone initiated a mild hypoglycemia (76.9 ± 3.71 

mg/dl) that remained constant over the time course. Dexamethasone, DEX, and 

in combination with insulin, DEX/INS treatments did not alter plasma glucose 

significantly from saline controls over the experimental time course. 

Plasma lactate values as illustrated in fig. 20 were significantly increased 

by endotoxin over time. The maximum lactate concentrations were observed at 

105 minutes after endotoxin to be 4. 75 ± 0. 75 mmol/L. Although not statistically 

different, increased plasma lactate concentrations above that of endotoxin 

treatment were observed in the ETX/INS group. The maximum plasma lactate 

value observed was 5.1 ± 1.8 mmol/L at 120 minutes post endotoxin. DEX/ETX 

treatment reduced plasma lactate concentrations significantly below those of ETX 

and ETX/INS over the entire time course. The maximum plasma lactate values 

observed were 3.2 ± 0.48 mmol/L at 180 minutes. DEX/ETX/INS treatment did 

not significantly alter plasma lactate concentrations from those in the DEX/ETX 

treatment group. 
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Administration of endotoxin resulted in an almost typical response in 

plasma TNF as illustrated in fig. 21 . TNF appeared in the plasma 60 minutes 

post -endotoxin, peaked maximally (3. 72 ± 0.845 ng/ml) at 90 minutes and was 

almost absent from the plasma (0.375 ± 0. 412 ng/ml) at 180 minutes. ETX/INS 

treatment did not alter TNF concentrations significantly from the ETX group until 

120 minutes post endotoxin. The plasma TNF in this group at this time point was 

sustained at 3.32 ± 1.0 ng/ml and appeared to be increasing whereas the ETX 

group TNF response (2.2 ± 0.768 ng/ml) was in the initial phase of decline. 

Dexamethasone pretreatment had a significant effect on the production of TNF 

in the DEX/ETX group. TNF was completely suppressed and did not appear until 

90 minutes post endotoxin. Peak values were significantly reduced in comparison 

to the ETX group (0.558 ng/ml vs. 3. 72 ng/ml). Insulin post treatment of the 

DEX/ETX/INS group elevated TNF at 75 minutes post endotoxin and maximum 

levels were observed at 90 minutes post endotoxin (1.35 ± 0.986 ng/ml). This 

elevation in TNF was significantly different, p < 0.05, from the DEX/ETX group. 

INS, DEX or DEX/INS without endotoxin did not ellicit a response in plasma TNF. 

Plasma IL-6 was not observed to be present in significant amounts until 

120 minutes post endotoxin (table 9). Endotoxin treatment caused a significant 

increase in IL-6. This increase was maximal at 180 minutes (2.964 ± 0.369 

ng/ml). ETX/INS treatment resulted in a significant increase in IL-6 at 120 minutes 

(638.1 ± 187.3 pg/ml). Values at 150 and 180 minutes were not obtained due to 

the death of the animals. Dexamethasone pretreatment suppressed IL-6 until 150 
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Table 9-- Plasma IL-6 production by endotoxic and dexamethasone 
protected endotoxic rats in response to an insulin injection. 

0 minutes 120 minutes 150 minutes 180 minutes 

119 

E 20.9 ± 2.1 152.1 ± 43.1 1621.3 ± 59.1 2964.5 ± 369.5 

E/I 23.2 ± 3.3 638.1 ± 87.3* N/D N/D 

DIE 18.9 ± 1.4* 23.9 ± 4.3* 322.0 ± 159.3* 77.1 ± 46.04* 

DIE/I 19.1 ± 1.3 22.0 ± 1.2 142.1 ± 91.4 295.2 ± 70.1 

Values represent the mean ± SEM for each treatment group ( n = 6/group) in 
pg/ml at 0, 120, 150 and 180 minutes post endotoxin. 
E = endotoxin; I =insulin; and D = dexamethasone. 
N/D = not determined due to lethality. 
* p < 0.05 compares E to E/I and E to DIE at the same time point. 
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minutes post endotoxin although maximal values were significantly below those 

of endotoxin alone. DEX/ETX/INS treatment increased IL-6 above that of 

DEX/ETX treatment alone at 180 minutes, although not statistically significant. 

Fig. 22 compares plasma glucose and TNF concentrations in a model of 

insulin induced hypoglycemia. Plasma glucose concentrations fell dramatically in 

response to a 5 U challenge of insulin, s.c., plasma TNF concentrations over the 

time period of the experiment did not change. Plasma IL-6 levels were not 

detected in this experiment. 

C. Ex Vivo Liver Perfusion Studies 

1. Cytokine Stability 

Prior to examining the production of TNF or IL-6 by the isolated perfused 

liver in the endotoxic rat, the ability to measure TNF and IL-6 concentrations in 

the perfusate and the stability of both peptides in the perfusion apparatus under 

normal perfusio.n conditions had to be determined. 

Fig. 23 demonstrates the stability of TNF in the perfusion apparatus over 

a 120 minute perfusion without a liver present in the circuit. 75 ng and 20 ng of 

murine TNF were added to 100 ml of perfusate. As illustrated, both amounts 

remained stable over the 120 minute perfusion period. 

Fifty nanograms of murine IL-6 was also tested in order to establish IL-6 

stability in the perfusion. Fig. 24 depicts the IL-6 concentration in the perfusate 
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samples over 120 minutes of a "liverless" perfusion. Interleukin 6 concentrations 

remained constant over the 120 minute perfusion period. The maximal fluctuation 

was 12%. 

The concentration of endotoxin in the perfusate prior to the introduction of 

a liver into the circuit was determined. Perfusate endotoxin concentrations were 

found to be less than 0.1 ng/ml initially. 

2. The Effect of Dexamethasone and Insulin on Cytokine Production in the 

Isolated Perfused Liver. 

The perfusion studies were performed with livers from rats treated in vivo 

with the experimental protocol described above in section A. Fig. 25 illustrates the 

TNF concentration in the perfusate over a 60 minute perfusion period. In the 

control, saline treated group TNF was not present in the perfusate until 50 

minutes after the initiation of the perfusion. At 60 minutes TNF was also increased 

(0.233 ± 0.04 ng/ml) and appeared to be further increasing. DEX alone in the 

perfusion was able to significantly suppress this increase in TNF observed at the 

50 and 60 minute time points. There was no measurable TNF in the perfusate of 

INS treated livers until 60 minutes at which time TNF was determined to be (0.18 

± 0.06 ng/ml). DEX/INS treatment completely suppressed TNF production at all 

time points. 

ETX treatment significantly increased perfusate TNF concentration above 

the saline treated rats. TNF increased in the perfusate at a steady rate over the 
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60 minute perfusion period. Maximal TNF production was observed at the end of 

the perfusion period (1.08 ± 0.22 ng/ml). DEX/ETX pretreatment in vivo 

significantly suppressed TNF production by the perfused liver . The maximum 

concentration of TNF observed was 85.8 ± 36.4 pg/ml. 

Fig. 26 examines the effect of insulin addition on TNF production by the 

perfused liver over 60 minutes. ETX/INS treatment resulted in a significantly 

increased initial TNF concentration in the perfusate (0.429 ± 0.062 ng/ml) in 

comparison to ETX treatment (0.25 ± 0.05 ng/ml). The initial increase in TNF 

production continued until approximately 40 minutes after the initiation of the 

perfusion, when TNF production almost ceased. DEX/ETX treatment significantly 

decreased TNF production in comparison with ETX and ETX/INS. Insulin post­

treatment in vivo in the DEX/ETX/INS group could not restore TNF production. 

TNF perfusate concentrations of the DEX/ETX group and the DEX/ETX/INS group 

were not significantly different over the entire time course of the experiment. 

Fig. 27 graphically illustrates the IL-6 levels in the perfusate of the 

treatment groups during the 60 minute perfusion period. The saline treated group 

had undetectable levels of IL-6 until 40 minutes of the perfusion. IL-6 

concentration in the perfusate was 53.1 ± 3.9 pg/ml. This amount did not 

significantly change at the 50 and 60 minute sampling periods (54.1 ± 4.0 pg/ml 

and 52.8 ± 3.7 pg/ml). INS treatment initiated a similar response as measurable 

concentrations of IL-6 were detected to be 26. 7 ± 2.87 and 41.3 ± 3.1 pg/ml at 

50 and 60 minutes respectively. DEX and DEX/INS treatment were found to 



Fig. 26. TNF production by the isolated perfused liver over 60 minutes. The rats were injected with 
dexamethasone, D, ( 0.33 mg/kg) 3 hours prior to the administration of endotoxin, E, ( 20 mg/kg) or saline, S, . 
Insulin, I, ( 1 U) or saline was administered 1 hour post-endotoxin. The liver was then removed and perfused 
for 1 hour. Values represent the mean+ SEM for each group.* p< 0.05 compares E with Ell. 
** p < 0.001 compares E and Ell with DIE and DIE/I. ....... 
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suppress the increases in IL-6 at the 50 and 60 time points as no detectable 

levels of IL-6 were found in these groups at all time points. 

Initial IL-6 production by the ETX perfused liver was approximately 77.8 ± 

5.72 pg/ml. The peak concentration (93.1 ± 5.2 pg/ml) was observed at 20 

minutes. The IL-6 concentration in this group then declined over the remaining 

perfusion time period such that at 40 minutes it appeared that IL-6 production by 

the perfused liver had ceased. DEX/ETX treatment significantly suppressed IL-6 

production (60.4 ± 4.8 pg/ml) below that of the ETX treatment group. There was 

no change in IL-6 production observed over the time course of the perfusion. The 

ETX/INS treatment group had a significantly lower initial IL-6 concentration ( 55.7 

± 7 .08 pg/ml) than the ETX group. This concentration did increase slowly until a 

peak concentration of 73.1 ± 1.48 ng/ml was observed at 60 minutes. 

DEX/ETX/INS treatment caused no significant change in IL-6 over time until 50 

minutes, where IL-6 concentrations began to decline. The concentration (0.45 ± 

6.3 pg/ml) was significantly different from all the other experimental groups at 60 

minutes. 

D. In Vitro Studies 

1. Cell Lines 

In order to investigate the effects of hormonal modulation on TNF and IL-6 

production in isolated cell systems, two macrophage cell lines, ANA 1 and RAW 
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264.7 cell lines were initially examined. The experimental design employed was 

similar to that used in the in vivo and ex vivo studies. 

The cells were cultured at density of 1x106 cells/ml. Dexamethasone 

phosphate ( 100 nM) was added to the cells three hours prior to treatment with S. 

enteritidis endotoxin (1 ng/ml or 100 ng/ml). Insulin (100 µU) was added 1 hour 

post endotoxin. The medium was harvested 16 hours post endotoxin and 

analyzed for TNF and IL..:.6 concentrations. These treatments did not alter cell 

viability or the rate of growth over the test period. Endotoxin concentrations of the 

dexamethasone and insulin was determined to be less than 0.1 ng/ml. 

Fig. 28 and Fig. 29 illustrate the TNF and IL-6 levels in the medium of 

ANA1 macrophages 16 hours after endotoxin. In response to 1 ng/ml endotoxin, 

ANA1 cells produced 3.4 ± 0.42 ng/ml of TNF and 6.5 ± 0.81 ng/ml of IL-6. 

Contrary to the response observed in the in vivo experiments, insulin post­

treatment of endotoxic macrophages significantly suppressed TNF (1.7 ± 0.036 

ng/ml) and IL-6 production (2.5 ± 0.91 ng/ml). Dexamethasone pretreatment of 

endotoxin-stimulated ANA 1 cells (DEX/ETX) did not significantly suppress TNF 

production, however, the IL-6 concentration in the media was completely 

abolished (< 1 pg/ml). The addition of insulin to the DEX/ETX/INS group did not 

statistically increase TNF concentrations. The addition of insulin did, however, 

restore IL-6 production ( 5.0 ± 0.85 ng/ml ). 

The macrophage cell line, RAW 264. 7, was also tested using the same 

protocol. The response of these cells to hormonal modulation is graphically 
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illustrated in Figs. 30 and 31. In response to 1 ng/ml of endotoxin, these cells 

produced impressive quantities of TNF (9.3 ± 0.59 ng/ml) and IL-6 (3.6 ± 0.26 

ng/ml). Insulin post- treatment of the endotoxin-treated group, ETX/INS, did not 

significantly alter the TNF or IL-6 concentrations in the medium. 

DEX did not stimulate TNF or IL-6 production. DEX/ETX treatment 

significantly diminished TNF concentrations in comparison to ETX treatment (6.4 

± 0.21 ng/ml vs. 9.3 ± 0.59 respectively). The IL-6 concentration of the medium 

was also significantly reduced to 1.5 ± 0.12 ng/ml. Insulin post treatment, 

DEX/ETX/INS, did not alter either TNF or IL-6 production in these cells. 

2. Primary Macrophage Cells 

Two primary macrophage cell types (peritoneal macrophages and Kupffer 

cells) were tested with the above described protocol to determine the effects on 

isolated cells that are approaching the in vivo setting. The timing and dosages 

administered are the same as described above except the dose of endotoxin was 

increased to 100 ng/ml as 1 ng/ml did not induce the production of TNF or IL-6 

in the peritoneal macrophages. 

The TNF and IL-6 production by rat peritoneal macrophages is described 

in Figs. 32 and 33, respectively. Saline treatment did not provoke TNF production 

in the peritoneal macrophages. There was however, basal production of IL-6 in 

the medium of 138.5 ± 29.5 pg/ml by these cells. ETX stimulated cells produced 

1.6 ± 0.22 ng/ml TNF and 467 ± 30.9 pg/ml of IL-6. The addition of insulin, 
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Fig. 31. IL-6 production by RAW 264. 7 macrophages . RAW 264. 7 macrophages were pretreated with 
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ETX/INS, did not significantly alter TNF or IL-6 production in these cells (1.41 ± 

0.12 ng/ml and 561.6 ± 42.3 pg/ml). DEX/ETX treatment completely suppressed 

both TNF and IL-6 production. Insulin administration to a DEX/ETX group 
I 

stimulated a modest but significant increase in TNF concentration (0.354 ± ng/ml). 

DEX/ETX/INS treatment in these cells completely restored IL-6 production (455.4 

± 33.9 pg/ml) such that there was no statistical difference from the ETX group. 

INS, DEX, or DEX/INS treatment did not alter TNF or IL-6 production. 

Fig. 34 and fig. 35 illustrate the response of Kupffer cells to hormonal 

modulation. Kupffer cells in this system did not constitutively produce TNF, 

however, IL-6 was constitutively produced at a level of 176.6 ± 22.15 pg/ml. 

Endotoxin stimulation (100 ng/ml) prompted a significant increase in TNF 

concentration (2.43 ± 0.326 ng/ml). Interleukin 6 was also significantly increased 

by endotoxin treatment (428.45 ± 19.4 pg/ml). As observed with the ANA1 cells, 

insulin post-treatment of endotoxin stimulated Kupffer cells resulted in a significant 

decrease, p<0.001 in TNF and IL-6 production, p<0.01, in comparison with ETX 

treatment. Dexamethasone pretreatment, DEX/ETX, significantly suppressed both 

TNF and IL-6 production to control values. Insulin post-treatment, DEX/ETX/INS 

resulted in a small increase in TNF production (0.675 ± 0.29 ng/ml) and a modest 

increase in IL-6 production (302.5 ± 21.3 pg/ml) in comparison to DEX/ETX 

treatment. DEX, DEX/INS and INS treatment groups were found to have TNF and 

IL-6 concentrations that were not significantly different from saline treated cells. 
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3. Mechanisms of Insulin Action on TNF and IL-6 In Vitro 

To investigate the possible mechanisms of insulin action on TNF and IL-6 

production several pharmacological agonists and antagonists of known second 

messenger pathways were added to the in vitro protocol described above. The 

ANA 1 cells and the peritoneal macrophages were chosen as the cell types to be 

tested because of their initial positive responses to the various treatment groups. 

Briefly, dexamethasone phosphate (100 nM) was added to the cells three hours 

prior to treatment with S. enteritidis endotoxin at 1 ng/ml for the ANA 1 cells or 100 

ng/ml for the peritoneal macrophages. Insulin (100 µU) and/or a pharmacological 

agent was added 1 hour post endotoxin. The medium was harvested 16 hours 

post endotoxin and analyzed for TNF and IL-6 concentrations. These treatments, 

with the exception of cycloheximide, did not alter cell viability or the rate of growth 

over the test period. The endotoxin contamination of all the pharmacological 

substances used was determined to be less than 0.1 ng/ml. 

.fil The Role of Protein Kinase C 

Table 10 depicts the effect of PMA on ANA 1 macrophages. PMA stimulated 

ANA1 cells to produce 1.20 ± 0.34 ng/ml of IL-6. ETX stimulated IL-6 significant 

increases in IL-6 medium concentration (6.58 ± 0. 72 ng/ml). ETX/PMA treatment 

did not cause a significant augmentation in IL-6 (5.62 ± 1.72 ng/ml). 

Dexamethasone pretreatment, DEX/ETX, severely depressed IL-6 production and 

the addition of PMA to the media, DEX/ETX/PMA, overcame the depression (3.28 
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Table 10--The Effect of PMA on IL-6 production in ANA1 macrophages. 

Groups IL-6 ( ng/ml ) 

saline ~ 0.001 

ETX 6.58 ± 0.72** 

PMA 1.20 ± 0.34* 

ETX/PMA 5.62 ± 1.7 

DEX/ETX ~ 0.001 

DEX ~ 0.001 

DEX/ETX/PMA. 3.28 ± 0.84** 

DEX/PMA ~ 0.001 

Cells were treated with dexamethasone , DEX, (100 nM) 3 hours prior to the 
addition of S. enteritidis endotoxin, ETX, (1 ng/ml). One hour later PMA (1 nM) 
was added to the cells. Media was harvested 16 hours after ETX stimulation and 
analysed for IL-6 by ELISA. 
*p<0.01 compares saline with PMA. 
**p<0.001 compares saline with ETX and also DEX/ETX with DEX/ETX/PMA. 
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± 0.84 ng/ml). Dexamethasone was also shown to depress PMA induced IL-6 

secretion. 

Since the data in table 1 O demonstrated that PMA and insulin were acting 

in a similar manner with respect to IL-6 production in ANA1 macrophages, H-7, 

an inhibitor of protein kinase C was added to the original protocol as a 

cotreatment with insulin to observe the effects. Table 11 illustrates the results 

from this experiment. H-7 cotreatment had no effect on the initial observations 

demonstrated in fig. 29. 

The effect PMA (1 nM) was also tested on peritoneal macrophages. Table 

12 summarizes the results of PMA treatment on TNF and IL-6 production. PMA 

alone was able to stimulate both TNF (0.98 ± 0.36 ng/ml) and IL-6 (362 ± 87 

pg/ml) secretion. ETX/PMA treatment significantly increased TNF but not IL-6 

secretion in comparison to ETX treatment. DEXIETX/PMA was shown to restore 

TNF secretion in comparison to DEX/ETX treatment, however, IL-6 was not 

statistically increased. As demonstrated with the ANA1 cells dexamethasone 

treatment was able to suppress PMA induced TNF secretion. 

Table 13 depicts the effect of H-7 cotreatment on the insulin-induced 

cytokine production of peritoneal macrophages. As previously shown in the ANA 1 

cells H-7 did not alter either TNF or IL-6 production. 

Ql The Role of Prostaglandins 

To determine if the modulation of prostaglandin production was involved 
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Table 11--The effect of H-7 on IL-6 production in ANA1 macrophages. 

Groups IL-6 (ng/ml) 

saline I H-7 :S 0.001 

ETX/H-7 5.31 ± 0.731 

ETX/INS/H-7 5.12 ± 0.92 

INS/H-7 :s: 0.001 

DEX/ETX/H-7 :S 0.001 

DEX/H-7 :S 0.001 

DEX/ETX/I NS/H-7 4.82 ± 0.631 

DEX/INS/H-7 :S 0.001 

Cells were treated with dexamethasone , DEX, ( 100 nM) 3 hours prior to the 
addition of S. enteritidis endotoxin, ETX, (1 ng/ml). One hour later insulin (100 
µU) and H-7 (1 pg/ml) was added to the cells. Media was harvested 16 hours 
after ETX stimulation and analysed for IL-6 by ELISA. 



Table 12--The effect of PMA on TNF and IL-6 production in peritoneal 
macrophages. 

Groups TNF (ng/ml) IL-6 (ng/ml) 

saline ~ 0.001 0.153 ± 0.076 

ETX 1.84 ± 0.713 0.643 ± 0.049 

PMA 0.98 ± 0.365 0.362 ± 0.087 

ETX/PMA 3.10 ± 0.75. 0.740 ± 0.140 

DEX/ETX ~ 0.001 0.142 ± 0.023 

DEX ~ 0.001 0.137 ± 0.011 

DEX/ETX/PMA 0.741 ± 0.12· 0.321 ± 0.13 

DEX/PMA ~ 0.001 0.254 ± 0.085 
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Cells were treated with dexamethasone , DEX, (100 nM) 3 hours prior to the 
addition of S. enteritidis endotoxin, ETX, (100 ng/ml). One hour later PMA (1 nM) 
was added to the cells. 
*p<0.05 compares ETX with ETX/PMA and DEX/ETX with DEX/ETX/PMA 



Table 13-- The effect of H-7 on TNF and IL-6 production in peritoneal 
macrophages. 

Groups TNF (ng/ml) IL-6 (ng/ml) 

saline I H-7 s: 0.001 0.122 ± 0.036 

ETX/H-7 1.63 ± 0.486 0.564 ± 0.031 

ETX/INS/H-7 1.30 ± 0.871 0.497 ± 0.92 

INS/H-7 s: 0.001 s: 0.001 

DEX/ETX/H-7 s: 0.001 s: 0.001 

DEX/H-7 s: 0.001 s: 0.001 

DEX/ETX/INS/H-7 0.410 ± 0.176 0.534 ± 0.043 

DEX/INS/H-7 s: 0.001 s: 0.001 
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Cells were treated with dexamethasone , DEX, (100 nM) 3 hours prior to the 
addition of S. enteritidis endotoxin, ETX, (100 ng/ml). One hour later insulin 
(100 µU) and H-7 (1 µg/ml) was added to the cells. Media was harvested 16 
hours after ETX stimulation and analysed for IL-6 by ELISA. 
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in the insulin-induced IL-6 synthesis by ANA1 cells, INDO (1 µM) was added to 

the cells with insulin. Fig. 36 portrays the effect of INDO in this system. INDO 

treatment stimulated the production of 4.43 ± 0.40 ng/ml of IL-6. ETX/INDO and 

ETX/INS/INDO treatment was not different from INDO alone. Dexamethasone 

suppressed INDO stimulated IL-6 production as well as the IL-6 concentration of 

the DEX/ETX/INDO group. The treatment combination DEX/ETX/INS/INDO was 

observed to increase IL-6 concentration (2.19 ± 0.235 ng/ml). 

Figs. 37 and 38 examine the effect of INDO on TNF and IL-6 production 

in the peritoneal macrophages. INDO treatment did not significantly alter TNF or 

IL-6 production in comparison to the original treatment groups that are depicted 

in fig. 32 and 33. 

fil The Effect of IGF-1 on Cvtokine Production 

The growth factor IGF-1 and its receptor are structurally homologous to 

insulin and the insulin receptor. Insulin at elevated physiological concentrations 

is able to bind to IGF-1 receptors. To determine if IGF-1 can induce similar 

responses in cytokine production as those observed with insulin treatment, 10 

ng/ml IGF-1 was substituted for insulin in the original treatment protocol. 

Fig. 39 summarizes the effect of IGF-1 treatment on TNF and IL-6 

production in ANA1 cells. IGF-1 alone did not stimulate secretion of either IL-6 or 

TNF. ETX/IGF-1 treatment dramatically increased both TNF and IL-6 production. 

This increase was significantly above that observed for ETX alone. 
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Fig. 37. The effect of indomethacin, INDO , on TNF production by peritoneal macrophages . The cells were 
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Dexamethasone pretreatment of ANA 1 cells abolished IL-6 concentrations. Insulin 

post treatment, DEX/ETX/INS, was able to re-establish IL-6 production. This was 

not observed for DEX/ETX/IGF-1 treatment. 11-6 was not significantly increased 

above baseline values. 

IGF-1 was able to stimulate TNF and IL-6 production in peritoneal 

macrophages as shown in Fig. 40 and 41. The amounts were 0.613 ± 0.14 ng/ml 

and 345 ± 25.1 pg/ml respectively. The addition of ETX, in the ETX/IGF-1 group, 

significantly increased TNF concentration to 2.43 ± 0.353 ng/ml in comparison 

to ETX treatment which was 1.6 ± 0.224 ng/ml (data not shown). ETX/IGF-1 

treatment also dramatically elevated the medium IL-6 content (625 ± 45 pg/ml). 

The combination of ETX/IGF-1/INS resulted in a trend towards a decrease in TNF 

and IL-6 that was not statistically significant. Dexamethasone suppressed IGF-1-

induced TNF and IL-6 secretion. DEX/ETX/IGF-1 treatment re-established both 

TNF and IL-6 secretion. Both the TNF and IL-6 media concentrations of the 

DEX/ETX/INS/IGF-1 group exhibited a decrease, however, this was not statistically 

different from the DEX/ETX/IGF-1 group. 

Ql The Role of Serine Phosphatases 

Serine phosphatases have been implicated in the signal transduction 

pathways necessary for cytokine synthesis and secretion. The effect of the 

inhibitor of serine phosphatase activity, okadaic acid, OKA, on IL-6 production by 

ANA 1 cells and TNF and IL-6 production by peritoneal macrophages is displayed 
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in fig. 42, fig. 43 and fig. 44. 

OKA incited secretion of IL-6 by ANA1 cells. The secretion was not further 

increased by the addition of ETX, in fact, IL-6 production was decreased. 

ETX/INS/OKA stimulated an increase in IL-6 production. Dexamethasone 

pretreatment suppressed OKA-induced IL-6 secretion. The treatment groups 

DEX/ETX/OKA and DEX/ETX/INS/OKA were not significantly different from 

DEX/OKA treatment. 

OKA treatment resulted in both TNF (1.22 ± 0.56 ng/ml) and IL-6 (391.8 

± 28.5 pg/ml) production by peritoneal macrophages (fig. 43 and 44). ETX/OKA 

stimulated a markedly enhanced secretion of TNF (4.32 ± 0.53 ng/ml). The IL-6 

content of the medium was also increased (587.3 ± 44.4 pg/ml) by ETX/OKA 

treatment. Dexamethasone was able to suppress OKA-induced TNF but not IL-6 

secretion. DEXIETX/OKA treatment resulted in a mild increase in TNF and no 

increase in IL-6. DEX/ETX/INS/OKA had opposite effects on TNF and IL-6 

production. TNF was severely suppressed whereas IL-6 was dramatically 

increased (492.5 ± 640 pg/ml). 

fil The Role of RNAase I 

RNAse I has been implicated as being responsible for the degradation of 

mRNA of cytokines with the UAUAU rich regions. These regions confer message 

instability and thus result in rapid message turnover. Cycloheximide has been 

shown to "superinduce" cytokine production by inhibiting the synthesis of RNAses 
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responsible for mRNA degradation. Figs. 45, 46 and 47 demonstrate the effect of 

cycloheximide addition to the treatment groups. Fig. 45 illustrates the effect of 

eve on IL-6 secretion by ANA1 cells. eve, surprisingly caused superinduction 

of IL-6 in the ETXJeve treatment group. Insulin addition to this group, 

ETX/eVe/INS also notably enhanced IL-6 secretion. Dexamethasone significantly 

suppressed IL-6 production in the DEXIETXJeve group in comparison to 

ETXJeve treatment. DEX/ETX/INS/eVe treatment did not alter IL-6 production 

above that observed with the DEX/ETX/eVe group. 

Figs. 46 and 47 demonstrate the effect of eve on TNF and IL-6 secretion 

in peritoneal macrophages. eve caused "superinduction" of TNF synthesis 

above that observed for ETX alone (4.43 ± 0.387 ng/ml vs. 1.61 ± 0.22 ng/ml). 

Insulin addition to this group abolished TNF synthesis. Surprisingly, 

DEX/ETX/INS/eve treatment elicited a profound increase in TNF concentration 

(5.47 ± 0.72 ng/ml) not observed with DEX/ETX/eve treatment. 

Fig. 47 illustrates the effect of eve on IL-6 production by peritoneal 

macrophages. Although there are significant differences when comparing the 

treatment groups to each other, in relationship to the results from the original 

treatment groups illustrated in fig. 33, eve severely inhibited IL-6 secretion. 
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A. In Vivo Projects 

CHAPTERV 

DISCUSSION 

1. The Effect of Exogenous Insulin Administration and Endogenous Insulin 

Secretion on Lethality and Glucose Homeostasis 

.fil Mortality Effects 

This study was initially designed to examine metabolic and mortality 

differences observed in response to endotoxin and to determine if insulin would 

alter dexamethasone protection of endotoxic lethality. This preliminary in vivo 

experiment was essential so that the effects of the various treatments could be 

observed in a conscious unrestrained model. The rats were fasted overnight to 

stabilize plasma insulin at low levels. Dexamethasone was administered at 0.33 

mg/kg. This dose was proven to protect rats against endotoxic lethality in a study 

by Yelich et al., 1987, (358). This dose also represents an analogous dose of 

methylprednisolone (MP) that has been used in clinical studies (47, 164) 

considering that MP is approximately one tenth the therapeutic strength of 

dexamethasone. In comparison to the clinically recommended therapeutic dose 

of dexamethasone (5 mg/kg) and the amount administered to animals in other 
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studies (18), the dose of dexamethasone used in this experiment is significantly 

reduced; The administration of dexamethasone three hours before endotoxin 

administration enabled the intraperitoneal injection to be effectively absorbed. 

Hinshaw et al., 1978, ( 164) have shown that glucocorticoid treatment can be 

protective if administered prior or even concurrently with endotoxin. 

The dose of endotoxin chosen for this experiment was 20 mg/kg. This 

amount of endotoxin was determined from pilot studies to be midrange lethal dose 

of 66% for this particular lot of endotoxin. In comparison to Buchanan's (51,52) 

experiments (1mg total) this is a much larger dose. In comparison to other 

species the rat is extremely resistant to endotoxic challenge. Although, there is 

no recorded effective lethal dose for man, the amount administered to human 

volunteers in clinical studies is usually in the nanogram range, resulting in 

physiological alterations such as increased fever, blood pressure and TNF 

production (116, 270). The preparation of endotoxin used in this study is the 

Boivin extraction with approximately 18% protein existing with the 

lipopolysaccharide coat. Raetz et al., 1991 (267) have suggested that the protein 

is important for the activation of macrophages with subsequent cytokine 

production and antigenic response by macrophages. 

The insulin dose used was chosen after examination of Buchanan's work. 

As illustrated in table 6, 0.5 U was as effective as 1 U and 0.25U yielded results 

no different from endotoxin alone. Insulin was administered one hour post 

endotoxin. During this time period after endotoxin administration plasma insulin 
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and plasma glucose concentrations usually increase. This response has been 

described as the "insulin resistant" hyperglycemic phase of endotoxicosis (112). 

Insulin was administered during this period to determine if the animal was truly 

resistant to the action of insulin in insulin dependent tissues. As illustrated in fig. 

15 the administration of insulin one hour after endotoxin, ETX/INS, increased 

mortality from 66% to 100%. This combination was extremely and consistently 

lethal with animals succumbing within 2 hour after insulin administration. This 

was not an unexpected finding as Buchanan and Filkins,1976, (51) previously 

demonstrated that endotoxin and insulin coadministration resulted in increased 

mortality in comparison to endotoxin alone. Mortality in his study was increased 

from 25% to 100% by insulin administration. 

The protective effects of dexamethasone pretreatment against endotoxic 

lethality have been well described (36,37, 164, 167). Dexamethasone therapy is 

believed to stabilize plasma glucose, blood pressure and modulate the 

inflammatory response during endotoxicosis (358). In this study dexamethasone 

effectively reduced mortality from 61 % to 6.25% . However, insulin administration 

to dexamethasone-treated endotoxic rats was able to reverse protection 

increasing mortality from 6.25 to 75 %. The bowel of the DEX/ETX/INS group at 

autopsy was noted to have significant areas of petechiae and focal necrosis and 

appeared deep purple in color in contrast to the pink color of the bowel of saline 

treated rats. These observations were similar to those of the ETX and the 

ETX/INS groups and are consistent with death due to endotoxicosis. The 
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appearance of the bowel of animals dying from insulin-induced hypoglycemia is 

distinct as the peritoneum and intestines exhibit areas of blanching and white 

strangulation. 

Tolbutamide, a sulfonylurea derivative used therapeutically for the 

stimulation of insulin secretion in Type II late onset diabetes was utilized in this 

study to determine if the increase in mortality was due specifically to exogenous 

insulin administration and also to determine if endogenously produced insulin 

would elicit the same response and reverse dexamethasone protection against 

endotoxicosis. Although tolbutamide alone did not result in any deaths, ETX!TOL 

mortality was 100%. Buchanan and Filkins, 1976, (51) demonstrated previously 

that the addition of tolbutamide to endotoxin animals treated with an LD20 resulted 

in increased mortality to 100%. As illustrated in our experiment, dexamethasone 

protection was also reversed by tolbutamide administration. However, mortality 

was only increased to the level of the ETX group. The amount of tolbutamide 

administered stimulated only a modest amount of insulin secretion from the 

pancreas and thus plasma concentrations of insulin were reduced. Since insulin, 

either from an exogenous or endogenous source, was able to alter mortality, the 

endotoxic rats were not truly unresponsive to insulin effects. 

These findings suggest that insulin is a key hormonal regulator during 

endotoxic shock. The ability of insulin to enhance endotoxin's ability to increase 

mortality and negate dexamethasone's protective effects cause concern if 

extrapolated to the clinical setting. Therapeutically administered substances which 
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increase endogenous insulin such as glucose, or total parenteral 

hyperalimentation could alter dexamethasone protection by initiating insulin 

secretion a competitive cascade with endogenous or exogenously administered 

glucocorticoids. Glucocorticoid therapy in two highly cited clinical trials (47, 166) 

has been shown to be ineffective, although in almost all nonhuman studies 

glucocorticoids have proven to be protective. The failure of the predicted outcome 

in the clinical trials has been attributed to severity of injury of the patients as well 

as to the time of administration of glucocorticoids (167). Bone et al., 1987 (47) 

and Hinshaw et al. 1985 (166) did not examine the effects of therapies such as 

hyperalimentation and dextrose administration and plasma insulin was not 

measured in these studies. 

Ql Plasma Metabolite Effects 

The early phase of a septic challenge is characterized by two distinct 

phases of glucose metabolism (107, 112). Initially a transient" insulin resistant" 

hyperglycemic phase occurs within two hours post endotoxin. This phase is 

termed "insulin resistant" because an abnormal increase in plasma insulin without 

a subsequent decrease in the already abnormally elevated plasma glucose level 

is observed (107). Insulin dependent tissues such as fat and muscle are unable 

to take up glucose in the presence of insulin due to the presence of alterations 

in glucose transporter activity (193). The exact mechanism of the impaired 

transporter activity has not been uncovered, however, endotoxin-stimulated 
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production of tumor necrosis factor has been implicated as a possible mediator 

(214,337). 

The hyperglycemic phase terminates abruptly and is followed by a rapid 

onset lethal hypoglycemic phase (107, 143). Gluconeogenesis by the liver is 

significantly impaired during sepsis and the glucose demand by non-insulin 

dependent tissues such as the brain and the cells of the immune system is 

elevated (193,223). Non-insulin dependent utilization of glucose is approximately 

70-85% of total body disposal (193,222). Other tissues responsible for this uptake 

during sepsis include liver, spleen, lung, ileum and skin. Insulin dependent tissues 

such as muscle have also increased glucose needs (222). Therefore, the 

peripheral glucose requirements exceed the glucose output by the liver and 

hypoglycemia occurs. 

Plasma glucose levels of the ETX/INS and of the ETX/TOL rats were 

significantly reducedin this study in comparison with the ETX treatment group. 

Since blood samples were obtained approximately 3 hours after endotoxin 

administration the plasma glucose concentration of the ETX treatment group 

would be expected to be slightly decreased as illustrated in fig. 16. The addition 

of the insulin or tolbutamide to the ETX groups during the hyperglycemic phase 

exacerbated the ETX induced hypoglycemia. 

Hepatic gluconeogenesis is significantly impaired during sepsis (36,37). 

The key enzyme responsible for gluconeogenesis, PEPCK, is upregulated under 

normal conditions by cortisol and glucagon and is dominantly suppressed by 
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insulin and phorbol esters (242,243,254). In sepsis, even though plasma cortisol 

and glucagon concentrations are elevated, PEPCK activity is impaired 

(11, 12,306). Mccallum and Hill, 1992, (161) have shown that PEPCK activity is 

inhibited both at the activity and the transcriptional level by the cytokines TNF and 

IL-6. Our data suggest that the addition of insulin or tolbutamide to endotoxic rats 

may have act to further impair PEPCK activity and decrease glucose output by the 

liver. 

Dexamethasone pretreatment resulted in a persistent hyperglycemia and 

has been shown to maintain plasma glucose at euglycemic to hyperglycemic 

levels for an extended period of time post endotoxin challenge (358). Both insulin 

and tolbutamide treatment of DEX/ETX rats negated the hyperglycemia and 

induced a profound hypoglycemia. This observation supports the role of insulin 

as a dominant regulator of plasma glucose homeostasis. 

During sepsis an increase in plasma lactate is considered to be a marker 

of metabolic distress (202,230). Endotoxin is thought to alter pyruvate 

dehydrogenase and mitochondrial activity resulting in uncontrolled lactate 

production (330). Van Lambalgen et al., 1988, (330) demonstrated in a canine 

model that endotoxin increases plasma lactate significantly within 30 minutes. 

Salleh et al. 1990, (279) also demonstrated that in cecal ligation and puncture 

models of sepsis plasma lactate levels increased 100% over those of sham 

controls.Fong et al., 1990, (116) found that although no significant increase in 

plasma lactate occurred iln human volunteers administered endotoxin an 
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increased efflux of lactate from skeletal muscle was observed. A recent report 

(202) suggests that macrophages are capable of utilizing lactate as a fuel during 

stress and that lactate transporters exist on the surface of these cells. 

Plasma lactate levels in saline treated rats was increased by endotoxin 

administration from 1.0 mmol/L to 3 mmol/L. The addition of insulin or tolbutamide 

resulted in an intense hyperlacticacidemia. Dexamethasone pretreatment reduced 

plasma lactate concentrations by possibly increasing the delivery of glucose or 

oxygen to the cells. Insulin administration increased plasma lactate concentrations 

of the DEX/ETX/INS and the DEXIETX/TOL groups by reducing the available 

glucose through the inhibition of gluconeogenesis. 

During the first hour after an endotoxin challenge plasma glucose increases 

rapidly with a simultaneous increase in plasma insulin concentration. There is also 

substantial evidence that the pancreas hypersecretes insulin in response to a 

glucose challenge during sepsis. Buchanan and Filkins, 1976, (52) demonstrated 

in rats that within 90 minutes after an injection of endotoxin, insulin increases to 

a maximum of 120 µU/ml, and then rapidly decreases .As depicted in our 

experiment, plasma insulin in the ETX group was elevated above that of the 

control rats. Other authors have noted similar elevations in plasma insulin 

concentrations after an LPS challenge or in cecal ligation and puncture models 

( 11, 12,279). Results of studies involving septic patients have shown an 

inconsistency with respect to the presence or absence of elevated plasma insulin 

concentrations (64, 116, 122). This discrepancy could be due to the administration 
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of dextrose or glucose to maintain plasma euglycemia which, in turn, alters the 

plasma insulin profile. 

Even with the administration of pharmacological levels of insulin to the rats 

in this study the peak insulin observed was approximately 120 µU/ml. This value 

is within the range of plasma insulin observed during endotoxin-stimulated insulin 

secretion. Tolbutamide did not increase plasma insulin levels as dramatically as 

anticipated, however, a significant increase in mortality was observed. These 

observations suggest that an increase in insulin turnover occurred in the endotoxic 

animals and that a very small concentration of insulin can exert a lethal effect. 

Tolbutamide may also produce effects unrelated to insulin secretion however, 

tolbutamide administration alone did not cause death. 

2. The Effect of Restoring Euglycemia on Mortality 

Although the observations from the bowel pathology did not indicate death 

as a result of hypoglycemia, the plasma glucose concentrations were so 

diminished that hypoglycemia was postulated as the cause of death of the 

treatment groups. If plasma glucose concentration could be re-established in 

these groups by the administration of dextrose, would the prognosis be altered ? 

The stabilization of euglycemic plasma glucose concentrations in these 

animals without significantly altering the model created a dilemma. The 

appropriate model would have been to surgically implant catheters and glucose 

clamp the animals at a stable plasma glucose concentration. However, the effects 
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from anaesthesia, surgery and recovery would alter the original model. Therefore, 

the administration of dextrose intraperitoneally was chosen. As illustrated in fig. 

16, plasma glucose was significantly increased by dextrose therapy in the 

ETX/INS and DEX/ETX/INS groups at the time of death without significant 

reductions in mortality. Surprisingly, the administration of dextrose to the ETX 

group resulted in 100% mortality. Buchanan and Filkins, 1976, (51) have shown 

that administration of glucose significantly increased mortality from 10 to 60 % if 

given one hour post endotoxin. Satomi et al. 1985, (284) also confirmed this 

observation in mice. The stimulation of insulin secretion by dextrose injection in 

these studies was postulated to cause the increased mortality. Therefore, from 

Satomi's studies and from our results, insulin administration to endotoxic rats did 

cause hypoglycemia and contributed to death, however, insulin may have 

stimulated other physiological or immunological pathways resulting in the demise 

of the animals. 

3. The Effect of PMA and H-7 on Mortality 

PKC activation has been implicated in the development of endotoxemia. 

PMA, an activator of PKC is known to stimulate the physiologic sequelae 

observed during sepsis, including macrophage differentiation and cytokine 

production (345,347). Inaba and Filkins, 1991, (177) demonstrated that endotoxin 

lethality could be exacerbated by the injection of PMA into rats. They also showed 

that inhibitors of PKC, such as H-7 or polymyxin B, attenuated insulin induced 
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hypoglycemia and the rise in insulin during IVGTT (178). 

PMA was used to in place of insulin and insulin was combined with H-7 to 

observe if the effect of insulin was by a PKC activation. As demonstrated in the 

Inaba study, endotoxin was extremely lethal when combined with PMA. 

Dexamethasone pretreatment was also unable to protect against PMA induced 

lethality, as was demonstrated with insulin. H-7 in combination with insulin did not 

alter the significant mortality due to insulin. Although, this finding suggests that 

PKC activation may not be involved, the effects of in vivo administration of H-7 

are complex. H-7 administration in vivo at the dosage used in this study also 

induces alterations in plasma glucose and blood pressure. Also H-7 is not an 

entirely specific inhibitor of PKC and it also affects PKA activity. 

B. Cvtokine Production In Vivo 

As the administration of dextrose did not alter mortality in the experiments 

discussed above, the effects of hormonal modulation of other responses was 

examined. Endotoxin stimulates the production of an assortment of biologically 

active mediators, such as prostaglandins, leukotrienes, hormones and 

immunological cytokines. The production of TNF by macrophages is a critical 

initial response to endotoxemia. Coincidently, the initial increase in plasma TNF 

occurs in parallel with plasma hyperglycemia and hyperinsulinemia (182, 185). 

TNF then disappears from the circulation as other cytokines such as ll-1 and IL-
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6, begin to appear (116, 185). The decline in plasma TNF levels also coincides 

with the onset of endotoxin-induced hypoglycemia . 

This study examined the insulin and dexamethasone modulation of TNF 

and IL-6 production in vivo using the treatment protocol described in the mortality 

experiments. In order to facilitate serial blood sampling the rats were anesthetized 

with pentobarbital. The administration of pentobarbital alters the sympathetic 

response and catecholamine production of anesthetized animals by inhibiting 

parasympathetic activity in the brain. Increased plasma catecholamines alter heart 

rate and metabolic responses by stimulation of beta adrenergic receptors. 

Plasma glucose and lactate concentrations in this study were slightly different to 

those observed in conscious animals possibly due to the effects of anesthesia. 

Plasma TNF was increased significantly 60 minutes after endotoxin 

administration. Peak plasma TNF levels occurred at 90 minutes, with a decline to 

near basal levels by 180 minutes post endotoxin. This time course and pattern 

of TNF production appears to be a consistent with many studies and has been 

described in several species (78, 182, 185, 271, 324,325). Insulin administration 

to the endotoxic rats did not alter the amount of TNF produced , however, the 

plasma TNF level was sustained in contrast to the declining plasma TNF of the 

endotoxic group. Since rats in the insulin post-treated endotoxic group died prior 

to the conclusion of the study, the trend to increasing or persisting TNF 

concentrations could not be measured. The effect of insulin on TNF production 

could be by either direct or indirect modulation of TNF. The insulin-endotoxic 
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group also exhibited profound hypoglycemia and lacticacidemia. Elevated plasma 

TNF concentrations have been previously correlated with significantly reduced 

plasma glucose levels. Satomi et al., 1985 (284) have demonstrated that the 

administration of glucose 30 minutes prior to or Xsimultaneousl,vith endotoxin 

reduced plasma TNF, however, glucose administered after endotoxin had no 

effect on TNF. 

The plasma IL-6 amounts in the endotoxin-insulin group was also 

significantly elevated at the 120 minute time point. Elevations of plasma IL-6 are 

known to occur approximately 2 to 4 hours after LPS stimulation (200,317). In 

comparison to the endotoxin group, the plasma IL-6 levels were markedly 

increased. The appearance of elevated plasma IL-6 concentrations has been 

associated with a fatal outcome in rats and in humans (60,307). Recently, Casey 

et al., 1993, (60) verified that in a population of septic patients who died, the only 

factor that correlated with a poor prognosis was elevated IL-6 levels. The effect 

of insulin could be theorized as due to either direct or indirect modulation of TNF 

and IL-6 production. From in vitro studies evidence exists that insulin and 

endotoxin alter TNF, IL-1 and IL-6 production by cells (34,84, 172). The indirect 

effect could be via the production of other cytokines such as IL-1 and IFNy. 

Interleukin 1 has been shown to increase insulin secretion by the pancreas (70), 

however, the in vivo effects of insulin on IL-1 production have not been 

investigated. IFNy synergizes with endotoxin to produce elevated amounts of 

TNF and IL-6 (85,212). Although IFNy was not measured in this study, insulin 
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may have altered this lymphocyte produced cytokine. Insulin is important for the 

upregulation of insulin receptors on T-lymphocytes and subsequent 

immunobiological activity. Helderman et al., 1992, (156) has demonstrated that 

insulin-stimulated macrophages produce a monocyte-derived insulin receptor 

factor (MIRRF) which increases insulin receptors on T-lymphocytes. 

Dexamethasone pretreatment significantly suppressed plasma TNF and 

IL-6. Waage, 1987, (339) has shown that maximal suppression of plasma TNF 

occurs if dexamethasone is administered 3 to 8 hours prior to endotoxin. 

Dexamethasone can also be administered simultaneously with endotoxin in vivo 

and effectively reduces TNF production, however, a delay of only 20 minutes after 

endotoxin will not prevent TNF production (167). Dexamethasone suppression of 

TNF production occurs at the posttranslational level (44,340) whereas 

dexamethasone suppression of IL-6 occurs at the transcriptional level (76). The 

effect of dexamethasone on TNF or IL-6 secretion has not been examined. Insulin 

administration to dexamethasone-endotoxic rats resulted in a restoration of 

plasma TNF concentrations, with no marked effect on plasma IL-6. The rise of 

plasma TNF occurred rapidly after insulin injection. This observation indicates 

that insulin can affect either posttranscriptional processing of TNF mRNA or the 

actual secretion of the TNF protein. 

TNF and IL-6 administration have been shown to cause hypoglycemia and 

death in experimental animals (93,337). A strong inverse correlation is observed 

in endotoxin treated mice when plasma TNF and glucose concentrations are 
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examined (284). The administration of a hypoglycemic dose of insulin to a group 

of saline treated rats was shown in this study to not alter plasma TNF or plasma 

IL-6 concentrations. 

C. Ex Vivo Studies 

Several authors have demonstrated that the liver is a vital organ for the 

maintenance of physiological stability during sepsis (39, 118, 134,333,341 ). The 

liver is responsible for the production of glucose as well as the removal, 

neutralization and processing of endotoxin (190,302). The subsequent 

presentation of endotoxin on the surface of antigen presenting cells results in the 

activation of the immune functions and cytokine production by the resident Kupffer 

cells (15,57,101,217). The hepatocytes and endothelial cells are also capable of 

producing cytokines in response to LPS (102, 169). The Kupffer cells however, 

are believed to be the primary producers of TNF, IL-6 and IL-1 in the liver (180). 

To investigate the role of the liver in cytokine production the isolated 

perfused liver (IPL) was used as a model for TNF and IL-6 production. The 

physiological and metabolic functions of the liver are regulated by elevated portal 

concentrations of insulin and glucocorticoids, therefore, the effects of these 

hormones were also examined. The IPL has been a model for examination of the 

various aspects of hepatic function for over 100 years (191,207,342,351). This 

model offers several advantages over in vivo and currently widely used in vitro 
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techniques. In comparison to in vivo studies the direct effects of a substance on 

liver function can be tested without interference from neural and hormonal factors 

secreted in response by other organs (139). Also, multiple samples of perfusate 

can be taken over time without impairing organ function (351). The advantage of 

this technique over in vitro studies is that the architecture and integrity of the 

environment of a specific cell population, for example the Kupffer cell is 

maintained (139,351). The discrepancies and variations in cytokine production 

observed in many studies may be a reflection of the matrix of cells regulating the 

production of cytokines by specific cells. 

In this experiment a recirculating system was chosen so that the 

accumulation of TNF and IL-6 could be measured. Initially we postulated that the 

high flow rates required to deliver adequate amounts of oxygen to the cells would 

wash out any TNF or IL-6 produced. By using this system the rates of production 

could also be measured. In many IPL systems RBCs are added to maintain 

oxygenation (207). We did not use RBCs because of possible interference in TNF 

and IL-6 production . Since TNF and IL-6 are labile proteins which have very short 

half-lives in plasma and from our experience with other protein such as insulin 

which adheres to the glassware and tubing, 5% albumin was chosen from pilot 

studies to be an appropriate amount to maintain stable detectable levels of TNF 

and IL-6. Figs. 23 and 24 indicate that both TNF and IL-6 were stable during the 

perfusion period. In order to achieve detectable levels within a perfusion volume 

of 100 ml, 70 and 20 ng of TNF and 50 ng of IL-6 were required. Only one 
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perfusion at each concentration of cytokine was performed due to the expense 

and availability of the cytokines. The TNF and IL-6 produced by the liver may 

have contributed to the lethality observed in the in vivo experiments. Therefore 

the livers were isolated from rats which had been administered dexamethasone, 

endotoxin and insulin according to the protocol as described previously in this 

dissertation. 

Fig. 25 illustrates the TNF production over 60 minutes with several 

treatments. This is the first study to demonstrate directly the ability of the liver to 

produce TNF. Therefore, observations from the literature to support these findings 

are taken from in vitro and in vivo studies. TNF production by the saline treated 

rats was not observed until after 50 minutes of the perfusion period. This result 

was unexpected. From earlier unpublished work in our laboratory the production 

of TNF at this time point has been consistent and repeatable. Initially this 

response was postulated to be due to contamination by endotoxin. However, 

Limulus testing determined that the perfusion apparatus was free of endotoxin. 

Surgical conditions as well were used to maintain sterility. The alterations in liver 

integrity due to the perfusion are usually not observed until 3 to 4 hours after 

perfusion. This study was only 60 minutes in duration and no alterations in liver 

flow or integrity were observed. Ghezzi , 1992, (134) has stated that TNF is 

required for normal liver regeneration and significant quantities of TNF are 

produced early in response to hepatectomy. A more probable cause for this 

increase in TNF production is due to the removal from its normal milieu of 
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hormones and growth factors which suppress TNF production. Without 

suppression by such hormones as corticsterone, TNF could be produced in an 

unregulated manner. As demonstrated in this study, exogenous dexamethasone 

treatment completely suppresses this response. 

ETX treatment in the rat caused a significant early increase in TNF 

production. Production was still increasing by the end of the experimental period. 

The approximate rate of TNF production was 0.711 pg/min/g of liver in almost a 

linear manner. Dexamethasone pretreatment of endotoxic rats was also shown 

to suppress liver TNF production. Many papers show, indirectly, that the liver is 

capable of producing TNF after endotoxin stimulation (101, 102, 134, 180); however, 

there is little direct evidence that the liver is an actual contributor to the circulating 

TNF pool (206). Byerly et al., 1989,(54) have shown that TNF message in the liver 

is expressed one hour after i.v. administration of E coli. Ulich et al.,1990, (324) 

and 1991, (325) have indicated that TNF mRNA increase occurs as early as 15 

minutes after endotoxin exposure and that this increase in mRNA can be 

suppressed by dexamethasone treatment. However, in studies using CAT reporter 

constructs in transgenic mice, Girior et al. 1991, (136) and 1992, (137) have 

shown that the liver does not produce TNF. This discrepancy could be due to the 

incomplete expression of the construct in the transgenic animal. Hunt et al., 1992, 

(169) have shown by in situ hybridization that hepatocytes and endothelial cells 

of mice produce TNF. Results of in vitro studies with isolated Kupffer cells have 

shown that endotoxin stimulates TNF production and that dexamethasone is a 
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powerful inhibitor of TNF and IL-6. Karck et al., 1992 (180) demonstrated that 100 

nM dexamethasone and PGE2 were both effective in reducing TNF production by 

85% and that dexamethasone could be administered up to 30 min. after LPS and 

still alter TNF production. 

Fig. 26 clearly demonstrates the effect of insulin on TNF in the isolated 

perfused liver. The initial TNFlevels of the ETX/INS were group significantly 

elevated in comparison to TNF levels in ETX alone; however, the rates of 

production were the same. Insulin posttreatment did not alter dexamethasone 

suppression of TNF production. This observation indicates that dexamethasone 

in vivo is extremely effective in reducing TNF production. The liver could be a 

target organ for glucocorticoid suppression of TNF production. From the earlier 

in vivo experiments it appears that the contribution of TNF to the circulating pool 

from insulin stimulation could be from another cell population that cannot be 

suppressed as effectively as those in the liver. As the initial TNF response in the 

ETX/INS group was elevated although the rates of production were parallel, 

perhaps another tissue source of TNF production was no longer contributing when 

the liver was isolated . 

Several authors have demonstrated that the liver is an important organ for 

the production of IL-6 (15,76,95,101,102,131,180,252). Endotoxin stimulated 

Kupffer cells, hepatocytes and endothelial cells are capable of producing IL-6. The 

production of IL-6 results in the of acute stimulation of acute phase protein 

synthesis by the liver, (26,56, 103,245,329) as well as the induction of fever and 
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the synthesis of ACTH from the pituitary (235). 

Interleukin 6 production by the IPL is illustrated in fig. 27. Initial IL-6 

production was suddenly curtailed at approximately 20 minutes into the perfusion. 

At this point in time the liver was continuing to produce TNF. TNF has been 

shown to be a potent stimulator of IL-6 production. The production of factors by 

the liver may account for the sudden decrease in IL-6 production liver. Stadler 

et al., 1993,(303) have recently demonstrated that nitric oxide production inhibited 

the production of IL-6 by isolated Kupffer cells. Dexamethasone pretreatment 

significantly inhibited IL-6 production by the endotoxic liver. Insulin did not alter 

the dexamethasone suppression. These findings indicate that the liver produces 

IL-6 and that glucocorticoids are dominant down regulators of synthesis. 

D. In Vitro Studies 

1. Cell Lines 

The use of isolated specific cell populations to investigate the mechanism 

of a particular physiological response has become an extensively used technique. 

Investigation of the effects and possible mechanisms of insulin and glucocorticoid 

regulation of TNF and IL-6 production at the in vitro level were examined in four 

different macrophage populations. Advocates of in vitro experimentation describe 

the primary advantage of cell culture techniques as reducing the number of 

confounding factors and removing biological variability associated with in vivo 
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studies. From these in vitro studies new questions at a different level of biological 

complexity were introduced. Initial experiments were undertaken in the ANA 1 

cells, a transformed macrophage cell population primarily due to the ease of 

growth and maintenance of these cells. ANA 1 cells also express on their cell 

surface several of the immunological receptors and antigens characteristic of 

peritoneal macrophages (75). Since the ANA1 cells have not been well described, 

another more widely used macrophage cell line (RAW 264.7) was also tested. 

The dose of endotoxin (1 ng/ml) was chosen from the results of preliminary 

dose-response studies to determine an effective amount that would stimulate TNF 

and IL-6 production. The administration of 100 nM dexamethasone was chosen 

from several reports as effective in suppressing TNF and IL-6 in several cell lines. 

U937 cells treated with 100 nM dexamethasone show a 90 % suppression of TNF 

and IL-6 production. The insulin amount was chosen from a study by Cavalot et 

al., 1992 (61). Insulin at 100 µU/ml is a physiological dose of insulin that was 

reported to alter lymphocyte chemotaxis. This dose is also similar to the plasma 

level of insulin achieved during endotoxicosis in the in vivo studies. 

Endotoxin stimulated significant production of TNF and IL-6 by the ANA1 

macrophages. In contrast to our in vivo and ex vivo results ETX/INS suppressed 

both TNF and IL-6 production. Doherty et al., 1992, (84) demonstrated that 

ETX/INS increased both TNF and IL-6 production by peritoneal macrophages. 

They employed serum free medium and a larger amount of both endotoxin and 

insulin. Possible differences between this study and the results of Doherty could 
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be due to unknown growth factors in the serum or concentration differences of 

hormones administered. This indicates the effects observed in vivo may not be 

direct effects of insulin and that other modulating substances are involved. 

Dexamethasone pretreatment of endotoxic ANA1 cells did not significantly 

suppress TNF production but completely abolished IL-6 production. Han et al., 

1991, (147, 148)) demonstrated that dexamethasone regulates TNF production 

by altering the rate of mRNA degradation. This observation suggests that the 

ANA1 cells process TNF mRNA differently. Insulin post treatment of DEX/ETX 

cells was effective in restoring IL-6 production. In many cell types such as 

fibroblasts and endothelial cells TNF production must precede IL-6 production. In 

ANA 1 cells IL-6 production appears to be independent of initial TNF synthesis. 

This uncoupled IL-6 production has also been observed in J77 4.1 macrophages 

and PD3881 macrophages (211). 

Endotoxin stimulated both TNF and IL-6 production by RAW 264.7 

macrophages. In comparison to the ANA 1 cells the RAW cells produced 

significantly more TNF and a lesser amount of IL-6. ETX/INS treatment did not 

alter TNF or IL-6 production although this treatment inhibited both TNF and IL-6 

production in ANA 1 macrophages. Dexamethasone was effective in suppressing 

the production of both TNF and IL-6 and insulin posttreatment did not alter the 

amount of either cytokine. These results indicate that two macrophage cell-lines 

under similar treatment conditions exhibit differential responses in cytokine 

production. Divergence in the observed response could be due to the specific 
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alterations in DNA due to the virus used to immortalize the cells. These changes 

in turn might alter the regulation of transcription and posttranscriptional processing 

of mRNA. Dissimilar populations of receptors for glucocorticoids or insulin could 

also explain the variations in cytokine production between the two cell lines. 

Salkowsky and Vogel, 1992, (280) demonstrated that glucocorticoid receptor 

populations in macrophages are upregulated by LPS, thus enhancing the 

suppressive ability of dexamethasone. The choice of a particular cell line for 

examination of TNF and IL-6 production will, therefore, determine the specific 

response; therefore, caution should be used in extrapolating the results to the in 

vivo scenario. 

2. Primary Macrophage Cells 

The effect of insulin and glucocorticoid modulation of cytokine production 

was also tested in vitro utilizing two primary cell populations, peritoneal 

macrophages and Kupffer cells. Since these cells were isolated directly from the 

rat peritoneal cavity and liver, TNF and IL-6 production by these cells should 

better reflect the in vivo and ex vivo production of the cytokines. 

Peritoneal macrophages responded to endotoxin stimulation by producing 

TNF and IL-6. In contrast to the established cell lines, TNF and IL-6 production 

by peritoneal macrophages was significantly less. ETX/INS treatment did not 

significantly alter TNF or IL-6 production although a trend of increased IL-6 

concentration was observed. The peritoneal cells could possibly be stimulated 
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maximally by this concentration of endotoxin and further stimulation by the 

addition of insulin would not result in further production of TNF. Both TNF and IL-

6 production was abolished by dexamethasone pretreatment. Glucocorticoid 

receptor populations are increased in peritoneal macrophages by LPS stimulation 

(280). Therefore dexamethasone treatment effectively suppresses TNF and IL-6 

production. 

Insulin post-treatment of the DEX/ETX group resulted in a mild increase in 

TNF and a more substantial augmentation of IL-6 production. Insulin receptors 

are present on the surface of peritoneal macrophages (29,30,364). However, 

since macrophages are considered non-insulin dependent cells , insulin is not 

required for glucose metabolism in these cells (223,224). The function of the 

insulin receptors on the surface of macrophages is unknown. The insulin receptor 

density can be reduced by certain stimuli such as infection by Propionium acne 

bacterium (29). The effect of endotoxin stimulation on insulin receptor 

concentration in macrophages has not been studied. The reversal of 

dexamethasone-suppressed TNF and IL-6 production by insulin has not been 

documented. Interferon y has been shown to reverse dexamethasone 

suppression of TNF production in human monocytes (205). 

Kupffer cells were extremely difficult to isolate and maintain in a cell culture 

environment . In comparison to the other cell types, Kupffer cells require a 

medium with high glucose and the addition of buffering agents for growth 

(35, 186,349). The recommended addition of dexamethasone and insulin required 
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for basal maintenance of these cells was not added to the media. The absence 

of these hormones may have affected the initial recovery of the cells following 

isolation. Kupffer cells in culture constitutively produced IL-6. This has also been 

observed by Feder et al., 1993 (101). Both hepatic endothelial cells and Kupffer 

cells were shown to spontaneously produce both IL-1 and IL-6 in a time 

dependent manner (101) with maximal levels attained after 10 hours in culture. 

Endotoxin addition stimulated an increase in TNF and IL-6 production. 

Insulin addition surprisingly, reduced TNF and IL-6 concentrations in the medium 

of endotoxin stimulated Kupffer cells. Rae et al., 1992, (265) described an 

increase in PGE2 binding to its receptor by insulin in P388D1 macrophages. 

PGE2 is a potent inhibitor of TNF production in several types of macrophages 

(56,57,345). The inhibition of TNF production by PGE2 in Kupffer cells has been 

described by Karck et al. 1988, (180). 

Dexamethasone posttreatment in our study significantly reduced TNF and 

IL-6 concentrations in the medium. Insulin induced only a weak recovery of TNF 

and IL-6 production in the LPS-DEX treated cells. 

The contrasting responses of peritoneal macrophages and Kupffer cells to 

hormonal modulation of cytokine production could be attributed to many factors. 

The density of insulin and glucocorticoid receptors might be different as well as 

alterations in receptor density as a result of endotoxin stimulation. Modulation by 

other factors such as PGE2 could be of differential importance to the cells. Since 

insulin is recommended for growth of Kupffer cells and liver sinusoidal 
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concentrations of insulin are normally higher than in plasma, Kupffer cells may 

have exhibit a modified response in terms of TNF and IL-6 production. The 

Kupffer cell is normally intimately associated with endothelial cells as well as other 

cells of the hepatic sinusoid (341). One can speculate that Kupffer cell responses 

are largely dictated by the other cells present. Peritoneal macrophages are 

probably more independent on stimuli from other cells. 

3. Mechanisms of Insulin Action on TNF and IL-6 In Vitro 

In order to elucidate the possible mechanisms of insulin and 

dexamethasone regulation of TNF and IL-6 production by macrophages, specific 

pharmacological agents which alter second messenger pathways were added to 

the cell culture medium and the effects on IL-6 production by ANA1 macrophages 

and TNF and IL-6 production by peritoneal macrophages were examined. 

Protein kinase C activation has been implicated as a possible second 

messenger system required for endotoxin stimulation of macrophage cytokine 

production as well as macrophage differentiation (320,345,347). PMA, an activator 

of PKC has has been reported in several other studies to stimulate IL-6 

production by macrophages (76, 220). ETX/PMA treatment did not further 

increase IL-6 production. This finding indicates that either maximal stimulation of 

IL-6 production had been obtained or that ETX treatment down regulated PKC, 

thus preventing maximal stimulation by PMA. As was demonstrated with insulin, 

PMA, was able to reestablish IL-6 production which was suppressed by 
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dexamethasone. Mengozzi et al., 1991, (220) demonstrated that PMA 

administration was more effective than IFNy in restoring IL-6 production in LPS 

tolerant mice . Insulin restoration of IL-6 production by ANA1 cells may be via 

PKC activation. 

Peritoneal macrophages were also stimulated to produce TNF and IL-6 by 

PMA. ETX/PMA stimulation increased TNF but not IL-6 production. As was 

demonstrated with ANA 1 cells, PMA was able to reverse the effect of 

dexamethasone suppression of TNF production. The action of PMA in this 

experiment is similar to that observed when macrophages are treated with IFNy. 

Dunham et al. 1990, (86) have shown that IFNy treatment of macrophages 

reverses the suppressive effects of both TGFp and glucocorticoids on TNF 

production. Leudecke and Cerami, 1990, (205) also concluded that INFy can 

restore TNF secretion inhibited by dexamethasone. Interferon y may exert its 

modulatory effects via PKC , however, this has not been established. Insulin could 

also be exerting its effects on cytokine production by a mechanism similar to that 

of IFN y. 

To determine if insulin was acting via a PKC mechanism, H-7, an inhibitor 

of PKC was added with insulin to the ANA 1 cells and the peritoneal macrophages. 

H-7 did not alter cytokine production by either cell type. These findings suggest 

that PKC activation is not involved in insulin activation of cytokine production. 

However, H-7 has been shown to exert a differential effect on TNF production 

based on the dose administered to the cells (66). The dose used in our study may 
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have not been effective in modulating the effect of insulin. 

lndomethacin inhibits the production of prostaglandins by inhibiting 

cycloxygenase activity. PGE2 , produced by macrophages via an autocrine 

mechanism, suppresses the production of TNF. By the inhibition of PGE2 

synthesis, indomethacin facilitates an unregulated increase in TNF production by 

macrophages. lndomethacin treatment was able to stimulate IL-6 synthesis by 

ANA1 macrophages. Callery et al. 1990, (56) have demonstrated that 

indomethacin treatment of Kupffer cells results in an increase in IL-6 production. 

In our study ETX/INDO treatment did not further increase IL-6 production, 

indicating that production at this dose was maximal. lndomethacin did alter 

ETX/INS induced inhibition of IL-6 production. Therefore, insulin in this treatment 

group possibly affected PGE2 binding. Dexamethasone was able to suppression 

the stimulation of IL-6 production by indomethacin. Dexamethasone also inhibits 

the production of phospholipase A2 which in turn decreases PGE2 synthesis. 

These results indicate that dexamethasone inhibits transcription of IL-6. 

Previous reports have shown that the inhibition of PGE2 by indomethacin 

increases TNF and IL-6 production in peritoneal macrophages (209,292). 

lndomethacin treatment of peritoneal macrophages in our experiment did not 

result in an alteration of TNF or IL-6 production. The ineffectiveness of 

indomethacin may have been due to the dose or preparation of indomethacin at 

the time of the study. The addition of PGE2 and the subsequent addition of 

indomethacin in our system would act as a positive control to test the 
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indomethacin preparation. 

Insulin and IGF-1 are structurally homologous peptides with distinct 

receptors that are structurally homologous (262,363). Insulin is also able to bind 

to IGF-1 receptors at elevated physiological concentrations (179,262,364). IGF-1 

acting as a growth factor for many cell types has been well documented (121, 

263). Recently, IGF-1 treatment of macrophages was demonstrated to result in an 

increase in superoxide production (125). 

In this study IGF-1 was added to ANA1 cells and TNF and IL-6 production 

were examined. In contrast to ETX/INS treatment , ETX/IGF-1 stimulated 

substantial increases in TNF and IL-6 production. Peritoneal macrophages also 

treated with ETX/IGF-1 produced substantial amounts of both TNF and IL-6. The 

intracellular signalling events for both IGF-1 and endotoxin remain unresolved. 

IGF-1 could possibly effect PKC. 

IGF-1 was unable to reestablish only IL-6 production in dexamethasone 

pretreated endotoxic ANA1 cells in contrast to insulin. However, IGF-1 was able 

to restore both TNF and IL-6 in DEXIETX peritoneal macrophages. Insulin was 

partially able to inhibit the IGF-1 augmentation of TNF and IL-6 production by the 

peritoneal cells. This effect could have been due to insulin occupation of IGF-1 

receptors that would result in a blunted response. 

Okadaic acid is a specific inhibitor of serine phosphatases (231,310). 

Phosphorylation of intracellular proteins is postulated to be an important step in 

the stimulation of TNF and IL-6 production (310). Phosphatases act to 
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dephosphorylate these proteins and, thus, prevent the continuous production of 

TNF and IL-6 (310). Okadaic acid addition to macrophages in culture results in 

augmented TNF production. This effect appears to be mediated at the 

posttranscriptional level (310). The effects of okadaic acid on IL-6 production 

remain undocumented. 

In this study okadaic acid was shown to stimulate IL-6 production by ANA1 

cells. ETX/OKA did not result in an amplified response in comparison to the ETX 

group. Possibly, the maximal amount of IL-6 that could be produced by these cells 

had been achieved. Although, ETX/OKA/INS did not cause a statistically 

significant increase in IL-6, again indicating maximal production was attained, 

okadaic acid was able to reestablish IL-6 production suppressed by ETX/INS 

treatment. Okadaic acid addition to the media was also shown to restore IL-6 

production in DEXIETX treated ANA 1 cells. 

Okadaic acid addition to endotoxin stimulated peritoneal macrophages 

resulted in increases in both TNF and IL-6. TNF, but not IL-6, production was 

found to be increased in the ETX/INS/OKA group. Recently, Begum et al., 1993 

(32) demonstrated that insulin regulates the activity of phosphatases A1 and Ai at 

the posttranslational level. Also, insulin altered the phosphorylation of 56 in 

HepG2 cells (260). Therefore, insulin may exert its effect on TNF production at 

the translational level. Okadaic acid was also able to overcome dexamethasone 

induced suppression of both TNF and IL-6 production. Insulin addition to the 

DEXIETX/OKA group resulted in a suppression of TNF and an increase in IL-6. 
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Cycloheximide has been used in in vivo and in in vitro experiments to 

superinduce the production of cytokines, primarily TNF (65,247). Cycloheximide 

prevents the synthesis of RNAse I which is responsible for the rapid degradation 

of accumulated TNF mRNA (44). The effect of superinduction appears to be 

specific for TNF , whereas, IL-6 mRNA is not directly affected (65,247). 

IL-6 production by ETX/CYC ANA1 cells was suppressed, indicating that 

cycloheximide affected IL-6 during transcription. However, in this study, 

cycloheximide addition to the medium superinduced the production of TNF by 

endotoxin stimulated peritoneal macrophages. Further superinduction was 

observed with the addition of cycloheximide to the DEX/ETX/INS group. 

Consequently, the mechanism by which insulin overcomes dexamethasone 

suppression of cytokine production could be by posttranslational modification. 

Insulin could affect the synthesis of RNAse I, and thereby stabilizing mRNA. 

Insulin addition to hepatocytes alters the rate of mRNA degradation (19). 

In summary, figs. 48, 49 and 50 depict the hypothesized influence of 

dexamethasone and insulin with respect to TNF and IL-6 production in the three 

models used in these studies. In vivo ,insulin, in the presence of endotoxin, could 

modulate the production of TNF and IL-6 directly. Also, indirect modulation of 

cytokine production could occur by insulin-stimulated production of MIRRF by 

macrophages. MIRRF could stimulate the production of IFNy by T cells. IFNy 

would then synergize with endotoxin and as well as reverse the dexamethasone 

supression of TNF and IL-6 synthesis. In the isolated perfused liver 
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dexamethasone appears to be a dominant regulator of TNF and IL-6 production 

as insulin did not stimulate TNF or IL-6 production. A factor, possibly NO, 

inhibited IL-6 production during the perfusion. In vitro dexamethasone was shown 

to suppress both TNF and IL-6 production. The supression could have occurred 

at the transcriptional or translational levels. Insulin may have restored cytokine 

production by altering the activity of RNAse I. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The major goal of this dissertation research was to examine the 

interactions between two humeral mediators, glucocorticoids and insulin, and to 

evaluate the consequence of both on cytokine production during endotoxin­

induced sepsis. Initially, the combined effects of insulin and dexamethasone were 

tested on mortality and metabolic parameters of sepsis in an in vivo conscious rat 

endotoxic model. The regulation of TNF and IL-6 production in vivo by insulin and 

dexamethasone was also explored. The use of the isolated perfused liver 

provided an opportunity whereby TNF and IL-6 from a specific organ could be 

measured. Lastly, the regulation of TNF and IL-6 production was examined in 

isolated macrophages. This in vitro system enabled the possible mechanisms of 

the hormonal interaction on TNF and IL-6 production to be explored. 

The following conclusions were derived from the data in these experiments: 

From the in vivo studies: 

1) Insulin from both exogenous and endogenous sources exacerbated 

endotoxin-induced mortality. Its presence induced a rapid demise associated with 

significant hypoglycemia and hyperlacticacidemia. 
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2) Dexamethasone pretreatment significantly reduced endotoxin-induced 

mortality and stabilized plasma lactate concentrations and euglycemia. 

3) Insulin from both endogenous and exogenous sources reversed the 

protective action of dexamethasone pretreatment and a profound hypoglycemia 

and hyperlacticaidemia was observed. 

4) Since the administration of insulin during the "insulin resistant" phase of 

the endotoxic time course resulted in an increase in mortality, these animals were 

responsive to the action of insulin. 

5) Although marked hypoglycemia was observed, the rats died with 

hypoglycemia as opposed to of hypoglycemia as the administration of dextrose 

did not significantly alter mortality. 

6) The phorbol ester, PMA , was also able to exacerbate endotoxic 

mortality similar to insulin. Dexamethasone protection was also negated by PMA 

administration. 

7) Since H-7, an inhibitor of PKC was unable to alter the mortality of the 

insulin-endotoxin and dexamethasone-endotoxin-insulin treated rats, PKC 

activation was not involved in insulin-induced mortality. 

8) Endotoxin administration in vivo stimulated the production of both TNF 

and IL-6. The administration of insulin did not alter the early pattern of cytokine 

production; however, it did cause a sustained increase in both TNF and IL-6 at 

120 minutes post endotoxin. 

9) Dexamethasone pretreatment blocked the elevation in circulating levels 
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of TNF and IL-6 in vivo. Insulin was able to reverse the suppression of TNF but 

not IL-6 in this model. 

10) The insulin treated endotoxic animals exhibited hypoglycemia over the 

time course of the experiment. Insulin-induced hypoglycemia alone did not 

stimulate TNF or IL-6 production in vivo, suggesting that hypoglycemia was 

responsible for TNF or IL-6 production by the endotoxic rats. 

From the isolated perfused liver: 

11) TNF production was not observed in saline control animals until 45 

minutes of the perfusion. Dexamethasone pretreatment blocked this increase in 

TNF production. This finding implicates glucocorticoids as stern regulators of 

cytokine production under basal conditions. 

12) Endotoxin stimulated both TNF and IL-6 production by the isolated 

perfused liver. 

13) The addition of insulin resulted in an initial significant increase in TNF 

production above that of endotoxin alone. Since that rate of production during the 

perfusion was parallel to that of endotoxic group, another source of TNF 

production outside the liver is affected by insulin coadministration. 

14) Dexamethasone was able to suppress both TNF and IL-6 production 

by the endotoxic liver. In this model insulin was unable to restore TNF or IL-6 

production. This finding suggests that glucocorticoids are possibly dominant 

regulators of cytokine production by the liver. 
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15) Since insulin altered TNF production in vivo but was ineffective in the 

isolated perfused liver, the liver may not be the site of cytokine production 

regulated by insulin. 

From the in vitro studies: 

16) Endotoxin stimulated TNF and IL-6 production by all four macrophage 

cell types tested. The transformed cell-lines, ANA 1 and RAW 264. 7 cells were 

generous producers of TNF and IL-6 in comparison to the primary cells, the 

peritoneal macrophages and the Kupffer cells. Differential effects were exhibited 

even been the two transformed lines. In three of the cell types, except the ANA1 

cells IL-6 production appears to be linked to the initial synthesis of TNF. 

17) Insulin added to endotoxin-stimulated macrophages also had differential 

effects dependent on the cell type used. Inhibition of TNF and IL-6 production was 

observed with the ANA 1 cells and the Kupffer cells. There was no stimulation or 

depression of TNF or IL-6 production by the RAW 264.7 or the peritoneal 

macrophages. 

18) Dexamethasone pretreatment significantly reduced TNF and IL-6 

production in all cells except the ANA 1 cells, where only IL-6 was significantly 

suppressed. 

19) Insulin administration to the dexamethasone-protected-endotoxic 

macrophages reversed TNF and IL-6 production by the primary cell lines and IL-6 

production by the ANA 1 cells. 
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20) Protein Kinase C activation was not involved in the insulin-induced 

effects on TNF and IL-6 production, as H-7 was unable to effect the cells 

production of either cytokine. PMA as observed in vivo mimicked the insulin 

response in these cells. 

21) Prostaglandin synthesis was also not responsible for the reversal of 

dexamethasone protection, however, indomethacin treatment was able to reverse 

the endotoxin-insulin induced inhibition of cytokines suggesting a role of insulin 

in modulating PGE2 induced TNF suppression. 

22) The effects observed by the substitution of IGF-1 for insulin suggest 

that although these peptides are structurally similar they exert differential effects 

on TNF and IL-6 production by macrophages. 

23) The second messenger pathway affected by insulin appears to involve 

the regulation of phosphatase activity. 

An overall conclusion that can be drawn from the results documented in 

this dissertation is that even though a similar treatment protocol was applied to 

three levels of experimentation the results obtained are very different and in some 

cases conflicting. The observations derived from in vitro and ex vivo examination 

alone cannot always be successfully extrapolated to the in vivo environment. 

Future experiments may involve examination of the role of interferon y or 

the activation of other second messenger pathways, such as tyrosine kinase 

phosphorylation, and the transcriptional and posttranscriptional regulatory 

activities initiated by insulin. Future results may provide valuable insight into 
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possible biological and pharmacological avenues which may be implemented as 

modulators of TNF and IL-6 production in the septic patient. However, Gram­

negative infection perturbs the behavior of every organ-system of the hospitalized 

septic syndrome patient. The research focus which examines the interactions 

between systems (eg. endocrine system and the immune system) as opposed 

to the intricacies of an individual system will probably provide the therapeutic and 

clinical modalities that will save lives. 
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