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CHAPTER I 

GENERAL INTRODUCTION 

The lysosomes are responsible for the degradation and turnover of endogenous cell 

components, as well as, foreign matter taken up by the cell through endocytosis and 

phagocytosis. Most long and short-lived proteins are eventually delivered to lysosomes 

where they are degraded within minutes by a battery of potent proteolytic and 

peptidylytic enzymes (Mortimore et al., 1988). The number and types of proteases 

found in lysosomes often vary depending on the particular cell type and species, with as 

many as 15-20 proteases and a variety of other hydrolytic enzymes being present 

(reviewed in, Barrett, 1977; Ahlberg et al., 1985; Bohley, 1987; and Agarwal, 1990). 

These proteases are synthesized as inactive precursors on the rough endoplasmic 

reticulum and are eventually sorted from newly synthesized secretory proteins and other 

proteins associated with the endolasmic reticulum/Golgi axis. Features which promote 

the delivery of proteins to the lysosome and inhibit their entry into the secretory 

pathway are the presence of the mannose 6-phosphate recognition marker, the existence 

of mannose 6-phosphate receptors, and the increasing acidity of the compartments on 

the pathway from the trans Golgi to the lysosome (reviewed in, Kornfeld and Mellman, 

1989; Kornfeld, 1992). 

Two receptors have been identified which are able bind the rnannose 6-phosphate 

recognition signal found on these newly synthesized lysosomal enzymes; a 275 kDa 

receptor and a 46 kDa receptor. The 275 kDa receptor can also bind insulin-like growth 

factor-II, therefore it is referred to as the M6P /IGF-11 receptor (Morgan et al., 1987). 

Both receptors reside primarily in the Golgi apparatus and endosomes and to a lesser 



degree on the plasmamembrane. The acidic nature of the lysosomal compartment 

provides optimal conditions for the activation and stabilization of lysosomal proteases 

(Henson, 1988; Young and Zygas,1987). Some portion of lysosomal enzymes may be 

secreted into the extracellular space, from where some can be recaptured and delivered 

by receptor-mediated endocytosis to lysosomes. However, it is presently unclear why 

some newly synthesized enzymes escape direct targeting to the lysosome and what 

purpose is served by their delivery to an extracellular space with a near neutral pH. At 

these pHs, most of the secreted enzymes are either inactive or unstable (Braulke et al., 

1988). The majority of these secreted enzymes are in the proenzyme form indicating 

that secretion occurs prior to delivery to the lysosome where proteolytic processing to 

the mature forms take place. Agents which increase the pH of the acidic compartments 

enroute from the site of synthesis to their final destination will result in an increased 

secretion of lysosomal enzymes (Gonzalez-Noriega, 1980; Hasilik and Neufeld, 1980; 

Braulke et al., 1987). Cells lacking the 275 kDa M6P /IGF-11 receptor have also been 

shown to secrete high levels of newly synthesized lysosomal enzymes (Nolan and Sly, 

1987; Stein, 1987b). Several cancer cell lines secrete high levels of lysosomal enzymes, 

such as cathepsin L (Yamaguchi et al, 1990), cathepsin B (Sloane et al., 1989), and 

cathepsin D (Capony et al., 1984). It has been speculated that these enzymes may play 

a role in the destruction of the basal lamina, and as a result, promote the ability of 

cancer cells to invade tissues and ultimately to metastasize to distant sites (Yamaguchi 

et al., 1990). 

It has been observed that Moloney murine sarcoma virus-transformed BALB/3T3 

(MMSV) fibroblasts secrete elevated levels of both procathepsins B and L when 

compared to nontransformed BALB/3T3 fibroblasts (Achkar et al, 1990). It was the 

intention of this research project to identify some of the factors which may contribute to 

the mis targeting of these lysosomal enzymes in the MMSV-transformed fibroblasts. 
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Endosomal and lysosomal pHs were determined using the pH sensitive probe, 

fluorescein isothiocyanate-dextran (FITC-dextran) (Ohkuma and Poole, 1978). These 

compartments were found to be 0.4 to 0.5 pH units higher in MMSV cells than in 

nontransformed BALB/3T3 fibroblasts. The transformed fibroblasts but not the 

BALB/3T3 cells, also lacked the ability to perform mannose 6-phosphate receptor 

(MPR)-mediated endocytosis, and they lacked appreciable levels of the 275 kDa 

M6P /IGF-11 receptor as observed by Western blot analysis. When the MMSV cells were 

treated with potassium propionate, pH 7.4, acidification of endosomal and lysosomal 

compartments were enhanced, lowering their pH to values found in the nontransformed 

fibroblasts. This treatment reduced the levels of secreted procathepsin B and 

procathepsin L by 95-99%. Potassium propionate also activated MPR-dependent 

endocytosis in the BALB/3T3 cells by 160% and restored this activity in MMSV cells. 

However, the levels of the 275 kDa M6P /IGF-11 receptor remained unchanged in the 

treated cells. These results suggest that a defect in vacuolar acidification and the 

absence of the 275 kDa M6P /IGF-11 receptor contribute to the secretion of procathepsins 

Band procathepsin L by MMSV cells. They also suggest the possible participation of 

the 46 kDa mannose 6-phosphate receptor in lysosomal enzyme trafficking in potassium 

propionate treated cells. 

3 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Lysosomal Targeting-

Lysosomal, secretory, and membrane proteins all share the same early steps in a 

common biosynthetic transport pathway, but are eventually sorted from each other and 

delivered to different destinations (reviewed in, Pfeffer, S.R. ,1988; Hasilik, 1992). Each 

of these type of proteins contain a hydrophobic amino-terminal signal sequence which 

can interact with an 11 S ribonucleoprotein signal recognition factor, SRP. The binding 

to SRP of the newly made signal peptide interrupts translation and leads to the binding 

of the ribosome with its nascent polypeptide to the surface of the rough endoplasmic 

reticulum (RER). Translation resumes and the elongating protein is transferred into the 

RER lumen. Many of these proteins contain asparagine residues which undergo 

cotranslational glycosylation in the RER. This glycosylation involves the transfer of a 

large oligosaccharide group (3 glucoses, 9 mannoses, and 2 N-acetylglucosamines) from 

a lipid-linked intermediate to the new polypeptide in one step. Before the newly 

synthesized polypeptide leaves the ER, the signal peptide is cleaved off, the protein is 

folded, and some of the terminal sugars are removed. Most of these proteins are then 

delivered to the Golgi apparatus by vesicular transport where further post-translational 

modifications can occur. 

Almost all proteins destined for the lysosomes undergo two important enzymatic 

reactions while present in the Golgi network. The first involves the enzyme, UDP-N

acetylglucosamine-lysosomal enzyme/ N-acetylglucosarnine-1-phosphotransferase 



(phosphotransferase) (Reitman and Kornfeld (1981); Lang et al., 1984). This enzyme 

selectively transfers N-acetyl-glucosamine 1-phosphate from the nucleotide sugar, UDP

GlcNAc to the high mannose oligosaccharides on the newly synthesized lysosomal 

protein, resulting in a phosphodiester intermediate. The second enzyme, N-

acetylglucosaminidase-1-phosphodiester-a-N-acetylglucosaminidase, removes the N

acetylglucosamine group, leaving an exposed mannose 6-phosphate residue on the 

protein. The resultant mannose 6-phosphate monoester serves as the recognition signal 

necessary for binding of lysosomal enzymes to mannose 6-phosphate receptors located 

in the trans Golgi network and cell surface. A basic overview of lysosomal enzyme 

synthesis and transport is represented in Figure 1. The importance in generating this 

mannose 6-phosphate recognition signal was discovered from studies of patients with 1-

Cell Disease (Hickman and Neufeld (1972). These patients lack N-acetylglucosamine-1-

phosphotransferase and as a result secrete most of their lysosomal enzymes into the 

extracellular space due to their inability to generate the protein-linked mannose 6-

phosphate. These secreted enzymes are also unable to bind with high affinity to cell 

surface mannose 6-phosphate receptors. NH4Cl, which promotes lysosomal enzyme 

secretion, has recently been shown to prevent the exposure of the mannose 6-phosphate 

recognition signal by inhibiting the second enzyme, N-acetylglucosamine-1-

phosphodiester-a-N-acetylglucosaminidase (Isidoro et al., 1990). As a result treated 

fibroblasts secrete high levels of cathepsin D. The site on lysosomal enzymes recognized 

by the phosphotransferase is more complex than a simple primary sequence or 

secondary structure found in some of the other intracellular targeting signals. Studies 

using site directed mutagenesis, the production of chimeric proteins, and computer 

modeling on cathepsin D, have revealed that a single lysine residue at position 203 and 

two noncontinuous sequences, each approximately 55 amino acids long are instrumental 

in the recognition event (Baranski et al., 1990; Baranski et al., 1991). 

5 
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It is in the trans Golgi network (TGN) that proteins targeted to the lysosomes are 

separated from secretory and membrane proteins. A series of events involving 

membrane sorting, vesiculartransport and fusion of vesicular compartments occur as 

lysosomal enzymes are transported through the endocytic pathway. Lysosomal 

enzymes are packaged into clathrin coated vesicles which also house mannose 6-

phosphate receptors. These transport vesicles bud off from the TGN and fuse to 

intermediate endosome. Intermediate endomes evolve into late endosomes, also referred 

to as prelysosomes or CURL (compartment for uncoupling receptors and ligands). 

Eventually the contents of late endosomes are delivered to the lysosomes. It is in the 

prelysosomal compartment that mannose 6-phosphate receptors dissociate from their 

ligands due to the acidic nature of this compartment (Hoflack and Kornfeld, 1985). The 

lysosomal enzymes proceed on to the lysosomes and the mannose 6-phosphate 

receptors recycle back to the TGN or to the plasma membrane. This intracellular 

'endocytic pathway' is also believed to be connected to an incoming endocytic pathway 

at the level of the intermediate endosomes. 

Little is known about the events and mechanisms involved in the transfer of 

molecules through the ER and Golgi network, to endosomes, lysosomes, and the plasma 

membrane. Recently the discovery of a fungal metabolite, Brefeldin A (BF A) has aided 

in the investigation of some of these events. BF A disrupts the Golgi structure by causing 

the microtubule-dependent retrograde transfer of Golgi associated components back to 

the ER, thereby blocking early events in exocytosis (Misumi et al., 1986; Lippincott

Schwartz, 1990; Hendricks et al., 1992). BFA may act by promoting the dissociation of 

a nonclathrin-coated protein called beta-COP from Golgi membranes (Orci et al., 1991 ). 

BF A also causes changes in the distributions of both the 275 kDa M6P /IGF-II receptor 

and the 46 KDa M6P receptor (Damke et al., 1991 ). It produces an increase in the 

number of both types of M6P receptors on the cell surface as well as an increase in the 

7 



internalization rate of the corresponding receptor /ligand complexes. 

Regulation of. Qjtosolic ~-

Many cellular processes are affected by pH, such as protein synthesis, cell 

proliferation,metabolite transport, and enzyme activity. Most cells have a resting 

cytosolic pH of 7.0-7.2 (Moolenaar et al., 1983; Moolenaar et al., 1984; Paris and 

Pouyssegur, 1984; Grinstein et al., 1985a), versus an average extracellular pH of 7.5 

under physiological conditions (Tannock and Rotin, 1989). Cells utilize several 

mechanisms to maintain their intracellular pH (see Figure 2.) which might otherwise 

become too acidic because of the production of metabolically generated acids and a 

passive diffusion of protons into the cell due to a negative plasma membrane potential. 

Two ways by which cells achieve a homeostatic pH are by metabolically transferring 

acids from the cytosol into intracellular organelles and by eliminating acids or bases via 

several membrane- associated ion transport systems (reviewed in, Roos and Boron, 

1981). 

Three major ion translocators contribute to the regulation of pH at the plasma 

membrane. They are a Na+ /H+ antiporter, a Na+-dependent HC03-/Cl- exchanger, and 

a cation-independent HC03-/Cl- exchanger (Madshus, 1988). The Na+ /H + anti porter 

and the Na+-dependent HC03-/Cl- exchanger act to prevent excessive cytosolic 

acidification, and the cation-independent HC03-/Cl- exchanger prevents alkalinization. 

In addition, some cell types also utilize H +(ATPase) pumps and a lactate/proton 

syrnporter to maintain their cytosolic pH (Anwer and Nolan, 1988). 

The Na+ I H + antiporter is found on the plasma membrane of almost all animal cells 

(Aronson, 1985). It is involved in the maintenance of intracellular pH, the regulation of 

intracellular Na+, and the control of cell volume. It may also be involved in the early 

8 
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events of mitogenesis (Tannock and Rotin, 1989)). Under physiological conditions the 

Na+ /H+ antiporter is almost quiescent. Normally it operates to couple the extrusion of 

H+ from the cell to Na+ uptake, although the reverse is possible. It is electroneutral and 

does not require metabolic energy directly. The driving force are the concentrations of 

Na+ and H +. Amiloride is a weak base which inhibits Na+ /H+ exchange by competing 

for the extracellular Na+ site (Grinstein and Smith, 1987). 

Although most cells rely on the Na+/H+ antiporter as their major cytosolic pH 

regulator, some cell types also employ the Na+-dependent and the cation independent 

HC03-/Cl- exchangers in cytosolic pH homeostasis (Reinertsen et al., 1988). The Na+

dependent HC03-/Cl- exchanger is electroneutral and acts by transporting one Na+ and 

one HC03- into the cell in exchange for one Cl- and one H+ (Boron and Russell, 1983). 

Under resting conditions, the Na+-dependent HC03-/Cl- is inactive (L'Alleman et al., 

1985). The high concentration of extracellular Na+ is sufficient to drive the exchanger. 

The cation-independent HC03-/Cl- is electroneutral and allows for one Cl- to enter the 

cell and one HC03- to leave. This exchanger only operates when the cytosolic pH 

becomes too alkaline which occurs very infrequently (Tonnessen et al., 1987). Both types 

of HC03-/Cl- exchangers are inhibited by stilbene derivatives and are insensitive to 

amiloride (Tannock and Rotin, 1989). Other transporters may also participate in pH 

regulation. These include the H +(ATPase) pump, which is very important in regulating 

intracellular pH in yeast and in some types of epithelial cells (Al-Alwqati, 1986), and to 

a lesser extent, the lactate/H + transporter which serves to remove protons from the 

cytosol of some cells by an electroneutral, symport mechanism (Balkovetz et al., 1988). 

The most commonly used technique for measuring cytosolic pH employs the 

fluorescent probe, 2' ,7'-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethylester, 

(BCECF-AM). It is nonfluorescent and lipid soluble in its ester form. Once it diffuses 

10 



into the cell, cellular esterases can convert it into its H20 soluble, fluorescent form. This 

dye becomes trapped in the cytosol and has not been visualized in any other 

compartment (Grinstein et al., 1989a). The fluorescent intensity of BCECF is extremely 

pH sensitive, especially in the pH range of 6.0 to 8.2 (Rink et al., 1982). 

Factors whid1. alt.er. cytosolic ~-

Growth factors, such as epidermal growth factor (EGF) and platelet-derived growth 

factor (PDGF), have been shown to induce DNA synthesis, cell division, and metabolic 

changes (reviewed in, Moolenaar, 1986; Grinstein et al., 1989b ). These growth factors 

have also been shown to stimulate the Na+/H+ antiporter system and, as a result, cause 

an increase in the cytosolic pH (Rothenberg et al., 1983; Moolenaar, 1986). The tumor 

promotor, tetradecanoyl-phorbol-acetate (TPA), can also activate the Na+ /H+ 

exchanger (Moolenaar et al., 1984). There is strong evidence that TP A acts through 

protein kinase C to activate the Na+ /H+ exchanger (Nishizuka, 1984). Inhibitors of the 

Na+ /H+ exchanger block cell growth, which emphasizes the important role this system 

has on the development of the proliferative response (reviewed in Grinstein et al., 

1989b). Studies have shown that when the yeast H+(ATPase) pump is transfected into 

fibroblasts, two responses occur; an increase in cytosolic pH, and the transformation of 

the cells. These results indicate that it is the elevated pH that may be the primary 

mechanism which initiates cell proliferation, regardless of whether or not the Na+/ H+ 

exchanger is activated (Perona and Serrano, 1988). 

Cells are able to manipulate the pH of their extracellular environment by acid 

extrusion. The extracellular pH of the microenvironment of human and animal cells has 

been estimated using microelectrodes. The calculated pHs, which vary for different 

species and tissue types, had average values of 7.5 for humans, 7.32 for dogs, and 7.43 

for rats (Wike-Hooley et al., 1984) in normal tissue. However, when these measurements 

11 



were performed in solid tumors, an average pH of 7.0 was observed. The lower pH 

found in the extracellular space adjacent to tumor cells is not fully understood but 

increased glycolysis and lactic acid production by tumor cells is thought to contribute to 

some of the excess proton production (Hochachka and Mommsen, 1983). In murine 

B16F10 melanoma cell cultures the pH of the extracellular space located in close 

proximity to adherent cells was measured (Young and Spevacek, 1992). The average 

observed pH around individual cells was found to be 6.4 versus a pH of 7.4 for the bulk 

of the culture media. Some cells showed a pericellular pH as low as 5.5. The low pH 

environment created by these highly metastatic cells may serve to activate latent 

precursor forms of enzymes secreted by these tumor cells (Rozhin et al., 1990). 

Vacuolar izH.-

Cells contain a number of intracellular compartments with acidic environments, 

including coated vesicles (Lemansky et al., 1987), lysosomes (Ohkuma and Poole, 1978), 

endosomes (Ohkuma and Poole, 1978; Maxfield, 1982), condensing vacuoles (Orci et al., 

1987), and the trans Golgi network (Anderson and Pathan, 1985). Molecules which 

enter cells by endocytosis encounter an acidic environment within the first five minutes 

after entry (Maxfield, 1982). As these molecules transverse the intracellular endocytic 

pathway to lysosomes they encounter a gradual decreasing pH. Endosomes and 

lysosomes maintain their low pH with an electrogenic H+(ATPase) pump (reviewed in 

Nelson, 1992). The vacuolar H+(ATPase) differs from the two other classes of known 

H +(A TPase ), mitochondrial and gastric intestinal. It can be inhibited by alkalating 

agents such as N-ethylmaleimide (NEM) and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole 

(NBD-Cl) (Galloway et al., 1983). Recently it was reported that the trans Golgi network 

may also use a pyrophosphate-driven proton transporter, H+-PPiase, to establish a 

transmembrane pH gradient (Brightman et al., 1992). In addition, lysosomes may rely 
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on a Donnan-type equilibrium to help maintain the high concentration of protons 

transported into the lysosomal lumen (Moriyama et al., 1992). In contrast, early 

endosomes appear to contain a plasma membrane derived electrogenic Na+,K+-ATPase 

pump which may reduce their capacity to be acidified (Fuchs et al., 1989; Casciola

Rosen and Hubbard, 1992). The Na+,K+-ATPase pump is oriented in the endosomal 

membranes such that for every 3 Na+ entering the endosomal lumen 2 K+ would leave, 

thereby generating a positive interior membrane potential. This would limit the extent to 

which protons could accumulate within the endosomal lumen (Cain et al., 1989) and 

might contribute to their slightly more alkaline interior when compared to late 

endosomes and lysosomes. This pump can be inhibited by ouabain. 

In fibroblasts and macrophages, lysosomes maintain an acidic pH of 4.5 to 4.8 

(Ohkuma and Poole, 1978; Dean et al., 1984; Mellman et al., 1986). Endosomes have a 

slightly higher pH of about 5.5 (Maxfield, 1982). The importance of the acidic nature of 

the endosomal pathway which includes the trans Golgi network, endosomes, and 

lysosomes, has been well established by the effects of agents which disrupt the proton 

gradient. Weak bases, such as NH 4Cl (Gonzalez-Noriega et al., 1980; Hasilik and 

Neufeld, 1980; Braulke et al., 1987b) and the carboxylic ionophore, monensin (Wileman 

et al., 1984), inhibit the processing and activation of newly synthesized lysosomal 

enzymes, the recycling of receptors, the entry of viruses and toxins, and promote the 

missorting of proteins (Dean et al., 1984). 

Several methods have been developed for estimating the pH in vacuolar 

compartments. One method measures the partition of a weak base between the cytosol 

and various acidic vacuoles. Weak bases are membrane permeable and uncharged at 

neutral pH. They diffuse into acidic compartments where they accumulate as a result 

of aquiring a positive charge. Acridine orange is the most widely used fluorescent weak 

base (Van Dyke et al., 1985). Its fluorescence intensity is concentration dependent and 
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not pH dependent, decreasing with increasing concentration. Estimations of vacuolar 

pH are based on the amount of dye which accumulates in these compartments. This 

method is not accurate because the volume of the acidic vauoles can not often be 

determined directly, and the vacuolar dye concentration is therefore uncertain. In 

addition, a variety of acidic compartments of varying intraluminal pH contribute to dye 

accumulation so that the pH of any one compartment is difficult to ascertain. A second 

method involves using a fluorescent probe which is taken up by the cell through the 

endocytic pathway. Fluorescein isothiocyanate (FITC) attached to a large dextran 

molecule enters the cell by fluid-phase endocytosis (Ohkuma and Poole, 1978). Because 

the fluorescent intensity of fluorescein is extremely pH sensitive around physiological 

pH ranges and is not otherwise strongly affected by environment, it is widely used for 

measuring the pH of vacuolar compartments on the endocytic pathway. 

Rece.ptor-mediated transport-

It is well established that newly synthesized lysosomal enzymes are sorted from 

secretory proteins and targeted to their final destination by way of the mannose 6-

phosphate recognition system (reviewed in, Kornfeld and Mellman, 1989; Kornfeld, 

1992). Two distinct mannose 6-phosphate receptors (MPR) have been identified; a 275-

300 kDa receptor, also referred to as the cation-independent (CI)-MPR or mannose 6-

phosphate/ insulin-like growth factor-II (M6P /IGF-II) receptor, and a 41-46 kDa 

receptor, often referred to as the cation-dependent (CD) receptor. Both receptors are 

involved in the intracellular transport of newly synthesized lysosomal enzymes (von 

Figura and Hasilik, 1986, Kornfeld, 1987). Both receptors continuously recycle between 

the Golgi apparatus, where they are able to bind ligands at near neutral pH values, and 

acidic prelysosomal compartments, where ligands uncouple from these receptors (Stein 

et al., 1987a; Duncan and Kornfeld, 1988; Dahms et al., 1989). Both receptors also 
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recycle to the cell surface. The cell surface M6P /IGF-II receptor can participate in 

receptor-mediated endocytosis of extracellular ligands under physiological conditions, 

whereas the 46 kDa MPR can not for reasons which are unknown (Griffiths et al., 1988; 

Braulke et al., 1990). Only when the 46 kDa receptor is overexpressed and the 

extracellular pH is lowered to 6.5 has it been shown to mediate low levels of receptor

mediated uptake of mannose 6-phosphate-containing ligands (Watanabe et al., 1990). 

The two receptors can bind the same ligands but with different affinities and pH 

dependencies (Hoflack et al., 1987; Tong and Kornfeld, 1989). 

Cloning and sequencing of the bovine, human, and mouse 46 kDa MPR (Dahms et al., 

1987; Pohlmann et al., 1987; Ma et al., 1991; Koster et al., 1991) and the bovine and 

human M6P /IGF-II receptor (Lobel et al., 1988; Oshima et al., 1988) has revealed that 

the r~ceptors are unique but related proteins, which are encoded by different genes, but 

which may have developed from a common ancestor. The entire extracellular domain of 

the 46 kDa MPR is similar to each of the repeating units found in the M6P /IGF-II 

(discussed below) (Dahms et al, 1987). There is no homology in the signal, 

transmembrane and cytosolic domains between the two receptors (Kornfeld, 1992). 

It takes approximately 15 min or less for receptors to recycle back to the trans Golgi 

network from prelysosomal compartments and as little as a few minutes for receptors to 

recycle back to the plasma membrane (Schwartz et al., 1982; Harford et al., 1983). Some 

receptors can recycle even in the absence of ligands (Oka and Czech, 1986; Braulke et al., 

1987a). However, when intracellular uncoupling of the receptor/ligand complexes is 

inhibited, as when vacuolar pH is increased, the receptor pool can become limiting and 

often the cell surface receptor pool is depleted (Gonzalez-Noriega et al., 1980; Tietze et 

al., 1982). Under these conditions, not only are the occupied receptors blocked from the 

recycling pathway but so are the unoccupied receptors. Two explanations have been 

proposed to explain this phenomenon: the first is based on the observation that when 
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receptor recycling is inhibited, a great deal of the cell membranes become internalized, 

causing swelling of intracellular vacuoles which in tum could limit movement within the 

cell (Stein et al., 1984); the second possibility is that a change in vacuolar pH causes 

alterations in receptor conformation, state of aggregation, or in the charge of ionizable 

groups on the receptors which would inhibit its normal functions (Mellman et al., 1986). 

Mutant cells with defects in the acidification of endosomes but not lysosomes exhibit 

reduced cell surface uptake by M6P /IGF-11 receptors and fail to deliver newly 

synthesized lysosomal enzymes to the lysosomes (Robbins et al., 1984; Park et al., 1991). 

Instead, these cells secrete a majority of their newly synthesized lysosomal enzymes. 

Addition of the proton ionophore monensin to wild type cells mimicks the behavior of 

these mutant phenotypes (Robbins et al., 1984). 

M6POGF-llreceyitor-

The M6P /IGF-11 receptor was first isolated (Sahagian et al., 1981) by affinity 

chromatography using immobilized B-galactosidase-Sepharose 4B affinity 

chromatography after it was discovered that receptor binding and endocytosis of newly 

synthesized lysosomal enzymes bearing a mannose 6-phosphate group was competively 

inhibited by mannose 6-phosphate (Kaplan et al., 1977a; Kaplan et al., 1977b). The 

M6P /IGF-II shows an optimal binding affinity toward ligands between pH 6.0-6.3 but 

still shows a 70 % binding capacity at pH 7.4 (Hoflack et al., 1987). This receptor is a 

transmembrane glycoprotein (Sahagian and Steer, 1985) with has an average molecular 

mass of approximately 275 kDa with an additional 20-30 kDa of carbohydrate 

(reviewed in, Pfeffer, 1988). It also contains a number of intramolecular disulfide 

bridges (Sahagian and Neufeld, 1983). The M6P /IGF-II is composed of four structural 

domains, a single 44 amino acid N-terminal signal sequence, a 2269 amino acid 

extracellular domain, a 23 amino acid transmembrane region, and a 163 amino acid 
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carboxyl terminal cytoplasmic domain. The extracellular domain is made up of 15 

repeating units, each approximately 147 amino acids long. The cytoplasmic domain 

contains four regions which contain sequences known to serve as substrates for different 

protein kinases, such as protein kinase C, cAMP-dependent protein kinase, and casein 

kinase I and II (MacDonald et al., 1988). There is only one pool of M6P /IGF-II receptor 

which is located mostly in the late endosomal/prelysosomal compartment, with the 

remaining population distributed in lesser quantities throughout the plasma membrane, 

early endosomes and trans Golgi network (Griffiths et al., 1990). The M6P /IGF-11 

receptor functions to sort and direct newly synthesized lysosomal enzymes as well as to 

recapture extracellular mannose 6-phosphate bearing ligands. 

When cultured cells lack the M6P /IGF-II receptor (Gabel et al., 1983; Nolan and Sly, 

1987) or this receptor is blocked with antibodies (Stein et al., 1987), the cells secrete a 

majority of their newly synthesized lysosomal enzymes and are unable to carry out 

receptor-mediated endocytosis of mannose 6-phosphate ligands. These functions are 

restored when M6P /IGF-11 receptor deficient cells are transfected with M6P /IGF-II 

receptor cDNA (Kyle et al., 1988; Lobel et al., 1989). Similar studies with truncated 

receptors have shown that the cytoplasmic domain contains the signal needed for 

receptor internalization at the cell surface, and for proper lysosomal enzyme sorting and 

delivery (Lobel et al., 1989; Johnson et al., 1990; Canfield et al., 1991). Studies using 

chimeric proteins have also indicated the importance of the extracellular and 

transmembrane domains in retaining the receptor in the endocytic pathway (Dintzis and 

Pfeffer, 1990). 

It was discovered that the M6P /IGF-II receptor was able to bind to insulin-like 

growth factor II as well as mannose 6-phosphate (Morgan et al., 1987). IGF-11 is a 

nonglycosylated protein. The M6P /IGF-11 receptor has unique binding sites for IGF-II 

and mannose 6-phosphate (MacDonald et al., 1988), with both able to simultaneously 
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bind to the receptor (Kiess et al., 1990). However, IGF-11 and a lysosomal enzyme 

bearing a mannose 6-phosphate appear to bind in a mutually exclusive manner. 

Strangely, when IGF-11 is overexpressed in NIH 3T3 cells, M6P /IGF-11 dependent 

receptor-mediated uptake and the intracellular trafficking of newly synthesized 

lysosomal enzymes are not impaired (Braulke et al., 1991). There are 19 potential 

asparagine-linked oligosaccharide sites located on the extracellular domain of the 

M6P /IGF-11 receptor (Lobel et al., 1988). The receptor does not need to be glycosylated 

for IGF-II binding but glycosylation is necessary for mannose 6-phosphate binding (Kiess 

et al., 1991). Each M6P /IGF-11 receptor can bind one molecule of IGF-II (Tong et al., 

1988), and two molecules of mannose 6-phosphate or one molecule of a 

diphosphorylated oligosaccharide (Tong et al., 1989a; Distler et al., 1991). IGF-II can 

also bind to the IGF-I receptor and the insulin receptor. 

The M6P /IGF-II receptor differs from the IGF I receptor and the insulin receptor in the 

fact that it does not have intrinsic tyrosine kinase activity (Hari et al., 1987). Several 

different responses have been observed when IGF-II binds to the M6P /IGF-II receptor; 

increased glycogen synthesis in rat hepatoma cells (Hari et al., 1987), increased amino 

acid uptake in human myoblasts (Shimizu et al., 1986), increased Na+/H+ exchange in 

canine kidney proximal tubular cells (Rogers et al., 1990), and increased Ca+ influx and 

DNA synthesis in BALB/c cells (Kojima et al., 1988). IGF-II exerts its signaling effect by 

a direct coupling between Gi-Za and the M6P /IGF-II receptor (Okamoto et al., 1990). 

Mannose 6-phosphate-containing ligands do not elicit this response. The M6P /IGF-II 

receptor is also capable of endocytosing IGF-II and delivering it to the lysosomes for 

degradation (Kiess et al., 1988). The M6P /IGF-II receptor has been implicated in the 

binding and activation of latent TGF-l51 (Dennis and Rifkin, 1991). Extracellular acid 

hydrolases which are capable of degrading extracellular proteoglycans can bind and be 

retained by cell surface M6P /IGF-II receptors (Roff et al., 1983; Brauker et al., 1986). 
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A soluble form of the M6P /IGF-II receptor has been detected in the media from 

human colon HT-29 carcinoma cell cultures (Garrouste et al., 1991). This truncated 250 

kDa receptor was found to be missing the carboxy-terminal and transmembrane 

domains. These cells had previously been shown to secrete abnormally high levels of IGF

II (Culouscou et al., 1990). The soluble M6P /IGF-11 receptor retains a high affinity to 

both IGF-11 and mannose containing ligands, however, most of the secreted IGF-II was 

found to be bound to a group of hetereogeneous IGF-binding proteins. Earlier studies 

have suggested that the synthesis of the truncated receptor may be developmentally 

regulated. High concentrations of soluble M6P /IGF-11 receptors have been detected in 

fetal and neonatal sera which gradually decrease to undetectable levels in adult sera 

(Gelato et al., 1989; Kiess et al., 1987). Several suggestions have been made for possible 

roles for a soluble M6P /IGF-11 receptor: inactivation of lysosomal enzymes, lysosomal 

enzyme transport and delivery to other locations, inhibition of lysosomal enzyme re

uptake into the cells, or a possible extension of the half life of these enzymes in the 

extracellular space (Garrouste et al., 1991). Any of these functions could aid in tissue 

repair, remodeling, or in tumor invasion. 

46 kDa mannose 6-phosphate rece_ptor-

The 46 kDa receptor was first reported in cell lines that were deficient in the 

M6P /IGF-11 receptor but were able to properly sort and deliver newly synthesized 

lysosomal enzymes (Hoflack and Kornfeld, 1985; Distler and Jourdian, 1987). 

Presently, no cell has been found which lacks this receptor. The 46 kDa receptor is also 

referred to as the cation-dependent MPR because it requires divalent cations (Mn2+ or 

Mg2+) for optimum ligand binding (Watanabe et al., 1990), although divalent cations are 

not essential (Junghans et al., 1988). It can bind mannose 6-phosphate optimally in the 

pH range from 6.0 to 6.3, and at pH 7.4 shows very little binding affinity (Tong and 
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Kornfeld, 1989b). This receptor is an integral membrane glycoprotein with four 

structural domains; a 28 amino acid terminal signal sequence, a 159 amino acid 

extracellular domain, a 25 amino acid membrane spanning domain, and a 67 amino acid 

cytosolic domain (Dahms et al., 1987). The newly synthesized receptor must obtain N

linked high mannose oligosaccharides and form intrarnolecular disulfide bonds (Hille et 

al., 1990) before it can bind to mannose 6-phosphate containing ligands. When these 

alterations occur, the conformation of the receptor changes, resulting in trypsin 

resistance, an increased affinity toward antibodies directed against the mature protein, 

and the ability to form noncovalently linked homodirners. The detergent solubilized 46 

kDa receptor exists as a mixture of noncovalently linked dimeric and tetrameric forms in 

solution (Waheed et al., 1990). In baby hamster kidney cells which overexpress the 46 

kDa MPR, crosslinking experiments have shown that the receptor exists in the cell 

membranes as monomers, dimers, and tetramers (Waheed et al., 1990). The tetrameric 

form binds ligands with a greater affinity due to its higher valency. Both dimeric and 

tetrarneric forms bind ligands with the same pH optimum. Tetramer formation is 

favored when the receptor number is high, at neutral pH, and in the presence of mannose 

6-phosphate or mannose 6-phosphate containing ligands. From equilibrium dialysis 

data it is estimated that the monomeric form of this receptor is able to bind one mole of 

monovalent mannose 6-phosphate ligand and 0.5 moles of a diphosphorylated high 

mannose oligosaccharide per monomeric unit (Tong and Kornfeld, 1989a; Distler et al., 

1991). A dimer and tetramer would be expected to have twice and four times as many 

binding sites, respectively. The role of the 46 kDa MPR in the cell is still rather obscure. 

When this receptor is overexpressed in different cell systems, divergent results are 

obtained; it either promotes the secretion or the intracellular retention of newly 

synthesized lysosomal enzymes. In M6P /IGF-11 receptor deficient BHK cells, 

overexpression of the human 46 kDa MPR results in an increased secretion of newly 
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synthesized lysosomal enzymes (Chao et al., 1990). In M6P /IGF-II deficient mouse L 

cells, overexpression of the 46 kDa MPR results in a higher intracellular retention of 

newly synthesized lysosomal enzymes (Watanabe et al., 1990). 

Mannose 6-phosphate independent lysosomal targeting-

Most but not all newly synthesized lysosomal enzymes are targeted to the lysosomes 

by way of the mannose 6-phosphate signaling recognition mechanism. Acid 

phosphatase (AP) is properly sorted and delivered to the lysosomes independent of the 

mannose 6-phosphate system (Waheed and van Etten, 1985). Interestingly, when 

factors which normally increase lysosomal enzyme secretion such as chloroquine and 

tunicamycin were added to primary rat hepatocyte cultures, no increase in the secretion 

of AP was seen and maturation of the enzyme occurred normally (Tanaka et al., 1990). 

Additionally, AP does not contain the same type of phosphorylated high mannose 

groups found in many of the other lysosomal enzymes. AP is synthesized as an integral 

membrane protein which is proteolytically processed to a soluble form once it reaches 

the lysosomes. £5-Glucocerebrosidase is also targeted to the lysosomes by a mannose 6-

phosphate independent pathway (Aerts et al., 1988). 

In patients with I-Cell disease, their inability to generate mannose 6-phosphate 

recognition markers does not impede normal lysosomal delivery in hepatocytes, Kupffer 

cells, and leukocytes (Owada and Neufeld, 1982). This implies the existence of a 

M6P /MPR-independent lysosomal targeting pathway in these cells. Several 

investigators have observed that procathepsin D and procathepsin L can bind to 

microsomal membranes in a mannose 6-phosphate receptor-independent manner 

(Diment et al., 1988; Rijnboutt et al., 1991; Mcintyre and Erickson, 1991). Only the 

precursor forms of these enzymes possess this ability to bind to microsomal membranes, 

and their association is pH-dependent (Mcintyre and Erickson, 1991). The proenzymes 
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bind optimally to the membranes at pH 5.0. These authors suggest that this mechanism 

is responsible for the delivery of lysosomal enzymes from acidic prelysosomal 

compartments to the lysosomes since the proenzymes are no longer coupled to the 

mannose 6-phosphate receptor in these intermediate compartments. Additionally they 

propose that when agents which raise intravesicular pH are added to cell cultures, the 

increased secretion of latent lysosomal enzymes may be due to the failure of the 

proenzymes to bind to the prelysosomal membranes. However, the propeptide region 

alone has been shown to be insufficient as a lysosomal mannose 6-phosphate 

independent targeting signal when chimerically linked to secretory proteins (Connor, 

1992). Conversely, the basis of M6P /MPR-independent targeting of lysosomal enzymes 

in hepatocytes, Kupffer cells, and leukocytes remains unknown. 

Mistargeting of Lysosomal enzymes-

There have been many reports documenting elevated lysosomal enzyme secretion by 

tumor cells in both tissue and organ cultures, and by normal cells in response to 

transforming and growth-stimulating agents. High levels of latent cathepsin B have been 

measured in the ascitic fluid of patients with ovarian carcinoma (Mort et al., 1983; Dufet 

et al., 1984). Cathepsin Dis overexpressed and abnormally high levels are secreted by 

human breast cancer MCF7 cells (Garcia et al., 1984). Murine Kirsten sarcoma virus

transformed NIH fibroblasts, secrete much higher amounts of procathepsin L than non

transformed NIH 3T3 fibroblasts (Gal and Gottesman, 1986). Moloney murine sarcoma 

virus transformed BALB/3T3 fibroblasts show an increased secretion of procathepsin B 

and iS-glucuronidase, in addition to procathepsin L, when compared to non

transformed BALB/3T3 cells. This secretion could not be further stimulated by the 

addition of monensin (Achkar et al., 1990). When growth factors are added to quiescent 

NIH 3T3 fibroblasts there is an elevation in the amount of procathepsin L secreted. 

22 



Growth factors can also enhance the already high levels of procathepsin L secretion by 

transformed KNIH fibroblasts (Stearns et al., 1990). 

Many mitogenic agents, such as growth factors, mitogenic lectins, the ras oncogene 

product, and tumor promoting phorbol esters are thought to activate the Na+ /H+ 

exchange pump, raising the intracellular pH by 0.1to0.4 units (Grinstein et al., 1985a). 

Jiang et al. (1990) reported a substantial increase in intralysosomal pH following the 

malignant transformation of mouse 3T3 fibroblasts with Kirsten murine sarcoma virus, 

and the transfection of human MSU-1.1 fibroblasts with v-Kiras or T24 H-ras. The 

increased cellular pH may contribute to lysosomal enzyme mistargeting. Human breast 

cancer MCF7 cells are mitogenically stimulated by immunopurified cathepsin D (Vignon 

et al., 1986). The mitogen, insulin-like growth factor-II (IGF-II), has also been found to be 

synthesized and secreted by these cells (Yee et al., 1988; Osborne et al., 1989) and 

stimulates growth in these cells in both an autocrine and paracrine manner (Karey and 

Sirbasku, 1988). Mathieu et al., (1990) found that cathepsin D was able to modulate the 

activity of IGF-II on MCF7 cells. At low concentrations, extracellular IGF-II is able to 

bind to the M6P /IGF-II receptor. However, when there are competing high 

concentrations of cathepsin D present, IGF-II binding to the M6P /IGF-II receptor was 

barely detectable and showed substantially high binding to the IGF-1 receptor. 

Preliminary evidence suggests that secreted lysosomal proteases may be capable of 

activating other proteases and may augment the responses of growth factors. Secreted 

rat procathepsin L has been shown to be activated by the addition of mature cathepsin 

D (Wiederanders and Kirschke, 1989). Others have shown that procathepsin B can be 

proteolytically cleaved to its active, mature form by cathepsins D and L, as well as by 

autocatalysis (Rowan et al., 1992). Low pH conditions are required for the maturation 

and activation of prolysosomal enzymes in these studies. Recently it has been observed 

that the autocatalytic activation of procathepsin L to its mature enzyme form could 
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occur at pH 5.5 and as high as pH 6.0, when a negatively charged group is present 

nearby (Mason and Massey, 1992). 
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Materials-

CHAPTER III 

MATERIALS AND METHODS 

BALB/3T3 Clone A31 (BALB/c, embryo; mouse) and MMSV [Murine sarcoma virus 

(Moloney) transformed BALB/3T3, embryo; mouse] fibroblasts were obtained from the 

American Type Culture Collection (Rockville, Maryland). FITC-dextran (Mr 71,200), 

monensin, pepsin (3900 units/mg protein), trypsin, and mannose 6-phosphate (sodium 

salt) were obtained from Sigma. Potassium propionate and sodium [125I] iodide were 

obtained from ICN Biochemicals. Z-Arg-Arg-AMC and Z-Phe-Arg-AMC were obtained 

from BACHEM Bioscience Inc. (Philadelphia, PA). All other reagents not mentioned 

were obtained from Sigma. 

Preparation QjPentamannos3tl 6-Phosphate (PMP>-

y east phosphomannan from Hansenula holstii NRRL Y -2448 was the generous gift of 

Dr. M.E. Slodki, Northern Regional Research Laboratories, USDA (Peoria, IL). 

Pentamannosyl 6-phosphate (PMP) was prepared from o-phosphomannan by acid 

treatment as described (Slodki et al.,1973; Murray et al.,1980). This proceeded as 

follows; 1 gm of o-phosphomannan was rehydrated in 100 ml of distilled H20 overnight 

at 4oC. Bio-Rad AG SOW-XS cation exchange resin (H +form) was added to the swollen 

oligomer until the pH was below 2.S. The mixture was boiled at lOOoC for 1 hr. After 

cooling to room temperature, the cation exchange resin was filtered off and discarded. 

The supernatant was adjusted to pH 11 with saturated Ba(OH)z. To precipitate out the 

unhydrolyzable core oligosaccharide, an equal volume of 95 % ethanol was added and 



the mixture was left overnight at 4oC. The supernatant was collectedafter centrifugation 

at 1,000 rpms at 4oC for 10 min. The unhydrolyzable core oligosaccharidewas retained 

for further use as an inhibitor of mannose 6-phosphate receptor-mediatedendocytosis. 

The supernatant was adjusted to pH 2.5 as above with Bio-Rad AG SOW-XS resin and 

filtered. The sample was dried down on a rotary evaporator. Isolation of the 

pentasaccharide phosphomonester was performed by resuspending the sample in 3 ml 

of 0.1 N acetic acid and applying it to a 8S cm X 1.S cm Sephadex G-2S (fine) 

(Pharmacia) column. The sample was eluted with 0.1 N acetic acid and 2 ml fractions 

were collected. Fractions were assayed for the appearance of carbohydrate using the 

method of Dubois et al., (19S6). This involved the addition of 10 µl of 80% phenol to 

400 µl of sample followed by the addition of 1 ml of cone H2S04. The absorbance of the 

samples were determined with a Gilford Response UV /Vis spectrophotometer at 490 

nm. A standard curve was generated using 0.0S-0.30 mM (D+ )-mannose. Fractions 

were combined and dried down on a rotary evaporator. 

The pentamannose phosphomonoester (PMP) was coupled to bovine serum albumin 

(BSA) by reductive alkylation according to the method of Schwartz and Gray, (1977). 

This involved the addition of 68 mg of BSA (fraction V) to 200 mg of PMP. To this was 

added 9.9 mg of sodium cyanoborohydride in S ml of 0.2 M KHP04 buffer, pH 8.0. The 

reaction was allowed to proceed for 3 days at 37oC. The extent of coupling was 

estimated by measuring the amounts of phosphate (Fiske and Subbarow, 192S) and 

mannose (Dubois et al., 19S6) that were incorporated into the protein product. Total 

protein was determined by the Bio-Rad Protein Assay Kit according to the 

manufacturer's protocol. 

The unhydrolyzable core oligosaccharide which remained after acid treatment 

(described earlier) was converted into a sodium salt by redissolving the 9S% ethanol 
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precipitate in distilled H20 and adjusting the pH to below 2.5 with Bio-Rad AG SOW

XS resin. The resin was filtered off and the solution was neutralized to pH 7.4 with 1 N 

NaOH. The product was lyophilized and stored at 0°C prior to use. 

Cell Culture-

Cells were maintained in DMEM (BALB/3T3 and MMSV media contained 1 g/L 

and 4.5 g/L glucose, respectively) supplemented with 10% calf serum, 100 units/ml 

penicillin, 100 µg/ml streptomycin, and 3.7 g/L sodium bicarbonate in a 5% C02, 95% 

air incubator at 37oC. Every 3 to 4 days cells were detached with 0.25% trypsin, 1 mM 

EDT A in PBS, and passaged at a dilution of 1 to 6. Prior to the collection of media and 

cells for enzyme assay, near confluent monolayers were exposed to serum-free DMEM 

for 5.5 h, or to one of the following buffers: 110 mM potassium propionate, 1 mM KCl, 

1 mM CaC12, 1 mM MgC12, 10 mM glucose and 44 mM KHC03 (buffer A); 111 mM KCl, 

1 mM CaC12, 1mMMgC12,10 mM glucose and 44 mM KHC03 (buffer B); and 110 mM 

N-methyl glucosamine chloride, 1 mM KCl, 1 mM CaC12, 1 mM MgCl2, 10 mM glucose 

and 44 mM KHC03 (buffer C). 

Fluorescent Microscqpy-

The method used was adapted from that previously described (Schwartz et al., 

1988). BALB and MMSV cells were grown on glass slides previously sterilized with 

70% ethanol. Cells were exposed to 1 mg/ml fluorescein dextran (FITC-dextran) for 

either 15 min, 2 h, or 24 h in complete DMEM. After incubation, cells were washed 

extensively with 130 mM NaCl, 6 mM KCl, 1 mM MgS04, 1 mM CaC12, 5.5 mM glucose, 

and 20 mM 2-(N-morpholino) ethanesulfonic acid (MES), pH 7.4. Fluorescent 

microscopy was performed on a Nikon Microphot system which included an inverted 
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epifluorecence microscope equipped with a 75-W xenon lamp and a Farrand 

microspectrofluorometer. A 50% neutral density filter was used to reduce the intensity 

of the fluorescent beam. The green fluorescence of fluorescein was observed using a 

Nikon B filter cassette (excitation was set at 420-485 run; dichroic mirror at 510 run; 

emission > 520 run). Photographs were taken with a Nikon FG 35 mm camera attached 

to the camera port using Kodak Ektachrome film. 

Measurements Qf.Vacuolar izii-

The following methods are adapted from those previously described (Okhuma and 

Poole, 1978; Okhuma et al., 1982 ). Excitation spectra were collected for FITC-dextran 

(1 µg/ml) in 10 mM citrate, 173 mM sodium phosphate buffer at various pHs between 

3.0 and 8.1, with a SLM/ Aminco SPF 500C spectrofluorometer at an emission 

wavelength of 519 run, and with both excitation and emission monochromator 

bandwidths set at 5 run. Using the ratio of relative fluorescent intensities at 495 and 

450 run, a pH titration curve was constructed for FITC-dextran. Estimates of vacuolar 

pH were made after exposing the cells to FITC-dextran at the following concentrations; 

10 mg/ml for 15 min, 5 mg/ml for 2 h, or 1 mg/ml for 24 h in complete medium at 37oC. 

Different concentrations of FITC-dextran were used in order to optimize the fluorescence 

at shorter uptake periods. At these concentrations, the amount of fluorescent dye 

internalized by cells would not affect the pH dependency of FITC-dextran fluorescence 

(Ohkuma and Poole, 1978). Cell monolayers were washed extensively with ice-cold 130 

mM NaCl, 6 mM KCl, 1 mM MgS04, 1 mM CaClz, 5.5 mM glucose, and 20 mM MES, pH 

7.40 (buffer D). Cells were collected by scraping and centrifugation at 1,000 rpms at 

4°C. The pellet was washed briefly, resuspended in buffer D at 37oC and placed in a 

stirred quartz cuvette. After obtaining an initial excitation spectrum, monensin was 

added (final concentration 60 µM) to equilibrate the intracellular pH to the extracellular 
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pH of 7.4, and additional excitation spectra were collected. Average vacuolar pH was 

estimated in two ways: by the F49s/F450 ratio method originally described (Ok.hum.a and 

Poole, 1978; Ok.hum.a et al., 1982) or from the change in fluorescence at 485 nm after the 

addition of monensin. In the latter method, the average vacuolar pH is given by the 

relationship: 

pH= 6.407 - log ln9s3 - Rl 
l.9.132- Rj 

In this equation, R is LiF485 I (F485)monensin, where 6.41 is the midpoint of a titration 

curve obtained by plotting [(F485) pH 7.4 - (F485) pH] I (F485) pH 7.4 against pH, 

and 0.983 and -0.132 are respectively the upper and lower limits of the titration curve. 

This latter procedure was more accurate than the F495/F450 ratio method when the 

FITC-dextran signal at 450 nm was low relative to the background fluorescence at 450 

nm. 

C11tosolic rill determination 1lfil1:lg BCECF/AM-

Cytosolic pH was measured as described previously (Kiang et al., 1990). BALB and 

MMSV cells were lifted from T 75 cm2 flasks with 0.25 % trypsin, 1 mM EDT A. After 

centrifugation, cell pellets were resuspended in Hank's buffer (135 mM NaCl, 5 mM 

KCl, 0.8 mM MgS04, 1.2 mM CaS04, 0.8 mM Na2HP04, and 10 mM HEPES) 

containing 5 mM glucose and 0.2 % BSA. The cells were allowed to recover from 

trypsinization by returning the cell suspension to an incubator for 1 hat 37 °c. Cells 

were pelleted by centrifugation, and resuspended at a concentration of 2 X 106 cells/ml 

in Hank's buffer containing 5 mM glucose, 0.2 % BSA, and 2 µM 2',7'-
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bis(carboxyethyl) carboxyfluorescein acetoxymethylester (BCECF I AM) (Molecular 

Probes, Eugene, OR). BCECF I AM was prepared as a 1 mM stock solution in DMSO. 

Cell suspensions were incubated for 15 min at 37° C. Cells were pelleted by 

centrifugation, buffer was aspirated off, and pellet was washed three times with Hank's 

buffer (glucose and BSA free). The cell pellet was resuspended in Hank's buffer at a 

concentration of 1 X 106 cells/ml and transferred to a stirred quartz cuvette. 

Fluorescence excitation spectra were collected on a SLM Amico Fluorescence 

Spectrometer at an emission wavelength of 530 mn and slit widths of 4 run for both 

excitation and emission, at 37°C. Excitation scans were collected from 400 to 510 nm. 

The cytosolic pH was calculated from the ratio of relative fluorescence at the excitation 

wavelengths, 497 run/ 437 run. A standard pH curve was generated for BCECF using 

BALB cell suspensions which had internalized BCECF I AM. Basically, this involved 

placing BCECF I AM treated BALB cells (see above) in high potassium buffer at various 

pHs and adding nigericin, a potassium proton ionophore. The high potassium buffer 

contained 145 mM KCl, 5 mM NaCl, 1.2 mM MgC12, 1.6 mM CaC12, and 10 mM 

HEPES. The calibration buffer was adjusted to the appropriate pH by the addition of 

either HCl or KOH. A stock solution of 10 mM nigericin was prepared in absolute 

ethanol and was added to cell suspensions to give a final concentration of 10 µM in the 

cuvette. After recording an excitation spectrum, the cell suspension was removed and 

centrifuged. An excitation spectrum was recorded for the supernatant and this was 

subtracted from the excitation spectrum of the cell suspension to correct for leakage of 

the fluorescent probe. The pH of the supernatant was remeasured with a combination 

pH electrode and this value was plotted against the corrected cellular Ex497 I 437 ratio 

to create the standard curve. The effect of potassium propionate on the cytosolic pH 
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was determined as described previously (Grinstein et al., 1984; Grinstein et al., 1989). 

BALB and MMSV cells were placed in 140 mM potassium propionate, 1 mM KCI, 1 mM 

CaC12, 1 mM MgC12, and 10 mM HEPES, pH 7.4, for 90 min prior to exposure to 

BCECF I AM , during the 15 min incubation with 2 µM BCECF I AM, and during the 

collection of excitation spectra. 

Radiolabeling of. PMP-BSA ami IU.:11.-

Both PMP-BSA and IGF-II were radiolabeled with [ 1251]-sodium iodide by the 

Chloramine-T Method (Hunter and Greenwood, 1962). All of the following reagents 

were added in rapid succession to a microfuge tube; 0.5 mCi of [ 1251]-Nal, 50 µl of 0.5 

M sodium phosphate buffer (pH 7.4), 1 µg of protein (in 0.05 M sodium phosphate, pH 

7.4), and 25 µl of chloramine T (2 mg/ml in 0.05 M sodium phosphate buffer, pH 7.4). 

The reaction was allowed to proceed for 30 seconds at room temperature and quenched 

by the addition of 100 µl of cysteine-HCl (0.17 mg/ml in 0.05 M sodium phosphate 

buffer, pH 7.4). Free iodide was separated from labeled substrate by applying the 

reaction mixture to a 12 cm X 0.9 cm BioGel P-6 column which had been pretreated with 

0.1% BSA in 0.05 M sodium phosphate buffer, pH 7.4, containing 0.15 M NaCl and then 

washed extensively with this same buffer absent of BSA prior to the application of the 

samples. Fraction sizes of 0.5 ml were collected and counted on a TM Analytic 1191 

Gamma Counter. Percent radiolabel incorporation was determined by precipitating the 

labeled PMP-BSA with ice-cold 10% trichloroacetic acid (TCA) /2% phosphotungstic 

acid (PTA). To remove the remaining unbound iodine, the [1251]-PMP-BSA was 

extensively dialyzed against three buffer changes of PBS at 4 °c. After dialysis, [ 1251]-

PMP-BSA was concentrated down to a minimal volume using an Amicon 
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microconcentrator (Centricon 10). Protein levels were determined with the Bio-Rad 

Protein Assay Kit. Fractions from the Bio Gel P-6 column containing [1251]-IGF-II were 

analyzed as above, pooled, lyophilized, and resuspended in a minimal volume. Both 

substrates were stored at 4°C prior to their use. 

Receptor-mediated Endoc:ytosis-

BALB or MMSV cells, cultured in 35 mm multiwelled tissue culture plates, were 

preincubated for 90 min at 37°C in either serum-free DMEM, pH 7.4, or in potassium 

propionate (buffer A), pH 7.4, after several washes to remove any traces of sodium. 

[ 1251]-labeled-PMP-BSA (specific activity, 1.78 X 103 cpms/ng) was added to each 

well at a concentration of 1 µg/ml. Uptake was allowed to proceed for 90 min at 37°C. 

Cells were then washed five times with ice-cold Hank's balanced saline solution, pH 

7.4, and lysed with 500 µl of 1 M NaOH. Radioactivity in the lysate was measured 

with a TM Analytic model 1191 Gamma Counter. To determine nonspecific uptake, 

either 60 mM mannose 6-phosphate or 10 mM core oligosaccharide was also added to 

some of the wells at the beginning of the 90 min uptake period. Protein was determined 

by BCA Protein Assay (Pierce). To distinguish between cell surface binding and uptake, 

some plates were incubated with [1251] labeled PMP-BSA for 90 min at 4°. 

Crosslinking rllill-IGF-ll to M6P/IGF-ll receptor-

[ 1251]-IGF-II was radiolabeled as described above to a specific activity of 3.2 X 105 
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cpms/ng. BALB and MMSV cells were grown in 75 cm2 tissue culture flasks to -80% 

confluency. Monolayers were washed two times with binding buffer containing, 118 mM 

NaCl, 5 mM KCI, 1.2 mM MgS04, 8.8 mM glucose, 0.5% (w /v) BSA, 20 mM HEPES, 

and 10 mM NaHC03, pH 7.4. To look at surface binding, cells were incubated with 5 

ng/ml of [ 125I]-IGF-II, either with or without cold IGF-II (500 ng/ml) in binding buffer, 

pH 7.4, for 4 h at room temperature. To look at total cellular binding, cells were 

incubated with 5 ng/ml of [ 125I]-IGF-II in binding buffer, pH 7.4 containing 2 mg/ml 

saponin either with or without cold IGF-II (500 ng/ml) for 4 hat 40C. Immediately 

following the incubation, cells were washed four times in binding buffer, pH 7.4 (the last 

two washes BSA free). To initiate crosslinking, 1 ml of 0.1 mM of disuccinimidyl 

suberate (DSS) in binding buffer, pH 7.4 (BSA free) was added to each flask for 15 min 

at 15°C. The reaction was quenched by the addition of 10 mM Tris, 1 mM EDTA, pH 

7.4 for 20 min at room temperature. Cells were collected by scraping and centrifugation 

at 2,000 rpms for 10 min at o0 c. The cell pellets were washed three times with ice-cold 

PBS. Pellets were resuspended in 1 ml of PBS and aliquots were removed for protein 

determinations. Cells were repelleted and resuspended in 100 µl of electrophoresis 

sample buffer at a final concentration of 4 µg/µl. Samples were loaded and 

electrophoresed on a 6% SDS-P AGE gel under reducing conditions according to Laemmli 

(1970). After drying the gel, the labeled receptor was quantified by autoradiography 

with Kodak X-AR film. Scanning densitometry of the autoradiographs was performed 

on a MicroScan 1000 Gel Analyzer (Technology Resources, Inc.). 
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Enzyme ActivitJJ Measureroents-

Cells were grown to -80% confluency in 75 cm 2 tissue culture flasks. To measure 

secreted enzymes, cells were incubated for 5.5 h in one of the following buffers: serum

free DMEM; buffer A, pH 7.4; buffer B, pH 7.4; or buffer C, pH 7.4 (see Cell Culture 

METHODS)) at 37°C. After incubation, media was collected and centrifuged at 1,000 

rpms for 5 min at 4° to remove any particulate matter. Cell monolayers were washed 

three times with ice-cold PBS and collected by scraping into ice-cold PBS. Cells were 

pelleted, resuspended in 1 ml of ice-cold PBS, and aliquots removed for counting with a 

Coulter model ZM Counter equipped with a model 256 Channelyzer. Cells were 

repelleted and lysed by sonication in 50 mM sodium acetate, 1 mM EDT A, 0.1 M NaCl, 

0.2% Triton X-100, pH 5.2. Samples of media and cell lysates were kept at 0°C just 

prior to assay or were stored at-20°C until activity could be determined. Latent 

cathepsin Band cathepsin L activities were determined by adding 100 µl of activator 

(30 mM dithiothreitol, 15 mM EDTA, pH 5.2), and 100 µl of pepsin (three 

concentrations of pepsin were prepared; 10 mg/ml, 5 mg/ml, and 2.5 mg/ml in 0.2 M 

sodium acetate, pH 4.2), to 100 µl of media or cell lysate. The mixture was incubated 

for 30 min at 37°C and stopped by the addition of 800 µl of 0.2 M citrate/phosphate 

buffer, pH 6.2. . The activated enzyme was measured by the addition of 100 µl of 

substrate. The final substrate concentrations were either 94 µM Z-Arg-Arg-AMC for 

cathepsin B or 5 µM Z-Phe-Arg-AMC for cathepsin L (Qian et al. 1989; Achkar et al., 

1990). Hydrolysis rates were measured at excitation and emission wavelengths of 370 

nm and 460 nm, respectively. Bandwidths were set at 10 nm for emission and 7.5 nm 

for excitation. Prior to the enzyme assays, the spectrofluorometer was standardized 
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with a known concentration of the product, 7-amino-4-methyl coumarin. Active 

cathepsin B and cathepsin L was determined as above except pepsin was omitted, the 

initial incubation was done at room temperature, and 900 µl of 0.2 M citrate/phosphate 

buffer, pH 6.2 was added prior to substrate. 

B-Glucuronidase activity was measured according to the method of Robins, (1979). 

BALB and MMSV cells were pretreated as described above for cathepsins B and L. The 

reaction and assay was performed as follows; 330 µl of media or cell lysate was added 

to 660 µl of 4-methylumbelliferyl-B-D-glucuronide (1.5 mM stock in 0.15 M sodium 

acetate, pH 4.4). The mixture was incubated at 37°C and 300 µl aliquots were removed 

at 25 min, 55 min, and 85 min and added to 1 ml of 0.5 M glycine, 0.5 M Na2C03, pH 

10. Fluorescence intensity was measured for each of these time points at excitation and 

emission wavelengths of 365 nm and 448 nm, respectively. The activity of fS

glucuronidase was expressed as amount of fluorescent product produced over time and 

was determined from (Ll F /min) I FSTD , where delta Fis the change of fluorescence 

over time for each sample assayed and FSTD is the slope of the standard curve. The 

standard curve was constructed by plotting the fluorescence intensity against known 

concentrations of the standard 4-methylumbeliforone (1 nM -10 µM). 

[3H]-Leucine Incorporation into cellular proteins-

BALB and MMSV cell were cultured to -80% confluency in 100 mm tissue culture 

dishes. Cells were washed three times with either serum and leucine free DMEM or with 

110 mM potassium propionate, 1 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 

and 44 mM KHC03 , pH 7.4 and left for 1 hat 37°C in the same media as used in the 

wash. Cells were metabolically labeled with 0.2 mCi of (4,5-3H)leucine (35-50 Ci/mol, 
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ICN Biochemicals) for 90 min in either serum and leucine free DMEM, serum and leucine 

free DMEM containing 100 µM cycloheximide, or 110 mM potassium propionate buffer. 

The cells were then washed five times with phosphate buffered saline (PBS) and lysed 

with 1 ml of 1 N NaOH. Total cellular radioactivity was determined by adding the cell 

lysate to Ultima Gold scintillation cocktail and counting with a Beckman LS 7500 

scintillation counter. Protein was determined by the BCA Protein Assay . 

Pre:paration oJ microsomal membranes-

To eliminate cytosolic proteins in sample preparations used for Western blot analysis 

of the M6P /IGF-11 receptor, microsomal membranes were isolated. BALB and MMSV 

cells were collected by scraping, counted and pelleted in PBS by centrifugation at 1,000 

rpms for 10 min. The cell pellet was resuspended in 1 ml of hypotonic buffer [20 mM 

HEPES, 5 mM KCl, 1.5 mM MgC12, and 1 mM dithiothreitol (DTT), pH 7.4], vortexed, 

and left to stand for 10 min at 4 °c. To ensure all the cells were lysed, the suspension 

was treated to 20 strokes of a Dounce homogenizer, and centrifuged at 2,200 rpms for 

15 min at 4°C. The supernatant was retained and the pellet was treated with hypotonic 

buffer and rehomogenized as above. The second supernatant was combined with the 

first and centrifuged at 55,000 rpm for 60 min at 4 °c. The resultant pellet was 

resuspended at a concentration of 200 mg wet weight to 1 ml of sample electrophoresis 

buffer (0.5 M Tris-Hcl, 10% (v /v) glycerol, 10% (w /v) SDS, 5% (v /v) 2-b

mercaptoethanol, and 0.05% (w /v) saturated bromophenol blue, pH 6.8) (Soutar and 

Wade, 1989). 
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Western 1zlQ1. anal11sis-o 

For detection lof membrane or soluble forms of the M6P /IGF-II receptor, either 

microsomal membrane preparations or media samples were loaded on an SOS 4-15% 

gradient gel and run under nonreducing standard SOS-PAGE conditions (Laemmli, 

1970) using a Bio-Rad Mini Gel Apparatus and a running buffer of 25 mM Tris-base, 

192 mM glycine, pH 8.3. The outer lanes contained prestained high molecular weight 

markers (Sigma). Proteins were transferred from an SDS-P AGE gel to a membrane 

support (PVDF-Plus membrane, Micron Separations Inc.) in a Bio-Rad Transfer 

Apparatus with transfer buffer (25 mM Tris-base, 192 mM glycine, and 15% (v /v) 

0 methanol, pH 8.2) at 190 mA (constant) for 1 hat 4 C. Before transfer, gels were first 

placed in transfer buffer for 15 min at room temperature. After transfer, PVDF 

membranes were placed on an orbital shaker with lX TBST (10 mM Tris-base, 150 mM 

NaCl, 0.05% (v /v) TWEEN-20, 0.2% (v /v) nonidet P-40 (NP-40), 2% (w /v) SOS, pH 

8.0 ) containing 10% BSA (fraction V) for 1 h at room temperature. The primary 

antibody used was raised in rabbits and directed against human M6P /IGF-11 receptor, 

and was a gift of Dr. William Sly (St. Louis University, St. Louis, MO). A titer of 1:125 

was used in lX TBST containing 1 % BSA. The membrane was incubated with the 

primary antibody overnight at 4°C. The membrane was then washed three times with a 

1:10 dilution of lOX TBST (100 mM Tris-base, 1.5 M NaCl, 0.5% (v /v) TWEEN-20, 2% 

NP-40, 20% (w /v) SDS,and 60 mM sodium deoxycholate, pH 8.0) for 10 min per wash 

per wash at room temperature. The secondary antibody (anti-rabbit lgG tagged with 

alkaline phosphatase, BRL) was used at a titer of 1:10,000 in lX TBST containing 0.1 % 

BSA. The membrane was incubated with the secondary antibody for 1 h at room 

temperature. The membrane was then washed three times with diluted lOX TBST for 10 

min per wash. Prior to developing the membrane with the alkaline phosphatase 
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substrate, the membrane was placed in alkaline phosphatase buffer (100 mM Tris-base, 

100 mM NaCl, S mM MgC12, pH 9.S) for 10 min at room temperature. Color 

development was initiated by placing the membrane in alkaline phosphatase buffer 

containing 66 µl of Nitroblue tetrazolium (NBT) (SO mg/ml in 70% dimethyl formamide 

(DMF)) and 3S µl of S-Bromo-4-chloro-3-indolyphosphate (BCIP) (SO mg/ml in 100% 

DMF). The membrane was removed from this solution when the protein bands were 

clear or the background was becoming too intense and placed in stop buffer (20 mM Tris

HCI, S mM EDT A, pH 8.0). Molecular weights were determined from the position of the 

bands and those of the prestained molecular weight markers. 

lmmunoprecipitation Qj cathepsin I1. amt. cathe.psin L.-

The procedures followed were adapted from several sources (Stein et al., 1987c; 

Waheed and von Figura, 1990; Ma et al., 1992). BALB and MMSV cells were grown in 

60 mm tissue culture dishes under standard conditions. At time 0 min all cells were 

placed in methionine and cysteine free DMEM supplemented with S% heat inactivated 

calf serum previously dialyzed against PBS. At 30 min, half of the culture dishes (BALB 

and MMSV cells) were extensively washed with 110 mM potassium propionate (buffer 

A, see cell culture) and then incubated in buffer A. At 60 min all cells were 

metabolically labeled by the addition of 200 µCi of [3SS]- L-methionine (specific 

activity, 1000 Ci/mmol) per dish and the cells were incubated for 1 hours at 37°C. 

After labeling, the cells were washed two times with ice-cold 0.9% NaCl, and harvested 

by scraping in 1 ml of ice-cold lysis buffer (0.1 M sodium acetate, 0.2 M NaCl, 1 mM 

EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF), S mM iodoacetamide, pH 6.0) and 

disrupted by sonication. The resulting lysate was centrifuged at 17,000 rpm for 30 min 
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at 4 °c. The membrane pellets were discarded and the supernatants were treated with 

an equal volume of -20° acetone, and the samples were left at -20°C overnight. The 

acetone precipitated proteins were recovered by centrifugation at 55,000 rpm for 60 min 

at 4 °c. The protein pellets were redissolved in 600 µl of 10 mM Tris-HCl, 150 mM 

NaCl, 1 % (v /v) Triton X-100, 0.5% (w /v) sodium deoxycholate, 0.2% (w /v) SDS, 10% 

(w /v) BSA (Sigma #A7638, IgG free), 1 mM phenylmethylsulfonyl fluoride, 1 mM 

EDT A, and 5 mM iodoactarnide, pH7.4. The sample was precleared by the addition of 

2 mg of lmmunoprecipitin (BRL) and 5 µl of rabbit preimmune serum and left for 30 min 

at 4°C, followed by centrifugation at 55,000 rpm for 60 min. The supernatants were 

incubated overnight at 4 °c with 10 µl of either anti-rat cathepsin D (a gift of Dr. Chung 

Lee, Northwestern Univ., Evanston, IL), or affinity purified anti-murine cathepsin L (a 

gift of Dr. Gary Sahagian, Tufts Univ., Boston, MA) along with 4 mg of pretreated 

Immunoprecipitin (see below). The mixtures were centrifuged at 55,000 rpm for 60 min 

and the pellets washed with the following buffers: twice with 1% Triton X-100, pH 7.4 

containing 0.5 % SDS and 20 mg/ml BSA (IgG free); once with the fore mentioned buffer 

containing 2 M KCl; once with 10 rnM Tris buffer, pH 8.5 containing 0.6 M NaCl, 0.1 % 

SDS, and 0.05 % Nonidet P-40; and twice with 1 mM sodium phosphate, containing 15 

mM NaCl, pH 7.4.. The precipitate was resuspended by heating at 95°C for 5 min in 

SDS electrophoresis buffer containing 10 mM dithiotreitol and electrophoresed on a 10% 

SDS PAGE-gel. The proteins were visualized by fluorography. 

Pretreated Irnrnunoprecipitin was prepared according to Stein et al. (1987c) by 

making a 10% suspension of the Immunoprecipitin in 50 mM Tris-HCl, 0.15 M NaCl, 5 

39 



mM EDTA, pH 7.4 and heating the mixture for 30 min at 85°C. The sample was 

centrifuged at 1,000 rpm for 5 min and the precipitant was resuspended in 9 volumes of 

50 mM Tris buffer used above containing 1 % SOS. The mixture was heated for 5 min at 

95°C and centrifuged as above. The pellet was washed three times with 50 mM Tris 

buffer, followed by two washes with 10 mM sodium phosphate, pH 7.4 containing 0.15 

M NaCL The pretreated Immunoprecipitin was stored at 4°C in the 10 mM sodium 

phosphate buffer to which 10 mg/ml BSA and 0.04% NaN3 had been added. 
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CHAPTER IV 

RESULTS 

Measurements o/Vacuolar pH in BALB and MMSV cells-

Excitation spectra (Em=519 nm) were obtained for FITC-dextran in buffers of 

different pH (Figure 3) in order to generate standard curves for estimating vacuolar pH. 

Figure 4 shows the effect of pH on the ratio of the fluorescence at Ex49srun over the 

fluorescence at Ex4sonm (Panel A), and on the ratio LiF4ss/f 4ss (explained in greater 

detail in METHODS and in Figure 4 legend). As previously reported, maximum changes 

were observed between pH 4.5 and 7.5, with the curve for F49s/F4so being nearly linear 

between pH 4.5 and 7.0, a range which includes the expected pH values of lysosornes 

and endosomes (Okhuma and Poole, 1978; Okhuma, 1984). 

Lysosomal pH was measured in BALB and MMSV cells preloaded with FITC-dextra

n for 24 h, as described in METHODS. In Figure 5, lysosomal pH, calculated by the 

495/450 ratio method (Okhuma and Poole, 1978; Okhuma, 1984) is shown for BALB 

cells as a function of the pH of the external buffer in which the cells were suspended. In 

the absence of monensin, this calculated pH was about 5.6 at pH 7.5, and varied by less 

than 0.3 units between 4.5 and 7.5. This indicated that nearly all the cell associated 

FITC-dextran was intracellular with little or none bound to the cell surface. 

Photomicrographs of cells with a Nikon Microphot fluorescence microscope confirmed 

that virtually all the fluorescence was cell associated and as characteristic of a vacuolar 

localization its distribution was not uniform, (Figure 6). Figure 5 also shows that the 

subsequent addition of 60 µM monensin to the cell suspensions produced a 
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Fig. 3. FLUORESCENT EXCITATION SPECTRA OF FLUORESCEIN JSOTHIOCYANATE DEXTRAN AND ITS DEPENDENCE ON PH. 
Excitation spectra were collected for fluorescein isothiocyanate (FITC)-dextran (1 µg/ml) in 10 mM citrate, 173 mM sodium phosphate at 
twelv~ different pH values, ranging from 3.09 to 8.07. These spectra were used in the estimations of vacuolar pH by producing standard 
calibration curves (see Figure 4 and METHODS). Due to the storage limitations of the plotting program two out of the twelve pH spectra 
are not represented here (pHs 6.28 and 5.99). Each line represents 550 data points. Numbers on the right margin represent the pH of the 
buffer in which FITC-dextran spectrum was generated. These results are representative of at least three independent experiments. 
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Fig. 5. PLUOROMETRIC TITRATION OF FITC-DEXTRAN IN LYSOSOMES OF BALB/3T3 FIBROBLASTS IN THE 
PRESENCE AND ABSENCE OP MONENSIN. Balb cells were preincubated with FITC-dextran, 1 mg/ml in DMEM, for 24 

. h. Cells were resuspended with continuous stirring in 20 mM MES buffer containing 130 mM NaCl, 6 mM KCl, 1 mM 
MgS04, 1 mM CaCl2., and 5.5 mM glucose at the indicated pHs. Excitation spectra were collected before and after the 
addition of 60 µM monensin at emission wavelength of 519 nm. Vacuolar pH was calculated by Ex 495/450 fluorescence 
ratio method as described in METHODS and figure 4. The results are the mean and range of two independent sets of data. 
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A BALB/3T3 B 

c MMSV D 

Fig. 6. FLUORESCENT AND PHASE-CONTRAST PHOTOMICROGRAPHS OF 
BALB/3T3 AND MMSV CELLS PREINCUBATED FOR 24 H WITH FITC-DEXTRAN. 
BALB and MMSV cells were grown on glass coverslips and exposed to FITC-dextran (1 
mg/ml) in DMEM for 24 h. Cells were washed extensively and photographed with an 
lOOX objective on a Nikon Microphot system. Fluorescence was observed using a filter set 
at Ex420-485nm and Em>SlOnm. Photographs A and C represent the fluorescence of 

internalized FITC-dextran in the BALB and MMSV cells, respectively. Photographs B and 
D are the corresponding phase contrast images. 
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nearly exact correspondence between the calculated lysosomal pH and the extracellular 

pH in the range of 5.5 to 7.5. This justified our use of a pH vs fluorescence standard 

curve obtained in buffer for measuring vacuolar pH between 5.5 to 7.5. 

When the fluorescence signal at 450 nm was weak, as occurred after short periods of 

FITC-dextran uptake, vacuolar pH was more reproducibly estimated by measuring the 

change in fluorescence at EX 485 run after addition of 60 µM monensin to the cell 

suspensions in buffer at pH 7.4. At this concentration of monensin, complete 

equilibrium between intracellular and extracellular pH was observed after< 1 min. To 

correct for differences in FITC-dextran loading between experiments, values of L\ F were 

divided by the fluorescence obtained in the presence of monensin at 485 run 

(METHODS). Figure 7 shows excitation spectra, for BALB and MMSV cells preloaded 

with FITC-dextran for 15 min, 2 h and 24 h, before and after the addition of monensin. 

Different concentrations of FITC-dextran were used for each uptake period was to 

maximize the fluorescence signal at the shorter uptakes, since FITC-dextran is 

internalized by fluid-phase endocytosis. At any of these concentrations, the levels of 

internalized FITC-dextran will not excede the amounts which would alter pH 

dependence of its fluorescence (Ohkuma and Poole, 1978). All spectra were normalized 

for differences in FITC-dextran loading after the addition of monensin. In all cases it en 

be seen that the fluorescence above 450 run in the absence of monensin is more strongly 

quenched in BALB cells than in MMSV cells, indicative of a more acidic environment. 

Table 1 contains the calculated average vacuolar pH of the various compartments which 

were progressively filled during the proceeding period of uptake. The values in Table 1 

are the average of 5 measurements. Cell viabilities, determined by the trypan blue 

exclusion method at the end of the measurements, were found to range from 80 to 90%. 

Additionally, excitation spectra were collected for cell cultures which were not cell 

scraped prior to collection (as described in METHODS) but rather lifted from culture 
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Fig. 7. MEASUREMENT OF V ACUOLAR PH ALONG THE 
ENDOSOMAL/LYSOSOMAL PATHWAY IN BALB AND MMSV
TRANSFORMED BALB FIBROBLASTS. Cells were incubated with 
FITC-dextran: 10 mg/ml for 15 min; 5 mg/ml for 2 h; 1 mg/ml for 24 h. 
Cells were resuspended in buffer D (METHODS). The spectra in the 
presence and absence of 60 µi\1 monensin were normalized to correct for 
differences in FITC-dextran between BALB and MMSV cells. Vacuolar 
pH was calculated from AF at Ex485 after addition of monensin. The 
spectra are identified as follows: a, BALB cells prior to monensin; b, 
MMSV cells prior to monensin; c, BALB cells after monensin; and d, 
MMSV cells after monensin. The results are representative of four 
independent experiments. 
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TABLE 1. Vacuolar pH along the endosomal/lysosomal pathway 

in BALB/3T3 fibroblasts and Moloney murine sarcoma virus-transformed 

a 

b 

c 

d 

BALB/3T3 fibroblastsa 

Incubation Time 
Cell line 15 min 2 h 24 h 

BALB/3T3 6.50 ± 0.06 5.87 ± 0.15 5.27 ± 0.06 

d* d* * * * * d 
MMSV 6.97 ± 0.16 6.37 ± 0.28 5.68 ± 0.08 

c 
LipH 0.47 0.50 0.41 

Cellular monolayers were incubated with FITC-dextran for 15 min (10 mg/ml), 
2 h (5 mg/ml), and 24 h (1 mg/ml). Excitation spectra were collected from stirred 
cell suspensions as described in METHODS. 

The average pH of vacuolar compartments which were filled with FITC-dextran 
during indicated times was estimated from the change in fluorescence at Ex 
485nm after the addition of monensin as described in METHODS. The results are 
the mean and standard deviation of five independent set of data. 

Represents the difference between the mean estimated pH values for BALB/3T3 
cells and MMSV cells at a specific incubation time. 

The statistical significance of the difference between the pH at a given incubation 
time for BALB and MMSV cells was determined with the Student T-test. 
*, p < 0.01; **, p < 0.001; ***, p < 0.0001 
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flasks with 0.25% trypsin/ 1 mM EDT A This was performed to confirm the former pH 

measurements were not influenced by FITC-dextran linkage due to the possible damage 

the cells had to endure with scraping. These results confirmed that the pHs of vacuolar 

compartments in MMSV cells are consistently 0.4 to 0.5 units higher than in 

nontransformed BALB cells. 

Acidification of BALB and MMSV cells with Potassium Provionate-.. .. . 

The cell cytoplasm can be acidified after a brief incubation with a short chain fatty 

acid in the absence of sodium or in the presence of an inhibitor of the plasma membrane 

sodium/proton antiporter (Grinstein et al., 1984). The general mechanism for this is 

presented in Figure 8. Figure 9 shows the normalized excitation spectra of BALB and 

MMSV cells preloaded with FITC-dextran for 24 h. The results indicate that potassium 

propionate in a sodium free medium can lower the pH of vacuolar compartments in 

cultured cells. The calculated pH decreased from 5.7 to 5.0 in MMSV cells and from 5.3 

to 5.1 in BALB cells. These lower pHs were maintained for the duration of the exposure 

of the cells to potassium propionate (> 1 h) in the spectrofluorometer cell. 

Measurements of Cytosolic pH in BALB and MMSV cells-

The membrane permeate probe, BCECF I AM, was used to determine the effect of 

potassium propionate on cytosolic pH and has been well established as an indicator of 

cytosolic pH ( reviewed in, Haugland, 1992). A standard curve used in estimating 

cytosolic pH for cultured cells was produced by preloading BALB cells with 

BCECF I AM and suspending the intact cells in high potassium containing buffers of 

different pH in the presence of nigericin. Because the BCECF I AM hydrolysis product, 

BCECF is also a fluorescein derivative, the excitation spectra have the same general 

shape as that of FITC-dextran. However, the standard curve for BCECF is produced in 

the same environment, the cytosol, from which the unknown pH 'sare to be estimated. 

When preloaded BALB cells are placed in a high potassium buffer with the K + /H+ 
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Na+ 

IEXTIEmOR SPACE 

Fig. 8. MECHANISMS BY WHICH POTASSIUM AND SODIUM 
PROPIONATE MECHANISM DECREASE CELLULAR PH. 
Scheme for generating an acidic interior either by treating cells with 
potassium propionate in the absence of extracellular sodium or with 
sodium propionate in the presence of amiloride (an inhibitor of the 

Na+ /H+ pump exchanger). CH3CH2coo- represents the propionate 

ion. (Adapted from Grinstein et al., 1989) 

50 



BALB/3T3 

control (pH 5.3) 

K pro (pH 5.1) 

400 Excitation (nm) 500 

MMSV 

monensin 
(pH 7.4) 

control (pH 5.7) 

400 Excitation (nm) 
I 
500 

Fig. 9. EFFECT OF POTASSIUM PROPIONATE ON THE PH OF L YSOSOMES IN BALB 
AND MMSV FIBROBLASTS. Cells were preincubated for 24 h with FITC-dextran 
(METHODS). Cells were then resuspended in either buffer D (130 mM NaCl) or 20 mM 
HEPES buffer, pH 7.4, containing 140 mM potassium propionate, 1 mM KCl, 1 mM CaClz, 1 
mM MgClz, and 10 mM glucose. Excitation spectra were recorded before and after the 
addition of 60 µM monensin. The spectra were normalized for differences in FITC-dextran 
uptake, and vacuolar pH was calculated from the ~F at Ex485 after addition of monensin. 
The results are representative of at least three independent experiments. 
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ionophore, nigericin, intracellular pHs will equilibrate with the extracellular pH. Figure 

10 represents the excitation spectra for BALB cells loaded with BCECF I AM under 

these conditions. Because BCECF I AM slowly leaks out of cells, correction for leakage 

was performed on the supernatant after initial data was collected. In Figure 10, the 

inset A, represents the pH calibration curve constructed from the ratio of the relative 

fluorescence at Ex 497 nm/ 437 nm. Figure 11 contains the fluorescent spectra for BALB 

and MMSV cell suspensions from which the values of cytosolic pH were calculated. 

These are summarized in Table 2. 

Measurements Q,f Cathepsin Band Cathe:psin L Secretion -

MMSV cells, when incubated for 5.5 h in serum free DMEM, secreted 10-fold and 22-

fold more total cathepsin B and total cathepsin L, respectively, than did 

nontransformed BALB cells (Table 3 and Figures 12 and 13) and about 2-fold more 

active f5-glucuronidase (Figure 14). Ninety two and 95 % of the secreted cathepsins B 

and L were in the latent, precursor forms. In addition, a very large proportion of the 

intracellular cathepsin L (80 %) in MMSV cells was in a latent form as compared with 

cathepsin B (12 %). When MMSV cells were incubated for 5.5 h with isotonic potassium 

propionate (buffer A), pH 7.4, in place of DMEM, there occurred dramatic, 93 % and 97 

%, reductions in the secretion of total cathepsin B and total cathepsin L (Table 3). 

Sonme of the reduction in the levels of latent cathepsin B and cathepsin L may be due to 

a partial inhibition of protein synthesis caused by potassium propionate (see below). In 

Figure 12 and 13 levels of latent cathepsin Band cathepsin L were corrected for possible 

effects on protein synthesis. This reduced the the apparent effect of potassium 

propionate on cellular levels of latent cathepsin B and cathepsin L. However, the 

almost complete inhibition of secretion of the latent form of these enzymes is much too 

great to be explained in this way (see below). Potassium propionate produced little 

change in the already low levels of enzyme secretion by BALB cells, and potassium 
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Fig. 10. IN SITU GENERATED FLUORESCENT EXCITAtlON ~PECTRA AND pH STANDARD CURVE FOR I3CECF IN 
13ALl3/3T3 CELLS USED IN THE DETERMINATION OF CYTOSOLIC Pll. OALl3 cells were loaded with OCECF/ AM and 
prepared as described by Thomas et al. (1979) and in METHODS. Each spectrum was generated when the preloaded cells were 
placed in high potassium buffer (145 mM KCI) containing 10 µM nigericin at different pHs. Nigericin will equilibrate the internal 
and the external pH in the presence of high concentrations of potassium. Excitation spectra were collected at EmsJOrun· Vcdues on 
the right represent the external buffer pH. Inset A, represents the standard prepared from curve these spectra used to estimate 
cytosolic pH. Essentially, the ratio of the relative fluorescence at Ex497 /Ex437nm was plotted against external pH (similiar to that 
performed for FITC-dextran). These spectra and inset A are representative of one set of data collection. 
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fig.11. EFFECT OF POTASSIUM PROPIONATE ON THE CYTOSOLIC PH FOR DALl3/3T3 AND MMSV Fll3ROl3LASTS. OALB and 
MMSV cells were loaded with 2 µM DCECF /AM in either HAN K's buffer (control), pH 7.4 or 110 mM potassium propionate, pH 7.4, as 
described in METHODS. Cytosolic pH estimations were determined for each of the spectrum by calculating the ratio for the relative 
fluorescence at Ex.i91run/Ex431nm and extrapolating to the corresponding pH using the standard calibration curve generated in Figure 10. 
These spectra are representative of one of the two independent experiments performed. 



TABLE 2. Estimated cytosolic pH in BALB/3T3 fibroblasts and Moloney murine 

sarcoma virus-transformed BALB/3T3 fibroblasts a. 

Cell Type 

b 
Control 
(DMEM) 

c 
KPRO 

Estimated cytosolic pH 

BALB MMSV 

7.19 + 0.01 7.140 + 0.004 

6.79 + 0.05 6.570 + 0.014 

a BALB and MMSV cell suspensions were loaded with 2 µM BCECF I AM 
as described in METHODS. Cytosolic pH estimations were calculated 
from the EX497 ;437nm ratios obtained from the fluorescent excitation spectra 
as presented in Figure 11 and extrapolating the pH from the standard curve 
presented in Figure 10. This is analogous to measuring vacuolar pH from the 
Ex495/Ex450 ratio. However, in this case the standard curve was generated 
from spectra obtained with intracellular fluorophore and rhus corresponds to 
the actual cellular environment. 

b For the determination of BALB and MMSV cytosolic pH under standard 
culture conditions, cells were loaded with BCECF I AM for 15 min in 
Hank's buffer (10 mM HEPES containing 135 mM NaCl, pH 7.4), as described 
in METHODS, washed and pelleted and resuspended in Hank's buffer. 
Excitation spectra were collected as before. 

c BALB and MMSV cells were placed in 10 mM HEPES containing 110 mM 
potassium propionate, pH 7.4 for 75 min prior to the addition of 
BCECF I AM, during 15 min loading with BCECF I AM and during collection of 
spectra. Excitation spectra were collected as above. 

d The results are the mean and range of two independent studies. 
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TABLE 3. Effect of culture medium on intracellular and secreted forms of cathepsin U and cathepsin 
L in UALU/3T3 and Moloney murine sarcoma virus-transformed BALB/3T3 fibroblasts. 

a 
CATHEPSIN B 

(pmol/min/to<• cells) 

c cell cell 

medium latent active 

IJA LJJ/3T3 DMEM 28 ± 17 270 ± 28 
KPRO ND 323 ± 11 .. 
KCI ND 251±43 
NMG 5± 4 310 ± 61 

MMSV DMEM 81±13 637 ± 13 
KPRO 27 ± 30" 11J9 ± •1'1 "" 
KCI ND 1813 ± 27,1*" 
NMG 53 ± 7 .. 590 ± 27 

a Ci!llwpsin L1 delermincd wilh 94 11fv1 Z-Arg-Arg-AMC. 
b Calhepsin L determined wilh 5 11M Z-l'he-Arg-AMC. 

total 

med in 

22±12 
15±12 
32 ± 3 
21 ± 6 

209 ± 28 
15± H..,. 

235 ± 3 
237 ± 16 

c DMEM refers In serum-frel! Dulhecco's modified Eaglc's medium, pl-I 7..1; 

b 
CATHEPSIN L 

(pmol/min/106 cells) 

cell cell total 

latent active media 

263 ± 50 255 ± 26 103 ± 36 
133±76 .. 337 ± 55 .. 80 ± 18 
113± 15 .. 370 ± 25 .. 91 ± 5 
200 ± 27 219 ± 10 98± 2 

1563 ± 167 214 ± 29 2227 ± 373 
590±J12 H 3211 ± 8 .... 56 ± 39 .... 

1077 ± 210 " 591 ±150 .. 2426 ± 9·1 
1408 ± l•I 251±35 2423 ± 110 

Kl'RO refers 110 mM pnlassium propionalc, I mM KCI, I mM C1Cl2, I mM MgCl21 Hl mfv1 glt1t"ose .ind 'l·I n1N K 1 ICOJ. pll 7..1; 
KCI refers to 111 mM KCI, 1 mM Ci1Cl2, 1 mM MgC12, HI mM glucose and 4,1 mM KHC03, pll 7A; 

NMG refers to 1 IO mM N-melhyl-D-glucamine <:hlmide, 1 mM KCI, 1 mM CaCl2, 1 mM MgCl2, 10 mM glurnse ilnd 4•1 mM KHCO.:i. pl I 7.4. 
J ND indicates not detected 
e All values are the mean and standi1nf deviation of four tlelerminalions. The statisical significance o( the differences between DMEM 

and KPRO,KCI, and NMG were determined with the Student T-test. •, P < 0.05; 0
, P < 0.005. NOTE: ·me the values represented in 

this Table have not been corrected for protein synthesis inhibilion by potassium propionate. 
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Fig. 12. EFFECT OF POTASSIUM PROPIONATE ON CELLULAR AND SECRETED CATHEPSIN Il IN DALD/3T3 AND MMSV 
FIBROBLASTS. Cells were preincubated for 5.5 h in either serum-free DMEM (CONTROL) or 110 mM potassium propionate, pH 7.4 at 37°C. 
After collecting cells and media, cathepsin B was measured with 94 µM Arg-Arg-AMC, as described in METHODS. Latent enzyme 
represents the difference in activity before and after pretreatment for 30 min with pepsin. Media activity is expressed as tota I media since 
the latent enzyme contributes greater than 80 % to total activity. Note: All potassium propionate treated sample activities have been 
corrected for inhibition of protein synthesis using % inhibition calculated from [ 3H]-leucine incorporation (see figure 15 and text). The 
results are the mean and standard deviation of four experiments. The statistical significance of differences between the control and 
potassium propionate treated samples was determined with the Student T-test. *, P< 0.05; 0

, P < 0.005. ND indicates not detected. 
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Fig. 13. EFFECT OF POTASSIUM PROPIONATE ON CELLULAR AND SECRETED CATHEPSIN L IN TIALD/3T3 AND MMSV 
FIORODLASTS. Cathepsin L was measured with 5 µM Z-Phe-Arg-AMC, as described in figure 12 ;md METHODS. Activities fur 
potassium propionate treated samples have been corrected for inhibition of protein synthesis as done in figure 12. The results are the 
mean and standard deviation of four experiments. The statistical significance of differences between the control and potilssium 
propionate treated samples was determined with the Student T-test. •, P < 0.05; **, P < 0.005. ND indicates not detected. 
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Fig.14. EFFECT OF POTASSIUM PROPIONATE ON CELLULAR AND SECRETED P-GLUCURONIDASE IN DALD/3T3 AND 
MMSV FIDRODLASTS. Cells were preincubated for 5.5 h in either serum-free DMEM (CONTROL), 110 mM potassium propionate, 
(buffer A), or 110 mM KCl(buffer D), all at pH 7.4 and at 37oC. After collecting the cells and media, P-glucuronidase was assayed 
according to the method of Robbins, (1979). This involved a time point assay where samples were incubated with the substrate 4-
methylumbelliferyl-P-D-glucuronide at 37°C. Fluorescent product was measured at 3 times over the course of 85 min. The results 
represent the mean and range of two independent experiments. 



propionate did not strongly affect cellular levels of active cathepsin B and cathepsin L. 

Isotonic potassium chloride (buffer B), pH 7.4 and N-methyl-D-glucamine chloride 

(buffer C), pH 7.4, were unable to substitute for potassium propionate in reducing the 

secretion of procathepsin B and procathepsin L by MMSV cells (Table 3). However, 

potassium chloride did appear to increase cellular levels of active cathepsins B and L 

while decreasing cellular levels of the latent forms. 

It has previously been shown that most of the latent cathepsin Band latent cathepsin 

L secreted by BALB and MMSV cells were newly synthesized (Achkar et al, 1990). To 

demonstrate that the inhibition of secretion was not due to an effect of potassium 

propionate on protein synthesis, we measured the incorporation of tritiated leucine into 

cellular proteins (Figure 15). Potassium propionate inhibited protein synthesis in BALB 

and MMSV cells by 57 % and 53 %, respectively. However, this inhibition was 

insufficient to account for the much more profound inhibition of procathepsin B and 

procathepsin L secretion caused by potassium propionate under these same conditions. 

When levels of latent forms were adjusted for changes in protein synthesis (Figures 12 

and 13), potassium propionate could still be seen to inhibit MMSV cell secretion of 

cathepsin Band cathepsin L by 89 % and 96 %, respectively. 

Effects Q,f Potassium Propionate on the Synthesis of Cathepsins D and L-

Immunoprecipitation studies were performed in order to verify that the inhibition of 

lysosomal enzyme secretion caused by potassium propionate was not due to an 

inhibition of synthesis. BALB and MMSV cells were labeled for 60 min with [35S]L

methionine in the presence or absence of potassium propionate buffer and the newly 

synthesized cathepsin D and cathepsin L were immunoprecipitated as described in 

METHODS. In Figure 16 the arrows indicate the position of both enzymes, with 

procathepsin at a Mr-42 kDa and procathepsin L at a Mr-36 kDa. 
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LEUCINE INTO NEWLY SYNTHESIZED PROTEINS IN BALB/3T3 AND MMSV CELLS. 
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The results are the mean and standard deviation of three independent experiments. 
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Fig. 16. EFFECT OF POTASSIUM PROPIONATE ON THE LEVELS OF NEWLY SYNTHESIZED CATHEPSIN D AND CA THE PS IN L 
IN BALB/3T3 AND MMSV-TRANSFORMED BALB/3T3 FIBROBLASTS. BALB and MMSV cells were either pretreated with 
potassium propionate or in DMEM (METHODS) and soluble proteins were immunoprecipitated with anti-cathepsins Dor L. 

lmmunoprecipitants loaded on 12% SOS-PAGE gels under reducing conditions. Detection [35s]-radiolabeled proteins was done by 
fluorography. 



Rece:ptor-Mediated Endocytosis Q,filll-lnbeled PMP-BSA-

MMSV cells were previously shown to lack cell surface mannose 6-phosphate 

receptor binding activity (Achkar et al., 1990). Mutant Chinese hamster ovary cells, 

defective in endosomal acidification, recover the capacity to carry out the receptor 

dependent uptake of mannose 6-phosphate containing ligands after being returned to a 

permissive temperature (Roff et al., 1986). Consequently, we sought to investigate the 

effect of acidification with potassium propionate on the uptake of 1251-labeled PMP

BSA. In confirmation of earlier studies, MMSV cells were unable to carry out the 

mannose 6-phosphate dependent uptake of pentamannosyl 6-phosphate linked BSA 

(Figure 17). In contrast, BALB cells took up appreciable amounts of the PMP-BSA 

conjugate under these same conditions. Internalization of radiolabeled ligand was 

inhibited by the competing ligands, mannose 6-phosphate and the unhydrolyzable 

phosphomannosyl core oligosaccharide. Remarkably, when receptor mediated 

endocytosis was performed in isotonic potassium propionate (buffer A), pH 7.4, MMSV 

cells acquired the capacity to internalize PMP-BSA in a mannose 6-phosphate 

inhibitable manner. This uptake exceeded that of BALB/3T3 cells in DMEM alone by 

about 2-fold. Curiously, potassium propionate also stimulated the receptor mediated 

uptake of PMP-BSA by BALB cells to similar levels. This effect of potassium 

propionate was reversible. When cells were pretreated in potassium propionate for 90 

min and then allowed to take up PMP-BSA in DMEM, no stimulation of receptor 

mediated endocytosis was observed for either the BALB or the MMSV cells. 

Detection of the M6P!IGF-II Receptor by A,ffinihJ crosslinking and Western Blot Analysis-

The inability of MMSV cells to bind and internalize PMP-BSA may be due to an 

absence of the M6P /IGF-II receptor or to its presence in an inactive form. Stimulation of 

receptor-mediated uptake of PMP-BSA could thus be due to an increase in the levels of 

the M6P /IGF-II receptor, to the activation preexisting inactive M6P /IGF-II receptor, or 
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Fig.17. EFFECT OF POTASSIUM PROPIONATE ON RECEPTOR-MEDIATED ENDOCYTOSIS OF [1251]-l~ADIOLADELED PMP-DSA 
IN DALD/3T3 AND MMSV FIBROBLASTS. Cells were preincubated for 90 min in either serum-free DMEM or 110 mM potassium 
propionate, l mM KCI, 1 mM CaCl2, 1 mM MgCl 2, 10 mM glucose, and 44 mM KHC03, pH 7.4 at 37°C. Uptake was initiated by the 
addition of [1251]-PMP-DSA (1 µg/ml, specific activity=l.78 X 106 cpms/µg) in the same buffer as used in the preincubation step 
(METHODS). Nonspecific uptake was measured in the presence of either 60 mM mannose 6-phosphate or 10 mM unhydrolyzable core 
oligosaccharide (METHODS). The results are the mean and standard deviation of four independent experiments. The statistical 
significance of the differences between control (DMEM) and potassium propionate treated samples was determined with the Student T
test. •, P < 0.01. 



to activation of the 46 M6P kDa receptor which does not normally participate in 

receptor-mediated endocytosis (Watanabe et al., 1990). To distinguish between some of 

these possibilities, the status of the M6P /IGF-11 receptor was evaluated by crosslinking 

to IGF-II and by Western blot analysis. Initially, (1251] IGF-11 was used to probe for 

M6P /IGF-11 receptor on the cell surface and in the total population of cellular 

membranes of BALB and MMSV cells as described in METHODS. After 

autoradiography, BALB cell surface M6P /IGF-II receptor appeared as a very faint band 

at -290 kDa, just barely visible to the eye. However, due to the limitations of the 

densitometer, no quantitation could be made. A much more pronounced band appeared 

for binding of (1251]-IGF-II to total membranes from BALB cells permeabilized with 

saponin (Figure 18). Potassiumpropionate did not have any effect on the levels of either 

cell surface or total M6P /IGF-II receptor. MMSV cells showed the absence of any 

M6P /IGF-11 receptor which could be crosslinked to [1251] IGF-II. These results were 

confirmed by Western blot analysis. A band at 270 kDa was seen for BALB cell 

membrane preparations with equal intensity for control (DMEM) and potassium 

propionate treated cells. In contrast, the MMSV cells lacked any detectable M6P /IGF-II 

either before or after potassium propionate treatment (Figure 19). Additionally, 

conditioned media samples revealed no detectable soluble M6P /IGF-Il receptor in either 

of the cell types (Figure 20). 
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180----t> 

116----t> 

84 ----c> 

58----t> 

MMSV 

KPRO DMEM 

BALB 

KPRO DMEM 

Fig. 18. [125I1 IGF-II CROSSLINKING TO THE 275 KDA M6P /IGF-II RECEPTOR IN 
MEMBRANES ISOLATED FROM BALB/313 AND MMSV-TRANSFORMED 
FIBROBLASTS. BALB and MMSV cells were pretreated either to 110 mM potassium 
propionate or DMEM (METI-IODS). Cells were permeablized in the presence of saponin 

and crosslinked to [125I] IGF-II with DSS. Solubilized membranes were loaded on a 
4% SOS-PAGE gel and run under reducing conditions. Bands were visualized by 
autoradiography. The positions of the prestained molecular weight markers are shown 

on the left ( ----c:>) . The position of [125I1 IGF-II crosslinked to M6P /IGF-II receptor 
is also indicated ( __. ). 
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98 --c> 

80.6 --c> 
64.4 --c> 

44.6 --c> 
38.9 --c> 

MMSV BALB 
KPRO DMEM KPRO DMEM 

Fig. 19. WESTERN BLOT ANALYSIS OF THE 275 KDA M6P /IGF-II RECEPTOR 
FROM TOTAL MEMBRANE PREPARATIONS IN BALB/3T3 AND MMSV
TRANSFORMED FIBROBLASTS. Detergent solubilized membranes were 
electrophoresed on a 4-15 % SDS-P AGE gradient gel under non-reducing conditions, 
and transferred on to a membrane support and probed with anti-human M6P /IGF-II 
receptor. Positions of the for prestained molecular weight markers are shown on the 
left ( --c>) . The M6P /IGF-11 receptor is shown on the right ( ~ ). MMSV 
and BALB cells were pretreated with either 110 mM potassium propionate (KPRO) or 
DMEM (METHODS). 
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64.4---c> 
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DMEM I<PRO DMEM KPRO DMEM 

Fig. 20. WESTERN BLOT ANALYSIS OF THE 275 KDA M6P /IGF-II RECEPTOR 
FROM CONDITIONED MEDIA SAMPLES FROM BALB/3T3 AND MMSV
TRANSFORMED FIBROBLASTS. Cell culture media was concentrated down 
and loaded on a 4-15% SDS-P AGE gradient gel under nonreducing conditions 
and transferred on to a membrane support and probed with anti-human 
M6P /IGF-II receptor. The positions of the prestained molecular weight markers 
( --(> ) and the ( • ) M6P /IGF-II receptor are identified 

with arrows. MMSV and BALB cells were treated with either 110 mM 
potassium propionate (KPRO) or DMEM (METHODS). 

68 



CHAPTER V 

DISCUSSION 

The basis for mistargeting and increased secretion of newly synthesized lysosomal 

enzymes may differ for different cell lines. For Kirsten virus transformed NIH 3T3 

fibroblasts, the predominant enzyme secreted was procathepsin L (Gottesman, 1978). 

Alternatively, the mistargeting of lysosomal enzymes may involve a less selective 

phenomenon, resulting in a general secretion of several lysosomal enzymes (Achkar et al., 

1990). Presently very little information has been reported on the fundamental basis for 

these events. 

Extensive studies have elucidated some of the factors which promote the mistargeting 

of procathepsin L. Cultured mouse fibroblasts synthesize and secrete increased 

amounts of procathepsin L in response to growth factors, tumor promoters, and viral 

transformation (Treen et al., 1988). The increased secretion has been attributed to both 

a high level of procathepsin L synthesis and an intrinsic low affinity of procathepsin L 

for M6P /IGF-ll receptor (Dong et al., 1989). This reduced affinity results from the 

synthesis in murine fibroblasts of a glycosylated form of procathepsin L which contains 

one instead of two phosphorylated oligosaccharide side chains (Dong and Sahagian, 

1990). Overproduction of cathepsin L would then result in a ligand which could 

compete only poorly for limited amounts of the M6P /IGF-ll receptor. However, this 

explanation may be incomplete. In NIH 3T3 fibroblasts stimulated by platelet derived 

growth factor, procathepsin L synthesis and secretion are uncoupled; at early times a 

nearly quantitative secretion of procathepsin L occurs in the absence of increased 

synthesis and at late times, secretion ceases even after high levels of synthesis persist 



(Prence et al., 1990). In contrast to the behavior of stimulated NIH 3T3, MMSV

transformed BALB/3T3 fibroblastssecrete procathepsin B and procathepsin L in a 

manner suggestive of a more generalized defect in lysosomal enzyme targeting. 

A cell type that secretes most of its newly synthesized lysosomal enzymes is the 

osteoclast, a polarized cell located where bone resorption takes place (Vaes, 1968). A 

characteristic of this cell is that it expresses high amounts of the M6P /IGF-II receptor 

(Baron et al., 1988). These investigators observed the receptor to be colocalized with ~

glucuronidase, cathepsin C, arylsulfatase and ~-glycerophosphatase. The predominant 

site of residence was along the exocytic pathway. Although this study was incomplete, 

it was speculated that in the osteoclast, the MPR is involved in the vectorial transport of 

newly synthesized lysosomal enzymes to the apical membrane where they encounter an 

acidic environment that optimally favors ligand/receptor dissociation. What signals 

cause this alternative use of the MPR in this pathway remain to be determined. 

Intracellular targeting to lysosomes depends on both a mannose 6-phosphate 

recognition marker on the ligand, as well as a mannose 6-phosphate receptor. This is 

supported by the observation that mutants lacking either of these will secrete most of 

the lysosomal enzymes they synthesize (Robbins and Myerowitz, 1981; Lemansky et al., 

1985; Kornfeld, 1986). Adding to the complexity of mistargeting are the observations 

that a number of cell lines deficient in the M6P /IGF-II receptor can still transport and 

correctly deliver their lysosomal enzymes (Gabel and Foster, 1986). 

My observations from studies of MMSV-transformed fibroblasts have lead to the 

conclusion that these cells have several defective properties which may contribute to the 

secretion of newly synthesized enzymes. The first characteristic is the overall more 

alkaline nature of their endosomal and lysosomal compartments. The 0.4-0.5 unit 

increase in the pH found in the lumen of endosomes and lysosomes for MMSV cells 

when compared to the nontransformed BALB cells could be sufficient to disrupt proper 
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enzyme delivery. The nature of this acidification defect is unknown. Observations that 

growth factors and tumor promoters act to stimulate the plasma membrane Na+ /H + 

antiporter and increase cytosolic pH suggests the possibility that vacuolar alkalization 

is secondary to cytosolic alkalization caused by cellular transformation and activation. 

However, my observation that the cytosolic pH for MMSV and BALB cells are similar, 

7.1 and 7.2, respectively, is directly counter to this explanation. 

The maintenance of a gradient of decreasing luminal pH along the biosynthetic 

transport pathway from the trans-Golgi network to the lysosomes is essential for the 

sorting of newly synthesized enzymes to the lysosomes. When treated with agents 

which disrupt this proton gradient, cells will constitutively secrete high levels of 

lysosomal enzymes (Gonzalez-Noriega et al., 1980). One factor which contributes to this 

secretion may be the failure of ligands to dissociate from the M6P /IGF-II receptor in an 

intermediate acidic compartment, the endosome, when its luminal pH is increased 

(Gonzalez-Noriega, 1980). Chinese hamster ovary (CHO) cells with a conditional defect 

in endosomal acidification secrete high levels of precursor forms of lysosomal enzymes 

at nonperrnissive temperatures. These cells behave as if they lack functional mannose 6-

phosphate receptors at nonpermissive temperatures even when the receptors are present 

(Park et al., 1991). Substantial increases in intralysosomal pH have been reported for 

malignant transformed mouse 3T3 fibroblasts with Kirsten murine sarcoma virus and the 

transfection of human MSU-1.1 fibroblasts with v-Ki ras or T24 H-ras 

(Jiang et al., 1990). 

To test whether the observed increase in vacuolar pH for MMSV-transformed 

fibroblasts contributed to a disruption of normal lysosomal enzyme traffic, a method 

was applied to reacidify or return the pH of these compartments back to levels found in 

the nontransformed BALB fibroblasts. The small chain fatty acid, propionate, has 

previously been reported to lower the cytosolic pH in cultured cells (Grinstein et al., 
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1984). Potassium propionate did lower the cytosolic pH by 0.4 to 0.5 units in both the 

MMSV and BALB fibroblasts (Figure 11 ). Fortuitously, potassium propionate also 

significantly lowered the lysosomal pH in the MMSV cells from 5.7 to 5.0 (Figure 9). 

Lysosomal pH in BALB cells decreased to a similar level from 5.3 to 5.1. When 

potassium propionate, pH 7.4, was replaced with a sodium containing buffer at the 

same pH, such as PBS or DMEM, lysosomal pH returned to initial levels almost 

immediately. Therefore, the effect potassium propionate has on vacuolar pH is 

reversible and transient. 

In potassium propionate containing buffer, MMSV cells secrete greatly reduced levels 

of both cathepsin B and cathepsin L (Table 3 and Figures 12 and 13). In contrast, 

potassium propionate had only a small effect on the already low levels of enzyme 

secretion found with BALB cells. To rule out the possibility of that the potassium ion 

was contributing to these observations, enzyme levels were measured in the presence of 

potassium chloride. No significant change was observed in the secreted levels for both 

cell types. However, potassium chloride did lower the levels of latent forms of 

cathepsin Band cathepsin Lin BALB and MMSV cells for unknown reasons. N-methyl

D-glucamine chloride, which contains a nontransportable cation, also failed to inhibit 

enzyme secretion. It is also possible that the decreased cytosolic pH resulting from 

potassium propionate treatment contributed to the decrease in secreted enzyme levels 

for the MMSV cells. To eliminate the possibility that cytosolic acidification by 

potassium propionate contributed to the inhibition of enzyme secretion in MMSV cells, 

one would need to find a method by which only endosomal and lysosomal pH would be 

altered. Currently, such a method has not been reported. 

The dramatic inhibition of enzyme secretion caused by reacidification with 

potassium propionate in MMSV cells was not due to an inhibition of protein synthesis. 

[3H]-Leucine incorporation under the same conditions as those used for the enzyme 
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assays, showed that potassium propionate does produce a general inhibition of protein 

synthesis in both the BALB and MMSV cells, by 57 % and 54 %, respectively (Figure 15). 

However, after adjusting for changes in protein synthesis, potassium propionate still 

inhibited cathepsin Band cathepsin L secretion by 89% and 96%, respectively in MMSV 

cells (Figures 12 and 13 have been corrected for this possible inhibition, Table 3 

represents levels prior to correction). [3H]-Leucine incorporation measured total protein 

synthesis. To selectively look at potassium propionate's effect on lysosomal protein 

synthesis, irnrnunoprecipitation was performed to directly measure the rate of synthesis 

of cathepsin D and cathepsin L. After labeling with (355] methionine for 1 h, in the 

presence and absence of potassium propionate, newly synthesized cathepsin D and 

cathepsin L were immunoprecipitated by their corresponding antisera. Little or no 

difference was observed between control (DMEM) and potassium propionate treated 

BALB and MMSV cells with regard to cathepsin L synthesis (Figure 16). Cathepsin D 

synthesis appeared to be inhibited with regard to cathepsin L synthesis about 50 %. In 

neither case could the magnitude of these inhibition of lysosomal proteinase synthesis 

explain the much greater inhibition of secretion. The ability to inhibit lysosomal enzyme 

secretion by acidifying vacuolar compartments in MMSV cells suggests that a defect in 

vacuolar acidification may contribute to the secretory phenotype of MMSV cells. 

The second deviant feature found in the MMSV cells was their inability to perform 

mannose 6-phosphate receptor-mediated endocytosis. The absence of functional M6P 

receptors on the cell surface of MMSV cells could be due to several possibilities: (1) 

these cells are unable to synthesize functional M6P receptor; (2) the synthesis of the 

receptor is normal but its degradation is enhanced; or (3) the vacuolar compartments 

responsible for ligand-receptor uncoupling are too alkaline to promote ligand 

dissociation and/ or receptor recycling. The reappearance of functional mannose 6-

phosphate receptor-mediated uptake after acidification with potassium propionate led 
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to the following possibilities: (1) there might be an increase in M6P/IGF-II receptor 

synthesis; (2) M6P /IGF-II receptor turnover is decreased; or (3) there is an increased 

recycling of the M6P /IGF-II receptor to and from the cell surface. The first two 

explanations do not appear likely as the effect of potassium propionate on receptor

mediated endocytosis is rapidly reversed on transfer to DMEM. This appears to 

resemble the effect of transferring CHO cells, conditionally defective in endosomal pH 

from a permissive to nonpermissive temperature (Park et al., 1991). 

IGF-11 affinity crosslinking and Western blot analysis both confirmed the absence of 

the M6P /IGF-11 receptor in the MMSV cells (Figures 18 and 19). This observation could 

explain the general mistargeting of lysosomal enzymes by MMSV cells, which is 

consistent with other reports on cell types deficient in the M6P /IGF-II receptor (Robbins 

and Myerowitz, 1981; Lemansky et al., 1985; Kornfeld, 1986). It would be interesting to 

investigate whether other cells which lack the M6P /IGF-II receptor would also show an 

increase in the pH of their endosomes and lysosomes. If so, this might suggest that the 

absence of the M6P /IGF-II receptor is related to defects in the regulation of vacuolar pH. 

The existence of a soluble, truncated M6P /IGF-11 receptor was first reported in rat 

sera (Kiess et al., 1987). Others have since shown that the soluble receptor in rat sera is 

about 240 kDa and lacks the cytosolic and transmembrane domains (MacDonald et al., 

1989). The soluble receptor was present in fetal, neonatal, and adult sera. The levels in 

fetal and neonatal sera were 3 to 4 times higher than those in adult sera. The soluble 

receptor still has the capability to bind M6P containing ligands. Speculations with 

respect to possible functions of a soluble M6P receptor have been proposed as follows: 

to retrieve extracellular lysosomal enzymes; to inactivate secreted lysosomal enzymes; or 

possibly to chaparone these enzymes during their transit to other extracellular locations 

(MacDonald et al., 1989). Western blot analysis was performed on the conditioned 

media from BALB and MMSV cells, with the possibility that the M6P /IGF-II receptor 
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was absent in MMSV cells because it was proteolytically cleaved and released into the 

extracellular environment. Western blot analysis revealed no detectable M6P /IGF-II 

receptor for either cell type in the conditioned media, even when the cells were 

pretreated with potassium propionate (Figure 20). It therefore, remains uncertain 

whether or not MMSV cells have the necessary capability to produce the M6P /IGF-II 

receptor protein. 

Potassium propionate treatment stimulated the uptake of (125!] labeled PMP-BSA in 

both MMSV and BALB cells to about 200% over untreated BALB cells (Figure 17). 

Potassium propionate treated BALB cells failed to show any increase in the total level 

of M6P /IGF-II receptor determined by Western blot analysis under the same conditions. 

Additionally, the M6P /IGF-II receptor was still undetectable in potassium propionate 

treated MMSV cells. The fact that the M6P /IGF-II receptor did not reappear after 

treatment to potassium propionate, complicated the previous observation that MMSV 

cells regained the ability to internalize (1251]-PMP-BSA after acidification. This suggests 

the possibility that potassium propionate stimulation involves the 46 kDa mannose 6-

phosphate receptor which normally does not function in receptor-mediated endocytosis 

in cultured cells (Watanabe et al., 1990). If the 46 kDa MPR is involved in the recovery 

of active mannose 6-phosphate uptake after potassium propionate at pH 7.4, this 

would be a unique finding. Presently, this receptor has been reported to bind 

extracellular mannose 6-phosphate bearing ligand only at pH 6.5 (Ma et al., 1991). The 

reappearance of cell surface mannose 6-phosphate inhibitable receptor-mediated uptake 

in potassium propionate treated MMSV cells does not necessarily indicate, however, 

that intracellular M6P /IGF-II receptor activity has been enhanced. Activation of an 

intracellular M6P receptor would support my finding that potassium propionate was 

able to inhibit lysosomal enzyme secretion. 

Alternatively, mannose 6-phosphate may be only one of several signals utilized by 
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cells in the proper sorting and delivery of newly synthesized enzymes to lysosomes. 

Diment et al. (1988) observed cathepsin D to be associated with membranes in 

macrophage endosomes. This membrane associated form was proteolytically processed 

while still bound to the membranes prior to its delivery to the lysosomes. This 

association was not found to involve any known glycoprotein receptor. Additionally, 

these investigators observed that an increase or decrease in vacuolar pH would disrupt 

this membrane binding. Therefore, an alternative explanation for the decrease in 

lysosomal enzyme secretion by MMSV cells after acidification with potassium 

propionate may involve a reassociation of these enzymes to transport vesicle 

membranes. 

The results presented in this work have many important implications for future 

research. Since two deviant characteristics which may influence increased lysosomal 

enzyme secretion have been observed for the MMSV fibroblasts, they need to be 

addressed individually. The first observed defect, is the increased vacuolar pH. It has 

been reported (Moolenaar, 1990) that a shift in pH of 0.2 in any intracellular 

compartment would have substantial effects on a number of pH-sensitive processes in 

the cell. This supports the idea that the observed increase in endosomal and lysosomal 

pH of 0.4 - 0.5 for the MMSV cells would alter a number of intracellular processes. It is 

well established that lysosomal enzymes are generally active and stable under acidic 

conditions. Chloroquine has been shown to inhibit proteolytic processing of these 

enzymes by competing for the H +,thereby raising vacuolar pH and increasing secretion. 

The effect of chloroquine appears to mimic the phenotype found for MMSV cells. In 

addition, the secretion of lysosomal enzymes by MMSV cells can not be further 

enhanced by monensin, another disrupter of vacuolar pH. (Achkar et al., 1990). 

Procathepsin D undergoes activation and maturation at acidic pH (Samarel et al., 1986; 

Samarel et al., 1985). When rabbit cardiac cells were treated to chloroquine, the 
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proteolytic processing of cathepsin D was inhibited and these enzymes were mistargeted 

to the extracellular space. Evidence also suggests that cathepsin L undergoes 

autocatalytic activation at acidic pH (Salminen and Gottesman, 1990). The proteolytic 

maturation of other lysosomal enzymes should also be pH dependent. Therefore, an 

increase in vacuolar pH in MMSV cells would not only interrupt lysosomal enzyme 

targeting but it should also increase the relative abundance of precursor and partially 

processed forms of various lysosomal enzymes within the cells. 

Interestingly, the secretion by fibroblasts of transforming growth factor-beta (TGF-~), 

which also contain phosphorylated mannose, is also stimulated by agents like 

chloroquine and monensin (Sha et al., 1989). TGF-~ is a potent modulator of cell growth 

and differentiation producing either growth stimulation or growth inhibiton depending 

on target cell type (Cohen et al., 1990; Lipzonova et al., 1990; Daniel and Sporn, 1990). 

Consequently, further studies comparing TGF-~ secretion by BALB and MMSV cells 

would also be justified. 

The second characteristic defect present in the MMSV cells is the absence or 

extremely low levels of the M6P /IGF-II receptor. The importance of this receptor in 

lysosomal enzyme targeting and recapture has been previously discussed. However, the 

absence of this receptor in potentially metastatic cells raises other interesting 

possibilities. This receptor also serves to bind IGF-II and it activates a signaling 

transduction pathway only in response to this ligand (Okamoto et al., 1990). Little is 

currently known about the nature ot this secondary signaling effect except for that it 

involves a GTP-binding protein. IGF-II will bind to the IGF-I receptor in the absence of 

free M6P /IGF-II receptors. The IGF-I receptor differs from the M6P /IGF-II receptor in 

that it possesses an intrinsic tyrosine kinase activity (Hari et al., 1987). Because of the 

absence of the M6P /IGF-II receptor in the MMSV cells the response induced by IGF-II 

would be mediated by the IGF-I receptor and be fundamentally different from that 
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evoked by the M6P /IGF-II receptor. Future studies on the nature of the secondary 

signaling pathways and responses for these receptors will help to determine the effect 

the absence of the M6P /IGF-11 receptor has in MMSV cells. 

In addition to binding mannose 6-phosphate containing ligands and IGF-11, the 

M6P /IGF-II receptor is responsible for the binding and activation of the latent form of 

TGF-~ (Dennis and Rifkin, 1991). Most cells from a wide spectrum of organisms 

produce one or more isoforms of TGF-~ (Pfeilschifter, 1990). It is involved with the 

synthesis and maintenance of the extracellular matrix and it can exert stimulatory or 

inhibitory effects on cells depending on their type (Pfeilschifter, 1990). TGF-~ has been 

shown to be the most potent growth factor in the stimulation of collagen and fibronectin 

matrix protein synthesis (Ignotz and Massague, 1986). It has also been implicated in the 

maturation of procollagen (Rossi et al., 1988). TGF-~ not only promotes matrix 

synthesis, it also decreases matrix degradation. It has been shown to inhibit the 

synthesis of thiol proteases in fibroblasts and can inhibit other growth factors which 

promote collagenase activity (Edwards et al., 1987). Since its discovery as a potential 

growth inhibitor (Roberts et al., 1981), it has been speculated that its activity toward 

metastatic tumor cells is some how repressed by these cells. Because of the recent 

discovery that the M6P /IGF-11 receptor serves in the activation of latent TGF-~, this 

research project suggests that the absence of the M6P /IGF-11 receptor may have other 

implications besides lysosomal enzyme mistargeting in MMSV cells. It would be very 

interesting to see if the absence of the M6P /IGF-11 receptor results in an inability of 

MMSVcells to activate latent TGF-~. If this were true, MMSV cells, should be 

unresponsive to latent TGF-~, have a decreased ability to manufacture the extracellular 

matrix, and should secrete increased amounts of other matrix degrading enzymes in 

addition to cathepsins B and L. Other cells which have been shown to possess high 

metastatic potential could be screened to see whether they lack or rapidly turnover the 
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M6P /IGF-11 receptor. The absence or appearance of only low levels of the M6P /IGF-11 

receptor might enhance malignancy in several ways: by limiting TGF-~ activation with its 

matrix deposition and growth inhibitory activities (Border et al., 1990); and by 

increasing the secretion of collagenases and lysosomal acid hydrolases which degrade 

the constituents of the extracellular matrix. 
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