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ABSTRACT 

CLONING OF MULTIPLE NOVEL HUMAN TRINUCLEOTIDE REPEAT CONTAINING 

cDNA'S: 

A NOVEL APPLICATION OF ,RAPID bMPLIFICATION OF QDNA gNDS (RACE) 

The expansion of trinucleotide repeat sequences is a process 

by which the number of GC rich triplet repeats within a specific 

locus in the genome is amplified leading to a disease state. 

Presently, seven disorders have been shown to be the result of 

this type of mutation. These disorders are dentatorubral-

palladoluysian atrophy (DRPLA), Fragile X syndrome(A) (FRAXA) I 

Fragile X syndrome(E) (FRAXE), Huntington's disease (HD), myotonic 

dystrophy (DM) I spino-bulbar muscular atrophy (SBMA), and 

spinocerebellar ataxia type 1 (SCAl). A subset of these 

disorders, DRPLA, HD, SBMA, and SCAl, are caused specifically by 

the expansion of unstable (CAG)N repeats located within translated 

regions of the respective transcripts and appear to define a 

subclass of trinucleotide repeat expansion disorders. I report 

here an initial step towards characterizing other disorders of 

this subclass. Utilizing rapid amplification of cDNA ends, I have 

isolated multiple novel human cDNA's that contain (CAG)N repeats. 
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These cDNA's should provide useful reagents for further 

investigation into trinucleotide repeat expansion disorders. 

Initially using a 3' Eapid bmplification of £DNA ~nds (RACE) 

approach I isolated six trinucleotide repeat containing cDNA' s. 

From this group, two were the focus of further analysis. The cDNA 

sequence for clone CAG8-6 was determined and has no significant 

similarity with any sequences in GenBank. In collaboration the 

gene for CAG8-6 was mapped to chromosome lq41-42. The cDNA from 

clone CAG8-16 was completely sequenced and by GenBank search was 

found to encode the human homologue to a previously characterized 

mouse single-stranded DNA binding protein (ssbp) The prate ins 

from mouse and human showed a striking degree of conservation 

being over 90% identical. Somatic cell hybrid panel analysis 

indicates that the human ssbp maps to chromosome 5. Additionally, 

two known cDNA fragments were isolated which indicated the utility 

of the technique. 

two known cDNA's. 

The calmodulin 1 (CALMl) cDNA was one of these 

Previous to this work it was unknown that the 

CALMl gene contained a CAG repeat. The novel clones isolated 

should provide molecular probes for further investigation in to 

their possible involvement in disorders caused by trinucleotide 

repeat expansion. 

The latter portion of the project focused on the development 

and utilization of a novel technique, which I call Random RACE. 

The 3' RACE technique has the inherent limitation that one can 

xvi 



only isolate trinucleotide repeat containing cDNA' s which have 

, c repeat located near the poly A+ tail. Random RACE allowed 

for the elimination of this limitation and the isolation of cDNA 

fragments from trinucleotide repeat containing transcripts 

regardless of the location of the repeat. Utilizing this 

technique, greater than 30 novel human cDNA fragments have been 

isolated. Genbank searches have indicated some regions of DNA 

sequence similarity in a number of the clones which may provide a 

basis for characterizing the function of these gene products. 

These clones constitute a molecular library that can be utilized 

for screening other genetic disorders that are caused by the 

expansion of CAG repeats. 

xvii 



CHAPTER I 

INTRODUCTION 

The onset of molecular biology has brought about a revolution 

in the life sciences. The techniques available have led to rapid 

advances resulting in greater understanding of cellular processes. 

Human molecular genetics has greatly benefited from these advances 

through better diagnosis and the possibility of improved 

treatment. The ability to analyze and manipulate the DNA molecule 

has led to better diagnosis of human diseases and with the onset 

of gene therapy, a new age of improved treatment is upon us. The 

application of molecular biology techniques to diagnosis and 

prognosis of human disease will bring a plethora of discoveries 

providing a greater understanding of numerous human genetic 

diseases. 

One of the most exciting recent findings of human molecular 

genetics is the occurrence of trinucleotide repeat expansion in 

human disease states. The expansion of GC rich trinucleotide 

repeat sequences in DNA is now known to be a major type of 

mutagenesis leading to human disease states (Richards and 

Sutherland, 1992) . In the last three years seven diseases have 

been described that are caused by trinucleotide repeat expansion. 
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Presently, these disorders appear to segregate into two groups. 

One group, resulting in four different dominant-late-onset 

neurological disorders, is caused by expansion of an unstable 

(CAG)N repeat that is located in a translated region of the 

respective genes (LaSpada et al., 1991; HD Collaborative Research 

Group, 1993; Orr et al., 1993; Koide et al., 1994; Nagafuchi et 

al., 1994). The four disorders of this group are spinobulbar 

muscular atrophy (SBMA) I Huntington's disease (HD) I 

spinocerebellar ataxia type 1 (SCAl), and 

dentatorubralpallidoluysian atrophy (DRPLA). In all cases the 

(CAG) N repeat is translated as polyglutamine. With the exception 

of SBMA, the cellular function of all of the respective gene 

products is unknown. Given the dominant nature of the disorders 

one possible molecular mechanism is that the protein products are 

involved in some novel interaction as a result of the expanded 

polyglutamine region (HD Collaborative Research Group, 1993; Orr 

et al., 1993). Such regions of polyglutamine are known to be 

important in a number of transcription factors (Gerber et al., 

1994) and may have a role in the evolution of protein sequences 

(Green and Wang, 1994). 

The second group of disorders is caused by the expansion of 

GC rich trinucleotide repeat located in untranslated region of the 

three respective genes (Fu et al., 1991, Brook et al., 1991, 

Knight et al., 1993). The disorders of this group are Fragile X 

syndrome A (FRAXA), Fragile X syndrome E (FRAXE), and myotonic 
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dystrophy (DM) . The expansion in these disorders apparently 

affects the transcript levels of the respective genes, however, 

the mechanism of the resulting pathology is largely unknown. 

Considering that these seven disorders have been described in 

such a short amount of time there is a widely held tenet that 

there exist a number of other disorders that are caused by the 

expansion of trinucleotide repeats (Richards and Sutherland, 1992; 

Caskey and Kuhl, 1993) . It is known that there are a number of 

diseases whose molecular cause is presently undefined that have 

characteristics similar to the seven disorders now known. In 

particular, several neurodegenerative ataxias have been described 

that show genetic anticipation and clinical variability (H. 

Zoghbi, personal communication) . These characteristics suggest 

that these disorders are caused by trinucleotide repeat expansion. 

It is the aim of my dissertation to utilize Rapid 8fnplification of 

£DNA ~nds (RACE) to isolate (CAG)N containing cDNA's. These cDNA 

clones will comprise a useful molecular database for screening 

genetic disorders suspected to be caused by expansion of 

trinucleotide repeats. 

I have utilized two separate RACE applications to accomplish 

the isolation of (CAG)N containing cDNA's. 
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1. 3' RACE 

Using reverse transcribed RNA as a template this technology 

allows for amplification between the poly A+ tail of an mRNA and a 

unique internal sequence. In this work this internal sequence was 

a (CAG)N containing primer. This adaptation allows for the 

amplification and cloning of any cDNA that contains a CAG repeat 

located within approximately one kilobase of the poly A+ tail. 

(CAG)N was chosen as the primer sequence due to the involvement of 

CAG repeats in the translated regions of the genes that are 

defective in the group 1 disorders. The subsequent fragments 

isolated are sequenced, utilized as probes for expression 

analysis, cDNA cloning, and chromosomal localization. 

2. Random RACE 

This methodology represents a novel application of RACE 

developed for this work. The technique allows for the 

amplification between a unique known sequence and a random 

sequence present in a cDNA. As in 3 ' RACE, the unique sequence 

primer contains a (CAG)N region. In this adaptation the method is 

utilized to clone (CAG) N containing cDNA fragments regardless of 

where the repeat is located within a mRNA. The method overcomes 

the limitation of 3' RACE, which requires the repeat to be located 

within a reasonable distance of the poly A+ tail. The DNA 
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sequence of the isolated fragments will be determined and novel 

clones identified by searching GenBank. 

The significance of carrying out the above studies is that 

the isolation of multiple novel CAG repeat containing cDNA 

fragments will generate a molecular library that can be utilized 

in future experiments aimed at the molecular dissection of human 

diseases caused by the expansion of (CAG)N sequences. Given the 

suspicion that a large number of human diseases are caused by the 

expansion of (CAG)N sequences it is not unreasonable to expect 

that the reagents generated by this work will prove to be useful 

in future studies. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

A. Genome Dynamics 

Many examples of genome alterations are known, including gene 

amplification and loss of heterozygosity that occur in cancer 

cells (for review, see Cheng and Loeb, 1993) For example, 

instability at microsatellite repeats in hereditary non-polypsis 

colon cancer has been shown to be due to defects in DNA mismatch 

repair (Aaltonen et al., 1993; Fishel et al., 1993; Leach et al., 

1993; Thibodeau et al., 1993; Bronner et al., 1994; Papadopoulos 

et al., 1994) One important type of dynamic genomic element is 

the variable nucleotide tandem repeat (VNTR) or microsatellite 

repeat. This element consists of a sequence of one to six bases 

that can be repeated multiple times (Tautz, 1989). The most 

prevalent type of VNTR is the dinucleotide repeat. This 

repetitive element has become very important as a tool for genetic 

mapping. Dinucleotide repeats offer the advantage of being highly 

polymorphic (variable repeat numbers at the same locus within the 

population) and are within a size range to allow for PCR 

amplification and accurate size determination (Tautz, 1989; Weber 

6 
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and May, 1989). Using this methodology it is now possible to 

oerform linkage analysis with high resolution in a relatively 

short period of time. Additionally, this method has been utilized 

as one of a battery of techniques to create a first generation 

physical map of the human genome (Cohen et al., 1994). Along with 

dinucleotide repeats, tri- and tetra-nucleotide repeats are other 

highly polymorphic VNTR' s. These repetitive elements also offer 

the advantages of small size to allow size determination by PCR 

(Edwards et al., 1991). The only disadvantage of these repetitive 

elements is they are in lower abundance on a genome-wide basis. 

These repetitive elements are useful for both genetic mapping 

purposes and forensic identification. Through the use of five 

different loci Edwards et al. (1991) have shown that one can match 

an individual with only a 1 in 90,000 chance of having a random 

match. If the number of loci is increased to twelve the odds of a 

random match increases to 1 in 1 X 10 8
• This method has the 

advantage of being PCR based and therefore it does not require a 

large sample. 

applications. 

This makes the technique well suited to forensic 

Trinucleotide repeats are useful in both genetic mapping and 

forensic analysis, yet they have become an area of intense 

research due to their involvement in a number inherited diseases. 

Trinucleotide repeats have been observed in a large number of 

genes from a variety of species (Grabowski et al., 1991; Gerber et 

al., 1994). One type of repeat, (CAX)N where X= A, C, or G, was 
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originally described in the Notch gene of Drosophila and termed 

opa or strep (Wharton et al, 1985) . A similar repeat, (CAG)N, is 

found in a large number of human genes (Table I) and is expanded 

in four late onset neurological diseases (see below) A definitive 

function for this repeat is not known, however, it is often 

present in translated regions of genes and has a high propensity 

to code for glutamine (Han et al., 1994; Stallings, 1994). Table 

I shows that a large number of the genes that contain a (CAG)N 

trinucleotide repeat code for transcription factors or other 

cellular control proteins. Functionally, these polyglutamine 

stretches are important for the protein-protein interactions 

(Gerber et al., 1994) necessary for transcriptional activation. 

However, analysis using transient transfections of constructs 

containing a polyglutamine region fused to the DNA binding domain 

of the yeast transcriptional activator GAL4 has shown that 

transcriptional activation reaches maximal level with about 30 

glutamines (Gerber et al., 1994) . This is similar to the upper 

limit of repeats observed in the normal population for the genes 

involved in the four late onset neurological disorders (Table II). 

The (CAG) N repeat has been shown to be one of the most 

prevalent repetitive elements in human GenBank DNA (Green and 

Wang, 1994; Han et al., 1994; Stallings, 1994) and is the most 

abundant repeat present in human exonic sequences (Stallings, 

1994). Additionally, Stallings (1994) has observed that frequently 
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TABLE 1: HUMAN GENES CONTAINING (CAG)N REPEATS 

Gene a Accession Number Repeats 

TBP 23 X54993 
*Androgen Receptor 13-30 J03180 
*Huntingtin 11-34 L12392 
*Ataxin-1 6-39 X79204 
*CTG-B37 7-25 L10377 
MEF-2 11 S43912 
IL-9 Receptor 10 M84747 
RSRFC4/9 9 X63381 
Serum Response Factor 9 S70452 
Pim-1 proto-oncogene 8 M27903 

Table 1: The table shows a partial listing of genes containing 
(CAG)N repeats. The table was generated by searching GenBank with 
the sequence (CAG) 10 • All of the entries in the table have at 

a 
least 8 identical repeats of CAG. Number of repeat units. 

*These entries are genes that have been implicated in diseases 
caused by expansion of trinucleotide repeats (see Table 2). 
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trinucleotide repeats located within translated regions are not 

conserved indicating that tracts of certain poly amino acids, in 

particular polyglutamine, are not critical for protein function. 

Consistent with this data, Green and Wang (1994) have Proposed 

that insertion of polyglutamine tracts within protein sequences is 

an evolutionary mechanism that allows proteins to add amino acids. 

The next step in this process would be base substitution mutations 

which would alter the repeat and, under selective pressure, could 

create new protein domains (Green and Wang, 1994). 

B. Trinucleotide Repeat Expansion 

Trinucleotide repeat expansion is a type of mutagenesis 

where, in general, the mutation frequency of the repetitive 

element is based upon its size (Richards and Sutherland, 1992 ) 

leading to the term dynamic mutation to describe this process. The 

mutagenesis observed is an increase (or decrease) in the number of 

repeats present within a gene. Figure 1 illustrates this process 

in qualitative terms, showing the dependence of mutation frequency 

on the repeat size. The result of this phenomena is the general 

increase in repeat size in an affected family over generations. 

This increase in repeat size correlates with severity of the 

phenotype and is termed anticipation. Additionally, some of the 

disorders show a correlation between age of 

length (Brook et al., 1992; Fu et al., 

1992; HD Collaborative Research Group, 

Koide et al., 1994). 

1992; 

1993; 

onset and 

Tsilfidis 

repeat 

et al., 

Orr et al., 1993 ; 
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The mechanism of trinucleotide repeat expansion remains 

The most often hypothesized mechanism is that cf 

replicative slippage followed by ineffective mismatch repair. 

This model is supported by experiments in Escherichia coli which 

showed that defects in the mismatch repair genes mutL and mutS 

genes lead to a 13 fold elevated level of repeat tract instability 

(Levinson and Gutman, 1987). Also recent work in yeast has shown 

that defects in the mismatch repair genes PMSl, MLHl, and MSH2 

lead to a 100 to 700 fold increase in 

microsatellite repeats (Strand et al., 1993). 

instability of 

Strand et al. 

(1993) also showed that mutations in the proofreading activities 

of DNA polymerase 8 and DNA polymerase E had little effect on 

dinucleotide tract instability. These results would seem to 

indicate that the level of polymerization slippage is normally at 

a near maximal level but that these slippage errors are 

efficiently corrected by the mismatch repair system. 

Finally, work on hereditary nonpolypsis colon cancer (HNPCC) 

has shown that defects in mismatch repair are responsible for 

tumorigenesis. HNPCC cells exhibit genome wide instability in 

microsatellite repeats (Altonen et al., 1993; Thibodeau et al., 

1993) From linkage analysis of affected families, two different 

mismatch repair defects were localized to chromosome 2 and 

chromosome 3 (Peltomaki et al., 1993; Lindblom et al., 1993). The 

gene hMSH2 was cloned and localized to chromosome 2 by two groups 

and shown to be mutated in HNPCC affected families(Fishel et al., 

1993; Leach et al., 1993) . The predicted amino acid sequence of 

the human MSH2 shows 77% identity to the yeast MSH2 (Fishel et 



1.0 

Mutation 
Frequency 

0.0 
Small 

12 

Large 
Repeat Size 

Figure 1: The graph gives an approximate representation of 
dynamic mutation with the mutation frequency being dependent on 
repeat size. The dynamic nature of repeat mutatgenesis appears to 
be dependent on many factors and is not thought to apply to normal 
alleles (Adapted from Richards and Sutherland, 1992 and Kuhl and 
Caskey, 1993). 
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al., 1993). The gene hMLHl was cloned and shown to reside on 

chiomcscme 3 and was mutated in HNPCC families (Bronner et al., 

1994; Papadopoulos et al., 1994) . The ORF for the human MLHl 

shows 34% identity to the yeast MLHl (Papadopoulos et al., 1994). 

This data indicates that in humans defects in the mismatch repair 

system lead to instability in VNTR's and predisposition to cancer. 

C. Late Onset Neurological Disorders 

1. Spinobulbar Muscular Atrophy (SBMA) 

SBMA is a rare X-linked recessive disorder originally 

described by Kennedy and coworkers and sometimes referred to as 

Kennedy's disease ( 1968) . 

characterized by onset in the 

The 

third 

disorder 

to fifth 

is clinically 

decade of life 

followed by progressive muscle weakening and atrophy (Harding et 

al., 1982). Symptoms include muscle cramps that precede onset of 

the disease by several years, facial weakness, fasciculation, and 

gynaecomastia. The presence of gynaecomastia led to the 

hypothesis that the disease was caused by a mutation that created 

an endocrine defect. 

Linkage analysis showed the disease to be linked to markers 

on the X chromosome in the same region of the androgen receptor 

(Fishbeck et al., 1986) . LaSpada et al. (1991) reported that the 

gene defect was an increase in the number of CAG repeats present 
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in the first exon of the androgen receptor gene (Table 2) . An 

a.:-1::~ 1,sis c,f 75 c:c::1t:::-c~s showed the repeat to be polymorphic in the 

population with an average repeat length of 21±2, with a range of 

13-30. The expanded disease allele showed an absolute association 

with the disease with a range of 40-62 repeats in affected 

patients(LaSpada et al., 1991). The (CAG)N repeat begins at codon 

58 of the androgen receptor protein and codes for a polyglutamine 

tract (Lubahn et al., 1988). Mhatre et al. ( 1993) have shown in 

transient transfection transcription assays that an androgen 

receptor with an expanded polyglutamine tract suboptimally 

transactivates a reporter construct carrying four copies of the 

androgen response element. This is in agreement with the work of 

Gerber et al. ( 1994), discussed above, who used an artificial 

system to show that large ( >30) polyglutamine stretches did not 

transactivate as effectively as tracts <30 units in length. 

Additionally, Warner et al. (1991) have shown that fibroblasts 

from SBMA patients have decreased androgen binding capability. 

This data would seem to indicate a loss of function mutation, 

however, Fishbeck argues an alternative possibility. It is 

hypothesized that the increase in the polyglutamine tract of the 

androgen receptor results in a toxic gain of function. 

proposed that the androgen receptor carrying a 

It is 

larger 

polyglutamine tract either interacts aberrantly with its protein 

targets or interacts with a new protein target. The absence of a 
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TABLE 2: DISEASES OF TRINUCLEOTIDE REPEAT EXPANSION 

A. LATE ONSET NEUROLOGICAL DISORDERS 

Disease a 
Repeat Normal Disease Location Chromosome 

Range Range 

SBMA CAG 13-30 40-62 coding Xqll-12 
HD CAG 11-34 38-100 coding 4pl6.3 

SCAl CAG 6-39 43-81 coding 6p22-23 
DRPLA CAG 7-25 49-75 coding 12pl2-ter 

B. OTHER DISORDERS OF TRINUCLEOTIDE REPEAT EXPANSION 

Disease 

DM 
FRAXA 
FRAXE 

a b 
Repeat Normal 

CTG 
CGG 
GCC 

Range 

5-30 
6-50 
6-25 

b . 
Disease 

Range 

50->200 
>200 

200->700 

Location 

3' -UTR 
5' -UTR 

? 

Chromosome 

19q13. 3 
Xq27. 3 
Xq27-28 

Table 2: The table summarizes the characteristics of the genes 
implicated in diseases of trinucleotide repeat expansion. Section 
A includes the late onset neurological disorders where the (CAG)N 
repeat is located in the translated region of the four respective 
genes. Section B is made up of other diseases of trinucleotide 
repeat expansion where the GC rich repeats are present in 

a 
untranslated regions of the respective genes. The repeat is 

b 
given as it reads on the coding strand. The ranges for both 
normal and disease alleles are given in repeat units. 
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phenotype in females carrying an expanded allele is then explained 

01:, t..t.e .basis cf Lyonization and lower androgen levels in ferna:cs 

(K. Fishbeck, personal communication). In support of this 

hypothesis Biancalana et al. (1992) have reported heterozygous 

carrier females that have complained of muscle cramps, indicating 

a possible mild expression of the disease phenotype. Biancalana 

et al. (1992) also reported that the disease allele in SBMA shows 

only moderate instability. The authors examined a four generation 

family affected by SBMA and found that the most the repeat 

expanded from one generation to the next was 5 units. 

Additionally, there has been no report of mitotic instability or 

mosaic ism in SBMA affected patients. This is in contrast to a 

number of other trinucleotide repeat expansion disorders that 

often show large increases from one generation to the next. 

Overall, the influence of the expanded polyglutamine tract on the 

pathophysiology of the disease is presently unclear and will 

require further study. 

2. Huntington's Disease (HD) 

HD is an autosomal dominant disorder with an incidence of 1 

in 10,000 with onset generally in the third to fifth decade of 

life. However, juvenile onset cases have been reported and these 

typically show more severe symptoms and a faster progression 

(Gusella et al., 1993). In addition, juvenile onset HD is 

generally associated with paternal transmission of the disease 

(Telenius et al., 1993). The span of the lethal disease from the 
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onset of symptoms is approximately 20 years. Clinically the 

disorder is characterized by motor disorders (chorea), cognitive 

loss, and personality disorders (Martin and Gusella, 1986) . The 

neuropathology of HD displays selective loss of neurons mainly in 

the caudate nucleus and putamen (Gusella et al., 1993). 

The underlying genetic defect in HD was mapped to chromosome 

4p in 1983 (Gusella et al.). The focus of the following ten years 

of research was to isolate the defective gene with this search 

ending in 1993. Through the use of exon trapping, exons were 

isolated from the HD candidate region at 4pl6.3 and several were 

found to correspond to a transcript called IT15 (HD Collaborative 

Research Group, 1993) . A (CAG)N repeat present in the 5' region 

of this transcript was found to be expanded and unstable in 

disease pedigrees. This repeat falls within the predicted reading 

frame and codes for a polyglutamine tract. The repeat is 

polymorphic in the normal population showing a range of 11 to 34 

repeat units while disease alleles show a range of 38 to 100 

repeat units (HD Collaborative Research Group, 1993). 

Analysis of the HD gene has demonstrated that it is made up 

of 67 exons spread out over 185 kb with the repeat located in exon 

1 (Ambrose et al., 1994) . The gene generates two transcripts of 

13.5 and 10 kb which Ambrose et al. (1994) have reported differ by 

alternative polyadenylation. However, Lin et al. ( 1994) have 

shown by PCR the existence of two alternatively spliced 

transcripts which differ by 1.4 kb and would correspond to a 480 

amino acid region that would be absent in an isoform of the 

protein. The larger protein product is a 3,130 amino acid 
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polypeptide which contains a leucine zipper motif but no other 

simi~arity to any kno·wn genes (Hoogeveen et al., 1993). 

The HD gene is expressed in neuronal cells of the dentate 

gyrus, hippocampus, and cerebellum (Strong et al., 1993) . 

Additionally, Strong et al. (1993) have demonstrated expression in 

a variety of non-neuronal tissues including colon, liver, 

pancreas, and testes. Hoogeveen et al. (1993) have utilized 

immunocytochemistry to demonstrate the presence of the huntingtin 

protein in the cytoplasm of many cell types but with additional 

protein present in the nucleus of neuronal cell .types. 

Furthermore, an interesting caveat to the neuropathology of the 

disorder is the observation by Telenius et al. ( 1994) of somatic 

mosaicism in HD patients, with the highest degree of expansion 

being present in the tissues that are most severely affected. 
/ 

Aside from this observation neither the expression pattern nor the 

subcellular location of the huntingtin protein offer any clue as 

to the molecular pathology of the disease. 

Interestingly, several cases of sporadically occurring HD 

have been reported and appear to arise from expansion of large 

normal alleles in the range of 30 to 38 repeats (Goldberg et al., 

1993; Myers et al., 1993) . It seems that, similar to Fragile X 

syndrome, normal alleles with 35 to 40 repeats may be predisposed 

to expansion and thus constitute a premutation range. Both 

Goldberg et al. ( 1993) and Myers et al. ( 1993) hypothesize that 

cis acting elements on the disease chromosome may contribute to 

instability and the progression to a full HD mutation although the 

disease alleles have been shown to be associated with a number of 
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different haplotypes (MacDonald et al., 1992) Goldberg et al. 

\1993) also reported that all of the sporadic cases studied ir: 

their pedigrees occurred by expansion of a paternal premutation 

indicating sex influence on HD instability. In support of this 

Telenius et al. ( 1994) have shown a high degree of mosaicism in 

sperm from affected males, indicating that expansion occurs during 

spermatogenesis. 

HD being a dominant disorder is expected to result from a 

gain of function mutation and this hypothesis has been supported 

by the observation that a patient with a balanced translocation 

within the HD gene does not result in an HD phenotype (Ambrose et 

al., 1994). Ambrose et al. (1994) have also shown that the 

disease allele is expressed and therefore conclude that the 

mutation confers a new property on the HD transcript or more 

likely the protein. The exact nature of this altered property 

will require further study that should provide characterization of 

proteins that interact with the huntingtin polypeptide. 

3. Spinocerebellar ataxia type 1 (SCAl) 

Spinocerebellar ataxia type 1 is an autosomal dominant 

neurodegenerative disorder that maps to the short arm of 

chromosome 6 (Zoghbi et al., 1988; Bryer et al., 1992). 

Clinically the disorder is characterized by ataxia, 

opthalmoparesis, and motor weakness (Currier et al., 1972). The 

onset of symptoms generally occurs in the third or fourth decade 

of life with a 10 to 20 year progression to death (Zoghbi et al., 
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1938). Juvenile onset cases have been observed and they generally 

are more severe and show a faster progression to death with the 

disease allele usually inherited from an affected father. 

Additionally, anticipation is observed in families with a gradual 

decrease in the age of onset and the severity of symptoms through 

successive generations (Zoghbi et al., 1988). Neuropathological 

analysis indicates selective neuron loss in the cerebellum and 

brain stem with degeneration of the spinocerebellar tracts 

(Greenfield, 1954). There is no biochemical defect known to be 

responsible for the neuronal loss. 

The gene for SCAl was originally mapped to chromosome 6 by 

linkage to the HLA locus (Zoghbi et al., 1988). Further work 

localized the gene to a 1. 2 Mb region flanked by the markers 

D6S274 and D6S89 and this region was cloned into four overlapping 

YAC' s (Banfi et al., 1993) . Knowing the involvement of 

trinucleotide repeats in other disorders with similar 

characteristics to SCAl, Orr et al., ( 1993) screened the four YAC 

clones covering the region with trinucleotide repeat containing 

oligos. This allowed for the cloning of a fragment of the SCAl 

gene which contained a polymorphic (CAG)N repeat that was expanded 

in affected individuals (Orr et al., 1993) . Initial analysis 

indicated that this repeat region was transcribed and Northern 

blot analysis with the cloned fragment detected an -10 kb 

transcript. In addition, Orr et al. (1993)showed that the number 

of repeats on normal chromosomes was in a range of 6 to 39 while 

disease chromosomes have a range of 43 to 81 repeats with a strong 

correlation (r = -0.845) between repeat size and age of onset. 
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The association of juvenile onset SCAl with paternal inheritance 

nas b2en ~nvesti3ated and it has been observed that nearly 70% o~ 

maternal transmissions of the disease allele show no change· in 

repeat size while 63% of paternal transmissions show an increase 

in the number of CAG repeats (Chung et al., 1993). Furthermore, 

Chung et al. (1993) showed by sequence analysis that 98% of normal 

SCAl (CAG) N repeats are interrupted with at least one CAT while 

all expanded alleles are made up of pure (CAG)N repeats. This has 

led to the suggestion that loss of CAT interruptions in normal 

alleles may be a predisposing event to trinucleotide repeat 

expansion in SCAl (Chung et al., 1993). 

The SCAl gene has been isolated and it has been shown to be 

made up of nine exons spanning 450 kb that generates a 10,660 bp 

transcript(Banfi et al., 1994). The first seven exons make up the 

5' untranslated region while the last two contain the coding 

region and a 7,277 bp 3' untranslated region. The predicted 

reading frame generates a 816 amino acid, 87 kDa protein 

designated ataxin-1 (Banfi et al., 1994) . DNA and amino acid 

sequence searches have revealed no significant similarity between 

ataxin-1 and any entries in a number of databases. Presently, 

the cloning of the gene that is defective in SCAl offers little 

hint as to the molecular pathology of the disorder but does offer 

a rapid accurate method for diagnosis. 
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4. Dentatorubral-Pallidoluysian Atrophy (DRPLA) 

DRPLA is an autosomal dominant neurodegenerative disorder 

that maps to the short arm of chromosome 12 (Koide et al., 1994; 

Nagafuchi et al., 1994) . The clinical symptoms of DRPLA show a 

high degree of variability including cerebellar ataxia, movement 

disorders, and dementia (Naito et al., 1982). Additionally, 

myoclonus epilepsy is also observed in some cases, usually those 

of juvenile onset (Takahashi et al., 1988) Neuropathologic 

analysis revealed degeneration of the dentatorubral and 

pallidoluysian systems in all cases with heterogeneously occurring 

degeneration of the striatum and cerebellar cortex observed 

(Takahashi et al., 1988). DRPLA is rare in populations of 

European descent yet shows increased incidence in the Japanese 

population. Additionally, DRPLA has recently been reported in an 

African-American family where it was originally named Haw River 

Syndrome, after the region of North Carolina where the affected 

family lives (Burke et al., 1994). Similar to HD and SCAl there 

is no known biochemical defect associated with DRPLA. 

The gene that contains an expanded (CAG)N repeat that causes 

DRPLA was originally cloned by Li et al. ( 1993) by screening a 

cDNA library with poly CAG containing oligonucleotides. Li and 

coworkers 

containing 

(1993) 

cDNA's, 

isolated a number of trinucleotide repeat 

mapped them to human chromosomes, and 

investigated the polymorphic nature of several of the clones. 

Both Koide et al. (1994) and Nagafuchi et al. (1994) investigated 

the possibility of trinucleotide repeat expansion being the cause 
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of DRPLA by examining a number of the cDNA's isolated by Li et al. 

( 19 9j) . Both groups found that the (CAG) N repeat located within 

clone CTG-B37 is polymorphic in the population with a range of 7 

to 25 repeats (Koide et al., 1994; Nagafuchi et al., 1994) . 

Affected patients have one allele in the normal range and a single 

expanded allele which is in the range of 49 to 75 repeats (Koide 

et al., 1994; Nagafuchi et al., 1994). Furthermore, Koide et al. 

(1994) have shown a correlation between age of onset and number of 

repeats (r = -0.7). Similar to HD and SCAl preliminary analysis 

has shown that paternal inheritance of an expanded allele results 

in an increased expansion while maternal inheritance shows a 

decrease in the number of repeats (Koide et al., 1994). 

Presently, analysis of the DRPLA gene is incomplete. 

Nagafuchi et al. (1994) have stated that the DRPLA gene produces a 

4. 5 kb transcript although the tissue distribution of the gene 

expression is unpublished. Furthermore, there is no information 

on the gene structure or the predicted protein product. Perhaps 

this information will assist in the elucidation of the molecular 

mechanism of neuronal degeneration in DRPLA. 

Overall, it is the involvement of (CAG)N sequences in these 

late onset neurological diseases that has led to the focus of this 

work being the cloning of cDNA fragments that contain this repeat. 

It is hypothesized that the novel clones described here will 

provide useful reagents for the examination of the molecular 

defect in other late onset neurological disorders. 
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0 . Other Disorders of Trinucleotide Repeat Expansion 

1. Myotonic Dystrophy 

Myotonic dystrophy is an autosomal dominant disease that maps 

to the long arm of chromosome 19 (Whitehead et al., 1982; Brook et 

al., 1992). The disorder is the most common form of adult 

muscular dystrophy and is clinically characterized by myotonia and 

muscle weakness and wasting. In addition patients often exhibit a 

variety of other symptoms including cardiac conduction effects, 

smooth muscle defects, hypersomnia, cataracts, abnormal glucose 

response, and, in males, premature balding and testicular atrophy 

(Harper, 1989) . The disorder shows a high degree of clinical 

variability both within and between families which has led to the 

classification of three different subgroups of affected patients. 

The first group is the mildest form that is observed in middle or 

old age and is characterized by cataract with little muscle 

defect. The classic form of the disease is characterized by 

myotonia and muscle weakness and generally has an age of onset in 

adolescence or early adulthood. The most severe form of the 

disease occurs congenitally and is associated with mental 

retardation (Harper and Dyken, 

pedigree analysis by Fleischer 

anticipation in DM. This is 

1972). Additionally, early 

( 1918) led to the hypothesis of 

a progressive worsening of the 

disease phenotype through successive generations. Although this 

hypothesis was usually rebutted by ascertainment bias, it was 

eventually shown to be true (Howeler et al., 1989). 
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The gene defective in DM was mapped to chromosome 19 in 1982 

(Wn.i.L..eht:::ad et al.) and further genetic and physical refinernern:s 

(Brook et al., 1992 and references therein) led to the cloning of 

a region of DNA that contained an unstable (CTG) N trinucleotide 

repeat that was expanded in affected patients (Brook et al., 1992; 

Fu et al., 1992; Harley et al., 1992; Mahadevan et al., 1992) . 

Analysis of the trinucleotide repeat in the normal population by 

PCR showed it to be polymorphic with a range of 5 to 30 repeats 

with over 50% of the alleles being 5 or 13 repeats (Brook et al., 

1992; Fu et al., 1992; Mahadevan et al., 1992). Analysis of 

affected patients invariably showed one allele within the normal 

range and a second allele either missing, due to the inability of 

the PCR to amplify across the expanded repeat, or alleles greater 

than 50 repeats (Brook et al., 1992; Fu et al., 1992) . 

Furthermore, analysis of affected families showed that the size of 

the expansion increased through successive generations and seemed 

to correlate with the age of onset and clinical severity (Brook et 

al., 1992; Fu et al., 1992; Tsilfidis et al., 1992). This 

observation supplies a molecular explanation to the anticipation 

previously observed in DM. Furthermore, it has been shown that a 

disease allele can expand either during paternal or maternal 

transmission yet the large expansions that lead to congenital DM 

appear to come exclusively from maternal transmission (Tsilfidis 

et al., 1992; Lavedan et al., 1993) 

The cloning of the DNA region containing the unstable repeat 

in DM led to the observation that this repeat was present within a 

transcriptional unit and detects a 3. 3 kb transcript on Northern 
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blots (Brook et al., 1992; Fu et al., 1992). The cDNA for the DM 

gene was subsequently cloned and sequenced and found by sequence 

comparison to encode a putative protein kinase named myotonin 

protein kinase (M-PK) (Brook et al., 1992; Fu et al., 1992) . 

Also, sequence analysis revealed that the (CTG)N repeat was 

located within the 3' UTR of the M-PK cDNA (Brook et al., 1992; Fu 

et al., 1992). Preliminary analysis of the M-PK protein indicates 

that it phosphorylates tyrosine residues but lack of critical 

experimental controls leave the exact function of M-PK an 

unresolved issue at this point (Etongue-Mayer et al., 1994). 

Furthermore, this is a surprising result considering sequence 

comparison indicated that M-PK is a member of the serine/threonine 

family of kinases (Brook et al., 1992). 

The molecular pathology of DM is difficult to understand as 

it is hypothesized a dosage effect is responsible for the disease 

phenotype and that alterations in expression levels of the 

expanded M-PK allele are responsible for the disease (Fu et al., 

1993; Novelli et al., 1993; Sabouri et al., 1993) . However, two 

groups report that the expansion of the (CTG) N repeat in the 3' 

UTR of the M-PK gene results in a specific decrease in the steady 

state level of M-PK mRNA transcribed from the disease allele in 

adult tissues(Fu et al., 1993; Novelli et al., 1993) while a third 

group has shown that the expansion leads to an increase in the 

steady state M-PK mRNA levels in congenital patients (Sabouri et 

al., 1993). It is hypothesized that differing mechanisms are in 

operation in congenital and classic adult onset DM (Sabouri et 

al., 1993). However, in further support of the loss of expression 



P' 

27 

model, Carango et al. ( 1994) have shown that a DM cell line that 

has had the normal M-PK allele deleted has no detectable 

expression from the disease allele. Additionally, Carango et al. 

( 19 94) have shown that the M- PK transcript appears to accumulate 

in an unprocessed form indicating that the defect may lead to a 

reduction in processed transcript levels. In regards to a 

possible mechanism for the loss of expression, Shaw et al. ( 1993) 

have shown that there is no detectable alteration in methylation 

status at the DM locus while Wang et al. (1994) have demonstrated 

that oligos of ( CTG) N show an increased efficiency in nucleosome 

assembly as the repeat size is increased. Wang et al. (1994) 

hypothesize that increased nucleosome assembly at the 3' region 

of the DM locus leads to transcriptional repression. The validity 

of this hypothesis will require further investigation. 

Interestingly, DM is the only one of the trinucleotide repeat 

expansion disorders where contraction of expanded alleles has been 

documented (Ashizawa et al., 1994). Brunner et al. (1993) 

reported two cases where by haplotype analysis offspring had 

inherited an abnormal chromosome from an affected parent but the 

( CTG) N repeat had contracted into the normal range. The authors 

investigated possible germ line mosaicism of the affected parents 

to explain the contraction however they found no repeats in the 

size range that were observed in the offspring. The authors 

discussed a possible gene conversion mechanism although one of the 

cases did not show the same number of repeats on the abnormal 

chromosome as on her father's normal chromosome. Indicating a 

possible direct reversal of the expansion mutation. Additionally, 
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O'Hoy et al. (1993) reported a case where haplotype analysis 

indicated an affected father passed an abnormal chromosome 19 on 

to his daughter yet analysis of the (CTG) N repeat size in the 

daughter showed only 13 repeats on the paternally derived 

chromosome. More detailed haplotype analysis revealed two tracts 

of DNA over a 7.2 kb region which were derived from normal 

paternal chromosome yet interrupted with two markers which are on 

the paternal disease chromosome. The authors proposed a 

discontinuous gene conversion event although they did not rule out 

reciprocal crossover. These contraction events are an interesting 

phenomena that to date have only been observed and DM and warrant 

further investigation. 

2. Fragile X syndrome A (FRAXA) 

Fragile X syndrome A (FRAXA) is an X-linked dominant disorder 

with incomplete penetrance that is the most common form of 

familial mental retardation (Gustavson et al., 1986) . 

Additionally, macroorchidism and a distinctive facies are often 

observed in affected males (Nussbaum and Ledbetter, 1990). It has 

been observed that 30% of carrier females show symptoms of mental 

retardation while 20% of males who carry a Fragile X chromosome 

are phenotypically normal (Sherman et al., 1984). Members of this 

group are referred to as non-transmitting males and their 

daughters who receive the disease allele are unaffected but 

grandsons who subsequently inherit the allele are at high risk 

(Sherman et al., 1984) The disease derives its name from the 
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observation that a variable percentage of cells from affected 

patients cytogenetically show a gap at map position Xq27 .3 in 

metaphase spreads under conditions that alter deoxypyrimidine 

pools (Krawczun et al., 1985; Sutherland and Hecht, 1985). 

The gene defective in FRAXA has since been mapped to this 

same region and subsequently this region was cloned and found to 

contain an unstable ( CGG) N repeat that was expanded in affected 

and males and carrier females (Dietrich et al., 1991; Fu et al., 

1991; Kremer et al., 1991; Oberle et al., 1991; Verkerk et al., 

1991) . This repeat was shown to be polymorphic in the normal 

population with a range of 6 to 54 repeats while affected 

individuals show greater than 200 repeats. Interestingly, repeat 

sizes from approximately 50 to 200 do not result in the Fragile X 

phenotype yet have a mutation rate close to one and are thus at 

high risk to expand and pass on the disorder. This range of 

repeats is referred to as a premutation and it explains the 

observation of the normal-transmitting male. Dietrich et al. 

(1991) also showed that a CpG island 250 bp distal to the (CGG)N 

repeat was methylated on chromosomes which contained an expanded 

allele. It was then demonstrated that the (CGG)N repeat in the 

Fragile X region was contained within a transcribed sequence and 

subsequent cloning of the cDNA (FMR-1) has shown that the (CGG)N 

repeat is located in the first exon of the FMR-1 gene and 

methylation of the upstream CpG island leads to a lack of 

expression of FMR-1 (Oberle et al., 1991; Pieretti et al., 1991). 

Although initially unclear it is now known that the (CGG)N repeat 

is contained within the 5' untranslated region of the FMR-1 
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transcript (Ashley et al., 1993a) . Interestingly, analysis of 

aisc0rdanL mono2y90Lic twins has shown that the expansion of the 

repeat appears to occur postzygotically (Devys et al., 1992; 

Kruyer et al., 1994) . Wohrle et al. (1993) offered further 

support of this observation by demonstrating that the repeat size 

in clonal cell lines from FRAXA patients are mitotically stable 

indicating that the mitotic mosaicism of patients must be 

generated early in development. Additionally, Reyniers et al. 

(1993) have shown that FRAXA males with a full mutation in 

lymphocytes only have a premutation in sperm samples. 

Sequence analysis of the FMR-1 cDNA and putative reading 

frame has revealed that the protein contains three separate 

consensus RNA binding domains, an RGG box and two KH boxes (Ashley 

et al., 1993b; Siomi et al., 1993). Functional analysis of in 

vitro translated protein has revealed that the protein does bind 

RNA in a sequence specific manner (Ashley et al., 1993b; Siomi et 

al., 1993) and binds specifically to its own transcript and a 

subset of mRNA's generated from a human brain cDNA library (Ashley 

et al., 1993b). Additionally, Ashley et al. (1993b) conducted 

stoichiometry experiments and showed that a single FMR-1 protein 

binds two RNA molecules. Further support of FMR-1 acting as a RNA 

binding protein is given by the observation that a previously 

described point mutation in the FMR-1 gene that resulted in a 

severe mental retardation (DeBoulle et al., 1993) maps to a 

conserved isoleucine in the second KH domain of the FMR-1 protein 

(Siomi et al., 1993) . 
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Analysis of the expression pattern of FMR-1 has demonstrated 

::.:.c.::. t:he ge:-:e is expressed at its higr1est levels in brain ard 

testes with lower amounts present in a variety of tissues 

including, heart, lung, placenta, liver, and kidney (Hinds et al., 

1993). Additionally, Hinds et al. showed by in situ hybridization 

that FMR-1 is highly expressed early in embryonic development and 

decreases in later stages while becoming more tissue restricted. 

Further analysis on 25 week human fetal brain showed universal 

expression of FMR-1 with the nucleus basalis magnocellularis and 

the hippocampus showing the highest levels (Abitbol et al., 1993). 

Abitbol et al. ( 1993) also demonstrated that in all regions of 

brain examined the labeling appeared to be specific to neural 

cells. Further work by Ashley et al. (1993a) has demonstrated 

that in mouse and human the FMR-1 gene utilizes alternative 

splicing to generate 12 different transcripts. Six of these 

transcripts are missing exon 14 which results in a one base pair 

frameshift that would generate a novel C-terminus. However, 

Western blot analysis by Siami et al. ( 1993) has detected only one 

isoform of the protein which was approximately 80 kDa, a size that 

is larger than any of the predicted isoforms. 

protein migrates anomalously in SDS-PAGE gels. 

Mechanistically, it now appears that 

It may be that the 

a predisposing 

chromosome that carries an old unstable haplotype is able to 

expand to a premutation (Richards et al., 1992; Oudet et al., 

1993; Smits et al., 1993) . Later, upon expansion to a full 

mutation the upstream CpG island becomes methylated and down 

regulates the expression of FMR-1. The elimination of expression 
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then results in mental retardation. This hypothesis is supported 

by c.ne observat.ion of patients with deletions of the FMR-1 genP 

(Wohrle et al., 1992; Meijer et al., 1994) and a single patient 

with a point mutation (DeBoulle et al., 1993) showing typical 

mental retardation of the syndrome. Also patients have been 

documented who have the full expansion yet by isoschizomeric 

analysis show only partial methylation of the upstream CpG island 

and are consequently phenotypically normal (McConkie-Russel et 

al., 1993; Kruyer et al., 1994; Rousseau et al., 1994) . 

Presently, the molecular pathology of FRAXA is the best understood 

of all of the diseases of trinucleotide repeat expansion and a 

complete understanding of the function of the FMR-1 protein will 

eventually lead to deciphering the connection between the 

molecular defect and the phenotype of mental retardation. 

3. Fragile X Syndrome E (FRAXE) 

Fragile X syndrome E is also characterized by mental 

retardation although it appears to be milder in form compared to 

FRAXA (Knight et al., 1993) . It was originally described as a 

separate fragile site that was telomeric to the FRAXA site at Xq28 

(Sutherland and Baker, 1992). Additionally, a number of patients 

were described who showed a FRAXA phenotype yet these patients did 

not demonstrate an expanded (CGG)N repeat in the FMR-1 gene 

(Nakahori et al., 1991; Sutherland and Baker, 1992; Flynn et al., 

1993) . This work culminated in the cloning of a region of DNA 
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from Xq28 which carried an unstable (GCC) N that was expanded in 

FRAXE patients and carriers (Knight et al., 1993). The 

repeat in FRAXE was shown to be polymorphic in the normal 

population with a range of 6 to 25 repeats (Knight et al., 1993) . 

By Southern blot analysis FRAXE affected males show increases in 

fragment size of 650 to 2200 bp corresponding to repeat sizes of 

200 to over 700 while carrier females showed expansion in the 

range of 100 to 150 repeats (Knight et al., 1993). Additionally, 

Knight et al. (1993) showed that a CpG island immediately proximal 

to the unstable (GCC) N repeat is methylated in FRAXE affected 

males. The molecular defect in FRAXE appears to be very similar 

to FRAXA yet to date no cDNA from the region has been published 

raising the question is the (GCC)N repeat in FRAXE located within 

a transcriptional unit? It would seem likely that the (GCC) N 

repeat is located within a transcribed gene as the presence of the 

nearby CpG island would suggest a possible promoter region. Also, 

it would seem likely that the (GCC) N repeat is present in an 

untranslated region of this yet to be described gene given the 

size of the expansions observed in FRAXE. Confirmation of this 

speculation will have to await the cloning of a cDNA from this 

region. 
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CHAPTER III 

MATERIALS AND METHODS 

A. Materials 

Enzymes and chemicals were purchased from Ambion (Austin, TX), 

Amersham (Arlington Heights, IL), BRL (Gaithersburg, MD), Epicentre 

(Madison, WI), New England BioLabs (Beverly, MA), Pharmacia 

(Piscataway, NJ), Promega (Madison, WI), Sigma (St. Louis, MO), and 

Stratagene (La Jolla, CA) . Radioisotopes [Cl-
32P] dCTP (3 000 Ci/mmol) 

and [Cl-
35

S] dATP (3000 Ci/mmol) were purchased from Amersham. 

Oligonucleotides were obtained from the Wells Center Oligonucleotide 

Facility (Riley Hospital, Indiana University Medical Center, 

Indianapolis,IN). Nitrocellulose membranes were purchased from 

Schleicher and Schuell (Keene, NH). Multiple Tissue Northern Blots 

were from Clontech (Palo Alto, CA) and the human/rodent somatic cell 

hybrid panel was from Oncor (Gaithersburg, MD). 

B. RNA Extraction 

Total cellular RNA was isolated using a modification of a 

procedure previously described (Chomcyznski and Sacchi, 1987). 

Samples were homogenized in 500 µl of 4 M guanidinium thiocyanate 
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(GIT) buffer (4 M guanidine isothiocyanate, 25 mM sodium citrate, 

SdI i-cosyl and 0.1 M 2-mercaptoethanol) The 

homogenate was extracted by the addition of the following, 50 µ1 2 

M sodium acetate (pH 4. 0), 500 µl phenol, and 100 µl 

chloroform:isoamyl alcohol (49:1), mixed, and incubated on ice for 

15 minutes. The sample was centrifuged at 10,000 x g for 15 

minutes at 4 °C. The aqueous phase was transferred to a new tube 

and the nucleic acid precipitated by the addition of an equal 

volume of isopropanol and incubated on dry ice for 30 minutes. 

The RNA was pelleted by centrifugation at 10,000 x g for 15 

minutes at 4 °C. The isopropanol was aspirated and the resulting 

pellet resuspended in 100 µl (dependent on size of pellet) of GIT. 

The pellet was fully dissolved by heating at 65°C and occasionally 

mixing. RNA was reprecipitated by addition of 0 .1 volume 3 M 

sodium acetate (pH 5.2) and an equal volume of isopropanol, 

followed by incubation on dry ice for 15 minutes. The RNA was 

pelleted by centrifugation at 10,000 x g for 15 minutes. This 

pellet was washed with 500 µl 70% ethanol, dried at 65°C for 2 

minutes, and resuspended in 200 µl of diethylpyrocarbonate (DEPC, 

0.2%) treated water. Again the pellet was dissolved by heating at 

65°C. The final RNA sample was stored at -80°C until needed. 

C. 3' RACE 

3' RACE was carried out as illustrated in Figure 2. Two 

separate experiments were carried out using oligos that contained 

4 or 8 repeats of CAG, respectively. Reverse transcription was 

carried out by annealing 3.0 µg of total RNA to 500 ng of 
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Figure 2: 3' RACE Methodology. The diagram illustrates the 
methodology utilized for the 3' RACE technique. In step 1 total 
RNA is reverse transcribed with the adapter primer (AP) . An 

aliquot of the reverse transcription reaction is then used as 
template in a thermal amplification reaction utilizing the 
universal amplification primer (UAP) and the CAG primer. The UAP 
contains sequence that is identical to the 5' portion of the AP 
primer and allows for amplification from the 3' end of an mRNA. 
In the work described here two different 3' RACE protocols were 
carried out utilizing a CAG primer that contained 4 or 8 repeats 
of CAG. In step 3 the reaction products are treated with Uracil 
DNA glycosylase to create 12 bp sticky ends and the products are 
subsequently cloned into the vector pAMPl (step 4). 
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oligonucleotide of the sequence [5'-GGC CAC GCG TCG ACT AGT 

- .~:'CT'\ ~' 7 A...._ , l. I 16 - _,, J • This reaction was incubated for l hour at 42°C in the 

presence of 10 mM Tris pH 8 . 0 , 0. 5 mM deoxynucleotide 

triphosphates, 20 rnM dithiothrietol, and 10 units Superscript II 

reverse transcriptase (BRL). Following reverse transcription, 5.0 

µl of the RT reaction was added to a thermal amplification 

reaction utilizing 10 pmol of each of the primers [5'-(CAU) 4 (CAG)N-

3'] (N = 4 or 8) and [5' - (CUA) 4GGC CAC GCG TCG ACT AGT AC-3'] in 

the presence of 50 mM Tris-pH 8.0, 20 mM NH4SO4 , 1.0 mM MgC1 2 , 0.1 

mM dNTP' s, and 1.0 unit of Tfl thermostable polymerase 

(Epicentre). The 5' oligo contained the CAG repeats and amplified 

from this sequence within the cDNA population and the 3' oligo was 

a nested primer complimentary to the oligo used for reverse 

transcription. Forty cycles of amplification were carried out with 

a 30 second denaturation at 95°C, a 1 minute annealing at 65°C, and 

a 2 minute extension at 72°C. The reaction was completed by a 

final extension at 72°C for 10 minutes. An aliquot of the reaction 

products were analyzed by agarose gel electrophoresis and 

visualized by ethidium bromide staining. The remaining portion of 

the reaction products were subjected to Glassmax purification 

(BRL) and subsequently batch subcloned using the Uracil DNA 

Glycosylase (UDG) cloning method (BRL). 

D. Uracil DNA Glycosylase Subcloning 

Uracil DNA glycosylase (UDG) cloning was carried out by 

mixing 50-100 ng of the PCR product, 25 ng of the pAMP 1 vector 

DNA (25 ng/µl), and 1 U of UDG in a final volume of 20 µl. This 
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reaction was incubated at 37°C for 30 minutes. The entire UDG 

reacLion was used for transformation. 

E. Transformation of Competent Bacteria Cells 

Transformation was carried out utilizing commercially 

available competent cells as specified by the manufacturers 

directions (HBl0l, BRL; JM109, Promega) . Briefly, nucleic acids 

were mixed with 50 µl of competent cells and incubated for 1 hour 

on ice. The transformation was heat shocked for 20 seconds at 37°C 

followed by chilling on ice for 2 minutes. The transformation was 

then incubated for 1 hour in an environmental shaker at 37°C 

followed by plating on an LB-agar plate containing the appropriate 

antibiotic. Transformants were analyzed for the presence of 

recombinant plasmid by PCR or restriction digestion. 

F. Preparation of Frozen Sterile Bacterial Cultures 

A single colony of cells was aseptically transferred to a 

tube containing 2.0 ml of LB medium supplemented with the 

appropriate antibiotic. This culture was grown overnight at 37°C 

in an environmental shaker. Cells (800 µl) were placed in a 

sterile tube and mixed with 200 µl of sterile glycerol. The cells 

were frozen at -70°C and stored indefinitely. Bacteria were 

recovered by streaking a sample of the frozen stock onto the 

appropriate LB agar-antibiotic plate. 
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G. Thermal Cycle Amplification of Bacterial Colonies 

PCR react:o~s were carried out with a scrape of a bacterial 

colony which was heated at 95°C for 10 minutes in lX reaction 

buffer(50 rnM Tris pH 8.0, 20 rnM NH4 S04 , 1.0 rnM MgC1 2 ) to lyse the 

cells. 10 pmol of each oligonucleotide, 200 µM of each 

deoxynucleotide triphosphate were added in a final volume of 99 µ 

1. Reactions were brought to 72°C and 1.0 U of Tfl DNA polymerase 

(Epicentre) was added. The reaction mixture was subjected to 25 

cycles of 95°C for 30 seconds; 55°C for 1 minute; 72°C for 2 

minutes, and a final 72°C elongation period for 10 minutes. Five 

microliters of the reaction was analyzed by fractionation in a 

1.0% agarose gel containing 0.5 µg/ml ethidium bromide and lX TBE 

buffer (20X TBE = 1.78 M Tris-HCl; 1.78 M boric acid; 4 rnM EDTA, 

pH 8.0). Products were visualized by UV transillumination. 

H. Plasmid DNA Purification 

Plasmid DNA was isolated using the alkaline lysis technique 

as described by Maniatis et al. (1989). A single bacterial colony 

was inoculated into the appropriate antibiotic containing LB 

media. The volume of the culture varied based on the amount of 

plasmid needed. The culture was grown overnight in an 

environmental shaker at 3 7°C. 1. 5 ml of overnight culture was 

transferred to a microcentrifuge tube and the bacteria pelleted by 

centrifugation at 10,000 x g for 30 seconds. The media was 

aspirated off and the bacteria resuspended in 250 µl of ice-cold 

Pl solution (50 rnM Tris-HCl, pH 8.0, 10 rnM EDTA, 400 µg/ml RNAse 

A; 250 µl of Pl for each 1.5 ml of bacteria culture). Once the 
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pellet was fully resuspended, 250 µl of P2 solution (200 mM NaOH, 

~. CJ% SDS) was added, the tube inverted several times, and the 

mixture allowed to incubate at room temperature for 5 minutes. 

Following incubation at room temperature, 250 µl of P3 (2. 55 M 

potassium acetate, pH 4. 8) was added and mixed thoroughly. The 

bacterial cell lysate was centrifuged at 10,000 x g for 15 minutes 

at 4°C. The resulting supernatant was transferred to a new tu.be 

without disrupting the precipitant formed. Columns were utilized 

to isolate highly purified plasmid DNA (Wizard Plasmid Prep, 

Promega). Otherwise, DNA was precipitated from the supernatant by 

the addition of 0.6 volumes of isopropanol. The precipitate was 

incubated at -20°C for 30 minutes and plasmid DNA pelleted by 

centrifugation at 10,000 x g for 15 minutes at 4°C. The 

supernatant was aspirated off and the pellet washed with 70% 

ethanol. Plasmid was dried at 65°C for 5 minutes and the DNA 

dissolved in 50 µl of TE (10 mM Tris-HCl, pH 7.5, 0.1 mM EDTA). 

The plasmid DNA solution was placed at 4°C for short-term storage 

or frozen at -20°C for long-term storage. 

I. Restriction Digestion and Gel Purification of DNA 

Fragments 

cDNA fragments were isolated by digesting approximately 10 µg 

of plasmid DNA with 20 U of EcoRI and 20 U of BamHl in appropriate 

enzyme buffer as described by the manufacturer (BRL) at 37°C for 4 

hours. Reactions were terminated by heating at 65°C for 10 minutes. 

Fragments were separated from vector by agarose gel 

electrophoresis and excised form the gel. This gel slice was 
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blotted dry on Whatman 3MM paper and transferred to a punctured 

s::e'-ile O. 7 ml microcentrifuge tube containing 2-3 mm of sterile 

glass wool. The 0.7 ml tube was placed into a 1.7 ml 

microcentrifuge tube and centrifuged at 10,000 x g for 10 minutes. 

The eluant containing the DNA fragment was then analyzed by 

agarose gel electrophoresis and an approximate concentration 

determined. Fragments were used in random priming labeling 

reactions for use in hybridization. 

J. Preparation of Double Stranded DNA Sequencing Templates 

Double stranded DNA sequencing templates were purified by the 

method of Majumdar et al. ( 1993) . Bacteria colonies were grown 

overnight in LB containing appropriate antibiotics. 1. 0 ml of 

culture was transferred to a 1. 5 ml microcentrifuge and pelleted 

by centrifugation at 12,000 x g for 30 seconds. Pellets were 

vortexed for 10 seconds followed by resuspension in 500 µl lX STET 

buffer ( 8% sucrose, 50 mM Tris-HCl (pH 8. 0) , 50 mM EDTA, and 5% 

Triton X-100). Lysozyme was added to a final concentration of 0.1 

µg/µl and the samples incubated at room temperature for 2 minutes 

followed by heating at 100°C for 1 minute. Tubes were then 

centrifuged at 12,000 x g for 10 minutes at 4°C. Pellets were 

removed using a sterile toothpick and the supernatant was brought 

up to 500 µl total volume with lX STET buffer. 10 µl of 10 N NaOH 

was added to each sample followed by incubation at 37°C for 10 

minutes. Following this incubation 400 µl of isopropanol was added 

and samples incubated 10 minutes at -20°C. Denatured plasmid was 

pelleted by centrifugation at 12,000 x g for 10 minutes at 4°C. 
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Pellets were washed with 70% ethanol, dried by heating at 65°C, and 

resuspended in 16 µl of sterile H2 0. Seven microliters of plasmid 

was used directly in annealing reactions for DNA sequencing. 

K. Preparation of Single Stranded DNA Sequencing Templates 

Single stranded DNA sequencing templates were prepared by the 

method of Russel et al. ( 1986) . Bacteria cells (HBlOl F+ or JM109 

F+) containing pBKS plasmid with fragments of interest cloned into 

the EcoRI site were patched onto LB-Agar plates containing 

appropriate antibiotics and allowed to grow overnight at 37°C. A 

portion of each patch was used to inoculate 1. 5 ml of 2X YT+G 

media (10 g yeast extract, 16 g tryptone, and 5 g NaCl per liter 

9 10 plus 0.1% glucose) and R408 helper phage were added (5 X 10 -10 ) . 

Cultures were allowed to grow 4-5 hours with vigorous shaking at 

37°C. Following the growth period cultures were transferred to 1.5 

ml microcentrifuge tubes and the bacteria pelleted by 

centrifugation at 12,000 x g for 5 minutes at room temperature. 

Phage particles were precipitated by mixing the supernatant with 

200 µl 2.5 M NaCl, 20% PEG-6000 and incubating 15 minutes at room 

temperature. Phage were pelleted by centrifugation at 12,000 x g 

for 10 minutes at room temperature. The supernatant was aspirated 

and samples were centrifuged and aspirated a second time to remove 

any remaining PEG-6000. Phage pellets were resuspended in 100 µl 

10 mM Tris-HCl (pH 8.0), 2 mM EDTA and extracted with 50 µl Tris 

buffered phenol. The aqueous phase was mixed with 250 µl of a 

25: 1 mixture of ethanol: 3M sodium acetate and incubated for 15 

minutes in a dry ice/ethanol bath. Single stranded DNA was 
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pelleted by centrifugation at 12,000 X g for 10 minutes at room 

"e:r,pe:ca'::'"'re. The DNA was washed with 70% ethanol dried hy 

heating at 65°C, and resuspended in 20 µl of TE (10 mM Tris-HCl -(pH 

8.0), 0.1 mM EDTA). 

gel electrophoresis. 

L. DNA Sequencing 

Each sample (2.0 µ1) was analyzed by agarose 

Sequence analysis of purified recombinant plasmid DNA or 

single stranded DNA was performed using Sequenase 2. 0 (USB) . of 

Single stranded DNA (1.0 µg) or double stranded template (5.0 µg) 

was annealed with 1 pmol of sequencing primer in buffer containing 

40 mM Tris-HCl, pH 7.5, 20 mM MgC1 2 , and 50 mM NaCl by heating for 

2 minutes at 70°C followed by a 3 0 minute incubation at 3 7°C. A 

labeling reaction was then carried out by adding unlabeled 

nucleotides (dCTP, dGTP, dTTP), 10 µCi of a-35S-dATP, and 

Sequenase 2.0 polymerase to the annealing reaction. Labe 1 ing was 

carried out for 3 minutes at room temperature followed by addition 

of equal amounts of the labeling reaction to four termination 

tubes which contained all four dNTP's and one ddNTP, respectively. 

Termination reactions were carried out for 5 minutes at 37°C. 

Reactions were stopped by the addition 95% formamide, 20 mM EDTA, 

0. 05% bromophenol blue, 0. 05% xylene cyanol. Reaction products 

were heated to 75°C and separated on 6% acrylamide, 7. O M Urea 

sequencing gels. 

Sequencing gels were poured by mixing 50 ml of sequencing gel 

matrix [6% polyacrylamide (19:1 acrylamide:bis),7.55 M Urea, lX 

Sequencing TBE (0.1 M Tris-HCl, 83 mM boric acid, 1 mM EDTA, pH 
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8.3)] 120 µl of 25% APS and 35 µl of TEMED. This mixture was 

poured utilizing a 60 ml syringe and the plates clamped. The gel 

was allowed to polymerize overnight. Electrophoresis of the 

sequencing reactions was carried out at 40 watts constant power in 

lX sequencing TBE. Following electrophoresis sequencing gels were 

fixed in 10% methanol, 10% acetic acid for 20 minutes, transferred 

to Whatman 3MM paper and dried at 80°C for 1.0 to 1.5 hours. 

M. Computer Analysis of DNA Sequences 

Computer analysis of DNA sequences was carried using several 

different application programs. Sequences were entered onto the 

Indiana University Sunflower system utilizing the GCG package. 

GenBank searches were carried out using the BLAST search program 

(Altschul et al., 1988). Personal computer analysis was conducted 

utilizing the software programs DNAsis (Hitachi Software), 

Generunner (Hastings Software), and Prosis (Hitachi Software). 

N. Labeling Double-Stranded DNA Fragments with Random 

Hexamers 

Radioactively labeled double stranded DNA molecules, which 

were used as hybridization probes, were labeled to high specific 

activity with [a- 32 P]dCTP (Amersham) utilizing a Decaprime II kit 

(Ambion). The kit utilizes a modification of the original random 

priming method (Feinberg and Vogelstein, 1983). Approximately 25 

ng of DNA template in 11.5 µl of sterile water was mixed with 2.5 

µl of a l0X random decamer solution in a microcentrifuge tube and 

denatured by heating at 100°C for 3 minutes. The tube was rapidly 
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chilled on ice for 2 minutes. The labeling reaction was prepared 

by adding 5 µl of SX labeling buffer, 5 µl a-
32

P dCTP !50 µCi, 

3000 Ci/mmol), and 1 µl of exo Klenow enzyme in a final volume· of 

25 µl to the denatured template. The labeling reaction was gently 

mixed and allowed to incubate at 3 7°C for 10-15 minutes. The 

reaction was terminated by the addition of 1 µl of 0.5 M EDTA, pH 

8. O and the tube heated to 100°C for 3 minutes. The tube was 

chilled on ice for 3 minutes and subjected to gel filtration 

chromatography. Sephadex G-50 solution (40 mg/ml) was autoclaved 

and brought to a final concentration of 20 mM NaOH, 1 mM EDTA 

solution. The G-50 spin column was constructed by adding G-50 

Sephadex to a 1 ml syringe that had been plugged with sterile 

glass wool. The Sephadex was packed by centrifugation at 1000 x g 

for 5 minutes. The denatured, labeled probe was added to the 

column, spun at 1000 x g for 5 minutes, and collected. 

Percent incorporation was determined by comparing the amount 

of radioactivity left in the column to the radioactivity 

collected. Specific activity in dpm/µg was calculated by the 

following computation: (starting label, 50 µCi)x(fraction of label 

incorporated, 0.5 for 50%)x(2.2 x 10 6 dpm/µCi)x(40, if 25 ng of 

DNA is being labeled). 

0. Hybridizations 

Blots were prehybridized for at least 1 hour at 42°C with 50% 

formamide, 5X Denhardt's solution, 1% sodium dodecyl sulfate 

(SDS), 1 M NaCl, 10 mM NaPO4, pH 6.5, 0.1% pyrophosphate, and 250 

µg/ml salmon sperm DNA (heat denatured by boiling 10 minutes) . 
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Radioactively labeled cDNA was added to the prehybridization 

solution and allowed to hybridize 16 to 24 hours at 42°C. Blots 

were washed three times for 20 minutes each in 0.lX SSC, 0.5% SDS 

at 65°C. Following washing the blots were wrapped in Saran wrap 

and autoradiographed by exposure to Hyperfilm MP (Amersham) using 

intensifying screens at -80°C. 

P. Screening a Agtll cDNA Library with Radioactively 

labeled DNA Probes 

5 Approximately 4 x 10 plaques were screened by plating 5 x 

10 4 pfu/150 mm plate. Plating bacteria were prepared by 

inoculating a single Yl090 bacterial colony into 50 ml of LB 

medium, supplemented with 0.2% maltose and 10 rnM MgSO4 in a 250 ml 

flask and growing overnight in an environmental shaker at 3 7°C. 

Infections were conducted by mixing 100 µl of the plating bacteria 

(10 8 cells) with 50,000 pfu (as determined by titer experiments) 

from a Jurkat Agtll cDNA library (Clontech) and incubating for 20 

minutes at 37°C. Quickly, 9 ml (for 150 mm plates, 3 ml for 82 mm 

plates) of prewarmed (42°C) LB soft agarose (LB media + 0.7% 

agarose) was added to the infection sample and poured onto 

prewarmed (42°C) LB agar plate (LB media + 1. 5% bactoagar) . The 

plate was swirled while pouring to ensure even spreading of the 

agarose over the plate. Plates were allowed to cool at room 

temperature for 5 minutes before being placed at 42°C. The plates 

were incubated until plaques were just beginning to make contact 

with one another. 



47 

Lifts were carried out by placing nitrocellulose filters 

smoothly onto the plates. The alignment of the filter was marked 

by asymmetrically stabbing through the filter into the agar with a 

needle. Filters were incubated on the plates for 1 minute 

followed by a 1 minute wash in DNA denaturing solution ( 1. 5 M 

NaCl, 0.5 M NaOH). The filter was partially dried and transferred 

to neutralizing solution (1.5 M NaCl, 0.5 M Tris-HCl, pH 8.0) for 

3 minutes. The filter was then rinsed in 3X SSC (20X SSC = 3 M 

NaCl; 0.3 M sodium citrate, pH 7.0) for 3 minutes and subsequently 

placed on Whatman 3 MM paper to dry. DNA was fixed to the 

membranes by air drying overnight at room temperature. 

Hybridization was carried out as described above. Plaques 

representing positive signals were picked and placed in 500 µl of 

SM (100 rnM NaCl; 8 rnM MgSO4-H2O; 50 rnM Tris-HCl, pH 7.5; 0.01% 

gelatin)/0.3% chloroform and stored at 4°C until subsequent 

screening experiments were performed. Positive clones were 

purified by successive plating at lower density. 

Q. Purification of Aphage DNA and Isolation of Candidate 

Inserts 

Phage DNA was purified by harvesting phage from a confluent 

plate. Confluent plates were washed overnight with 10 ml of lX SM 

at 4°C. The 10 ml of lX SM was collected and the plates were 

rinsed with an additional 2 ml of lX SM. This solution was then 

centrifuged for 10 minutes at 4,000 X g at 4 °C. The resulting 

supernatant was then brought up to a volume of 10 ml and extracted 

with 10 µl of chloroform. Following extraction the sample was 
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centrifuged for 5 minutes at 2,000 rpm at room temperature. The 

res~;:;_::_ :ng supernatant was transferred to a new tube and 

equilibrated to 37°C for 5 minutes followed by digestion with· 10 

µg/ml RNAse A and 8 U/ml DNAse I. Phage was precipitated by the 

addition of 2.0 ml of 30% PEG 6000, 3.0 M NaCl followed by a one 

hour incubation on ice. Phage were pelleted by centrifugation at 

10,000 X g for 10 minutes. The phage pellet was resuspended in 

1. O ml of 10 mM Tris-HCl (pH 7. 5), 100 mM NaCl, and 25 mM EDTA. 

An equal volume of 4% SDS was added and the mixture incubated 10 

minutes at 70°C. 1.0 mL of 2.55 M potassium acetate (pH 4.8) was 

added and the sample was centrifuged at 15,000 X g for 30 minutes 

at 4°C. The supernatant was then passed over a Wizard Lambda Prep 

column (Promega) and washed with 4.0 ml of 80% isopropanol. The 

ADNA was eluted with 100 µl of 80°C sterile H20. 

Purified ADNA was digested with EcoRI for four hours at 37°C, 

and the inserts gel purified. These DNA fragments were 

subsequently ligated into linearized pBKS (Stratagene) that had 

been digested with EcoRI and treated with calf intestinal alkaline 

phosphatase ( CIAP; BRL) as per the manufacturers instructions. 

The CIAP was inactivated by incubating the reaction at 65°C for 15 

minutes. Digested/CIAP treated plasmid was gel purified and used 

in ligation reactions. Ligations were carried out using a 10: 1 

ratio of insert :vector in the presence of lX ligase buffer ( lOX 

ligase buffer= 300 mM Tris-HCl, pH 7.5; 100 MgCl2; 100 mM DTT), 

ATP (final concentration of 0.5 mM), and 1 U of T4 DNA ligase 

(Promega) in a final volume no greater than 15 µl. Ligations were 

performed at 14 °C overnight. T4 DNA ligase was inactivated by 
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heating the reaction at 65°C for 10 minutes. The tube was cooled 

::_ric for 2 minutes and the entire reaction transformed in~c-

competent bacteria cells. 

R. Chromosomal Mapping By Hybridization to a Human/Rodent 

Somatic Cell Hybrid Panel 

The CAG8-16 (ssbp) full length cDNA fragment was released 

from pBKS by restriction digestion with EcoRI and gel purified. 

The purified fragment was radioactively labeled as described above 

and hybridized to a human/rodent somatic cell hybrid panel (Oncor) 

as described under hybridization. The blot was exposed for four 

days and the chromosomal assignment made on the basis of the 

position of the hybridization signal. 

S . Random RACE 

The methodology used for the Random RACE technique is 

summarized in Figure 3. 3.0 µg of total Jurkat RNA was annealed 

to 500 ng of oligonucleotide of the sequence [5'-GGC CAC GCG TCG 

ACT AGT AC(X) 10 -3'], where the X indicates a random base. Reverse 

transcription was carried out for 1 hour at 42°C in the presence of 

10 rnM Tris pH 8. 0, 0. 5 rnM deoxynucleotide triphosphates, 20 rnM 

dithiothrietol, and 10 units Superscript II reverse transcriptase 

(BRL). Following reverse transcription, 5.0 µl of the RT reaction 

was added to a thermal amplification reaction utilizing 10 pmol of 

each of the primers [5'-{CAU) 4 (CAG) 8 -3'] and [5'-(CUA) 4 GGC CAC GCG 

TCG ACT AGT AC-3'] in the presence of 50 rnM Tris-pH 8. 0, 20 rnM 

NH4SO4, 0.1 rnM dNTP's, and 1.0 unit of Tfl thermostable polymerase 
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(Epicentre) . Forty cycles of amplification were carried out with 

~ 30 second denaturation at 95°C, a 1 minute annealing at 65°C, and 

a 2 minute extension at 72°C. The reaction was completed by a 

final 10 minute extension at 72°C. An aliquot of the reaction was 

analyzed by agarose gel electrophoresis and DNA visualized by 

ethidium bromide staining. The remainder of the reaction was 

purified over a Wizard PCR prep column and batch subcloned by the 

UDG method as described above. 
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Figure 3: Random RACE Methodology. The diagram illustrates the 
methodology utilized to carry out the Random RACE experiments. In 
step 1 total RNA is reverse transcribed with random oligomers (RO) 
that have a 5' unique sequence region. An aliquot of this reverse 
transcription is utilized in a thermal amplification utilizing the 
UAP oligo which is identical to the unique sequence region of the 
RO and the CAG8 oligo (step 2). In step 3 the reaction products 
are subjected to Uracil DNA glycosylase treatment (step 3) 
followed by subcloning into the vector pAMPl. *- Indicates a 
(CAG)N repeat within a transcript. 
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CHAPTER IV 

RESULTS 

3' RACE Cloning of (CAG)! Containing cDNA Fragments 

3' RACE Cloning with the CAG4 Oligo 

Initially I investigated if the 3' RACE technique would be 

applicable to isolating CAG repeat containing cDNA fragments. 

Utilizing total RNA from the glioma cell line NAT I was able to 

isolate five novel clones which contained CAG repeats (Table 3 ) . 

Additionally, a cDNA fragment was isolated that is identical to 

the 3' untranslated region of the human Gas cDNA (Mattera et al., 

1986). Analysis of this previously isolated cDNA revealed that it 

contained 3 repeats of CAG in this untranslated region. The 

isolation of this fragment verified that the technique was 

operating as 

individually. 

intended. These 
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clones will be described 
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TABLE 3 : CAG4 3 I RACE CLONES 

Clone Repeats Size GenBank Search 

CAG4-3 9 225 No match 
CAG4-6 3 93 Gas 
CAG4-7 7 64 No match 

CAG4-10 4 129 No match 
CAG4-19 5 78 No match 
CAG4-31 6 167 No match 

Table 3: CAG4 3' RACE Clones. The clones isolated by the 3' RACE 
method utilizing the CAG4 oligo are shown. All clones were 
subjected to DNA sequence analysis which revealed the size and the 
number of CAG repeats. Five of the clones were found to be novel 
while clone CAG4-6 is identical to a portion of the 3' UTR of the 

human Gas cDNA. 
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a. Clone CAG4-3 

Clone CAG4-3 was cloned by the 3' RACE technique utilizing 

the CAG4 oligo. Sequence analysis of the entire clone revealed a 

225 bp insert that contained 9 CAG repeats. A BLAST search 

revealed no significant similarity to any sequence in Genbank. The 

results of expression analysis of clone CAG4-3 are shown in Figure 

4. Using the CAG4-3 insert as a probe on a Human Multiple Tissue 

Northern Blot (Clontech) revealed that the gene for CAG4-3 

generates a 1.35 transcript that is restricted in its expression, 

being detectable only in heart, lung, liver, and kidney. The gene 

may be expressed at low levels in brain, placenta, skeletal 

muscle, and pancreas but not detectable by the methodology 

utilized. Analysis of the three possible reading frames of CAG4-3 

reveals no partial peptides with any significant similarity, aside 

from the polyglutamine generated by the CAG repeat. 

b. Clone CAG4-6 

Clone CAG4- 6 was found to contain a 93 bp insert by DNA 

sequence analysis. This insert was shown by BLAST search 

(Altchsul et al., 1990) to be identical to the 3' end of the human 

Gas cDNA (Figure 5; Mattera et al., 1986). This region of the Gas 
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Figure 4: CAG4-3 on Human Multiple Tissue Northern Blot. The 
result of probing a Human Multiple Tissue Northern Blot with the 
clone CAG4 -3 is shown. The -1. 5 kb transcript appears to be 
produced in detectable amounts in heart, lung, liver, and kidney. 
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1190 GGAACCCCCA AATTTAATTA AAGCCTTAAG CACAATTAAT TAAAAGTGAA ACGTAATTGT 

1251 ACAAGCAGTT AATCACCCAC CATAGGGCAT GATTAACAAA GCAACCTTTC CCTTCCCCCG 

1311 AGTGATTTTG CGAAACCCCC TTTTCCCTTC AGCTTGCTTA GATGTTCCAA ATTTAGAAAG 

1371 CTTAAGGCGG CCTACAGAAA AAGGAAAAAA GGCCACAAAA GTTCCCTCTC ACTTTCAGTA 

1431 AAAATAAATA AAACAGCAGC AGCAAACAAA TAAAATGAAA TAAAAGAAAC AAATGAAATA 

1591 AATATTGTGT TGTGCAGCAT TAAAAAAAAT CAAAATAAAA ATTAAATGTG AGCAAAG 

Figure 5: 3' region of the Gas cDNA. The last 356 bp of the 3' 

untranslated region of the Gas cDNA are shown. The bases in bold 
indicate the 93 bp region corresponding to clone CAG4-6 beginning 
with the three repeats of CAG. 
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cDNA contains 3 CAG repeats and the cloning of this fragment 

: ~ 1 
• 1:=:t ,at pd tha+-. the 3' RACE technique was operating as intended. 

c. Clone CAG4-7 

The insert for clone CAG4-7 was found by sequence analysis to 

contain 64 bp which showed no significant homology to any entries 

in GenBank. The clone contained 7 repeats of CAG and given its 

small size it is suspected that this clone is located in the 3' 

untranslated region of its respective transcript. 

d. Clone CAG4-10 

Clone CAG4-10 contained a 129 bp insert including 4 CAG 

repeats. BLAST search (Altschul et al., 1990) revealed no known 

genes with any significant similarity to this sequence. 

clone was not subjected to further analysis. 

e. Clone CAG4-19 

This 

Clone CAG4-19 was found contain 5 repeats of CAG within a 78 

bp insert. BLAST search (Altchul et al., 1990) revealed no known 

genes with any similarity to CAG4-19. 
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f. Clone CAG4-31 

CAG4-31 was found by sequence analysis to be a 167 bp insert 

that contained 6 CAG repeats. BLAST search (Altschul et al., 

1990) showed no genes of any significant similarity to CAG4-31. 

2. 3' RACE Cloning with the CAG8 oligo 

In order to isolate fragments with a larger number of repeats 

and in potential reading frames we next carried out 3' RACE 

utilizing an oligo with 8 repeats of CAG to clone cDNA fragments 

from NAT total RNA. 

clones (Table 4A) . 

Using this strategy we isolated five novel 

In general these clones were of larger size 

and contained a larger number of repeats. 

a. Clone CAG8-1 

Clone CAGB-1 was isolated two separate times and by sequence 

analysis one isolate contained 8 repeats and the other contained 

12 repeats. This is a puzzling finding that may indicate that the 

repeat region of the corresponding gene is polymorphic. A BLAST 

search (Altschul et al., 1990) showed that CAGB-1 corresponded to 

an expressed sequence tag that was cloned from an HL-60 cell line. 



TABLE 4: CAG8 3' RACE CLONES 
A. CAG8 Clones from Glioma Cell Line NAT 

Clone Repeats 

CAG8-1 8/12 
a 

CAG8-5 25 
CAG8-6 6 

CAG8-16 5 

CAG8-27 7 
CAG8-31 8 

B. Human Brain CAG8 Clones 

Clone 

hbCAG8-ll 
hbCAG8-14 
hbCAG8-54 

Repeats 

8 

8 
8 

Length 

433 

379 
b 

1,185 
C 

816 
327 
464 

Length 

239 
221 
627 
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GenBank Search 

EST HL60 

SRP 14 
EST LGll 

ssbp 

EST HHEA56S 
No match 

GenBank Search 

No match 
No match 

CALM 1 

Table 4: CAG8 3' RACE Clones. The clones isolated by the 3' RACE 
experiment with the CAG8 oligo are shown. 4A lists the clones 
isolated from glioma cell line NAT total RNA. 4B lists clones 
isolated from human brain (temporal cortex) total RNA. The 
lengths and number of repeats were characterized by DNA sequence 
analysis and GenBank searches were carried out utilizing the BLAST 

a , 
program (Altschul et al., 1990). Indicates the number of repeats 

b 
observed in two separate isolates of CAG8-1. Length indicates 
the size of a full length cDNA isolated from a retinal epithelium 

cDNA library (Gieser et al., 1992). cLength indicates the size of 
a cDNA isolated from a Jurkat cDNA library. 
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Figure 6: CAG8-1 on Human Multiple Tissue Northern Blot. The 
result of probing a Human Multiple Tissue Northern Blot (Clontech) 
with clone CAG8-1 is shown. The -800 bp transcript is expressed 
in all tissues examined. 
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Analysis of the reading frames generated from this sequence does 

:1cr 9"'""'' a_t P a peptide with any kr.own motifs. 

The results of probing a Multiple Tissue Northern blot 

(Clontech) with the CAG8-1 cDNA fragment are shown in Figure 6. 

The gene corresponding to this cDNA fragment generates an 

approximately 800 bp transcript that expressed in all the tissues 

examined. This data further supports the technical feasibility of 

3' RACE as a methodology for cloning trinucleotide repeat 

containing cDNA fragments. 

b. Clone CAG8-5 

Clone CAG8-5 was also isolated several times, however, there 

was always a consistent number of repeats that alternated between 

CAG and CAA (Figure 7). A search of Genbank revealed that this 

cDNA was recently isolated and is known as signal recognition 

particle subunit 14 (SRP14) . The entire sequence of the SRP14 

cDNA with the predicted reading frame is shown in Figure 7. The 

region corresponding to CAG8-5 is shown in bold and is made up of 

the 3 ' 3 81 bp. The repeat region is apparently translated as 

alternating dipeptides of alanine and threonine with one praline 

interruption (Figure 7). 

The result of probing a Human Multiple Tissue Northern Blot 

(Clontech) with the CAG8-5 insert is shown in Figure 8. SRP14 is 



1 M V L L E S E Q F L T E L T 

1 TCGAGCCAGCGTCGCCGCGATGGTGTTGTTGGAGAGCGAGCAGTTCCTGACGGAGCTGAC 

15 R L F Q K C R T S G S V Y I T L K K Y D 
61 CAGACTTTTCCAGAAGTGCCGGACGTCGGGCAGCGTCTATATCACCTTGAAGAAGTATGA 

35 G R T K P I P K K G T V E G F E P A D N 
121 CGGTCGAACCAAACCCATTCCAAAGAAAGGTACTGTGGAGGGCTTTGAGCCCGCAGACAA 

55 K C L L R A T D G K K K I S T V V S S K 
181 CAAGTGTCTGTTAAGAGCTACCGATGGGAAGAAGAAGATCAGCACTGTGGTGAGCTCCAA 

75 E V N K F Q M A Y S N L L R A N M D G L 
241 GGAAGTGAATAAGTTTCAGATGGCTTATTCAAACCTCCTTAGAGCTAACATGGATGGGTT 

95 K K R D K K N K T K K T K A A A A A A A 
301 GAAGAAGAGAGACAAAAAGAACAAAACTAAGAAGACCAAAGCAGCAGCAGCAGCAGCAGC 

115 A A P A A A A T A A T T A A T T A A T A 
361 AGCAGCACCTGCCGCAGCAGCAACAGCAGCAACAACAGCAGCAACAACAGCAGCAACAGC 

135 A Q 

421 AGCACAGTAAAGGGCATACATTTCCTGCTTTCACCAATTAACCACTGAATTGCTATTTTT 

481 TCCTTTTGGCCAGATAGCTAGGTTTCTGGTTCCCCCACAGTAGGTGTTTTCACATAAGAT 

541 TAGGGTCCTTTTGGAAAGAATAGTTGCAGTGTTTATAGGATAGTTGTGGTAAGAATCTAG 

601 TTTATTTTGCATTTGGCTAATTGGTCTGTGCTGCATGGTTATATACTCCTGGATTATAGA 

661 TTAAAAGTCTCTGTAGACATCTCTGTGAAGAGCAAGCTATCATTAAACATGTCTGTTTAT 

721 C 
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Figure 7: Sequence of CAG8-5. The sequence of entire 721 bp 
signal recognition particle subunit 14 cDNA is shown. The 380 bp 
sequence of clone CAG8-5 is indicated in bold. The region of 
(CAG) N repeats is interrupted by CAA repeat units and the entire 
repeat region is translated as alanine {A) or threonine {T) with 
one proline (P) interruption. 



63 

la.la kl -

I.la kl 

1.35 kl -

Figure 8: CAGB-5 on Human Multiple Tissue. The result of probing 
a Human Multiple Tissue Northern Blot with clone CAGB-5 is shown. 
The -900 bp transcript is highly expressed in all tissues 
examined. 
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ibiquitously expressed at a very high level in all of the tissues 

Presently, the function of the protein is unclear 

although it may have a role in mitochondrial protein import. 

c. Clone CAGB-6 

Clone CAG8- 6 was isolated once with the 8 repeats from the 

oligo present. Sequence analysis followed by BLAST search 

(Altschul et al., 1990) revealed that the fragment was identical 

to the expressed sequence tag LGll that had been isolated from a 

subtracted retinal epithelium cDNA library (Geiser et al., 1992). 

This cDNA clone was obtained from Dr. Anand Swaroop (University of 

Michigan) and sequenced. The sequence of the 1,185 bp insert with 

its 819 bp open reading frame that codes for a predicted 273 amino 

acid protein is shown in Figure 9. The predicted 31,416 Da 

protein has no significant similarity to any known proteins nor 

does it contain any obvious motifs. The CAG repeat is made up of 

5 CAG units interrupted by a single CAA. 

translated as serine and arginine (Figure 9). 

This region is 

Interestingly, the 

CAGB-6 protein is made up of over 10% of both of these amino 

acids. The functional significance of this observation is 

presently unknown, however, this arginine and serine content is 

well above the average for known proteins (Doolittle, 1986). 

The result of probing a Human Multiple Tissue Northern Blot 

(Clontech) with the full length CAGB-6 cDNA are shown in Figure 
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1 AAGCCGGCGGCAGCTGCTTGGGGCGGTGCGGTGGTGACTGAGCTACGAGCCTGGCGCGGT 

61 GTGCGCCGAGCCCCGGCCGGCCCGCCCTCGCGTGCCTCCCAGCTCCGCACCCCTGATGCT 

1 M V K Y F L G Q S 
121 GCGCGGGTGCTGAGCCCGCTTCGGCCGGGACGATGGTGAAGTATTTCCTGGGCCAGAGCG 

10 V L R S S W D Q V L P P S F W Q R Y P N 
181 TGCTCCGGAGTTCCTGGGACCAAGTGTTGCCGCCTTCTTTCTGGCAGCGGTACCCGAATC 

30 P Y S K H V L T E D I V H R E V T P D Q 

241 CCTATAGCAAACATGTCTTGACGGAAGACATAGTACACCGGGAGGTGACCCCTGACCAGA 

50 K L L S R R L L T K T N R M P R W A E R 
301 AACTGCTGTCCCGGCGACTCCTGACCAAGACCAACAGGATGCCACGCTGGGCCGAGCGAC 

70 L F P A N V A H S V Y C L E D S I V D P 
361 TATTTCCTGCCAATGTTGCTCACTCGGTGTACTGCCTGGAGGACTCTATTGTGGACCCAC 

90 Q N Q T M T T F T W N I N H A R L M V V 
421 AGAATCAGACCATGACTACCTTCACCTGGAACATCAACCACGCCCGGCTGATGGTGGTGG 

110 E E R C V Y C V N S D N S G W T E I R R 
481 AGGAACGATGTGTTTACTGTGTGAACTCTGACAACAGTGGCTGGACTGAAATCCGCCGGG 

130 E A W V S S S L F G V S R A V Q E F G L 
541 AAGCCTGGGTCTCCTCTAGCTTATTTGGTGTCTCCAGAGCTGTCCAGGAATTTGGTCTTG 

150 A R F K S N V T K T M K G F E Y I L A K 
601 CACGGTTCAAAAGCAACGTGACCAAGACTATGAAGGGTTTTGAATATATCTTGGCTAAGC 

170 L Q A R P L P K H L L R Q P R K P R R R 
661 TGCAAGCGAGGCCCCTTCCAAAACACTTGTTGAGACAGCCAAGGAAGCCAAGGAGAAGGC 

190 Q R R R H W Q L Q R R P R T C P A R R P 
721 AAAGGAGACGGCACTGGCAGCTACAGAGAAGGCCAAGGACCTGCCCAGCAAGGCGGCCAC 

210 P R S S S S S N S L C S Q S T T T T A P 
781 CAAGAAGCAGCAGCAGCAGCAACAGTTTGTGTAGCCAGTCTACCACCACCACAGCACCCC 

230 Q T A S L A P L P F P S L Y F I I K N Q 
841 AGACAGCTAGCTTAGCCCCTCTGCCCTTCCCTTCATTGTACTTTATCATTAAAAATCAAC 

250 L P A L S A V Y V V G C G D A V G I C S 
901 TTCCAGCCCTGTCTGCTGTCTACGTGGTGGGTTGTGGGGATGCAGTTGGCATCTGCAGTA 

270 T P S T 
961 CACCAAGCACATGATTCATGTCTGAGCCAGGTCTGCTTATTCTCCATTGGCAGCTGAGGA 
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1021 CCGAGGCACAGAGGTGCGGTGACTTGCCCGGGCTCCAGGTAGCCTGCAGGTTAACTGGCG 

1081 GTAAGTGCTAGACTGTAAGCCCGACAAGGGCAGGGCTTTTGGTTTTGTTCTCTGATGTGT 

1141 CTCAGTATCTAGCACATAATAGACACTCAATAAATACTTGTTGAA 

Figure 9: Sequence of clone CAGB-6. The entire sequence of the 
CAGB-6 cDNA is shown. The 1,185 bp cDNA contains an 819 bp open 
reading frame that codes for a 273 amino acid protein. GenBank 
search has revealed no known genes with significant homology to 
CAGB-6. The (CAG)N repeat is indicated in bold and is translated 
as serine (S). 
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Figure 10: CAGB-6 on a Human Multiple Tissue Northern Blot. The 
result of probing a Human Multiple Tissue Northern Blot with clone 
CAGB-6 is shown. This cDNA detects two transcripts of -1.5 kb and 
-1.2 kb. expressed in all tissues examined. 
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10. The insert detects two transcripts of 1.5 kb and 1.2 kb that 

:_c~s~y expressed. PCR primers made to the initiation 

and termination codon regions were used in reverse transcription~ 

polymerase chain reaction and detected only a single 83 0 bp band 

(data not shown). This data indicates that if the two transcripts 

are generated by alternative splicing it is does not occur within 

the translated region. It does not seem likely that the cDNA is 

detecting another member of a gene family on Northern blots as the 

CAGB- 6 gene has been mapped by fluorescent in situ hybridization 

to a single locus at chromosome lq41-42 (A. Swaroop, personal 

communication) . Interestingly, this region has been shown by 

linkage analysis (Kimberling et al., 1990; Lewis et al., 1990) to 

be the location of the gene that is defective in type II Usher 

syndrome. In order to investigate if expansion of the 

trinucleotide repeat in CAGB-6 was involved in the disease 

etiology the repeat region was examined in patient DNA by PCR. 

The region was found to be stable in patients and in the normal 

population, showing no polymorphism (data not shown) . 

Furthermore, Kimberling and coworkers have recently isolated a 

candidate gene from the lq41-42 region that appears to be the gene 

that is defective in Type II Usher syndrome (personal 

communication) . This data indicates that CAGB-6 is not involved 

in the molecular pathology of Type II Usher syndrome. 
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d. Clone CAG8-16 

Clone CAG8-16 was isolated multiple times but never contained 

more than the 8 repeats of the CAG8 oligo. A Genbank search 

revealed that this clone is apparently the human homologue to a 

mouse cDNA which codes for a single stranded DNA binding protein 

(Ballard et al., 1988). Additionally, a rat homologue was 

previously characterized as a cDNA of unknown function which was 

highly expressed in tumor cell lines (Soma et al., 1984) . The 

CAG8-16 3' RACE clone was used as a probe to screen a Jurkat cell 

cDNA library and a single positive clone was isolated. Sequence 

analysis revealed that the 816 bp cDNA contained a 381 bp open 

reading frame that coded for a 14,397 Da protein. The CAG repeat 

in CAG8-16 is translated as ACG and therefore codes for serine 

(Figure 11) The high degree of conservation between the human, 

rat, and mouse peptides is shown in Figure 11. The human and 

mouse are 93% identical while the human and rat proteins are 94% 

identical, not including the 8 N-terminal amino acids that were 

not reported in the rat clone (Soma et al., 1984) and probably 

indicate an incomplete cDNA. The work of Ballard et al. (1988) on 

the biochemical properties of the mouse protein product they 

termed p9 indicates that the mouse protein is made as a 15 kDa 

precursor that does not bind single stranded DNA that is 

proteolytically processed to a 9 kDa precursor which actively 
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5 10 15 20 25 30 

hssbp 1 M p K S K E L V s s s s s G s D s D s EV D K K L K R K K Q 
rssbp 1 X X XX X X X X s s s s s G s D s D s E V E K K L K R K K Q 
mssbp 1 M p K s K E L V s s s s s G S D s D s EV E K K L K R K K Q 

hssbp 31 V A p E K p V K K Q K T G E T s R A L s s s K Q s s s s R D 

rssbp 31 vv p E K p V K K Q K p s E s s R A L A s s K Q s s s s RD 

mssbp 31 A V p E K p V K K Q K p G E T s R A L A S s K Q s s s s R D 

hssbp 61 D NM F Q I G KM R y V s V R D F K G K V L I D I R E y w M 

rssbp 61 D N M F Q I G KM R y V s V R D F K G K I L I D I R E y WM 

mssbp 61 D N M F Q I G KM R y V s V R D F K G K I L I D I R E y w M 

hssbp 91 D p E G E M K p G R K G I S L N p E Q w s Q L K E Q I S D I 

rssbp 91 D s E G E M K p R R K G I s L NM E Q w s Q L K E Q I s D I 

mssbp 91 D s E G E M K p G R K G I s L NM E Q w s Q L K E Q I s D I 

hssbp 121 D D AV R K L 

rssbp 121 D D AV R K L 
mssbp 121 D D AV R K L 

Figure 11: ssbp Sequence Comparison. The human ssbp (CAGB-16) was 
compared to both the rat and mouse homologues. The rat sequence 
was apparently incomplete and did not contain the amino terminus. 
The human protein is 93% identical to the mouse homologue and 94% 
identical to the rat homologue. 



4.4kl -

1.4 kl 

1.35 kl 

j 
• I - I 

JIIJtllJ 
.. - • 

• I 
•·--•-·· 

71 

Figure 12: CAG8-16 Northern Blot. The results of probing a Human 
Multiple Tissue Northern Blot (Clontech) with the full length 
CAG8-16 cDNA clone are shown. This cDNA detects three transcripts 
of 4.4 kb, 1.5 kb, and 0.8 kb expressed in all tissues examined. 
Additionally, an -5.0 kb transcript is produced only in brain. 
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binds single stranded DNA with a greater affinity for RNA. 

A.::ii::_c_::_c.:na::_-:cy, the protein arpears to have a higher affinity for 

single stranded DNA that contains 5-methyl cytosine. The cellular 

function of this activity is presently unclear. 

The 816 bp CAG8-16 cDNA was radioactively labeled and used as 

a probe on a Multiple Tissue Northern Blot (Clontech). The CAG8-

16 gene was found to produce three transcripts of 4.4 kb, 1.6 kb, 

and 0.9 kb(Figure 12). Additionally, a fourth transcript of -5.0 

kb was present only in brain (Figure 12). The cDNA clone isolated 

from the Jurkat cDNA library appears to correspond to the smallest 

transcript while the origin of the larger transcripts is unknown. 

However, Ballard et al. (1988) reported a similar finding with the 

mouse p9 gene and showed that all three transcripts were produced 

by transcriptional read-through and the use of alternative 

polyadenylation sites. It seems likely that a similar situation 

exists for the human gene. 

The CAG8-16 816 bp cDNA was radioactively labeled and 

hybridized to a human/rodent somatic cell hybrid panel (Oncor) . 

The result of this experiment with the hybridization signal 

indicating that the gene for CAG8-16 resides on chromosome 5 is 

shown in Figure 13. A search of diseases that have been linked to 

chromosome 5 has given no obvious phenotypes that could result 

from a mutation in CAG8-16. 
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H R Chromosome 

M 0- 9 0- 9 M 1 I 3 4 5 6 7 8 9 10 11 11 M 

U.Okb- • • 
9.0kb-

Figure 13: CAGB-16 Chromosomal Localization. 
probing a human Somatic Cell Hybrid Panel (Oncor) 

., 

The result of 
with the full 

length CAGS-16 cDNA is shown. M - l/HindIII marker, H - Human, R 
- Rodent. The chromosomes are indicated by the numbers above the 
respective lanes and the sizes of the marker are indicated on the 
left. The positive hybridization signal indicates that the gene 
for CAGB-16 resides on chromosome 5. 
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1 CAGCAGCAGC AGCAGCAGCA GCAGCCCTGT GGCCGGCACA GAGATCAAGA AACAAAAGCC 

61 AGGCCGAGCA TGGTGGCTCC CGGCCTGTAA TCCCAGCACT TTGGGAGGTC GAGGCAGGCA 

121 GTCACTTGAG TTCAGGAGTT CAAGACCAGC CTGGGCAACA TGGCACAACA CATCTCTACA 

181 AAAAATACAA AACTTAGCCT CCTGGTGTGG TGGCATGTGC CTGTGGTCCC AGCTGCTTGG 

241 GAGGCTGAGA TAGAGATCAC TTGAGCCTGG GAGTTCGAGG CTACAGTGAG CTGTGATTGT 

301 ACCACTGCAC TCCACATTGG GCAACAGAAC 

Figure 14: CAGB-27 Sequence. The sequence of clone CAGS-27 is 
shown. The sequence highlighted in bold indicates the region that 
matches with a large number of sequences from GenBank. This 
region shows similarity to an Alu-like repetitive element. 
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e. Clone CAGB-27 

Clone CAGB-27 was sequenced and by GenBank search was 

revealed to show a substantial amount of similarity to a number of 

sequences. CAGB-27 has a high degree of similarity to a number of 

GenBank entries due to an Alu-like repetitive element that makes 

up the majority of the clone (Figure 14) . Hybridization to a 

Human Multiple Tissue Northern Blot was attempted with the clone. 

However, presumably due to the presence of this repetitive 

element, strong background hybridization was observed making this 

result uninterpretable (data not shown). 

f. Clone CAGB-31 

Clone CAGB-31 was isolated once by 3' RACE cloning and by 

sequence analysis was found to contain an insert of 464 bp (Figure 

15). Genbank search with this sequence revealed no similarity to 

any known sequence. Analysis of the open reading frame created by 

translating the CAG repeat as polyglutamine reveals a protein that 

would have a C-terminal region that would be very glutamine rich 

(Figure 15) even without the repeat region. Glutamine rich 

regions of proteins are known to be present in a number of 

transcriptional activators and may be important as domains 

necessary for protein-protein interactions (Gerber et al., 1994). 



1 Q Q Q Q Q Q Q Q L L P S P A A K Q Q P A 
1 CAGCAGCAGCAGCAGCAGCAGCAGCTCTTGCCATCTCCAGCTGCCAAACAGCAGCCTGCC 

21 G Q E Q P Q A R E A P G P A Q G C S C Q 
61 GGGCAGGAGCAGCCCCAGGCCAGAGAGGCTCCCGGTCCAGCTCAGGGATGCTCCTGCCAG 

41 H R G Q G L L E Q A H S E P G Q P C Q S 
121 CACAGGGGCCAGGGACTCCTGGAGCAGGCACATAGTGAGCCCGGGCAGCCCTGCCAGTCA 

61 G P F P S P L R L G 
181 GGCCCCTTTCCTTCCCCATTGAGGTTGGGGTAGGTGGGGGCGGTGAGGGCTCCACGTTGT 

241 CAGCGCTCAGGAATGTGCTCCGGCAGAGTGCTGAAGCCTATAACCCCAACCATTTCCTTC 

301 GGACGCCCGGTACTCAGCTGGCCCACTCCACAGCCAGCCTGCCCTGCCCTTCACCGTGGA 

361 TGTTTTCAGAAGTGGCCATCGAGAGGTCTGGATGGTTTTATAGCAACTTTGCTGTGATTC 

401 CCGTTTGTATCTGTAAATATTTGTTCTATAGATAAGATACAAAT 
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Figure 15: CAGS-31 Sequence. The sequence for clone CAGS-31 is 
shown. The putative reading frame is predicted by translating the 
CAG repeats as glutamine (Q). This putative reading frame 
generates a C-terminal peptide very rich in glutamine (Q). 
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Figure 16: CAG8-31 on Human Multiple Tissue Northern Blot. Clone 
CAG8- 31 detects an -2 . 2 kb transcript that is expressed in al 1 
tissues examined. 
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The CAGB-31 clone was radioactively labeled and hybridized to 

a Huma~ Multip:e Tiss~e Northern blot. The results of this 

experiment are shown in Figure 16. The CAGB-31 gene generates a 

2.2 kb transcript that is ubiquitously expressed and is apparently 

at its highest level in kidney. 

3. 3' RACE Cloning from Human Brain RNA with the CAG8 Oligo 

Utilizing an identical approach as described above for the 

CAGB cloning, we carried out 3' RACE on total RNA from human 

temporal cortex. The clones obtained are summarized in Table 4 B 

and will be discussed individually in the following sections. 

a. Clone hbCAGB-11 

Clone hbCAGB-11 was isolated and subject to sequence 

analysis. GenBank search revealed that the 239 bp insert was not 

similar to any known sequence. Analysis of possible C-terminal 

peptides showed no regions with significant similarity to any 

known motifs or proteins. 



5 10 15 20 25 
hbCAGS-14 1 Q Q Q Q Q Q Q Q R 

P~H 
F p LAP ~L G R E A - L 

LZ - - - - - L X X X XX X X XX X XX L 

30 35 
hbCAGS-14 26 s G TSLQ~P L H L G 

~~ LZ X X X X X X L X XX X X 

Figure 17: Leucine Zipper of Clone hbCAG8-14. The potential 
leucine zipper motif of hbCAG8-14 is shown. The hbCAG8-14 is 
aligned with the consensus leucine zipper which consists of 
leucine residues repeated every seven amino acids. hbCAG8-14 has 
an imperfect fit in that one repeat is only six amino acids and 
the final expected leucine is serine. Replacement of a leucine 
residue with other amino acids has been observed (Kouzarides and 
Ziff, 1988; Landschulz et al., 1989) . LZ- leucine zipper. The 
boxes indicate the conserved leucine residues. 
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b. Clone hbCAG8-14 

Clone hbCAG8-14 was isolated and sequenced and found by 

GenBank search to be novel. Analysis of possible open reading 

frames within the 221 bp insert showed that translating the insert 

with the CAG repeat coding for glutamine results in a 4,240 Da 

peptide that is over 20% leucine. Analysis of this region 

indicates that were this the correct reading frame this region 

could potentially code for a leucine zipper motif (Kouzarides and 

Ziff, 1988; Landschulz et al., 1989) . This potential motif is 

shown in Figure 17. 

The hbCAG8-14 clone was radioactively labeled and hybridized 

to a Human Multiple Tissue Northern blot (Clontech). This cDNA 

fragment detects a 1. 0 kb transcript that is expressed in all 

tissues examined (Figure 18) . Furthermore, the cDNA appears to 

weakly hybridize to a number of other larger transcripts in all 

tissues. The origin of this hybridization is unknown but may 

indicate that hbCAG8-14 is a member of a gene family. The 

background hybridization is not thought to arise from the cross

hybridization of the CAG repeat as it was not observed with any 

other clones. 
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Figure 18: hbCAG8-14 on Human Multiple Tissue Northern Blot. 
Clone hbCAG8-14 was used to probe a Human Multiple Tissue Northern 
Blot. The cDNA detects an -800 bp transcript that is expressed in 
all tissues examined. Additionally, the clone detects a number of 
minor hybridization products. This result may indicate the 
existence of a gene family. 



1 CAGCAGCAGCAGCAGCAGCAGCAGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGCT 

1 M A D Q 

61 GGTGCAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCACTCGCACCATGGCTGATCAG 

5 L T E E Q I A E F K E A F S L F D K D G 
121 CTGACCGAAGAACAGATTGCTGAATTCAAGGAAGCCTTCTCCCTATTTGATAAAGATGGC 

25 D G T I T T K E L G T V M R S L G Q N P 
181 GATGGCACCATCACAACAAAGGAACTTGGAACTGTCATGAGGTCACTGGGTCAGAACCCA 

45 T E A E L Q D M I N E V D A D G N G T I 
241 ACAGAAGCTGAATTGCAGGATATGATCAATGAAGTGGATGCTGATGGTAATGGCACCATT 

65 D F P E F L T M M A R K M K D T D S E E 
301 GACTTCCCCGAATTTTTGACTATGATGGCTAGAAAAATGAAAGATACAGATAGTGAAGAA 

85 E I R E A F R V F D K D G N G Y I S A A 
361 GAAATCCGTGAGGCATTCCGAGTCTTTGACAAGGATGGCAATGGTTATATCAGTGCAGCA 

105 E L R H V M T N L G E K L T D E E V D E 
421 GAACTACGTCACGTCATGACAAACTTAGGAGAAAAACTAACAGATGAAGAAGTAGATGAA 

125 M I R E A D I D G D G Q V N Y E E F V Q 
481 ATGATCAGAGAAGCAGATATTGATGGAGACGGACAAGTCAACTATGAAGAATTCGTACAG 

145 M M T A K 
541 ATGATGACTGCAAAATGAAGACCTACTTTCAACTCCTTTTTCCCCCCTCTAGAAGAATCA 

601 AATTGAATCTTTTACTTACCTCTTGCAAAAAAAAGAAAAAAGAAAAAAGTTCATTTATTC 

661 ATTCTGTTTCTATATAGCAAAACTGAATGTCAAAAGTACCTTCTGTCCACACACACAAAA 

721 TCTGCATGTATTGGTTGGTGGTCCTGTCCCCTAAAGATCAAGCTACACATCAGTTTTACA 

781 ATATAAATACTTGTACTACCTTAATGATAAGGACTCCTTA 
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Figure 19: The sequence of the human CALM 1 cDNA with predicted 
reading frame. The sequence initiates with a run of eight CAG 
repeats (bold) in the 5' untranslated region of the cDNA. In the 
original CALM 1 clone (Wawrynczak and Perham, 1984) there was only 
one CAG reported. The underlined region of poly A+ within the 
sequence indicates where reverse transcription initiated. 
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d. Clone hbCAG8-54 

Clone hbCAG8-54 was sequenced and by Genbank search was found 

to have a sequence identical to the calmodulin 1 ( CALM 1) cDNA 

(Wawrynczak and Perham, 1984) . This was initially a puzzling 

result, considering that the original CALM I sequence had no CAG 

repeats. However, Figure 19 shows that the CAG repeat was at the 

immediate 5' end of the previously published sequence (Wawrynczak 

and Perham, 1984) . This led us to conclude that the CAG repeat 

was present in the 5' untranslated region of the CALM 1 cDNA but 

had not been previously described because the gene for CALM 1 had 

not been cloned and the transcriptional start site had not been 

mapped. Furthermore, clone hbCAG8-54 was generated by reverse 

transcription that initiated at an internal stretch of poly A that 

is interrupted with a single G (Figure 19). Rhyner et al. ( 1994) 

have since cloned the CALM 1 gene and mapped its transcriptional 

start site and the results of these two experiments have confirmed 

that there is a CAG repeat present in the 5' UTR of the CALM 1 

gene. 

Clone hbCAG8-54 was used as to probe a Human Multiple Tissue 

Northern blot. The results of this experiment are shown in Figure 

2 0. The CALM 1 gene generates three transcripts of 4 . O kb, 1. 5 

kb, and O . 8 kb . Ni et al. ( 1992) have previously shown that the 

rat CALM 1 gene generates two transcripts by the use of 

alternative polyadenylation sites. It was hypothesized that an 
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Figure 20: CALM 1 on Human Multiple Tissue Northern Blot. The 
CALM 1 gene is expressed in all tissues examined with the 4.0 kb 
transcript expressed at the highest level in brain. The 4. 0 kb 
and 1.4 kb transcripts are known to originate from the CALM 1 gene 
(Rhyner et al., 1994) but the 0. 8 kb transcript is suspected to 
result from cross-hybridization of the CALM 1 probe with either 
the CALM2 or CALM 3 transcript. 
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a variety of tissues. Over 100 clones, referred to as JRR (Jurkat 

Random RACE), were initially isolated and subject to sequence tag 

analysis. The clones isolated in this experiment are summarized 

in Table 5. Out of an initial pool of 100 clones the 44 listed in 

Table 5 were found to be informative. The remaining clones are 

comprised of duplicates and a small number of cloning artifacts. 

Additionally, a group of approximately 30 clones is still in the 

process of being analyzed. Notably, several clones were isolated 

that were shown to be identical to previously isolated cDNA's that 

are known to contain (CAG) N repeats. This observation served as 

confirmation that the technique was operating as designed. 

Additionally, the CALM 1 cDNA was isolated by this approach, 

confirming the 3' RACE results. More detailed description of 

several of the clones will be covered in the following sections. 

1. Clone JRR3 

Clone JRR3 was isolated and subject to sequence analysis. 

GenBank search revealed that the 82 bp clone was identical to a 

region of exon 2 of the c-myc proto-oncogene. This region of c-

myc has been shown to contain a stretch of six CAG repeats that 

code for a stretch of glutamines {Watson et al., 1983) It is 

interesting that our eight repeat primer was able to amplify from 

a six repeat region and may indicate polymorphism at this site. 
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2. Clone JRRlO 

Clone JRRl0 was subjected to DNA sequence analysis with the 

resulting sequence utilized in a GenBank search. The results of 

this search revealed that the 230 bp insert of JRRl0 was identical 

to a region in the 5' portion of the TATA binding protein (TBP) 

cDNA (Hoffmann et al., 1990). The TBP protein is known to contain 

a large polyglutamine region that is encoded by this CAG repeat 

region and as indicated in Table 5 this region of the TEP gene is 

known to be polymorphic showing a range of 25 to 42 repeats 

(Polymeropoulos et al., 1991; Gostout et al., 1993). Further 

analysis of the JRR clones revealed that a separate clone isolated 

(JRR47) is identical to JRRl0. 

3. Clone JRR15 

Clone JRR15 was subjected to sequence analysis with the 

resulting sequence utilized in a GenBank search. The results of 

the search revealed that JRR15 is identical to expressed sequence 

tag (EST) 27Hl2 (GenBank accession Zl5569). Interestingly, the 

sequence of EST 27H12 showed only three CAG repeats. This result 

could be accounted for if this repeat region is polymorphic and 

the template cDNA from Jurkat cells contained a larger number of 

repeats. 
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4. Clone JRR17 

Clone JRR17 was subjected to DNA sequence analysis and 

GenBank search with this sequence revealed that the clone was 

identical to a human sequenced open reading frame (GenBank 

accession 94288). This open reading frame apparently is the human 

homologue to the rat Noppl40 gene and contains 9 repeats of CAG 

interrupted with a TAG. This region is in the 5' portion of the 

cDNA and is predicted to code for a stretch of poly-serine. In 

the rat, the Noppl40 protein has been shown to be a nucleolar 

phosphoprotein involved in nuclear protein import (Meier and 

Blobel, 1990). 

5. Clone JRR30 

Clone JRR30 was analyzed by DNA sequencing and the resulting 

sequence was utilized in a GenBank search. The results of the 

search showed that a region of the clone was similar to the 5' 

translated region of the D. melanogaster BarHl homeobox gene. 

Subsequent translation of one of the reading frames of JRR30 

results in a peptide which has three regions of similarity to the 
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BarHl 1 M K D s M s I L T Q T p s E p NAAH p Q L H H H L s T L Q 

JRR30 1 - - - - - - - - - - - - - - - A A A L p Q M p L F E N F y F 

BarHl 31 - - Q Q H H Q H H L H y G L Q p AAV A H s I H s T T T M s 
JRR30 16 M p Q Q p s Q Q p Q D F G L Q p A G P L G Q s H L A H H s M 

BarHl 59 s G G 

JRR30 46 A p y 

Figure 21: Comparison of a region of JRR30 to the D. melanogaster 
BarHl amino acid sequence. A BLAST search (Altschul et al., i990) 
discovered a region of similarity between clone JRR30 and the 
Drosophila homeobox gene BarHl. A comparison of a putative reading 
frame of JRR30 with the N-terminus of the BarHl protein is shown. 
The boxes indicate areas with a high degree of similarity. 
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Figure 22: JRR30 on Human Multiple Tissue Northern Blot. A Human 
Multiple Tissue Northern Blot was probed with the JRR30 cDNA. The 
results of this experiment are shown and indicate that the clone 
detects an -8. 0 kb transcript that is produced in all tissues 
examined. 
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N-terminus of the BarHl gene product (Figure 21). Over a 31 amino 

acid region the two sequences are 3 8% ::_dentical and 52% similar. 

This region of similarity is small but may indicate the 

conservation of a particular domain between humans and D. 

melanogaster. However, without the entire JRR30 cDNA sequence it 

is not possible to conclusively predict the reading frame for this 

fragment. 

Expression analysis of the JRR3 O gene was carried out by 

hybridizing the radioactively labeled fragment to a Human Multiple 

Tissue Northern blot (Clontech) . The JRR30 fragment detects an 

-8. 0 kb transcript that is expressed in all tissues examined. 

Additionally, there were several smaller weakly hybridizing 

transcripts that may be indicative of a gene family. 

6. Clone JRR64 

Clone JRR64 was isolated and subjected to DNA sequence 

analysis. GenBank search with this sequence revealed that clone 

JRR64 is identical to the short transcribed sequence (STS) UT1532. 

STS UT1532 has been shown to map to chromosome 15 and it contains 

an imperfect repeat of six CAG's interrupted with the dinucleotide 

sequence CG (GenBank accession L16404). Aside from the 

chromosomal assignment nothing is known regarding STS UT1532. 
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7. Novel JRR Clones 

The results of GenBank searches with all of the JRR clones 

analyzed are shown in Table 5. The GenBank search results 

indicate that of the 44 clones listed, 34 show no significant 

similarity to any sequences in GenBank. This collection of 34 

novel (CAG)N containing cDNA fragments along with several of the 

novel clones described above provide a pool of useful molecular 

reagents. These clones provide the basis for future experiments 

aimed at the molecular dissection of trinucleotide repeat 

expansion disorders. 



CHAPTER V 

DISCUSSION 

It is now apparent that trinucleotide repeat expansion is a 

major type of mutagenesis leading to human diseases. The 

expansion of these GC rich repeats located within transcribed 

sequences is now known to lead to two separate classes of 

diseases. Class I disorders are the late onset neurological 

disorders caused by expansion of (CAG)N repeats that are in 

translated regions of the respective genes. Class I I disorders 

are caused by expansion of GC rich repeats present in untranslated 

regions of the 3 respective genes. 

The experimental results described in this dissertation 

clearly show that rapid amplification of cDNA ends (RACE) is a 

useful technique for the isolation of trinucleotide repeat 

containing cDNA' s. The 3' RACE experiments indicate that there 

appear to be a small subset of mRNA's that contain a (CAG)N repeat 

located near the 3' end. The CAG4 oligo experiment indicates that 

there are a number of novel transcripts that would appear to 

contain (CAG)N repeats within 3' untranslated regions. As an 

example, the clone CAG4-6 is identical to the 3' 381 bp of the 

94 
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human Gas cDNA. Also, the length of the sequence of clone CAG4-3 

is sufficient to contain the repeat within a translated region of 

the respective transcript. The size of the remaining clones would 

predict that the repeat resides in the 3' UTR of the respective 

transcripts. 

The CAGB 3' RACE experiments provided nine different clones. 

The sequences of six clones did not identify any previously 

isolated genes, while CAGB-5, CAGB-16, and hbCAGB-54 were found to 

encode SRP14, p9-ssbp, and calmodulin 1, respectively. As a 

result of this work the coding sequences for CAGB-6 and CAGB-16 

(p9-ssbp) have been elucidated and provide the basis for further 

study into their respective cellular functions. 

Clone CAGB-6 shows no strong similarity to any known genes 

yet the protein contains over 10% arginine and serine, 

respectively. Similarly, the S/R proteins that function in RNA 

splicing are known to contain high amounts of arginine and serine. 

However, the regions are generally made up of Arg-Ser dipeptide 

repeats, which is not observed in CAGB-6. Additionally, CAGB-6 

does not appear to show a consensus RNA recognition motif which is 

another characteristic of S/R proteins. From the available data 

it would appear that CAGB-6 does not belong to the S/R family of 

proteins. 

The other interesting observation of CAGB-6 is the stability 

of the CAG repeat. On an evolutionary basis one may speculate 
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that the fact that the repeat does not code for the hydrophilic 

polyglutamine but instead the more hydrophobic serine leads to 

selection against variability within the repeat. This hypothesis 

is in agreement with the suggestion of Green and Wang (1994) that 

(CAG)N sequences are an evolutionary mechanism for proteins to add 

amino acids. 

Green and Wang (1994) have proposed that (CAG)N trinucleotide 

repeats function as an evolutionary mechanism for protein 

sequences to add amino acids. It is postulated that stretches of 

polyglutamine could be added to proteins and allowing for normal 

spontaneous mutations the region could mutate under selective 

pressure to other sequences. Green and Wang ( 19 94) state that 

protein structure is better able to withstand substitution by 

hydrophilic amino acids than hydrophobic residues and would 

thereby generate a selective advantage for (CAG)N sequences to 

code for polyglutamine. Consequently, a corollary of this 

hypothesis would predict the existence of selective pressure 

against the polymorphic variation of hydrophobic amino acids. 

Additionally, once a stretch of polyglutamine has been inserted 

into a protein it could expand by the same mechanism that is 

functioning in the diseases. Therefore, proteins would not only 

be able to try out new sequences they would also be able to 

increase in size. The critical point in this hypothesis is that 

the expansion always occurs in multiples of three and would 

therefore retain the open reading frame. 
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Clone CAG8-16 encodes the human homologue of a rodent single

st:car:ded ::JNA binding protein, as revealed by GenBank search. 

Although CAG8-16 codes for a protein of known biochemical funct~on 

(Ballard et al., 1988) the cellular role of the ssbp is unclear. 

A plausible hypothesis is that the protein is involved in DNA 

synthesis which would then include cellular division, DNA repair, 

and recombinational repair. However, all of this is speculation 

without the aid of further experimental data. Another question to 

be answered is whether the human p9-ssbp protein is 

proteolytically processed in a manner similar to the mouse 

protein. This proteolytic processing provides a point of cellular 

regulation whereby the protein is synthesized in an inactive form 

and could potentially be sequestered until it is needed. Finally, 

similar to the CAG8-6 protein, the (CAG) 6 repeat present in the 

p9-ssbp is coded as serine and would therefore be predicted to 

show little or no polymorphism among the population due to the 

inability of the protein structure to withstand variable tracts of 

serine. 

Another result of the CAG8 3' RACE experiments as mentioned 

above was the isolation of the CALM 1 cDNA. Initially, this was a 

surprising result due to the absence of a (CAG) N repeat in the 

reported CALM 1 sequence. Now that this finding has been 

confirmed by the cloning of CALM 1 gene (Rhyner et al., 1994) and 

by the re- isolation of a fragment of CALM 1 by the Random RACE 

method the next logical question is what is the nature of the CAG 
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repeat in the normal population. Strehler and coworkers are 

currently addressing this question (personal communication). This 

case may provide an interesting comparison since the CAG repeat i~ 

CALM 1 is located within the 5' UTR while the CAG repeats of class 

I disorders are all located within translated regions. 

Furthermore, a larger sampling of genes containing CAG repeats in 

untranslated regions should be examined to investigate any 

possible differences in stability of the sequence depending on its 

location within a gene. 

The Random RACE technique was the last set of experiments 

described and the results illustrate that the technique is well 

suited to the isolation of trinucleotide repeat containing cDNA 

fragments. Another possible benefit of the technique is the 

possible application to experimental situations where only a 

partial sequence of a unique clone is known and obtaining a larger 

cDNA clone is the goal. Al though no direct evidence of the 

technique being applicable to such situations is presented here it 

would seem to be a technically feasible application of the 

methodology. 

The majority of the cDNA clones isolated by the Random RACE 

technique are novel and therefore generate a library of clones to 

be utilized in the examination of genetic diseases potentially 

caused by the expansion of (CAG)N sequences in translated regions. 

Several of the clones, in particular JRR30, show some slight 

degree of similarity to known genes. The small region of 
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similarity between JRR30 and the D. melanogaster BarHl gene may 

i:--:i:cate the conservation of a functionally important peptide 

domain. BarHl is a known homoebox gene that is required for 

proper eye development in the fruit fly. The region of similarity 

to JRR30 does not include the homeobox domain and the presence of 

such a domain in the JRR30 cDNA must await the isolation of this 

cDNA. Furthermore, the cloning of this cDNA would provide the 

number of CAG repeats present in the gene and give the necessary 

sequences to synthesize oligonucleotides to examine the possible 

polymorphic nature of the repeat. 

The progress on diseases of trinucleotide expansion has been 

a surprising result of modern molecular biology. SBMA was 

described in 1991 as the first disorder and the other six have 

been discovered in the last three years. The association of these 

types of disorders with clinical variability and genetic 

anticipation now provides a genetic basis for screening new 

disorders to examine them for the possibility of trinucleotide 

repeat expansion. This type of approach has already yielded the 

molecular dissection of both SCAl and DRPLA (Orr et al., 1993; 

Koide et al., 1994; Nagafuchi et al., 1994). The combined effort 

of Li et al. (1993), Koide and coworkers (1994), and Nagafuchi and 

coworkers (1994) illustrates the potential benefits of random 

cloning of cDNA' s containing trinucleotide repeats. The clones 

isolated as a result of this dissertation research provide a set 

of cDNA fragments that contain ( CAG) N repeats that have a high 
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probability of being present in translated regions. Given the 

involvement of the expansion of (CAG)N sequences in late onset 

neurological disorders it may be beneficial to screen similar late 

onset neurological diseases with all of the novel CAG8 and JRR 

clones. 

Possibilities for this type of application already exist as 

Zoghbi (personal communication) has reported the existence of 

numerous late onset ataxias which do not fit into the categories 

of SCAl, Machado-Joseph disease (SCA2), or SCA3. These 

molecularly undefined disorders show clinical variability and 

anticipation yet are not present in large enough pedigrees to 

allow for linkage analysis. Furthermore, anticipation has been 

reported in familial schizophrenia and may indicate that expansion 

of trinucleotide repeats is involved as a causative factor 

(Bassett and Honer, 1994) . Overall, it seems a very plausible 

hypothesis that more disorders caused by expansion of 

trinucleotide repeats are going to be described in the future and 

it is expected that some of the cDNA fragments isolated during the 

course of this work will provide useful molecular reagents for 

analysis of these disorders. 

Mechanistically, one of the more interesting and challenging 

tenets of trinucleotide repeat expansion is that it has only been 

observed in humans. The polymorphic variation of (CAG) N repeats 

has been observed in diverse species as far down the evolutionary 

ladder as yeast (Tautz, 1989). However, transgenic mice carrying 
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an expanded allele of the androgen receptor 1) show no phenotype 

similar to SBMA and 2) the expanded allele has been observed to be 

stable through 4 0 meiosis (K. Fishbeck, personal communication) . 

This point indicates that humans have some trans acting factor 

which is involved in the expansion of these repeats. 

In a related research direction work in both DM and FRAXA has 

indicated that by haplotype analysis both disorders show a strong 

founder effect ( Imbert et al., 1993; Neville et al., 1994; Smits 

etal., 1993). Similarly, analysis of new mutations in HD has 

revealed an apparent premutation range which may be made up of a 

subset of chromosomes that are predisposed to expansion (Goldberg 

et al., 1993; Myers et al., 1993). This work indicates that in 

addition to required trans acting factors that specific diseases 

may have predisposing cis acting regions that lead to instability. 

This leads to the speculation that expansion of a repetitive 

element into the disease range may require some yet unknown 

interaction between these cis and trans factors. 

In a related matter it appears for the two classes of 

diseases there may be a sex of parent influence on the instability 

of the repetitive element. Disease alleles of all of the class I 

disorders have been demonstrated to have a higher degree of 

instability when paternally inherited (Biancalana et al., 1992; 

Chung et al., 1993; Telenius et al., 1993; Koide et al., 1994) . 

This is in contrast to the class II disorders where investigations 

of DM and FRAXA have shown enhanced meiotic instability as a 
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result of maternal inheritance of a disease allele (Tsilfidis et 

al., 1992; Lavedan et al., 1993; Heitz et al., 1992) . This data 

may suggest a different mechanism of expansion depending on the 

sequence and location of the trinucleotide repeat. 

The search for the enzymatic mechanism of the expansion of 

trinucleotide repeats is intensely studied. Several hypotheses 

have been put forth to account for expansion of trinucleotide 

repeats including unequal crossing over (unequal reciprocal 

exchange of information) (Sturtevant, 1925), gene conversion (non

reciprocal exchange of information), and replicative slippage 

(O'Hoy et al., 1993; Fu et al., 1991; Strand et al., 1993; Kunkel, 

1993; and Figure 23). The hypothesis that the expansion is the 

result of unequal crossing over was originally proposed as an 

explanation of the polymorphic nature of dinucleotide repeats 

(Levinson and Gutman, 1987). However, analysis of the genomic 

regions surrounding expanded trinucleotide repeats has revealed no 

alteration of flanking markers making a recombinational mechanism 

such as unequal crossing over unlikely (Fu et al., 1992; HD 

Collaborative Research Group, 1993). The involvement of a 

possible gene conversion mechanism has been given some attention 

following the work of O'Hoy et al. (1993) who reported a case 

where a daughter of a DM positive male showed two markers within a 

7.2 kb region that were derived from the father's unaffected 

chromosome while two different markers within this 7.2 kb region 

were from the affected chromosome. Additional marker analysis 
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showed that the paternally derived chromosome was the abnormal DM 

cI:..1. ornosorne. Interestingly, the child's DM gene contained only 13 

CTG repeats that had apparently been converted from the father's 

normal chromosome. Given that this report was a rare case where a 

contraction of repeat number is observed and due to the alteration 

of flanking markers it would seem that this putative gene 

conversion event is best described as an isolated case rather than 

a general mechanism for the expansion of trinucleotide repeats. 

The mechanism that is most often referred to as the probable 

cause of trinucleotide repeat expansion is that of replicative 

slippage. This is best described as a slippage of either the 

newly synthesized or the template strand during polymerization 

that results in expansion or contraction of the replicated 

sequence depending on the strand that has slipped (Figure 23) . 

This model provides for a sound explanation for small expansions 

and for the polymorphic nature of the repeats in the normal 

population however, further description is necessary to explain 

the observance of large expansions in both FRAXA and DM. 

One adaptation of the theory has been put forth by Richards 

and Sutherland ( 1994) that is based on the repeat region being 

coincident with an Okazaki fragment during replication. The 

authors propose that as repeat lengths pass a threshold they would 

move into a size range larger than the average size of an Okazaki 

fragment and would thereby allow for the fragment to be unanchored 

to any unique sequence. This would result in the unregulated 
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slippage during replication that could explain the observation of 

very large expansions. 

Similarly, Fu et al. (1991) have proposed that the GC rich 

regions of these repeats leads to replicative termination and 

reinitiation within the repeat sequences. This would then give 

multiple incomplete strands the opportunity to mispair before the 

replicative process is complete. In support of the replicative 

slippage model Schlotterer and Tautz ( 1992) have shown in vitro 

reactions utilizing a 15 bp repeat template and 9 bp repeet primer 

with E. coli DNA polymerase I gives rise to larger products 

indicative of replicative slippage. Perhaps even more interesting 

is the finding that only those template primer pairs that were at 

least 2/3 GC were able to realign in an integral of three. 

Utilizing template:primer pairs that were 2/3 AT resulted in 

slippage by integral values of two, three and four. 'I'his data 

would suggest that expansion of trinucleotide repeats within 

translated regions will be confined to GC rich repeats due to the 

fact that slippage of AT rich repeats could result in frameshift 

mutations. Expansion of AT rich sequences located in untranslated 

sequences could still be a possibility. 

Finally, Green (1993) has proposed an attractive mechanism to 

specifically explain the cellular pathology of the four class r 

disorders whose (CAG)N repeats code for polyglutamine. Green 
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Figure 23: Schematic of Replicative Slippage. The diagram 
illustrates the model proposed for replicative slippage. The 
arrows represent a trinucleotide repeat unit and step A is the 
starting template. In step B the primer strand has slipped by one 
repeat unit followed by subsequent replication in step C. If the 
primer strand is not repaired following this slippage/replication 
cycle in the next replicative cycle one of the daughter products 
will have increase by one repeat unit. It is assumed that the 
slippage could occur in multiple repeat units. 
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( 1993) points out that the involucrin protein contains a high 

percentage of CAG repeats or similar codons that have a different 

base in the third position. Consequently, the protein contains 

one region of 18 glutamines and another of six glutamines. During 

keratinocyte differentiation the involucrin protein is cross

linked by a glutamine-lysine linkage to other cellular proteins by 

a transglutaminase. Green proposes that the protein products of 

the four diseases HD, SBMA, SCAl, and DRPLA could be poor 

substrates for transglutaminase, even in normal individuals. As 

the CAG repeats expand in the four class I disorders, the proteins 

could become improved substrates for the transglutaminase, which 

is known to be expressed in neural cells. This would allow the 

disease proteins to become cross-linked to lysine donor proteins 

and generate aggregates with proteins that do not generally 

interact with the respective disease proteins. Al though the 

aggregates are believed to be proteolyzed, the dipeptide cross

link can not be degraded and would accumulate within the cell. 

Additionally, several possibilities are discussed for the neuronal 

specificity. These include 1) transglutaminases are known to be 

important in synaptic transmission, 2) neurons are less able to 

degrade transglutaminase aggregates, 3) there is no renewal of 

neurons to compensate for cell death, and 4) the transglutaminase 

is activated by Ca2
+ which is present in high levels in neurons. 

The hypothesis presented by Green (1993) accounts for many of the 
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characteristics of the pathology of the four class I disorders 

including the gradual progression/late onset and neuronal 

specificity. Furthermore, Green indicates that this hypothesis 

could be tested utilizing immunocytochemistry with antibodies that 

recognize the four class I proteins and the dipeptide linkage 

generated by the transglutaminase. 

Overall, it is now known that trinucleotide repeat expansion 

is a unique and important class of mutagenesis leading to human 

disease. Given the short time in which the seven known disorders 

have been described and the existence of other molecularly 

undefined disorders with similar genetic characteristics, it is 

expected that many more diseases will be associated with 

trinucleotide repeat expansion. Given this, it is hoped that the 

cDNA fragments isolated as a result of this dissertation research 

will contribute to the molecular characterization of a number of 

these disorders. 
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