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Abstract—Most of the existing video storage systems rely on
offline processing to support the feature-based indexing on video
streams. The feature-based indexing technique provides an effec-
tive way for users to search video content through visual features,
such as object categories (e.g., cars and persons). However,
due to the reliance on offline processing, video streams along
with their captured features cannot be searchable immediately
after video streams are recorded. According to our investigation,
buffering and storing live video steams are more time-consuming
than the YOLO v3 object detector. Such observation motivates
us to propose a real-time feature indexing (RTFI) system to
enable instantaneous feature-based indexing on live video streams
after video streams are captured and processed through object
detectors. RTFI achieves its real-time goal via incorporating
the novel design of metadata structure and data placement,
the capability of modern object detector (i.e., YOLO v3), and
the deduplication techniques to avoid storing repetitive video
content. Notably, RTFI is the first system design for realizing
real-time feature-based indexing on live video streams. RTFI is
implemented on a Linux server and can improve the system
throughput by upto 10.60x, compared with the base system
without the proposed design. In addition, RTFI is able to make
the video content searchable within 20 milliseconds for 10 live
video streams after the video content is received by the proposed
system, excluding the network transfer latency.

Index Terms—object detection, data storage, real-time, feature-
based indexing

I. INTRODUCTION

Feature-based indexing techniques have been widely re-
garded as an efficient method to access video storage systems
and allow users to search the video content through visual
features, including object categories (e.g., cars and persons),
color, or shape [20]. To support feature-based indexing, video
storage systems can be equipped with an object detector
to identify and label video streams with identified object
categories. Most of existing video storage systems use offline
processing to perform object detection after the video is
recorded. This offline approach also prevents video storage
systems from enabling instantaneous feature-based indexing
on live video streams. The ability to perform instantaneous

feature-based indexing has become more and more feasible,
as modern object detectors are capable of identifying objects in
near real-time with the growing speed and accuracy. However,
the storage requirements for supporting instantaneous feature-
based indexing receive much less attention. Additionally, pre-
vious study [7] also suggests that the storage problem could
become a major bottleneck as the size of video data continues
to grow. Our experiment suggests that buffering and storing
video streams consume more time than an object detector (i.e.,
YOLO v3). To resolve above issues, this study presents a
real-time feature indexing (RTFI) system to enable feature-
based indexing on live video streams. Please note that the term
“real-time” means that the latency between capturing the video
content and making it searchable within only 20 milliseconds
on average and shorter than the interval between two frames
(i.e., 33 ms). The main goal of this study is to support real-
time feature indexing by enhancing the efficiency of storing
and indexing live video streams for bridging the gap between
modern object detectors and storage systems. The technical
difficulty of this study lies in how to make the live video
streams searchable with features in real-time after the video
content is received by the proposed system.

Feature-based indexing, also known as content-based in-
dexing, can search video content conveniently via features,
such object categories, within the videos. For instance, after
the video content is processed through an object detector,
feature-based indexing allows users to search all video frames
consisting of cars in video clips. Thus, users do not need
to go through the whole video clips to find video frames
consisting of cars. To support feature-based indexing, various
designs have been proposed. For instance, Lyer et al. [8]
proposed the auto-annotation of videos. However, the design
goals of previous studies are to enable efficient offline feature-
based indexing after the video clip is captured and stored.
For example, previous studies [8, 10] mainly rely on the
conventional database or file systems directly. The storage
system designs, including the design of metadata structure and



data placement, to enable instantaneous feature-based indexing
for live video streams have received much less attention.

The need for supporting instantaneous feature-based index-
ing for live video streams has grown rapidly, owing to the
growing speed and accuracy of modern object detectors. For
instance, convolution neural networks (CNNs)-based object
detection has been widely regarded as an effective method to
identify objects. Various CNN-based object detectors, such as
Faster-RCNN [16] and YOLO [14], have been investigated.
Among these neural network designs, YOLO has gained
popularity since 2016 due to its high speed and has released
its third version [15] in 2018. YOLO v3 has improved on
its previous accuracy by 1.5x and maintained the speed of
detection around 20 FPS. With these improvements, YOLO
v3 can preform real-time object detection with its high speed
and has been used in several fields such as self-driving cars [6],
surveillance systems [5], and robotics [19]. Meanwhile, to
achieve low latency in object detection, numerous studies have
also been proposed. For example, Luo et al. [13] propose
a scheduler network to formulate the object detector prob-
lem as a sequential decision problem. Most of the previous
studies focused on improving the efficiency and performance
of object detector; the storage requirements of storing and
indexing video content with their identified object categories
are neglected.

This paper presents a real-time feature indexing (RTFI)
system to support image and video retrieval with specified
object categories in a short latency after the video is captured.
Notably, object categories are referred to as features in the rest
of this paper. The proposed RTFI system includes three major
components: (1) similarity deduplication module, (2) feature-
aware storage allocator, and (3) feature-as-metadata indexing
scheme. In the proposed system, live video streams can be
captured through public surveillance cameras and arrive on the
proposed system through network connections. These video
streams are then passed through a similarity deduplication
module to skip video frames that have high similarity to
the previous frames for avoiding repeatedly processing and
storing similar frames. Next, the deduplicated video content
is passed through the YOLOv3 object detector to extract a set
of predefined objects (e.g. cars and persons). Note that this
study refers to YOLOv3 as the object detector for retaining
the excellence of previous studies and focus on the storage
system design. Next, to facilitate the read performance of
video frames with different features, video frames containing
the same feature are stored on the adjacent storage space
for enhancing the spatial locality and reduce access latency.
Finally, to achieve the goal of lower latency retrieval, the
feature-as-metadata indexing scheme is included to search
video with certain features with a short latency. The proposed
system is implemented on a Linux v4.15 server and tested
with 10 live video streams. We then measure the time interval
between a video frame is received by RTFI and a video

frame is stored with its identified object categories. Evaluation
results show that the proposed RTFI could improve the system
throughput by upto 10.60x, compared with the base system
without the proposed design.

The contributions of this study can be listed as follows.
• This study is a pioneer system design proposed to enable

efficient feature indexing based on object detection for
live video streams in real-time.

• The proposed RTFI boosts the efficiency of feature-based
indexing on live video streams via eliminating frames
with high similarity, allocating storage space with feature-
awareness, and managing stored video frames through
identified object types.

• Experimental results show that the proposed RTFI could
achieve upto 70 frame per second (FPS) with multi-
process implementation and upto 10.60x system through-
put improvement when compared with the base system.

The rest of this paper is organized as follows. Section II
discusses the background and the motivation for conducting
this research. Then, Section III describes the details of the pro-
posed RTFI system. Next, Section IV reports the experimental
results. Finally, Section V concludes this paper.

II. BACKGROUND AND OBSERVATION

A. Video Storage for Feature-based Indexing

Most of the existing feature-based indexing designs rely
on the conventional database and file systems for storing the
video content and their features. However, these database and
file systems are usually not optimized for storing video clips.
For instance, the default file system for the Linux system
is a block-based file system, which has been proven less
suitable for unstructured data, such as videos and images [18].
Meanwhile, object storage stores the data content and its
metadata as an object and is considered to be more suitable for
unstructured data. In other words, most of the existing feature-
based indexing designs do not consider the characteristics of
the stored video content and the organization of feature entries
during the design phase.

In addition, previous works mainly focused on analyzing the
performance difference between block-based file systems and
databases without proposing a storage design to support the
feature-based indexing within a large dataset. For instance,
Lim et al. [11] compared the performance of CNN-based
object detectors when the dataset is stored in block-based
file systems. According to their investigations, storing datasets
directly on block-based file systems can result in up to 17
times slower speed for the CNN-based object detector. This is
because the metadata operations of block-based file systems
require long processing time to access the storage devices.
Nevertheless, the efficiency problem of feature-based indexing
for large datasets is still neglected. Such observation motivates
us to explore the possibility of enabling a real-time feature
indexing system via object storage and database systems.



B. CNN-based Object Detection
In the field of object detection, the convolution neural

network (CNN) has gained its popularity rapidly with its huge
success and high efficiency in the field of image processing.
CNN is typically composed of an input layer, convolutional
layers, pooling layers, fully-connected layers, and an output
layer. Within each layer, there are one or multiple neurons,
which are connected to neurons in the next layer. The models
of CNN-based object detection can be divided into two cate-
gories. One of them is known as the two-stage model, which
utilizes the region proposal method to perform the region of in-
terest (ROI) selection during the detection. One example of the
region-proposal-based CNNs is Faster-RCNN [16]. However,
the two-stage model is less preferable for low latency object
detection due to their relatively longer inference latency. For
instance, as summarized in Table I, Fast-RCNN has the longest
latency for performing inference on one single image. Note
that the term “inference” refers to perform object detection
with the trained CNN model.

On the other hand, another category of CNN-based ob-
ject detection is the one-stage models, such as YOLO and
RetinaNet [12]. Instead of using the region proposal method,
the one-stage models directly detect the objects. For instance,
YOLO simultaneously predicts multiple bounding boxes and
classification class probabilities. On the other hand, RetinaNet
uses ResNet for deep feature extraction and feature pyramid
network for constructing a multi-scale feature pyramid that is
used for detection.

TABLE I
COMPARISON OF CNN-BASED OBJECT DETECTION [15].

Mode mAP Inference Latency (ms)

RetinaNet-50-500 32.5 73

RetinaNet-101-500 34.4 90

RetinaNet-101-800 37.8 198

Faster R-CNN+++ 34.9 3360

YOLOv3 416× 416 31.0 29

YOLOv3 608× 608 33.0 51

As shown in the Table I, RetinaNet-101-800, which is built
on a ResNet-101 feature extractor with an input shape of
800 × 800, can achieve the highest accuracy with a slightly
longer latency than YOLO v3. On the other hand, YOLO v3
model with a 608 × 608 input layer can achieve the mean
average precision (mAP) of 33.0, which is comparable to that
of RetinaNet-101-800, while the inference latency of YOLOv3
is almost 4 times shorter than that of RetinaNet-101-800. mAP
is a metric in measuring the accuracy of object detectors and
the higher mAP means the object detector is more accurate.
Meanwhile, although two-stage object detection methods, such
as Faster R-CNN, can achieve slightly higher accuracy than

YOLOv3, their inference latency is much longer than that of
YOLOv3. Therefore, the YOLOv3 is chosen as the object
detector of this study. Although both the accuracy and infer-
ence speed of CNN-based object detector have been studied
extensively, the data storage requirements for storing the huge
amount of feature-extracted video receives much less attention.

C. Observation

With the growing capability of object detectors, modern
video storage systems (i.e., automated surveillance system [4,
9, 17]) can identify the objects in each video frame accurately.
Nevertheless, due to the performance mismatch between ex-
isting block-based storage systems and CNN-based object de-
tection, the efficiency of storing and indexing video clips with
specified object categories after CNN inference is degraded.
In addition, most of the previous studies focus on improving
the efficiency and performance of CNN-based object detector
and few of them have looked into the design of enabling
efficient storing and indexing of video content with identified
features. To support storing and indexing live video streams
with their inference results, one viable option is to utilize
existing object storage and database systems directly. However,
the main challenge is that the hard disk drives can only sustain
a certain amount of write traffic per second. In other words,
after the maximum allowance of write traffic, the efficiency of
storing and indexing degrades drastically.

To study the latency of processing and storing live video
streams, a preliminary experiment has been conducted. The
composition of latency induced by buffering video streams
on storage, performing object detection with YOLO v3, and
storing video content with their identified object categories is
summarized in Figure 1. Notably, this experiment is conducted
on a MySQL-based database (i.e., Vitness [3]), an object stor-
age system (i.e., Minio [1]), and a solid-state drive (SSD) (see
Table II). Based on this configuration, the results suggested
that buffering and storing live video streams is actually more
time consuming than the YOLO v3 object detector.

Fig. 1. The composition of latency induced by each component
during performing object detection and storing the video
content with their identified object categories.



Fig. 2. The architecture of RTFI system, which includes the similarity deduplication module, object detector, feature-aware
storage allocator, and feature-as-metadata indexing scheme to enable instantaneous feature-indexing on live video streams.

Even though utilizing other storage devices with higher
write performance can partially resolve the performance issue,
the storage performance bottleneck remains as the data size
of live video streams grows. Storage performance bottleneck
prevents feature-based indexing from being real-time, owing to
the high latency of storage systems. Thus, the major technical
problem is how to provide efficient storing and indexing
on a large number of live video streams with low latency
after the video content is processed by CNN-based object
detectors. To resolve this issue, we propose the real-time
feature indexing (RTFI) system to efficiently conduct object
detection on incoming live video streams and make those video
clips searchable with identified object categories (e.g., persons
and cars) in an efficient manner with the focus on reducing
latency and redundancy.

III. REAL-TIME FEATURE INDEXING SYSTEM

A. Overview
To enhance the efficiency of storing and indexing live

video streams, the study presents a real-time feature indexing
(RTFI) system for performing object detection and making
the inference results searchable with a short latency. To the
best of our knowledge, this study is the first system design for
realizing real-time feature indexing on live video streams with
their identified object categories. The main methodology of
this study is to avoid passing similar video frames through a
CNN-based object detector and store video frames. Therefore,
the latency of storing a video frame and making it searchable
based on object detection results can be lowered. To enforce
the aforementioned main methodology, the proposed RTFI
system is composed of three main components along with the
YOLOv3 object detector.

The system architecture of the RTFI system can be summa-
rized as Figure 2. As shown in the figure, the RTFI system
first utilizes the similarity deduplication module to eliminate
those video frames that have high similarity when compared
with previously stored frames (see Section III-B). After the
similarity deduplication module discards similar frames, the
rest of the video frames are passed through the pre-trained

YOLOv3 object detector to extract the object detection results.
Next, the Minio object storage is utilized as the building block
along with the proposed feature-aware storage allocator for
reducing the retrieval latency of video clips with a specific
object category (see Section III-C). Notably, Minio is an object
storage server, which is suitable for storing unstructured data
such as images, videos, log files, archives, containers, etc.
Unlike files in a filesystem, objects are stored in flat structures
with no folders, directory, or hierarchy. Finally, the RTFI
system manages and indexes those stored video frames with
the feature-as-metadata indexing scheme (see Section III-D),
which is based on the Vitess database to facilitate the man-
agement of indexes with atomicity, consistency, isolation, and
durability (ACID) guarantees. Notably, directly applying Minio
and Vitess for indexing video content through object categories
is inefficient because the bottleneck of underlying storage
devices still exists. Therefore, the proposed RTFI system
aims to resolve the bottleneck of underlying storage devices
while enabling efficient video content retrieval with specified
features with the proposed components.

B. Similarity Deduplication Module

Because storing latency is an important factor in the pro-
posed RTFI system, having the ability to eliminate unnecessary
object detection latency and read/write latency of the storage
devices is critical. To eliminate those unnecessary latency, the
RTFI system employs the similarity deduplication module to
avoid processing video frames that have high similarity to the
previously stored frame. To compare two video frames, the
included module performs the structural similarity (SSIM) [21]
comparison to determine the similarity between two video
frames via the luminance, contrast intensity, and local structure
of the video frames. In this study, the output of the SSIM
method is normalized between 0 and 1 to represent the
similarity. If the output value is 1, it means that the two
input frames are identical. On the other hand, the output
value of 0 means that the two input frames are completely
different. Then, the SSIM output value is compared with a
predetermined threshold to determine whether the incoming



video frames should be sent to the object detector and to
be stored. Notably, the predetermined threshold is set to 0.85
based on our investigation.

In addition to eliminating the video frames with high
similarity, the included module also avoids skipping too many
frames by setting the storing interval between two stored
video frames of a video stream. The storing interval is set
to 0.1 seconds initially for each video stream and is adjusted
constantly according to the similarity patterns of each video
stream. The adjustment is required because the content of
video streams could show varying similarity results and uti-
lizing a single interval for all video streams is not ideal. For
example, video frames from a live video stream of a crowded
subway station show lower similarity than that of a live video
stream recording the top of a less-traveled mountain road.
Based on the similarity and interval check, the workflow of
the similarity deduplication module can be shown as Figure 3.

Fig. 3. The similarity deduplication module, which is utilized to
remove video frames with high similarity for avoid processing
the similar video frames for multiple times.

As shown in Figure 3, after the latest video frame is captured
from the live video streams, it is sent to the similarity check
component with the previous frame for the SSIM comparison.
If the output SSIM value is higher than the threshold +
(1− threshold)/2, it means that changes in these two video
frames are almost non-existent. threshold+(1−threshold)/2
gives the midpoint between 1 and the similarity threshold.
This study anticipates that such a midpoint value is necessary
for finding complete inactivity in video streams. In this case,
the included module performs the interval check based on its
existing interval value and increases the storing interval to
2 times of its existing value. By increasing the interval, the

included module can further avoid storing frames with high
similarity when the interval expires. On the other hand, if the
output SSIM value is smaller than the threshold, the incoming
frame will be sent to the object detector and the buffered
previous frame will be updated to the incoming frame. In
addition, the storing interval is reset to its initial value to avoid
losing video frames that could contain different objects.

Finally, the third case is that the SSIM value is larger than
threshold+(1−threshold)/2, but smaller than the threshold.
In the third case, if the elapsed time between the last stored
frame and the incoming frame is larger or equal to the storing
interval, the incoming frame will be sent to the object detector
and being stored. Otherwise, the incoming frame is ignored.

C. Feature-Aware Storage Allocator

As one of the primary goals of the proposed RTFI system is
to enable efficient video clip retrieval with specified features,
the feature-aware storage allocator is utilized to lower the
retrieval latency by storing video frames with similar features
on adjacent storage space. This is because, on hard disk
drives, the disk head movement greatly denominates the read
latency when retrieving stored data content. In other words,
the read latency can be greatly reduced if the data is stored on
continuous storage space. With this observation, the included
feature-aware storage allocator aims to store video frames of
the same object category in continuous storage space, known
as bucket. The concept of the included space allocator is
illustrated in Figure 4.

Fig. 4. The feature-aware storage allocator, in which videos are
stored as separate video frames in bucket of the same object
categories.

As shown in Figure 4, the storage space of the utilized
object storage is divided into multiple buckets, and each bucket
corresponds to one feature. Then, the object category with the
highest number of objects in each video frame is identified,
and the video frames are stored in the corresponding bucket of
the highest number of objects. For instance, if a video frame



consists of 3 persons and 5 cars, this video frame is stored
in the bucket of the car feature. On the other hand, the size
of each bucket can be adjusted according to the size of each
bucket by data migration. As video frames of the same feature
are stored in adjacent storage space, the retrieval latency can
be lowered when indexing a large number of video frames
through specified features.

Fig. 5. The entity relationship (ER) diagram, which is utilized to
facilitate the retrieval of video content that consists of certain
features (i.e., object category).

D. Feature-As-Metadata Indexing Scheme

To record the identified objects of each video frame and
index video frames through features, the proposed RTFI
system manages those stored video frames via their features
in the MySQL-based Vitess database. First, the video frame
table is created to record the basic information, including
its identification number, file name, timestamp, file size, and
the link to the stored frame in the object storage. Then, the
bounding box table is created to track objects in video frames
via bounding boxes, which is recorded in the table through
the coordinates in video frames, confidence value, and feature
labels. The confidence value refers to the probability that a
bounding box actually contains an object. Next, the relation
table is created to list all the detected features, such as cars
and persons. On the other hand, the supported features of
the utilized object detector are recorded in the features table.

In the end, the utilized feature-as-metadata indexing scheme
facilitates the management of stored video frames from the
perspective of features and enables users to query video clips
by specified features, timestamps, and locations. The above
structure can be summarized as an entity-relationship (ER)
diagram in Figure 5.

With the proposed scheme, for example, users can efficiently
search for images based on features listed in the features table,
acquire the bounding box information and image id from the
bounding box table, and retrieve the video frames through
the file link in the video frames table. Afterward, the video
frames with the specified features can be retrieved from the
object storage with the file link accordingly.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

Experiments are conducted to evaluate the effectiveness of
the proposed RTFI system regarding the number of frames that
can be processed and stored per second, the system throughput,
the storage space usage, and the number of identified objects.
In addition, because similarity checks are performed within the
proposed system to avoid unnecessary processing and lower
storage space usage, the suitable threshold of the similarity
check is also studied by considering the number of identified
objects and the latency of the proposed RTFI.

The datasets utilized within this evaluation include pub-
lic video datasets released by the Multiple Object Tracking
Benchmark [2] and self-recorded videos consisting of moving
peoples, cars, and stationary scenes. Those chosen videos
from the public dataset are composed of a large number
of constantly moving persons and cars. Self-recorded videos
can be categorized into two groups. The videos of the first
group are recorded on the streets with constantly moving cars
and persons, while videos in the second group are mostly
stationary scenes with little moving objects. Note that the
self-recorded videos are recorded at 1080p with 60 FPS and
will be made available after the acceptance of this paper.
These datasets are then utilized to evaluate the implemented
RTFI system on a Linux-based system, whose specification be
summarized as Table II. Finally, the evaluation results of the
RTFI system are compared with the base system consisting of
Minio object storage and Vitess database without the proposed
design. In the base system, the similarity deduplication module
and feature-aware storage allocator are not enabled. The base
system utilizes a single bucket to store all the capture videos
and follows the proposed feature-as-metadata indexing for
feature-based indexing.

B. Experimental Results

In our implementation, both the single and multiple pro-
cesses approaches are utilized to evaluate the proposed system
and be compared with the base system. The FPS comparison of
single and multiple processes implementations are summarized



(a) FPS with single process. (b) FPS with multiple process. (c) Throughput comparison

Fig. 6. Self-recorded dataset: Experimental results of frame per second (FPS) and throughput. The results show that the proposed
RTFI can effectively improve the system throughput by an average of 10.70x. For single process implementation, the FPS is
limited by the speed of object detection. Therefore, the FPS does not grow as the number of video streams increases. For
multiple process implementation, because 3 processes are utilized in this test, the FPS grows higher when the number of live
video streams is the multiples of 3.

(a) FPS with single process (b) FPS with multiple process (c) Throughput comparison

Fig. 7. Public dataset: Experimental results of frame per second (FPS) and throughput. The results show that the proposed RTFI
can effectively improve FPS by 3.49x on average with multiple process implementation, even when the number of camera
grows. In addition, the system throughput can also be improved by 2.43x.

TABLE II
SPECIFICATION OF THE EXPERIMENTAL COMPUTER.

Operating System Linux kernel 4.15.0-52-generic
CPU Intel CPU E5-2623 v3 @ 3.00GHz
GPU Nvidia Titan X (Pascal) 12GB memory
RAM 32GB DDR4
Disk Samsung SSD 850 EVO 1TB

in Figures 6 and 7 for the self-recorded and public datasets,
respectively. As shown in Figures 6(a) and 7(a), the proposed
RTFI can effectively achieve an average of 33 and 13 FPS
for the self-recorded and public video datasets with single
process implementation. The performance difference between
these two datasets can be attributed to the latency difference
of object detection and storing because public video datasets
have more objects per frame.

As shown in Figures 6(b) and 7(b), the proposed RTFI sys-
tem can improve the number of processed frames per second
by an average of 10.60x and 3.49x for the self-recorded and
public datasets with the multiple processes implementation.
In particular, the multi-process implementation can achieve
up to 70 FPS for 10 live video streams and realize the goal
of processing and storing video content with their identified
object categories in real-time. In addition, the proposed system
can also maintain almost identical FPS as the number of
live video streams grows. Meanwhile, with the multi-process
implementation, RTFI can achieve an average of 49 FPS for
those investigated datasets. In other words, RTFI can make a
video frame searchable with the identified object categories
within 20 milliseconds. In the multi-process implementation,
3 processes are initialized to process and store the incoming
live video streams. Notably, utilizing 3 processes also results
in higher FPS when the number of live video streams is the
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Fig. 8. The comparison of the number of identified objects and latency with different similarity check thresholds. The average
results suggests that 0.85 is a suit threshold for balancing between the latency and the number of identified objects.
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Fig. 9. Latency comparison with different numbers of video streams. The results show that the latency growth of the proposed
RTFI is much smaller than that of the base system.

multiples of 3. From the above results, it can be seen that
directly utilizing the base system composed of Minio and Vitess
without the proposed design can not effectively achieve the
design goal of this study.

In addition to the number of frames processed per second,
the throughput of both the RTFI and base systems are also
given under the single and multiple processes implementation.
The throughput comparison is given in Figures 6(c) and 7(c)
for the two utilized datasets. For the self-recorded dataset, the
proposed RTFI system can effectively improve the throughput
by 4.39x and 10.70x on average for single and multiple pro-
cesses implementations. For the public dataset, the throughput
improvements are 0.98x and 2.43x for single and multiple pro-
cesses implementations. In summary, the average throughput
improvement for all tested datasets is 6.56x on average with
multiple processes implementations. Above results show that

the proposed system achieves positive improvements in both
the FPS and storage throughput with its included components.

Next, the threshold of the similarity check (see Sec-
tion III-B) is also studied based on the input dataset of
this evaluation. The important factor of deriving a suitable
similarity threshold is striking a balance between the reduced
latency for processing and storing videos and the number of
missing objects. Then, we set the threshold between 0.9 and
0.75 to study the latency and the number of identified objects.
According to the comparison results summarized in Figure 8,
we determine the 0.85 is a suitable value for the similarity
check. This is because, at the threshold of 0.85, the proposed
RTFI system can effectively reduce the latency required for
processing and storing videos, while avoiding identifying
the same object across multiple frames that have very high
similarity with each other. In other words, setting a suitable



threshold can also prevent the proposed RTFI from identifying
and recording the same object multiple times across a series
of similar frames.

(a) Self-recorded dataset (b) Public dataset

Fig. 10. The storage space usage comparison. The results show
that the proposed RTFI can also reduce the storage space usage
by 97.5% and 43.99% for the two utilized datasets.

Furthermore, the latencies of processing different numbers
of video streams are reported. As shown in Figure 9, the results
suggest that the proposed RTFI has smaller latency growth,
when compared with the base system. With only one video
stream, the latency reductions are 75.76% and 40/06% for the
self-recorded and public datasets, respectively. With ten video
steams, the latency reductions grow to 90.73% and 65.31%,
respectively. Therefore, we can conclude that the proposed
RTFI can effectively reduce the processing latency. Finally,
storage space usage is also studied to investigate the reduced
storage space usage of the proposed RTFI. As the comparison
in Figure 10 suggests, the proposed RTFI can effectively
reduce the storage space usage by 97.5% and 43.99% for self-
recorded and public datasets, after deduplicating video frames
that have high similarity to the previous video frames.

V. CONCLUSION

This study proposes a real-time feature indexing (RTFI)
system for enabling video storing with the identified object
categories and making the video content searchable in a real-
time approach. RTFI aims at improving both the video process
and retrieval performance by applying three different strate-
gies - similarity deduplication module, feature-aware storage
allocator and feature-as-metadata indexing scheme. Through
extensive experimentation, we show that these strategies are
effective in reducing the storage latency and the usage of disk
space for feature-based indexing in a real-time fashion. In
particular, the proposed system can boost the storing perfor-
mance upto 10.60x, achieve the storing performance of upto 70
frames per second (FPS) with 3 processes implementation, and
allow video content to become searchable in 20 milliseconds
when there are 10 live video streams coming into the proposed

system simultaneously. The future work of this study will
be focused on extending the proposed system into distributed
architecture for supporting a larger number of incoming video
streams.
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