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Abstract

Deep learning (DL) has dramatically improved the state-of-the-art performances in broad appli-

cations of computer vision, such as image recognition, object detection, segmentation, and point

cloud analysis. However, the reasons for such huge empirical success of DL still keep elusive

theoretically. In this dissertation, to understand DL and improve its efficiency, robustness, and

interpretability, we theoretically investigate optimization algorithms for training deep models and

empirically explore deep learning based point cloud analysis and image classification. 1). Op-

timization for Training Deep Models: Neural network training is one of the most difficult op-

timization problems involved in DL. Recently, it has been attracting more and more attention to

understand the global optimality in DL. However, we observe that conventional DL solvers have

not been developed intentionally to seek for such global optimality. In this dissertation, we pro-

pose a novel approximation algorithm, BPGrad, towards optimizing deep models globally via

branch and pruning. The proposed BPGrad algorithm is based on the assumption of Lipschitz

continuity in DL, and as a result, it can adaptively determine the step size for the current gradi-

ent given the history of previous updates, wherein theoretically no smaller steps can achieve the

global optimality. Empirically an efficient solver based on BPGrad for DL is proposed as well,

and it outperforms conventional DL solvers such as Adagrad, Adadelta, RMSProp, and Adam in

the tasks of object recognition, detection, and segmentation. 2). Deep Learning Based Point

Cloud Analysis and Image Classification: The network architecture is of central importance for

many visual recognition tasks. In this dissertation, we focus on the emerging field of point clouds

analysis and image classification. 2.1) Point cloud analysis: We observe that traditional 6D pose

estimation approaches are not sufficient to address the problem where neither a CAD model of the

object nor the ground-truth 6D poses of its instances are available during training. We propose a

novel unsupervised approach to jointly learn the 3D object model and estimate the 6D poses of
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multiple instances of the same object in a single end-to-end deep neural network framework, with

applications to depth-based instance segmentation. The inputs are depth images, and the learned

object model is represented by a 3D point cloud. Specifically, our network produces a 3D object

model and a list of rigid transformations on this model to generate instances, which when rendered

must match the observed point cloud to minimizing the Chamfer distance. To render the set of

instance point clouds with occlusions, the network automatically removes the occluded points in

a given camera view. Extensive experiments evaluate our technique on several object models and

a varying number of instances in 3D point clouds. Compared with popular baselines for instance

segmentation, our model not only demonstrates competitive performance, but also learns a 3D ob-

ject model that is represented as a 3D point cloud. 2.2) Low quality image classification: We

propose a simple while effective unsupervised deep feature transfer network to address the degrad-

ing problem of the state-of-the-art classification algorithms on low-quality images. No fine-tuning

is required in our method. We use a pre-trained deep model to extract features for both high-

resolution (HR) and low-resolution (LR) images, and feed them into a multilayer feature transfer

network for knowledge transfer. An SVM classifier is learned directly using these transferred low-

resolution features. Our network can be embedded into the state-of-the-art network models as a

plug-in feature enhancement module. It preserves data structures in feature space for HR images,

and transfers the distinguishing features from a well-structured source domain (HR features space)

to a not well-organized target domain (LR features space). Extensive experiments show that the

proposed transfer network achieves significant improvements over the baseline method.
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Chapter 1

Introduction

Since the breakthrough on image classification achieved by AlexNet Krizhevsky et al. (2012) at

2012, deep learning has dramatically improved the state-of-the-art performance in many research

areas and practical applications, such as in image classification Krizhevsky et al. (2012); He et al.

(2016); Cen & Wang (2019a); Wu et al. (2019b); Xu et al. (2019), object detection Girshick et al.

(2014); Ren et al. (2015); Ma et al. (2018); Zhu et al. (2018a); Liu et al. (2018); Li et al. (2019),

visual tracking Zhu et al. (2018a); Bharati et al. (2016); Wu et al. (2017); Bharati et al. (2018),

instance segmentation He et al. (2017); Gupta et al. (2019); Chen et al. (2019), 6D pose estima-

tion Xiang et al. (2017); Wang et al. (2019a), point cloud analysis Qi et al. (2017a,b); Wu et al.

(2019a), depth estimation He et al. (2018a,b), face recognition Taigman et al. (2014); Wang &

Deng (2018); Cen & Wang (2019b), image-to-image translation Isola et al. (2017); Zhu et al.

(2017), speech recognition Hinton et al. (2012); Xiong et al. (2016); Sotelo et al. (2017), and nat-

ural language processing Sutskever et al. (2014); Devlin et al. (2018). In this chapter, we first

present an overview of deep learning. Then, we discuss the challenges and problems, followed by

the contributions of our work in this dissertation. Finally, we briefly describe the main contents of

each chapter in the roadmap of the dissertation.

1.1 Overview of Deep Learning

Deep learning is a powerful machine learning technique, which makes use of hierarchical neural

networks. Convolutional Neural Networks (CNNs) LeCun et al. (1998) have been widely used

for computer vision applications. The evolution of CNNs is deeply affected by the progress in

1



Figure 1.1: The architecture of LeNet-5 network (source: LeCun et al. (1998)).

visual perception mechanism of the living creatures decades ago Gu et al. (2015). Fukushima &

Miyake (1982) introduced the concept of local receptive fields Hubel & Wiesel (1968) into their

neocognitron. Inspired by this discovery, LeCun et al. (1989) proposed the modern framework

of CNN and later it was imporved by LeCun et al. (1998). The so-called LeNet-5 is stacked

with multiple layers and trained using Backpropagation LeCun et al. (1989). Take LetNet-5 as an

example (see Figure 1.1), it consists of three types of layers, namely convolution, sub-sampling,

and fully connected layers.

The convolutional layer is the core building block of a deep CNN. It consists of the weights

and biases embedded in a set of learnable filters (aka “kernels”). In order to reduce the number of

parameters, the convolutional layer shares parameters. As shown in Fig. 1.1, a typical filter size on

a first layer of deep convolutional network is 5× 5× 1 if the input is gray scale image (5× 5× 3

for color image). The dimension (width×height) of the filter size is called the receptive field of the

neuron, which is a hyper-parameter. The third dimension of each filter is called the channel of that

filter. It depends on the input volume. During the forward propagation, each filter is convolving

across the width and height of the input volume and compute the dot production at each sub-region.

After convolution, each filter will produce a 2-dimensional feature map that gives the response of

that filter at each spatial location. An element-wise nonlinear activation function is commonly used

after the feature map.

The subsampling layer, also refers to pooling layer. This layer does not consist of learnable
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Figure 1.2: The winner results for the task of Image classification on ImageNet (source: Rus-
sakovsky et al. (2015)).

parameters. The basic idea is to convolve with the input volume on a subregion using a filter

(normally with size of 2×2) to reduce the spatial size of input volume. The typical subsampling

methods are max pooling or average pooling, which extracts the maximum value or the average

value from the subregion. The intuitive idea behinds this layer is to drastically reduce the spatial

dimension of the input volume layer. For example, it reduces the amount of parameters by 75%

when using 2×2 filter, thus it reduces the computational load. The fully connected layer has dense

connection with its input volume. As shown in Fig. 1.1, the F6 layer has 84 neurons, and the

output layer has 10 neurons. The 84 neurons on F6 layer are densely connected with neurons on

the output layer.

The number of categories is 1,000 for the Image Classification task on ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) Russakovsky et al. (2015). As we can see from Fig-

ure 1.2, from the year of 2010 to 2011, the error of Image Classification on ImageNet only de-

creased by 3%. At 2012, Krizhevsky et al. (2012) won the Image Classification challenge using

deep CNN (refers to AlexNet), beated the second winner by about 10%. This success rekindled

the widely use of deep learning in computer vision. In 2013, Zeiler & Fergus (2014) optimized
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Figure 1.3: The state-of-the-art CNN architectures used in computer vision, 2010: SVM, 2012:
AlexNet, 2014: GoogLeNet and VGGNet, 2015: ResNet (source: Stanford University CS231n,
spring 2017).

the training procedures on top of the AlexNet architecture and won the Image Classification chal-

lenge with the top-5 error of 11.7%. In 2014, Szegedy et al. (2015) proposed GoogLeNet to win

the Image Classification challenge with the top-5 error of 6.7%. Moreover, Szegedy et al. (2015)

proposed inception module in their deep network, which makes the training more efficient. At the

same year, Simonyan & Zisserman (2014) proposed VGGNet and won the second place with top-5

error of 7.3%. Moreover, Simonyan & Zisserman (2014) proposed to use kernel filters with smaller

receptive field. They use 7×7, 5×5 and 3×3, compared with the larger values of 11×11 used in

AlexNet. In 2015, the researchers in Microsoft Research Asia proposed ResNet, which is a much

deeper architecture (with more than 100 layers) and pushed the classification top-5 error to 3.57%,

which is even higher than the human’s performance 5.1%. He et al. (2016)) proposed residual

module which makes the training on deeper networks become more efficient. The architectures of
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the state-of-the-art deep CNNs are shown in Figure 1.31.

1.2 Problems and Challenges

It is well known that the empirical success of deep learning stems mainly from better network

architectures He et al. (2016), the availability of massive dataset like ImageNet Deng et al. (2009),

and increasing computation power of GPUs. However, the reasons for such huge empirical success

of deep learning still keep elusive. How to improve the efficiency, interpretability and robustness

of deep learning for different applications is still an open problem.

In this dissertation, we theoretically study the optimization techniques for training deep models,

and empirically explore deep learning for tasks in point cloud analysis and low quality images

classification, towards efficient and robust deep learning. We describe these problems, discuss

existing challenges and present our approach to these problems below.

1.2.1 Optimization for Training Deep Models

Neural network training is one of the most difficult optimization problems involved in deep learn-

ing. It involves optimization in many contexts, such as how batch size affects training, the problems

of local minima and saddle points, different training algorithm, importance of learning rate, and

initialization policies and their implications. In this dissertation, we focus on one particular case

of optimization, which is to find the parameters θ of a network that reduce a cost function J(θ) in

neural network training.

1.2.1.1 Towards Global Optimality in Deep Learning

Global optimality is always desirable and preferred for optimization, which helps the generaliza-

tion of learned models. In very recent years, researchers start to theoretically study the relations

between global optimality and generalization in deep learning, such as Haeffele & Vidal (2017);

1source from http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture1.pdf
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Yun et al. (2018); Haeffele & Vidal (2017); Yun et al. (2018); Lin & Jegelka (2018); Liang et al.

(2018); Du et al. (2019); Zou et al. (2018); Zhu et al. (2018b,c); Zhou et al. (2019b). It has been

proved that under certain (very restrictive) conditions, the critical points in deep learning can ac-

tually achieve global optimality, even though its objective is highly nonconvex. All these papers

above also indicate that global optimality in deep learning improves the generalization. Such the-

oretical results may partially explain why such deep models work well in practical applications.

However, from the algorithmic perspective, it is extremely challenging to locate global opti-

mality in deep learning due to its high dimensionality and non-convexity. To our best knowledge,

current deep learning solvers, including stochastic gradient descent (SGD) Bottou et al. (2016),

Adagrad Duchi et al. (2011), Adadelta Zeiler (2012), RMSProp Tieleman & Hinton (2012) and

Adam Kingma & Ba (2014) are not intentionally developed for this purpose. Therefore, these so-

lutions might not necessarily be the global optimum. How to locate or toward the global optimality

in deep neural network training is still an open problem.

1.2.2 Deep Learning Based Point Cloud Analysis and Image Classification

The architecture of neural networks is of central importance for many visual recognition tasks. In

this dissertation, we focus on the emerging field of unsupervised learning for point clouds and low

quality image analysis.

1.2.2.1 Point Cloud Analysis

Estimating the 6D poses (3D rotation and 3D translation) of rigid objects in 3D point clouds is

an active research area with many real-world applications, such as robotic grasping and manip-

ulation, virtual-reality/augmented-reality, and human-robot interaction Brachmann et al. (2016);

Xiang et al. (2017); Wang et al. (2019a). The prior methods proposed to solve this task typically

make two strong assumptions (or simplifications) on the problem setup, such as (i) a 3D CAD

model of the object is available, and (ii) a (sufficiently large) training set is available with anno-

tated 6D poses of each object instance. However, traditional 6D pose estimation approaches are not
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sufficient to address this unsupervised problem, in which neither a CAD model of the object nor the

ground-truth 6D poses of its instances are available during training. Therefore, it is very important

to study this problem with deep learning framework and unsupervised learning techniques.

1.2.2.2 Low Quality Image Classification

The current state-of-the-art image recognition systems Krizhevsky et al. (2012); He et al. (2016) are

typically learned using images that are of sufficiently high quality (e.g. 224×224 or higher). How-

ever, in many emerging applications such as robotics, autonomous driving, and surveillance videos

analytics, the performances of such recognition system are largely jeopardized by low quality im-

ages/videos acquired from complex unconstrained environments, suffering from various types of

degradations such as low resolution, noise, and motion blur. Therefore, how to address the perfor-

mance degradation on low quality images is still an active research area.

1.3 Contributions

In this dissertation, to better understand deep learning towards its efficiency and robustness, we

propose novel approximate algorithm BPGrad Wu et al. (2018) to theoretically study the opti-

mization techniques for training the deep models, as well as empirically investigate the network

architecture design for deep learning based point cloud analysis Wu et al. (2019a) and low quality

image classification Wu et al. (2019b). Our contributions are summarized as follows.

• Towards Global Optimality in Deep Learning: In this work, 1) we propose a novel ap-

proximation algorithm, BPGrad, towards the global optimization in deep learning. To our

best knowledge, our approach is the first algorithmic attempt to locate the global optimal-

ity for training deep models. 2) Theoretically we prove that BPGrad can converge to the

global minima within finite iterations as the tractable lower and upper bounds allow it to

prune the parameter space without missing. 3) Empirically we propose a novel and efficient

deep learning solver based on BPGrad to reduce the requirement of computation as well as
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a footprint in memory with better performance in object recognition, detection, and segmen-

tation. We provide both theoretical and empirical justifications of our solver for preserving

the theoretical properties of BPGrad.

• Point Cloud Analysis: In this work, 1) we propose a novel task and generic unsupervised

algorithm to jointly learn a complete 3D object model and estimate 6D poses of object in-

stances in 3D point clouds. 2) We incorporate occlusion reasoning into our framework,

which enables it to learn full 3D models from depth maps (whose point clouds do not show

occluded sides or occluded portions of objects), and handle learning symmetric object mod-

els via modifications to our loss function involving multiple rotation channels. 3) We pro-

vide extensive experiments on unsupervised instance segmentation, demonstrating that in

addition to learning a 3D object model, our method performs better than or comparably to

standard baselines for instance segmentation.

• Low Quality Image Analysis: In this work, 1) We propose an unsupervised deep feature

transfer network without using fine-tuning. The feature vectors of both the high resolution

and low resolution images are extracted using pre-trained deep mode, and then are fed into

a multilayer feature transfer network for knowledge transfer. A SVM classifier is learned

directly using these transferred low resolution features. Our network can be embedded into

the state-of-the-art CNNs as a plug-in feature enhancement module. 2) It preserves data

structures in feature space for high resolution images, by transferring the discriminative

features from a well-structured source domain (high resolution features space) to a not well-

organized target domain (low resolution features space). 3) The proposed approach achieves

better performance than the baseline method for low resolution image classification task.

1.4 Roadmap of Dissertation

The rest of the dissertation is organized as follows:

• Chapter 2: Related Work
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This chapter reviews related works for deep learning solvers, global optimality in deep learn-

ing, point cloud analysis and low quality image classification.

• Chapter 3: Towards Global Optimality in Deep Learning

This chapter describes the proposed novel approximation algorithm, BPGrad, which has the

capability towards optimizing deep models globally via branch and pruning. The proposed

BPGrad algorithm is based on the assumption of Lipschitz continuity of the objective func-

tion, and as a result, it can adaptively determine the step size for current gradient given the

history of previous updates, wherein theoretically no smaller steps can achieve the global

optimality. We prove that, by repeating such branch-and-pruning procedure, we can locate

the global optimality within finite iterations. Finally, we propose an efficient BPGrad solver,

and it outperforms conventional deep learning solvers such as Adagrad, Adadelta, RMSProp,

and Adam in the tasks of object recognition, detection, and segmentation.

• Chapter 4: Point Cloud Analysis

This chapter describes our novel unsupervised approach for joint 3D object model learning

and 6D poses estimation of multiple instances of a same object, with applications to depth-

based instance segmentation. The inputs are depth images, and the learned object model is

represented by a 3D point cloud. To solve this problem, we propose to jointly optimize the

model learning and pose estimation in an end-to-end deep learning framework. Specifically,

our network produces a 3D object model and a list of rigid transformations on this model to

generate instances, which when rendered must match the observed point cloud to minimizing

the Chamfer distance. To render the set of instance point clouds with occlusions, the network

automatically removes the occluded points in a given camera view. Extensive experiments

evaluate our technique on several object models and varying number of instances in 3D

point clouds. We demonstrate the application of our method to instance segmentation of

depth images of small bins of industrial parts. Compared with popular baselines for instance

segmentation, our model not only demonstrates competitive performance, but also learns a
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3D object model that is represented as a 3D point cloud.

• Chapter 5: Low Quality Image Analysis

This chapter presents our simple while effective unsupervised deep feature transfer algorithm

for low resolution image classification. No fine-tuning on convenet filters is required in our

method. We use pre-trained convenet to extract features for both high and low resolution

images, and then feed them into a two-layer feature transfer network for knowledge transfer.

A SVM classifier is learned directly using these transferred low resolution features. Our

network can be embedded into the state-of-the-art deep neural networks as a plug-in feature

enhancement module. Extensive experiments on VOC2007 test set show that the proposed

method achieves significant improvements over the baseline of using feature extraction.

• Chapter 6: Conclusions and Future Work

This chapter summarizes our contributions and discusses the strengths and limitations of

each proposed method. Some open problems and future work are described at the end.
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Chapter 2

Related Work

In this chapter, we review related areas of each of our problems below.

2.1 Towards Global Optimality in Deep Learning

We propose a novel approximate algorithm, BPGrad, towards optimizing deep models globally via

branch and pruning. It is closely related to the global optimality of training deep neural networks,

the conventional solvers, and the branch-bound-pruning algorithms. We review the related work

as follows.

2.1.1 Global Optimality in Deep Learning

The empirical loss minimization problem in DL is high-dimensional and nonconvex with poten-

tially numerous local minima and saddle points. Earlier work on training neural networks Blum

& Rivest (1989) showed that it is difficult to find the global optima because in the worst case even

learning a simple 3-node neural network is NP-complete.

In spite of the challenges in training deep models, researchers have attempted to provide em-

pirical as well as theoretical justification for the success of these models w.r.t.global optimality

in learning. For instance, Zhang et al. (2016) empirically demonstrated that sufficiently over-

parametrized networks trained with stochastic gradient descent can reach global optimality. Lin &

Jegelka (2018) showed that ResNet He et al. (2016) with one single neuron per hidden layer is able

to generalize well and provide universal approximation as the depth goes to infinity. Liang et al.

(2018) studied the landscape of neural networks and proved that by adding a special neuron and
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an associated regularizer, the new loss function has no spurious local minimum for binary classi-

fication tasks. Du et al. (2019) showed that randomly initialized gradient descent converges to a

globally optimal solution at a linear convergence rate for the quadratic loss function on two-layer

fully connected ReLU Nair & Hinton (2010) activated neural networks in over-parameterization

regime. Zou et al. (2018) studied the binary classification problem using an over-parameterized

deep ReLU network and proved that both gradient descent and stochastic gradient descent can

find the global minima of the training loss with proper random weight initialization. Zhu et al.

(2018b) extended the theoretical understanding on the generalization of over-parameterized two

and three-layer neural networks. Zhu et al. (2018c) studied that SGD can find global minima in

polynomial time on the training objective of over-parameterized networks. Brutzkus & Globerson

(2017) showed that gradient descent converges to the global optimum in polynomial time on a

shallow neural network with one hidden layer and a convolutional structure with a ReLU activa-

tion function. Nguyen & Hein (2017) argued that almost all local minima are global optimal in

fully connected wide neural networks, whose number of hidden neurons of one layer is larger than

that of training points. Yun et al. (2018) extended these results and propose several sufficient and

necessary conditions for a critical point to be a global minimum. Haeffele & Vidal (2017) derived

sufficient conditions to guarantee that the local minima for their proposed networks are globally

optimal, and argued that it is critical to balance the degrees of positive homogeneity between the

network mapping and the regularization function to prevent non-optimal local minima in the loss

surface of neural networks.

Several recent works have also studied on how to overcome poor local optima using the global

loss structures. For example, Freeman & Bruna (2017) theoretically proved that local minima of

a half-rectified network can be connected with a curve so that the loss is upper-bounded along the

curve by a constant that depends on the model over-parameterization and the smoothness of the

data. Kawaguchi (2016) showed that the error landscape does not have bad local minima in the

optimization of linear deep neural networks. Choromanska et al. (2015) studied the loss surface

of multilayer networks using spin-glass model and showed that for many large-size decoupled
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networks, there exists a band with many local optima, whose objective values are small and close

to that of a global optimum. Dauphin et al. (2014) argued that, based on the results from statistical

physics and random matrix theory, it is the saddle points rather than local minima that causes the

difficulty in deep learning. Lee et al. (2016) showed that, with random initialization, gradient

descent almost surely converges to a local minimizer and not a saddle point. Hand & Voroninski

(2017) provided theoretical properties for the problem of enforcing priors provided by generative

deep neural networks via empirical risk minimization through establishing the favorable global

geometry. To better understand the local structure of loss functions and the effect of loss landscapes

on generalization, Li et al. (2018) proposed a visualization method for the loss surface near the

minima found by SGD, and showed that the loss surfaces of modern residual networks seem to be

smoother than those of VGG-like models.

Some other works explore the local structures of minima to study the differences between sharp

and wide local minima during training found by SGD and its variants. For example, Hochreiter

& Schmidhuber (1997) and Keskar et al. (2017) trained neural networks using small and large

mini-batch sizes respectively, and found that flat minima deliver strong generalization, while sharp

minima lead to pool performance on the test dataset. Keskar et al. (2017) claimed that SGD tends

to converge to broad local optima, while batch gradient methods are more likely to converge to

sharp optima. Dinh et al. (2017) argued that most notions of flatness are problematic for deep

models and cannot be directly applied to explain generalization. Soudry & Carmon (2016) em-

ployed smoothed analysis techniques to provide theoretical guarantee that the highly nonconvex

loss functions in multilayer networks can be easily optimized using local gradient descent updates.

Draxler et al. (2018) also provided evidence that local optima found by SGD are not isolated points

in the parameter space, but can be connected by simple curves of near constant loss. Chaudhari

et al. (2017) proposed Entropy-SGD that explicitly forces optimization towards wide valleys using

the local geometry of the energy landscape, which leads to better generalization lying in large flat

regions of the energy landscape, while avoiding the solutions with poor generalization located in

the sharp valleys.
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2.1.2 Deep Learning Solvers

SGD is one of the most widely used solvers for object recognition Krizhevsky et al. (2012); Si-

monyan & Zisserman (2014); He et al. (2016), object detection Girshick et al. (2014); Ren et al.

(2015); He et al. (2017), and object segmentation Long et al. (2015a). In general, SGD suffers

from slow convergence, and thus its learning rate needs to be carefully tuned. To improve the

efficiency of SGD, several DL solvers with adaptive learning rates have been proposed, including

Momentum Qian (1999), Adagrad Duchi et al. (2011), Adadelta Zeiler (2012), RMSProp Tiele-

man & Hinton (2012) and Adam Kingma & Ba (2014). As stated in Ruder (2016), these solvers

are able to escape the saddle points and often yield faster convergence empirically by integrating

the advantages from both stochastic and batch methods where small mini-batches are used to adopt

historical gradient information to automatically adjust the learning rate.

Adagrad is well suited to deal with sparse data, as it adapts the learning rate to the parameters,

performing smaller updates on frequent parameters and larger updates on infrequent parameters.

However, it suffers from shrinking on the learning rate, which motivates Adadelta, RMSProp and

Adam. Adadelta accumulates squared gradients to be fixed values rather than over time in Adagrad,

RMSProp updates the parameters based on the rescaled gradients, and Adam does the same based

on the estimated mean and variance of the gradients. Mukkamala & Hein (2017) proposed variant

solvers of RMSProp and Adagrad with logarithmic regret bounds. Readers may refer to Ruder

(2016) for a comprehensive review on the gradient descent based optimization algorithms.

2.1.3 Branch, Bound and Pruning

Branch-and-bound (B&B) Land & Doig (2010) is one of the promising methods for global opti-

mization in nonconvex problems. The basic idea of B&B is to recursively divide the feasible set of

a problem into disjoint subsets (“branching"), where each node represents a subproblem that only

conducts searches on the subset of that node. The key idea is to keep the track of bounds on the

minimum, and use these bounds to “prune" the search space, removing candidate solutions that

cannot be optimal provably. To our best knowledge, currently no DL solvers are developed based
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on B&B, while ours is.

Several approaches based on B&B have been proposed to solve the problems in combinato-

rial optimization, e.g.mixed integer programming (MIP) He et al. (2014), maximum a posteriori

(MAP) inference Sun et al. (2012) and structured prediction Lehmann et al. (2011); Kokkinos

(2011). Sun et al. (2012) solved the MAP inference problem in general Markov random fields by

leveraging a data structure to reduce the time complexity using branch-and-bound technique. He

et al. (2014) proposed an adaptive node order searching strategy learned by imitation learning on

a branch-and-bound tree to specify the order of nodes and improve the chance of quickly finding a

good incumbent solution for the MIP problem. Lehmann et al. (2011) addressed the task of object

class detection using principled implicit shape model where branch-and-bound is used to search

for objects. Qian & Liu (2013) proposed a decoding algorithm based on the branch-and-bound

framework where non-local features are bounded by a linear combination of local features and

the upper bound is searched by dynamic programming. Schwing & Urtasun (2012) presented a

branch-and-bound approach for 3D indoor scene understanding to split the label space in terms of

candidate sets of 3D layouts and bound the energy for entire sets by constructing upper-bounding

contributions of each individual face. Kokkinos (2011) introduced a dual-tree branch-and-bound

algorithm for part-based detection in which the upper bounds of the cost function of a part-based

model are computed by dual trees. Ferrari et al. (2008) proposed a pruning approach to progres-

sively reduce the search space for body parts for human pose estimation in TV and movie video

shots. In object detection, Pedersoli et al. (2011) developed a multiple-resolutions hierarchical

part based model and a coarse-to-fine inference procedure to recursively prune unpromising part

placements from the search space.

2.2 Point Cloud Analysis

We propose an unsupervised algorithm to jointly learn 3D object model and estimate 6D pose for

depth-based instance segmentation. The problems of 3D object model learning, 6D pose estima-

tion, and 3D instance segmentation have been addressed by several prior publications. We review
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some of the most related work below.

2.2.1 3D Object Model Learning

Recovering 3D models of objects from images using deep neural networks has been gaining sig-

nificant momentum in recent years Fan et al. (2017); Insafutdinov & Dosovitskiy (2018). Fan et al.

(2017) address the problem of 3D reconstruction from a single image to generate 3D point clouds.

Insafutdinov & Dosovitskiy (2018) address the problem of learning 3D shapes and camera poses

from a collection of unlabeled category-specific images by assembling the pose estimators and

then distilling to a single student model. However, these works focus on 3D reconstruction from

images containing a single object instance, which do not consider occlusion and cluttering. Our

work focuses on learning a 3D object model from depth images with multiple object instances, and

successfully handling the occlusion issues.

With the assumption that no CAD object models are available (during either training or testing

time), Wang et al. (2019b) uses a neural network to predict the 6D pose and size of previously

unseen object instances. There are two key differences between our work and theirs: (i) their 6D

pose and size estimation uses supervision of ground truth information for training data, which our

system does not have. Second, their pose estimation is conditioned on region proposals and cate-

gory prediction, which could make it difficult to estimate the pose of overlapped objects within the

proposed bounding boxes. However, our 6D pose estimation does not depend on region proposals.

2.2.2 6D Pose Estimation

Deep neural networks have been used to perform pose estimation from images Do et al. (2018);

Xiang et al. (2017) and point clouds Gao et al. (2018). Brachmann et al. (2016) present a generic

6D pose estimation system for both object instances and scenes which only needs a single RGB

image as input. Tejani et al. (2014) propose Latent-Class Hough Forests for 3D object detection and

pose estimation in heavily cluttered and occluded scenes. Wang et al. (2019a) present DenseFusion

to fuse the color and depth data to extract pixel-wise dense feature embedding for estimating 6D
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pose of known objects from RGB-D images. Xiang et al. (2017) introduce a convolutional neural

network, PoseCNN, for 6D object pose estimation from RGB images. Kehl et al. (2017) propose

an SSD-style detector for 3D instance detection and full 6D pose estimation from RGB data in a

single shot. Rad & Lepetit (2017) predict the 2D projections of the corners of an object’s bounding

box from color images, and compute the 3D pose from these 2D-3D correspondences with a PnP

algorithm. Do et al. (2018) introduce an end-to-end deep learning framework, Deep-6D Pose,

to jointly detect, segment, and recover 6D poses of object instances from a single RGB image.

Gao et al. (2018) propose to directly regress a pose vector of a known rigid object from point

cloud segments using a convolutional neural network. Sundermeyer et al. (2018) propose a self-

supervised training strategy that enables robust 3D object orientation estimation using various RGB

sensors while training only on synthetic views of a 3D object model. Sock et al. (2018) address

recovering 6D poses of multiple instances in bin-picking scenarios using the depth modality for

2D detection, depth, and 3D pose estimation of individual objects and joint registration of multiple

objects. Note that unlike our proposed method, all of these works require the object’s 3D CAD

model and use supervised learning from large datasets annotated with ground-truth 6D poses.

2.2.3 Instance Segmentation

Recent advances in instance segmentation on 2D images have achieved promising results. Many

of those 2D instance segmentation approaches are based on segment proposals (He et al. (2017);

Pinheiro et al. (2015); Dai et al. (2016)). DeepMask Pinheiro et al. (2015) learns to generate seg-

ment proposal candidates with a corresponding object score, and then classify using Fast R-CNN.

Dai et al. (2016) proposes a multi-stage cascade to predict segment candidates from bounding box

proposals. Mask R-CNN He et al. (2017) extends Faster R-CNN by adding a parallel branch to

predict masks and class labels on top of RPN to produce object masks for instance segmentation.

Inspired by these these pioneering 2D approaches, 3D instance segmentation (Wang et al. (2018);

Yi et al. (2019); Pham et al. (2019)) on point clouds has also been attempted. Wang et al. (2018)

propose a similarity group proposal network to predict point grouping proposals and a correspond-
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ing semantic class for each proposal for instance segmentation of point clouds. Pham et al. (2019)

address the problems of semantic and instance segmentation of 3D point clouds using a multi-task

point-wise network. Yi et al. (2019) propose a generative shape proposal network for instance

segmentation. To the best of our knowledge, no previous work both learns a 3D object model and

infers 6D pose from a 3D point cloud in an unsupervised fashion.

2.3 Low Quality Image Classification

We propose a simple yet effective deep feature transfer method for low resolution image classifi-

cation. It is closely related to unsupervised learning of features and transfer learning. We review

the related work as follows.

2.3.1 Unsupervised Learning of Features

Clustering has been widely used for image classification Caron et al. (2018); Yang et al. (2016); Ji

et al. (2018). Caron et al. (2018) present a clustering method that jointly learns the parameters of a

neural network and the cluster assignments of the resulting features. Yang et al. (2016) propose an

approach to jointly learn the deep representations and image clusters by combining agglomerative

clustering with CNNs and formulate them as a recurrent process. Ji et al. (2018) propose invariant

information clustering relying on statistical learning by optimizing mutual information between

related pairs for unsupervised image classification and segmentation.

2.3.2 Transfer Learning

It is commonly used in the scenario where the training and testing data distributions are different.

Pan et al. (2008) learn a low-dimensional latent feature space to minimize the distance between

distributions of the data in different domains. Glorot et al. (2011) study domain adaptation for

sentiment classification using stacked denoising auto-encoders. Tommasi et al. (2010) present an

SVM-based adaptation method to discriminatively select and weight the prior knowledge coming
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from different categories. Saenko et al. (2010) learn a regularized non-linear transformation in

the context of object recognition to minimize the effect of domain-induced changes in the feature

distribution. Chen et al. (2015) transfer knowledge stored in one previous network into each new

deeper or wider network to accelerate the training of a significantly larger neural network. Yosin-

ski et al. (2014) experimentally study the transferability of hierarchical features in deep neural

networks. Azizpour et al. (2016) investigate the factors of transferability of a generic deep con-

volutional networks such as the network architecture, distribution of the training data, etc. Tzeng

et al. (2015) learn a CNN architecture to optimize domain invariance and transfer information

between tasks. Long et al. (2015b) propose a deep adaptation network architecture to match the

mean embeddings of different domain distributions in a reproducing kernel Hilbert space. Guo

et al. (2019) propose an adaptive fine-tuning approach to find the optimal fine-tuning strategy per

instance for the target data. Readers can refer to Pan & Yang (2010) and the references therein for

details about transfer learning.
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Chapter 3

Towards Global Optimality in Deep Learning

3.1 Introduction

Global optimality is always desirable and preferred for optimization, which helps the generaliza-

tion of learned models, in general. In fact very recently, there are substantial amount of work

focusing on the theoretical analysis of the relations between global optimality and generalization

in deep learning, such as Haeffele & Vidal (2017); Yun et al. (2018); Lin & Jegelka (2018); Liang

et al. (2018); Du et al. (2019); Zou et al. (2018); Zhu et al. (2018b,c); Zhou et al. (2019b). All

these papers above indicate that global optimality in deep learning improves the generalization.

From the algorithmic perspective, however, locating global optimality in DL is extremely chal-

lenging due to its high dimensionality and non-convexity. To our best knowledge, currently there

are no DL solvers intentionally developed for this purpose, including stochastic gradient descent

(SGD) Bottou et al. (2016), Adagrad Duchi et al. (2011), Adadelta Zeiler (2012), RMSProp Tiele-

man & Hinton (2012) and Adam Kingma & Ba (2014). Instead, regularization is often used to

smooth the objective in DL so that the solvers can converge to some geometrically wider and

flatter regions in the parameter space where good model solutions may exist Zhang et al. (2015);

Chaudhari et al. (2017); Zhang & Brand (2017). These solutions, however, may not necessarily be

the global optimum.

Inspired by the techniques of global optimization for nonconvex functions, we propose a novel

approximation algorithm, BPGrad, which aims to locate the global optimality in DL via branch and

pruning (BP) Sotiropoulos & Grapsa (2001). BP is a well-known algorithm developed to search

for global solutions for nonconvex optimization problems. Its basic idea is to effectively and
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Figure 3.1: Illustration of the workflow of BPGrad, where each black dot denotes the solution
at each iteration (i.e.branch), each directed dotted line denotes the current gradient, and each red
dotted circle denotes the region wherein there should be no solutions achieving global optimality
(i.e.pruning). BPGrad can automatically estimate the scales of these regions based on the function
evaluation and the Lipschitz condition.

gradually shrink the gap between the lower and upper bounds of the global optimum by efficiently

branching and pruning the parameter space. Fig. 3.1 illustrates the optimization procedure in

BPGrad algorithm.

In order to branch and prune the parameter space, we assume that the objective functions in

DL are Lipschitz continuous Eriksson et al. (2003) or can be approximated by Lipschitz functions,

a fairly weak constraint as it always holds in DL Goodfellow et al. (2016). In fact, the Lipschitz

condition provides us a natural way to estimate the lower bound in BP for locating the global opti-

mum (see Sec. 3.2.3). It turns out as well that the Lipschitz condition can serve as regularization if

needed, as illustrated in Fig. 3.2, to improve the generalization as demonstrated in Chaudhari et al.

(2017). In this sense, our BPGrad algorithm/solver essentially aims to locate global optimality in

the smoothed objective functions for DL.

From the optimization perspective, our algorithm shares similarities with the work Malherbe

& Vayatis (2017) on global optimization of general Lipschitz functions (not specifically for DL).

In Malherbe & Vayatis (2017) a uniform sampler is utilized to maximize the lower bound of the

maximizer (equivalently minimizing the upper bound of the minimizer) subject to the Lipschitz

condition. Convergence properties w.h.p. are derived. In contrast, our approach considers estimat-
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Figure 3.2: Illustration of Lipschitz continuity as regularization (red) to smooth a function (blue).

ing both the lower and upper bounds of the global optimum, and employs the gradients as guidance

to effectively sample the parameter space for pruning. Theoretical analysis and experiments show

that our algorithm can converge within finite iterations.

From the empirical solver perspective, our solver shares similarities with the work Koushik &

Hayashi (2016) on improving SGD using the feedback from the objective. Specifically, Koushik

& Hayashi (2016) tracks the relative changes in the objective with a running average, and uses

it to adaptively tune the learning rate in SGD. No theoretical analysis, however, is provided for

justification. In contrast, our solver does use the feedback from the objective function to determine

the learning rate adaptively but based on the rescaled distance between the feedback and the current

lower bound estimation. Both theoretical and empirical justifications are established.

The main contributions of this paper are three-fold:

• We propose a novel approximation algorithm, BPGrad, towards the global optimization in

DL. To our best knowledge, our approach is the first algorithmic attempt in this field.

• Theoretically we prove that BPGrad can converge to the global minima within finite itera-

tions as the tractable lower and upper bounds allow it to prune the parameter space without

missing.

• Empirically we propose a novel and efficient DL solver based on BPGrad to reduce the

requirement of computation as well as a footprint in memory with better performance in
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object recognition, detection, and segmentation. We provide both theoretical and empirical

justifications of our solver for preserving the theoretical properties of BPGrad.

This work substantially extends our conference publication Wu et al. (2018) from the following

perspectives:

• A more comprehensive survey of the state-of-the-art is provided on the global optimality,

popular first-order solvers in deep learning and branch-bound-pruning algorithms.

• We illustrate the effectiveness of the general BPGrad algorithm in one-dimensional space in

Sec. 3.2.3.3. Moreover, to justify our method towards the global optimality, we apply the

exact BPGrad algorithm and its efficient solver on one-dimensional functions and perform

numerical analysis on a two-layer neural network optimization problem in Sec. 3.3.3.

• We provide more discussion and technical details on the robustness of parameter ρ and how

the Lipschitz constant L could be estimated both theoretically and empirically in Sec. 3.4.1

and 3.4.2, respectively, which provides a useful insight on efficient hyper-parameter tuning.

• We conduct a comparative evaluation with SGD on object recognition, object detection, and

object segmentation in Sec. 3.4.3, 3.4.4 and 3.4.5, respectively.

3.2 BPGrad Algorithm for Deep Learning

3.2.1 Notation

Let X ⊆ Rd be the parameters space, x ∈X be the parameters of a given neural network, and

(ω,y)∈Ω×Y be a pair of a data sample ω and its associated label y. Let φ : Ω×X →Y denote

the nonconvex mapping function defined by the network, and f be the objective function with

Lipschitz constant L≥ 0 to train the network. For all x = (x1, · · · ,xd)∈Rd , let ‖x‖2 = (∑d
i=1 x2

i )
1/2

denote the standard `2-norm, ∇ f be the gradient of f over parameters x1, ∇ f̃ = ∇ f
‖∇ f‖2

be the

1We assume ∇ f 6= 0 w.l.o.g., and empirically we can randomly sample a non-zero direction for update wherever
∇ f = 0.

23



Algorithm 1: General BPGrad Algorithm
Input : objective function f with Lipschitz constant L≥ 0, parameter ρ ≥ 0, bounded

feasible space X
Output: minimizer x∗

1 Randomly initialize x1 ∈X ;
2 while XR 6= X do
3 Draw sample xt+1 ∼X \XR(t);
4 XR(t +1)←XR(t)

⋃
B(xt+1,rt+1);

5 t← t +1;
6 end
7 return x∗ = xi∗ where i∗ ∈ argmini=1,···,t f (xi);

normalized gradient (i.e., the direction of the gradient), and f ∗ be the global minimum.

3.2.2 Problem Statement

Given a deep network, the task of training process is to learn the parameters by minimizing the

following objective function f :

min
x∈X

f (x)≡ E(ω×y)∈Ω×Y

[
L (y,φ(ω,x))

]
+R(x), (3.1)

where E is the expectation over data pairs, L is the loss function (e.g.cross entropy loss) to evalu-

ate the differences between the ground-truth labels and the predicted labels of given data samples,

and R is a form of regularization over parameters designed to prevent overfitting (e.g.weight decay

via `2 regularization). We make assumptions throughout the paper as follows.

F1. f is lower-bounded by 0, i.e. f (x)≥ 0,∀x ∈X ;

F2. f is differentiable for every x ∈X ;

F3. f is Lipschitz continuous, or can be approximated by Lipschitz functions, with constant

L≥ 0.
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3.2.3 Algorithm

Our BPGrad algorithm relies on the following assumption:

Definition 1 (Lipschitz Continuity Eriksson et al. (2003)). A function f : Rm → R is Lipschitz

continuous if there exists a Lipschitz constant L≥ 0 such that

| f (x1)− f (x2)| ≤ L‖x1−x2‖2,∀x1,x2 ∈X . (3.2)

3.2.3.1 Lower and Upper Bound Estimation

Consider the situation where samples x1, · · · ,xt ∈X exist for evaluation by function f with Lips-

chitz constant L, whose global minimum f ∗ is reached by the sample x∗. Then based on Eq. (3.2)

and simple algebra, we can obtain

max
i=1,···,t

{
f (xi)−L‖xi−x∗‖2

}
≤ f ∗ ≤ min

i=1,···,t
f (xi). (3.3)

This provides us both the lower and upper bounds of the global minimum. The upper bound is

tractable, however, the lower bound is intractable. The intractability comes from the fact that the

optimal sample x∗ is unknown, and thus makes the lower bound in Eq. (3.3) empirically unusable.

To address this problem, we propose a novel tractable estimator, ρ mini=1,···,t f (xi) (0 ≤ ρ < 1),

for the lower bound. This estimator intentionally introduces a gap from the upper bound, which

will be reduced by either decreasing the upper bound or increasing ρ . As proved in Thm. 1 (see

Sec. 3.2.4), when the parameter space X is fully covered by the samples {xi}, this estimator will

become the lower bound of f ∗.

In summary, we define our lower and upper bound estimators for the global minimum as

ρ mini=1,···,t f (xi) and mini=1,···,t f (xi), respectively.

3.2.3.2 Branch and Pruning

Based on our estimators, we propose a novel algorithm, called BPGrad, as illustrated in Alg. 1.
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Branch: Alg. 1 conducts the branch operation to split the parameter space recursively by sampling.

To achieve this goal, we need a mapping between the parameter space and the bounds. Considering

the lower bound in Eq. (3.3), we propose sampling xt+1 ∈ X based on the previous samples

x1, · · · ,xt ∈X so that it satisfies

max
i=1,···,t

{
f (xi)−L‖xi−xt+1‖2

}
≤ ρ min

i=1,···,t
f (xi). (3.4)

Note that an equivalent constraint has been used in Malherbe & Vayatis (2017).

Definition 2 (Removable Parameter Space (RPS)). We define the RPS, denoted as XR, as

XR(t)
def
= ∪ j=1,···,tB

(
x j,r j

)
, (3.5)

where B(x j,r j) = {x | ‖x−x j‖2 < r j,x ∈X },∀ j defines a ball centered at sample x j ∈X with

radius r j =
1
L

[
f (x j)−ρ mini=1,···,t f (xi)

]
,∀ j.

Pruning: RPS specifies a region wherein the function evaluations of all the points cannot be

smaller than the lower bound estimator conditioning on the Lipschitz continuity assumption. There-

fore, when the lower bound estimator is higher than the global minimum f ∗, we can safely remove

all the points in RPS without evaluation. Parameter ρ controls such confidence or tolerance.

The implementation of Alg. 1 involves a sequential procedure of branching and pruning, which

starts at an initial point x1 by evaluating the function f (x1), calculating the radius r1 =
1
L [ f (x1)−

ρ mini=1 f (x1)], then at each step t ≥ 1 to draw a new sample xt+1 ∼X \XR(t) which depends on

the previous evaluations {(x j,r j, f (x j))} j=1,···,t , and finally evaluate the objective function f (xt+1)

at this point. To illustrate its effectiveness in an interpretable domain, we have applied the Alg. 1

to solve a problem of controllable complexity in Sec. 3.2.3.3.
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Figure 3.3: Illustration of BPGrad Alg. 1 in 1D space.

3.2.3.3 Illustration of Alg. 1 in One-Dimensional Space

In Fig. 3.3, we show an example of using Alg. 1 to solve the following nonconvex function:

f (x) = xsin(x)+15,∀x ∈ [0,4π]. (3.6)

This function has a local and a global minimum at xlmin = 4.813 and xgmin = 11.086, respec-

tively. The Lipschitz constant and initial point (at T = 1) are set to L = 4π and x1 = 2.5. Given

x1, using Alg. 1 we can obtain two feasible sets for x2 as shown in Fig. 3.3. In branching, due

to the gradient f ′(x1) > 0, we select the solution in the right set, leading to x2 = 3.682. Then the

infeasible set is pruned from the parameter space. Similarly, at iteration T = 4, since the gradient

f ′(x4)< 0, the solution is in the left set with x5 = 1.27. By alternating the procedures of branching

and pruning, we eventually have searched all the parameter space within 16 iterations, and found

the global minimum at x12 = 11.117. The error of this solution w.r.t.the ground-truth is 0.031.
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Algorithm 2: BPGrad based Solver for Deep Learning
Input : number of samples T , objective function f with Lipschitz constant L≥ 0,

momentum 0≤ µ ≤ 1, parameter ρ ≥ 0
Output: minimizer x∗

1 v1← 0, and randomly initialize x1;
2 for t← 1 to T −1 do
3 vt+1← µvt−

f (xt)−ρ mini=1,···,t f (xi)
L · ∇ f (xt)

‖∇ f (xt)‖2
;

4 xt+1← xt +vt+1;
5 end
6 return x∗ = xT ;

3.2.4 Theoretical Analysis

Theorem 1 (Lower & Upper Bounds). Whenever XR(t) ≡X holds, the samples generated by

Alg. 1 satisfies

ρ min
i=1,···,t

f (xi)≤ f ∗ ≤ min
i=1,···,t

f (xi). (3.7)

Proof. Since f ∗ is the global minimum, it always holds that f ∗ ≤mini=1,···,t f (xi). When XR(t)≡

X , suppose ρ mini=1,···,T f (xi) > f ∗ holds, then there would exist at least one point (i.e. global

minimum) left for sampling, contradicting to the condition of XR(t)≡X . We then complete the

proof.

Corollary 1 (Approximation Error Bound). Given that both mini=1,···,t f (xi)≤ ε

1−ρ
and XR(t)≡

X hold, it is satisfied that

min
i=1,···,t

f (xi)− f ∗ ≤ ε. (3.8)

Theorem 2 (Convergence within Finite Samples). The total number of samples, T , in Alg. 1 is

upper bounded by:

T ≤
[

2L
(1−ρ) fmin

]d

· VX

C
, (3.9)

where VX denotes the volume of the space X , C = π
d
2

Γ( d
2+1)

denotes a constant, and fmin =

mini=1,···,T f (xi) denotes the minimum evaluation.
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(a) Sampling using Alg. 1 (b) Sampling using Eq. (3.12)

Figure 3.4: 1D illustration of the difference in sampling between (a) using Alg. 1 and (b) using
Eq. (3.12). Here the solid blue lines denote function f , the black dotted lines denote the sampling
paths starting from xt−1→ xt → xt+1, and each triangle surrounded by blue dotted lines denotes
the RPS of each sample. It can be seen that (b) suffers from being stuck locally, while (a) can avoid
the locality based on the RPS.

Proof. Given ∀ j,∀t such that 1≤ j ≤ t ≤ T −1, we have

‖xt+1−x j‖2 ≥
1
L

[
f (x j)−ρ min

i=1,···,t
f (xi)

]
≥ 1−ρ

L
· min

i=1,···,t
f (xi)≥

(1−ρ) fmin

L
. (3.10)

This allows us to generate two balls B
(

xt+1,
(1−ρ) fmin

2L

)
and B

(
x j,

(1−ρ) fmin
2L

)
so that they have

no overlap with each other. As a result, we can generate T balls with radius of (1−ρ) fmin
2L and no

overlaps, and their accumulated volume should be no bigger than VX , i.e.

VX ≥
T

∑
t=1

V
B
(

xt ,
(1−ρ) fmin

2L

) =C
[
(1−ρ) fmin

2L

]d

T. (3.11)

Further using simple algebra we can complete the proof.

3.3 Approximate DL Solver based on BPGrad

Although the BPGrad algorithm has nice theoretical properties for global optimization, we still

need to solve the following problems in order to apply the Alg. 1 to deep learning applications.

P1. From Thm. 2 we can see that, due to the high dimensionality of the parameter space in DL,
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it is impractical to draw sufficient samples to cover the entire space.

P2. The sampling involves the knowledge of previous samples, which incurs a significant amount

of both computational and storage burden.

P3. Computing f (xt) is time-consuming, especially for large-scale data.

To address P1, in practice we manually set the maximum numbers of iterations in Alg. 1.

To address P2 and simplify the sampling procedure, we propose to generate samples along the

direction of the gradient with the following assumptions:

A1. X is sufficiently large where ∃ηt ≥ 0 so that xt+1 = xt −ηt∇ f̃ (xt) ∈X \XR(t) always

holds.

A2. ηt ≥ 0 is always sufficiently small for local update.

A3. xt+1 can be sampled only based on xt and ∇ f̃ (xt).

By imposing these assumptions upon the sampling procedure using Alg. 1, we define the step

size as follows:

ηt =
1
L

[
f (xt)−ρ min

i=1,···,t
f (xi)

]
. (3.12)

To address P3, we utilize mini-batches to estimate f (xt) efficiently in each iteration.

In summary, we present our BPGrad solver in Alg. 2 by modifying Alg. 1 for the sake of fast

sampling as well as low memory footprint in DL, however, there is a risk of being stuck in local

regions. Fig. 3.4 illustrates such scenarios using a 1D example. In (b) the sampling method falls

into a loop because it does not consider the history of samples except for the current one. In

contrast, the sampling method in (a) is able to keep generating new samples by avoiding the RPS

of previous samples with more computation and storage, as expected.
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3.3.1 Theoretical Analysis

Theorem 3 (Global Property Preservation). Let xt+1 = xt−ηt∇ f̃ (xt) where ηt is computed using

Eq. (3.12). Then xt+1 satisfies Eq. (3.4) if it holds that

〈
xi−xt ,∇ f̃ (xt)

〉
≥ f (xi)− f (xt)

L
,∀i = 1, · · · , t, (3.13)

where 〈·, ·〉 denotes the inner product between two vectors.

Proof. Based on Eq. (3.2), Eq. (3.12), and Eq. (3.13), we have

‖xi−xt+1‖2 =
(
‖xi−xt‖2

2 +η
2
t +2ηt

〈
xi−xt ,∇ f̃ (xt)

〉) 1
2 ≥ 1

L

[
f (xi)−ρ min

i=1,···,t
f (xi)

]
,∀i= 1, · · · , t,

(3.14)

which is essentially equivalent to Eq. (3.4) based on algebra. We then can complete the proof.

Corollary 2. Suppose that a monotonically decreasing sequence { f (xi)}i=1,···,t is generated to

minimize function f by sampling using Eq. (3.12). Then the condition in Eq. (3.13) can be rewritten

as follows: 〈
xi−x j,∇ f̃ (x j)

〉
≥ 0, 1≤ ∀i < ∀ j ≤ t. (3.15)

Discussion: Both Thm. 3 and Cor. 2 imply that, roughly speaking, our solver prefers sampling

the parameter space along a path towards a single direction. However, the gradients in conven-

tional backpropagation have little guarantee to satisfy Eq. (3.13) or Eq. (3.15) due to lack of such

constraints in learning. On the other hand, momentum Sutskever et al. (2013) is a well-known

technique in deep learning to dampen oscillations in gradients and accelerate directions of low

curvature. Therefore, our solver in Alg. 2 involves momentum to compensate such drawbacks in

backpropagation for better approximation of Alg. 1.
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Figure 3.5: Plots of ηt on MNIST and CIFAR-10, respectively.

3.3.2 Empirical Justification

In this section, we discuss the feasibility of the assumptions A1-A3 in reducing the computational

and storage burden as well as preserving the properties towards global optimization in the applica-

tions of deep learning.

We utilize MatConvNet Vedaldi & Lenc (2015) as our testbed, and run our solver BPGrad

in Alg. 2 to train the default networks in MatConvNet for MNIST LeCun (1998) and CIFAR-

10 Krizhevsky et al. (2012), respectively, using the default parameters without explicit mention.

Also we set L = 15 for MNIST and L = 50 for CIFAR-10 by default. For justification purpose we

only run 4 epochs on each dataset, 600 and 500 iterations per epoch for MNIST and CIFAR-10,

respectively. For more experimental details, please refer to Sec. 3.4.

Essentially assumption A1 usually holds in deep learning due to its high dimensionality. There-

fore, below we only focus on empirical justification of assumptions A2 and A3.
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Figure 3.6: Comparison between LHS and RHS of Eq. (3.4) based on xt returned by Alg. 2 using
different values for momentum parameter µ .

3.3.2.1 Feasibility of A2

To justify this, we collect ηt’s by running Alg. 2 on both datasets, and plot them in Fig. 3.5. In

general, these numbers are indeed sufficiently small for local update based on gradients, and ηt

decreases with the increase of iterations. This behavior is expected as the objective f is supposed

to decrease as well w.r.t. the number of iterations. The value gap at the beginning on the two

datasets is mainly induced by different L’s.

3.3.2.2 Feasibility of A3

To justify this, we show some evidence in Fig. 3.6, where we plot the left-hand side (LHS) and

right-hand side (RHS) of Eq. (3.4) based on xt obtained from the Alg. 2. As we see in all the

subfigures on the right with µ = 0.9, the values on RHS are always no smaller than those on LHS

correspondingly. In contrast, in the remaining subfigures on the left with µ = 0 (i.e. vanilla SGD

update), the values on RHS are always no bigger than those on LHS correspondingly.

33



0 50 100 150 200
2

3

4

5

6

7

Iterations

S
o

lu
ti
o

n

 

 

X
gmin

 = 4.913 Adagrad

Adadelta

RMSProp

Adam

SGD: µ=0

SGD: µ=0.9

BPGrad Alg.1

BPGrad: µ=0

BPGrad: µ=0.9

Figure 3.7: Trajectories of different solves on problems with known solutions (gray dashed line
denotes the global solution for each function. The function f1 = xsin(x)+4.815,x ∈ [0,8] has one
global minimum at Xgmin = 4.913.

These observations appear to be robust across different datasets, and irrelevant to parameter L

which determines the radius of balls, i.e. step sizes for gradients. The momentum parameter µ ,

which is related to the directions of gradients for model updating, appear to be the only factor to

make the samples of our solver satisfy Eq. (3.4). This also supports our claims in Thm. 3 and

Cor. 2 about the relation between the model update and gradient in order to satisfy Eq. (3.4). More

evidence have been provided by the experiments on MNIST and CIFAR-10 datasets in Sec. 3.4.

Based on these evidence, it is safe to say that the assumption A2 holds empirically when using

sufficiently large values for momentum µ .

3.3.3 Convergence of BPGrad Algorithm and Solver

3.3.3.1 One-Dimensional Problems with Known Solutions

To explore the strength and weakness of the proposed approach in an interpretable domain, we first

apply BPGrad in Alg. 1 and its approximate solver in Alg. 2 to nonconvex problems with limited
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Figure 3.8: Trajectories of different solves on problems with known solutions (gray dashed line
denotes the global solution for each function). The function f2 = xsin(x)+11.05,x ∈ [0,4π] has a
local minimum at Xgmin = 4.913, and a global minimum at Xgmin = 11.086.

complexity. The problem we consider is to search for the global minimum of the one-dimension

sinusoidal function f (x) = xsin(x) with different constant offsets, which enables us to visualize the

trajectories found by each solver. We perform a comparison with Adagrad, Adadelta, RMSProp,

Adam and SGD.

The trajectories are shown in Fig. 3.7, Fig. 3.8, and Fig. 3.9. We use a grid-search to determine

the best hyper-parameter setting for each solver (details can be found in the Appendix. A). We

report the number of iterations that are needed to converge with a tolerance of ε = 10−4 in terms of

function values. We can observe that all the solvers find the global minimum of function f1. How-

ever, only the BPGrad in Alg. 1 locates the global minimum of functions f2 and f3, respectively,

while the other solvers are stuck at the local minimum. These observations empirically indicate

that BPGrad in Alg. 1 is capable of reaching the global optimum.
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Figure 3.9: Trajectories of different solves on problems with known solutions (gray dashed line
denotes the global solution for each function). The function f3 = xsin(x)+15,x ∈ [0,4π] has the
same local and global minimums as f2, but it has a larger constant offset than f2.

3.3.3.2 Rosenbrock Function Optimization

The famous Rosenbrock function is a popular test scheme for the gradient-based optimization

algorithms. It is a unimodal function, and the global minimum lies in a narrow, parabolic valley.

However, even though this valley is easy to find, it is difficult to converge to the minimum Picheny

et al. (2013). To further investigate the generalization of our solver, we conduct numerical analysis

on the Rosenbrock function and compare BPGrad against widely used DL optimizers, including

SGD with and without momentum, Adam, RMSProp, Adadelta and Adagrad in MATLAB 2017a.

In this experiment, we consider the Rosenbrock function given below in two-dimensional form:

f (x1,x2) = (1− x1)
2 +100 · (x2− x2

1)
2 , (3.16)

where its global minimum is (x∗1,x
∗
2) = (1.0,1.0).

We tune the parameters of each solver to achieve their best performance. Each optimizer starts
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(a) SGD, µ = 0 (b) SGD, µ = 0.9

Figure 3.10: SGD on the Rosenbrock function in Eq. (3.16). The black asterisk and dot are the
starting point and global optimum, respectively.

at the same initial point (x0,y0) = (−1.2,2.5), and is run for 4000 iterations with different learning

rate and the best performance is plotted. For BPGrad, we set the Lipschitz constant L = 500 and

with momentum µ = 0.9 and no momentum µ = 0. We use the same momentum for SGD, and set

it to µ = 0.9 with the global learning rate of 0.002, while for µ = 0, the global learning rate is set

to 0.001. For Adam and RMSProp, the global learning rate is 0.02, while for Adagrad it is 0.01.

Adadelta does not require a global learning rate.

The convergence behaviors of all the solvers are shown in Fig. 3.10, Fig. 3.11 and Fig. 3.12.

The convergence behaviors of our solver BPGrad is shown in Fig. 3.13. The convergent point

for each solver is listed in Table 3.1. The results show that our solver BPGrad with momentum

works better than the counterpart without momentum, achieving much tighter convergence. Fur-

ther, our solver outperforms RMSProp, Adadelta, and SGD without using momentum (µ = 0),

and is comparable with Adam, Adagrad and SGD with momentum (µ = 0.9). This demonstrates

that our solver is generalized well, and it has the capability of locating global optimum for general

optimization problem as well.

It is worthy of noticing that with µ = 0.9 BPGrad moves much faster than all the other solvers
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(a) RMSProp (b) Adam

Figure 3.11: RMSProp and Adam on the Rosenbrock function in Eq. (3.16). The black asterisk
and dot are the starting point and global optimum, respectively.

Table 3.1: Comparison of convergent points of our solver to the other conventional optimizers on
the Rosenbrock function.

XXXXXXXXXXParam
Solver SGD RMSProp Adam Adadelta Adagrad BPGrad

µ = 0 µ = 0.9 µ = 0 µ = 0.9
x1 0.86 0.98 0.95 1.0 0.78 0.99 0.77 0.97
x2 0.74 0.96 0.87 0.99 0.57 0.98 0.60 0.95

at the beginning towards the optimum, indicated by the discontinuity around the valley along the

curve. This demonstrates that the branch-and-pruning procedure in our algorithm indeed is helpful

to accelerate the convergence.

3.3.3.3 Two-layer Neural Network Optimization

Based on the empirical justification of convergence behavior of our solver in Sec. 3.3.2, in this

section, we also consider a numerical demonstration of converging to the global optimum using

our solver. Recently Li and Yuan in Li & Yuan (2017) proved theoretically that SGD can converge

to the global minimum in polynomial time in two-layer neural networks with ReLU activation

when the input data and network weight initialization follow Gaussian distributions.
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(a) Adadelta (b) Adagrad

Figure 3.12: Adadelta and Adagrad on the Rosenbrock function in Eq. (3.16). The black asterisk
and dot are the starting point and global optimum, respectively.

To demonstrate the convergence of our solver, we implement such a two-layer network in Li &

Yuan (2017) as illustrated in Fig. 3.14 with 10,302 parameters. We train the network using SGD

and our BPGrad solver, respectively, with 20 epochs, batch size of 200 and momentum of 0.9.

We conduct grid search on learning rate (lr) and Lipschitz constant L for SGD and BPGrad,

respectively. Then, we measure the Euclidean distance between the two learned network weights.

We observe a marginal difference of 0.6 among the 10,302 dimensions. Numerically we can say

that both the SGD and our solver converge to the same global minimum.

Given those strong evidences, we thus hypothesize that, with proper momentum, it is very

likely that our solver in Alg. 2 will preserve the theoretical convergence properties of BPGrad

algorithm in Alg. 1, and can converge to global optimum in DL.

3.4 Experiments

We utilize MatConvNet as our testbed, and employ its demo code as well as the default network

architectures for different tasks. Since our solver can automatically determine the learning rates,

we compare ours with SGD as well as another four widely used DL solvers with adaptive learning
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(a) BPGrad, µ = 0 (b) BPGrad, µ = 0.9

Figure 3.13: BPGrad on the Rosenbrock function in Eq. (3.16). The black asterisk and dot are the
starting point and global optimum, respectively.

rates, namely Adagrad, Adadelta, RMSProp, and Adam. We use grid-search to determine the best

hyper-parameter settings (details can be found in Supplementary materials) for all the solvers and

report their best performance.

3.4.1 Estimation of Lipschitz Constant L

We take the experiments on MNIST and CIFAR-10 datasets as examples to show the possibility

of automatically tuning or reducing the searching space for manually tuning the parameter. For

MNIST dataset, we take LeNet-5 as the network in our experiments. We randomly initialize the

parameters (including weights and biases), and randomly feed a mini-batch into the network (i.e.

feed-forward) to compute the objective value. Specifically, the filter weights are initialized with

random numbers following a Gaussian distribution and the biases are initialized to be zero. The

training samples are randomly shuffled and a mini-batch of 100 samples are selected from this

shuffled training pool. We repeat this procedure for 600 times in one epoch on MNIST dataset,

leading to 600 copies of initial network parameters as well as 600 objectives. Similarly we repeat

it for 500 times with mini-batch size of 100 on CIFAR-10 dataset with similar network, leading to
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Figure 3.14: Illustration of two-layer networks.

the same amount of initial network parameters and objectives.

Based on the definition of Lipschitz continuity in Eq. (1), we can compute L as follows:

L =
| f (x1)− f (x2)|
‖x1−x2‖2

,∀x1,x2 ∈X , (3.17)

where xi denotes one copy of initial network parameters, and f (xi) denotes the corresponding

objective value.

By utilizing all the initial parameters as well as the objectives, we compute L based on Eq. (3.17)

and plot the distributions of these L’s in Fig. 3.15. It is evident that only a tiny portion of computed

L’s have relatively large values on both datasets. This behavior indicates that the surfaces induced

by the objective functions in DL are in general quite smooth (i.e.without large jumps in the sur-

face), and only in some regions the curvatures are high, where good models may exist. Therefore,

this behavior verifies that our Lipschitz continuity assumption in deep learning can be satisfied

w.h.p. empirically. In practice, we select the value as initial L that surpasses a threshold on the
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Figure 3.15: Distributions of computed Lipschitz constant L’s in ascending order (y-axis denotes
the value of L). Here the red dots denote the L values that are used in our experiments, (a) L = 15
on MNIST and (b) L = 50 on CIFAR-10.

distribution of computed L’s.

In addition, we observe in the experiments that the parameter L as Lipschitz constant is quite

robust w.r.t.its performance, indicating that heavily tuning this parameter is unnecessary in prac-

tice. To demonstrate the robustness of Lipschitz constant L in our solver, we compare the training

objectives of our solver by varying L in Fig. 3.16 (top row). To highlight the differences, we only

crop and show the results in the first four epochs, and the remaining results have similar behavior.

As we can see on the MNIST dataset, when L varies from 10 to 100, the corresponding curves are

clustered. Similar clustering is observed as well on the CIFAR-10 dataset for L varies from 50 to

1000.

Moreover, we notice that the best L in Fig. 3.16, i.e. L = 20 on MNIST and L = 50 on

CIFAR-10, respectively, tends to be within the range of the computed L’s on each dataset shown

in Fig. 3.15. This observation can be used to facilitate the parameter tuning procedure, as we do

not necessarily consider any parameter that is far beyond the range, e.g. L = 500 or L = 1000 on

MNIST. Therefore, we set L = 15 for MNIST and L = 50 for CIFAR-10, respectively, in our solver

(see Sec. 3.4.3.1 and Sec. 3.4.3.2).

42



(a) MNIST (b) CIFAR-10

Figure 3.16: Illustration of robustness of Lipschitz constant L in our solver.

(a) MNIST (b) CIFAR-10

Figure 3.17: Illustration of robustness of parameter ρ in our solver.

3.4.2 Effect of ρ on performance

Similar robustness is also observed in the experiments for the parameter ρ related to the lower

bound estimator in our solver. We compare the training objectives of our solver by varying ρ in a

similar setting as L in Fig. 3.17. For the MNIST dataset, we set L = 15 and vary ρ from 0 to 0.9.

As we can see from the result, when ρ varies from 0 to 0.5, the corresponding curves are clustered.

Similar result is obtained on CIFAR-10 for ρ varies from 0 to 0.5. Therefore, in the following

experiments, we set the initial value of ρ = 0.1 to make a trade-off between the estimation value
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Figure 3.18: Comparison on (left) training objectives and (right) test top-1 errors for object recog-
nition using LeNet-5 on MNIST.

of the lower bound and size of the removable parameter space for our BPGrad solver.

3.4.3 Object Recognition

In this section, we explore the use of BPGrad solver in object recognition with different CNNs

on four benchmark datasets: MNIST LeCun (1998), distorted versions of MNIST Jaderberg et al.

(2015), CIFAR-10 Krizhevsky et al. (2012) and ImageNet Russakovsky et al. (2015). For all the

datasets, we follow the default implementation to train the individual CNN model on each dataset.

3.4.3.1 MNIST

The MNIST dataset consists of handwriting digits 0 to 9 which are gray images with a resolution

of 28× 28 pixels. There are 60,000 training images and 10,000 testing images in total in 10

classes labeled from 0 to 9. For this dataset, we train an individual LeNet-5 LeCun et al. (1998)

model using each solver. For the details of network architectures please refer to the demo code.

Specifically, for all the solvers, we train the network for 50 epochs with a mini-batch size 100,

weight decay 0.0005, and momentum 0.9. In addition, we fix the initial weights for all solvers and

the feeding order of mini-batches for a fair comparison. The global learning rate is set to 0.001

on MNIST for Adagrad, RMSProp, Adam, and SGD. Adadelta does not require a global learning

rate.
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Figure 3.19: Comparison on (left) training objectives and (right) test top-1 errors for object recog-
nition using network similar to LeNet on CIFAR-10.

The results are shown in Fig. 3.18. To illustrate the effect of momentum in our solver in terms

of performance, here we plot two variants of our solver with µ = 0 and µ = 0.9, respectively.

It is clear that our solver with µ = 0.9 works much better than its counterparts, achieving lower

training objectives as well as a lower top-1 error at test time. This again provides evidence to

support the importance of satisfying Eq. (3.4) in our solver to search for optimal solutions toward

global minima.

The proposed Lipschitz continuity assumption can serve as regularization in deep learning.

As can be seen in Fig. 3.15 on MNIST, the L = 15 used in Fig. 3.18 is much smaller than the

maximumly computed L, making the surface of the approximate function much smoother. This

eventually leads to a higher objective than SGD and Adagrad in Fig. 3.18. The test error of the

BPGrad solver, however, is lower than SGD and Adagrad, owing to the functionality of regulariza-

tion.

3.4.3.2 CIFAR-10

The CIFAR-10 dataset consists of 10 object classes of natural images with 50,000 training images

and 10,000 test images, where the color image resolution is 32×32 pixels.

Similar to LeNet LeCun et al. (1998), for each solver in this experiment, we train an individ-

ual model for 100 epochs on this dataset, with a mini-batch size 100, weight decay 0.0005, and
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Figure 3.20: Plots of lower and upper bounds for (left) MNIST and (right) CIFAR-10 of our solver
using LetNet.

momentum 0.9. In addition, we fix the initial weights for this network and the feeding order of

mini-batches for a fair comparison. The global learning rate is set to 0.001 for RMSProp; but to

0.01 for Adagrad, Adam and Eve Koushik & Hayashi (2016), and it is reduced to 0.005 and 0.001

at the 31-st and 61-st epochs. The initial learning rate for SGD is 0.05, and it is multiplied by 0.1

at the 31-st and 61-st epochs. The Lipschitz constant L for our solver is set to 50 for this network.

The results are shown in Fig. 3.19. Our solver achieves the best performance in terms of train-

ing objective, but leading to a slightly inferior top-1 error at test time using LeNet. This behavior

comes from the effect of regularization on Lipschitz continuity. However, our solver can decrease

the objectives much faster than all the competitors in the first few epochs. This observation reflects

the superior ability of our solver in determining adaptive learning rates for gradients. In this ex-

periment, we also compare with an extra solver, Eve, which was proposed in related work Koushik

& Hayashi (2016) that empirically improves Adam with the feedbacks from the objective func-

tion. We can observe that our BPGrad solver achieves very competitive performance compared

with Eve. Moreover, as reported in recent work Berrada et al. (2018), BPGrad outperforms Ada-

grad and Adam on CIFAR-10 dataset using both wide residual networks Zagoruyko & Komodakis

(2016) and densely connected convolutional networks Huang et al. (2017), which further provides
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Figure 3.21: Comparison on (left) training objectives and (right) validation top-1 errors for object
recognition using ImageNet ILSVRC2012.

Table 3.2: Top-1 recognition error (%) on ImageNet ILSVRC2012 dataset.

Adagrad Adadelta RMSProp Adam SGD BPGrad
training 49.0 71.6 46.0 70.0 28.6 33.0

validation 54.8 76.7 47.2 72.8 42.1 44.0

a solid evidence to support the advantage and robustness of our approach.

Finally, we provide empirical evidence on the convergence of lower and upper bounds estima-

tions on the MNIST and CIFAR-10 datasets. As shown in Fig. 3.20, the global optimum is tightly

bounded by our solver in finite number of iterations during training. The difference between the

training objectives of lower and upper bounds is computed to evaluate the convergence in our

solver. For MNIST, the gap between the lower and upper bounds is reduced from 0.121 to 0.003 in

50 epochs. Similarly, on CIFAR-10, the gap shrinks from 1.280 to 0.042. This provides an insight

on how our solver is able to find the global solution using branch and pruning strategy. It samples

(“branch") a candidate solution along the direction of the local gradient, then checks this branch

against the estimated upper and lower bounds for the optimal solution, and removes (“pruning")

the candidates that cannot produce a better solution than the best one found so far.
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3.4.3.3 ImageNet ILSVRC2012

The ImageNet Russakovsky et al. (2015) dataset contains about 1.28M training images and 50K

validation images among 1000 object classes. In this experiment, we employ the numbers of

epochs in the demo files, since those values have been fine-tuned for different solvers. Following

the demo code, we train the same AlexNet Krizhevsky et al. (2012) network on the ImageNet

dataset from the scratch using different solvers. We perform training for 20 epochs, with a mini-

batch size 256, weight decay 0.0005, momentum 0.9, and default learning rates for the competitors.

For our solver we set L = 100 and µ = 0.9.

The results are shown in Fig. 3.21. We can observe that BPGrad converges faster than SGD

before the 10-th Epoch at both training and test time, and achieves slightly inferior performance

than SGD. However, we observe that BPGrad converges faster than all the other four competitors to

achieve the lowest objective as well as the lowest top-1 error on the validation dataset. Specifically,

our result is 3.2% lower than the second best adaptive solver, RMSProp, at the 20-th epoch, as

listed in Table 3.2. The state-of-the-art top-1 error using AlexNet on ILSVRC2012 validation data

is 42.6%2, while our solver achieves 42.2% top-1 error in 50 epochs, which is 0.4% lower than the

state-of-the-art performance.

All the above experiments demonstrate the capability of the proposed solver BPGrad in training

deep models for large scale object recognition.

3.4.4 Object Detection

Using the framework and source code of Fast RCNN Girshick (2015), we compare different solvers

on the PASCAL VOC2007 dataset Everingham et al. (2007) with 20 object classes. The default

object proposal approach is selective search Uijlings et al. (2013). For all solvers, we train the

network for 12 epochs using the 5K images in VOC2007 trainval set and test it using 4.9K images

in VOC2007 test set. We set the weight decay and momentum to 0.0005 and 0.9, respectively, and

use the default learning rates for the competitors. For our solver, we set L = 100.

2http://www.vlfeat.org/matconvnet/pretrained/
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Figure 3.22: Loss comparison on VOC2007 trainval dataset for object detection, including (left)
the regression loss using bounding boxes and (right) the classification loss.

Table 3.3: Average precision (AP, %) of object detection on VOC2007 test dataset.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
Adagrad 67.5 71.5 60.7 47.1 28.3 72.7 76.7 77.0 34.3 70.2 64.0 72.0 74.2 69.5 64.9 28.8 57.4 60.5 73.1 61.1 61.7

RMSProp 69.1 75.8 61.5 47.9 30.2 74.7 77.1 79.4 33.2 71.1 66.3 74.4 76.3 69.9 65.1 28.9 62.9 62.5 73.2 60.8 63.0
Adam 68.9 79.9 64.1 56.6 37.0 77.4 77.7 82.5 38.2 71.5 64.7 77.6 77.7 75.0 66.8 30.6 65.9 65.1 74.4 67.9 66.0
SGD 72.0 77.8 65.7 50.9 40.0 78.1 78.2 80.5 41.3 73.2 66.8 78.5 81.8 73.6 66.8 29.5 65.7 69.4 75.0 61.9 66.3

BPGrad 69.4 77.7 66.4 55.1 37.2 76.1 77.7 83.6 38.6 73.8 67.4 76.0 81.9 72.7 66.3 31.0 64.2 66.2 73.8 64.9 66.0

The training loss and average precision at the test time are shown in Fig. 3.22 and Table 3.3,

respectively. Ours achieves slightly higher values in terms of training loss than Adam, however,

our solver achieves on par performance with Adam, and SGD at test time on average.

3.4.5 Object Segmentation

Following the work Long et al. (2015a) for semantic segmentation based on fully convolutional

networks (FCN), we train FCN-32s with per-pixel multinomial logistic loss and validate it with the

standard metric of mean pixel intersection over union (IU), pixel accuracy, and mean accuracy. For

all the solvers, we conduct training for 50 epochs with momentum 0.9 and weight decay 0.0005

on PASCAL VOC2011 Everingham et al. (2010b) segmentation set. For Adagrad, RMSProp,

Adam and SGD, we find that the default parameters are able to achieve the best performance. For

Adadelta, we tune its parameters with ε = 10−9. The global learning rate for RMSProp is set to

10−5 and 10−4 for Adagrad and Adam, respectively. Adadelta does not require the global learning
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Figure 3.23: Segmentation performance comparison using FCN-32s model on (left) VOC2011
training and (right) validation datasets.

rate. For our solver, we set L = 500.

Fig. 3.23 shows the learning curve on the training and validation datasets, and Table 3.4 lists

the test-time comparison results. In this experiment, our solver has very similar learning behavior

as Adagrad, however, it achieves better performance at test time. The results demonstrate that

our solver has the ability to learn robust and deep models for object segmentation. We can also

observe from Fig. 3.23 that our solver is reliable as it exhibits smaller fluctuation over epochs in

comparison with the competitors. The smaller fluctuation over epochs on the validation dataset

demonstrates again the superior reliability of our solver, compared with the competitors. Taking

these observations into account, we believe that our solver has the ability to learn robust and deep

models for object segmentation.

In summary, we can observe that our BPGrad solver can not only achieve on par performance

with SGD, but also eliminating the manual tuning of learning rate.

3.5 Conclusion

In this paper, we have proposed a novel approximation algorithm, BPGrad, towards searching for

the global optimality in DL via branch and pruning based on the Lipschitz continuity assumption.

Our basic idea is to keep generating new samples from the parameter space (i.e. branch) outside

the removable parameter space (i.e. pruning). The Lipschitz continuity not only provides us a way
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Table 3.4: Numerical comparison on semantic segmentation performance (%) using VOC2011 test
dataset at the 50-th epoch.

mean IU pixel accuracy mean accuracy average
Adagrad 60.8 89.5 77.4 75.9
Adadelta 46.6 86.0 54.4 62.3
RMSProp 60.5 90.2 71.0 73.9

Adam 50.9 87.2 66.4 68.2
SGD 63.3 90.4 78.7 77.5

BPGrad 62.4 89.8 79.6 77.3

to estimate the lower and upper bounds of the global optimality, it also serves as the regularization

to further smooth the objective functions in DL.

We have theoretically proved that under some conditions our BPGrad algorithm can converge

to the global optimality within finite iterations. Empirically in order to avoid the high demand of

computation as well as storage for BPGrad in DL, we propose a new efficient solver. A justifi-

cation on preserving the properties of BPGrad is provided both theoretically and empirically. We

have demonstrated the superiority of our BPGrad solver to several popular DL solvers for vision

applications of object recognition, detection, and segmentation.

Based on the empirical analysis in the paper, we can see that our solver is capable of finding

the solutions close to the global minima. However, with millions of parameters in deep neural

networks, it is still an open problem to visualize empirically and analyze theoretically how an

algorithm converges to the global or local minima. Moreover, It is an exciting direction of our

future work continuing the adaptive solvers to train deep neural networks.
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Chapter 4

Point Cloud Analysis

4.1 Introduction

Estimating the 6D poses (3D rotation and 3D translation) of rigid objects in 3D point clouds is an

active research area with myriad real-world applications. Examples of such applications include,

but are not limited to, robotic grasping and manipulation, virtual reality, augmented reality, and

human-robot interaction Brachmann et al. (2016); Xiang et al. (2017); Sundermeyer et al. (2018);

Kehl et al. (2017); Rad & Lepetit (2017); Tejani et al. (2014); Wang et al. (2019a). Methods pro-

posed to solve this task typically make two strong assumptions (or simplifications) on the problem

setup, such as (i) a 3D CAD model of the object is available, and (ii) a (sufficiently large) train-

ing set is available with annotated 6D poses of each object instance. In this paper, we address an

extremely challenging variation of this task in which neither the CAD model nor the object poses

are available during training or testing. Specifically, we aim to learn a high-fidelity 3D object

models solely from depth images, without any ground-truth information about the object or the

poses of the observed instances, while also estimating 6D poses of the object instances and their

segmentations, all within a single deep learning framework.

The proposed task is very challenging for two key reasons. First, it is a “chicken-and-egg

problem”. On the one hand, it is difficult to estimate the correct pose if the object model is poor,

and on the other hand, an accurate pose estimation is necessary to learn the object model (see the

Ablation studies in Sec. 4.3.5). Second, we do not make any assumptions on the object shapes; as

a result, the objects may contain symmetries, which can introduce suboptimal local solutions into

the optimization landscape. Our general problem setup also brings in additional challenges such
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Figure 4.1: Overview of our unsupervised approach of 3D object model learning and 6D pose
estimation. The pose estimator takes as input a depth image, then regresses a 6D pose θi for
each object instance i. The learned 3D object model is rendered using the pose. The predicted
point cloud is obtained by removing the occluded points from the rendered point cloud using HPR
occlusion. The chamfer distance between the predicted and the observed point cloud is used to
drive the learning process. We denote forward propagation through the model using green arrows,
and backpropagation using red. (Best viewed in color.)

as handling object self-occlusion and object-object occlusions.

To address this problem, we propose a novel deep learning framework, summarized in Fig. 4.1.

Our proposed method takes as input a depth map image of a scene (a bin containing multiple

instances of an object), and produces as outputs a 3D point-cloud model of the object and the 6D

pose of every instance of the object. Our network consists of three key modules: (i) a 3D object

model, initialized as a random point cloud, which when learned should capture the 3D structure of

the underlying object; (ii) a pose estimator neural network that takes as input the depth map and

produces a list of rigid transformations (3D rotations and translations), one for each instance of the

object; (iii) a renderer that applies each rigid transformation to the 3D object model, combines the

instances, and performs hidden point removal (HPR) Katz et al. (2007) to obtain a predicted point

cloud in which occluded points have been removed; and (iv) a loss function that compares the
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predicted point cloud to the observed point cloud (obtained from the depth image) using chamfer

distance as in Fan et al. (2017); Yang et al. (2018). Using point clouds allows us to learn high-

fidelity object models, in contrast to voxels Choy et al. (2016); Tatarchenko et al. (2017); Tulsiani

et al. (2017) or meshes Kanazawa et al. (2018); Kato et al. (2018) used in previous works. Our

network is trained end-to-end from scratch, and all of the learned weights (the pose estimator

network weights and the 3D object model) are optimized simultaneously via backpropagation.

We evaluate the proposed algorithm qualitatively on the task of 3D object model reconstruction

for the single-instance case. We evaluate it quantitatively for multiple-instance cases on the task

of instance segmentation from depth images of an unknown object (in which only the number of

instances is known). The results demonstrate that in addition to performing better than or com-

parably to baseline methods on instance segmentation, our model also produces reasonable 3D

point-cloud models of a variety of industrial objects.

To summarize, the main contributions of this work are three-fold as follows:

• We propose a novel task and generic unsupervised algorithm to jointly learn a complete 3D

object model and estimate 6D poses of object instances in 3D point clouds.

• We incorporate occlusion reasoning into our framework, which enables it to learn full 3D

models from depth maps (whose point clouds do not show occluded sides or occluded por-

tions of objects), and handle learning symmetric object models via modifications to our loss

function involving multiple rotation channels.

• We provide extensive experiments on unsupervised instance segmentation, demonstrating

that in addition to learning a 3D object model, our method performs better than or compara-

bly to standard baselines for instance segmentation.

4.2 Proposed Approach

In this section, we present our unsupervised approach for model learning and 6D pose estimation,

and describe its application to instance segmentation in 3D point clouds. In Sec. 4.2.1, we describe
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our network architecture. Sec. 4.2.2 focuses on the core of our approach, the 3D object model

and pose estimator network that are jointly learned through backpropagation. Sec. 4.2.3 describes

how occlusion modeling is utilized to facilitate the learning of full 3D object model from point

clouds obtained from depth images. Sec. 4.2.4 describes the unsupervised loss function. Finally,

Sec. 4.2.5 explains how the predicted point cloud is used for instance segmentation in 3D point

clouds.

4.2.1 Architecture Overview

Suppose the number of instances N is known, and that all instances are rigid 6D transformations of

a single 3D shape. Without loss of generality, we define the complete 3D object model X using the

form of a point cloud representation that describes the object surface. We denote X = {xi|1≤ i≤

m} ∈R3 as a set of m points with 3D positions. We denote 6D poses θ ∈ SE(3) as a homogeneous

transformation matrix. In other words, a 6D pose θ = [R|t] consists of a 3D rotation R∈ SO(3) and

a 3D translation t ∈R3. We denote a viewpoint (camera center) as C. Since we estimate the 6D

poses of objects at a given camera view, the poses are defined w.r.t. the camera coordinate frame.

Fig. 4.1 illustrates the overall proposed architecture. The learned portion of the system con-

sists of a learned 3D object model and a pose estimator network. The learned object model is

a point cloud in which the 3D point locations are learnable parameters. Given a depth image

with N instances as input, the pose estimator outputs an estimated a 6D pose θi for each instance

i ∈ [1, · · · ,N]. Next, the system generates a rendered point cloud by transforming N instances of

the learned object model using the estimated 6D poses. The occlusion module then uses the HPR

operator to remove points in the rendered point cloud that would not be visible from the given

camera view. This occlusion modeling facilitates the learning of a complete 3D object model,

because only unoccluded points will be compared with the observed point cloud. Finally, cham-

fer distance, an unsupervised loss, is used to evaluate the difference between the predicted point

cloud and observed point cloud. The object model and the pose estimator are jointly updated by

backpropagating the chamfer distance from the loss layer. We now discuss each module in detail.
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4.2.2 Learning

3D Object Model Learning: We use a 3D point cloud X ∈ Rm×3 to represent a learnable 3D

object model. It is randomly and uniformly initialized within a cube of size ρ centered at the

origin of the coordinate system, and is then updated during backpropagation. The estimated pose

for each instance is applied to render the 3D object model. After rendering, we remove the hidden

points using HPR occlusion, which is discussed in Sec. 4.2.3. We performed experiments with

multi-layer perceptrons to generate a more structured point-cloud object model, but they did not

improve the performance.

Pose Estimator: For the pose estimator, we use a ResNet-18 He et al. (2016) network as the

backbone to input a depth image and estimate a 6D pose θi for each instance i. To represent 3D

rotations, since the Euler-angle representation can result in gimbal lock1 Zhou et al. (2019a), we

instead use quaternions to represent rotations. The pose estimator regresses the 3D rotation and

translation parameters for each instance. In total, we have a vector θi ∈R7×1 to learn rotation and

translation for each instance, where the first four parameters encode the quaternion representation

of the rotation, and the remaining three parameters indicate the 3D translation. If each input depth

map contains N instances of an unknown object, then the output of the pose estimator module is a

7N×1 vector containing an estimated pose for each instance.

3D Transformation: From the estimated pose θi for instance i, we compute the rotation matrix

Ri and the translation vector ti. Then, we directly apply the 3D transformation to the object model

X . We refer to this a 3D transformation with one rotation channel. However, during the exper-

iments we found that for some elongated objects, the learned 3D object models are (incorrectly)

symmetric across a plane perpendicular to the long axis (e.g. Bolt, Obj14, and Obj24 shown in

Fig. 4.3(b)). We argue that it is because an incorrect estimated pose that is a 180◦ rotation (in a

plane containing the long axis) away from the true pose would be a local minimum of the opti-

mization. This would in turn cause the model learning to converge to a shape that is invariant with

respect to such a 180◦ rotation. In order to prevent the model from getting stuck in this incorrect

1Certain configurations result in a loss of degree of freedom for the rotation.
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local minimum of optimization, we propose to use two rotation channels in the 3D transformation

module. It has benefited the model learning of several objects, as shown in Fig. 4.3(c). We now

describe the details of using one vs. two rotation channels.

One-rotation-channel setting: For each instance i, we apply the rotation matrix Ri and trans-

lation vector ti to the object model X to render the transformed point cloud using XTi = RiX + ti,

where i ∈ [1, · · · ,N].

Two-rotation-channels setting: For each instance i, in addition to using the rotation matrix

Ri obtained from θi as the first channel’s rotation matrix, R1
i = Ri, we also use Ri to obtain a

second channel’s rotation matrix: R2
i = −Ri. The intuition is that if one channel’s rotation is

near the incorrect local minimum described above, the other channel’s rotation will be near the

correct global minimum. The transformed point cloud of the first and second rotation channel is

X1
Ti
= RiX + ti and X2

Ti
= −RiX + ti, respectively. Note that although −Ri is an orthogonal matrix,

it is not a rotation matrix because it has determinant −1. Thus for an object X with no plane

of symmetry, such as the camera head in Fig. 4.3(a), X2
Ti

will not be a physically realizable rigid

transformation of X . However, as long as an object X has a plane of symmetry, then X2
Ti

will be

equivalent to a rigid transformation of X . This is probably why using two rotation channels
(
in

Fig. 4.3(c)
)

does not improve the learned object model for the camera head, but it does improve

the learned model of the other objects (each of which has symmetry across a plane). For objects

with planar symmetry, using two vs. one rotation channels is a trade-off between a high-fidelity

object model and training time, because given N instances, there are 2N possible combinations of

rotation, which require longer training time.

4.2.3 HPR Occlusion

Since the observed point cloud is sampled from a given camera view C, some parts of objects are

occluded (not visible). However, the rendered point cloud is generated using a complete 3D object

model. To match the predicted point cloud with the observed point cloud, we need to remove from

the rendered point cloud those points that would be occluded from the given camera view C. Thus,
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we integrate the HPR operator, which computes occlusions directly from point clouds, in our HPR

occlusion module.

The occlusion module consists of two steps: inversion and convex hull construction. Given the

transformed point cloud XT and camera view C placed at the origin, we can create a D-dimensional

sphere with radius R, centered at the origin C, and all the points in XT are included in the sphere.

Here, we perform inversion using spherical flipping, which is to reflect every point xi inside the

sphere along the ray from C to xi to its image outside the sphere. After the construction of convex

hull of the reflected points and camera view C, the point xi is marked visible from C if its image

point resides on this convex hull.

After removing the hidden points from the rendered point cloud, we obtain the predicted point

cloud, which is used to calculate the chamfer distance from the observed point cloud. The HPR

occlusion is able to improve the quality of the learned object model and facilitate the learning of a

complete 3D object model, as discussed in Sec. 4.3.5.

4.2.4 Unsupervised Loss

The difference between the predicted point cloud and observed point cloud is calculated using

chamfer distance. We assume the observed point cloud has n points. The predicted point cloud

has m points. Let S denote the observed point cloud, and S̃ the predicted point cloud. For our loss

function, we compute the reconstruction error for S̃ using the chamfer distance as in Yang et al.

(2018):

L (S, S̃) = max

{
1
|S|∑x∈S

min
x̃∈S̃
||x− x̃||2,

1
|S̃|∑x̃∈S̃

min
x∈S
||x̃− x||2

}
. (4.1)

The term minx̃∈S̃ ||x− x̃||2 enforces that every 3D point x in the observed point cloud has a matching

3D point x̃ in the predicted point cloud, and vice versa for the term minx∈S ||x̃− x||2. The max

operation enforces that both directional distances between S and S̃ must be small. For the one-

rotation-channel setting, we calculate the loss directly using Eq. (4.1).

Loss for two rotation channels: For two rotation channels, there are 2N combinations of
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rotations given N instances, requiring a modified loss function:

L =
2N

∑
i=1

wi ·Li, where wi =
exp
(
−γ

Li
Lsum

)
∑

2N

j=1 exp
(
−γ

L j
Lsum

) , (4.2)

where Lsum is the summation of loss across 2N channel combinations, Li is the loss calculated

using Eq. (4.1) for each channel combination i, wi is softmin weight for the loss Li of each com-

bination, and γ is a variable that starts at 0 and is increased (with step size 0.002) at each iteration

of learning. The goal of the softmin-weighted loss is to initially weight both rotation channels

equally, but to gradually force the learning process to select a single winning rotation channel for

each instance as training progresses.

4.2.5 Instance Segmentation in 3D Point Clouds

The learned object model and estimated 6D poses can be used for instance segmentation in 3D

point clouds. For each point xi in the observed point cloud S, we find its nearest neighbor in the

predicted point cloud, and assign xi the instance label of that nearest neighbor. In this way, we can

segment all the instances in the observed point cloud, as shown in Fig. 4.2.

The labeling of different instances has to be invariant to permutations, i.e. it does not matter

which specific label an instance is assigned, as long as the label is not the same as the other object

instance labels. Following the evaluation metric based on counting pairs in clustering Ramage et al.

(2009), we propose to evaluate the performance of instance segmentation using pairwise F1 score,

as shown in Fig. 4.2, which is described in detail as follows. Let Sgt and Spred denote the observed

point cloud with ground-truth instance labels and with predicted instance labels, respectively. For

a pair of points (a,b) in the observed point cloud, let (ag,bg) denote their instance labels from Sgt ,

and let (ad,bd) denote their instance labels from Spred . We define the pairwise labels for Sgt as

L(ag,bg) =

{ 1, i f ag = bg.

0, otherwise.
(4.3)
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Figure 4.2: The pipeline of instance segmentation in 3D point clouds, and the evaluation metric of
instance segmentation. For every point in the observed point cloud S, we assign to the point the
instance label of its nearest neighbor in the predicted point cloud. The performance of instance
segmentation is evaluated by calculating the pairwise F1 score.

Similarly, we define the pairwise labels L(ad,bd) for Spred . As shown in Table 4.1, for every possi-

ble pair of points (a,b), we compare the ground-truth pairwise label L(ag,bg) to the predicted pair-

wise label L(ad,bd), and consider the predicted label for the pair correct if L(ad,bd) = L(ag,bg).

We use this to compute the precision (P = T P
T P+FP ) and recall (R = T P

T P+FN ), and compute pairwise

F1 score using F1 = 2P·R
P+R . We report the F1 score for instance segmentation (see Table 4.2).

Table 4.1: The definition of pair-wise labels.

L(ag,bg) = 1 L(ag,bg) = 0
L(ad,bd) = 1 True Positive (TP) False Positive (FP)
L(ad,bd) = 0 False Negative (FN) True Negative (TN)
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Figure 4.3: 3D object models that our method learned for six industrial objects from depth images
containing one instance (N = 1). (a) True object CAD models, compared with the 3D object
models learned using the setting of (b) one rotation channel or (c) two rotation channels.

4.3 Experiments

We first describe the datasets with synthetic depth images and the implementation details. We then

present the learned 3D object models. We next evaluate the performance of instance segmentation.

We finally discuss the ablation studies.

4.3.1 Datasets

We generate synthetic depth images by feeding the 3D CAD model of different objects to our

customized simulator. The simulator uses PhysX-3.3.0 Nvidia (2019) to model the physics of

dropping N identical objects one at a time into a bin, then renders the object to generate a depth

image. We then extract the 3D point cloud directly from each depth image. To illustrate the

robustness and generalization of our algorithm, we select six industrial objects: a bolt, camera

head, and nut from our own library, plus three representative industrial objects (Obj01, Obj14,

and Obj24) from the public T-LESS dataset Hodan et al. (2017). The 3D CAD models of the six

objects are shown in Fig. 4.3(a).

For each object, we generated 5,000 depth images (and corresponding 3D point clouds) as

our training dataset for each number of instances N = 1,2,3,4 of each of the six objects. (In

the scenario of bin picking, each bin contains multiple instances of a single object.) We select
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500 images from the training dataset as our evaluation dataset. (When evaluating unsupervised

learning, it is common for the evaluation set to be a subset of the training set.)

We qualitatively evaluate the reconstructed 3D object model and numerically evaluate the per-

formance of instance segmentation on the evaluation dataset. The ground-truth instance labels of

the depth images and point clouds are only used during evaluation of instance segmentation, not

during training, because the training is unsupervised. We evaluate the performance of instance

segmentation using the pairwise F1 score (see Section 4.2.5).

4.3.2 Implementation Details

We use PyTorch Paszke et al. (2017) as the framework to implement our algorithm. The pose

estimator consists of a ResNet-18 He et al. (2016) to regress the 3D transformation parameters θi,

for i = 1, · · · ,N. The resolution of depth images is 224× 224. We replicate the depth image into

three channels as input to the ResNet-18. No data augmentation is used during training. We select

Adam Kingma & Ba (2014) as the optimizer with default parameters. We choose initial learning

rate lm = 1e−3 to learn the 3D object model, and lr = 1e−4 for the ResNet-18 pose estimator. The

learning rate is decreased by a factor of 0.31 after every 50 epochs. For each object, a separate

model is trained for each of N = 1,2,3, and 4 instances. Each model is trained for 250 epochs,

with batch size 250.

4.3.3 Learned 3D Object Model

Fig. 4.3(b) and (c) show the 3D object models learned from single instance (N = 1) data using the

one-rotation-channel setting and the two-rotation-channel setting, respectively, for six industrial

objects. Our method is able to learn reasonable high-fidelity 3D object models using one rotation

channel for the Nut and Obj01. However, it learned (incorrect) symmetric object models for the

Bolt, Obj14, and Obj24. Using two rotation channels enables the method to reconstruct high-

fidelity 3D object models for these objects that more closely match the object CAD models shown

in Fig. 4.3(a). As explained in Section 4.2.2, the Camera Head does not have a plane of symmetry,
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Table 4.2: Instance segmentation comparison of baseline clustering methods with our method. F1
scores of instance segmentation on the validation dataset are shown. The complexity of instance
segmentation increases with the number of instances N in each input depth image. Ours (v1) is
one-rotation-channel setting, and Ours (v2) is two-rotation-channels setting.

# Instances Methods Bolt Camera Head Nut Obj01 Obj14 Obj24 Ave. on 6 objects

N=2

K-means 0.89 0.89 0.99 0.97 0.98 0.98 0.95
Spectral Clustering 0.96 0.91 0.90 0.91 0.87 0.94 0.90

Ours (v1) 0.99 0.94 1.0 1.0 1.0 1.0 0.98
Ours (v2) 0.96 0.93 0.99 0.97 1.0 1.0 0.98

N=3

K-means 0.79 0.74 0.98 0.93 0.96 0.96 0.89
Spectral Clustering 0.90 0.83 0.96 0.91 0.81 0.89 0.88

Ours (v1) 0.98 0.93 0.98 0.93 0.98 0.99 0.97
Ours (v2) 0.99 0.84 0.98 0.93 0.96 0.99 0.95

N=4

K-means 0.71 0.65 0.97 0.90 0.92 0.94 0.85
Spectral Clustering 0.85 0.76 0.94 0.86 0.77 0.85 0.84

Ours (v1) 0.81 0.85 0.96 0.90 0.87 0.86 0.88
Ours (v2) 0.88 0.84 0.96 0.89 0.91 0.85 0.89

which may explain why our two-rotation-channel setting did not improve the learned model for

that object. On the whole, the learned 3D object models in Fig. 4.3 demonstrate the capability of

our algorithm to reconstruct a complete 3D object model without any supervision from an object

CAD model or ground truth pose.

4.3.4 Instance Segmentation Results

As the task we are solving is new, we could not find proper baselines based on deep neural net-

works. Therefore, we quantitatively compare the performance of instance segmentation of our

unsupervised algorithm with two non-deep clustering baselines: K-means Pedregosa et al. (2011)

and Spectral Clustering Pedregosa et al. (2011). As explained in Sec. 4.2.5, we use the predicted

point cloud generated by our method to perform instance segmentation on each input 3D point

cloud.

We report the pairwise F1 scores in Table 4.2. As we can see, with N = 2 and 3 instances, our

algorithm significantly outperforms the two baselines across all six objects. K-means is slightly

better than ours for N = 4 instances on the Nut, Obj01, Obj14 and Obj24. However, our method

outperforms K-means on the Bolt and Camera Head by about 10% and 20%, respectively. We
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Figure 4.4: The qualitative results of instance segmentation of 2D projection and 3D point clouds
with N = 2 instances.

believe that this is because K-means is good at clustering the objects with roughly spherical shapes

but not more elongated objects. In contrast, our algorithm is able to handle both types of object

shapes. Fig. 4.4, Fig. 4.5 and Fig. 4.6 show qualitative results of instance segmentation in 2D

projection and 3D point clouds for N = 2,3 and 4 instances, respectively, obtained using the single-

rotation-channel setting.

Note that our algorithm is addressing a much more difficult task than simply instance segmen-

tation. Unlike the two baseline algorithms, our algorithm does not just segment the point clouds

into instances, but also simultaneously learns a high-fidelity 3D object model and estimates the 6D

pose of objects in an unsupervised manner.
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Figure 4.5: The qualitative results of instance segmentation of 2D projection and 3D point clouds
with N = 3 instances.

4.3.5 Ablation Experiments

We run a number of ablation experiments to analyze the importance of various aspects of our algo-

rithm. The complete numerical results of all ablation experiments are provided in the Appendix B.

Different rotation representations. We compare the reconstruction quality of object model

and the performance of instance segmentation using three different rotation representations: axis-

angle, ortho6D Zhou et al. (2019a), and quaternion. We show the learned 3D models of the Nut

for N = 1 and 2 in Fig. 4.7. It is apparent from the figure that the quaternion representation of

3D rotaitons yields a slightly better 3D model. This mirrors the numerical results, reported in the

Appendix B, which show that the quaternion representation is able to achieve a smaller average

chamfer distance (smaller loss) than the other two representations.

Varying the radius r in HPR occlusion. In HPR occlusion, the value of the radius parameter
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Figure 4.6: The qualitative results of instance segmentation of 2D projection and 3D point clouds
with N = 4 instances.

r affects the number of visible points in the predicted point cloud. In Fig. 4.8, we show the effect of

varying the HPR radius value on the 3D object model learned by our method. For a single instance

(N = 1) of Bolt, it can learn a reasonable object model for r = 2.0 and r = 2.9. However, with

r = 3.14 the 3D object model more resembles a cylinder. For two instances (N = 2), it learns a 3D

object model similar to a dumbbell with r = 2.0, while it learns reasonable 3D object models with

r = 2.9 and r = 3.14. Without using HPR occlusion (right), it learns a flat 3D object model for

both N = 1 and N = 2. This demonstrates that the HPR occlusion module is critical for learning

complete high-fidelity 3D object models.

Simplified two-rotation-channel setting. To simplify the training process for the two-rotation-

channel setting, we can calculate a modified loss using L = min(Li), for i = 1, · · · ,2N , instead

of using the softmin-weighted loss. The learned 3D object models are shown in Fig. 4.9. Using

one rotation channel, it dumbell-shaped (two-headed) 3D object model of the Bolt. However, our

method is able to learn high-fidelity object model of the Bolt using the simplified two-rotation-
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Figure 4.7: Effect of the algorithm’s rotation representation on the learned 3D object model. The
learned 3D object model is shown from two different views for N = 1 (top) and N = 2 (bottom)
instances of the Nut.

channel setting. The higher fidelity object model also results in improved instance segmentation:

For N = 4, the F1 scores for the one-rotation-channel, two-rotation-channel, and simplified two-

rotation-channel settings are 0.81, 0.88, and 0.90, respectively.

4.4 Conclusion

We introduce a novel method to a novel task: the joint unsupervised learning of a 3D object model

and estimation of 6D pose from depth images of multiple instances of an object. We also apply

the method to instance segmentation in 3D point clouds. Unlike the traditional task of 6D pose

estimation, our problem considers those cases in which neither the CAD model nor the ground-

truth 6D pose are available during training or testing. To handle pose ambiguity of an unknown

object, we jointly optimize the model learning and pose estimation in end-to-end deep learning

framework. To handle occlusions, we incorporate an occlusion model into our architecture, which

enables the model-generated point cloud to match the point cloud that was obtained from the input

depth map. The task, and our proposed approach, have important applications in numerous areas

including augmented reality, robotics, and 3D scene understanding.
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Figure 4.8: The learned 3D object models using the simplified two-rotation-channel setting with
different values of radius r in HPR occlusion with N = 1 (top) and N = 2 (bottom) instances of the
Bolt. At right, we plot two views of the 3D object models learned without HPR occlusion.

Figure 4.9: The learned complete 3D object models of Bolt using the (a) one-rotation-channel,
(b) two-rotation-channel, and (c) simplified two-rotation-channel setting, for different numbers of
instances N.
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Chapter 5

Low Quality Image Classification

5.1 Introduction

Recently, deep Convolutional Neural Networks (CNNs) have demonstrated impressive improve-

ments in image classification Krizhevsky et al. (2012); He et al. (2016), object detection Girshick

et al. (2014); Ren et al. (2015); Ma et al. (2018), and instance segmentation He et al. (2017). The

success of CNNs has become possible mostly due to the large amount of labeled dataset Ima-

geNet Deng et al. (2009), as well as advances in better learning algorithms Goyal et al. (2017); Wu

et al. (2018) and computing resources (i.e. GPUs). All those work typically assume that images

are of sufficiently high resolution (e.g. 224×224 or higher).

However, the training of deep CNNs requires large amount of labeled dataset. In order to

overcome this limitation, researchers have introduced transfer learning techniques. A common

way to make use of transfer learning in the computer vision applications is to start from a pre-

trained model in a similar task or domain, and then fine-tune the parameters to the new task. For

example, the pre-trained model on ImageNet dataset for image classification can be fine-tuned for

object detection on Pascal VOC dataset Girshick et al. (2014); Ren et al. (2015).

In this paper, we focus on low resolution (e.g. 32× 32 or less) image classification as for

privacy purpose, it is common to use low resolution images in real-world applications, such as face

recognition in surveillance videos Zou & Yuen (2011). Without additional information, learning

from low resolution images always reduces to an ill-posed optimization problem, and achieves a

much degraded performance Pinheiro et al. (2015).

As shown in Fig. 5.1, the deep feature of high resolution images extracted from the pre-trained
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Figure 5.1: The tSNE Maaten & Hinton (2008) of deep features (2048-D) of VOC2007 train
set extracted from pool5 layer of pre-trained ResNet-101 He et al. (2016). (a) Feature of High
Resolution (HR) images, and (b) feature of Low Resolution (LR) images. The HR features are
well separated, however, the LR features are mixed together.

convenet has already learned discriminative per-class feature representation. Therefore, it is able

to be well separated in the tSNE visualization. However, the extracted feature of low resolution

images is mixed together. A possible solution is to exploit the transfer learning, leveraging the

discriminative feature representation from high resolution images to low resolution images.

In this paper, we propose a simple while effective unsupervised deep feature transfer approach

that boosts classification performance in low resolution images. We assume that we have access

to the labeled high resolution images during training, but at test we only have the low resolution

images. Most existing datasets are of high resolution. Moreover, it is much easier to label subcate-

gories of the high resolution images. Therefore, we believe it is a reasonable assumption. We aim

to transfer knowledge from such high resolution images to real world scenarios that only have low

resolution images. The basic intuition behind our approach, is to guide the feature learning for the

target low resolution domain using the high quality discriminative representations.

We have summarized the contributions of our work as follows.
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Figure 5.2: The overview of proposed unsupervised deep feature transfer algorithm. It consists
of three modules. In the feature extraction module, a pre-trained deep convenet is used as feature
extractor to obtain HR and LR features from HR and LR images, respectively. Then, we cluster
the HR features to obtain pseudo-labels, which are used to guide the feature transfer learning of
LR features in the feature transfer network. Finally, a SVM classifier is trained on the transferred
LR features.

• No fine-tuning on convenet filters is required in our method. We use the pre-trained convenet

to extract features for both high resolution and low resolution images, and then feed them

into a two-layer feature transfer network for knowledge transfer. A SVM classifier is learned

directly using these transferred low resolution features. Our network can be embedded into

the state-of-the-art CNNs as a plug-in feature enhancement module.

• It preserves data structures in feature space for high resolution images, by transferring the

discriminative features from a well-structured source domain (high resolution features space)

to a not well-organized target domain (low resolution features space).

• Our performance is better than that of baseline using feature extraction approach for low

resolution image classification task.

5.2 Proposed Approach

In this section, we describe our unsupervised deep feature transfer approach.
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5.2.1 Preliminary

With the recent success of deep learning in computer vision, the deep convnets have become a

popular choice for representation learning, to map raw images to an embedding vector space of

fixed dimensionality. In the context of supervised learning, they could achieve better performance

than human-beings on standard classification benchmarks He et al. (2015); Krizhevsky et al. (2012)

when trained with large amount of labeled data.

Let fθ denote the convenet mapping function, where θ is the corresponding learnable parame-

ters. We refer to the vector obtained by applying this mapping to an image as feature or features.

Given a training set X = {x1, · · · ,xN} of N images, and the corresponding ground truth labels

Y = {y1, · · · ,yN}, we want to find an optimal parameter θ ∗ such that the mapping f ∗
θ

predicts good

general features. Each image xi associates with a class label yi in {0,1}k. Let gw denote a classi-

fier with parameter ω . The classifier would predict the labels on top of the features fθ (xi). The

parameter θ of the mapping function and the parameter ω of the classifier are then learned jointly

by optimizing the following objective function:

min
θ ,ω

1
N

N

∑
i=1

L (gw( fθ (xi),yi)) , (5.1)

where L is the multinominal logistic loss for measuring the difference between the predicted

labels and ground-truth labels given training data samples.

5.2.2 Unsupervised Deep Feature Transfer

The idea of this work is to boost the feature learning for low resolution images by exploiting the

capability of unsupervised deep feature transfer from the discriminative high resolution feature.

The overview of proposed approach is shown in Fig. 5.2. It consists of three modules: feature

extraction, unsupervised deep feature transfer, and classification, discussed below.

Feature extraction. We observe that the deep features extracted from convenet could generate

well separated clusters as shown in Fig. 5.1. Therefore, we introduce the transfer learning to boost
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Table 5.1: We use grid search to find the optimal combination of N1 and N2 for the two-layer
feature transfer network by calculating the mean average precision (mAP) on VOC2007 validation
set.

H
HHH

HHN2

N1 256 512 1024 2048 4096

20 0.704 0.741 0.771 0.786 0.800
100 0.718 0.752 0.768 0.789 0.800
200 0.727 0.746 0.771 0.788 0.800
500 0.717 0.743 0.766 0.784 0.795

1000 0.713 0.743 0.762 0.783 0.793
2048 0.718 0.739 0.765 0.783 0.794

the low resolution features learning via the supervision from high resolution features. Then, we

extract the features (N-Dimensional) of both high and low resolution images from a pre-trained

deep convenet. More details are described in Sec. 5.3.2.

Unsupervised deep feature transfer. We propose a feature transfer network to boost the low

resolution features learning. However, in our assumption, the ground truth labels for low resolution

images are absent. Therefore, we need to make use of the information from high resolution fea-

tures. In order to do this, we propose to cluster the high resolution features and use the subsequent

cluster assignments as “pseudo-label" to guide the learning of feature transfer network with low

resolution features as input. Without loss of generality, we use a standard clustering algorithm,

k-means. The k-means takes a high resolution feature as input, in our case the feature fθ (xi) ex-

tracted from the convenet, and clusters them into k distinct groups based on a geometric criterion.

Then, the pseudo-label of low resolution features are assigned by finding its nearest neighbor to

the k centroids of high resolution features. Finally, the parameter of the feature transfer network is

updated by optimizing Eq. (5.1) with mini-batch stochastic gradient descent.

Classification. The final step is to train a commonly used classifier such as Support Vector

Machine (SVM) using the transferred low resolution features. In testing, given only the low res-

olution images, first, our algorithm extracts the features. Then feeds them to the learned feature

transfer network to obtain the transferred low resolution features. Finally, we run SVM to get the
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classification results directly.

5.3 Experiments

In this section we first describe the dataset, then discuss the implementation details, and finally we

report experimental results.

5.3.1 Dataset

We conduct the low resolution classification on the PASCAL VOC2007 dataset Everingham et al.

(2015) with 20 object classes. There are 5,000 images in VOC2007 trainval set and 4,952 images

in VOC2007 test set. However, the images in the dataset are of high resolution. We follow Lin

et al. (2014) to generate the low resolution images. In this work, we generate high resolution

images by resizing the original images to 224×224 using bicubic interpolation. We generate the

low resolution images by down-sampling the original images to 32×32, and then up-sampling to

224×224.

5.3.2 Implementation Details

We conduct our experiment using Caffe Jia et al. (2014). We use the ResNet-101 He et al. (2016)

pre-trained on ILSVRC20121 Russakovsky et al. (2015) as the backbone convenet to extract the

features from high and low resolution images. We extract the features from the pool5 layer, which

gives a feature vector with dimension of N = 2048.

The feature transfer network is a two-layer fully connected network. We conduct grid search

to find the optimal design for the network architecture, see Sec. 5.3.3. It is initialized using MSRA

initialization He et al. (2015). We train the feature transfer network using stochastic gradient

descent with weight decay 0.0005, momentum 0.9, batch size 1,000, epoch 1,000, total iteration

31,561. The initial learning rate is 0.01, and is decreased by 10 after every 15,000 iterations.

1We download the Caffe Model from https://github.com/BVLC/caffe/wiki/Model-Zoo
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Table 5.2: Per-class average precision (%) for object classification on the VOC2007 test set.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP
HR 97.6 92.7 89.2 85.8 90.6 87.5 96.2 94.3 81.4 83.3 80.0 86.9 84.2 90.0 95.4 95.0 88.3 71.6 96.0 95.9 89.1
LR 87.5 84.8 77.5 77.4 80.4 76.5 90.6 72.1 75.1 72.9 69.5 65.0 71.7 73.9 92.8 90.8 78.3 48.6 83.3 92.3 78.1

Ours 89.1 86.5 80.1 78.1 79.6 77.4 92.4 75.4 79.4 73.2 72.5 68.5 74.0 77.1 95.0 91.9 77.6 53.4 86.1 92.5 80.0

5.3.3 Feature Transfer Network

The feature transfer network is shallow, with two fully connected layers. Let N1 and N2 denote the

neurons of the first and second fully connected layers, respectively. We conduct grid search to find

the optimal combination for N1 and N2, as shown in Table 5.1. The number N2 is determined by

the number of clusters k for the pseudo labels in k-means.

As we can see, when the neurons of N2 is fixed, the mAP increases as the neurons of N1

increases. This is because the capacity of the two-layers feature transfer network increases as the

neurons increases in N1. However, given a fixed number of neurons of N1, the value of mAP

would increase first, and then decrease when the value of neurons in N2 is larger enough, maybe

200 is a threshold value in our two-layer network as shown in the table. We observe that the

hyperparameters with N2 = 100 and N1 = 4096 for the neurons give us the best performance. We

use the same values in our experiment.

5.3.4 Low Resolution Image Classification

We evaluate the performance of image classification in the context of binary classification task on

the VOC2007 test set using SVM Chang & Lin (2011) classifier in matlab. We have compared

our algorithm with two baselines: HR and LR, discussed below. HR is to use the extracted high

resolution features (2048-D) of VOC2007 trainval set to train the SVM and report the classification

performance on VOC2007 test set. It is similar for LR, but with the extracted low resolution fea-

tures (2048-D). Our method transfers the low resolution feature from 2048-D to 100-D. Therefore,

we train the SVM using the 100-D features for each class. We show the comparison in Table 5.2.

The HR is the upper bound of our method, while the LR is the lower bound. As we can see from
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Figure 5.3: The tSNE of features on VOC2007 test set. (a) Feature (2048-D) of High Resolution
(HR) images, (b) feature (2048-D) of Low Resolution (LR) images, (c) transferred feature (100-D)
of LR images.

the Table 5.2, the proposed unsupervised deep feature transfer is able to boost the low resolution

image classification by about 2%. Except for the classes of “bottle” and “sheep”, our method out-

performs the LR. As shown in Fig. 5.3, we find the transferred low resolution features are separated

much better than the extracted low resolution features. Those indicate that the proposed unsuper-

vised deep feature transfer algorithm does help transfer more discriminative representations from

high resolution features. Therefore, it boost the mAP performance on low resolution images clas-

sification task. The feature transfer network could also be embedded into the state-of-the-art deep

neural networks as a plug-in module to enhance the learned features.

5.4 Conclusion

In this paper, we propose a unsupervised deep feature transfer algorithm for low resolution image

classification. The proposed two-layer feature transfer network is able to boost the classification

by 2% on mAP. It can be embedded into the state-of-the-art deep neural networks as a plug-in

feature enhancement module. While our current experiments focus on generic classification, we

expect our feature enhancement module could be very useful in detection, retrieval, and category

discovery settings as well in the future.
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Chapter 6

Conclusions and Future Work

In this chapter, we first summarize our main contributions on the problems we have studied towards

efficient and robust deep learning in optimization for training deep models, point cloud analysis and

low quality image classification. Our contributions include novel approximate algorithm, BPGrad

solver technique for the training of deep models. In addition, we also propose a novel and single

end-to-end deep network framework for 3D object model learning and 6D pose estimation in point

cloud. Furthermore, we propose a novel unsupervised deep feature transfer network for low quality

image classification. Finally, we discuss some interesting directions the future work.

6.1 Main Contributions

Towards Global Optimality in Deep Learning: In this work, 1) we have proposed a novel ap-

proximation algorithm, BPGrad, towards searching for the global optimality in DL via branch and

pruning based on the Lipschitz continuity assumption. The Lipschitz continuity not only provides

us a way to estimate the lower and upper bounds of the global optimality, it also serves as the

regularization to further smooth the objective functions in deep learning. 2) We have theoretically

proved that under some conditions our BPGrad algorithm can converge to the global optimality

within finite iterations. 3) Empirically in order to avoid the high demand of computation as well as

storage for BPGrad in deep learning, we propose a new efficient solver. A justification on preserv-

ing the properties of BPGrad is provided both theoretically and empirically. We have demonstrated

the superiority of our BPGrad solver to several popular DL solvers for vision applications of object

recognition, detection, and segmentation.
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Point Cloud Analysis: In this work, 1) we introduce a novel method to a novel task: the jointly

3D object model learning and 6D pose estimation from depth images with multiple instances of

single type object with application to instance segmentation in 3D point clouds. Unlike the tra-

ditional task of 6D pose estimation, our problem considers those cases in which the CAD model

and the ground-truth 6D pose are not available during training or testing. 2) To handle pose am-

biguity of an unknown object, we jointly optimize the model learning and pose estimation using

an end-to-end deep neural network. To handle occlusions, we incorporate an occlusion model into

our architecture, which enables the model-generated point cloud to match the point cloud that was

obtained from the input depth map. 3) We provide extensive experiments on unsupervised instance

segmentation, demonstrating that in addition to learning a 3D object model, our method performs

better than or comparably to standard baselines for instance segmentation.

Low Quality Image Classification: In this work, 1) we propose an unsupervised deep feature

transfer network for low quality image classification. 2) The proposed multilayer feature transfer

network preserves data structures in feature space of HR images, by transferring the discrimina-

tive features from a well-structured source domain (HR features space) to a not well-organized

target domain (LR features space). 3) The proposed feature transfer network is a plug-in feature

enhancement module, which could be embedded into the state-of-the-art deep neural networks.

Our feature transfer network could boost the classification performance by 2% on mAP from the

baseline method on low quality images.

6.2 Future Work

We discuss below a few research directions that would extend our current works.

Optimization for Training Deep Models: Based on the theoretical analysis in our current

work, we claim that our solver is able to locate the solutions close to the global minima. However,

with millions of parameters in deep neural networks, it is still an open problem to empirically

visualize and and theoretically analyze how an algorithm converges step by step. Li et al. (2018)

propose a simple “filter normalization" method that could visualize loss function curvature and
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make meaningful side-by-side comparisons between loss functions. One possible approach is

to apply a variety of visualization methods to explore the effect of training parameter, solvers

and network architectures on the loss function landscape and the shape of minimizers (global

optimality). Another promising direction towards efficient and robust deep learning is to keep

improving the variants of SGD solvers Reddi et al. (2018); Zhang et al. (2019); Liu et al. (2019).

Low Quality Image Recognition and Detection: There have been tremendous progress on

images and videos recognition using deep learning techniques in recent years. However, most of

prior deep models are trained, applied, and evaluated on high quality benchmark datasets, such as

PASCAL VOC Everingham et al. (2010a), ImageNet Deng et al. (2009); Russakovsky et al. (2015)

and MSCOCO Lin et al. (2014). However, in many emerging applications such as autonomous

driving, mobile devices and robotics, the captured visual images and videos are of low quality from

complex and unconstrained environments. Therefore, the performances would be largely degraded

when applied to low quality images and videos. Moreover, the low quality images and videos

suffer from various types of degradations, such as noise, motion blur, illumination, low resolution,

contrast, out-of-focus, brightness, and sharpness. The prior visual recognition models would fail

when the level of degradations passes some empirical threshold. Our current work focuses on

deep feature transfer learning for low resolution image classification. One possible direction is to

explore an universal feature transfer network architecture in order to handle the above mentioned

various types of degradations. We would extend our current deep feature enhancement module to

object detection, retrieval, and category discovery settings as well in the future.

Point Cloud Analysis: Our current work presents an approach to jointly learn the 3D object

model and estimate the 6D poses of multiple instances of the same object. Specifically, knowing

the number of instances in the scene, the single deep network learns a point cloud describing the

model’s shape and produces a list of rigid transformations, i.e., one for each instance. Given the

predicted transformations and the model, a 3D point cloud is generated and compared to the cor-

responding ground-truth point cloud. This allows for unsupervised training where neither ground-

truth poses nor CAD models are needed. The task, and our proposed approach, have important
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applications in numerous areas including augmented reality, robotics, and 3D scene understand-

ing. One possible direction is to perform evaluation on sequences coming from real depth sensors

of robotic arms. Another promising direction is to propose occlusion-aware loss function instead

of handling occlusion using external operations.
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Appendix A

Additional Experiments of Chapter 3

A.1 Parameters tuning on NNIST and CIFAR-10

We perform grid search of parameters on MNIST for Adagrad, Adadelta, RMSProp and Adam, as

shown in Fig. A.1, Fig. A.2, Fig. A.3 and Fig. A.4, respectively.

We perform grid search of parameters on CIFAR-10 for Adagrad, Adadelta, RMSProp and

Adam, as shown in Fig. A.5, Fig. A.6, Fig. A.7 and Fig. A.8, respectively.

We summarize the parameters as follows.

• Adagrad: ε = 10−10,

ρ = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 (default)].

• Adadelta: ε = 10−6,

ρ = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 (default)].

• RMSProp: ε = 1e−8,

ρ = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99 (default)].

• Adam: ε = 10−8,

β1 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 (default),0.99],

β2 = [0.99,0.999 (default),0.9999].
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Figure A.1: Parameters search on MNIST (left) training objectives and (right) test top-1 errors for
Adagrad.

Figure A.2: Parameters search on MNIST (left) training objectives and (right) test top-1 errors for
Adadelta.

A.2 Parameters tuning for Adam

We perform experiments using Adam with β1 = 0.9,β2 = 0.999 (de f ault) and β1 = 0.99,β2 =

0.999 on ImageNet for recognition and on VOC2011 for segmentation.

Fig. A.9 shows the comparison results on ImageNet. We can observe there is little difference

between the two parameter settings. It exhibits similar trend for segmentation as shown Fig. A.10.

A.3 Parameters of solvers on 1-D functions

1. For function f1 = xsin(x)+4.815,x ∈ [0,8]:
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Figure A.3: Parameters search on MNIST (left) training objectives and (right) test top-1 errors for
RMSProp.

Figure A.4: Parameters search on MNIST (left) training objectives and (right) test top-1 errors for
Adam.

• Adagrad: ε = 10−10,ρ = 0.9, learning rate (lr)=0.5,

• Adadelta: ε = 10−6,ρ = 0.99,

• RMSProp: ε = 10−6,ρ = 0.99, lr = 0.05,

• Adam: ε = 10−6,β1 = 0.9,β2 = 0.99, lr = 0.1,

• SGD: µ = 0, lr = 0.1,

• SGD: µ = 0.9, lr = 0.008,

• BPGrad Alg. 1: ρ = 0.1,L = 4π ,

• BPGrad: ρ = 0.1,L = 4π,µ = 0,
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Figure A.5: Parameters search on CIFAR-10 (left) training objectives and (right) test top-1 errors
for Adagrad.

• BPGrad: ρ = 0.1,L = 4π,µ = 0.9.

2. For functions f2 = xsin(x)+11.05,x ∈ [0,4π] and f3 = xsin(x)+15,x ∈ [0,4π]:

• Adagrad: ε = 10−10,ρ = 0.9, learning rate (lr)=0.5,

• Adadelta: ε = 10−6,ρ = 0.99,

• RMSProp: ε = 10−6,ρ = 0.99, lr = 0.05,

• Adam: ε = 10−6,β1 = 0.9,β2 = 0.99, lr = 0.1,

• SGD: µ = 0, lr = 0.1,

• SGD: µ = 0.9, lr = 0.1,

• BPGrad Alg. 1: ρ = 0.1,L = 4π ,

• BPGrad: ρ = 0.1,L = 4π,µ = 0, L is multiplied by 2 every 10 iterations (similar to

regularization using weight decay).

• BPGrad: ρ = 0.1,L = 4π,µ = 0.9, L is multiplied by 2 every 10 iterations.

A.4 Parameters of solvers on Rosenbrock function optimization

All the solvers start at the same initial point (x0,y0) = (−1.2,2.5).
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Figure A.6: Parameters search on CIFAR-10 (left) training objectives and (right) test top-1 errors
for Adadelta.

• Adagrad: ε = 10−10,ρ = 0.9, lr = 0.01,

• Adadelta: ε = 10−6,ρ = 0.99,

• RMSProp: ε = 10−6,ρ = 0.99, lr = 0.02,

• Adam: ε = 10−6,β1 = 0.9,β2 = 0.999 (default), lr = 0.02,

• SGD with momentum: lr = 0.002,µ = 0.9,

• SGD no momentum: lr = 0.002,µ = 0,

• BPGrad: ρ = 0.1,L = 500,µ = 0,

• BPGrad: ρ = 0.1,L = 500,µ = 0.9.

A.5 Parameters of solvers on MNIST using LeNet-5

All the solvers use weight decay=0.0005 and momentum=0.9, unless stated otherwise.

• Adagrad: ε = 10−10,ρ = 1.0 (default),

• Adadelta: ε = 10−6,ρ = 0.5,
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Figure A.7: Parameters search on CIFAR-10 (left) training objectives and (right) test top-1 errors
for RMSProp.

• RMSProp: ε = 10−8,ρ = 0.7,

• Adam: ε = 10−8,β1 = 0.9,β2 = 0.999 (default),

• SGD: lr = [0.001∗ones(1,100)],

• BPGrad: ρ = 0.1,L = 15,µ = 0,

• BPGrad: ρ = 0.1,L = 15,µ = 0.9.

A.6 Parameters of solvers on CIFAR-10 using LeNet

All the solvers use weight decay=0.0005 and momentum=0.9, unless stated otherwise.

• Adagrad: ε = 10−10,ρ = 0.9,

• Adadelta: ε = 10−6,ρ = 0.9 (default),

• RMSProp: ε = 10−8,ρ = 0.99 (default),

• Adam: ε = 10−8,β1 = 0.9,β2 = 0.999 (default),

• Eve: lr = [0.01∗ones(1,30),0.005∗ones(1,30),0.0001∗ones(1,40)],
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Figure A.8: Parameters search on CIFAR-10 (left) training objectives and (right) test top-1 errors
for Adam.
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Figure A.9: Comparison on (left) training objectives and (right) validation top-1 errors for object
recognition using ImageNet ILSVRC2012.

• SGD: lr = [0.05∗ones(1,30),0.005∗ones(1,30),0.0005∗ones(1,40)],

• BPGrad: ρ = 0.1,L = 50,µ = 0,

• BPGrad: ρ = 0.1,L = 50,µ = 0.9.

A.7 Parameters of solvers on ImageNet

All the solvers use weight decay=0.0005 and momentum=0.9, unless stated otherwise.

• Adagrad: ε = 10−10,ρ = 1.0 (default),
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Figure A.10: Segmentation performance comparison using FCN-32s model on VOC2011 (left)
training and (right) validation datasets.

• Adadelta: ε = 10−6,ρ = 0.9 (default),

• RMSProp: ε = 10−8,ρ = 0.99 (default),

• Adam: ε = 10−8,β1 = 0.9,β2 = 0.999 (default),

• SGD: lr = [log(−1,−4,20)],

• BPGrad: ρ = 0.1,L = 100,µ = 0.9.

A.8 Parameters of solvers for object detection

• Adagrad: ε = 10−10,ρ = 1.0 (default),

• RMSProp: ε = 10−8,ρ = 0.99 (default),

• Adam: ε = 10−8,β1 = 0.9,β2 = 0.999 (default),

• SGD: lr = [0.001∗ones(1,6),0.0001∗ones(1,6)],

• BPGrad: ρ = 0.1,L = 100,µ = 0.9.
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A.9 Parameters of solvers for object segmentation

• Adagrad: ε = 10−10,ρ = 1.0 (default),

• Adadelta: ε = 10−6,ρ = 0.9 (default),

• RMSProp: ε = 10−8,ρ = 0.99 (default),

• Adam: ε = 10−8,β1 = 0.9,β2 = 0.999 (default),

• SGD: lr = [0.001∗ones(1,20),0.0001∗ones(1,30)],

• BPGrad: ρ = 0.1,L = 500,µ = 0.9.
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Appendix B

Additional Experiments and Ablation Studies of Chapter 4

In this appendix material, we provide additional numerical results to experiments discussed in

Chapter 4, as well as reporting on additional experiments and ablation studies.

B.1 Additional results for Instance Segmentation

Table 4.2 in Chapter 4 showed pairwise F1 scores for instance segmentation experiments. In

Table B.1, we complete the table of results by also reporting the precision and recall scores that

were used to calculate the pairwise F1 scores.

Table B.1: Instance segmentation comparison of baseline clustering methods with our method. F1
scores, precision (P) and recall (R) of instance segmentation on the validation dataset are shown.
The complexity of instance segmentation increases with the number of instances N in each input
depth image. SC is Spectral Clustering. Ours-v1 is one-rotation-channel setting. Ours-v2 is two-
rotation-channel setting.

Bolt Camera Head Nut Obj01 Obj14 Obj24 Ave. on 6 objects
F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

N=2

Kmeans 0.89 0.88 0.90 0.89 0.88 0.90 0.99 0.99 0.99 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.95 0.95
SC 0.96 0.95 0.98 0.91 0.87 0.96 0.90 0.85 0.99 0.91 0.87 0.96 0.87 0.82 0.98 0.94 0.92 0.99 0.90 0.88 0.98

Ours-v1 0.99 0.99 0.99 0.94 0.94 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.98 0.98
Ours-v2 0.96 0.96 0.96 0.93 0.93 0.93 0.99 0.99 1.0 0.97 0.96 0.97 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.97 0.98

N=3

Kmeans 0.79 0.78 0.80 0.74 0.73 0.75 0.98 0.99 0.98 0.93 0.93 0.92 0.96 0.95 0.95 0.96 0.96 0.96 0.89 0.89 0.89
SC 0.90 0.85 0.96 0.83 0.77 0.91 0.96 0.95 0.97 0.91 0.86 0.98 0.81 0.72 0.97 0.89 0.84 0.97 0.88 0.83 0.96

Ours-v1 0.98 0.98 0.98 0.93 0.93 0.93 0.98 0.98 0.98 0.93 0.93 0.94 0.98 0.98 0.98 0.99 0.99 0.99 0.97 0.97 0.97
Ours-v2 0.99 0.99 0.99 0.84 0.83 0.86 0.98 0.98 0.98 0.93 0.93 0.93 0.96 0.96 0.96 0.99 0.99 0.99 0.95 0.95 0.95

N=4

Kmeans 0.71 0.70 0.72 0.65 0.65 0.67 0.97 0.98 0.97 0.90 0.91 0.89 0.92 0.92 0.91 0.94 0.95 0.94 0.85 0.90 0.85
SC 0.85 0.78 0.95 0.76 0.69 0.86 0.94 0.92 0.96 0.86 0.78 0.97 0.77 0.67 0.95 0.85 0.79 0.96 0.84 0.77 0.94

Ours-v1 0.81 0.80 0.82 0.85 0.85 0.86 0.96 0.96 0.97 0.90 0.90 0.90 0.87 0.87 0.88 0.86 0.84 0.89 0.88 0.87 0.89
Ours-v2 0.88 0.88 0.89 0.84 0.83 0.84 0.96 0.96 0.97 0.89 0.88 0.89 0.91 0.91 0.91 0.85 0.83 0.88 0.89 0.88 0.90
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B.2 Ablation Studies

B.2.1 Different Rotation Channels Setting

The F1 score, precision (P), recall (R) and average chamfer distance (CD) is shown in Table B.2.

Table B.2: Ablation study by varying the number of rotation channels on Bolt with multiple in-
stances (CD: the average of chamfer distance over the evaluation dataset, F1: F1 score, P: preci-
sion, R: recall). Ours-v1 is one-rotation-channel setting. Ours-v2 is two-rotation-channel setting.
Ours-v3 is simplified two-rotation-channel setting.

N=1 N=2 N=3 N=4
CD F1 P R CD F1 P R CD F1 P R CD F1 P R

Ours-v1 0.0007 – – – 0.0019 0.99 0.99 0.99 0.0016 0.98 0.98 0.98 0.0029 0.81 0.80 0.82
Ours-v2 0.0009 – – – 0.0013 0.96 0.96 0.96 0.0015 0.99 0.99 0.99 0.0023 0.88 0.88 0.89
Ours-v3 0.0005 – – – 0.0011 0.96 0.96 0.96 0.0014 0.99 0.99 0.99 0.0022 0.90 0.90 0.91

B.2.2 Vary HPR Radius Values

The results of Nut are shown in Table B.3.

Table B.3: Ablation study of HPR parameter in occlusion model for 3D object model reconstruc-
tion and instance segmentation on Nut and Bolt (– indicates not applicable).

HPR=2 HPR=2.9 (default) HPR=3.14 no HPR
CD F1 P R CD F1 P R CD F1 P R CD F1 P R

Nut N=1 0.0059 – – – 0.0011 – – – 0.0010 – – – 0.0011 – – –
N=2 0.0074 0.99 0.99 0.99 0.0014 1.0 1.0 1.0 0.0020 1.0 1.0 1.0 0.0030 0.95 0.96 0.95

Bolt N=1 0.0015 – – – 0.0010 – – – 0.0018 – – – 0.0006 – – –
N=2 0.0032 0.98 0.98 0.99 0.0014 0.99 0.99 0.99 0.0011 0.99 0.99 0.99 0.0011 0.99 0.99 0.99

B.2.3 Different Rotation Representations

As shown in Table B.4, we find that it achieves best performance using quaternion as rotation

representation.
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Table B.4: Ablation study of rotation representations for 3D object model reconstruction and in-
stance segmentation on Nut (– indicates not applicable).

Quaternion (default) Ortho6D Zhou et al. (2019a) Axis Angle
CD F1 P R CD F1 P R CD F1 P R

N=1 0.0011 – – – 0.0018 – – – 0.0042 – – –
N=2 0.0014 1.0 1.0 1.0 0.0014 1.0 1.0 1.0 0.0022 1.0 1.0 1.0

B.2.4 Vary the Number of Points in the Learned Object Model

We vary the number of points in the learned object model from N = 512,1024, to 2048. The results

are shown in Table. B.5. As we can see, it can achieve slightly better object model and instance

segmentation performance.

Table B.5: Ablation study of varying the number of points in learnable 3D object model for 3D
object model reconstruction and instance segmentation on Nut (– indicates not applicable).

NP=512 NP=1024 (default) NP=2048
CD F1 P R CD F1 P R CD F1 P R

N=1 0.0011 – – – 0.0011 – – – 0.0012 – – –
N=2 0.0038 1.0 1.0 1.0 0.0014 1.0 1.0 1.0 0.0060 0.99 0.99 0.99

B.2.5 Vary the Range in the Learned Object Model

We vary the range in the randomly initialized object model from 0.1,0.25,0.5, to 1.0 as shown in

Table B.6. We can see with range of 0.5 it can achieve better performance.

Table B.6: Ablation study of varying the range in learnable 3D object model for 3D object model
reconstruction and instance segmentation on Nut (– indicates not applicable).

Range ρ=0.1 Range ρ=0.25 Range ρ=0.5 (default) Range ρ=1.0
CD F1 P R CD F1 P R CD F1 P R CD F1 P R

N=1 0.0011 – – – 0.0010 – – – 0.0012 – – – 0.0025 – – –
N=2 0.0016 0.99 0.99 0.99 0.0017 1.0 1.0 1.0 0.0014 1.0 1.0 1.0 0.0016 0.95 0.96 0.95
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B.2.6 Vary the Number of Training Samples

We vary the number of training samples from M = 500,1K,2K,3K, to 5K. The results are shown

in Table B.7. As we can see, it can achieve better object model and instance segmentation perfor-

mance when using 5,000 training samples.

Table B.7: Ablation study by varying the number of training images on Nut and Bolt with multiple
instances. (CD: average chamfer distance over the evaluation set, smaller is better. F1: F1 score,
P: precision, R: recall, larger is better).

M=500 M=1K M=2K M=3K M=5K (default)
CD F1 P R CD F1 P R CD F1 P R CD F1 P R CD F1 P R

Nut

N=1 0.0017 – – – 0.0044 – – – 0.0011 – – – 0.0010 – – – 0.0011 – – –
N=2 0.0015 1.0 1.0 1.0 0.0034 0.99 0.99 0.99 0.0025 1.0 1.0 1.0 0.0033 0.99 0.99 0.99 0.0021 0.99 0.99 0.99
N=3 0.0061 0.97 0.97 0.97 0.0052 0.98 0.98 0.98 0.0058 0.98 0.98 0.98 0.0058 0.98 0.98 0.98 0.0064 0.98 0.98 0.98
N=4 0.0058 0.96 0.96 0.97 0.0058 0.96 0.96 0.97 0.0060 0.95 0.95 0.96 0.0065 0.95 0.94 0.96 0.0068 0.96 0.96 0.97

Bolt N=1 0.0034 – – – 0.0052 – – – 0.0029 – – – 0.0006 – – – 0.0005 – – –
N=2 0.0010 0.97 0.97 0.97 0.0010 0.96 0.96 0.96 0.0009 0.99 0.99 0.99 0.0009 1.0 1.0 1.0 0.0011 0.96 0.96 0.96
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