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Abstract: It is well known that C2-transformation φ of the unit interval into itself with aMarkov partition (2.1)
π = { Ik : k ∈ K } admits φ-invariant density g (g ≥ 0, ‖g‖ = 1) if: (2.2) |(φn)′| ≥ C1 > 1 for some n (expanding
condition); (2.3) |φ′′(x)/(φ′(y))2| ≤ C2 < ∞ (second derivative condition); and (2.4) #π < ∞or φ(Ik) = [0, 1], for
each Ik ∈ π. If (2.4) is deleted, then the situation dramatically changes. The cause of this fact was elucidated
in connection with so-called Adler’s Theorem ([1] and [2]).
However after that time in the literature occur claims and opinions concerning the existence of invariant
densities and their properties for Markov Maps, which satisfy (2.2), (2.3) and do not satisfy (2.4), revealing
unacquaintance with that question.
In this note we discuss the problems arising from the mentioned claims and opinions. Some solutions of
that problems are given, in a systematic way, on the base of the already published results and by providing
appropriate examples.
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1 Introduction
We begin with the celebrated result of [3]. The authors were well aware that their result cannot be extended
to expanding transformations with countably many one-to-one pieces in a simple way (see Th. 2, and the
comment below on Cond. (17) there). The real task in that period of time was to �nd reasonable additional
conditionswhichwould guarantee the existence of density invariant under the action of expandingmapwith
countably many one-to-one pieces. Several attempts was made to accomplish that task (for more details see
e.g. a review article [4], and also [5], or [6], Sect. 6).

One of the mentioned attempts was published in [7], as Adler’s Theorem. Since no proof was given there,
the question arose whether it is true [8]. A solution was published in [1], and [2].

After the above two notes and a few other ones, related with them, were published, some further claims
and opinions concerning the existence of invariant densities and their lower and upper bounds for Markov
Maps appear in the literature.
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Those claims and opinions reveal that their authors were unacquainted with the essence of the problem.
That problem is rather of delicate nature. It involves, among other things, the so-called measure-theoretic
recurrence property.

In this note we clear up, in a systematic way, the essence of the problems with the aid of examples,
comments and some published results.

2 The problems and examples

2.1 Existence of invariant densities

We begin with the following

De�nition 2.1. Let φ : I → I be countably piecewise one-to-one and C2, here I ⊂ R denotes an interval. It
is called of Markov type if there exists a partition (mod 0) π = {Ik : k ∈ K} such that: each Ik is an interval,
φk := φ|Ik is one-to-one and C2 from Ik onto Jk = φ(Ik) and the following condition holds:

for each j, k ∈ K, if φ(Ij) ∩ Ik ≠ ∅, then Ik ⊆ φ(Ij). (2.1)

The following result follows from Ths. 1, and 2 in [3]:

Corollary 2.2. Assume that φ is of Markov type and satis�es:

for some n : (φn)′(x) ≥ C1 > 1 whenever (φn)′ is de�ned; (2.2)

|φ′′(x)/(φ′(y))2| ≤ C2 < ∞ whenever φ′′(x) and φ′(y) are de�ned; (2.3)

and #π < ∞ or φ(Ik) = [0, 1], for each Ik ∈ π. (2.4)

Then:
there exists φ − invariant density g (g ≥ 0, ‖g‖ = 1). (2.5)

Now we delete (2.4) and pose, at the beginning, the following question:

Problem 2.3. Assume that φ is of Markov type, in the sense of Def. 2.1, and satis�es: Conditions (2.2), and (2.3).
Does (2.5) holds?

The following simple example gives negative answer to the question in Problem 2.3:

Example 2.4. Let Ik = [1−2−(k−1), 1−2−k] (k = 1, 2, ...) and φ : [0, 1]→ [0, 1] such that every Ik ismapped
linearly on Ik ∪ Ik+1. Then |φ′| ≥ 3/2, φ is of Markov type and ful�ls (2.3). Nevertheless (2.5) does not hold
because each point moves to the right under the action of φ.

Notice that φ in this example has the following defective property:

∞⋃
j=1
φj(Ik) =

∞⋃
j=k
Ij ↘ ∅ as k →∞, for k ≥ 2.

The transformation given in [9] is another example which gives negative answer to the question in Prob-
lem 2.3.



P. Bugiel, S. Wędrychowicz, B. Rzepka, Invariant measures of Markov maps | 1609

Let us now eliminate that defect by imposing the so-called indecomposability condition (see [10], De�-
nitions 2.2, 2.3, and Cond. 2.[M14]):

∞⋃
j=1
φj(Ik) = [0, 1], for each Ik ∈ π. (2.6)

Note that indecomposability condition (2.6) is equivalent to the following so-called transitivity condition:

for every Ii , Ij ∈ π one has: Ii ⊂ φn(Ij) for some n ≥ 1. (2.7)

De�nition 2.5. A transformation φ of Markov type which satis�es Cond. (2.6) is called aMarkov Map.

Now we pose, analogously as before, the following question:

Problem 2.6. Assume that φ is of Markov type, in the sense of Def. 2.1, and satis�es Conditions: (2.2), (2.3) and
(2.6).
Does (2.5) holds?

In this case the following example gives negative answer to the question in Problem 2.6 [11]:

Example 2.7. Let A = {0} ∪ {1/k : k = 1, 2, ...} and Ik = (1/(k + 1), 1/k] for k = 1, 2, ... Then we de�ne φ as
follows:

φ| I1 (x) = 2x − 1;
and for any k = 2, 3, ..., φ| Ik is the increasing linear such that
φ(Ik) = (0, 1/(k − 1)];
φ(0) = 0.

Proof. Clearly, φ is of Markov type and satis�es all the assumptions of Problem 2.6. Nevertheless there is no
φ-invariant density. This is so because it is ergodic andhas σ-�nite absolutely invariantmeasure concentrated
on the whole I (there exists piecewise constant, not integrable, and φ-invariant function).

Notice that φ in this example ful�ls even more restrictive condition than Cond. (2.6). Namely, it ful�ls

φk(Ik) = (0, 1] for each Ik ∈ π. (2.8)

Finally, let us consider instead of Cond. (2.6) its more restrictive version; the following condition:

there exists j ≥ 2 such that Ii ⊂
j⋃
r=1
φr(Ik) for every Ii , Ik ∈ π. (2.9)

Once more we pose the following question:

Problem 2.8. Assume that φ is of Markov type in the sense of Def. 2.1, and satis�es Conditions: (2.2), (2.3) and
(2.9).
Does (2.5) holds?

The so-calledAdler’s Theorem asserts that the answer to the question in Problem 2.8 is positive [7]. But no
proof is given there. Further, the comments on that theorem in [12] are restricted to a history of the theorem.
However, it was noted that Adler’s Theoremmay not hold in [8].

The counterexamples, published in [1] and [2], disprove Adler’s Theorem, i.e. they give negative answer
to the question in Problem 2.8.

In the former paper was also proposed a correction of Adler’s Theorem. Namely, in the case of bounded
interval I the following additional condition was proposed (see Cond. (1.H3) there):

inf{|φ(Ik)| : k ∈ K} > 0; where | · | denotes Lebesgue measure. (2.10)
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While in the case of unbounded interval I, it was proposed the following (see Cond. (1.H4) there):

lim
n→∞

R(n) = 0 where R(n) = sup
k∈K

∫
I\Vn

σ̃k(x) dx, σ̃k(x) =
σk(x)
|Ik|

, (2.11)

σk(x) = |(φ−1k )′(x)|1φ(Ik)(x), {Vn}∞n=1 is a sequence of subsets of I,

and each Vn is the union of a �nite number of Ik’s such that Vn ⊂ Vn+1,
∞⋃
n=1

Vn = I (mod | · |).

Note that under the assumptions of Problem 2.8 the two Conditions (2.10) and (2.11) are equivalent.
A more e�cient than the last two above conditions is the following one:∫

h1 dx > 0 where h1 = inf
s

∑
k∈K

σ̃k
∫
Ik

σ̃s(x) dx, (2.12)

and σ̃k is de�ned in (2.11).

Note that Condition (2.12) is an analogue of thewidely known condition from the theory of Markov Chain,
the analogue is explained in [13]. Its e�ciency is illustrated by examples in ([13], Ex. 2.1) and in ([6], Exs. 4.3.1,
and 4.3.2). One has also to underline, that

Remark 2.9. Condition (2.12) additionally assures aperiodicity but Condition (2.10) does not (see Example
2.13, below).

The role which each of the last three conditions plays in the problem of the existence of invariant density
consists in guaranteeing that the neededmeasure-theoretic recurrence property holds.

Since the transformations given in Example 2.4 and in [9] have global attractors (single point and the
Cantor set, respectively), they arewithout that property.Note also that theydonot satisfy the simpleCondition
(2.10).

On the other hand, it is not easy to decide, without Condition (2.12), whether or not the above mentioned
transformations of Examples 4.3.1, or 4.3.2 in [6] have the neededmeasure-theoretic recurrence property.

Theorems stated in [14] as Theorem 1.2 and, in more abstract setting, as Theorem 1.3 contain the theorem
questioned in [8].

There is also given a proof of Th. 1.3 which is incorrect (the thesis of the Lemma 1.5 does not hold, in
general). That fact is not noted in [15].

Theorem 2.2 in [16] is a version of Th. 1.3 from [14]. It is stated under the indispensable Condition (2.10).
This condition is incorporated, as Condition c), in the de�nition of Markov Map (De�nition p. 353).

However, in connection with the Assertion c) of that theorem and the opinion on transitivity Assumption
contained in Remark 4c) p. 354, here Condition (2.7), one has to raise two questions. The �rst question reads:

Problem 2.10. Assume that φ is of Markov type in the sense of Def. 2.1. What is the essential role played by
Condition (2.7) in the theory of Markov Maps?

We begin with example of a Markov type map without property (2.7) (see also [10], Example 2.1, W-
transformation):

Example 2.11. Let 0 < a < 1, and then let ψ : I = [0, 1]→ I be de�ned by

ψ(x) =
{
x/a if 0 ≤ x < a,
−(1 + a)x + (a2 + a + 1) if a ≤ x < 1.

Proof. Clearly, ψ is a transformation ofMarkov-typewith respect to the following intervals: I1 = [0, a2), I2 =
[a2, a), I3 = [a, 1).
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The interval I1 is the so-called inessential interval; the remainder two intervals I2, I3 are essential [10].
Transformation ψ restricted to the last two intervals satis�es already condition (2.7). Consequently, the in-
variant density is supported by I2 ∪ I3.

In general, any transformations of M-type can be decomposed into transformations with property (2.7)
and an inessential part (see for details [10]).

The second question:

Problem 2.12. Assume that φ is of Markov type in the sense of Def. 2.1 which satis�es: (2.5) and the so-called
transitivity condition (2.7).
Does the invariant density is necessarily exact in the sense of Rochlin ([17])?

As it shows the transformation of the below Example 2.13, transitivity condition (2.7) does not assure, in
general, exactness. It has to be complemented to exclude periodicity of Markov Map. However, as it is noted
in Remark 2.9, Condition (2.12) involves already aperiodicity.

The role of such complementary condition plays Condition (1.H5) in ([18], Remark (1.1)) (see also Cond.
(3.H14) in [13]), or Cond. (4.1.H13) in [6]). That condition reads:

There exist an integer ñ ≥ 1 and Ik̃ such that φñ(Ik̃) = [0, 1]. (2.13)

Note that it is a weak version of Cond. (2.16) below.

Example 2.13. (of a Markov map with properties (2.7) and not exact)
Put Ik = [k, k + 1) for k = 0, 1, 2, 3. Let χk : Ik → I2 ∪ I3 for k = 0, 1 be linear, increasing, and onto.
Analogously, let χk : Ik → I0 ∪ I1 for k = 2, 3 be linear, increasing, and onto.

Finally, de�ne χ : I = [0, 4)→ I by χ(x) = χk(x) i� x ∈ Ik.

Then χ trivially ful�ls the Conds. (2.2), and (2.3) of Corollary 2.2 and is aMarkovMapwhich satis�es Condition
(2.7) (actually Condition (2.9), for j = 3) and Condition (2.10), but it is not exact. Therefore it is a counterex-
ample to the Assertions c) and d) of Theorem 2.2 in [16].

The proof of the last fact is based on the following criterion of exactness [17]:

Let (I, F, φ : I → I; dµ)where I is a space,F is a σ-algebra of its subsets,φ transformationwith µ invariant
measure. Then

φ is exact ⇔ for every A ∈ F, lim
n→∞

µ(φn(A)) = 1. (2.14)

Proof. Nowweare going to show that χ is not exact. Note �rst that dµ = 1/4 dx is the unique invariant density.
Further χ(Ik) = I2 ∪ I3 for k = 0, 1 and χ(Ik) = I0 ∪ I1 for k = 2, 3. From these relations it follows that

µ(φn(Ik)) = 1/2 for every Ik , k = 0, 1, 2, 3, and n = 1, 2, 3, ..., (2.15)

and therefore the criterion (2.14) is not ful�lled.

Finally, one needs to complete the opinion on Cond. (2.10) expressed in the Remark 4c), p. 354 of the cited
book [16]. The authors claim that it can be somewhat weakened but it is certainly not possible to dispense
with it altogether if we want to have that Markov Maps necessarily have invariant density.

The essential role played by Cond. (2.10) for the existence of invariant density has been already explained
above.

As for the weakening of that condition, it is in general less e�cient than Condition (2.12) (see: Conver-
gence Theorem; Coroll. 1.1 in [18] – 1-dimensional case; or 3.1. Theorem; 3.1. Coroll. in [13] –multi-dimensional
case). The e�ciency of Condition (2.12) is also shown below by Examples 2.19 and 2.20.

In the introduction of [19] is noted that in Chapter 7, Section 4 of the book [20], in English, the proof
appears to have an error.
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Actually the theorem contained in Chapter 7, Section 4 of that book does not hold. This is so because the
theorem in question is stated under somewhat less restrictive conditions than that of the so-called Adler’s
Theorem. Therefore the above mentioned counterexamples in [1], and [2] disprove that theorem as well.

In a review [21] of the book [22], in Polish, the reviewer claims that the proof of the Theorem 1, § 4, Section
7 on p. 164 is not correct.

This problem is clear up in [23]. It turns out that this is the very same problem as that raised in the intro-
duction of [19].

One has to return to the already mentioned above note [19]. At the end of that note is questioned the
double inequality of Remark 1 in [24]. That remark states:

If countably piecewise C1-Markov Map satis�es conditions:
Cond. (2.2, for n = 1), Cond. (2.3), and

there exists one integer ñ such that φñ(Ik) = [0, 1] for each Ik ∈ π, (2.16)

then the invariant measure is unique and its density is bounded away from 0.

The author also claims in ([24], p. 38) that the density g of the unique invariant measure satis�es the
following double inequality:

M1 ≤ g(x) ≤ M2 for some constants M1,M2 > 0. (2.17)

On the other hand, the authors in ([19], p. 868) question the above double inequality (2.17).

Remark 2.14. Additionally the authors suggest that the fault is connectedwith the use of the idea of regularity
functional. This is not the case. The regularity functional has been used to get bounds (see e.g. [6], [13], or
[18]).

However, the bounds of the double inequality are, in general, not constants as in (2.17), but functions
(see: the above cited papers or Coroll. 2.21, below).

Next if ñ = 1 in (2.16), then the remark in question is obviously correct.
Finally, in connection with the discussed Remark 1 in ([24], pp. 37-38), one has to raise two further ques-

tions. The �rst question is still connected with the problem of the existence of invariant densities for Markov
Maps:

Problem 2.15. Assume that φ is of Markov type in the sense of Def. 2.1 and satis�es: Cond. (2.2) for n = 1, Cond.
(2.3) and Cond. (2.16) for ñ ≥ 2.
Does (2.5) holds?

The second question is connected with the problem of the existence of the lower and upper bounds of
invariant density. It is delayed until the second subsection.

As for the question in Problem 2.15, �rst note that Cond. (2.16) is essentially more restrictive than Cond.
(2.9) thus it is a restrictive version of Adler’s Theorem. Nevertheless, the answer to that question is negative
too.

It follows from the repeatedly cited counterexamples published in [1] and [2]. More exactly, the de�ned
in [2] Markov Map τ̃ : I = [0, 1]→ I satis�es

τ̃2(Ĩk) = [0, 1] for each Ĩk (see there Final remark (b)).

2.2 Bounds of invariant densities

We begin this subsection with the question announced at the end of the previous one. It can be formulated
as follows:
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Problem 2.16. Assume that φ is of Markov type in the sense of Def. 2.1 which satis�es Cond. (2.5).
Does the invariant density satis�es the double inequality (2.17)?

Regarding the Problem 2.16. As was above noted, the authors in ([19], p. 868) question the above double
inequality (2.17) in [24] and suggest that the fault is connected with the use of the idea of regularity functional
(see Remark 2.14).

On the other hand, in ([25], Ex. 4) is given an example of Markov Map S in the sense of De�nition 2.5 and
it is shown that the double inequality (2.17) does not hold.

Remark 2.17.
(a) More speci�cally, the Markov Map S satis�es Conditions (2.2), (2.3), and (2.10), above and therefore, as it

is proved in ([25], Proposition 2), it belongs to a class considered in [26].
Then the author shows that the invariant density h of the Markov Map S satis�es:

lim
x→1

h(x) = 0. (2.18)

Therefore it does not satisfy Cond. (2.17) (it is not bounded away from 0).
(b) Note that the relation (2.18) is an immediate consequence of the double inequality of the below Coroll.

2.21.

The author claims that the property (2.18) of S is associated with Cond. (2.10). There is however no argu-
mentation given that this is the case.

Actually, that property of invariant density is neither caused by Cond. (2.10) nor by any other condition
that assures existence of invariant density.

Example 4 in [25] illustrates in the reality quite another fact. Namely, it shows that assumption (2.22) in
Coroll. 2.22 cannot be omitted.

Indeed, it follows from the following

Proposition 2.18.
(a) There exist two Markov Maps ψ and ψ̃ which do not belong to the class considered in [26]. Precisely, they

do not satisfy Cond. (*) of Proposition 2 in ([25], p. 1274) and therefore, a fortiori, they do not satisfy Cond.
(2.10).

(b) There is ψ-invariant density gψ such that:

lim inf
x→1

gψ(x) = 0, (2.19)

and therefore gψ does not satisfy Cond. (2.17) (it is not bounded away from 0).
(c) There is ψ̃-invariant density gψ̃ which satis�es Cond. (2.17).

Proof. The two transformations are given in the following two examples:

Example 2.19. Let pk = 1 − 2−k, and put Ik = [pk , pk+1), for k = 0, 1, 2, . . .
Then de�ne linear mappings ψ2k : I2k → [0, p2k+3) for k = 0, 1, 2, . . .;
ψ1 : I1 → [0, p4); and ψ2k+1 : I2k+1 → I2k for k = 1, 2, 3, . . .

Finally, de�ne ψ : [0, 1)→ [0, 1) by ψ(x) = ψk(x) i� x ∈ Ik.

Example 2.20. Markov Map ψ̃ is a result of simple modi�cation of ψ in such a way that its �rst linear map-
pings ψ0 is replaced with the linear mapping ψ̃0 from I0 onto the whole [0, 1].

Now we show that the two Markov Maps ψ and ψ̃ have the properties listed in the proposition. Part (a) of
Prop. 2.18 follows directly from de�nitions of the two Markov Maps.

The proof of the remainder two Parts (b) and (c) is based on the following two corollaries:

Corollary 2.21. Let a Markov map φ : [0, 1] → [0, 1] satisfy: Conditions (2.2) and (2.3) of Corollary 2.2 and
additionally Cond. (2.10) or, the more e�cient, Cond. (2.12). Then:
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there is a unique φ−invariant density g0 such that

C−11 g̃ ≤ g0 ≤ C1 g̃, (2.20)

where C1 > 0 is a constant and g̃ > 0 on {g0 > 0} is given by

g̃ =
∑
k∈K

σ̃k
∫
Ik

g0 dx, (2.21)

and σ̃k is de�ned in (2.11).

Proof. (see: Convergence Theorem; Coroll. 1.1 in [18], 1-dimensional case, or 3.1. Theorem, 3.1. Coroll. in [13],
multi-dimensional case).

The second corollary reads:

Corollary 2.22. If, in particulary, φ satis�es:

there is π1 ⊂ π, #π1 < ∞ such that:

inf
x∈φ(Ik)

σ̃k(x) > 0 for Ik ∈ π1, and
⋃
Ik∈π1

φ(Ik) = {g0 > 0} (2.22)

then there is a constant C0 > 0 such that g0 ≥ C0.

Proof. This fact is a simple consequence of the assumptions of the previous Corollary 2.21 and the double
inequality (2.20) together with (2.21).

The proof of (2.19) consists of two parts. In the �rst part it is proved that there exists a unique ψ-invariant
density gψ; in the second part it is proved that it satis�es (2.19).

To prove the existence of gψ we show that ψ satis�es Cond. (2.12). To this end observe that from the
inequalities

˜σ2k(x) ≥ 1[0, p5)(x), for i = 0, 1, 2, . . . , and σ̃1(x) ≥ 1[0,p4)(x) (2.23)

where σ̃k is de�ned in (2.11), it follows

∞∑
k=0

σ̃k1ψ(Ik)
∫
Ik

σ̃i1ψ(Ii) dx ≥ σ̃11ψ1(I1)

∫
I1

σ̃i1ψ(Ii) dx +
∞∑
k=0

˜σ2k1ψ(I2k)
∫
I2k

σ̃i1ψ(Ii) dx (2.24)

≥ 1[0, p4)
∫

I1 ∪ (
⋃∞
k=0 I2k)

σ̃i1ψ(Ii) dx > 0,

for any σ̃i. It implies Cond. (2.12).
As for (2.19), note �rst that the density g̃ given by (2.21) of Coroll. 2.21 and associated with gψ can be

written as a sum
g̃ = g1 + g2, (2.25)

where

g1 = σ̃11ψ(I1)
∫
I1

gψ dx +
∞∑
i=1

σ̃2i+11ψ(I2i+1)
∫
I2i+1

gψ dx,

and

g2 =
∞∑
i=0

σ̃2i1ψ(I2i)
∫
I2i

gψ dx.
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Further for g1 one has

g1 =
1
p4

1I0∪I1∪I2∪I3
∫
I1

gψ dx +
1
|I2|

1I2
∫
I3

gψ dx +
∞∑
i=2

1
|I2i|

1I2i
∫
I2i+1

gψ dx, (2.26)

and for g2 one has

g2 =
∞∑
i=0

1
|ψ(I2i)|

1ψ(I2i)
∫
I2i

gψ dx (2.27)

≤ 1
p3

(
1I0∪I1∪I2

∫
A0

gψ dx +
∞∑
i=1

1I2i+1∪I2i+2)
∫
A2i

gψ dx
)
,

where

A2i =
∞⋃
k=0

I2(i+k), for i = 0, 1, 2, . . .

Thus the relation (2.19) follows from (2.20) and (2.21) of Coroll. 2.21, and the relations (2.25), (2.26), and
(2.27).

As for the Part (c), note that the simple modi�cation of ψ described in Example 2.20 leads to a Markov
Map ψ̃ which satis�es Assumption (2.22) of Coroll. 2.22. Therefore its ψ̃ -invariant density gψ̃ satis�es Cond.
(2.17).

References
[1] P. Bugiel, A note on invariant measures for Markov maps of an interval, Zeitschrift für Wahrscheinlichkeitstheorie und ver-

wande Gebiete 70 (1985), 345–349; Zbl. Math. 606.28013; MR 87a:28019.
[2] P. Bugiel, Correction and addendum to: A note on invariant measures for Markov maps of an interval, Probability The-

ory Rel. Fields 76 (1987), 255–256; (formerly: Zeitschrift für Wahrscheinlichkeitstheorie und verwande Gebiete); Zbl. Math.
651.28010; MR 88i:28028.

[3] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of
the Amarican Mathematical Society Vol. 186 (1973), 481–488.

[4] M. Iosifescu, Mixing properties for f -expansions, in: Probab. Theory and Math. Stat., Prohorov et al. (eds.), VNU Science
Press 1987, Vol. 2 (1987), 1–8.

[5] M. Iosifescu and S. Grigorescu, Dependence with Complete Connections and its Applications, Cambridge University Press,
Cambridge Tracts in Mathematics 96, Cambridge, 1991.

[6] P. Bugiel, Distortion inequality for the Frobenius-Perron operator and some of its consequences in ergodic theory of
Markov maps in Rd, Annales Polonici Mathematici LXVIII.2 (1998), 125–157 (pdf copy is available in net).

[7] R. Bowen, Invariant measures for Markov Maps of the interval, Commun. Math. Phys. 69 (1979), 1–14.
[8] C. Series, Additional comments to Bowen (1979), Commun. Math. Phys. 69 (1979), pp. 17.
[9] R. Rudnicki, On a one-dimensional analogue of the Smale horseshoe, Annal. Polon. Math. Vol. 54.2 (1991), 147–153.
[10] P. Bugiel, On the number of all absolutely continuous, ergodic measures of Markov type transformations de�ned on an

interval,Math. Nachr. 129 (1986), 261–268; Zbl. Math. 622.28014; MR 88a:58111.
[11] P. Góra, Countably piecewise expanding transformations without absolutely continuous invariant measure, Dynamical

Systems and Egrodic Theory, Banach Center Publications, PWN - Polish Scienti�c Publishers, Warszawa Vol. 23 (1989),
113–117.

[12] R.L. Adler, Afterword to Bowen, Commun. Math. Phys. 69 (1979), 15–17.
[13] P. Bugiel, Ergodic properties of Markov maps in Rd, Probab. Theory Relat. Fields 88 (1991), 483–496.
[14] R. Mañé, Ergodic Theory and Di�erentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.Folge, Bd.8,

Springer-Verlag, Berlin, 1987.
[15] J. Franks, A review of the book: [14], Bull. Amer. Math. Soc. 20 (1989), 190–193.
[16] W. Melo and S. Strien, One-dimensional Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag,

1993.
[17] V.A. Rochlin, Exact endomorphisms of Lebesgue spaces, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 490–530; Amer. Math.

Soc. Transl. (2) 39 (1964), 1–36.



1616 | P. Bugiel, S. Wędrychowicz, B. Rzepka, Invariant measures of Markov maps

[18] P. Bugiel, On the convergence of the iterates of the Frobenius-Perron operator associated with a Markov map de�ned on
an interval. The lower-function approach, Annales Polonici Mathematici LIII.2 (1991), 131–137 (pdf copy is available in
net).

[19] P. Góra and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transforma-
tions, Can. J. Math. Vol. XLI (1989), no. 5, 855–869.

[20] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1980 (Grundlehren Math. Wiss. 245).
[21] H. Żołądek, A review of the book: [22],Mathematical News (Wiadomości Matematyczne) 28.2 (1990), 278–280 (in Polish).
[22] S.W. Fomin, I.P. Kornfeld and J.G. Sinaj, Ergodic Theory (Teoria Ergodyczna), PWN, Warszawa 1987, translated (from the

Russian to Polish) by Jacek Jakubowski, pp. 402, ISBN 83-01-07118-4.
[23] P. Bugiel and S. Wędrychowicz, Remark concerning the review on the book: [22], Roczniki Polskiego Towarzystwa Matem-

atycznego, Seria II: Wiadomości Matematyczne (Annals of Polish Mathematical Society, Series II: Mathematical News) 40
(2004) (in Polish) (pdf copy is available in net).

[24] G. Pianigiani, First return map and invariant measure, Israel Jour. Math. 35 (1980), nos 1-2, 32–47.
[25] R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indi�erent �xed points,

Nonlinearity 11 (1998), 1263–1276.
[26] M. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69–80.


	A few problems connected with invariant measures of Markov maps - verification of some claims and opinions that circulate in the literature
	1 Introduction
	2 The problems and examples
	2.1 Existence of invariant densities
	2.2 Bounds of invariant densities



