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ABSTRACT 

Purpose: To compare hemoglobin mass (Hbmass) changes during an 18-day live high-

train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric 

hypoxia (HH). Methods: Twenty-eight well-trained male triathletes were split into three 

groups (NH: n = 10, HH: n = 11, control (CON): n = 7) and participated in an 18-day 

LHTL camp. NH and HH slept at 2250 m while CON slept and all groups trained at 

altitudes <1200 m. Hbmass was measured in duplicate with the optimized CO-rebreathing 

method before (pre-), immediately after (post-) (hypoxic dose: 316 vs. 238 h for HH and 

NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-day NH). Running (3-km 

run) and cycling (incremental cycling test) performances were measured pre- and post. 

Results: Hbmass increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 

at day 18) and NH (+4.1%, P < 0.001) compared to CON (+1.9%, P = 0.08). There was a 

wide variability in individual Hbmass responses in HH (–0.1 to +10.6%) and NH (–1.4 to 

+7.7%). Post-running time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), 

and CON (–2.1%, P = 0.03), whereas cycling performance changed non-significantly in 

HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89). 

Conclusion: HH and NH evoked similar Hbmass increases for the same hypoxic dose and 

after 18-day LHTL. The wide variability in individual Hbmass responses in HH and NH 

emphasize the importance of individual Hbmass evaluation of altitude training. 

 

Key Words: ALTITUDE TRAINING; LIVE HIGH-TRAIN LOW; SIMULATED 

ALTITUDE; PERFORMANCE; ENDURANCE ATHLETES; INDIVIDUAL 

RESPONSE 
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INTRODUCTION 

The altitude training method live-high train-low (LHTL) is well accepted and frequently 

used by elite endurance athletes to improve sea-level performance (25, 27, 42). In 

contrast to classic altitude training (living and training at altitude), LHTL allows athletes 

to maintain exercise intensity and O2 flux comparable to sea-level as well as to obtain the 

physiological benefits of altitude acclimatization (20). For elite endurance athletes, the 

aim of LHTL is to improve their sea-level endurance performance, which is primarily 

obtained by an increase in hemoglobin mass (Hbmass) (14, 33). Altitude training studies 

have shown a significant increase in Hbmass that is estimated to be 1.1%/100 h of hypoxic 

exposure at ≥2100 m (14). There is also a large consensus for recommending daily 

exposure >12 h and a total hypoxic exposure of approximately 300 h to substantially 

increase Hbmass (7, 25, 27). Since LHTL is associated with time-consuming travel effort 

from high to low altitudes, and to provide a more logistically convenient environment for 

athletes, the original LHTL method (20) was further developed by using technical 

devices (e.g., hypoxic chambers or tents) to simulate an altitude environment (e.g., 

normobaric hypoxia using nitrogen dilution or oxygen extraction) (25, 42). 

 

To date, it is still debated whether normobaric hypoxia (NH) and hypobaric hypoxia 

(HH) evoke different or similar physiological responses (9, 11, 24). Short-term exposure 

(<24 h) to HH seems to lead to greater hypoxemia and lower oxygen arterial saturation 

(34), reduced ventilatory response (10, 21), and impaired nitric oxide bioavailability (10) 

compared to NH. However, the practical significance of these differences for an athlete’s 

preparation is still unclear. Particularly, the effects of NH versus HH on Hbmass changes 

are unknown, since no data on a direct comparison of long-term exposure to NH and HH 

with the same hypoxic dose exist. The latter is of particular importance, since it may 

influence an athlete’s altitude training adaptation. Only one study compared the 

differences between prolonged exposure to HH and NH in endurance athletes during an 

18-day LHTL training camp (30). In this study however, the HH group demonstrated a 

larger total hypoxic dose after the LHTL camp compared to the NH group (300 vs. 220 

h). 
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Since thus far no study has compared Hbmass changes to normobaric and hypobaric LHTL 

with the same hypoxic dose, it remains unclear for endurance athletes whether a LHTL 

training camp under normobaric or hypobaric hypoxic conditions evoke similar Hbmass 

responses. This study therefore aimed to compare (i) Hbmass changes between normobaric 

and hypobaric LHTL after the same hypoxic dose (230 h at the same altitude) and (ii) 

differences in Hbmass and performance changes after an 18-day LHTL training camp 

(higher hypoxic dose in HH, but same training load between groups) in either HH or NH 

in comparison to a control group (CON). 

 

METHODS 
Subjects 

Twenty-eight well-trained male triathletes, living at or near sea level (age: 26 ± 5 yrs, 

height: 179 ± 6 cm and body mass: 70 ± 6 kg) participated in the study. The inclusion 

criteria for participation and data analysis were as follows: 1) a minimum of 5 yrs of 

endurance training and frequent participation in endurance competitions and 2) initial 

ferritin levels >30 µg/l (no iron supplementation during the study). All athletes provided 

written informed consent to participate in the study. The study was approved by the local 

ethical committee (N°CPP EST I: 2014/33; Dijon, France), and all procedures were 

conducted in accordance with the Declaration of Helsinki. 

 

Study Design 
Within a 3-week period, all athletes completed an 18-day training camp and two testing 

sessions immediately before (pre-) and after (post-) (Figure 1). After the pre-tests, the 

athletes were assigned to one of the three training groups matched to their 3-km running 

time: 1) LHTL with normobaric hypoxic exposure (n = 10; 3-km time: 623 ± 47 s, NH), 

2) LHTL with hypobaric hypoxic exposure (n = 11; 3-km time: 643 ± 57 s, HH), and 3) 

the control group (n = 7; 3-km time: 632 ± 59 s, CON). Both altitude groups slept at an 

altitude of 2250 m under either simulated (NH) or natural (HH) hypoxic conditions, 

whereas the CON group lived at sea level. All groups trained at altitudes <1200 m. 

Before the training camp, first Hbmass in duplicate and hematological parameters were 

measured, and then the performance tests (incremental cycling test and 3-km run) were 
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conducted. At day 13 of the LHTL camp, an additional duplicate Hbmass measurement 

was performed in the HH group, as it corresponded to the expected hypoxic dose in NH 

after 18 days (the same hypoxic dose in the HH and NH groups). After the training camp, 

first the performance tests were performed and then the Hbmass and hematological 

measurements. All 3-km running tests were performed near sea level (390 m), whereas 

the other measurements were performed at 1150 m. During the training camp, the 

training load and the hypoxic dose were continuously recorded. 

 

Hypoxic Exposure 
The HH group lived at Fiescheralp, Switzerland (2250 m, inspired oxygen pressure 

(PiO2) 111.7 ± 0.7 mm Hg; inspired oxygen fraction (FIO2) 20.9% ± 0.0, barometric 

pressure (PB) 580.8 ± 3.3 mm Hg) and traveled by cable car twice daily to the valley 

(altitude <1200 m) for training. The daily hypoxic dose in the HH group amounted 17.4 ± 

0.2 h. At day 13 during the training camp, the total hypoxic dose in the HH group was 

229.5 ± 1.3 h, and after 18 days, the dose was 316.4 ± 2.3 h. The NH group lived in 

Prémanon, France (1150 m) and was exposed to normobaric hypoxia equivalent to 2250 

m in hypoxic rooms (medium size: 15 ± 1 m2). Normobaric hypoxia was obtained by 

extracting oxygen from ambient air in hypoxic rooms (PiO2 112.7 ± 0.1 mm Hg; FiO2 

18.1% ± 0.1; PB 668.2 ± 2.5 mm Hg). In each hypoxic room, the gas composition was 

continuously monitored with oxygen and carbon dioxide analyzers (FIELDBROOK Ltd, 

London, UK), which were connected to a central monitoring station under the control of 

an experienced physiologist. The NH group in Prémanon left the hypoxic rooms on 

average 5–6 times per day to eat and train. The daily hypoxic dose in the NH group was 

13.1 ± 0.6 h, and the total hypoxic dose after 18 days in the NH group amounted 238.2 ± 

10.6 h. For both groups, the time spent in hypoxia was monitored daily and recorded 

manually. 

 

Training Load 
All training sessions during the training camp were supervised with the volume and 

intensity matched for all groups by two experienced certified coaches. The HH and NH 

group trained separately, since they were located at two different places. The CON group 
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lived nearby the NH group and trained most of the time together with the NH group. The 

training consisted of cycling, running, and swimming. Training load quantification was 

performed using the Objective Load Scale (ECOs) (4), which was specially developed for 

training load quantification in triathlon. Briefly, the ECOs were calculated by multiplying 

the total duration of a training session (time in minutes) with a scoring value between 1 

and 50, depending on the heart rate–based training zone (1 to 8), and by a factor of 1.0, 

0.75, or 0.5 for running, swimming, or biking, respectively. The daily training loads 

(ECOs) of each subject were measured based on each subject’s physical characteristics 

and training program intensity. 

 

Running and Cycling Performance 
Running performance was evaluated during a 3-km run performed on a 400-m outdoor 

synthetic track at sea level. Starts were individual in a time-trial form (i.e., 30 s between 

each start), to avoid group or pacing effects. Pre- and post-3-km runs were performed 

under equivalent conditions: 22 C°, PB 738.4 mm Hg, 62% humidity, and 2.5 m�s–1 wind 

speed and 20 C°, PB 739.5 mm Hg, 60% humidity, and 1.9 m�s–1 wind speed for the pre- 

and post-runs, respectively. Cycling performance was assessed with the determination of 

the maximal aerobic power during an incremental cycling test on an electromagnetically 

braked cycle ergometer (Lode Excalibur Sport, Groningen, the Netherlands). After a 5-

min warm-up period at a workload of 90 W, the workload was subsequently increased by 

30 W�min–1 until voluntary exhaustion.  

 
Hemoglobin Mass  
During each testing session, Hbmass was measured in duplicate by using a slightly 

modified version of the optimized carbon monoxide (CO)-rebreathing method described 

by Schmidt and Prommer (35). Briefly, subjects spent 5 min in a sitting position before 

three capillary blood samples (35 µL) were taken from the earlobe and analyzed 

immediately for baseline carboxyhemoglobin (%HbCO) values (ABL 800flex, 

Radiometer A/S, Copenhagen, Denmark). Subjects then rebreathed for 2 min a gas 

mixture of 100 mL pure CO (Multigas SA, Domdidier, Switzerland) and 3.5 L oxygen in 

a closed circuit system (glass spirometer, Blood Tec GbR, Bayreuth, Germany). During 
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the rebreathing period, a CO gas analyzer (Dräger PAC 7000, Dräger Safety, Lübeck, 

Germany) was used to check for possible CO leakage at the nose, mouthpiece, and 

spirometer system. At 6 and 8 min after CO rebreathing started, two final capillary blood 

samples were taken from the earlobe and averaged as a 7-min post %HbCO value. 

Directly before and 2 min after the rebreathing, the same CO gas detector was used to 

measure the end-tidal CO concentration in parts per million. Hbmass was calculated from 

the mean change in %HbCO before and after CO rebreathing, as described previously by 

Steiner and Wehrlin (37). Both measurements were performed on two consecutive days 

(12- to 24-h time lag between the measures), and the results were averaged. In this study, 

the typical error (TE) of the CO-rebreathing method was 1.9% in our mobile laboratory. 

Since averaged duplicate measurements reduce the TE by a factor of 1/ √2, the TE for the 

averaged duplicate measurements was 1.3% (17). 

 
Blood Samples 
On the first morning in pre- and post-testing, venous blood samples were drawn from an 

antecubital vein (4.9 ML EDTA tube, Sarstedt, Nümbrecht, Germany) immediately after 

the athletes woke up (7 am). To determine red blood cells (RBC), hemoglobin (Hb), 

hematocrit (Hct), and reticulocyte percentage (Ret), blood was analyzed via fluorescent 

flow cytometry and hydrodynamic focusing (XT-2000i, Sysmex Europe, Norderstedt, 

Germany). The coefficient of variation (CV), which was determined using internal 

quality controls, was below 1.5% for Hb and 15% for Ret. Plasma EPO was measured 

using a standard procedure with an enzyme-linked immunosorbent assay (ELISA) kit 

(Stemcell Technologies, Grenoble, France). CVs determined with three internal quality 

controls (levels: low, medium, and high) were below 15%. Additionally, serum ferritin 

concentration (Ftn) was quantified using standard laboratory procedures (Dimension 

EXL, Siemens Healthcare Diagnostics SA, Zürich, Switzerland). To exclude the potential 

risk of misuse of recombinant human erythropoietin, all athletes were tested for doping 

by an accredited laboratory (Swiss Laboratory for Doping Analyses, Lausanne, 

Switzerland) according to the standards of the Athlete Biological Passport (31). All 

plasma samples were analyzed in duplicate, and the mean values were used for this study. 
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Statistical Analyses 
Data are presented as mean ± standard deviation (SD). The collected data were tested for 

normality (the Shapiro-Wilk test) and equal variance. A two-way repeated measure 

analysis of variance (ANOVA) was applied to evaluate the group differences between the 

pre- and post-measurements and group x time interactions. When a significant global 

effect was indicated, Tukey’s post hoc test was performed to identify significant 

differences between the time points and the groups. A linear regression was used to 

determine the relationship between the percent changes in relative Hbmass and the 3-km 

running time. Correlation classification of Hopkins (19) was used to interpret the size of 

the correlation. An D of P < 0.05 was considered significant. All analyses were processed 

using Sigmaplot 11.0 (Systat Software, San Jose, CA). To estimate the magnitude of the 

changes within the groups, the effect size Cohen’s d (d) was calculated (8), which was 

classified as follows: small effect d = 0.20, moderate effect d = 0.50, and large effect d = 

0.80 (8). 

 

To quantify the likelihood that the true mean of percent changes in Hbmass and 

performance parameters was relevant (i.e., more extreme than the smallest worthwhile 

change (SWC) of Hbmass and performance, set to ± 1%), a contemporary statistical 

approach was used (18). The magnitude of the change in the mean and the spreads of the 

90% confidence limits (CL) were used to classify the effects (positive, trivial, or 

negative) (19). The magnitude of the change was determined with the following 

descriptors (1): <1%, almost certainly not; 1–5%, very unlikely; 5–25%, unlikely or 

probably not; 25–75%, possibly or may be; 75–95%, likely or probably; 95–99%, very 

likely; >99%, almost certainly. The magnitude of change was termed “unclear” if the CL 

overlapped the positive and negative SWC thresholds. To detect significant individual 

effects, the 95% CL for percent changes of Hbmass were derived from the present TE of 

the Hbmass measurement (95% CL = ± 1.96 TE · √2 1/√2) (17). 
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RESULTS 
Hemoglobin Mass 
After the same hypoxic dose, the absolute Hbmass of the HH (d = 0.5, P < 0.001, +4.4%) 

and NH (d = 0.5, P < 0.001, +4.1%) groups increased to the same extent (Table 1). 

Similar increases were also observed for the relative Hbmass values in the HH (d = 0.6, P 

< 0.001, +4.3%) and NH (d = 0.4, P < 0.001, +3.8%) groups. After 18 days, Hbmass was 

not further increased in the HH group either for absolute (d = 0.5, P < 0.001, +4.5%) or 

relative (d = 0.6, P < 0.001, +4.5%) values. No significant change in the CON group was 

observed either for absolute (d = 0.1, P = 0.08, +1.9%) or relative (d = 0.2, P = 0.46, 

+1.0%) values. Absolute and relative Hbmass changes did not differ between the groups 

with the same hypoxic dose (P > 0.75), as well as after 18 days (P > 0.12). The likelihood 

of %Hbmass changes in the altitude groups was likely beneficial compared to CON (>79% 

positive), with an unclear effect (>50% trivial) between the HH and NH groups after the 

same hypoxic dose and after 18 days (Table 2). Individual absolute Hbmass responses 

ranged from –0.1 to +10.6% in the HH group, from –1.4 to +7.7% in the NH group and 

from -3.3 to + 6.0% in the CON group. The 95% CL for %Hbmass changes were ± 3.7% 

and the upper CL was exceeded by most of the subjects in the altitude groups (Figure 2). 

 

Performance  
In the post-test compared to pre-test, the 3-km running time decreased with a moderate 

effect in the HH (from 643 ± 57 s to 618 ± 51 s, d = 0.5, P < 0.001, –3.9%) and NH (from 

623 ± 47 s to 602 ± 36 s, d = 0.5, P < 0.001, –3.3%) groups and had a small effect in the 

CON group (from 632 ± 59 s to 619 ± 56 s, d = 0.2, P = 0.031, –2.1%). Cycling maximal 

aerobic power did not change significantly in the HH (405 ± 51 W vs. 414 ± 45 W, d = 

0.2, P = 0.08, +2.4%), NH (393 ± 36 W vs. 402 ± 35 W, d = 0.3, P = 0.08, +2.4%), or 

CON (423 ± 57 W vs. 424 ± 58 W, d = 0.0, P = 0.89, +0.2%) group. Running (P = 0.27) 

and cycling (P = 0.5) performance changes did not differ between the groups. The 

performance gains in the altitude groups were likely higher compared to the CON group 

(>64% positive), with an unclear effect (>39% trivial) between the HH and NH groups 

(Table 2). There was a large correlation between the relative Hbmass and 3-km running 
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time percent changes from the pre-test to the post-test in the altitude groups (r = -0.64, P 

< 0.001) (Figure 3). 

 

Blood Parameters 

Table 1 lists all hematological parameters. After the training camp, there was a moderate 

increase in Hct (d = 0.6, P = 0.04, +4.6%), Hb (d = 0.6, P = 0.02, +4.8%), and RBC (d = 

0.4, P = 0.03, +4.2%) for NH with no such changes in the HH and CON groups (d < 0.2, 

P > 0.58). Ftn decreased to a small extent in the HH group (d = 0.4, P = 0.02), but not in 

the NH (d = 0.1, P = 0.92) or CON (d = 0.1, P = 0.79) group. A decrease in EPO in the 

HH (d = 1.9, P < 0.001, –39.4%) and NH (d = 1.6, P < 0.001, –51.3%) group compared 

to the CON (d = 0.3, P = 0.48, –8.4%) group was observed. A group x time interaction 

was detected only for EPO (P < 0.001), whereas other hematological parameters did not 

differ between the groups. 

 

Training Load and Body Weight 
No differences were found in daily training loads between the groups (213.6 ± 29 vs. 

205.2 ± 16 vs. 155.4 ± 71 ECOs for the NH, HH, and CON groups, respectively) during 

the training camp (P = 0.21). Body weight did not differ (P = 0.76) between the groups. 

Pre-body weight was 68.6 ± 6.5, 70.4 ± 4.8, and 72.1 ± 8.2 kg, and post-body weight was 

68.6 ± 5.6, 70.6 ± 4.9, and 72.7 ± 8.5 kg for the HH, NH, and CON groups, respectively. 

 

DISCUSSION 
To our knowledge, the present study is the first to compare Hbmass response after the same 

hypoxic dose (approximately 230 h) in normobaric and hypobaric LHTL training camps. 

The main findings indicate that HH and NH yield a similar group mean increase in Hbmass 

after the same hypoxic dose and that the difference between HH and NH was unclear 

with a tendency to be trivial. After the 18 days of LHTL, NH and HH likely had 

beneficial effects on Hbmass and on performance indicators compared to the CON group, 

and despite a larger hypoxic dose in the HH group (316 h), the differences between HH 

and NH remained unclear. There was a wide variability in individual Hbmass response to 

NH and HH after the same hypoxic dose and after 18 days. 
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Mean Hbmass Responses 
The altitude groups demonstrated a similar group mean increase in Hbmass after the same 

hypoxic dose (+4.4% vs. +4.1%) to LHTL at 2250 m. The Hbmass increase was of similar 

magnitude to that observed by other LHTL studies (12, 15o - _ENREF_23). It is well 

accepted that an adequate hypoxic dose of >12 h/day at sufficient altitude for >21 days 

(25, 27), i.e., approximately 300 h (7) is recommended to substantially increase Hbmass. 

However, in the current study, both altitude groups enhanced their Hbmass by 

approximately 4% after approximately 230 h of hypoxic exposure at 2250 m, which is in 

accordance with other studies (12, 26). These studies also showed a measurable increase 

in Hbmass (3.0 - 3.5%) after 210 h of normobaric hypoxic exposure at 3000 m (26) and 

after 236 h of hypobaric hypoxia at 2760 m (12). Furthermore, due to the nature of 

natural altitude, the HH group accumulated hypoxic hours much faster than the NH group 

(17 h�day–1 vs. 13 h�day–1) and achieved a similar hypoxic dose (approximately 230 h) 

after 13 days of altitude training compared to the NH group (18 days), with no additional 

group mean Hbmass increase in HH (+4.4% vs. +4.5%) by day 18 (316 h). This suggests 

that approximately 230 h of hypoxic exposure at 2250 m in either HH or NH is sufficient 

to increase Hbmass in endurance athletes and that these erythropoietic adaptations were 

feasible within a shorter duration of hypoxic exposure than commonly recommended 

(26). Otherwise, altitude studies have shown that Hbmass increases at a mean rate of 1.1%/ 

100 h of exposure (14), expecting a further Hbmass increase of ~1% from day 13 to day 18 

in the HH group. However, there is a wide individual variability in the time course of 

Hbmass response to altitude training (7, 12), which was also present in the HH group from 

day 13 to day 18 (Figure 2). Some of the athletes could further increase their Hbmass from 

day 13 to day 18 (+0.9 to +5.4%), whereas in others Hbmass decreased from day 13 to day 

18 (-1.8 to -6.0%). Furthermore, even using duplicate Hbmass measurements it is still 

difficult to certainly detect Hbmass changes smaller than the TE (1.3%). Therefore, it 

might be possible that the lack of increase in Hbmass from day 13 to day 18 in HH is due 

to individual variation in the time course of Hbmass responses and due to measurement 

error. Last, the %Hbmass changes in both altitude groups were likely beneficial (>79% 

positive) in comparison to the CON group, indicating that LHTL either in HH or NH is 

advantageous for Hbmass increase compared to sea-level training. However, the difference 
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between Hbmass response in the NH and HH groups was unclear with a tendency to be 

trivial after the same hypoxic dose (50%) and after 18 days of LHTL (57%) (Table 2). 

 

Individual Hbmass Responses 

There was large variability in the individual responsiveness in Hbmass for HH (ranging 

from –0.1 to +10.6%) and NH (from –1.4 to +7.7%) after the same hypoxic dose and 18 

days of LHTL. The 95% CL for %Hbmass changes were ± 3.7% and the upper CL was 

exceeded mainly by the athletes in the altitude groups (HH: 7 out of 11 and NH: 6 out of 

10), whereas only one athlete in the CON group exceeded the 95% CL (Figure 2). Since 

in all athletes no depleted ferritin stores (Ftn >30 µg�L–1) (16), doping abuse (doping 

control scores within normal ranges (31)), or different daily training loads during the 

altitude stay were detected and all measures were performed in duplicate with no 

measurement outliers, it can be expected that the athletes who exceeded the 95% CL 

were “true” Hbmass responders to altitude training at 2250 m in either NH or HH. 

Individual variability in Hbmass response to LHTL training camps (2700–3000 m) in either 

HH or NH has been shown and discussed before (7, 15, 29). However, studies (7, 15, 23, 

26, 29, 40) that focused on individual Hbmass response were mainly based on single 

measures of Hbmass with the optimized CO-rebreathing method, which makes the 

differentiation between physiological and technical variation more difficult. The 

optimized CO-rebreathing method is a very precise tool for determining Hbmass in athletes 

with a TE of approximately 2% (14). However, a greater certainty about individual 

Hbmass measures can be attained with duplicate Hbmass measurements, which improve the 

measure precision, as they reduce the TE by a factor of √2 (30%) (12) and help detect 

heavy measurement outliers. The more precise the Hbmass measurements, the greater the 

certainty about the individual responsiveness to an altitude training. Thus, it seems to be 

certain that within a mean Hbmass response of +4.1% to +4.5% after the LHTL camp, 

individual responsiveness in Hbmass from –1.4 to +10.6% exists.  

 

The cause of such individual variability is still uncertain and may be related to several 

factors, such as a greater acute and sustained increase in erythropoietic and training-

velocity response to altitude exposure (6). It has been suggested that the individual 
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variability in Hbmass response may be explained by the initial Hbmass level, assuming that 

athletes with an already high initial Hbmass level have a limited ability to further increase 

their Hbmass after altitude training (28). However, in the current study, even athletes with 

an initial high Hbmass level could increase their Hbmass above the 95% CL (e.g., 1024 g to 

1075 g, +5%). Overall, there was a trivial relationship between the baseline Hbmass (g) 

and the relative increase in absolute Hbmass (%) (r = 0.02, P = 0.92), indicating that even 

endurance athletes with already high Hbmass can benefit from LHTL training for further 

Hbmass improvement. To ensure the wide individual variability in Hbmass response to HH 

and NH, a cross-over study with the same athletes and a similar hypoxic dose of NH and 

HH would be needed. 

 

Performance 
Changes in running and cycling performance were likely beneficial (64–80% positive) in 

the HH and NH groups compared to the CON group (Table 2). The greater performance 

improvement in the altitude groups (+1.2% to +2.2%) compared to the CON group is of 

similar magnitude as reported in other LHTL training interventions under normobaric 

conditions (13, 29) and under hypobaric conditions (39, 41). Whereas the differences 

between HH and NH in the magnitude of performance changes were unclear. Bonetti and 

Hopkins (3) reported in a recent meta-analysis on altitude training that natural LHTL 

might be more beneficial for elite (4.0%; 90% CL ± 3.7% vs. 0.6%; ± 2.0%) and sub-elite 

(4.2%; 90% CL ± 2.9% vs. 1.4%; ± 2.0%) athletes than artificial protocols. However, due 

to the unequal hypoxic doses in the present study and the conflicting results reported in 

the literature (i.e., uncontrolled studies, poor study design, differences in duration and 

intensity of hypoxic exposure and subject training status (22)), the present results and 

literature cannot reflect a direct comparison of LHTL in HH versus NH in performance 

responses. Therefore, a cross-over study with the same athletes exposed to HH and NH is 

needed to confirm the present results. 

 

Currently, one of the most recognized physiological mechanisms leading to enhanced 

sea-level performance after LHTL is an hypoxia-induced increase in Hbmass (14, 39). 

Changes in Hbmass directly affect V O2max, a key parameter in endurance performance (22, 
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36); accordingly, cross-sectional studies showed that an increase of 1 g in Hbmass results 

in an approximate 4 mL�min–1 rise in V O2max at sea level (32, 36). There is also evidence 

that the gain in V O2max following altitude training is related to the increase in Hbmass (22, 

29, 32), whereas an increase in Hbmass was reported with different performance outcomes 

(13, 15, 29). The present study demonstrated a large correlation between the percent 

changes in relative Hbmass (g�kg–1) and 3-km running time for both altitude groups (r = -

0.64, P = 0.002) (Figure 3). Since 3-km running time is close to velocity at V O2max (2), it 
can be suggested that in the present study the improvement in running performance may 

be directly linked to the changes in Hbmass after 18-day LHTL in either HH or NH. 

 

Blood Parameters 
The majority of the hematological parameters were similar between the HH and NH 

groups before and after the 18-day LHTL training camp. EPO was lower in both groups 

after the LHTL training camp compared to the CON group, which is in line with previous 

findings (5, 7, 40), showing that EPO increases at the beginning of altitude exposure and 

peaks within 2–3 days before beginning to decrease toward sea-level values. It has been 

suggested that low iron stores (Ftn <30 µg�L–1) interfere with Hbmass responses to hypoxic 

exposure and may reduce the effectiveness of altitude training (38). In the present study, 

the ferritin levels were above >30 µg�L–1 in all athletes and only a small correlation 

between the initial ferritin level and the Hbmass responses (r = 0.3, P = 0.095) was 

detected. However, one cannot rule out that low ferritin levels may limit Hbmass responses 

to altitude training. 

 

Study Limitations 
This study primarily aimed to compare Hbmass changes after the same hypoxic dose and 

after 18-day LHTL training camps in either NH or HH. Important notes for consideration 

in evaluating the findings are that the study settings replicated common real altitude 

training practices of endurance athletes (e.g., daily exposure, total hypoxic doses under 

NH and HH conditions, respectively). Thus, the reported total (238 h vs. 316 h) and daily 

(13 h vs. 17 h) hypoxic exposure in the present study was lower in the NH group than in 

the HH group. To directly compare the same hypoxic dose between the two conditions, 
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we performed an additional Hbmass measurement in the HH group at day 13 of the 

training camp (230 h vs. 238 h for HH and NH, respectively). However, one cannot rule 

out that the unequal nature of the daily hypoxic dose in HH and NH could have 

influenced the results. Since the primary aim of the study was to compare Hbmass changes 

between normobaric and hypobaric LHTL after the same hypoxic dose and the secondary 

aim was to compare differences in Hbmass and performance changes after 18-day LHTL in 

either HH or NH, it was planned not to measure performance parameters on day 13 

because it would have influenced the training load quantification. Therefore, we cannot 

exclude putative differences in running or cycling performance with the same hypoxic 

dose between HH and NH. Another key consideration is the small sample size in the 

three training groups, which could explain the missing statistical significance between the 

altitude groups and the control group, but the magnitude of changes in Hbmass and 

performance was still likely positive for the NH and HH groups compared to the CON 

group. Furthermore, we cannot exclude that the hematological concentration values were 

slightly affected by the suboptimal standardization of the venous blood sampling (travel, 

fluid intake, etc.). Lastly, to control our findings regarding individual variability in Hbmass 

response to HH and NH, a cross-over design with a similar hypoxic dose of NH and HH 

would be needed. However, due to different periods of the athlete’s training (e.g., 

competition period, off-season, tapering or peaking), a cross-over design with athletes is 

only feasible if the interventions take place at the same time point of the season. 

 
CONCLUSION 
Hypobaric and normobaric LHTL evoked a similar group mean increase in Hbmass (4.4% 

vs. 4.1%) after same hypoxic dose (230 vs. 238 h): The difference between HH and NH 

was unclear with a tendency to be trivial. After the 18-day LHTL training camp, both NH 

and HH likely have beneficial effects on Hbmass and on performance indicators compared 

to the CON group, whereas the differences between HH and NH were also unclear, 

despite a larger hypoxic dose in the HH group (316 h). Individual Hbmass responses 

demonstrated a large variability in the altitude groups, underlining the importance of 

individual evaluation of Hbmass responses to altitude training. 
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FIGURE LEGENDS 

 

FIGURE 1—Illustration of the study design in hypobaric hypoxia (HH), normobaric 

hypoxia (NH), or normoxia (CON). 

 

FIGURE 2—Percent changes in hemoglobin mass of each athlete (open circle) and mean 

changes of each group (filled circle) after 18-day LHTL and after the same hypoxic 

exposure (230 h). The 95% confidence limits (95% CLs) are indicated by dotted lines. 

 

FIGURE 3—Linear regression (and 95% CL) for percent changes from pre- to post-

intervention in hypobaric hypoxia (HH) and normobaric hypoxia (NH) between relative 

Hbmass and 3-km running time. Regression slope (solid line) and 95% CL (dashed lines) 

are shown. 
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FIGURE 2 
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FIGURE 3 
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Table 1 Hemoglobin mass (Hbmass) and hematological parameters before (Pre) and after (Post) the 18-days LHTL training camp for hypobaric 

hypoxia (HH), normobaric hypoxia (NH) and control (CON). As well for the similar hypoxic dose (230 h and 238 h) in HH and NH. 

 

 
 
 

Group Time Hypoxia  Hbmass  Hbmass  RBC  Hb  Hct  Ret  Ftn  EPO  
  (h) (g) (g/kg) (u�µL-1) (g�dL-1) (%) (%) (µg�L-1) (mU�mL-1) 
           
           
HH Pre 0 886 ± 80 12.9 ± 0.9 5.2 ± 0.6 15.2 ± 1.3 45.4 ± 3.6 1.1 ± 0.3 119.3 ± 128.1 5.0 ± 1.3 
 Day 13 230 927 ± 105* 13.5 ± 1.0* 5.0 ± 0.6 14.8 ± 1.6 44.4 ± 4.2 1.0 ± 0.4 75.8 ± 48.3 5.9 ± 1.7 
 Post 316 927 ± 95* 13.5 ± 1.0* 5.2 ± 0.5 15.3 ± 1.1 45.8 ± 3.1 1.0 ± 0.4 77.5 ± 68.4* 3.0 ± 0.7* 
           
NH Pre 0 955 ± 83 13.6 ± 1.4 5.1 ± 0.5 15.1 ± 1.3 45.2 ± 3.7 1.3 ± 0.5 91.3 ± 49.9 6.3 ± 2.4 
 Post 238 994 ± 81* 14.1 ± 1.1* 5.3 ± 0.4* 15.7 ± 0.9* 47.1 ± 2.5* 1.2 ± 0.2 87.2 ± 44.7 3.1 ± 1.4* 
           
CON Pre 0 945 ± 128 13.1 ± 0.7 5.2 ± 0.5 15.1 ± 1.0 44.6 ± 3.4 1.3 ± 0.6 141.1 ± 91.9 4.8 ± 1.4 
 Post 0 963 ± 137 13.2 ± 0.7 5.2 ± 0.3 15.2 ± 0.7 45.1 ± 2.4 1.1 ± 0.4 147.1 ± 98.2 4.4 ± 1.6 

           
          
ANOVA 
(interaction group x time) P < 0.05 0.18 0.15 0.25 0.18 0.24 0.93 0.15 0.003 
          
RBC = red blood cells, Hb = hemoglobin concentration, Hct = hematocrit, Ret = reticulocytes, Ftn = serum ferritin concentration. Data are mean ± SD, 
*significant difference between different levels of time (P < 0.05). 
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