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Abstract 1 

Standing dead biomass retention is considered one of the most relevant fuel structural 2 

traits to affect plant flammability. However, very little is known about the biological 3 

significance of this trait and its distribution between different functional groups. Our 4 

aim was to analyse how the proportion of dead biomass produced in Mediterranean 5 

species is related to the successional niche of species (early-, medium- and late-6 

successional stages) and the regeneration strategy of species (seeders and resprouters). 7 

We evaluated biomass distribution by size classes and standing dead biomass retention 8 

in nine dominant species from the Mediterranean Basin in different development stages 9 

(5, 9, 14 and 26 years since the last fire). The results revealed significant differences in 10 

the standing dead biomass retention of species that presented a distinct successional 11 

niche or regeneration strategy. These differences were restricted to the oldest ages 12 

studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, 13 

presented slight variations with age and a less marked trend to retain dead biomass, 14 

while seeder shrubs and dwarf shrubs, characteristic in early-successional stages, 15 

showed high dead biomass loads. Our results suggest that the species that tend to retain 16 

more dead branches are colonising species that may promote fire in early-successional 17 

stages.  18 

 19 

 20 

Keywords: Dead fuel, Early species, Flammability, Functional traits, Late species, 21 

Resprouter, Seeder.  22 

 23 

 24 
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Introduction 1 

One important point in the ecological understanding of fire regime is to recognise how 2 

biomass traits of plant species can shape it. In fact variation in biomass structure has 3 

referred to changes in the fire regime (Bond & Keeley 2005; Bowman et al. 2009), and 4 

classifying biomass according to its flammability is essential for fire hazard 5 

assessments. However, it is extremely difficult to assess plant flammability given the 6 

complex interactions of the components that drive it (Cornelissen et al. 2003). Most 7 

approaches have centred on understanding the role of biomass moisture in flammability 8 

(Gill et al. 1978; Dimitrakopoulos & Papaioannou 2001), especially how seasonal 9 

variations in live biomass moisture relate with the ignition delay time (Pellizaro et al. 10 

2007). Other studies have used discrete biomass elements (e.g., leaves and twigs) for 11 

assessing small-scale intrinsic properties on flammability, such as specific gravity, 12 

mineral content and chemical composition (Fernandes & Cruz 2012). However, very 13 

few studies on the structural distribution of canopy components according to size are 14 

available (Cowan & Ackerly 2010; Saura-Mas et al. 2010), particularly on the degree of 15 

standing dead biomass retention (branches and leaves) in different species (see Keeley 16 

et al. 2012). A key role in fire ignitions has been attributed to this biomass type 17 

(Santana & Marrs 2014), and it has the peculiarity of being dynamic in both plant 18 

ontogeny and the progression of plant succession (Baeza et al. 2011; Santana et al. 19 

2013). Therefore, in order to gain a better understanding of the relationship of biomass 20 

structural traits associated with flammability and fire hazard, a better description of 21 

variations in dead and live biomass with time is considered essential.  22 

Standing dead biomass retention in the canopy is one of the most relevant plant 23 

properties involved in vegetation flammability (Schwilk & Ackerly 2001; Keeley et al. 24 

2012). The relationship between dead and living biomass is involved in key fire 25 
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occurrence processes as it influences both fire initiation (ignitability) and fire extinction 1 

(Santana & Marrs 2014). Dead biomass is often characterised by its low water content, 2 

which makes it the best point for fire ignition, and the first heat source when fire 3 

commences. Living biomass may either contribute actively to fire energy or serve as a 4 

heat sink to reduce fire intensity and propagation (Pyne et al. 1996). In ecosystems 5 

dominated by shrubs, fire behaviour can depend mainly on the proportion of standing 6 

dead biomass present in vegetation (Baeza et al. 2002; Anderson & Anderson 2009). 7 

The factors that affect biomass moisture also vary between dead and live biomass. Dead 8 

biomass moisture is controlled mainly by physical processes and depends clearly on 9 

atmospheric conditions. In contrast, live biomass moisture is affected by not only 10 

meteorological factors and soil water availability, but also by the physiological plant 11 

mechanisms that regulate water content (Castro et al. 2003). Therefore, the inherent low 12 

water content of standing dead biomass can prove critical during dry seasons and can, 13 

thus, considerably enhance plant flammability.  14 

Plant communities may be more or less fire prone depending on the individual 15 

attributes of the species composing them (Fernandes 2009; Keeley et al. 2012). Some 16 

species possess structural (canopy architecture) and physiological (water status) traits 17 

(Castro et al. 2003), which make them more flammable than others (Baeza et al. 2011; 18 

Santana et al. 2011). Differences in species flammability with distinct post-fire 19 

regeneration strategies can be key to establish a mutual link between fire regime and 20 

vegetation communities. Recent studies done in Mediterranean-type ecosystems have 21 

found a higher dead branch proportion in species with post-fire seeding as compared to 22 

resprouter species (Saura-Mas et al. 2010; Cowan & Ackerly 2010). This fact suggests 23 

that fire is an important selective pressure in the evolution of the post-fire seeding trait 24 

(high post-fire germination) (Keeley et al. 2011; Bradshaw et al. 2011; He et al. 2011; 25 
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Verdú & Pausas 2013), which benefits those species that promote fire ignition and fire 1 

intensity through dead biomass retention (Schwilk 2003; Keeley et al. 2012). 2 

Nevertheless, very few hypotheses have been posed on the selective value of this trait 3 

(high dead biomass retention) other than its effects on flammability (Schwilk 2003; 4 

Keeley et al, 2011; Keeley et al. 2012).   5 

One point that has been the object of very few studies on the flammability 6 

properties of vegetation is processes that assemble the community structure. For 7 

example, the post-fire successional gradient may lead to changes in resources 8 

availability and, thus, in species composition with different flammability traits, which 9 

could affect the fire regime (Cramer et al. 2008; Odion et al. 2010). Early-successional 10 

species typically have a set of associated traits, including short life span, and fast-11 

growing, shade-intolerant, dry-fruited, small-seeded, seed dormancy and high seedling 12 

establishment rates after disturbance (Rees et al. 2001). In contrast, late-successional 13 

species show the opposite syndrome (Verdú 2000; Ackerly 2004) and, if no 14 

disturbances occur, they exclude colonizer species as they reduce resources availability 15 

to levels below those they actually require (Huston & Smith 1987; Grubb 1998). 16 

Despite available confirmed information that describes opposite traits between early- 17 

and late-successional species, there is very little information available about 18 

flammability properties, such as biomass size distribution and dead biomass retention 19 

patterns. This point is fundamental for understanding plant flammability patterns during 20 

a successional process over time and their possible effect on the fire regime.  21 

In this paper, we assessed biomass structural properties in the canopy of nine 22 

dominant species from the Mediterranean Basin. We measured biomass distribution by 23 

size classes and standing dead biomass retention over a chronosequence of 5-26 years 24 

since the last fire. We tested two initial hypotheses in this paper: 1) the proportion of 25 
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dead biomass produced in Mediterranean species is related to the successional niche 1 

(early-, medium- and late-successional stage); 2) the proportion of dead biomass is 2 

related to species’ regeneration strategies (seeders and resprouters). These two 3 

functional type classifications have already been related to each other in Mediterranean 4 

Basin species (Verdú 2000; Saura-Mas 2008; Verdú et al. 2009) and are expected to 5 

share similar traits; i.e., early-successional with seeder species and late-successional 6 

with resprouter species.   7 

 8 

Materials and Methods 9 

Study site and experimental design 10 

The study area is located in the province of Valencia (hereafter referred to as Ayora) in 11 

the eastern Iberian Peninsula (39º05´- 40º5´N, 0º51´- 1º59´W). Climate is sub-dry meso-12 

Mediterranean with mean temperatures of 13-17ºC and annual mean rainfall of 400-700 13 

mm. Leptosols, stony and shallow soils, are formed on limestone and dolomite 14 

dominates on the uplands of the study area, while regosols, less stony and deeper soils 15 

that form on marl, dominate lower colluvial areas. The landscape is dominated mainly 16 

by shrublands, which have regenerated after fire and have different species 17 

compositions. Dominant shrub species include Rosmarinus officinalis, Ulex parviflorus 18 

and Quercus coccifera. Small patches of trees (i.e., Quercus ilex and Pinus halepensis) 19 

are found, but no forests. In fact the potential vegetation is considered a sclerophyllous 20 

oak forest of Quercus ilex. Based on fire history records of the Regional Valencian 21 

Government’s Forest Service, we selected four areas at Ayora which had burned in the 22 

summers of 1979, 1991, 1996 and 2000 (30,000, 5,000, 600 and 50 ha, respectively). 23 

This provided us with a stand-age chronosequence of 26, 14, 9, and 5 years, 24 

respectively, since the last fire. Our vegetation analysis assumed temporal variations 25 
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within the study area, which is a widely used approach in vegetation dynamics research 1 

to determine different vegetation development stages with time.  2 

 3 

Sampling  4 

In order to well represent the species in each burnt area (Cornelissen et al. 2003), we 5 

selected nine woody species, which represent 85-90% of the vegetation cover at Ayora 6 

(Baeza et al. 2007), these being: Cistus albidus L., Cistus clusii L., Erica multiflora L., 7 

Juniperus oxycedrus L., Pinus halepensis Miller, Quercus coccifera L., Quercus ilex L., 8 

Rosmarinus officinalis L. and Ulex parviflorus Pour. (nomenclature follows De Bolòs et 9 

al. 1993). These species included shrubs, dwarf shrubs and trees, early- and late-10 

successional species, and different post-fire regeneration strategies (seeders and 11 

resprouters) (Table 1).  12 

 In each fire area, a plot of 2-3 ha was sampled where 10-12 individuals of each 13 

species, separated by at least 5 metres, were randomly selected (375 individuals) and 14 

harvested during vegetation inactive periods to avoid seasonal maximum dead biomass 15 

accumulation in summer (the winters of 2004 and 2005). Any individuals that were 16 

isolated, dead, broken or growing in especially favourable locations were avoided. For 17 

resprouter species, the ramet was considered; i.e., the unsuppressed mid-developed 18 

shoot that sprouts directly from burnt stumps. The age of all the individuals per plot was 19 

checked by counting growth rings in J. oxycedrus and P. halepensis as being 20 

representative of resprouter and seeder species, respectively (Baeza et al. 2011).  21 

At each site, the biomass structural variables were measured by species and 22 

fraction (i.e., live and dead biomass, and different diameter classes of biomass). For 23 

each individual plant, biomass was separated into live and dead, and was then grouped 24 

according to diameter class < 6 mm (twigs), 6-25 mm (branches), 25-75 mm (thick 25 
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branches) and > 75 mm (trunks) (Cornelissen et al. 2003). No dead leaf material was 1 

encountered or its contribution to total individual biomass was imperceptible (<1 %). 2 

Live leaves were separated (or phylloides for U. parviflorus) and were included in the 3 

live twigs fraction (< 6 mm). Tree trunks (> 75 mm) were not considered to contribute 4 

to fire-consumed biomass. Separated material was oven-dried (3 days at 60ºC) to 5 

ascertain its dry weight.  6 

 7 

Statistical analysis 8 

Species were ordinated on the basis of their biomass’ structural composition by a 9 

principal component analysis (PCA). Species with a similar biomass structure should be 10 

grouped near each other in the ordination space, which should help identify any 11 

architectural pattern in biomass classes. The analysed data included all the biomass 12 

diameter classes, and redundant variables were avoided; thus the dead and live fractions 13 

of both twigs and branches, and of live thick branches, were used. The biomass data, 14 

grouped according to size class and to dead and live biomass, were transformed into 15 

proportions of each individual’s total weight in order to remove large-scale differences 16 

among the original variables. A multivariate analysis was conducted using CANOCO 17 

4.5 for Windows (Ter Braak & Šmilauer 1998). 18 

Linear Mixed Models (LMMs) were used to test the two hypotheses presented 19 

herein: (1) the proportion of dead biomass produced in Mediterranean species is related 20 

to the successional niche; (2) the proportion of dead biomass is related to species’ 21 

regeneration strategies. In the model construction, we considered the successional niche 22 

(early-, medium- and late-successional stages) as fixed effects for Hypothesis 1, 23 

whereas regeneration strategy (seeders and resprouters) was considered for Hypothesis 24 

2. In order to test the effect of individual age on the dead biomass proportion and its 25 
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subsequent effect on our hypotheses, ages of individuals were also considered a 1 

continuous fixed effect, together with its interaction with either successional niche or 2 

regeneration strategy. The species nested within successional niche or regeneration 3 

strategy were included as random factors. For these analyses, the proportion of dead 4 

biomass in the percentage was previously arcsine- (sin -1 √(x/100)) transformed. LMMs 5 

were performed using the lme4 package and the lmer function in the R software 6 

environment (v.2.12.2: R Development Core Team 2011). The ANOVA function in the 7 

lmerTest package was used to test the global differences between the different 8 

successional niches and regeneration strategies by considering all ages together. Finally, 9 

differences between successional niches and regeneration strategies for each specific 10 

age were analysed by contrasting the least-squares means with the “lsmeans” function. 11 

For this purpose, LMMs were fitted using age as the discrete variable.  12 

 13 

Results 14 

At early ages (5 years), species are composed mainly of live twigs (Fig. 1; see also 15 

Table S1 A-C in the Supplementary Material (SM) for the values obtained for each 16 

species). With time, all the size classes of the live and dead biomasses tended to 17 

increase (except for C. clusii), but distinctly between species (SM Table S1 A-C). At 18 

later ages (9-26 years), some shrub species (C. clusii, C. albidus, U. parviflorus and E. 19 

multiflora) tended to present a very high proportion of dead twigs. These species were 20 

ordinated on the right-hand side of the PCA Axis 1 (Fig. 1). The PCA Axis 2 clearly 21 

discriminated the species in which live thick branch fractions predominated. Two shrub 22 

species (Q. coccifera and R. officinalis) presented reduced dead twig accumulation, 23 

which were ordinated on the positive part of this axis (Fig. 1). Tree species (Q. ilex, J. 24 
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oxycedrus and P. halepensis) were also located on the positive side of this axis and at 1 

older ages (Fig. 1). 2 

The proportion of dead biomass was strongly affected by the age of individuals 3 

in the most functional groups. Initially, there were no significant differences between 4 

successional niches when analysing all the individuals of all the different ages together 5 

(5, 9, 14 and 26 years) (ANOVA; F-value = 0.539, p= 0.606). However, the significant 6 

interaction of successional niches with the age in the fitted LMM (Table 2) suggested 7 

differences at specific ages. In fact when compared for each specific age, no significant 8 

differences were found in the young stages (5 years), when dead biomass accumulation 9 

was still low for all the species (Figure 2A). However, significant differences were 10 

found at older ages (>9 years) between early-successional species and the other 11 

successional niches (medium and late-successional) (Figure 2A). Similarly, no 12 

differences were observed between resprouter and seeder species when analysing the 13 

regeneration strategy for all ages together (ANOVA; F-value = 0.217, P=0.654). 14 

However, a robust interaction with age was observed (Table 2), and significant 15 

differences in accumulated dead biomass at older ages (>9 years) were found between 16 

the two regeneration strategies (Fig. 2B).  17 

 18 

Discussion 19 

The present study reveals considerable differences in the standing dead biomass 20 

retention of the species that presented a distinct successional niche or regeneration 21 

strategy. This is, therefore, in line with our two initial hypotheses. Nonetheless, these 22 

two functional groups showed marked interactions with age, and no differences were 23 

found in young stages given the low proportion of standing dead biomass that 24 

accumulated in all the species. It was at older ages (>9 years) when (i) seeders showed 25 
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greater dead biomass accumulations than resprouters, and (ii) early-successional species 1 

accumulated more than medium- and late-successional species. Our approach suggests 2 

that the differences in biomass structural traits, and therefore fire hazard, may be 3 

captured by functional groups; i.e. changes in the relative abundance of the different 4 

functional groups may promote changes in flammability at the community level (Bond 5 

& Keeley 2005; Odion et al. 2010).  6 

It is worth noting that in Mediterranean Basin species, the two functional type 7 

classifications studied herein have already been related to each other (Verdú 2000; 8 

Saura-Mas 2008; Verdú et al. 2009) and they are expected to share similar traits; i.e., 9 

early-successional with seeder species and late-successional with resprouter species. 10 

The two tested hypotheses are, therefore, not completely independent of each other. 11 

However, these results suggest that a new hypothesis about the biological significance 12 

of dead biomass accumulation, which can be associated with the species’ successional 13 

niche. To date, these differences were tested only between different regeneration 14 

strategies and at a fixed point with time (Cowan and Ackerly 2010; Saura-Mas et al. 15 

2010).       16 

 Different structural compositions in both condition types (live and dead, Fig. 1) 17 

and diameter classes were found among the studied species. These patterns also shifted 18 

between functional groups. At early ages (5 years), young biomass dominated in all the 19 

species with high proportions of live twigs. In these stages, all the species were less 20 

flammable and wildfires could progress only under highly flammable conditions 21 

(extreme fire weather) (Moritz et al. 2004). Yet the results we obtained in the 22 

intermediate and old stages revealed two different patterns: a group of early-23 

successional dwarf shrubs and shrubs, mainly seeders (C. albidus, C. clusii, E. 24 

multiflora and U. parviflorus), with a high proportion of dead twigs and dead branches; 25 
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another group of bigger species (small trees and trees such as Q. coccifera, especially J. 1 

oxycedrus and Q. ilex), which are typical of late-successional stages and mainly 2 

resprouters. This second group presented a higher proportion of live thick branches and 3 

lesser standing dead biomass retention. Therefore based on structural biomass 4 

organisation, our results suggested that shrubs, especially dwarf shrubs, exhibit a more 5 

flammable canopy architecture, which is dominated by the fine biomass class and a high 6 

proportion of dead biomass. In contrast, trees and small trees are not as flammable, tend 7 

to accumulate less standing dead biomass and have a poorer canopy structure dominated 8 

by a coarse biomass class. These findings are consistent with the positive feedback 9 

obtained between shrublands and fire (Díaz-Delgado et al. 2002; Syphard et al. 2006), 10 

while forests and woodlands are less wildfire-prone (Bond et al. 2005; Mermoz et al. 11 

2005; Odion et al. 2010). The lower accumulation of dead biomass in early-12 

successional species may also suggest a greater likelihood of burning all year round, 13 

whereas the opportunities to burn in late-successional species would be more limited to 14 

specific seasons. Live foliage moisture decreases under flammable levels only as 15 

summer progresses, which is when species poor in dead biomass have more similar 16 

burning characteristics to species with rich dead biomass. Nonetheless, it should be 17 

taken into account that to draw these conclusions, we only considered the aerial 18 

structure of biomass because in some cases species whose canopy does not retain dead 19 

foliage can, in turn, accumulate flammable litter underneath (Scarff & Westoby 2006). 20 

For example, Curt et al. (2011) observed in Mediterranean ecosystems in south-east 21 

France that the litter that accumulated in early-successional stages (dominated by Cistus 22 

sp.) was less flammable than the litter from late-successional stages dominated by 23 

Quercus sp.  24 
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Despite the retention of dead branches being one of the most important plant 1 

properties to enhance plant flammability (Schwilk & Ackerly 2001; Keeley et al. 2012), 2 

information on the relation to this property and its possible biological significance is 3 

scarce. In Mediterranean-type ecosystems, it has been previously hypothesised that the 4 

evolution of post-fire regenerations traits coincides with the natural selection of 5 

enhancing flammability traits, such as retention of dead branches through increased 6 

post-fire recruitment (Schwilk & Ackerly 2001; He et al. 2011; Keeley et al. 2011; 7 

Pausas et al. 2012; Keeley et al. 2012). Dead biomass may enhance species 8 

flammability with germination stimulated by heat of fire, along with a later flush in 9 

recruitment. In fact it has been observed that the species which retain dead branches 10 

produce higher temperatures and longer residence times in soil during combustion 11 

(Santana et al. 2011). This suggests a link between post-fire regenerative strategy and 12 

flammability traits, which may result in a fitness advantage for more flammable species. 13 

Seeder species with fire-enhanced recruitment (i.e., Adenostoma, Ceanothus, Ulex or 14 

Cistus) display a marked tendency to retain dead branches in the canopy (Schwilk 2003; 15 

Saura-Mas et al. 2010). In contrast, those resprouter species capable of recruiting when 16 

fire is absent, such as Quercus, Prunus and Rhamnus species, are expected to have a 17 

lower standing biomass fuel proportion (Keeley et al. 2012). However, previous studies 18 

have also shown that post-fire recruitment in some species is not completely dependent 19 

on heat exposure and has, therefore, called into question the flammability selection 20 

hypothesis for enhancing post-fire recruitment. For instance, daily temperature 21 

fluctuation during summer periods may have a stronger influence during the 22 

germination of heat-stimulated species with considerable dead biomass accumulations 23 

(Baeza & Roy 2008; Santana et al. 2013a; Ooi et al. 2014). This suggests that in 24 

flammable species which retain dead branches, for example Ulex parviflorus, not only 25 
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the heat generated by fire can break seed dormancy, but also other factors such as soil 1 

temperature fluctuations are also efficient germination triggers. 2 

Pausas et al. (2012) observed that the quantity of dead biomass in U. parviflorus 3 

for high fire recurrence scenarios was no larger than in low fire occurrence scenarios. 4 

Other theories have also been posed, such as pyrogenicity as a form of self-protection in 5 

fire-prone environments, where standing dead biomass retention promotes combustion 6 

quickly, should lower local soil heating, and should consequently enhance seed bank 7 

survival (Gagnon et al. 2010). Evidently there is still some uncertainty as to the possible 8 

biological significance of why some species accumulate larger quantities of dead 9 

biomass than others.   10 

Our results describe a general pattern: those species that tend to retain more dead 11 

branches are pioneer species of early-successional stages after land abandonment, or 12 

when vegetation is removed by fire and other disturbances (Baeza et al. 2007; Baeza et 13 

al. 2011), and they are often obligate seeder species (Verdú 2000; Lloret et al. 2005). 14 

This finding may suggest a new dead biomass retention hypothesis linked to the 15 

successional niche of species. Early-successional species often show high seedling 16 

establishment rates, quick attainment of reproductive age, rapid growth, fast turnover of 17 

organs (leaves), short life span and shade intolerance (Bazzaz 1979; Rees et al. 2001; 18 

Ackerly 2004). These species are considered competitive in environments with high 19 

resource availability, such as open spaces, (Rees et al. 2001). Early-successional species 20 

are expected to display prolific branching, which could reduce light availability and, in 21 

certain cases, could even increase the dead wood component of the lowest branches 22 

when they are considerable in size and of a mature age (Schlesinger & Gill 1980). In 23 

fact it has been observed that many Mediterranean early-successional species do not 24 

possess an effective self-pruning mechanism, but accumulate dead branches on the 25 
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canopy, whereas late-successional species, like Arbutus unedo and some Quercus sp., 1 

display effective self-pruning, which concentrates mainly in autumn (Monserrat-Martí 2 

et al. 2004). Differences in resource allocation patterns between shoots and roots have 3 

also been suggested to be a possible determinant of dead biomass accumulation (Cowan 4 

& Ackerly 2010). Species with a high shoot:root ratio are expected to be less drought-5 

tolerant in summer, hence the dieback in part of the biomass might increase during 6 

summer droughts (Montserrat-Martí et al. 2004). This pattern has also been noted in the 7 

Mediterranean Basin where early-successional species, such as U. parviflorus and R. 8 

officinalis, show a higher shoot:root ratio than others like Pistacia lentiscus or Myrtus 9 

communis, which are typical of more advanced successional stages (Hernandez et al. 10 

2010; Saura-Mas & Lloret 2013).  11 

In summary, our study stresses that the ability to retain dead branches in the 12 

canopy may be the result of successional processes in response to resource availability 13 

along the successional gradient. Early-successional communities, which have adapted to 14 

respond to an environment with high seasonal variability, are dominated by both shrub 15 

and dwarf shrub obligate seeders, these being drought-tolerant species with semi-16 

deciduous leaves that help regulate the evapotranspiration surface in summer (Saura-17 

Mas & Lloret 2007). However, these species have a poor branch self-pruning capacity 18 

that enhances flammability. In contrast, late-successional communities are dominated 19 

by drought-avoiding species, which include evergreen sclerophyllous trees and small 20 

trees resprouters with deep-rooted systems. These species possess an efficient self-21 

pruning mechanism and are, consequently, less flammable.  22 

 23 
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 1 

Tables  2 

 3 

Table 1. Functional traits of the different study species and the successional stage from 4 

the conceptual vegetation dynamics model at Ayora (Baeza et al. 2007). Data are taken 5 

from Paula et al. (2009) and personal observations (life span and time to maturity). 6 

 7 

Species Family Life form Regeneration 

strategy  

Life span  

(years) 

Time to maturity 

(years)  

Successional 

niche 

Cistus  albidus Cistaceae Dwarf shrub Seeder Short (10-15) Short (2) Early 

Cistus clusii Cistaceae Dwarf shrub Seeder Short (10-15) Short (2) Early 

Erica multiflora Ericaceae Shrub Resprouter Medium (30-40) Short (3-4) Medium 

Juniperus oxycedrus Cupressaceae Small tree Resprouter Long (>50) Medium (5-10) Late 

Pinus halepensis Pinaceae Tree Seeder Very long (> 200) Long (10-15) Early 

Quercus coccifera Fagaceae Shrub Resprouter Long (>50) Medium (5-10) Late 

Quercus ilex Fagaceae Tree Resprouter Very long (> 200) Long (15-20) Late 

Rosmarinus officinalis Lamiaceae Shrub Seeder Medium (30-40) Short (2-3) Medium 

Ulex parviflorus Fabaceae Shrub Seeder Short (15-20) Short (2-3) Early 

 8 

 9 

 10 

 11 

Table 2. Parameters estimated by the LMM models for dead fuel retention.  12 
 13 

Hypothesis Baseline Fixed effects Estimate SE t value P 

Successional Early Intercept 0.061 0.052 1.175 0.279 

niche (1)  Medium -0.095 0.091 -1.038 0.334 

  Late -0.034 0.081 -0.431 0.679 

  Age 0.009 0.001 9.925 <0.001 

  Medium x Age -0.003 0.002 -2.029 0.043 

  Late x Age -0.007 0.001 -5.296 <0.001 

Regeneration Resprouters Intercept 0.009 0.056 0.17 0.869 

strategy (2)  Seeder 0.034 0.075 0.466 0.654 

  Age 0.003 0.001 3.204 0.001 

    Seeder x Age 0.005 0.001 3.847 <0.001 

 14 

 15 

 16 

 17 
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Figure legends 1 

 2 

Fig. 1. PCA ordination biplot showing the ordination of species at different stand ages 3 

as compared to the first two PCA axes. The first two axes explain up to 80.6% of 4 

variance in species ordination. Arrows show the structural explanatory variables of live 5 

and dead fuel according to diameter class (twigs, branches and thick branches). PCA 6 

Axis 1 shows a marked negative correlation with live twigs (r=0.63; P<0.0001) and a 7 

marked positive correlation with dead twigs (r=0.33; P=0.0003). PCA Axis 2 correlates 8 

positively with thick branches (r=0.93; P<0.0001). For simplicity, numbers are used to 9 

indicate the first and last stand ages per species (5 and 26 years), but all the ages studied 10 

are shown, following the direction of the arrows (5, 9, 14 and 26 years). C= C. clusii, 11 

CA= C. albidus, E= E. multiflora, J= J. oxycedrus, P= P. halepensis, QC= Q. coccifera, 12 

Q= Q. ilex, R= R. officinalis and U= U. parviflorus.  13 

 14 

Fig. 2. Proportion of dead fuel for the different stand ages since the last fire between the 15 

functional groups: A) Successional niches (early-, medium- and late-successional  16 

species); B) Regeneration strategy (seeder and resprouter species). An asterisk denotes 17 

significant differences (p< 0.05) for a specific age. 18 
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Supplementary material Table S1. Mean dry weight (g ± SE) for live and dead fuel for 

study species at 5, 9, 14 and 26 years after fire. The results are shown according to size 

classes: A) Twigs, B) Branches and C) Thick branches. The temporal trend of fuel is 

indicated in the last column (↓: Decrease with time, ↑: Increase with time, and Λ: Reach 

the highest values at intermediate stages). 

 

A): Twigs 

Species Fuel 

type 

5 

 

9 14 26  Tendency 

C. albidus Live 31.6 ± 7.9 58.7 ± 10.9 179.3 ± 26.1 116.2 ± 23.3 Λ 
 Dead 9.2 ± 2.8 16.9 ± 5.0 82.4 ± 14.6 75.1 ± 12.9 Λ 

C. clusii Live 82.7 ± 6.4 35.3 ± 6.1 79.7 ± 7.8 59.9 ± 8.6 ↓ 

 Dead 3.6 ± 0.6 1.7 ± 0.5 22.7 ± 10.7 26.2 ± 5.7 ↑  

E. multiflora  Live 183.7 ± 37.1 490.3 ± 69.1 554.0 ± 100.8 388.7 ± 51.4 Λ 

 Dead 1.2 ± 0.4 9.7 ± 1.9 56.9 ± 13.9 134.4 ± 30.1 ↑ 

J. oxycedrus Live 63.9 ± 17.7 85.7 ± 10.6 396.9 ± 60.9 704.2 ± 75.1 ↑ 

 Dead 0 2.2 ± 0.6 11.3 ± 2.5 33.9 ± 8.0 ↑ 

P. halepensis Live 441.4 ± 70.6 733.5 ± 58.5 2540.5 ± 284.2 18938.1 ± 1157.9 ↑ 

 Dead 0 35.4 ± 9.4 108.2 ± 23.6 2489.8 ± 368.9 ↑ 

Q. coccifera Live 86.7 ± 13.5 45.0 ± 9.6 182.8 ± 52.3 229.3 ± 35.9 ↑ 

 Dead 2.0 ± 0.7 5.3 ± 3.0 21.6 ± 8.9 50.5 ± 10.9 ↑ 

Q. ilex Live 210.0 ± 19.8 131.6 ± 17.0 1148.8 ± 186.7 1688.1 ± 201.6 ↑ 

 Dead 2.22 ± 0.7 22.9 ± 7.5 115.3 ± 14.9 206.1 ± 40.7 ↑ 

R. officinalis Live 97.5 ± 16.7 270.1 ± 50.6 248.6 ± 54.9 474.0 ± 166.9 ↑ 

 Dead 0.5 ± 0.1 3.9 ± 1.7 14.4 ± 8.9 51.4 ± 13.6 ↑ 

U. parviflorus Live 17.3 ± 4.2 27.8 ± 5.5 35.9 ± 7.5 89.3 ± 16.0 ↑ 

 Dead 1.4 ± 0.3 76.2 ± 15.1 119.3 ± 26.0 214.7 ± 31.6 ↑ 

 

 

 

Table S1 (Continued) B: Branches 

Species Fuel 

type 

5 

 

9 14 26  Tendency 

C. albidus Live 19.7 ± 5.1 40.4 ± 7.5 164.8 ± 28.1 192.1 ± 38.7 ↑ 

 Dead 0 0 14.9 ± 5.2 43.7 ± 20.1 ↑ 

C. clusii Live 19.2 ± 2.1 13.4 ± 3.1 108.1 ± 19.7 77.6 ± 18.5 Λ 

 Dead 0 0 0 28.3 ± 9.3 ↑ 

E. multiflora  Live 6.9 ± 2.0 69.2 ± 19.3 204.4 ± 56.8 327.3 ± 40.9 ↑ 

 Dead 0 0 0 26.1 ± 10.6 ↑ 

J. oxycedrus Live 33.0 ± 11.3 33.8 ± 3.6 194.8 ± 20.7 324.3 ± 46.5 ↑ 

 Dead 3.8 ± 1.9 0.3 ± 0.1 41.0 ± 18.2 71.2 ± 51.6 ↑ 

P. halepensis Live 130.5 ± 23.4 309.9 ± 13.2 1219.2 ± 187.9 15241.9 ± 1202.8 ↑ 

 Dead 0 30.7 ± 19.5 195.2 ± 67.3 4222.5 ± 552.5 ↑ 

Q. coccifera Live 45.8 ± 5.8 35.1 ± 11.3 168.6 ± 49.9 335.6 ± 50.7 ↑ 

 Dead 4.8 ± 1.9 0.08 ± 0.05 14.5 ± 5.5 15.7 ± 3.6 ↑ 

Q. ilex Live 154.4 ± 17.6 187.7 ± 24.2 1033.2 ± 139.5 2108.0 ± 246.0 ↑ 

 Dead 0 0 12.2 ± 7.7 100.1 ± 29.7 ↑ 

R. officinalis Live 44.6 ± 9.7 162.6 ± 25.5 262.5 ± 51.1 386.7 ± 99.4 ↑ 

 Dead 0 0 0 21.3 ± 7.8 ↑ 

U. parviflorus Live 0.3 ± 0.1 31.9 ± 7.4 124.8 ± 30.8 327.5 ± 3.4 ↑ 

 Dead 0 0.9 ± 0.7 10.1 ± 4.2 176.2 ± 52.4 ↑ 
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Table S1 (Continued) C: Thick Branches 

Species Fuel 

type 

5 

 

9 14 26  Tendency 

C. albidus Live 0 0 21.1 ± 8.5 16.0 ± 11.0 Λ 

C. clusii Live 0 0 0 0  

E. multiflora  Live 0 0 0 0  

J. oxycedrus Live 0 0 142.8 ± 41.7 600.9 ± 72.4 ↑ 

P. halepensis Live 46.4 ± 14.5 240.3 ± 42.5 1381.6 ± 209.2 8851.8 ± 745.9 ↑ 

Q. coccifera Live 0 0 0 108.2 ± 59.4 ↑ 

Q. ilex Live 11.3 ± 7.9 11.2 ± 7.8 1380.2 ± 312.5 3848.9 ± 319.7 ↑ 

R. officinalis Live 0 17.7 ± 7.7 24.1 ± 10.2 166.6 ± 95.2 ↑ 

U. parviflorus Live 0 0 0 182.1 ± 50.0 ↑ 
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Fig. 1. PCA ordination biplot showing the ordination of species at different stand ages as compared to the 
first two PCA axes. The first two axes explain up to 80.6% of variance in species ordination. Arrows show 
the structural explanatory variables of live and dead fuel according to diameter class (twigs, branches and 

thick branches). PCA Axis 1 shows a marked negative correlation with live twigs (r=0.63; P<0.0001) and a 
marked positive correlation with dead twigs (r=0.33; P=0.0003). PCA Axis 2 correlates positively with thick 
branches (r=0.93; P<0.0001). For simplicity, numbers are used to indicate the first and last stand ages per 
species (5 and 26 years), but all the ages studied are shown, following the direction of the arrows (5, 9, 14 
and 26 years). C= C. clusii, CA= C. albidus, E= E. multiflora, J= J. oxycedrus, P= P. halepensis, QC= Q. 

coccifera, Q= Q. ilex, R= R. officinalis and U= U. parviflorus.  
257x214mm (96 x 96 DPI)  
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Fig. 2. Proportion of dead fuel for the different stand ages since the last fire between the functional groups: 
A) Successional niches (early-, medium- and late-successional  species); B) Regeneration strategy (seeder 

and resprouter species). An asterisk denotes significant differences (p< 0.05) for a specific age.  

209x296mm (150 x 150 DPI)  
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Please find enclosed a copy of our revised manuscript in which all the suggestions made 

by Reviewers 1, 2 and 3 have been addressed. We list the changes that we have 

introduced into the ms. below 

 

Reviewer #1: Specific comments. 

 

-We have made all the minor suggestions, mainly about the English text and rephrasing 

sentences, raised by Reviewer 1. Nonetheless, we provide a point-by-point list of all the 

major changes made below: 

  

- P2. “Regeneration ability” refers to the species capacity to regenerate. But the authors 

seem to be referring to the type of regeneration (sprouting or seeding).  

Response: We agree with the Reviewer as this is unclear and confusing for the reader. 

In the title and throughout the ms., we have changed “Regeneration ability” to 

“Regeneration strategy”, which refers to the main (predominant) post-fire regeneration 

strategy (Resprouter/Seeder).  

 

- P9, L3-4. Can you explain why is species a random factor? Why not site or species 

nested within site? 

Response: See the response to Reviewer 2. 

 

- P11, L4-6. You don’t have results to support this sentence. Try to support it with the 

literature, if available. 

Response: We have included a reference that supports this sentence (Moritz, M.A., 

Keeley J.E., Johnson E.A., Schaffner A.A. (2004). Testing a basic assumption of 

shrubland fire management: How important is fuel age? Frontiers in Ecology and the 

Environment 2, 67-72). 

 

-P11, L18. Note however that there’s more to flammability that canopy structure. 

Species that do not retain dead foliage in the canopy can in turn accumulate flammable 

litter, and one of those species is Quercus coccifera. 

Response: We have taken this reflection into account by including the note made by 

Reviewer 1 and a reference that supports this sentence: “species that do not retain dead 

foliage in the canopy can, in turn, accumulate flammable litter (Scarff & Westoby 

2006)”. By also following the reviewer’s suggestion, we have included a reference 

about Mediterranean ecosystems as an example (Curt T., Schaffhauser A., Borgniet L., 

Dumas C., Estève R., Gantaume A., Jappiot M., Martin W., N’Diaye A., Poilvet B. 

(2011) Litter flammability in oak woodlands and shrublands of southeastern France.  

Forest Ecology and Management 261, 2214-2222.).  
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likelihood of burning all year round, whereas low dead fuel limits the opportunities to 

burn. 

Response: We have considered the suggestion made by Reviewer 1 about the effect of 

dead biomass retention on the seasonal probability of fire, and we have included a 

paragraph that explains this idea (see Page 12, Lines 15-20).  

 

 

Reviewer #2:  

We now explain in detail the comments raised by Reviewer 2 about our ms. 

 

General comments. 

- I suggest to re-focus the ms, emphasizing why stand flammability changes along the 

succession. This was not explicitly pointed in the hypothesis, but was evaluated in the 

analyses. 

Response:  
We partially agree with Reviewer 2 that the most relevant part of our study is the 

assessment of dead biomass produced in species with different successional niches. 

However, he/she suggests focusing our manuscript on how dead biomass changes 

during succession at the community level. We think that this suggestion goes beyond 

the scope of our paper. Variations at the community level during succession have been 

studied, as the reviewer pointed out, in Baeza et al (2011); however in this study, we 

focus our comparisons at the species level, and according to the successional niche that 

they occupy. This was our first hypothesis, which is clearly stated in the Introduction.  

This is the main part of our work and the Discussion, which focuses on species-specific 

responses in relation to different successional niches. The reviewer also suggests 

reducing the part about our second hypothesis (comparison between seeders and 

resprouters) because it is redundant in relation to the first hypothesis. However, we also 

think that our second hypothesis, proportion of dead biomass in relation to regeneration 

strategy, is interesting and novel to a certain extent. It is true, as suggested by the 

reviewers, that this hypothesis has been tested in previous studies (Cowand and Ackerly 

2010, Saura-Mas et al. 2010). However, we tested the dynamics of dead biomass with 

time, and we observed some differences. Previous studies have focused only on a fixed 

point over time. These obtained results are novel and we consider them to be relevant 

enough for them to maintain in the manuscript because of the associated ecological and 

management implications. In any case, we have included a new paragraph in the 

Discussion that explains the possible interest of this analysis (page 11, Line 14-16). 

 

-Another concern refers to the comparison of flammability between seeders and 

resprouters. In one hand, authors conduct this comparison because successional niches 

are strongly correlated with the post-fire regeneration strategy. This comparison is 

almost redundant with the comparison between successional stages, since all early 

species are seeders and all late species are resprouters. Secondly, this comparison was 

conducted to evaluate the hypothesis that traits increasing flammability should be more 

frequent in species with post-fire seeding. 

Response: We partly agree with the reviewer since a set of traits shared between early 

and later successional species exists in nature; therefore the comparison made between 

successional niches and regeneration strategies might be redundant. Yet, as we 

previously explained, we believe that the comparison between regeneration strategies 

(seeder and resprouters) provides novel data given its temporal study. Thus leaving this 
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part could be of interest to readers. The reviewer also suggested that all the early species 

are seeders and that all the late species are resprouters. Yet in our study, species like 

Erica multiflora (resprouter) and Rosmarinus officinalis (seeder) are more typical of 

medium successional stages, as we described in the previously published conceptual 

vegetation dynamics model (Baeza et al. 2007). Anyway, in order to specify this 

possible drawback and the possible dependency of our results, we have included a new 

paragraph in the discussion where this relationship between the studied functional 

groups is clearly presented (Page 11, Line 7-10).  

 

- Although resprouting and seeding abilities are negatively correlated in the 

Mediterranean Basin (Pausas & Verdú 2005), resprouting species might recruit after 

fire. In fact, Erica multiflora does (Paula et al. 2009). Therefore, this analysis was not 

the proper to test de second hypothesis. 

Response: We do not agree with the reviewer because the main post-fire regeneration 

strategy of Erica multiflora is resprouting. In fact, in the plant trait database (Brot) (see 

Paula et al, 2009), 75% of the references made to Erica multiflora are classified as 

resprouter. By also following Pausas and Lavorel 2003, after fires, this species is 

classified as I+P-C-D+ parameters; that is: POSITIVE, individual persistence capacity 

(resprouting capacity); NEGATIVE, propagule persistence capacity (persisting in a seed 

form); NEGATIVE, competitive capacity (shade tolerance); POSITIVE, Dispersal 

capacity (short/long distance). In addition, the other three resprouter species (Quercus 

ilex, Quercus coccifera and Juniperus oxicedrus) are clearly considered non-seeding 

species after fire and resprouters. 

    

Pausas and Lavorel, 2003. A hierarchical deductive approach for functional types in 

disturbed ecosystems. Journal of Vegetation Science 14: 409-416. 

 

-Considering that the comparison of flammability between post-fire regeneration 

strategies is secondary in this study and it has been previously tested (Saura-Mas et al. 

2010, Cowan & Ackerly 2010), I suggest to minimize the part of the ms designated to 

this issue. 

 Response: As explained above, we do not coincide with the reviewer’s view. The 

studies referenced by the reviewer do not provide information about dead biomass 

retention with time in seeder/resprouter species, which is what we have shown in our 

ms., and which we believe is a relevant point.  

 

Specific comments. 

 

- P7 L18-19: Change by “the age of all the individuals per plot” by "the post-fire age of 

the plot". Consider this suggestion for the rest of the ms. 

Response: We disagree with the reviewer about changing this sentence. We already 

knew plot age from checking the fire cartography. Specifically, we confirmed that the 

individuals selected for our study were of the same age as when the fire occurred. This 

is explained in more detail in the reference that we have included in the text (Baeza et 

al. 2011). 

 

- P8 L9-19: How the PCA contribute to test the hypotheses of the ms?. If does not, then 

I recommend to remove it.  

Response: As we explained in the Statistical analysis section, “Species with a similar 

biomass structure should be grouped near each other in the ordination space, which 
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should help identify any architectural pattern in biomass classes”. We consider that 

Figure graphically displays the temporal arrangement of the biomass structure per 

species in their different fractions (live twigs, dead branches, dead twigs, live branches). 

This may be helpful for showing a general idea of all the biomass components. 

 

- P8 L19-24: Why authors do not compare also other physical descriptors of 

flammability (e.g., fine:coarse fuel ratio, dead fine fuel, etc…)? 

Response: Our study looks at depth at the retention of dead biomass capacity; however, 

we believe that this suggestion has been covered in the PCA analysis, where all the 

biomass fractions are placed in time order per species. 

 

- P9 L3-4: I suppose that the Species was included as random factor nested within 

Successional Niche or Regeneration Strategy, and the Individuals considered as 

pseudoreplicates. Currently, there are more sophisticated statistical tools to conduct 

LMM and the corresponding posthoc comparisons. Specifically, I recommend to use the 

packages lme4, lmerTest and lsmeans.  

Response: Following the recommendations of Reviewer 2, we have modified our 

analysis. We firstly used the ANOVA function of the lmerTest package to test the 

global differences between the different successional niches and regeneration strategies 

after considering all ages together. This analysis also answers the concern about the data 

analysis raised by Reviewer 3. Secondly, the differences between successional niches 

and regeneration strategies for each specific age were analyzed by comparing the least-

squares means with the “lsmeans” function. For this purpose, LMMs were fitted with 

age used as the discrete variable. These differences have also been shown in Figure 2A 

and 2B. Finally, as suggested by the reviewer, Species has been included as a random 

factor nested within Successional Niche or Regeneration Strategy. We think that these 

changes in the statistical analysis improve the paper and the interpretation is now much 

easier for readers. 

 

- P9 L11-12: This result is not easily interpreted from Fig. 1, but from the Table S1 of 

the Supplementary Materials. 

Response: We agree with the reviewer and have changed the sentence “At early ages (5 

years), species are composed mainly of twigs (Fig. 1)” to “At early ages (5 years), 

species are composed mainly of live twigs (Fig. 1)”.  

 

- P9 L22-P10 L10: Please rephrase, moving to the Discussion the sentences related to 

the interpretation of the results. For instance: “Dead biomass increase with post-fire age, 

being this increments stepper for early successional species, in such a way that 

differences between successional niches emerge in the older post-fire plot, where late 

species are those with lower dead biomass proportion”. 

Response: We do not agree with the reviewer about moving the sentences about the 

interpretation of the results to the Discussion. In the Results, there is no sentence that 

matches the sentence the reviewer indicates. We believe that the Results section 

includes no sentence about the interpretation of the results. 

 

- P10 L13-24: Please, rephrase emphasizing changes along the chronosequence, and the 

underlying mechanism.  

Response: This is quite a vague suggestion and it is not clear what its contribution to 

improve the ms. actually is. Sentence P10 L13-24 corresponds to the first paragraph of 
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the Discussion where the main results of the study are found, and the details the 

reviewer refers to are considered throughout the Discussion. 

 

- P11 L22 – P13 L4: This section is very speculative. The study conducted in the 

present ms does not contribute to know the selective pressure that shaped flammability 

traits. In addition, the information appears a little bit disordered, some sentences are 

contradictory to others (e.g., those about the relationship between standing dead 

biomass and heat released during fires) and the interpretation of some papers is not 

totally right (Pausas and collaborators in 2012 did not detect differences in dead 

biomass of Ulex parviflorus between sites differing in the fire regime, but in twig 

flammability). 

Response: We do not coincide with the reviewer’s opinion. In this section we discuss 

our results within the framed hypothesis, which suggests that “the evolution of post-fire 

regenerations traits coincides with the natural selection of enhancing flammability traits, 

such as retention of dead branches through increased post-fire recruitment”. Our results 

provide clear evidence that early successional species retain more dead biomass than 

later species. Recent studies (Baeza and Roy 2008; Santana, Baeza and Blanes 2013) 

have indicated that different factors to heat exposure, such as daily temperature 

fluctuations, are involved in the seed germination of seeder species, such as Ulex 

parviflorus, and these mechanisms are often associated with early successional stages 

after fire or a different disturbance. We have also changed the sentence by including the 

reference to Pausas et al. (2012) in order to better interpret this reference (page 14, Line 

3-4).  

 

-P13 L13-17: Authors suggest that high dead biomass retention in early successional 

species would be a secondary consequence of the branching pattern of these species. I 

agree that intricate branching would decrease light interception efficiency, and thus 

diminish photo-oxidative damage by high light availability in recently burned 

communities. But if so, why plants would retain dead branches, considering their low 

influence in self-shading? 

Response: In this section we have discussed different mechanisms that could be 

involved in dead biomass retention, among others the branching pattern of these 

species. Typical species of early successional stages share a set of traits, such as rapid 

growth, fast turnover of organs (leaves) and shade intolerance. When resources 

availability becomes scarce (light) in the lower strata, branches and leaves are no longer 

functional and accumulate as dead biomass, while later successional species are shade-

tolerant and possess an effective self-pruning mechanism.  

 

- P13 L22 - P14 L5: Species with low shoot:root ratio tend to be drought tolerant, 

whereas species with a big rooting system tend to be drought avoiders. In this sense, 

seeders shows more negative water potential at the turgor lost point (Vilagrosa et al. 

2013), which do not support the hypothesis of a drought-driven origin of dead branch 

retention. 

Response: We think that the reviewer has written this sentence wrongly (the species 

with a low shoot:root ratio and the species with a large rooting system are the same). 

We believe that the reviewer is mistaken when referring to “Species with a low 

shoot:root ratio tend to be drought-tolerant”. The literature assumes that drought-

tolerant species tend to have a high shoot:root ratio. If this is the case, then we agree 

with the reviewer  that  “Species with a high shoot:root ratio tend to be drought-                                                

tolerant, whereas species with a low shoot:root ratio tend to be drought avoiders”. In our 
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ms, we did not compare the hypothesis that the reviewer puts forward: “a drought-

driven origin of dead branch retention”. In our ms., the sentence that the reviewer refers 

to provides arguments that support our results, and this has been highlighted by 

Reviewer 3, who suggested new references to support our arguments (Saura-Mas S., 

Lloret F. 2013).  

 

-P14 L6 – L16: The conclusion is speculative and not based in the results of the 

reviewed ms. To my understand, the results support the hypothesis that increasing 

flammability along the post-fire regeneration is explained by an increasing retention of 

dead biomass by early successional species. The eco-physiological underlying processes 

have not been evaluated in this study.  

Response: We partly agree with the reviewer about the results obtained in our study: (i) 

seeders showed greater dead biomass accumulation than resprouters, and (ii) early-

successional species accumulated more medium- and late-successional species. It was 

not our objective to evaluate eco-physiological processes; the eco-physiological 

underlying processes are commented on only in the Discussion to support our 

hypotheses.  

 

 

Reviewer #3: Comments to the author. 

 

-We have included the minor suggestions into the ms., along with the recommended 

references:  

Bradshaw S. D., Dixon K.W., Hopper S.D., Lambers H., Turner S.R. (2011) Response 

to Keeley et al.: Fire as an evolutionary pressure shaping plant traits. Trends in Plant 

Science 16, 405. 

Saura-Mas S., Lloret F. (2007) Adult root structure of Mediterranean shrubs: 

relationship with post-fire regenerative syndrome. Plant Biology 16, 147-154.  

Saura-Mas S. (2008) Caracterització functional d´espècies llenyoses mediterrànies amb 

diferents estratègies regeneratives post-incendi. Ph.D thesis. Universidad Autónoma de 

Barcelona. 

Saura-Mas S., Lloret F. (2013) Leaf and shoot water content and leaf dry matter content 

of Mediterranean Woody species with different post-fire regenerative strategies. Annals 

of Botany, 99 (3), 545-554. 

 

Material and methods 

-Page 7 line 15: Please, specify why you sampled in winter and not in summer when 

there is the maximum dead biomass accumulation. 

Response: We have included this sentence: “to avoid seasonal maximum dead biomass 

accumulation in summer”. Sampling in winter dead biomass is recommendable because 

production stabilizes during this period. Therefore, we can reduce the sampling error 

produced by the different rates of dead biomass production by species in summer.   

 

- Page 7, lines 18-21: Please, specify why you calculated the age and how you 

extrapolated it for other species. Detail more this information, please.  

Response: We have included the reference (Baeza et al. 2011), which provides details 

of the age of all the individuals by counting growth rings on the base of the stalk and by 

approximately coinciding with the years since the last fire for both the resprouter and 

seeder species. 
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-Results:  

-Page 10, lines 6-8: Table 2 does not reflect that the analyses was considering all ages 

together, please, consider explaining with more details the difference between table 2 

and table 1 analyses, maybe also in the data analyses section. 

Response: See our response to Reviewer 2.  

 

Table 1: Please, provide detailed information about which of the parameters are 

personal observations, and which of the parameters have been described in the 

literature. Specially, I consider it very important that successional niche information has 

been provided by some scientific published work 

Response: We specified personal observation parameters (life span and time to 

maturity). The successional niche information was obtained from the conceptual model 

of the plant dynamics described by Baeza et al. 2007, as cited in Table 1. 

 

-Figure 1. Please, describe here or in the results section, why there is only the 

representation of 5 and 26 years. Check this information in the legend, since all the 4 

treatments appear in the text. 

Response: We agree with Reviewer 3 that the interpretation of Figure 1 is somewhat 

complex. For this reason, we have added a sentence to the figure legend to explain that 

all the ages are shown, but only the initial age (5 years) and the final age (26 years) are 

denoted with a number for simplicity. However, we disagree with Reviewer 3 about 

changing the arrows to circles. We have attempt to what the Reviewer 3 suggests and 

the interpretation of the graph did not improve. We think that maintaining the arrows is 

the best version of the graph, where species are more clearly differentiated.  

 

We would like to once again thank the reviewers for taking the time to review our 

manuscript, and for their many constructive and helpful comments. We also feel that the 

manuscript has substantially improved with the changes made, and we hope that this 

new version is now suitable for publication in Plant Biology. 

 

Yours sincerely, 

 

M. Jaime Baeza 
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