
 

Accepted Manuscript

Automatic Abdominal Aortic Aneurysm Segmentation in MR Images

Sergio Martinez-Muñoz , Daniel Ruiz-Fernandez ,
Juan Jose Galiana-Merino

PII: S0957-4174(16)00027-0
DOI: 10.1016/j.eswa.2016.01.017
Reference: ESWA 10468

To appear in: Expert Systems With Applications

Received date: 19 November 2014
Revised date: 11 January 2016
Accepted date: 12 January 2016

Please cite this article as: Sergio Martinez-Muñoz , Daniel Ruiz-Fernandez ,
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Highlights 

 We use a spatial fuzzy C-means algorithm to detect and segment the lumen 

 We use a graph cut algorithm to segment the aortic wall 

 The detection and segmentation process is fully automatic 

 We get a 79% overlapping between our  segmentation and the one from the specialist 
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Abstract 

Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that 

can cause a break in the aorta and the death. The detection of an unusual dilatation of a 

section of the aorta is an indicative of this disease. However, it is difficult to diagnose 

because it is necessary image diagnosis using computed tomography or magnetic 

resonance. An automatic diagnosis system would allow to analyze abdominal magnetic 

resonance images and to warn doctors if any anomaly is detected. We focus our 

research in magnetic resonance images because of the absence of ionizing radiation. 

Although there are proposals to identify this disease in magnetic resonance images, they 

need an intervention from clinicians to be precise and some of them are computationally 

hard. In this paper we develop a novel approach to analyze magnetic resonance 

abdominal images and detect the lumen and the aortic wall. The method combines 

different algorithms in two stages to improve the detection and the segmentation so it 

can be applied to similar problems with other type of images or structures. In a first 

stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to 

detect and segment the lumen; and subsequently, in a second stage, we apply a graph 

cut algorithm to segment the aortic wall. The obtained results in the analyzed images are 

pretty successful obtaining an average of 79% of overlapping between the automatic 

segmentation provided by our method and the aortic wall identified by a medical 

specialist. The main impact of the proposed method is that it works in a completely 

automatic way with a low computational cost, which is of great significance for any 

expert and intelligent system. 

Index Terms – Abdominal Aortic Aneurism, image segmentation, spatial fuzzy 

C-means, Graph cut, morphological analysis 
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1. Introduction 

Abdominal Aortic Aneurysm (AAA) is a disease caused by a weakening in the 

aortic wall that leads to an abnormal dilation of the aorta. Probability of vessel rupture 

increases with the size of the aneurysm. Maximum diameter of the aorta is the key 

parameter in AAA diagnosis: a diameter of 30 mm is typically considered as the 

threshold to define an AAA, meanwhile a value of 55 mm means that the risk of rupture 

increases exponentially and surgical intervention is recommended (Hutchison, 2009). 

Typical imaging techniques are ultrasonography, computed tomography (CT) 

and magnetic resonance (MR). The first one is used for general AAA screening but 

lacks the precision of the other imaging methods. Therefore, CT and MR imaging 

techniques are used for an accurate diagnosis (Isselbacher, 2005). MR imaging has 

some advantages over CT scans: absence of ionizing radiation; better soft tissue contrast 

(Haulon et al., 2001); and it is also not affected by calcifications. Besides, it is the only 

imaging technique in which the aortic wall surrounding the thrombus is visible.  

Normally, aneurysms must be identified and segmented manually by a 

radiologist, which is a time-consuming and cumbersome task (Macia et al., 2009). A 

common approach in computer-assisted methods is to segment aortic wall and lumen 

from individual CT or MR images (Kronman and Joskowicz, 2015; Maiora et al., 2014; 

Zohios et al., 2012). A 3D reconstruction of the artery could then be performed using 

the boundaries obtained (Kim et al., 2010; Shim et al., 2009). Other methods perform a 

full 3D segmentation in one single step, profiting from the usage of more information 

simultaneously (Ayyalasomayajula et al., 2010; Lee et al., 2010). It should also be noted 

that 4D methods (3D throughout the cardiac cycle) have been also proposed 

(Hameeteman et al., 2013; Zhao et al., 2009). 

In order to analyze this kind of information (2D, 3D CT or MR images) in a fast 
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and effective way, automatic or semi-automatic computer-assisted segmentation 

methods become crucial for the diagnosis of AAA (Shang et al., 2015). Thus, many 

different algorithms have been adopted to achieve semi-automatic aortic segmentation. 

Methods based on region growing (Borghi et al., 2006), watershed (Lopez-Mir et al., 

2011) or, especially, active contour (also called snakes) algorithms (Kass et al., 1988; 

Loncaric et al., 2000) have been proposed. However, these methods rely solely on 

intensity information in abdominal MR images, which is an error-prone characteristic as 

other structures with similar intensity levels may appear adjacent to the aorta. This may 

cause leaks in the segmented contour. These methods also require an accurate 

initialization process, which has to be done manually to achieve good results. Although 

several variations of snakes have been developed in order to minimize instability (Xu 

and Prince, 1998) or ease initialization restraints (Tauber et al., 2010), snakes-based 

methods are computationally costly due to the use of differential equations and still 

require a clear differentiation of aortic structures to obtain good results. 

A solution is to combine intensity information with shape models. This approach 

has been adopted by level-set methods (Nakhjavanlo et al., 2011; Subasic et al., 2005; 

Zohios et al., 2012) with good results. However, level-sets are computationally 

demanding and hard to implement, besides of needing a previous knowledge of the 

aortic shape to segment. This is difficult to predict in the case of a diseased aorta and 

often translates into a time-consuming manual initialization. 

In the research for fully automatic AAA segmentation, several methods based on 

fuzzy clustering have been proposed (Majd et al., 2010; Pham and Golledge, 2008). In 

(Majd et al., 2010) a Fuzzy C-Means (FCM) clustering technique that incorporates 

spatial properties named Spatial-FCM (SFCM) (Ahmed et al., 1999; Chuang et al., 

2006) is applied to AAA segmentation. With the appropriate use of morphological 
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operations this method can achieve automatic segmentation of the aortic thrombus. 

Unfortunately, it is only suitable for CT images, since it does not provide good results 

with abdominal MR imaging. 

Another alternative is graph cut algorithms (Boykov et al., 2001; Boykov and 

Jolly, 2001). Several methods for abdominal aortic segmentation using graph cuts have 

been proposed (Duquette et al., 2012; Freiman et al., 2010). The method proposed in 

(Duquette et al., 2012) is able to perform segmentation in MR images in addition to CT 

ones. However, despite being a method able to segment the lumen and aortic wall in a 

faster and more computationally efficient way in MR images, it needs an accurate 

manual initialization in order to work properly. 

Thus, the main drawbacks detected in the previously commented algorithms can 

be summarized in the following points: non-completely automatic algorithms (most of 

them need the expert assistance to select the area of analysis); high-computational 

demand; or poor results when they are applied on MR images. Therefore it is clear that 

there is not a single method that can perform automatic AAA segmentation from MR 

images efficiently.  

In this work we have developed a new approach that intends to surpass all these 

inconveniences, providing a complete automatic and low computational cost program 

that works properly with MR images. For that, the proposed scheme uses a combination 

of different techniques, profiting from their respective advantages and minimizing the 

corresponding drawbacks. 

Thus, in this paper we propose specifically a mixed method for automatic AAA 

segmentation in MR images. Our method uses the SFCM algorithm to detect and 

segment the aortic lumen in a first stage, following with the thrombus and aortic wall 

segmentation via graph cuts. We use the results of the first stage (lumen segmentation) 
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to improve the segmentation of the aortic wall in the second stage. In this way, we avoid 

manual or expert help in the second stage to maximize the results of graphs cut 

algorithm. The proposed approach is fully automatic, computationally efficient and 

works in MR images. The use of a mixed method is a novel approach and could open 

new possibilities in this field. 

 

2. Methodology 

The proposed method is divided basically in two different stages to achieve the 

automatic AAA segmentation, as it is shown in Fig. 1.  

Previously to these stages, the acquired MR image is pre-processed using a low-

pass Wiener filter to eliminate possible noise contamination and windowed to select the 

central region of interest in which the aorta appears in axial abdominal imaging.  

 

Fig. 1. Flow chart of the proposed method. 
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Once the MR image has been pre-processed, the first processing stage provides 

the aortic lumen segmentation using the SFCM algorithm and morphological 

operations.  

The second stage of the proposed method achieves the thrombus and aortic wall 

segmentation using graph cuts. To solve the problem of the manual initialization 

required by the graph cut to work correctly, an automatic initialization approach has 

been developed using the results previously obtained from the SFCM algorithm. 

In the following sections, we describe in detail the different stages of the 

developed method. 

2.1 Lumen segmentation 

The lumen segmentation process was inspired by the method proposed in (Majd 

et al., 2010). The original method achieves automatic segmentation of aortic lumen and 

thrombus in CT scans, but this is not applicable to MR images, where the background 

and surrounding tissues can be brighter than the thrombus and the aortic wall. 

Therefore, in the proposed method, we have adapted the original SFCM algorithm in 

order to carry out also the lumen segmentation in MR images.  

2.1.1. Spatial Fuzzy C-Means (SFCM) algorithm 

The FCM algorithm classifies an image by grouping similar pixels in the feature 

space into clusters. This clustering is achieved by iteratively minimizing a cost function 

that is dependent on the distance of the pixels to the cluster centers in the feature 

domain. 

Let X=(x1, x2, …, xN) be a gray-scale image of N pixels, where xi represents the 

feature set of a pixel i. In our case, this feature set is reduced just to the intensity 

parameter. Then, our first objective consists in identifying the parts of the image that 

might pertain to the lumen, which implies to divide the image in two different clusters, 
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depending on their possibility of belonging or not to the lumen based on their intensity 

level.  

The SFCM follows an iterative optimizing process whose aim is to minimize a 

cost function defined as: 

    



J  uij 
m

 x j  vi 
2

i1

no of
clusters


j1

N

     (1) 

where 
  



uij  is the membership matrix that represents the probability (between 0 and 1) of 

pixel j to belong to the cluster ith; vi is the ith cluster center; and m is a constant that 

regulates the fuzziness of the membership. The higher the membership values assigned 

to pixels close to their cluster centers, the lower the cost function will be. 

Once an initial value is randomly assigned for each cluster center, the iterative 

process is carried out through the following steps: 

Step 1. Estimation of the membership matrix in the feature domain 

    



uij 
1

x j  vi

x j  vk











2

m1

k 1

no of
clusters



    (2) 

Step 2. Estimation of a spatial function, defined as: 

  



hij  uik

kNB x j 

             (3) 

where NB(xj) is a square window centered on pixel j in the spatial domain. In our 

case, a 5x5 window has been selected. The higher the number of neighborhood pixels 

that belong to the same cluster than the central pixel, the higher the spatial function 

value for this central pixel. 

Step 3. Incorporation of the spatial function into the membership function 
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

u ij 
uij

p
 hij

q

ukj

p
 hkj

q

k 1

no of
clusters



           (4) 

where p and q are constants used to weight both functions. 

Step 4. Update the cluster center values 

    



vi 

u ij 
m

 x j

j1

N



u ij 
m

j1

N


    (5) 

 

The iteration stops when the maximum difference between the cluster centers at 

two successive iterations is lower than a pre-defined threshold value. In our case, this 

threshold value has been set up to 0.01. Moreover, we have limited the number of 

iterations in order to avoid unnecessary slowness or even non-convergent solutions that 

might cause infinite loops. Nevertheless, the defined upper limit (200 iterations) has 

been never reached in the analyzed test cases. 

Once a solution has been reached, a binarization threshold is applied to the 

brightest cluster in the membership matrix  



uij . The brightest cluster is determined by the 

highest intensity cluster center vi. In our method, the binarization threshold has been 

fixed at 99% of the membership probability. The thresholded resulting image, called X’ 

(Fig. 2b), will be used to extract the lumen through morphological operations as well as 

generate an automated initialization for the graph cut used subsequently in the aortic 

wall segmentation stage. 

2.1.2. Lumen extraction through morphological operations 

After applying the SFCM algorithm, our method extracts automatically the 

lumen from the resulting binarized image using morphological operations, as it is shown 
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in Fig. 2. To successfully identify and segment the lumen, its known properties must be 

exploited. These recognizable properties are the following: 

1) The lumen is roughly found in the central part of the image. This is due to the 

abdominal anatomical structure.  

2) Though it is difficult to predict the shape of a diseased aorta due to the 

possible presence of a thrombus, the lumen can be modeled approximately as a circular 

shape object. 

3) It appears as a relatively big object among the resulting binary objects 

obtained after the SFCM processing stage. 

Therefore, the morphological method proposed for the lumen extraction is 

directed by location, shape and size guidelines. The first step to achieve the 

segmentation of the lumen is to remove binary objects touching the image border in 

order to consider only objects fully contained inside the region of interest. To do that we 

use an algorithm proposed by (Soille, 1999) based on the neighborhood of the border 

pixels. We apply an 8-connectivity, so that, we decide that a pixel is touching the border 

when one of its 8 neighbors belongs to the border. 

After that, a morphological reconstruction of those objects is then performed 

with the purpose of filling holes inside their boundaries. We implement two 

morphological operations to do this reconstruction. First, we bridge unconnected pixels 

in the following way: if a pixel (0-valued) has two non-zero neighbors (which are not 

connected), we set that pixel to 1. The second morphological operation consists in 

filling the ‘holes’ in the image. In our context, a ‘hole’ is a set of pixels (0-valued) that 

cannot be reached (with 4-connectivity) from the edge of the image, so they do not 

belong to the image background. When a ‘hole’ is identified, its pixels are set to 1 

according to a 4-connectivity. 
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Next, we label the remaining objects in the image to calculate their shape and 

size using a 4-connectivity algorithm. To evaluate the shape of the objects, it is 

calculated a circularity parameter, C, that relates the corresponding area, A, and 

perimeter, P.  

    



C 
P2

4  A
      (6) 

This parameter ranges from 1 in the case of a perfect circle to higher values in 

cases were the shape is deformed and its perimeter is larger than the expected area for a 

circle. It should be noted that measuring shape perimeters in digital images can be error-

prone and yield unexpected results in small-sized objects. Fortunately, this corruption 

tends to be minimized in bodies of larger size and therefore does not affect the lumen 

extraction. 

The lumen identification is completed incorporating the information about the 

size of the objects. Using the calculated circularity parameter and the area of the object, 

we have defined a lumen factor, L, defined as the relationship between the area and the 

circularity: 

  



L 
Ar

C s      (7) 

where r and s are weighting exponents for the area and circularity of the object. 

Experimentally, we have obtained the best results when r and s have a similar order of 

magnitude. 

The lumen factor is calculated for every object in the image. Objects closer to 

the lumen in size and shape will attain larger L values. Thus, the binary body with the 

largest lumen factor will be selected and identified as the lumen. After that, the rest of 

objects are set up to 0, providing a new binary image, X’’ (Fig. 2e), with only one 

object, the lumen.  
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Fig. 2 shows the whole process of the lumen segmentation through the SFCM 

algorithm and the morphological operations. In Fig. 2f we present the final graphical 

interpretation of the results applied to the original image, showing the contour of the 

segmented lumen over the input image. 

 

Fig. 2. Graphical description of the lumen extraction process. (a) Input image. (b) Thresholded 

SFCM results. (c) Removal of objects touching the edge of the image. (d) Morphological 

reconstruction. (e) Selection of the object with the highest lumen factor, L. (f) Final result of the 

lumen segmentation stage.  

 

2.2 Thrombus and aortic wall segmentation 

In the second stage of the proposed method both aortic wall and thrombus (in 

case it exists) are segmented in a single step. The method aims for the identification and 
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segmentation of the outer aortic wall boundary, automatically classifying the region 

inside the generated contour as part of the aortic wall or thrombus. 

 

2.2.1 Graph cut algorithm 

Graph cuts are algorithms whose purpose is to divide an image (interpreted as a 

graph) in different regions, in such a way that the cut between the regions achieves an 

optimal minimum cost. The cost function is defined according to the application, 

modifying the behavior of the algorithm. This is the reason why graph cuts are regarded 

as very versatile methods. 

In our case, the image is initially divided into 3 regions: the “object” region 

(“obj”), the “background” region (“bkg”) and the undefined region, where the optimal 

cut is computed. At the end of the process, the pixels belonging to the undefined region 

will be assigned to the “obj” or “bkg” regions. 

For that, let’s consider the original gray-scale image X=(x1, x2, …, xN) of N 

pixels, where xi represents the intensity. In this case, the associated graph is formed by 

N nodes, corresponding to each pixel of the image, plus two terminal nodes, called 

source (S) and sink (T) nodes, which are related with the “obj” and “bkg” regions, 

respectively. Each node at position i in the image is connected to its 4 neighbors, i.e. the 

pixels located in the up-down and right-left directions. In this way, a 4-neighborhood 

system that connects each pair of neighboring pixels, i and j, is configured in a set of 

non-directed edges, 



 . These neighborhood edges or links, represented as     



{i, j}, are 

called n-links and each one of them,     



{i, j} , is assigned a non-negative weight or 

cost, 
    



w{i, j}. Besides, each pixel has also two additional links connecting with the 

terminal nodes, which are called t-links. In this case, the cost assigned to these t-links is 

a constant value, K, (or zero) depending on the belonging (or not) to the respective 

regions (“obj” and “bkg”) associated with the terminal nodes, S and T. For the 
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undefined pixels, the cost of both t-links remains zero to allow the n-links to be the 

driving factor in the segmentation process. The constant value, K, has to be large 

enough to surpass the sum of all the n-link costs, which assures the connection to the 

respective region. In our case, it is enough to choose a K higher than 4. 

 

Fig. 3. Example of a 2D segmentation for a 3x3 image using the graph cut algorithm. The object 

nodes, associated with the source terminal, and the background nodes, associated with the sink 

terminal, are represented by dark and light gray circles, respectively. The cost of each edge is 

reflected by the edge’s thickness. The calculated cut between regions (dashed line) and the 

severed links (dotted lines) are also shown.  

 

In this context, a cut is defined as a subset of edges   



E   such that the graph is 

divided in two sets of nodes, belonging univocally to one of the “obj” or “bkg” regions, 

The cost of a given cut, E, is expressed as the sum of the weights of the edges that were 

cut: 

    



cost E  w{i, j}

{i, j}E

      (8) 

The objective of the graph cut algorithm is to find a cut with the minimum cost, 

which means to sever the edges with the lower weights (represented by the thinnest 

lines in Fig. 3) and leave the strongest links untouched.  

Respecting to the cost function,     



w{i, j}, we propose a modified version of the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16 

expression given by (Duquette et al., 2012) in order to carry out the image segmentation 

in the outer boundary of the aortic wall. The objective is to define an expression that 

attracts the cut to such areas. In abdominal MR images the aortic wall appears as a thin 

and dark object surrounding the aorta. As the totality of the aortic wall has to be inside 

the segmented contour, the cost function used has to attract the cut to sharp intensity 

gradients whose transition happens from darker to brighter pixels (measured from the 

center of the aorta) as is the case at the outer boundary of the aortic wall. Therefore, 

attending to these considerations, the proposed cost function is defined as: 

    



w{i, j}  exp 
 i, j  xi  x j



  i, j



2 2













    (9) 

where 
  



xi  x j  is the intensity gradient between the pixels i and j; 
    



 i, j  is a 

binary function that controls the direction of the intensity gradient; 
    



i, j  is an intensity-

based parameter that attracts the cut to low intensity areas; 



  is a “camera noise” factor; 

and both γ and ρ are weighting exponents for the intensity gradient and the intensity-

based parameter, respectively. We can observe that 
    



w{i, j} will take values comprised 

between 0 and 1. Higher values of the exponent grant lower weight costs. Therefore, 

sharpest intensity gradients attract the cut towards these edges. 

The binary function,     



 i, j , is defined as: 

    



i, j 
1 if d i  d j and xi  x j or di  d j and xi  x j 
0 otherwise





  (10) 

where di (and dj) is the Euclidean distance from the center of the aorta to the 

pixel i (or j). The     



 i, j  parameter guarantees that the transition at the segmented contour 

is correct. In an abdominal MR image, the darker aortic wall is surrounded by brighter 

organs and tissues outside the aorta. Using this parameter only the gradients flowing 
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from a darker to a brighter pixel (from the center of the aorta) are allowed. 

To solve the problem of dealing with an initial broad undefined region, an 

intensity-based parameter, 
    



i, j, has been considered to attract the cut to the darker areas 

such as the aortic wall. The proposed 
    



i, j is defined as: 

    



i, j  ln
1

CHX











xn

     (11) 

where 
  



CHX  is the cumulative histogram of the input image, X, normalized to 

1. The purpose of the logarithm is to reduce the range of the obtained results, avoiding 

excessively high values for low intensities. The function is then evaluated for an 

intensity level xn, which is determined as: 

    



xn 

xi if ALumen  0.02 AX and d i  d j

x j if ALumen  0.02 AX and d i  d j

xi  x j

2
if ALumen  0.02 AX















   (12) 

where   



ALumen and   



AX  are the areas of the lumen (obtained previously in section 

2.1) and the original image, respectively. 

In images where the lumen is smaller, we have found experimentally that better 

results are achieved if the intensity level, xn, used to evaluate the expression in (11) is 

the average between the two pixels of the link, i.e. the pixels i and j. The use of the 

average intensity steadies the cut and prevents it from snapping other objects that may 

fall inside the undefined region. However, in images where the lumen is larger, the 

probability of other objects falling into the undefined region (in its entirety) is lower and 

is preferable to sharpen the cut by using the intensity of the nearest pixel. The limit for 

the use of the average intensities was set at lumen areas smaller than 2% of the total 
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input image.  

In Fig. 4, we show the 
    



i, j values estimated for all the input intensities, xn, 

registered during the segmentation of the aortic wall in one of our test images. We have 

highlighted the range of intensities reinforced by this parameter, i.e. 
    



i, j 1. For this 

particular image the aortic wall was found in the intensity range between 10 and 30. 

Thus, in each analyzed image, the range of intensities at which the aortic wall is located 

is reinforced by this parameter. 

 

Fig. 4. 
    



i, j values assigned to an input xn. Values reinforced by the 
    



i, j  parameter (
    



i, j>1) are 

highlighted.  

 

In Fig. 5, we show the effect of the intensity-based parameter,     



i, j , in a synthetic 

test image. Fig. 5a shows an image simulating the conditions of an abdominal MR 

image containing a diseased aorta. The circular bright object in the middle (label 1) 

represents the lumen. The dark line around the lumen (label 2) simulates the aortic wall. 

The grey area caught between these objects (label 3) is the aortic thrombus, while the 

part outside the aortic wall represents outer tissues and organs adjacent to the aorta 

(label 4). The brighter exterior area (label 5) represents brighter tissues that are far from 

the aorta. 
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Fig. 5. Effect of 
    



i, j  on a synthetic image: (a) Original image; (b) segmentation without the 

    



i, j parameter; (c) segmentation using the 
    



i, j  parameter.  

 

Using an automatic initialization, the undefined region where the cut is 

performed, often includes a wide variety of objects that can mislead the cut if there are 

larger gradients than the one found in the aortic wall. To test this situation we added a 

bright area (assigned to label 5) that creates a large intensity gradient between the zones 

labeled as 4 and 5. This gradient is larger than the one found in the aortic wall between 

the areas labeled as 3 and 4. 

In Fig. 5b, we show the results of applying the graph cut algorithm following the 

cost function indicated in (Boykov and Jolly, 2001)  , i.e. without including the     



i, j  

parameter in equation 9. In this case the cut is performed at the sharpest gradient, 

effectively ignoring the aortic wall. In contrast, when the 
    



i, j  parameter is included, the 

correct result is obtained (see Fig. 5c). In this case, the cut behavior is modified by the 

new intensity constraint, being more attracted to gradients in dark objects, as is the case 

of the aortic wall. 

To control the relative importance of the intensity gradient, 
  



xi  x j , and the 

intensity-based parameter,     



i, j, two weighting exponents (𝛾 and 𝜌, respectively) have 

been included in equation 9. Experimentally, we have achieved better results in 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 

abdominal aortic MR imaging segmentation when both factors are balanced in the 

equation. Thus, we have used a default value of 2 for both 𝛾 and 𝜌 in our tests.  

Finally, the “camera noise” factor regulates the influence of both intensity 

parameters. If 
    



xi  x j



  i, j

  22
, then the obtained weight values will be lower than 

1 and the cut will be attracted towards the associated edge. Otherwise, the edge will be 

penalized by a high weight value, being avoided by the cut. For the analyzed images, 



  

has been set up to 2 by default, which experimentally provides the best results for all the 

tested cases. 

 

2.2.2 Automatic graph cut initialization 

As it was commented in the previous section, before applying the graph cut 

algorithm to the input image, a first initialization is required in order to classify the 

pixels as belonging to the “obj”, the “bkg” and the undefined regions. For AAA 

segmentation in MR images, this initial assignment is usually done manually by the user 

(e.g. (Duquette et al., 2012)).  

In this work, we propose an automatic initialization based on the images 

obtained from the lumen detection stage. Concretely, we use the image resulting from 

the SFCM method, X’, and the binary image with the segmented lumen, X’’. Both input 

images are shown in Fig. 6 together with the original MR image. 

The goal is to set an area contained inside the aorta as the “obj” (connected to 

the S node) and another area with certainty that does not include aortic structures as the 

“bkg” (connected to the T node). The unassigned area is then defined as the undefined 

region where the aortic wall is located and the cut is performed. 
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Fig. 6. Input arguments of the graph cut initialization: (a) Original image; (b) results of the 

SFCM algorithm, X’; (c) binary object of the segmented lumen, X’’.  

 

The segmented lumen (Fig. 6c) is positively located inside the aortic boundaries 

and is used in our method to define the “obj” region of the graph cut. The results of the 

SFCM algorithm (Fig. 6b) provide much information about outer aortic structures. 

However some of the brighter areas of the aortic thrombus may appear in this image and 

thus is not completely reliable. 

Our approach estimates an undefined area around the lumen and tag the rest of 

the image as the “bkg” region. For that, the area where the lumen is contained in the 

SFCM results image, X’, is first defined as a starting point. Subsequently, this area is 

expanded using the bigger objects surrounding the lumen area as the limit for the 

undefined region. Although other small objects might appear in the thrombus region, 

only the bigger ones are susceptible to belong to outer aortic structures. The final step is 

to remove the lumen from the generated expanded area. Next, we describe the different 

steps of the proposed process: 

Step 1. The lumen object (image X’’) is removed from the SFCM image (X’) 

using the “AND” and “NOT” logical operations (Fig. 7a). 

Step 2. Small objects are removed (Fig. 7b). We define a “small object” as any 

binary object whose area is less than a tenth of the lumen area,   



ALumen. 

Step 3. Convolution between the inverse of the image obtained in the second 
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step and the lumen (image X’’) is performed (Fig. 7c). 

Step 4. Binary thresholding is applied to select only pixels with the maximum 

convolution value (Fig. 7d). This represents the areas where the lumen could fit 

completely into the background image obtained in step 2. 

Step 5. The binary object that represents the area where the lumen is located is 

selected (Fig. 7e). To determine the correct object the centroid of the lumen is used. 

Step 6. Convolution of the object obtained in step 5 and the lumen is applied. 

(Fig. 7f). This step expands the object up to the objects that appeared in step 2 and 

successfully expands the lumen area to occupy the background that surrounds it. 

Step 7.  The lumen is subtracted from the image obtained in step 6 to define the 

undefined region (Fig. 7g). The rest of the image (beyond this area) is defined as the 

“bkg” region, meanwhile the lumen remains as the object (“obj” region). 

 

Fig. 7. Graphical example of the graph cut initialization through morphological operations. (a) 

Removal of the lumen from the SFCM results image; (b) removal of small objects; (c) 

convolution of the inverse of the previous image and the lumen; (d) binary thresholding, i.e. 

selection of the maximum values; (e) selection of the area where the lumen is included using the 

lumen centroid; (f) boolean convolution with the lumen; (g) subtraction of the lumen.  

 

In Fig. 8, we show the three estimated regions marked on the initial image, X: 
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the “obj” region (marked with a grid pattern) that corresponds to the lumen; the 

undefined region (without any mark) where the optimal cut is calculated; and the “bkg” 

region (marked with diagonal lines). In all the analyzed images, we have tested that the 

undefined region estimated by the proposed method always includes the complete aortic 

wall.  

 

Fig. 8. Interpretation of the automatic initialization generated for the graph cut algorithm: 

Object region (grid pattern); background region (without any mark); and undefined region 

(diagonal lines pattern).  

 

3. Results 

3.1 Materials 

The proposed method has been implemented, tested and validated using 

MATLAB (Version 7.12.0, R2011a). For the aortic wall segmentation through graph 

cuts we used the C++ implementation of the Min-Cut/Max-Flow algorithm proposed in 

(Boykov and Kolmogorov, 2004). We tested the method on a set of abdominal MR 

images from 8 different patients with different degrees of diseased aortas. To evaluate 

the performance of the proposed method, the results obtained by the segmentation of the 

lumen and the aortic wall were compared with the ones validated by an expert. 

The proposed method was tested using an Intel Core i7 processor with 4 GB of 

RAM running on the 64-bit version of Windows 7. The method proved to be very fast: 

the average time required for the method to automatically segment the lumen through 

SFCM was 0.91 seconds while the aortic wall segmentation using graph cuts took an 
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average of 1.90 seconds. As a whole, the automatic AAA segmentation takes place in 

less than 3 seconds.   

 

3.2 Lumen segmentation results 

For the lumen segmentation stage, the parameters were set up by default with the 

following values:  

 Fuzzyness membership exponent (m) (Eq. 1, 2 and 5): 2. 

 Membership matrix exponent of the SFCM algorithm (p) (Eq. 4): 1 

 Spatial function exponent of the SFCM algorithm (q) (Eq. 4): 1 

 Area exponent in the lumen factor calculation (r) (Eq. 7): 1 

 Circularity exponent in the lumen factor calculation (s) (Eq. 7): 1.5 

Fig. 9 shows the results of the lumen segmentation using these parameters on a 

MR test image.  

 

Fig. 9. Lumen segmentation stage results in our method. (a) Input MR image; (b) automatically 

segmented lumen contour.  

 

The obtained lumen segmentation is correct in all the cases whenever the size of 

the lumen is big enough in relation to the size of the analyzed windowed image. 

Therefore, it is very important the selection of the region of interest accomplished in the 

pre-processing stage (see section 2). By reducing the area of interest around the aorta, 

the relative size of the lumen in relation to the size of the analyzed image increases, 
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providing the correct results in all the tested cases. 

 

3.3 Aortic wall segmentation results 

For the aortic wall segmentation stage, the parameters were set up by default 

with the following values:  

 “Camera noise” factor (



 ) (Eq. 9): 2 

 Intensity gradient exponent (γ) (Eq. 9): 2 

 Intensity-based parameter exponent (ρ) (Eq. 9): 2 

 

To evaluate the results, the outer aortic boundary detected automatically through 

the proposed method was compared to the boundary validated by an expert. The 

performance of the method was measured by calculating the ratio of segmented 

boundary in our method that overlaps with the selection made by the expert. Fig. 10 

shows a comparison between the automatic segmentation obtained by our method (Fig. 

10a) and the expert validated segmentation (Fig. 10b) in one of the tested MR images. 

 

Fig. 10. Example of aortic segmentation in our method compared with an expert-validated 

segmentation. (a) Segmentation obtained automatically using our method; (b) segmentation by 

the expert. 

 

In Table 1, we present the results of the automatic aortic wall segmentation stage 

for each patient. For the analyzed cases, the proposed method provides automatically 
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the aortic boundary segmentation, according to the expert criterion, with an average 

contour overlapping of the 79%.  

TABLE I 

AUTOMATIC AORTIC WALL SEGMENTATION RESULTS (% OF CORRECT CONTOUR SEGMENTED) 

 

Test Contour overlapping 

(%) Patient 1 82% 

Patient 2 63% 

Patient 3 45% 

Patient 4 92% 

Patient 5 70% 

Patient 6 100 % 

Patient 7 88% 

Patient 8 89% 

Average results 79% 

 

 

It is important to note that these differences on the contour overlapping are a 

priori expected because the proposed method has been designed with a tendency to leak 

in the segmentation. Thus, the automatic segmentation tends to overestimate the aortic 

contour since it is more desirable to include surrounding tissues in conflictive areas and 

avoid cutting through aortic structures. In Fig. 10, we can see an example.  

Among the causes of the leaking, the spinal area located under the aorta has 

proven to be error-prone for the method. The case presented in Fig. 10 is affected by 

this problem. The cause is the effect of the low intensity found in this area on the 

constraints used to define the cut. As there is no bright object adjacent to the aortic wall, 

the intensity gradient is lower and more difficult to detect. Moreover some intensity 

values in this area fall under the threshold of the intensity-based parameter,     



i, j, of the 

cost function (see Eq. 9) and attracts the cut. 

Another cause for leakage is the presence of small objects outside the aortic 

contour. In the case of bright objects isolated from other abdominal structures, the 

method may include them inside the segmented contour. The cause of this problem is 
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either these objects being too small and being disregarded when the automatic graph cut 

initialization is generated or not being bright enough to appear in the SFCM algorithm 

results and therefore not appearing in the initialization. 

 

4. Conclusion 

AAA identification using image analysis can be of great help to doctors because 

they can be warned of an anomaly that could not be detected without a more specific 

study.. AAA diagnosis involves detection and segmentation of the lumen and the wall 

of the aorta in order to study whether there is an abnormal dilation of the aorta.  

For this task, many procedures can be found in the literature, although they are 

usually semi-automatic processes that need the assistance of an expert, besides of 

presenting a high computational cost. Moreover, some of them fail when they are 

applied on MR images. 

Thus, it becomes crucial to provide a solution that can constitute a real and 

automatic expert system for assisting doctors in the AAA diagnosis. In this sense, a 

novel methodology is presented in this work, which is performed through a complete 

automatic and low computational cost program. These features, along with a good 

accuracy in the analysis of MR images, constitute the high-impact points of the 

proposed procedure.  

For that, the proposed scheme uses a combination of different techniques, 

profiting from their respective advantages and minimizing the corresponding 

drawbacks. Concretely, the developed AAA segmentation approach is divided in two 

different stages. In a first stage, the lumen is extracted using the SFCM algorithm and 

subsequently, in the second stage, the aortic wall is segmented using a graph-cut 

algorithm. To overcome the need of a manual initialization for the graph cut, the results 
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of the first stage are employed with the purpose of generating an automatic initialization 

(in addition to its original goal of lumen segmentation). In this way, we get an automatic 

method to segment the aortic wall with a low computational cost. The processing time 

of performing the whole AAA automatic segmentation takes less than 3 seconds. 

Furthermore, the results have proven to be pretty successful. Assuming that the 

lumen is correctly segmented in the first stage, the automatic aortic wall segmentation is 

obtained with an average of 79% of the contour matching the contour validated by the 

expert for all the analyzed cases, which is a huge improvement over other existing 

methods where the complete graph cut initialization has to be done manually. 

The differences in the contour between the automatic and the expert-validated 

results are caused by the estimation of a large undefined region in the graph cut 

initialization. Dark structures or bright objects of small size next to the aorta have 

proven to be problematic and to cause leaks in the segmented contour. 

Thus, the developed method shows promising results. Furthermore, this 

combination can be used for the segmentation of other structures with similar problems 

in the medical area and also in other areas in which image analysis and segmentation is 

needed.  It should also be noted that the presented results have been applied to single 

(2D) MR images. As a further expansion of the method, an adaptation to 3D sets of MR 

images (e.g. using a 6-neighborhood system for the graph cut stage) is likely to improve 

the results presented in this paper as more information becomes available to the 

algorithm. 
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