
A log square average case algorithm to make insertions1

in fast similarity search2

Luisa Micó∗, Jose Oncina∗3

Dept. Lenguajes y Sistemas Informáticos4
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Abstract6

To speed up similarity based searches many indexing techniques have been7

proposed in order to address the problem of efficiency. However, most of the8

proposed techniques do not admit fast insertion of new elements once the index9

is built. The main effect is that changes in the environment are very costly to10

be taken into account.11

In this work, we propose a new technique to allow fast insertions of elements12

in a family of static tree-based indexes. Unlike other techniques, the resulting13

index is exactly equal to the index that would be obtained by building it from14

scratch. Therefore there is no performance degradation in search time.15

We show that the expected number of distance computations (and the aver-16

age time complexity) is bounded by a function that grows with log2(n) where17

n is the size of the database.18

In order to check the correctness of our approach some experiments with19

artificial and real data are carried out.20

Keywords: similarity search, metric space, dynamic index, insertions21

1. Introduction22

The similarity search problem can be stated as follows: given a finite data23

set of objects D, a dissimilarity measure d and a query object q find the set of24

elements in the data set (P ⊂ D)that is the most similar to the query (minimise25

a dissimilarity measure). Depending on the amount and type of information26
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Email addresses: mico@dlsi.ua.es (Luisa Micó), oncina@dlsi.ua.es (Jose Oncina)Preprint submitted to Elsevier November 5, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32326766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


required, several similarity search techniques can be stated: nearest neighbour27

search (only the nearest object in the database is retrieved: p ∈ P ⇐⇒ ∀r ∈28

D, d(q, p) ≤ d(q, r)), range search (all the objects in the database nearest to29

the query than a value h are retrieved: p ∈ P ⇐⇒ d(q, p) ≤ h), reverse30

nearest neighbour search (the elements in the dataset that have the query as31

their nearest element: p ∈ P ⇐⇒ ∀r ∈ D, d(p, q) ≤ d(p, r)), etc.32

Over the time, these techniques have been applied to databases increasingly33

large making their execution times become real bottlenecks.34

In order to speed up these techniques, fast similarity search methods have35

to exploit some property of the search space. Metric space searching techniques36

assume that the dissimilarity function (d(·, ·)) defines a metric over the repre-37

sentation space E, that is:38

1. ∀x, y ∈ E, d(x, y) ≥ 0 non-negativity39

2. ∀x, y ∈ E, d(x, y) = d(y, x) symmetry40

3. ∀x ∈ E, d(x, x) = 0 identity41

4. ∀x, y, z ∈ E, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality42

One of the main characteristics of metric space searching is that no assump-43

tion about the structure of the objects (points) is necessary. Some examples44

of objects can be: protein sequences (represented by strings) (Lundsteen et al.,45

1980), skeleton of images (trees or graphs)(Carrasco and Forcada, 1995)(Es-46

colano and Vento, 2007), histograms of images(Cha and Srihari, 2002), etc.47

At present, many communities have paid great attention to these techniques48

because of the need for handling large amounts of data. Then, many metric49

space indexes designed to speed up searches have been proposed (some reviews50

can be found in (Chávez et al., 2001)(Hjaltason and Samet, 2003)(Zezula et al.,51

2006)). These indexes have proved to be very effective in many applications such52

as content based image retrieval (Giacinto, 2007), person detection or automatic53

image annotation (Torralba et al., 2008), texture synthesis, image colourisation54

or super-resolution (Battiato et al., 2007).55

Unfortunately, most of these indexes are static (Yianilos, 1993)(Brin, 1995)(Micó56
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et al., 1994)(Navarro, 2002). That is, the insertion or deletion of an object re-57

quires a complete rebuilding of the index. This is very expensive and discourages58

its use in interactive or on-line training systems.59

In this work, we propose technique to allow fast insertions. The performance,60

in search time, of the index does no degrade with the insertions and we show that61

the expected number of distance computations is bounded by log2(n) where n is62

the size of the database. This result compares very favourably with the number63

of distance computations needed in a whole rebuild (n log(n)).64

In order to check the correctness of our approach some experiments with65

artificial data (Euclidean distance in 5, 10 and 15 dimensional spaces) and real66

data (Euclidean distance in an image database and edit distance in handwritten67

digits contour strings and English words) have been carried out.68

Section 2 describes related work and introduces the main ideas in our ap-69

proach. Section 3 introduces the static index in wich our approach is based, and70

Section 4 describes our inserting algorithm. Section 5 is devoted to analyse the71

insertion cost. This analysis is followed by experimental results using artificial72

and real data in Section 6. Finally Section 7 describes the conclusions drawn73

from the results and summarises our contribution.74

2. The approach75

A number of proposals to allow object insertion/deletion operations have76

been made for metric space indexes (Fu et al., 2000)(Navarro and Reyes, 2008).77

In some cases dynamic approaches were proposed as a completely new algorithm78

to allow cheap insertions and deletions such as the M -tree (Ciaccia et al., 1997),79

and, in other cases, as a modification of previously existing static indexes (Fu80

et al., 2000)(Navarro and Reyes, 2002)(Procopiuc et al., 2003)81

Usually, static search methods are faster searching that dynamic indexes and82

static methods degrades when they are adapted to allow insertions.83

The main problem when adapting static methods to allow insertions is the84

need of a reorganization when an insertion is performed. To avoid this overhead,85
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some authors (Navarro and Reyes, 2008) propose the use of buckets in selected86

places of the index to store the new objects in such a way they can be located87

easily and does not harm very much the performance of the index. Despite of88

that, the nearest neighbour search performance is degraded as the size of the89

buckets increases. To avoid such degradation a rebuilding of the index is forced90

when the size of a bucket exceeds a threshold. A trade-off between insertion91

performance and search performance should be established.92

In our proposal the index obtained after the insertion is the same as the93

(static) one obtained if a complete rebuild would be made, without adding94

buckets or any type of additional information to the index. As a consequence,95

no insertion/search performance ratio should be adjusted and there is no degra-96

dation of search performance.97

The idea of the strategy is quite simple: go ahead with the insertion unless a98

modification in the index is necessary; otherwise, rebuild completely the affected99

part of the index.100

Although this strategy can be applied to many indexing techniques, it is101

specially effective when is applied to Most Distant to the Father (MDF) tree102

index. This tree based indexing is used in some state of the art searching103

techniques (Micó et al., 1996)(Gómez-Ballester et al., 2006).104

The properties that make this structure so effective are:105

1. the structure is based on the use of objects in very low probability regions106

2. the rebuilding of the index section corresponding to one branch of the tree107

is independent of the other branches.108

3. The Most Distant to the Father tree index109

One of the most successful methods for reducing the search time (by reducing110

the average number of distance computations) is the mb-tree (or monotonous111

bisector tree). This method was originally intended to be used with vector-112

data and Minkowski metrics although it can be used with arbitrary metrics113

and then, with complex objects. The mb-tree was proposed by Noltemeier et114
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Figure 1: Example of space partitioning produced by a mb-tree in a two-dimensional space

(left) and the mb-tree derived from it (right).

al. (Noltemeier et al., 1992) to modify the definition of the bisector tree (a115

tree that uses generalized hyperplane partitioning augmented by including for116

each pivot the maximum distance to an object in its subtree, (Kalantari and117

McDonald, 1983)) so that one of the two pivots in each nonleaf node is inherited118

from its parent (see Figure 3). This strategy allows to reduce the number of119

distance computations during the search (only a new distance, instead of two,120

is necessary to compute every time a new level is explored in the tree). But121

this is at the cost of a worse partitioning, obtaining a deeper tree. This general122

approach allows many different configurations in the selection of pivots.123

The MDF tree is a binary indexing structure based on a hyperplane parti-124

tioning approach (Micó et al., 1996)(Gómez-Ballester et al., 2006) with similar125

properties to the mb-trees. The main difference is related to the selection of the126

representatives (pivots) for the next partition (branch of the tree).127

In the MDF-tree firstly a pivot is randomly selected as the root of the tree128

(first level). Secondly, the most distant point from the root is selected as a new129

pivot, and the remaining points are distributed according to to the closest pivot.130

This procedure is recursively repeated until each leaf node has only one object131

(see Figure 3).132

For each node, the covering radius (the distance from the pivot to the most133

distant point in the subspace) is computed and stored in the respective node.134
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Figure 2: Example of space partitioning produced by a MDF-tree in a two-dimensional

space(left) and the MDF-tree derive from it (right)

This procedure is described in algorithm 1.135

The function build tree(ℓ,S) takes as arguments the future representative136

of the root node (ℓ) and the set of objects to be included in the tree (exclud-137

ing ℓ) and returns the MDF-tree that contains S ∪ {ℓ}. The first time that138

build tree(ℓ,S) is called, ℓ is selected randomly among the data set. In the139

algorithm, MT is the pivot corresponding to T , rT is the covering radius, and140

TL (TR) is the left (right) subtree of T .141

It is easy to see that the space complexity of the index is O(n), with n being142

the number of points, and the time complexity is O(hn) where h is the depth143

of the tree.144

4. Incremental tree145

In this work we focus on a procedure to obtain, each time an insertion is146

performed, the exact index that will be obtained if a complete rebuild of the tree147

was made (a preliminary version of this idea, with no theoretical guarantees, was148

presented in Micó and Oncina (2009)). Note that in such case the performance149

of the search algorithm that uses the MDF index is exactly the same as in150

the case when the index is build from scratch. Then no further research or151

experiments in search degradation performance is needed.152

6



Algorithm 1: build tree(ℓ, S)

Data:

S ∪ {ℓ}: set of points to include in T ;

ℓ: future left representative of T

create MDF-tree T

if S is empty then

MT = ℓ // New representative of T

rT = 0

else

r = argmaxx∈S d(ℓ, x)

rT = d(ℓ, r)

Sℓ = {x ∈ S|d(ℓ, x) < d(r, x)}

Sr = {x ∈ S|d(ℓ, x) ≥ d(r, x)} − {r}

TL = build tree(ℓ,Sℓ)

TR = build tree(r,Sr)

end

return T
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Figure 3: Case when a complete rebuilt is needed

The main idea consists on comparing the object to be inserted with the pivot153

(representatives) on every recursive call to check if it is farther than the farthest154

so far. If it is farther (it has to be a pivot in the resulting tree), the affected155

part of the tree is completely rebuilt. Otherwise, the insertion is made in the156

subtree whose pivot is nearest.157

This may seems a quite expensive strategy, but as the pivots are very unusual158

objects (the farthest of its sibling pivot), and the sizes of the subtrees decrease159

very quickly, big reconstructions of the tree seldom happens. The high cost of160

big rebuilds is compensated by its low probability.161

Let T be the MDF tree built using a database D. Let x be the new object162

to be inserted in the index, and let T ′ the MDF tree built using the data set163

D ∪ {x}. The algorithm detects and rebuilds the subtree of T that is different164

from T ′.165

Let we denote by MT the representative of the root node of a subtree T of166

the MDF tree, let rT be its covering radius, and let TL (TR) be the left (right)167

MDF subtree of T .168

We have several cases:169

C 1. If d(MT , x) > rT , T
′ differs from T in the root node because the object x170

is selected in T ′ as the representative of the right node. Then the whole171

tree T is rebuilt in order to include x (see fig. 3).172

C 2. Otherwise, the roots of the trees T and T ′ are identical. Then we have173

two cases (see fig. 4) :174
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Figure 4: Inserting in the left (right) subtree

C 2.1. if d(MTL
, x) < d(MTR

, x) the object x should be inserted in the175

left tree TL and then the tree T ′

R is identical to TR.176

C 2.2. Conversely if d(MTL
, x) ≥ d(MTR

, x) the object should be inserted177

in TR and the tree T ′

L is identical to TL.178

Algorithm 2 shows the insertion procedure.179

5. Average time complexity180

An MDF tree is generally unbalanced and, in the worst case, it can be fully181

degenerated.182

We introduce a parameter α to measure the inbalance of a tree. Let α ∈183

[0.5, 1.0[ be defined such that for all node T in a MDF tree, where T1 and T2184

are its two children and where |T1| ≤ |T2|185

|T1| ≤ α |T |

|T2| ≥ (1− α) |T |

An upper bound to the depth (h) of a α-unbalanced tree can be easily computed186

taking into account that, in the worst case, the size of the bigger child decreases187

at least a factor α in each level until we arrive to a leave (size 1).188
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Algorithm 2: insert tree(T , x)

Data:

T : MDF-tree

x: object to be inserted in T

if d(MT , x) > rT then

T = build tree(MT , {s|s ∈ T} ∪ {x} − {MT })

else if TL is empty then

T = build tree(MT , {x})

else

dℓ = d(MTL
, x) // this distance has been previously computed

dr = d(MTR
, x)

if dℓ < dr then
insert tree(TL,x)

else
insert tree(TR,x)

end

end
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That is, αhn = 1, and then h = − log(n)
log(α) . For example, if the tree is balanced189

(α = 0.5) h = log2(n).190

Then, the number of distance computations required to build a α-unbalanced191

MDF tree of size n is upper bounded by nh = n(− log(n)
log(α) ).192

In the following, we are going to obtain an upper bound of this function.193

Let we denote by E(n) the expected number of distance computations when194

inserting an object in a α-unbalanced MDF tree of size n.195

Let x be the object to be inserted and assume that all the elements in D∪{x}196

where extracted i.i.d. from an unknown probability distribution. Following197

alg. 2 we have four possibilities:198

1. if n = 1 then E(n) = 1199

2. if d(MT , x) > rT a rebuilt of the subtree is necessary. Its cost is upper200

bounded by n(− log(n)
log(α) )201

3. if d(MTL
, x) < d(MTR

, x), x is inserted in the left subtree202

4. if d(MTL
, x) ≥ d(MTR

, x), x is inserted in the right subtree203

Note that since we are assuming that all the points are extracted i.i.d., all204

the points have the identical probability of being the new pivot (fulfilling con-205

dition 2) and then, the probability of this event is 1
n
. Therefore, the probability206

of event 3 or event 4 is n−1
n

.207

Moreover, the action taken by the algorithm in such cases is to make an208

insertion in one of its children. Since the tree is α-unbalanced the cost of each209

of this actions are bounded by worst case: E(αn).210

Now, expressing all that in an equation we have the upper bound:

E(n) ≤ 1 +
1

n
n

(

−
log(n)

log(α)

)

+
n− 1

n
E(αn) (1)

This equation is composed by three terms. The first term takes into account211

the distance computation needed to know the distance from the sample to the212

pivot. Second an third terms takes into account the possibility of the new213

sample being farther (or not) than the present representative in the right node.214

Second term is the probability that the new sample is farther than the present215
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representative ( 1
n
), multiplied by the cost of rebuilding the subtree. Third216

term is the probability that the new sample is not the farther representative,217

multiplied by the expected number of distance computations of inserting in the218

bigger of the two children (size at most αn).219

If we unfold equation 1 we have:220

E(n) ≤ h−
1

log(α)

(

log(n) + log(nα) + log(nα2) + . . .h times
)

where we have taken into account that n−i
n

< 1, ∀i < n.221

E(n) ≤ −
log(n)

log(α)
−

1

log(α)
log

(

h
∏

i=0

nαi

)

and using some properties of the log function:222

E(n) ≤
log2(n)

2 log2(α)
−

3 log(n)

2 log(α)
(2)

This upper bound shows that, in the worst case, the expected number of223

distance computations grows with log2(n). Very far of the worst case (n log(n)).224

6. Experimental results225

The experiments were done using artificial and real data represented as vec-226

tors or strings. For artificial data, the datasets were generated using a uniform227

distribution in the 5, 10 and 15 dimensional unit hypercube.228

Three real data databases are used:229

NASA: is a collection of 40 150, 20-dimensional vectors obtained from NASA230

video and image archives. The authors of the database (Katayama and231

Satoh, 1999) divided each image in four regions, nine color histograms232

for each region were computed. The features are a PCA projection to a233

20 dimensional space. The Euclidean distance was used as dissimilarity234

measure (more details can be found in http://www.sisap.com).235
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10 000 artificial database sizes in dimension 10. Only the first 10 bins are showed

English: is an English dictionary of 69 069 words extracted from the dictionary236

of the GNU spell checker (ftp://ftp.gnu.org/gnu/aspell/dict/0index.html).237

In this case the edit distance was used as dissimilarity measure.238

Contour: is a set of 10 000 8-directions contour strings extracted from the239

NIST Special Database 3 (Garris and Wilkinson, 1994). NIST database240

contains 128× 128 black and white (bilevel) images of handwritten digits241

that was collected among Census Bureau employees.242

First, in order to study the distribution of the number of distance computa-243

tions needed to rebuild the index when an object is inserted, 10 000 insertions of244

an object over a fixed MDF-tree with sizes 100, 1000, and 10 000 was made. The245

number of distance computations were counted and its histogram is depicted in246

Figure 5. Only the case for the uniform distribution in a 10 dimensional space247

is plotted, the other cases show a similar behaviour.248

It can be observed that independently of the size of the tree, almost all the249

insertions cause very few distance computations (left side). On the other hand,250

there are very few insertions that cause a large number of distance computa-251

tions (right side). In all the experiments, rarely more than a hundred distance252

computations have been made in one insertion.253
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Next experiments are intended to study the behaviour of the algorithm when254

inserting objects in a database. For that, 10 000 different databases were gen-255

erated for each size varying from 100 to 10 000 in steps of 100. Each point in256

the plots is the average number of the distance computations provoked by an257

insertion in each of the 10 000 MDF indexes build from these databases. The258

95% percentile was also computed and plotted in the following experiments.259

That means that the 95% of the cases make a number of distance computations260

under this curve.261

Moreover, the theoretical upper bound was plotted to check experimentally262

its validity. In order to do that, for each MDF tree, the values of the unbalance263

factor α was computed for each node of the tree. In order to meet the definition,264

the α for a tree should be the maximum α of its nodes. Instead of that, the265

95% percentile of the node α’s was computed to avoid pathological high values266

of α. Note that doing so the predicted values for the upper bound are going to267

be lower than if the maximum would be computed. The figures also show the268

value of the α factor for the corresponding experiment. The results are showed269

in Figure 6 for the artificial data and Figure 7 for the real data experiments.270

The experimental results fits very well with the theoretical prediction. It can271

be seen that in all the cases the distance computations caused by an insertion272

seems to grow very slowly with the database size. Moreover, the 95% percentile273

decreases as the database size increases. This effect is due to the fact that the274

cost of the worst case increases much faster that the average case. Then, in275

order to compensate for the few worst case events, many events have to be very276

cheap.277

7. Conclusions278

In this work we have proposed a simple but efficient algorithm to insert279

objects in a MDF-tree. This algorithm, unlike others, has the property that the280

index obtained after the insertion is the same as the one obtained if a complete281

rebuild would be made. Then, the search efficiency does not degrade when282
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insertions are incrementally done.283

We have shown that the average number of distance computations (and the284

average complexity) is bounded by a function that grows with the square of the285

logarithm of the size of tree (log2(n)). This is a big improvement if compared286

with the ”näıve” approach that grows with n log(n).287

Moreover, we have tested this upper bound with several artificial and real288

data experiments. These experiments, as well as confirming the theoretical289

results, also shows that the 95% percentile decreases when the database size290

increases. That means that when the database size increases, pathological in-291

sertions, which provokes wide reconstructions of the tree, becomes very uncom-292

mon.293
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