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ABSTRACT
Current predictive models for cardiovascular disease based on points systems use the
baseline situation of the risk factors as independent variables. These models do not
take into account the variability of the risk factors over time. Predictive models for
other types of disease also exist that do consider the temporal variability of a single
biologicalmarker in addition to the baseline variables.However, due to their complexity
these other models are not used in daily clinical practice. Bearing in mind the clinical
relevance of these issues and that cardiovascular diseases are the leading cause of death
worldwide we show the properties and viability of a new methodological alternative
for constructing cardiovascular risk scores to make predictions of cardiovascular
disease with repeated measures of the risk factors and retaining the simplicity of the
points systems so often used in clinical practice (construction, statistical validation by
simulation and explanation of potential utilization). We have also applied the system
clinically upon a set of simulated data solely to help readers understand the procedure
constructed.

Subjects Cardiology, Epidemiology, Public Health, Statistics
Keywords Cardiovascular diseases, Cardiovascular models, Risk factors, Cohort studies

INTRODUCTION
Given that cardiovascular diseases (CVD) are one of the main causes of death in the
world (World Health Organization, 2014), prediction models are interesting in order
to determine those risk factors that can be acted on to reduce the probability of CVD
(Molinero, 2003). The simplest model to make predictions about a dichotomous event,
such as CVD, is logistic regression (Hosmer & Lemeshow, 2000). This model produces
an equation which, once the values for the various risk factors are known, can be used to
evaluate the likelihood of the appearance of disease. However, this sort of model fails to
consider exposure time. This is precisely what is done in survival models, which analyse
the time of occurrence of a particular event. Although the best known of these models
is Cox (Hosmer, Lemeshow & May 2008), it is not the only alternative available. There
exist other possible methods to analyse survival, called parametric models as they assume
a concrete type of distribution, such as the Weibull model, used in the SCORE project
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(Conroy et al., 2003). Indeed, the Framingham study used both logistic regression models
and survival models (parametric and non-parametric) (National Heart, Lung, and Blood
Institute, 2015).

In conjunction with the Framingham and SCORE predictive models, others have
been developed that are also used in clinical practice, though to a lesser extent, such as
the Reynolds risk score and the WHO/ISH score (Cooney, Dudina & Graham, 2009).
Common to all these is the making of predictions about CVD over a 10-year period,
though they consider different outcomes (morbidity and mortality with coronary heart
disorders, mortality from coronary heart disorders, cardiovascular morbidity and mor-
tality, or just cardiovascular mortality) and use different mathematical models (Cox and
Weibull). These models enable physicians to make long-term decisions for their patients.
In addition, the clinical practice guidelines recommend using these predictive models
to stratify the cardiovascular risk of patients. For example, in Europe, the European
Guidelines on cardiovascular disease prevention in clinical practice indicate ‘‘A risk
estimation system such as SCORE can assist in making logical management decisions,
and may help to avoid both under-and overtreatment’’ (Perk et al., 2012). In other
words, clinicians follow the guidelines to improve the decision-making process in order
to prevent CVD, and it is these very guidelines that indicate the use of these predictive
models. Accordingly, these models are very relevant in daily clinical practice.

Given the complexity of these mathematical models an algorithm is used to enable the
clinician to understand them more easily, though precision is lost in the estimation of the
probability of CVD (Sullivan, Massaro & D’Agostino, 2004). To do this, the mathematical
models have been transformed into coloured risk tables that can be used systematically
in clinical practice. However, these tables are based on models that manage clinical
variables in the baseline situation of the patient (Conroy et al., 2003; National Heart, Lung,
and Blood Institute, 2015), and do not therefore take into account the variability of the
variables over time, as the biological parameters are being considered constant over the
follow-up period when in fact they vary greatly and the physician can intervene using
drugs to either reduce or increase their value (National Cholesterol Education Program,
2002; American Diabetes Association, 2014; James et al., 2014; Stone et al., 2014).

Predictive models for survival in other diseases do consider the temporal variability
of a single biological marker (as well as the baseline variables). These are known as Joint
Models for Longitudinal and Time-to-Event Data and comprise two parts: (1) A mixed
linear model to determine the path of a longitudinal parameter; and (2) A survival model
relating the baseline variables and the longitudinal parameter with the appearance of an
event. These models can be used to make more precise predictions about the development
of a disease (Rizopoulos, 2012). However, due to their complexity they are not used in
general clinical practice. In addition, joint modelling when the survival part is formed by
a linear function with multiple longitudinal parameters (usual modelling in traditional
survival analysis in the health sciences) has only been examined theoretically and currently
remains a complete computational challenge. This has resulted in the development of
algorithms to make predictions, as in the univariate case (Rizopoulos, 2011).
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Here we aim to show the viability and properties of a newmethodological alternative for
constructing cardiovascular risk scores (construction, statistical validation by simulation
and potential utilization with the new theoretical model) dealing with the temporal
variability of CVD risk factors. We also apply the model using a set of simulated data,
with the sole purpose of helping readers understand how to apply it to a real data set with
repeated measures of cardiovascular risk factors. In other words, the example given using
simulated data is only to show how to apply the method proposed with a real data set
having the characteristics given in this work. Thus, the scoring system given here has no
value in clinical practice; what is of value is the way the system is constructed.

MATERIALS AND METHODS
The basicmodels used to develop the newmethodwere theCoxmodel with time-dependent
variables, points system in the Framingham Heart Study, Joint Models for Longitudinal
and Time-to-Event Data, and predictions of the longitudinal biomarkers using these
Joint Models.

Cox model with time-dependent variables
Let T be a non-negative random variable denoting the observed failure time, which is the
minimum value of the true event time T ∗ and the censoring time C (non-informative
right censoring). In other words, T =min(T ∗,C). In addition, we define δ as the event
indicator, which takes the value 1 if T ∗ ≤C and 0 otherwise. On the other hand, let W
be the vector of baseline covariates and Y (t ) the vector of time-dependent covariates,
assuming a defined value for t ≥ 0. With these data, the Cox model with time-dependent
variables takes the following form (risk function):

h
(
t |w,y (t )

)
= h0(t )exp

{
γTw+αT y (t )

}
,

where h0(t ) is the baseline risk function, and γ and α are the vectors of the regression
coefficients for the baseline and time-dependent covariates, respectively (Andersen & Gill,
1982).

The estimation of the model parameters is based on the partial likelihood function
(Andersen & Gill, 1982). On the other hand, we have to corroborate whether the functional
form of the covariates in the model is linear. This should be performed using graphical
methods (Martingale residuals against the covariate of interest). Finally, we have to assess
whether the model fits the data well, through the analysis of the Cox-Snell residuals
(graphical test).

The classical Cox regression model (with no time-varying covariates), deletes α and y(t )
from the above expression. Furthermore, the model has to verify the following condition
(proportional hazard assumption):

log
(
h(t |w)
h0(t )

)
= γTw.
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Points system in the Framingham Heart Study
We summarize the steps of the method developed by the FraminghamHeart Study to adapt
a Cox regression model with p covariates to risk charts (Sullivan, Massaro & D’Agostino,
2004):
(1) Estimate the parameters of the model: γ̂ .
(2) Organize the risk factors into categories and determine reference values:

(a) Continuous risk factor (e.g., age): set up contiguous classes and determine reference
values for each. Example for age: 18–30 [24], 30–39 [34.5], 40–49 [44.5], 50–59
[54.5], 60–69 [64.5] and ≥70 years [74.5]. In brackets is the reference value.
The Framingham Heart Study researchers recommend mid-points as acceptable
reference values, and for the first and last class the mean between the extreme value
and 1st (first class) or 99th percentiles (last class).

(b) Binary risk factors (e.g., gender, 0 for female and 1 for male): the reference value is
again either 0 or 1.
Let Wij denote the reference value for the category j and the risk factor i, where
i= 1,...,p and j = 1,...,ci (total number of categories for the risk factor i).

(3) Determine the referent risk factor profile: the base category will have 0 points in the
scoring system and it will be denoted as WiREF , i= 1,...p.

(4) Determine how far each category is from the base category in regression units: calculate
γ̂i ·
(
Wij−WiREF

)
, i= 1,...,p and j = 1,...,ci.

(5) Set the fixed multiplier or constant B: the number of regression units equivalent to 1
point in the points system. The Framingham Heart Study generally uses the increase
in risk associated with a 5-year increase in age.

(6) Determine the number of points for each of the categories of each risk factor: the closest
integer number to γ̂i ·

(
Wij−WiREF

)
/B.

(7) Determine risks associatedwith point totals: 1−Ŝ0(t )
exp

{∑p
i=1(γ̂i·WiREF )+B·Points−

∑p
i=1 γ̂i·

ˆ̄iw
}
,

where Ŝ0(t ) is calculated through the Kaplan–Meier estimator.

Joint models for longitudinal and time-to-event data
Using the former notation, we have the random variables vector {T ,W ,Y (T )}, where
Y (T ) is only a time-dependent variable (longitudinal outcome) which has its values
defined intermittently for t . In other words, for a subject (i= 1,...,n), y(t ) is only defined
for tij

(
j = 1,...,ni

)
, yi
(
tij
)
, where 0≤ ti1≤ ti2≤ ...≤ tini . Now, we will denote as m(t ) the

true and unobserved value of the longitudinal outcome at time t (mi(t ) for the subject i).
To assess the effect ofm(t ) on the event risk, a standard option is to adjust a Cox regression
model with one time-dependent covariate:

h(t |M (t ),w)= h0
(
t ∗
)
exp

{
γTw+αm(t )

}
,

where M (t ) for a subject i is defined as Mi(t )= {mi(u);0≤ u< t }, which denotes the
history of the true unobserved longitudinal process up to time t . The other parameters
in the expression follow the structure of the Cox regression model with time-dependent
variables (see former section). The baseline risk function can be unspecified or can be
approximated with splines or step functions (Rizopoulos, 2012).
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In the above expression, we have usedm(t ) as the true unobserved longitudinal process.
However, in our sample we have y(t ); therefore, we will estimate m(t ) using y(t ) through
a linear mixed effects model to describe the subject-specific longitudinal evolutions:
yi(t )=mi(t )+εi(t )
mi(t )= xTi (t )β+z

T
i (t )bi

bi∼N (0,D)
εi(t )∼N

(
0,σ 2) ,

where β and bi denote the vectors of regression coefficients for the unknown fixed-effects
parameters and the random effects respectively, x i(t ) and z i(t ) denote row vectors of the
design matrices for the fixed and random effects respectively, and εi(t ) is the error term
with variance σ 2. Finally, bi follows a normal distribution with mean 0 and covariance
matrix D, and independent of εi(t ) (Rizopoulos, 2012).

The estimation of the parameters of the joint models is based on a maximum likelihood
approach thatmaximizes the log-likelihood function corresponding to the joint distribution
of the time-to-event and longitudinal outcomes (Rizopoulos, 2012).

Regarding the assumptions of the model, we have to assess them for both submodels
(longitudinal and survival) using the residual plots. For the longitudinal part, we will
plot the subject-specific residuals versus the corresponding fitted values, the Q–Q plot
of the subject-specific residuals, and the marginal residuals versus the fitted values. On
the other hand, for the survival part, we will plot the subject-specific fitted values for
the longitudinal outcome versus the martingale residuals, and finally we will determine
graphically whether the Cox-Snell residuals is a censored sample from a unit exponential
distribution (Rizopoulos, 2012). Regarding the last component (random effects part) of the
joint model for which we have indicated an assumption, other authors have showed that
linear mixed-effects models are relatively robust to misspecification of this distribution
(Verbeke & Lesaffre, 1997).

Predictions of the longitudinal biomarkers using these joint models
for longitudinal and time-to-event data
Let

{
ti,δi,w i,yi

(
tij
)
,0≤ t ij ≤ ti, j = 1,...,ni

}
, i= 1,...n be a random sample of the random

variables vector {T ,1,W ,Y }, using the former notation. A jointmodel has been fitted using
this sample. Now, we are interested in predicting the expected value of the longitudinal
outcome at time u> t for a new subject i who has a history up to the time t of the observed
longitudinal marker Yi(t )=

{
yi(s);0≤ s< t

}
:

ωi(u|t )= EY
{
yi(u)|t ∗i > t ,Yi(t ),w i;θ

}
where θ denotes the parameters’ vector of the joint model (Rizopoulos, 2011).

Rizopoulos developed a Monte Carlo approach to perform this task, based on Bayesian
formulation. He obtained the following simulation scheme (Rizopoulos, 2011):

Step 1: Draw θ(l)∼N
(
θ̂, ˆvar

(
θ̂
))
.

Step 2 : Draw b(l)i ∼
{
bi|t ∗i > t ,Yi(t ),w i;θ

(l)}.
Step 3: Compute ω(l)

i (u|t )= xTi (u)β
(l)
+zTi (u)b

(l)
i .
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This scheme should be repeated L times. The estimation of the parameter is the mean
(or median) of the calculated values (ω(l)

i (u|t ),l = 1,...L) and the confidence interval is
formed by the percentiles (95%: 2.5% and 97.5% percentiles) (Rizopoulos, 2011).

We highlight that these predictions have a dynamic nature; that is, as time progresses
additional information is recorded for the patient, so the predictions can be updated using
this new information.

Construction
We wish to determine the probability of having CVD with effect from a baseline situation
(t = 0) up to a fixed point in time (t̃ ), given a series of risk factors measured at baseline
and during this follow-up. To do this requires the following steps:
(1) Adjust a Cox regression model with time-dependent variables. As we are unable to

estimate a joint model with multiple longitudinal parameters (Rizopoulos, 2012), we
use the classic extended Coxmodel (with no shared structure), which requires knowing
the values of all the longitudinal parameters at any value of t . As this is not known
because the parameters are recorded intermittently, we take the last value in time as a
reference.

(2) Use the procedure of the Framingham study to adapt the coefficients of the model
obtained to a points system and determine the probabilities of CVD for each score up
to the moment t̃ . We then use these probabilities to construct risk groups that are easy
for the clinician to understand (for example, in multiples of 5%) (Sullivan, Massaro &
D’Agostino, 2004).

(3) Adjust a joint model for longitudinal and time-to-event data for each longitudinal
parameter recordedduring the follow-up. Thiswill also include all the baseline variables.
These models are constructed to make predictions about the longitudinal parameters
in new patients (statistical validation by simulation and potential utilization).

Statistical validation by simulation
Once the points system has been constructed, we wish to see whether the model determines
the onset of CVD accurately in a different set of subjects (validation sample). In this
validation sample we know the longitudinal markers up to the point t = 0 (record of
cardiovascular risk factors in the clinical history which were measured before the baseline
situation (t < 0)) and the value of the variables at baseline. With this information we
determine the probability each subject has of experiencing an event, and we then compare
this with what actually occurred; i.e., determine whether the model is valid. To determine
this validity we follow these steps:
(1) Determine L simulations of the longitudinal parameters at the time point t̃ using the

models mentioned in step (3) of construction, from the history (t < 0) and the baseline
variables (t = 0) (Rizopoulos, 2011). We will use these simulated values to construct
a distribution of the points for each sample subject. Thus, each subject will have L
values for the points variable (evaluating the points system using the simulated values
and the baseline variables is sufficient), and for each lth simulation each patient will
have a points score. In other words, each simulation will have a distribution of the
points variable.
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(2) For each lth simulation adjust a classic Cox model (without time-dependent variables),
using just the score obtained as the only explanatory variable. Determine the Harrell’s
concordance statistic for each of these Lmodels. These values will give us a distribution
of values for this statistic, with which we calculate the mean (or the median) and the
2.5% and 97.5% percentiles (Rizopoulos, 2011). This way we construct a confidence
interval for this statistic, which will indicate the discriminating capacity of the points
system to determine which patients will develop CVD.

(3) Calculate the median of the points distribution for each patient in the validation
sample. Note that we do not use the mean as it could contain decimals and this has no
sense when applying the scoring system. Using these medians, classify each patient in a
risk group and compare the rate of events predicted by the points system in each group
to the actual observed rate. The test used for this process will be Pearson χ2 test.
The concordance statistic used has been reported to have various limitations (Lloyd-Jones,

2010). For example, it does not compare whether the estimated and observed risks are
similar in the subjects. Accordingly, we have added the analysis of the differences between
the expected events and the observed events, which minimises this particular problem.
In addition, it is very sensitive to large hazard ratio values (≥9). Nonetheless, we have to
consider that as all the variables are quantitative (not categorized), the hazard ratio values
do not surpass this threshold. Accordingly, the joint analysis of the concordance index of
Harrell and the differences between the expected and the observed events enables us to
validate statistically by simulation of the proposed model.

Explanation of potential utilization
Once the points system has been validated statistically the clinician can then apply the
system to determine the cardiovascular risk in a new patient, and take any necessary
measures to reduce this risk. The healthcare professional will already have historical
information about the longitudinal parameters (t < 0) and information about the baseline
situation (t = 0) of the new patient. The steps to be followed by the clinician are:
(1) Determine the value of each longitudinal parameter at the time t̃ . To do this we

apply the models obtained in step (3) of construction to the history and the baseline
situation of the new patient, in order to determine L simulations for each longitudinal
parameter, similar to what was done in the validation process. For each lth simulation
we determine the score corresponding to the profile of cardiovascular risk factors
obtained (simulated and baseline information values). This will give us a points
distribution for the new patient.

(2) Determine the median and the 2.5% and 97.5% percentiles of the points vector
constructed above. The median will be the estimation of the score for the new patient
and the percentiles will define the confidence interval (Rizopoulos, 2011). As each score
has an associated risk, the healthcare professional will be able to know the probability
of CVD at time t̃ , together with its confidence interval. Finally, the clinician will know
the values of the biological parameters at t̃ of the median of the points system. This way
the clinician will be able to see which of these parameters has a score above normal;
i.e., see the possible areas of intervention to reduce the cardiovascular risk.
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(3) The clinician now knows the cardiovascular risk and which parameters have a score
above normal, so he or she can then design the best intervention for that patient. This
presents a problem, as we need to know the value of each biological parameter at
time t̃ ; i.e., the clinician knows an approximation based on simulations constructed
from the patient history but does not know how the interventions will affect the
cardiovascular risk.
From the previous step the clinician knows the parameters on which to act and the

history of these parameters as well as the baseline situation. From these measurements the
clinician can establish a realistic objective for the next patient visit at time ˜̃t (0< ˜̃t < t̃ ). The
clinician now inserts the desired value of the biological parameter at ˜̃t and determines its
value at time t̃ ; i.e., determine L simulations for each cardiovascular risk factor using the
previous models (step 3 of construction), adding a new value to the history (˜̃t ).

These calculations will give the benefit of the intervention (estimation (mean or median)
of the biological parameter at t̃ ) and the clinician will be able to see from the points system
how the patient’s risk will be reduced.

Simulation on a data set
With the sole purpose of explaining how to use the method proposed here, we have
simulated a data set upon which to apply each of the steps described above. Note that
we are in fact going to simulate two data sets, one to construct the model and the other
to validate it statistically via simulation. So that both sets are biologically plausible we
have used estimations obtained in the Puras-GEVA cardiovascular study, which has been
published in Medicine (Artigao-Ródenas et al., 2015).

Our data sets will include the following biological parameters: age (years), systolic blood
pressure (SBP) (mmHg), HbA1c (%), atherogenic index, gender (male or female) and
smoking (yes or no). Of these, the SBP, HbA1c and the atherogenic index will be present
at baseline (t = 0) and in the follow-up for the construction sample (t > 0) or recorded in
the clinical history for the statistical validation sample via simulation (t < 0). The choice
to include these variables was based on the current cardiovascular risk scales (Conroy et
al., 2003; National Heart, Lung, and Blood Institute, 2015), except for HbA1c, which is used
instead of a diagnosis of diabetes mellitus in order to include another time-dependent
parameter in the final model, in addition to which this way enables us to value the control
of the diabetes mellitus (HbA1c < 6.5%) when preventing CVD.

For the main variable (time-to-CVD) we shall suppose that our cohort is used to predict
CVD with a follow-up of 2 years. Note that the traditional cardiovascular risk scales use a
time of 10 years (Conroy et al., 2003; National Heart, Lung, and Blood Institute, 2015). We
have used this lower value because we are going to make predictions for the longitudinal
parameters with effect from the baseline situation (t = 0) up to the prediction time and if we
take a prediction value of 10 years the predictions for the longitudinal parameters will vary
greatly and not allow us to make precise predictions about which patient will develop CVD,
which would negate the usefulness of the method proposed here. Nevertheless, the fact that
the predictions for the longitudinal parameters have a dynamic character (see Predictions of
the longitudinal biomarkers using these joint models for longitudinal and time-to-event data)
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enables us to determine the risk at 2 years with greater precision whenever the patient
attends the office of the healthcare professional. Note that the method proposed here has
been developed for a theoretical time period t̃ but it can be applied for any time period.
Nonetheless, generally speaking the longitudinal parameters would vary more over longer
time periods, though this clearly depends on the nature of the data, both at the individual
level and the population level (Rizopoulos, 2012).

The work used for our simulated data set developed and validated a predictive model
of CVD (angina of any kind, myocardial infarction, stroke, peripheral arterial disease of
the lower limbs, or death from CVD), to enable calculation of risk in the short, medium
and long term (the risk associated with each score was calculated every 2 years up to a
maximum of 14) in the general population (Artigao-Ródenas et al., 2015). Table 4 of this
scoring system shows the importance of this question. For example, a patient with a score
of 9 points has a probability of CVD at 2 years of 0.67%, whereas at 10 years this rises
to 5.16% (Artigao-Ródenas et al., 2015: Table 4). If we regularly calculate the 2-year risk
of CVD for our patient and the score remains the same then no new therapeutic action
will be taken (risk < 1%), whereas if we only calculate the risk once every 10 years we will
take aggressive therapeutic measures when the patient first attends the office, as the score
will correspond to a cut point defined as high in the SCORE project (5%→ one in 20
patients) (Conroy et al., 2003). We see, then, that a regular short-term prediction could
lead to a change in the therapeutic decisions regarding prevention of CVD, provided of
course that the possibility exists of calculating the risk regularly. As the risk table given in
the Puras-GEVA study includes predictions for 4, 6, 8, 10, 12 and 14 years, we selected the
lowest cut point because if we had to make predictions for a longer time the dispersion
could have increased (Rizopoulos, 2012). This is why we chose this cut point of 2 years for
the simulation.

The longitudinal follow-up measurements (construction sample) assumed that the
patient attends the physician’s office once every 3 months for measurements of SBP,
HbA1c and the atherogenic index. This is done until the end of the follow-up for each
patient. The statistical validation sample using simulation supposes that there is a certain
probability of having records in the clinical history of all the longitudinal parameters every
3 months for 5 years retrospectively (t < 0). The probability is different for each of the visits
and will depend on each patient. In other words, we will have intermittent measurements
of all these parameters from t =−5 years to t = 0.

The Supplemental Information (S1) details all the mathematical formulae used to
construct our data sets, always based on the Puras-GEVA study (Artigao-Ródenas et al.,
2015). The simulation was done using R 2.13.2 and IBMS SPSS Statistics 19.

One could think that by managing a shorter time period of just 2 years there would be
no variability in the cardiovascular risk factors. However, in S1 we can see that the models
used show a temporal variability in the risk factors. If there were no variability in the
factors, the models would contain the constant with a very small random error. In other
words using this prediction time makes sense.

We decided to use a simulated data set as we did not have available any data set with real
data. This way of explaining a new method has already been used by others working with

Palazón-Bru et al. (2016), PeerJ, DOI 10.7717/peerj.1673 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1673/supp-1
http://dx.doi.org/10.7717/peerj.1673/supp-1
http://dx.doi.org/10.7717/peerj.1673


Table 1 Parameters (β s) of the multivariate Cox regressionmodel. Goodness-of-fit (likelihood ratio
test): χ 2

= 912.3, p< 0.001.

Variable β p-value

Age (baseline) (per 1 year) 0.0846 <0.001
SBP (per 1 mmHg) 0.00874 <0.001
HbA1c (per 1%) 0.188 <0.001
Atherogenic index (per 1 unit) 0.191 <0.001
Male gender 0.479 0.001
Smoker (baseline) 0.721 <0.001

Notes.
Abbreviations: SBP, Systolic blood pressure; HbA1c, glycated haemoglobin.

joint models, as the only objective of the simulated data set is to explain how to apply the
new method (Faucett & Thomas, 1996; Henderson, Diggle & Dobson, 2000; Wang & Taylor,
2001; Brown, Ibrahim & DeGruttola, 2005; Zeng & Cai, 2005; Vonesh, Greene & Schluchter,
2006; Rizopoulos & Ghosh, 2011).

RESULTS
Given the amount and extension of the results these are given in detail in the Supplemental
Information (S2 and S3). However, we have provided here the main results of our example.
As before, the analysis was done with R 2.13.2 and IBM SPSS Statistics 19.

Construction of the model
The parameters of the Cox model with time-dependent variables are shown in Table 1, and
its adaptation to the points system with a prediction time of 2 years is reflected in Fig. 1.
Table 2 shows the joint models for the longitudinal parameters. To avoid computational
cost simplemodels were used: (1) linear equation for the survival part with all the predictors
included (age, gender, smoking, and longitudinal marker) and (2) mixed linear model with
polynomial degree 1 at (1,t ), in both the fixed and the random parts. The baseline risk
function was defined piecewise.

Statistical validation by simulation
The C-statistic was very satisfactory: 0.844 (95% CI [0.842–0.846]). Comparison between
expected and observed events in all the risk groups showed no significant differences
(Fig. 2).

Explanation of potential utilization
A new patient arrives at our office with the following characteristics: male, 83 years old,
non-smoker, and taking pharmacological medication (one antihypertensive drug and one
oral antidiabetic agent) and non-pharmacological measures (diet and exercise). His history
of cardiovascular risk factors is available (Table 3).

Application of the newmodel gives a histogram of the cardiovascular risk score obtained
for this patient (Fig. 3). This chart shows a high cardiovascular risk, as most of the
simulations have around 16 points. The estimation of the score was 16 (95% CI [15–17]).
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Figure 1 Scoring system to predict cardiovascular diseases within 2 years. Abbreviations: SBP, systolic
blood pressure; HbA1c, glycated haemoglobin; TC, total cholesterol; HDL-c, HDL cholesterol.

Themedian score corresponded to a SBP of 160mmHg, HbA1c of 5.0% and an atherogenic
index of 6.76. Bearing in mind that the model contains factors upon which it is not possible
to act (gender and age) that give the patient a minimum of 13 points, we should consider
strategies to help the patient not to score in the other categories on the scale (Fig. 1).

The clinician can now see that if the patient complies with a series of interventions
(pharmacological (add two antihypertensive drug → −20 mmHg; prescribe a statin
→−40% atherogenic index) and non-pharmacological (reduce salt in the diet→−5
mmHg)), his longitudinal parameters after 3 months would be: SBP 120 mmHg (145 –
2 × 10 – 5 = 120 mmHg), atherogenic index 3.10 (5.17 – 40% = 3.10), and HbA1c 4.9
% (same value because no intervention was done). Applying the model using the new
information gives the cardiovascular risk at 2 years (Fig. 4). The estimation of the score
is 15 (95% CI [14–15]) and the values that provide a median score are: SBP 124 mmHg,
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Table 2 Parameters of the joint models with the longitudinal parameters studied. The strategy to eliminate variables is to eliminate down from
the most complex terms to the most simple terms. Goodness-of-fit: (1) SBP: χ 2

= 371,574.1, p< 0.001; (2) HbA1c: χ 2
= 210,881.1, p< 0.001; (3)

Atherogenic index: χ 2
= 121,118.0, p< 0.001.

Variable SBP (mmHg) p-value HbA1c (%) p-value Atherogenic index p-value

Event process
Male gender 0.428 <0.001 0.475 <0.001 0.446 <0.001
Age (per 1 year) 0.0837 <0.001 0.0840 <0.001 0.0833 <0.001
Smoker 0.731 <0.001 0.757 <0.001 0.775 <0.001
Parameter (per 1 unit) 0.0085 <0.001 0.216 <0.001 0.195 <0.001

Longitudinal process: fixed effects
1 133.557 <0.001 6.158 <0.001 4.602 <0.001
t 0.0046 <0.001 0.0001 <0.001 0.0001 <0.001

Longitudinal process: random effects
1 21.683 N/A 1.346 N/A 1.324 N/A
t 0.0358 N/A ∗ ∗ 0.0013 N/A
Residual 8.933 N/A 0.357 N/A 0.302 N/A

Notes.
Abbreviations: SBP, systolic blood pressure; HbA1c, glycated haemoglobin; N/A, not applicable; *, term eliminated due to convergence problems.

Figure 2 Comparison between the proportions (%) of expected and observed events in each of the dif-
ferent risk groups.

atherogenic index 4.85, and HbA1c 5.0%. Thus, the risk is reduced, as now the patient has
15 points (Fig. 1 and S3).

DISCUSSION
This paper describes a method to construct predictive models for CVD considering the
variability of cardiovascular risk factors and at the same time having the simplicity of points
systems, which are widely used in daily clinical practice worldwide (Conroy et al., 2003;
Cooney, Dudina & Graham, 2009; National Heart, Lung, and Blood Institute, 2015).

The cardiovascular risk scales currently available do not value the temporal variability
of the parameters controlling the risk factors, although a very positive aspect of these
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Table 3 History of the control parameters of the cardiovascular risk factors included in our points sys-
tem. Time has a negative value because it refers to the measurements taken before the baseline situation
and this was defined as t = 0.

Time (days) SBP (mmHg) HbA1c (%) Atherogenic index

−360 152 5.1 3.56
−330 135 5.3 3.23
−270 164 4.7 3.45
−180 153 4.4 4.12
−90 170 5.0 4.15
0 145 4.9 5.17

Notes.
Abbreviations: SBP, systolic blood pressure; HbA1c, glycated haemoglobin.

Figure 3 Cardiovascular risk of a theoretical new patient (pre-intervention).

scales is that they take into account simplicity for immediate application by healthcare
professionals, the persons who really have to apply these mathematical models (Conroy
et al., 2003; Cooney, Dudina & Graham, 2009; National Heart, Lung, and Blood Institute,
2015). The joint models currently used do take into account variability over time of a single
longitudinal parameter (Rizopoulos, 2011), but their interpretation is not as easy as a points
system and they cannot be used with various longitudinal parameters, a key question in
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Figure 4 Cardiovascular risk of a theoretical new patient (post-intervention).

the multifactorial aetiology of CVD. We have attempted to fuse all these techniques into
one single algorithm, retaining the virtues of each (relative risks model, scoring systems,
dynamic predictions...).

Comparison between our proposed model and current cardiovascular risk scales is
problematic. Our model is more suitable to make short-term predictions, though the
more time that passes from the baseline situation (t = 0) when making a prediction, the
variability of the predictions of the longitudinal parameters increases (Rizopoulos, 2012).
This same situation can be found in other areas, such as the economy (stock exchange)
or meteorology (weather forecast), though it obviously depends on the nature of the
data being used, both at the individual level and the population level. This however does
not weaken our model, since because the predictions for the longitudinal parameters are
dynamic (Rizopoulos, 2011); any time that we update the clinical information about our
patient the risk is immediately recalculated. This can be seen in the proposed example (S2
and Figs. 3 and 4), where when we introduce new values for the longitudinal parameters
these are updated and a new score for the patient is calculated. In other words, the proposed
method could be used to calculate the patient’s risk every time the patient attends the office,
whereas the traditional risk scales can be used with a longer time interval, as the prognosis is
for 10 years. Thus, the two types of model could be used to assess the risk, for both the short
term and the long term. Although discrepancies exist between short-term and long-term
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predictions of CVD (Quispe et al., 2015), the regular use of short-term predictions, bearing
in mind the variability of the risk factors, can complement the long-term cardiovascular
models. In other words, our intention is for clinical practice to use the short-term model
regularly in those patients who attend their physician’s office frequently and use the
long-term model in those who only attend occasionally.

Obtaining simulations from longitudinal parameters is not easy and implies a
computational cost of about one minute with the statistical package R to implement a
total of 100 using a normal computer. On the other hand, the historical values of the
longitudinal parameters are recorded in the clinical history, which nowadays is usually
electronic (Palazón-Bru et al., 2014). Given this situation, all the information needed to
apply our models is already computerised, so the algorithms implemented in the statistical
package R can be adapted to the underlying language of the database containing the
values of the risk factors. Thus, all the calculations will be immediate for the healthcare
professional. In other words, just pressing a key will be enough to bring up on the screen
in a very short time the histogram shown in Fig. 2 and S2, the theoretical points system
and the set of values of the risk factors determining the median score. In addition, when
the physician decides to intervene he or she will indicate the duration of the intervention
and the possible values for the new patient. After introducing this new information the
two histograms could be shown together (Figs. 2 and 3, and S2), which will enable the
physician to see the benefit of the intervention.

As this algorithm was developed from a set of simulated data, we encourage others
who have cardiovascular databases like that used here to implement a model with the
characteristics described herein. Thus, if using real-life data achieves greater predictive
precision, we shall be able to apply this method to obtain the best short-term prognosis
and thus take the most appropriate decisions for the benefit of the patient. Nevertheless,
we should note that the method proposed is based on the combination of mathematical
models already used in medicine; therefore, in theory our model is quite correct as we have
been extremely strict in each of the steps to follow. In practice we can determine the value
of t̃ and the complexity of the models in order to apply the method proposed. Finally,
and importantly, the algorithm developed in this study can be used for other diseases or
knowledge areas like the economy.

CONCLUSIONS
We developed an algorithm to construct cardiovascular risk scales based on a points system
that also takes into account the variability of the risk factors. These issues are important as
the popularity of points systems in clinical practice and the improved predictive accuracy
using all the information recorded in the clinical history will improve the currently used
procedure. The theoretical construction of our method is based on the combination of
mathematical models already used in medicine, taking into account the characteristics of
each of these other models. As mentioned, the prediction time and the structure of each of
the models can change in practice, as well as being used for other diseases apart from CVD
or even applied to other areas of knowledge. Finally, as we do not have real data available

Palazón-Bru et al. (2016), PeerJ, DOI 10.7717/peerj.1673 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1673/supp-2
http://dx.doi.org/10.7717/peerj.1673/supp-2
http://dx.doi.org/10.7717/peerj.1673


for its immediate application in clinical practice, we encourage others to use our methods
with their own data sets. In the case of CVD, traditional cohort studies should be done,
but recording repeated measurements of risk factors both during the follow-up as well as
for the period immediately prior to baseline
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