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ABSTRACT 
This paper addresses the problem of predicting the critical parameters that characterize thermal runaway in a 

tubular reactor with wall cooling, introducing a new view of the n-th order kinetics reactions. The paper de-

scribes the trajectories of the system in the temperature-(concentration)n plane, and deduces the conditions 

for the thermal risk. 
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1. INTRODUCTION 
Substances that can react exothermically represent always a potential hazard. This risk can appear both in the 

storage of substances that can react by themselves and in chemical reactors in which exothermic processes 

are carried out under supposedly controlled conditions due to an incorrect operation. 

Barkelew (Barkelew 1959) established design criteria that give the safety conditions for various types of reac-

tion kinetics. The Barkelew criteria are based on the examination of a great number of cases in which the heat 

and mass balance equations were solved numerically. Further elaboration of the runaway conditions is due to 

(Dente 1964; Van Welsenaere 1970; Morbidelli and Varma 1982) between others. 

Most sensitivity criteria treat only the case where the kinetics of the reaction is first order, and only a few 

papers have been found treating different kinetics. For example (Velo, Bosch et al. 1996) treat the general 

second order kinetics. Recently, a state estimation method based on extended Kalman filter (EKF) was pre-

sented for nonlinear dynamical systems that are characterized by complex dynamic phenomena such as mul-

tiple steady state behavior(Karri 2011). 

In the present work, a new view of the n-th order kinetics reactions is presented and analyzed, describing the 

trajectories of the system in the temperature-(concentration)n plane. The initial concentrations conducing to 

the thermal instability are also computed by means of an algorithm. In essence, the paper interprets the first-

order findings of (Van Welsenaere 1970) to the n-th order space. 

2. MATHEMATICAL MODEL OF AN IDEAL TUBULAR REACTOR 
The continuity equation for one of the reacting components and the energy equation of a “one dimensional” 

tubular reactor with constant wall temperature, for a single reaction, constant fluid density and no difference 

in temperature between solid and fluid, may be written: 

 
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ur A

A       (1) 
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U may be an overall coefficient, accounting for the resistance to convective heat transfer at the inner and 

outer wall and to conduction through the wall itself or only an inner convection coefficient. Th represents the 

coolant temperature, assumed to be equal to the wall temperature. In what follows, ‘wall’ temperature will 

be used without really distinguishing both cases. 

The following discussion will be based on an irreversible reaction with a n-th order rate equation: 
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where kh is the kinetic constant at the coolant temperature (Th). 

The parameter Tad in eq. (5) represents the change in temperature that would present an adiabatic system 

where the complete reaction takes place (until CA equals zero), and is not a function of the kinetics. Is easy to 

check that: 
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Note that the dimensionless Nad is directly proportional to CA0. In some parts of the paper Nad'=Nad/CA0 

(m3/kmol in S.I. units) will be used, in order to remark that some curves will not depend on CA0. 

The relationship of the kinetic constant with kh may be expressed as: 
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3. THE REACTOR BEHAVIOUR REPRESENTED IN THE CA
n-v PLANE. 

Dividing eq. (2) by eq. (1) and making use of the preceding definitions, we can write: 
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Let us develop the former equation in terms of   n

AdCd  . For this purpose, assume a function of the 

type: 
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If the last expression is integrated: 
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let Z=xn, so 
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Applying this rule to eq. (8) we obtain: 

 
  n

Ah

n

Aadn

A

CNCN
ndC

d 211' exp
1  





   (13) 

that is also valid for n=1. To obtain an idea of the form of this equation and of the phenomenon of parametric 

sensitivity and runaway, Figure 1 presents various dotted curves (these curves are what will be called ‘trajec-

tories’ in the CA
n-v plane) obtained by integration of eq. (13) with different values of Nad but maintaining, as 

an example, the quotient Nh/Nad=2. Other parameters fixed in this example were n=2 and CA0=1. The bounda-

ry condition for the integration has been CA
n=CA0

n when =0=0 in this case. This Figure is completely 

equivalent for that presented in the case of first order reaction in the conversion-temperature plane 

(Westerterp 1984). Figure 1 also shows different arrows that represent the value and direction of the deriva-

tive eq. (13). In the Figure we see that, particularly above a certain value of Nad (between 42 and 52 in the 

figure), the curve completely misses the lower part of the locus with the results that the maximum of this 

trajectory will become very high and close to the value obtained for adiabatic operation, so runaway can be 

expected. We shall return later to this great sensitivity of the maximum to a variation in parameters. 
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[Figure 1] Temperature increase and locus of maxima temperatures for second order exothermic reactions in 

cooled tubular reactors. 
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The loci of the maxima and the inflexion points in the reactor temperature profile, when represented in the 

CA
n-v plane, will now be discussed in detail. 

The locus of the maxima 

In the maximum of the reactor temperature profile, the derivative eq. (13) equals zero and the following 

equation is easily obtained: 

  )exp(
' mm

ad

h
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N
C      (14) 

where the subindex ‘m’ would mean ‘loci of the maxima’. An important fact is that this loci does not depend 

on the order of reaction, the quotient Nh/N'ad being the most important parameter for the curve position. This 

equation can also be derived by setting dT/dL=0 in eq. (2), so it represents also the loci of the maxima in the 

T-L plane. 

Figure 1 presents the loci of the maxima (continuous line) for the case considered. Figure 2 presents the curve 

for different values of the quotient Nh/N'ad, and for n=2. In the same way that has been described for first 

order reaction in the T-L plane (Westerterp et al, 1984), when the cooling capacity is relatively small (say 

Nh/Nad<2), the locus lies very much to the right and the chance that, at constant N'ad, vm will exceed a certain 

value is increased. On the other hand, if Nh/N'ad is large, a large reagion exists where   n

AdCd   must be 

negative. Thus for Nh/N'ad=12 (see Figure 2) and a value of v0 between 0.16 and 3.7 no maximum in v will 

occur; accordingly v will be consistently lower than v0. In case v0 lies below 0.16, the reaction tempera-

ture will remain the value of 0.16. Finally, if the feed temperature corresponds to v0>3.7, the reaction tem-

perature will raise to a high value. 
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[Figure 2] Locus of maximum temperatures for n=2 reactions- The influence of Nh/N'ad. 
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By setting     0dCd
m

n

A , we found: 
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The solution of this equation is the temperature corresponding to the maximum of a ‘maxima curve’, vmm, 

given by: 

 1 mm     (16a) 

The position of this point ‘mm’ does not depend neither on Nh, Nad nor n, and it could be perfectly observed in 

Figure 2 (also in Figure 1). The corresponding concentration is 

 
'

ad

h

mm

n

A
eN

N
C      (16b) 

Figure 1 shows how the trajectories corresponding to stable systems (systems not presenting runaway condi-

tion) does intersect the loci of the maximum before its maximum (before the point ‘mm’). A particular im-

portance may be adscribed to the trajectory that intersects the ‘maxima curve’ in its maximum. According to 

the criterion established by (Van Welsenaere 1970) for first order reactions, it is proposed as a first objective 

criterion for runaway be based upon the point ‘mm’. The new criterion for n-th order reactions would then 

state: 

“The trajectory going through the maximum of the maxima curve is considered as critical, and therefore as 

locus of the critical inlet conditions for CA
n and v”. 

This is a criterion for runaway based on an intrinsic property of the system, not on an arbitrarily limited tem-

perature increase. 

Locus of inflexion points of the reactor temperature profiles 

The T(L)-curves shown in the work of (Van Welsenaere 1970) revealed that the hot spot became important 

when inflexion points occur before the temperature maximum in the T-L plane. 

From eq. (2) and (3), and using L’=L/u: 
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that using the notation presented, becomes: 
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Let us now calculate 
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In this equation, 
 

'dL
d 

 is given by eq. (18). On the other hand, in order to calculate 
'dL

dC n

A  , we see 

from eq. (8b) that 
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so, 
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applying the rule obtained in eq. (12), we found: 
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and then, 
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Inserting eqs. (23) and (18) into (19), equating to zero and rearranging we found the loci of the inflexion 

points: 
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being the subindex ‘i’ referred to the inflexion points. The following groups will be introduced to simplify the 

notation: 
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in this way, (24) reduces to: 

    0)1(exp2exp  iiii CBA     (26) 

This equation has no analytical solution. The complexity of the former mathematical expression makes diffi-

cult to work with it, and there is no possibility to obtain an explicit equation on i. In the case of first order 
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reactions  (Van Welsenaere 1970), an explicit equation was derived, with two solutions. The investigation of 

the sign of 22 'dLTd  in that simple case suggested a second objective criterion for runaway, derived from 

the occurrence of inflexion points before the maximum. 

4. CRITICAL INLET CONDITIONS 
The most important fact when working with possibilities of runaway is to find the inlet conditions that lead to 

the critical situations. Rigorously, this requires back integration. However, approximate values for the critical 

inlet conditions may be obtained by simple extrapolations. Several ways of extrapolation are possible. Two 

ways will be presented, so as to define an upper and a lower limit for the approximated critical inlet condi-

tions. 

The lower limit is based upon the property of the trajectories to start in the CA
n- plane with adiabatic slope 

for T0=Th, and to bend under this line due to heat transfer with the surroundings. Therefore, an adiabatic line 

starting from a point on a critical trajectory (critical according to one of the criteria) leads to a lower limit for 

the critical inlet conditions. The following relationship is then derived: 

   
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 00

1
  critical

n

criticalA

n
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Let us calculate then the slope of an adiabatic line in the CA
n- plane. From eq. (13), if we make Nh=0, then 

  n
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ndC
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   for an adiabatic system  (28) 

and combining with eq. (27) we finally obtain: 
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The critical point according to the first criterion is the maximum of the "maxima-curve", but as such it is also a 

point of the loci of inflection points, upon which the modified second criterion is based. This means that for 

the calculus of (CA)n
critical we can use eq. (14) with =critical (i.e. =mm=1) or eq. (26) with i=critical. 

Due to the complexity of eq. (14) we will use first criterion. 

Upper limits are based on the observation made by (Van Welsenaere 1970). As has been pointed out, the first 

order reaction system represented in the conversion-temperature plane is totally equivalent to a n-th order 

reaction represented in the CA
n- plane. Following the reasoning, and considering the tangents through the 

points =critical and CA
n=CA

n
critical, the value of CA0

n found is: 
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The value of h is zero by definition. The value of the slope at the critical conditions is calculated from eq. 

(13). In this way: 
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The lowest  nAC 0  is obtained for     00 
n

criticalA

n

A CdCd . After substituting and rearranging the result-

ing equation, we finally found that: 
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with  

 criticalcriticalc

critical

N

n









exp
     (33) 

The solution of this equation in  n
criticalAC  and substitution in eq. (31) would give the wanted  n

upperAC 0 . 

Application to different kinetics 

The former equations have been applied to different cases, in order to test their usefulness. The first example 

has been extracted from the book of (Westerterp 1984). Let a first order system be defined by the following 

parameters: 

k=7.4e8*exp(-13600./T) s-1 U=100 W/m2·K 

·CP=1300 J/m3·K   (-HR)=1300000 J/mol 

A/V=4/(25e-3) m-1   E/R=13600 K-1 

Suppose we are interested in calculate the initial concentration provoking the thermal risk for Th between 635 

and 735 K. If so, we then make critical=1, and calculate (CA)n
critical from eq. (16b) for each value of Th consid-

ered (in this case, n=1); these values of critical concentration are used in eq. (29) to evaluate (CA0)n
lower. On the 

other hand, the condition critical=1 is introduced in eq. (32) to find the (CA)n
critical for this second condition 

(trial and error), and (CA0)n
higher is calculated using eq. (31). The result of this calculus is presented in Figure 3. 

The Figure also presents the average value between upper and lower limit for the input concentration. For 

Th=635 K, the average is 0.55 mol/L (correct value as indicated in (Westerterp 1984)). This means that an ini-

tial concentration higher than 0.55 mol/L may provoke thermal instability. The average value between the 

two limits is close to the critical points predicted, as remarked in the original work of (Van Welsenaere 1970). 

It could be also observed that the average is closer to critical trajectories at higher values of Th (more prob-

lematic situations). 
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[Figure 3] Calculation of maximum initial concentration for n=1 and different Th. Cn vs. Th. 

Let the order be 2, 5 and 10, maintaining the others values of constants. The corresponding graphs are shown 

in Figures 4, 5 and 6. These Figures have two parts. In part (A) the Cn-Th graph is presented, and in part (B) the 

exponent of the concentration has been eliminated (i.e. C-Th is presented). Concerning to Figures 3, 4(A), 5(A) 

and 6(A) several facts may be remarked: 

- As commented above, the position of the critical points does not depend on the order of reaction. 

- The approximation (critical point)  (average upper and lower) is as valid as for first order kinetics. 

- All the curves corresponding to different orders are quite similar, and an average curve may be pro-

posed accounting for all the cases. 

Comparing Figures 3, 4(B), 5(B) and 6(B), the approximation continues being valid, but the position of the 

critical point does depend on the order and the curves corresponding to different orders are quite different. 
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(B) 

Figure 4. Calculation of maximum initial concentration for n=2 and different Th. (A) Cn vs. Th. (B) C vs. Th. 
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(B) 

Figure 5. Calculation of maximum initial concentration for n=5 and different Th. (A) Cn vs. Th. (B) C vs. Th. 
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(B) 

Figure 6. Calculation of maximum initial concentration for n=10 and different Th. (A) Cn vs. Th. (B) C vs. Th. 
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5. CONCLUSIONS 
A new view of the runaway for n-th order reactions has been presented. The trajectories of the curves in the 

(concentration)n-temperature plane have been introduced and compared to the curves conversion-

temperature for first order reactions. 

The translation of the criterion already accepted for thermal safety in first order processes, to the case of n-th 

order reactions has been done, and the steps in the calculation of the initial concentration provoking thermal 

risks have been also introduced. 

The procedure has been applied to a model system, for different orders of reaction, concluding that the ap-

proximation (critical point)  (average upper and lower limits) is valid for all kinetics, and that all the curves 

corresponding to different orders are quite similar. 
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