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The diene isomerization energies dataset: A difficult test
for double-hybrid density functionals?
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We have systematically analyzed the performance of some representative double-hybrid density
functionals (including PBE0-DH, PBE-QIDH, PBE0-2, XYG3, XYGJ-OS, and xDH-PBE0) for a
recently introduced database of diene isomerization energies. Double-hybrid models outperform their
corresponding hybrid forms (for example, PBE0-DH, PBE0-2, and PBE-QIDH are more accurate
than PBE0) and the XYG3, XYGJ-OS, and xDH-PBE0 functionals perform excellently, providing
root mean square deviation values within “calibration accuracy.” XYGJ-OS and xDH-PBE0 also rival
the best performing post-Hartree-Fock methods at a substantially lower cost. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4922058]

I. INTRODUCTION

The DIE60 database comprises a set of 60 diene isom-
erization energies shown in Figure 1 and has been recently
added to the catalog of existing databases for benchmarking
density functionals and wavefunction theories1 against highly
accurate data for π-conjugated systems.2,3 The database
includes linear (also branched) and cyclic dienes as reactants,
and more specifically CnH2n−2 and CnH2n−4 compounds with
n = 5 − 7, respectively, with products differing from reactants
in a double-bond migration along the conjugated backbone.
These reactions are also classified as hypohomodesmotic,4

that is, having equal numbers of carbon atoms in their various
possible hybridization states in both reactants and products,
and are known to be highly challenging for quantum-chemical
methods due to error cancellation issues, which might thus pro-
vide the right answer for the wrong reason, masking possibly
insightful conclusions about the performance of theoretical
methods unless systematic and hierarchical calculations are
performed.

Interestingly, and very recently, reference reaction ener-
gies were obtained at the highly accurate Wn-F12 method;5

thus, paving the way towards the further assessment of a large
number of cheaper methods in the search of a favourable trade-
off (if any) between accuracy and computational cost. More
specifically, density functionals belonging to all rungs of the
hierarchy of existing methods (i.e., pure, hybrid, and double-
hybrid expressions) have been extensively tested before.1 For
instance, selecting the BLYP, B3LYP, and B2-PLYP forms6–10

as examples of pure, hybrid, and double-hybrid expres-
sions and with large enough basis sets (cc-pVTZ/cc-pVQZ)

a)E-mail: michael.wykes@imdea.org
b)E-mail: jc.sancho@ua.es

to avoid basis sets incompleteness issues, the Mean Absolute
Deviation (MAD) values for the DIE60 dataset are, respec-
tively, 7.6, 6.0, and 3.9 kJ/mol, with the corresponding Root
Mean Square Deviation (RMSD) values being 8.3, 6.6, and
4.2 kJ/mol. Comparing density functionals within the same
rung, for example, the B3LYP, B3P86, and B3PW91 hybrid
forms which differ only in the correlation functional employed,
the MAD values are similar (6.0, 6.8, and 7.0 kJ/mol).
However, this is not the case when the weight of the exact-like
exchange (EXX) introduced into the hybrid form is varied,
as it occurs for instance when comparing the B3LYP (0.2
of EXX) and BHHLYP (0.5 of EXX) forms, with MAD
values of 6.0 and 3.8 kJ/mol, respectively. This general trend
is preserved independently of the nature of the functionals
selected: PBE and PBE011–13 (M06 and M06-2X14) were
found to yield errors of 8.6 and 6.5 (5.6 and 2.5) kJ/mol,
respectively. It thus seems that the weight of EXX plays a key
role in determining the accuracy of results. Note also that intra-
molecular non-covalent interactions, successfully introduced
through the D3 correction for dispersion,15 were also ruled
out as the main source of the reported discrepancies. Such
corrections did however consistently improve results across
all tested methods, reducing errors by approximately 1 kJ/mol
or less with respect to dispersion-uncorrected values.

Upon a closer inspection of the results provided by all the
tested double-hybrid forms, we can see unexpectedly large
variations going from very small to large errors; the MAD
obtained by B2GP-PLYP,16 for example, is only 1.2 kJ/mol,
and is thus close to the “calibration accuracy” of ±1 kJ/mol of
error with respect to reference results, while the B2K-PLYP
model17 yields a MAD value of 8.8 kJ/mol. The remaining
double-hybrids are within a 1–4 kJ/mol range of values, and
thus are within the “chemical accuracy” range defined as
±1 kcal/mol of error with respect to reference results. For the
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FIG. 1. Chemical structures of reac-
tants and products used for the DIE60
isomerization reactions. The hydrogen
atoms and corresponding C–H bonds
are omitted for clarity. Reprinted with
permission from L.-J. Yu and A. Kar-
ton, Chem. Phys. 441, 166–177 (2015).
Copyright 2015 by the Elsevier.

set of functionals analyzed thus far, not only the EXX weight
but also the weight and form of the perturbative part entering
into the expression is obtained by fitting against some training
set of accurate data.18 The particularly poor performance
of B2K-PLYP was attributed to its specific parameterization
against kinetic, and thus not to thermochemical data. However,
double-hybrid forms which allow separate coefficients for
same-spin and opposite-spin correlations, like DSD-BLYP19

or DSD-PBEP86,20 provided accurate values.
On the other hand, the families of parameter-free double-

hybrid functionals (obviously less affected by parameteriza-
tion issues) or X-based functionals (using a set of orbitals
(density) arising from a standard B3LYP or PBE0 calculation)
have not been tested yet on this challenging reactions set.
Among them, we will select here some of the most modern
expressions developed so far: PBE0-DH,21 PBE0-2,22 PBE-
QIDH and TPSS-QIDH,23 together with the XYG3,24,25

XYGJ-OS,26 and xDH-PBE027 models. In doing so, we aim
to systematically investigate for these functionals: (i) the

role played by intra-molecular interactions (by comparing
the results of dispersion-corrected PBE0-DH-D3(BJ)28 with
those of uncorrected PBE0-DH); (ii) the role played by the
nature of the exchange-correlation density functionals used
(by studying PBE-QIDH and TPSS-QIDH models, the latter
built with the TPSS exchange-correlation functional29 instead
of PBE); (iii) the role played by the underlying orbitals
(density) used to evaluate the double hybrid energy (by
analyzing the performance of the XYG3, XYGJ-OS, and xHD-
PBE0 models, which use the converged orbitals of a B3LYP
or PBE0 calculation for evaluating all the terms, including
the EXX and perturbative energies30); (iv) the role played by
the specific weight given to the various energy terms in the
final expression, which might be related to the self-interaction
error of common functionals;31 and (v) the role played by
different spin-scaling approaches applied to the perturbative
term (e.g., by comparing the XYG3 and the XYGJ-OS models,
the latter of which neglects same-spin correlation). In such
a way, we hope to systematically disentangle the effect(s)
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driving the final accuracy of the results, thus providing some
robust guidelines for the future improvement of these two
families of theoretical expressions.

II. THEORETICAL DETAILS

The starting point in the development of the parameter-
free family of double-hybrid density functionals is the Adia-
batic Connection Model (ACM), which defines the exchange-
correlation contribution, Exc, to the total Kohn-Sham (KS)
energy as

Exc[ρ] =
 1

0
Wxc,λ[ρ]dλ, (1)

with

Wxc,λ[ρ] = ⟨Ψλ |V̂ee|Ψλ⟩ − 1
2

 
ρ(r)ρ(r′)
|r − r′| dr′dr, (2)

being V̂ee the electron-electron interaction operator with
associated mean value ⟨Ψλ |V̂ee|Ψλ⟩. The meaning of Ψλ is the
wavefunction minimizing ⟨Ψλ |T̂ + λV̂ee|Ψλ⟩. Note how the
variable λ connects the non-interacting particle system (ideal
system for which λ = 0) with the interacting one (real system
for which λ = 1), assuming also that the external potential
is adjusted to hold the electron density ρ fixed at its value
for λ = 1. The mathematical form of Wxc,λ[ρ] needs to be
conveniently fixed, and some examples already existed in
the literature.32–34 One of the latter is the recently developed
quadratic functionWxc,λ[ρ] = a[ρ] + b[ρ]λ + c[ρ]λ2, which
after imposing some known and realistic conditions leads to
the final form of the PBE-QIDH model,

Exc[ρ] = λxEx[φ]EXX + (1 − λx)Ex[ρ]
+ λcEc[φ,φ′]PT2 + (1 − λc)Ec[ρ], (3)

with the values found for λx and λc given in Table I.
Ex[φ]EXX and Ec[φ,φ′]PT2 are, respectively, the EXX and the
perturbation correlation correction up to second-order (PT2),
both built with the set of occupied (φ) and unoccupied (φ′)
orbitals of the corresponding Kohn-Sham solution. The PBE0-
DH and PBE0-2 can be viewed as a simplification of the above
function for Wxc,λ[ρ] together with a somehow different
philosophy to obtain the final values for λi (i = x,c).35

TABLE I. Composition of the functionals used in this study (in chronological
order following the year of its publication).

Name λx λc Exchange Correlation Year

XYG3a 0.80 0.32 S+B88b LYP 2009
XYGJ-OSa 0.77 0.44c S VWN+LYPd 2011
PBE0-DH 1/2 1/8 PBE PBE 2011
PBE0-2 2−1/3 0.50 PBE PBE 2012
xDH-PBE0e 0.83 0.54c PBE PBEf 2012
PBE-QIDH 3−1/3 1/3 PBE PBE 2014
TPSS-QIDH 3−1/3 1/3 TPSS TPSS 2014

aUses B3LYP orbitals.
bUses 1-λx S and 0.2107 B88.
cIntroduces perturbative correlation only between opposite-spin particles.
dUses 0.2309 VWN and 0.2754 LYP.
eUses PBE0 orbitals.
f Uses 0.5292 PBE correlation.

On the other hand, the X-based functionals XYG3,
XYGJ-OS, and xDH-PBE0 models mainly differ in the set
of orbitals used for the calculation of all the energy terms
of Eq. (3). Whereas in the other PBE-based cases, one
uses the orbitals obtained self-consistently using a truncated
Kohn-Sham potential, i.e., discarding the perturbative part
of Eq. (3) and thus building the corresponding exchange-
correlation potential as vxc[ρ] = λx

δEEXX
x
δρ
+ (1 − λx) δEx[ρ]

δρ

+ (1 − λc) δEc[ρ]
δρ

; the X-based functionals employ orbitals
arising from a complete (and fully converged) B3LYP solution
(XYG3 and XYGJ-OS) or PBE0 solution (xDH-PBE0). A
further distinction is that XYG3, XYGJ-OS, and xDH-PBE0
are partially fitted to reproduce accurate benchmark datasets.
Table I summarizes the double-hybrid functionals selected
for this study. Note also how orbital-optimized double-hybrid
functionals have been recently developed,36 which can be
particularly interesting for open-shell systems, but are however
not expected to significantly influence the conclusions reached
here.

Other theoretical details are presented next: (i) the cc-
pVTZ and cc-pVQZ basis sets were used to avoid basis set
incompleteness issues mainly due to the Ec[φ,φ′]PT2 term—
the calculations can be thus safely considered as nearly
converged (vide infra) at the cc-pVQZ level; (ii) the G09
program suite37 was used for the PBE0-DH, PBE0-DH-
D3(BJ), PBE0-2, PBE-QIDH, and TPSS-QIDH calculations,
while the Firefly program38 (which is partially based on the
GAMESS-US source code39) was used for all XYG3, XYGJ-
OS, xDH-PBE0, and all other X-based calculations; (iii) the
geometries of all reactants and products were taken from
the original study and rigidly used herein; (iv) we refer in
the following to electronic-only energies and compare with
the all-electron, vibrationless, and non-relativistic reference
energies obtained at the Wn-F12 level; and (v) the frozen
core approximation was utilized for calculating PT2 energies.
Gaussian calculations used ultrafine grids. All self-consistent
energies (SCE) employed convergence criterion of 10−8 a.u.
Results of new functionals differing from existing functionals
only by the weighting of same- and opposite-spin PT2 energies
were obtained by hand by reweighting the PT2 terms computed
in either Firefly or Gaussian.

III. RESULTS AND DISCUSSION

The performance of all the selected double-hybrid density
functionals is gathered in Table II,40 together with the results
obtained in previous studies at the Hartree-Fock (HF), second-
order Møller-Plesset perturbation theory (MP2), and its spin-
component-scaled (SCS) version (SCS-MP2).41 Note that
most of the methods we will discuss formally scale as O(N5)
(though xDH-PBE0 and XYGJ-OS can be made to scale
as O(N4) and O(N3), respectively), where N is related to
the system size, selectively discarding other more costly
methods. We choose as a threshold (∆e) for recommending
a functional: ∆e = RMSD ≤ 2.1 kJ/mol (half the “chemical
accuracy” threshold of 4.2 kJ/mol). Note that the canonical
MP2 method has a RMSD of only 2.7 kJ/mol, and thus is close
to that threshold at roughly the same formal computational cost
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TABLE II. Average errors (kJ/mol) for the set of double-hybrid density
functionals initially considered. The cc-pVTZ and cc-pVQZ basis sets were
used.

Name RMSDa MADa MSDa

cc-pVTZ HFb 5.0 3.9 −0.7
MP2b 2.8 2.3 2.3
SCS-MP2b 1.1 0.8 0.3
PBE0-DH 5.67 4.93 4.82
PBE0-DH-D3(BJ) 5.21 4.50 4.44
PBE0-2 3.65 3.29 3.28
PBE-QIDH 4.35 3.84 3.78
TPSS-QIDH 4.38 3.86 3.82
XYG3 2.28 2.17 2.17
XYGJ-OS 1.05 0.79 0.41
xDH-PBE0 1.17 0.90 0.37

cc-pVQZ HFb 5.1 3.8 −0.9
MP2b 2.7 2.2 2.2
SCS-MP2b 1.0 0.6 0.3
PBE0-DH 5.54 4.78 4.64
PBE0-DH-D3(BJ) 5.08 4.35 4.26
PBE0-2 3.61 3.23 3.19
PBE-QIDH 4.29 3.77 3.67
TPSS-QIDH 4.29 3.76 3.69
XYG3 2.20 2.08 2.08
XYGJ-OS 1.00 0.72 0.35
xDH-PBE0 1.13 0.83 0.35

aRMSD means “root mean square deviation,” MAD means “mean absolute deviation,”
and MSD means “mean signed deviation.”.
bResults taken from Ref. 1.

as any density functional including a perturbative correction,
with perhaps the exception of the xDH-PBE0 and XYGJ-OS
models due to the algorithm advantage of computing only
the opposite-spin contribution to the correlation energy.26,42

This accuracy (∆e) will be thus considered as the envisioned
target for the double-hybrid functionals studied here. In order
to get a handle on the impact of the different effects analyzed,
we will dub any effect “very marked,” “marked,” or “small”

if the corresponding RMSD value is reduced by at least
1
2∆e ≈ 1.0 kJ/mol, 1

4∆e ≈ 0.5 kJ/mol, or less than the latter
value, respectively.

We would first like to bracket the effect of intra-molecular
dispersion interactions, by comparing the PBE0-DH and
PBE0-DH-D3(BJ) RMSD values, estimated here to be the
order of 0.5 kJ/mol independently of basis sets size, see
Table II, and thus classified to be in the limit of being
marked. By inspecting the difference between cc-pVTZ and
cc-pVQZ results, it can be concluded that the latter basis set
reduces errors by approximately 0.1 kJ/mol, and hence, that
basis-set extension beyond cc-pVQZ is not needed. Unless
otherwise mentioned, all the discussion in the following
refers to cc-pVQZ results. Furthermore, comparison of PBE-
QIDH and TPSS-QIDH error metrics shows that variation of
the underlying parameter-free exchange-correlation functional
(i.e., PBE or TPSS) has a very limited impact. Thus, effects
related to basis sets and the underlying exchange-correlation
functionals are considered small in the following and will not
be discussed further.

We report next in Figure 2 how the RMSD values for the
DIE60 dataset evolve as a function of the weight of the EXX
introduced into the exchange-correlation functional, i.e., the
value of λx in Eq. (3) for the double-hybrid forms belonging to
the PBE-based family of functionals. PBE, a pure (non-hybrid)
functional, for which λx = 0 by definition, provides the largest
error of 9.4 kJ/mol; PBE0 is the well-known hybrid functional
with λx = 0.25 for which the error is very markedly reduced
(relative to PBE) to 7.3 kJ/mol. This behavior prompted us
to study this effect further: PBE0-DH (λx = 0.50) leads to a
further marked decrease with respect to PBE0 (from 7.3 to
5.5 kJ/mol). Furthermore, the remaining PBE-based double-
hybrid forms included in this study (see Table I for λx values)
also perfectly fit into this trend (see Figure 2). Linear regres-
sion yields the result RMSD = 9.26 − 7.23λx (r2 = 0.9986)
for which extrapolation to λx = 1 predicts a RMSD value
of only 2.0 kJ/mol, and thus substantially lower than that

FIG. 2. Evolution of the RMSD for the
DIE dataset as a function of the EXX
weight of the PBE-based family of
functionals: PBE (λx = 0), PBE0 (λx

= 0.25), PBE0-DH (λx = 0.50), PBE-
QIDH (λx = 0.693), and PBE0-2 (λx

= 0.79). The dashed straight line is the
result of the linear regression performed
(see main text for coefficients).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.145.230.254 On: Tue, 16 Jun 2015 07:25:31



224105-5 Wykes et al. J. Chem. Phys. 142, 224105 (2015)

FIG. 3. Correlation between the MAD
for the DIE60 and SIE11 datasets. The
dashed straight line is the result of
the linear regression performed for the
PBE-based set of functionals.

provided by the HF method alone (5.1 kJ/mol) indicating that
the correlation correction also plays a leading role.

Note that for values of λx corresponding to XYG3 (λx

= 0.8033), XYGJ-OS (λx = 0.7731), and xDH-PBE0 (λx

= 0.8335), the previous fit would predict RMSD values
between 3.2 and 3.6 kJ/mol, and thus larger than those
finally obtained (2.2, 1.0, and 1.1 kJ/mol, respectively, see
Table II) indicating that in addition to large EXX weights,
other factors must also contribute to the improved performance
of these models, again highlighting the importance of PT2
correlation in determining the achieved accuracy. In fact, these
three models (XYG3, XYGJ-OS, and xDH-PBE0) outperform
the accuracy of MP2, with the latter two rivalling the best
performing O(N5) scaling method, SCS-MP2 (RMSD of just
1.0 kJ/mol) and even outperforming more costly methods
scaling as O(N6) such as MP3 and CCSD.1 Comparing results
of XYG3 and XYGJ-OS (both of which employ B3LYP
orbitals in their PT2 and large weights of EXX) highlights the
large impact of different spin-scaling approaches; neglecting
same-spin correlation and scaling only the opposite-spin
contribution in XYGJ-OS have a very marked influence (in
the right direction) on final accuracy. Additional systematic
investigations of the impact of PT2 spin-scaling within PBE-
based functionals support this conclusion (vide infra).

The qualitative correlation of RMSD with λx values
resembles that found in previous studies analyzing the
behavior of double-hybrid functionals with respect to the

underlying self-interaction error (SIE).43–45 To confirm this
point, in Figure 3, we present MAD values for the DIE60
and the SIE11 datasets, the latter of which was specifically
designed to test self-interaction errors.46 Indeed, we find
a large correlation between the performance of density
functionals for both datasets, independently of dispersion-
corrections and/or basis sets’ issues, with the XYG3 and xDH-
PBE0 functionals behaving as outliers of trends found for the
PBE-based family of functionals.

To investigate this behavior further, we will systematically
compare PBE0-2 and xDH-PBE0 models, which have rather
similar weights of λx and λc values (see Table I) but different
types of MP2 term: PBE0-2 uses MP2 canonical expres-
sion with orbitals arising from the underlying (truncated)
exchange-correlation potential, while xDH-PBE0 uses SOS-
MP2 scaling, neglecting same-spin correlation, together with
PBE0 self-consistent orbitals. Starting from these models,
we can modify them to have: (i) a DH functional based on
xDH-PBE0 but with slightly modified self-consistent orbitals,
arising from the PBE0-1/3 hybrid functional (λx = 1/3, see
Ref. 12) instead of the original PBE0 (λx = 1/4) one, dubbed
as xDH-PBE0-1/3; (ii) a DH functional based on xDH-PBE0,
but employing self-consistent orbitals of the truncated xDH-
PBE0 vxc in the PT2 term, dubbed SC-xDH-PBE0; (iii) a
DH functional based on xDH-PBE0 but applying now the λc

scaling to both opposite- and same-spin contributions, which
will be dubbed as MP2-xDH-PBE0; (iv) a DH functional based

TABLE III. Composition of the double-hybrid density functionals newly composed.

Name λx λ
opposite−spin
c λ

same−spin
c Exchange Correlation Orbitals

xDH-PBE0 0.83 0.54 . . . PBE PBE PBE0
xDH-PBE0-1/3 0.83 0.54 . . . PBE PBE PBE0-1/3
SC-xDH-PBE0 0.83 0.54 . . . PBE PBE Truncated vxc

MP2-xDH-PBE0 0.83 0.54 0.54 PBE PBE PBE0
PBE0-2 0.79 0.50 0.50 PBE PBE Truncated vxc

SOS-PBE0-2 0.79 0.50 . . . PBE PBE Truncated vxc

SOS-xDH-PBE0-2 0.79 0.50 . . . PBE PBE PBE0
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TABLE IV. Statistical analysis (kJ/mol) for the set of newly composed
double-hybrid density functionals. The cc-pVQZ basis set was used.

Name RMSDa MADa MSDa

xDH-PBE0 1.13 0.83 0.35
xDH-PBE0-1/3 1.46 1.02 0.59
SC-xDH-PBE0 2.59 1.76 1.11
MP2-xDH-PBE0 4.21 3.77 3.75
PBE0-2 3.61 3.23 3.19
SOS-PBE0-2 2.72 1.91 1.41
SOS-xDH-PBE0-2 1.38 0.99 0.66

aRMSD means “root mean square deviation,” MAD means “mean absolute deviation,”
and MSD means “mean signed deviation.”.

on PBE0-2 but neglecting the same-spin correlation, keeping
thus only the opposite-spin scaling but without reweighting
it, dubbed as SOS-PBE0-2; and (v) a DH functional based
on SOS-PBE0-2 but with the PBE0 self-consistent orbitals,
dubbed as SOS-xDH-PBE0-2. Table III summarizes the new
set of double-hybrid functionals used for this part of the study,
with the statistical metrics for their performance shown in
Table IV.

Perusing Table IV, we can observe the large interplay
found between opposite-spin scaling and the set of orbitals
used. In other words, one can imagine that any double-hybrid
expression might have potentially two distinct sources of error:
the error due to the energy approximation itself and the error
due to the corresponding approximate orbitals (density) used
therein, as it has been recently emphasized.47 Indeed, compar-
ing PBE0-2 and SOS-PBE0-2 data, the former effect can be
classified as very marked, reducing the RMSD from 3.63 to
2.72 kJ/mol. This effect is further confirmed when going from
xDH-PBE0 to MP2-xDH-PBE0, which undoes the opposite-
spin scaling and dramatically increases the RMSD from 1.13
to 4.21 kJ/mol. It seems that standard double-hybrid models
might suffer from some double-counting of same-spin corre-
lation, and thus neglecting that contribution to the perturbative
energy term would improve accuracy. On the other hand, when
PBE0 orbitals feed the SOS-PBE0-2 model, becoming thus
SOS-xDH-PBE0-2 according to our notation, the RMSD still
decreases passing from 2.72 to 1.38 kJ/mol, with this effect
being very marked again. Finally, using PBE0-1/3 orbitals
rather than those obtained from PBE0 for the xDH-PBE0
model slightly increases the error bars relative to xDH-PBE0.

IV. CONCLUSIONS

We have benchmarked a set of double-hybrid density
functionals from the recent literature: PBE0-DH, PBE-QIDH,
TPSS-QIDH, PBE0-2, XYG3, XYGJ-OS, and xDH-PBE0,
with respect to isomerization energies of a large set of diene
reactions, involving some double-bond migration and thus
constituting a database for π-conjugation effects. Our results
show that, on this dataset, any of the double-hybrid functionals
tested, including the parameter-free PBE0-DH and PBE-
QIDH examples, systematically improves accuracy relative to
corresponding hybrid methods, i.e., the gold-standard PBE0
functional, consistently providing lower RMSD and MAD

errors and rivalling the accuracy of other more empirical
double-hybrid methods.

Particularly, striking is the good performance of the
XYGJ-OS and xDH-PBE0 methods, reaching the so-called
“calibration accuracy” (an error deviation of around±1 kJ/mol
with respect to reference values) and rivalling the accuracy
of (more computationally expensive) wavefunction (post-HF)
methods. We have also systematically investigated the origin
of this accuracy, trying to disentangle the effects of the various
ingredients (orbitals, functionals, correlation contributions,
weights of every term, etc.) entering into the xDH-PBE0
formulation. We conclude that not only the orbitals used to
calculate the Ec[φ,φ′]PT2 part but also the neglect of its same-
spin correlation term (which reduces its formal scaling from
O(N5) to O(N4)) is key to its excellent accuracy. The threshold
(∆e) imposed at the beginning of the work, to investigate if any
DH density functional belonging to the parameter-free or the
X-based families might perform better than the MP2 method
itself (as measured by a RMSD below half the “chemical
accuracy” value of 2.1 kJ/mol), is fulfilled by the original
xDH-PBE0 model, but also by some variants (e.g., xDH-
PBE0-1/3 and SOS-xDH-PBE0-2) specifically devised here to
analyze the concurring effects, as well as by the closely related
XYGJ-OS model, with the XYG3 lying at the limit of it.

It thus seems that research on double-hybrid density
functionals will continue to pave the way towards more
accurate and less costly methods, which combine the best of
both wavefunction and density functional worlds, and will
stimulate (thanks to improved accuracy at low-cost) more
applied studies on π-conjugated molecules, especially once
algorithmic advantages of neglecting same-spin correlation
are fully exploited in widely available software.
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