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Palladium(II) complexes with a phosphino-oxime 

ligand: Synthesis, structure and applications to 

the catalytic rearrangement and dehydration of 

aldoximes 

Lucía Menéndez-Rodríguez,a Eder Tomás-Mendivil,a Javier Francos,b Carmen 

Nájera,c Pascale Crochet,a,* and Victorio Cadiernoa,* 

Treatment of [PdCl2(COD)] (COD = 1,5-cyclooctadiene) with 1 and 2 equivalents of 2-

(diphenylphosphino)benzaldehyde oxime, in dichloromethane at room temperature, led to 

the selective formation of [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH=NOH}] (1) and [Pd{κ2-(P,N)-2-

Ph2PC6H4CH=NOH}2][Cl]2 (2), respectively, which represent the first examples of Pd(II) 

complexes containing a phosphino-oxime ligand. These compounds, whose structures were 

fully confirmed by X-ray diffraction methods, were active in the catalytic rearrangement of 

aldoximes. In particular, using a 5 mol% of complex 1, a large variety of aldoximes could be 

cleanly converted into the corresponding primary amides at 100 ºC, employing water as 

solvent and without the assistance of any cocatalyst. Palladium nanoparticles are the active 

species in the rearrangement process. In addition, when the same reactions were performed 

employing acetonitrile as solvent, selective dehydration of the aldoximes to form the 

respective nitriles was observed. For comparative purposes, the catalytic behaviour of an 

oxime-derived palladacyclic complex has also been briefly evaluated.  

 

 

Introduction 

The coordination chemistry of heteroditopic ligands featuring 

mixed P,N-donor sets is an area of considerable current interest. 

The different steric and electronic properties associated with 

each donor fragment provide a unique reactivity to their metal 

complexes, a fact that has been widely exploited in 

homogeneous catalysis.1 Phosphines functionalized with amino, 

imino, pyridyl, iminophosphorane or oxazoline groups are 

typical examples of this class of ligands, and their coordination 

chemistry and catalytic applications have been broadly 

investigated.1 By contrast, bidentate phosphine ligands 

containing an oxime functionality as the second donor group 

are uncommon in the literature. Indeed, the first, and only 

examples, of metal complexes containing a coordinated 

phosphino-oxime, namely [M(COD){κ2(P,N)-

Cy2PCH2CH=NOH}][PF6] (A in Fig. 1), have been described 

very recently by Morris and co-workers.2 In addition to 

complexes A, which showed a modest activity in the catalytic 

hydrogenation of cyclooctene, the phosphino-aldoximes B and 

their oxides C were also employed by Wan and co-workers as 

auxiliary ligands in copper-catalyzed arylation reactions of 

amines3 and thiols,4 as well as in palladium-catalyzed Suzuki-

Miyaura cross-coupling processes.5 However, no well-defined 

metal complexes could be isolated in these cases. 
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Fig. 1 Structure of phosphino-oxime complexes A and ligands B-C. 
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Fig. 2 Structure of the oxime-palladacycles D-G. 

 The limited interest aroused by this type of P,N-donor 

ligands is quite surprising, since the coordination chemistry of 
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oximes has been extensively studied during the last decades.6 

Relevant to the field of catalysis are, for example, the oxime-

derived palladacycles D-G (Fig. 2), which have proven to be 

very efficient and versatile pre-catalysts for a wide range of 

carbon-carbon bond forming reactions in both organic and 

aqueous media.7 

 On the other hand, owing to the ease of access to the 

starting materials and the complete atom economy of the 

process, the metal-catalyzed rearrangement of aldoximes has 

emerged in recent years as an attractive strategy for the 

preparation of primary amides (Scheme 1).8,9 This 

transformation, closely related to the well-known Beckmann 

rearrangement of ketoximes,10 involves a 

dehydration/rehydration sequence via the formation of a 

discrete nitrile intermediate. Mechanistic studies by Williams 

and co-workers have also demonstrated that the hydration step 

can be effected by the own aldoxime substrate, acting as a 

water surrogate and hydrating the nitrile through the formation 

of a five-membered metallacyclic intermediate (Scheme 1).11 
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Scheme 1 The catalytic rearrangement of aldoximes and its mechanism. 

 The first general protocol for this reaction, based on the use 

of the Wilkinson´s catalyst [RhCl(PPh3)3], was described by 

Chang and co-workers in 2003.12,13 Since then, a huge number 

of catalytic systems have been developed, with those based on 

ruthenium complexes being the most common.9 Conversely, 

palladium-based catalysts have so far been poorly studied. 

Indeed, in addition to [Pd(acac)2] early employed by Noltes and 

co-workers in the rearrangement of acetaldoxime, 

benzaldoxime and p-hydroxybenzaldoxime,13c,d only the use of 

[Pd(en)(NO3)2] (en = 1,2-ethylenediamine) has been 

described.14,15 This complex (10 mol%) proved to be active in 

the rearrangement of a series of non-conjugated aldoximes in 

water or MeOH at 60 ºC, but resulted completely inoperative 

with aromatic or α,β-unsaturated substrates.14 

 With all these precedents in mind, and following with our 

interest in this catalytic transformation,9,16 herein we report the 

first examples of palladium complexes containing a phosphino-

oxime ligand, which have enabled us to develop a more general 

palladium-based protocol for the rearrangement of aldoximes in 

water. In addition, simply by replacing water by acetonitrile as 

solvent, an expedient method for the selective conversion of 

aldoximes into nitriles has been set. For comparative purposes, 

the catalytic behaviour of an oxime-derived palladacycle D 

(Fig. 2; R1 = OH, R2 = Me) is also briefly discussed. 

Results and discussion 

Treatment of the Pd(II) precursor [PdCl2(COD)] (COD = 1,5-

cyclooctadiene) with a stoichiometric amount of commercially 

available 2-(diphenylphosphino)benzaldehyde oxime, in 

dichloromethane at room temperature, led to the selective 

formation of the mononuclear complex [PdCl2{κ2-(P,N)-2-

Ph2PC6H4CH=NOH}] (1) (Scheme 2). This compound, which 

results from the expected exchange of the labile COD ligand, 

was isolated as an air-stable yellow solid in 88% yield. 

Characterization of 1 was straightforward by following its 

analytical and spectroscopic data (details are given in the 

Experimental section). Key spectroscopic features are: (i) 

(31P{1H} NMR) a singlet resonance at δP 28.0 ppm, consistent 

with the coordination of the PPh2 unit to the metal (Δδ = 42 

ppm with respect to the free ligand). And (ii) (1H and 13C{1H} 

NMR) the presence of characteristic resonances for the 

aldoxime CH=NOH protons and carbon at δH 8.28 (d, 4JPH = 

2.7 Hz, CH=N) and 11.90 (br, OH) ppm, and δC 148.9 (d, 3JPC 

= 8.8 Hz) ppm, respectively. In addition, a X-ray diffraction 

study unequivocally corroborated the postulated structure 

(details are given in the ESI file). 
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Scheme 2 Synthesis of complexes 1 and 2. 

 Incorporation of two molecules of the phosphino-oxime 

ligand in the coordination sphere of palladium could be easily 

achieved by treatment, at room temperature, of a 

dichloromethane solution of [PdCl2(COD)] with a two-fold 

excess of 2-Ph2PC6H4CH=NOH. By this way, the dicationic 

complex [Pd{κ2-(P,N)-2-Ph2PC6H4CH=NOH}2][Cl]2 (2) was 

isolated as an air-stable yellow solid in 82% yield (Scheme 2), 

and its structure fully confirmed by X-ray diffraction methods 

(see ESI). Alternatively, this compound could also be obtained 

in similar yield from the reaction of 1 with one equivalent of 2-

Ph2PC6H4CH=NOH (Scheme 2). In complete accord with the 

structure found in the solid state, the 31P{1H} NMR spectrum of 

2 showed the presence of a singlet resonance at δP 30.8 ppm. 

However, both the 1H and 13C{1H} NMR spectra displayed in 

general quite broad signals (see the Experimental section). This 

fact, along with the low molar conductivity showed by this 

complex in acetone solution (Λ = 95 Ω·cm2·mol-1; in the lower 
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limit for 1:1 electrolytes), suggests a fluxional behaviour, 

involving probably an equilibrium in solution between 2 and 

the monocationic 2´ and neutral 2´´ species (Scheme 3). The 

establishment of such equilibriums is not surprising given the 

well-known hemilabile properties of metal-coordinated P,N-

donor ligands.1,17 
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Scheme 3 Proposed behaviour of [Pd{κ2-(P,N)-2-Ph2PC6H4CH=NOH}2][Cl]2 (2) in 

solution. 

 Once characterized, the catalytic potential of complexes 1 

and 2 to promote the rearrangement of aldoximes was evaluated 

using commercially available (E)-benzaldoxime as model 

substrate. In a typical experiment, the corresponding palladium 

catalyst (5 mol %) was added to a 0.33 M aqueous solution of 

(E)-benzaldoxime and the mixture heated in an oil bath at 100 

ºC for 24 h. To our delight, both complexes were found to be 

active, providing benzamide in ≥ 98% GC-yield without adding 

any cocatalyst (entries 2 and 4 in Table 1). Complete 

consumption of the starting aldoxime, along with the formation 

of only very small amounts of benzonitrile (< 2%) as the only 

byproduct, was in both cases observed by GC. We would like 

to recall at this point that complex [Pd(en)(NO3)2] was unable 

to rearrange this aromatic aldoxime at 60 ºC,14 and that 

[Pd(acac)2] required of a higher temperature (180 ºC) to achieve 

a good conversion.13c,d On the other hand, to determine if 

differences in activity between complexes 1 and 2 exist, the 

same reactions were stopped at a shorter time (5 h; entries 1 and 

3). The results obtained pointed out the superior effectiveness 

of the neutral complex [PdCl2{κ2-(P,N)-2-

Ph2PC6H4CH=NOH}] (1), which was able to convert 68% of 

the starting aldoxime vs 28% in the case of 2. 

Table 1 Catalytic rearrangement of (E)-benzaldoxime using the palladium(II) 

complexes 1 and 2.a 

H2O / 100 ºC

5 mol% of Pd
O

Ph NH2

N

Ph H

OH

 

Entry Catalyst Time (h) Conv. (%)b Yield (%)b 

1 1 5 68 66 

2 1 24 > 99 99 

3 2 5 28 21 

4 2 24 > 99 98 

a Reactions were performed under Ar atmosphere starting from 1 mmol of 
(E)-benzaldoxime (0.33 M in water). b Determined by GC (uncorrected GC 

areas). Differences between GC conversions and yields correspond to the 

intermediate benzonitrile present in the reaction mixture. 

 The scope of the reaction was next explored using the most 

active complex [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH=NOH}] (1). 

First, we focused on a series of substituted benzaldoximes,18 

performing the catalytic reactions routinely at 100 ºC for 24 h 

with a palladium loading of 5 mol % (entries 2-13 in Table 2). 

Thus, as observed for the model (E)-benzaldoxime (entry 1), 

complex 1 was able to generate the corresponding primary 

amides in high yields (≥ 79% by GC; ≥ 68% after 

chromatographic purification) regardless of the substitution 

pattern and electronic nature of the starting benzaldoximes. 

However, we must note that those substrates featuring electron-

donating groups showed a higher reactivity (entries 2-6 vs 7-

13). Thus, these benzaldoximes were completely consumed, 

generating the corresponding benzamides with a very high 

selectivity (less than 2% of the nitrile intermediates was present 

in the crude reaction mixtures; entries 2-6). Conversely, 

incomplete conversions and a lower selectivity in the amide 

product were in general observed with benzaldoximes 

containing electron-withdrawing functionalities (entries 7-13). 

A similar result was obtained starting from 2-naphthaldoxime 

(entry 14), from which the corresponding primary amide was 

formed in a modest 69% yield. Assuming that the reaction 

proceeds through the mechanism proposed by Williams 

(Scheme 1, right),19 in which two molecules of the substrate 

coordinates to the metal, the high steric requirements of this 

aldoxime may be responsible for the lower reactivity observed. 

Table 2 Catalytic rearrangement of aldoximes using the palladium(II) 

complex [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH=NOH}] (1)a 

H2O / 100 ºC / 24 h

1 (5 mol%)
O

R NH2

N

R H

OH

E/Z mixture  

Entry Aldoxime Conv. (%)b Yield (%)b 

1 R = Ph > 99 99 (87) 

2 R = 2-C6H4Me > 99 99 (90) 
3 R = 3-C6H4Me > 99 99 (86) 

4 R = 4-C6H4Me > 99 99 (88) 

5 R = 4-C6H4OMe > 99 98 (84) 
6 R = 4-C6H4SMe > 99 98 (88) 

7 R = 3-C6H4Cl 97 97 (85) 

8 R = 4-C6H4Cl 92 88 (76) 
9 R = 2,6-C6H3Cl2 > 99 99 (85) 

10 R = 2-Cl-6-C6H3F 96 93 (80) 

11 R = C6F5 > 99 93 (82) 
12 R = 2-C6H4NO2 88 86 (71) 

13 R = 4-C6H4NO2 79 79 (68) 

14 R = 2-Naphthyl 76 69 (58) 
15 R = n-C5H11 98 97 (85) 

16 R = n-C6H13 > 99 98 (84) 

17 R = CH2CH2Ph > 99 99 (90) 
18 R = Cy 84 84 (75) 

19 R = (S)-Citronellyl > 99 99 (84) 

20 R = (E)-CH=CHPh > 99 99 (91) 
21 R = (E)-CH=CH-4-C6H4Cl > 99 99 (88) 

a Reactions were performed under Ar atmosphere starting from 1 mmol of the 

corresponding aldoxime (0.33 M in water). b Determined by GC (uncorrected 
GC areas), isolated yields after the work-up are given in brackets. 

Differences between GC conversions and yields correspond to the 

intermediate nitrile present in the reaction mixture. 

 As shown in Table 2, complex [PdCl2{κ2-(P,N)-2-

Ph2PC6H4CH=NOH}] (1) was also effective in the 

rearrangement of a variety of aliphatic (entries 15-20) and α,β-
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unsaturated aldoximes (entries 20-21), thus confirming the wide 

scope of this catalytic transformation. With the exception of the 

bulky cyclohexylaldoxime (entry 18), conversions above 98% 

were in all the cases achieved, allowing the isolation of the 

corresponding amides in high yields (≥ 84%). As in the 

precedent cases, the presence of only very minor amounts of 

the intermediate nitriles was observed by GC in the crude 

reaction mixtures. Furthermore, the chiral centre of (S)-

citronellaldoxime remained unaffected during the 

rearrangement reaction (entry 19).20 

 Employing again (E)-benzaldoxime as model substrate, we 

also studied the effect of the solvent in the rearrangement 

process (see Table 3). To our surprise, under the same 

experimental conditions, the use of organic solvents instead of 

water proved highly detrimental since, in most of the cases, the 

starting aldoxime was recovered mostly unchanged after the 24 

h of heating. Only when the reaction was performed in 

acetonitrile complete consumption of the substrate was 

observed (entry 4). However, benzonitrile instead of benzamide 

was in this case predominantly formed (ca. 97% by GC). We 

must note at this point that a similar reaction outcome was 

reported by Tambara and Pantoş employing complex 

[Pd(en)(NO3)2] as catalyst.14 Their reactions performed in 

acetonitrile stopped at the aldoxime dehydration step, yielding 

the corresponding nitrile along with one equivalent of 

acetamide. Inspection by 1H and 13C{1H} NMR spectroscopy of 

the crude reaction mixture revealed that an equimolar amount 

of acetamide is also generated in our reaction. The H2O transfer 

from the starting aldoxime to the acetonitrile solvent further 

evidences the operability of the bimolecular mechanism 

proposed by Williams (Scheme 1, right) with complex 1. 

Table 3 Catalytic rearrangement of (E)-benzaldoxime using the palladium(II) 

complex 1 in different solvents.a 

solvent / 100 ºC / 24 h

1 (5 mol%)
O

Ph NH2

N

Ph H

OH

 

Entry Solvent Conv. (%)b Yield (%)b 

1 Water > 99 99 

2 DMSO 7 5 
3 DMF 4 traces 

4 MeCN > 99 3 

5 1,4-Dioxane 2 traces 
6 Glycerol 18 8 

7 iPrOH 8 3 

8 Toluene 7 traces 

a Reactions were performed under Ar atmosphere starting from 1 mmol of 

(E)-benzaldoxime (0.33 M solutions). b Determined by GC (uncorrected GC 

areas). Differences between GC conversions and yields correspond to the 

intermediate benzonitrile present in the reaction mixture. 

 The catalytic dehydration of aldoximes represents a useful 

and benign method for the synthesis of nitriles, since it avoids 

the use of toxic cyanide sources commonly employed in the 

preparation of this relevant class of compounds. Consequently, 

great efforts have been devoted to this reaction in recent years, 

and a relatively large number of catalytic systems are now 

available.21 However, as for the rearrangement process, those 

systems based on palladium are still scarce. Thus, in addition to 

[Pd(en)(NO3)2],
14 only the use of the [Pd(OAc)2]/PPh3/Cs2CO3 

combination has been so far described.22 This fact prompted us 

to study in more detail the usefulness of complex [PdCl2{κ2-

(P,N)-2-Ph2PC6H4CH=NOH}] (1) for this dehydration process. 

To this end, the same aldoximes employed in the rearrangement 

reactions were subjected to the action of complex 1 (5 mol%) in 

acetonitrile. As shown in Table 4, after 24 h of heating at 100 

ºC, all of them could be smoothly converted into the 

corresponding nitriles in very high yields (≥ 93% by GC; ≥ 

82% after chromatographic purification), thus confirming the 

wide scope of 1.23 

Table 4 Catalytic dehydration of aldoximes using the palladium(II) complex 

[PdCl2{κ2-(P,N)-2-Ph2PC6H4CH=NOH}] (1)a 

MeCN / 100 ºC / 24 h

1 (5 mol%)
NR

N

R H

OH

E/Z mixture  

Entry Aldoxime Conv. (%)b Yield (%)b 

1 R = Ph > 99 97 (88) 

2 R = 2-C6H4Me > 99 > 99 (91) 

3 R = 3-C6H4Me > 99 > 99 (90) 
4 R = 4-C6H4Me > 99 > 99 (89) 

5 R = 4-C6H4OMe > 99 99 (90) 

6 R = 4-C6H4SMe > 99 99 (87) 
7 R = 3-C6H4Cl 95 95 (80) 

8 R = 4-C6H4Cl > 99 99 (90) 

9 R = 2,6-C6H3Cl2 > 99 > 99 (92) 
10 R = 2-Cl-6-C6H3F > 99 > 99 (91) 

11 R = C6F5 93 93 (82) 

12 R = 2-C6H4NO2 > 99 99 (86) 

13 R = 4-C6H4NO2 99 99 (84) 

14 R = 2-Naphthyl > 99 > 99 (89) 

15 R = n-C5H11 99 99 (89) 
16 R = n-C6H13 > 99 > 99 (90) 

17 R = CH2CH2Ph 99 99 (88) 

18 R = Cy > 99 > 99 (92) 
19 R = (S)-Citronellyl > 99 > 99 (89) 

20 R = (E)-CH=CHPh > 99 > 99 (90) 

21 R = (E)-CH=CH-4-C6H4Cl > 99 > 99 (87) 
22c R = 3-C6H4Cl 78 78 

23c R = C6F5 23 23 

24c R = 2-Naphthyl 72 72 
25c R = Cy 69 69 

a Reactions were performed under Ar atmosphere starting from 1 mmol of the 

corresponding aldoxime (0.33 M in acetonitrile). b Determined by GC 
(uncorrected GC areas), isolated yields after the work-up are given in 

brackets. Differences between GC conversions and yields correspond to the 

primary amide present in the reaction mixture. c Reactions performed under 

refluxing conditions (82 ºC) instead of 100 ºC. 

 Remarkably, contrary to the case of the rearrangement 

reaction, the steric hindrance associated to the bulky 2-

naphthyl- and cyclohexylaldoxime (entries 14 and 18) now was 

not detrimental, and the desired 2-naphthalene- and 

cyclohexene-carbonitrile were generated in almost quantitative 

yield. In addition to one acetonitrile molecule, coordination of 

only one molecule of the substrate to the metal is in this case 

required, which would explain the observed differences 
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between both processes. On the other hand, the 1H and 13C{1H} 

NMR spectra obtained from the crudes confirmed the formation 

of an equimolar amount of acetamide with respect to the 

generated nitrile in all the reactions (trace amounts of the 

primary amides resulting from the rearrangement of the 

substrates were also observed in some cases). As shown in 

entries 22-25, incomplete transformations were observed at a 

lower temperature (reflux conditions). 

 Noteworthy, while the reaction profiles of the 

rearrangement processes in water are characterized by an 

induction period (ca. 2 h in the case of the model (E)-

benzaldoxime; see Fig. 3), in the dehydration reactions 

performed in acetonitrile the starting aldoximes are consumed 

from the beginning (see Fig. 4; only the first 9 hours are shown 

in both graphics). This fact, along with the gradual appearance 

of a black solid suspension in the rearrangement reactions 

carried out in water, raised the question on the real 

homogeneous or heterogeneous nature of both processes. To 

shed light on this point, the rearrangement and dehydration 

reactions of (E)-benzaldoxime were performed in the presence 

of mercury.24 Thus, while no major difference in activity was 

found in the dehydration reaction in acetonitrile, a very poor 

conversion of (E)-benzaldoxime into benzamide was observed 

after 24 h in water (15% vs > 99% in the absence of Hg(0)). It 

appears therefore that different active species, i.e. Pd(0) 

nanoparticles and homogeneous Pd(II) complexes, are 

operative in water and acetonitrile, respectively.25 

 
Fig. 3 Product distribution as a function of time for the palladium-catalyzed 

rearrangement of (E)-benzaldoxime in water. 

 
Fig. 4 Product distribution as a function of time for the palladium-catalyzed 

dehydration of (E)-benzaldoxime in acetonitrile. 
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Fig. 5 Structure of the oxime-derived palladacyclic compound 3. 

 Finally, for comparative purposes, we also studied the 

catalytic behaviour of the commercially available oxime-

derived palladacycle 3 (Fig. 5) in the same catalytic 

transformations. The results obtained in the rearrangement and 

dehydration of four selected aldoximes are shown in Tables 5 

and 6, respectively. Interestingly, performing the reactions 

under identical experimental conditions, we found that, 

although active and selective in both processes, this 

palladacyclic compound is less effective than the phosphino-

aldoxime complex [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH=NOH}] 

(1), particularly with aromatic substrates.26 This fact together 

with the limitations found with other previously described 

palladium catalysts make complex 1 an appealing option for 

future practical applications. 

Table 5 Catalytic rearrangement of aldoximes using the oxime-derived 

palladacyclic complex 3a 

H2O / 100 ºC / 24 h

3 (5 mol% of Pd)
O

R NH2

N

R H

OH

E/Z mixture  

Entry Aldoxime Conv. (%)b Yield (%)b 

1 R = Ph 72 69 

2 R = 4-C6H4OMe 64 59 

3 R = 4-C6H4Cl 78 73 
4 R = n-C6H13 98 96 

a Reactions were performed under Ar atmosphere starting from 1 mmol of the 

corresponding aldoxime (0.33 M in water). b Determined by GC (uncorrected 
GC areas). Differences between GC conversions and yields correspond to the 

intermediate nitrile present in the reaction mixture. 

Table 6 Catalytic dehydration of aldoximes using the oxime-derived 

palladacyclic complex 3a 

MeCN / 100 ºC / 24 h

3 (5 mol% of Pd)
NR

N

R H

OH

E/Z mixture  

Entry Aldoxime Conv. (%)b Yield (%)b 

1 R = Ph 74 74 

2 R = 4-C6H4OMe 61 61 
3 R = 4-C6H4Cl 85 85 

4 R = n-C6H13 > 99 98 

a Reactions were performed under Ar atmosphere starting from 1 mmol of the 
corresponding aldoxime (0.33 M in acetonitrile). b Determined by GC 

(uncorrected GC areas). Differences between GC conversions and yields 

correspond to the primary amide present in the reaction mixture. 
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Conclusions 

In this work we have described the first examples of palladium 

complexes containing a phosphino-oxime ligand, namely 

[PdCl2{κ2-(P,N)-2-Ph2PC6H4CH=NOH}] (1) and [Pd{κ2-(P,N)-

2-Ph2PC6H4CH=NOH}2][Cl]2 (2). In addition, we have also 

demonstrated the utility of these species in catalysis. Thus, 

using 1 and just by selecting the appropriate solvent, high-

yielding, general and selective protocols for the conversion of 

aldoximes into primary amides and nitriles could be developed 

through the rearrangement or dehydration of the substrates, 

respectively. Remarkably, both processes, which have a high 

synthetic interest, had been little studied using palladium 

catalysts, and the previous examples did not show the wide 

scope featured by complex [PdCl2{κ2-(P,N)-2-

Ph2PC6H4CH=NOH}] (1). The results reported herein support 

further studies on the coordination chemistry and catalytic 

applications of phosphino-oxime ligands, a field that remains 

almost unexplored. 

Experimental 

General methods 

The manipulations were performed under argon atmosphere 

using vacuum-line and standard Schlenk or sealed-tube 

techniques. All reagents were obtained from commercial 

suppliers and used as received, with the exception of complex 

[PdCl2(COD)],27 and most of the aldoximes included in Tables 

2 and 4,16a which were prepared following the methods 

previously reported in the literature. Gas chromatography (GC) 

measurements were performed on a Hewlett-Packard HP6890 

equipment using a Supelco Beta-DexTM 120 column (30 m 

length; 250 µm diameter). Infrared spectra were recorded on a 

Perkin-Elmer 1720-XFT spectrometer. Conductance 

measurements were made at room temperature, with ca. 10-3 

mol˖dm-3 acetone solutions, employing a Jenway PCM3 

conductimeter. NMR spectra were recorded on Bruker DPX-

300 or AV400 instruments. The chemical shift values (δ) are 

given in parts per million and are referred to the residual peak 

of the deuterated solvent employed (1H and 13C) or to an 

external 85% aqueous H3PO4 solution (31P). DEPT experiments 

have been carried out for all the compounds reported. 

Elemental analyses were provided by the Analytical Service of 

the Instituto de Investigaciones Químicas (IIQ-CSIC) of 

Seville. 

Synthesis of [PdCl2{κ
2-(P,N)-2-Ph2PC6H4CH=NOH}] (1) 

A solution of [PdCl2(COD)] (0.200 g, 0.700 mmol) and 2-

Ph2PC6H4CH=NOH (0.214 g, 0.700 mmol) in 30 mL of 

dichloromethane was stirred at room temperature for 4 h. The 

solvent was then removed under reduced pressure to give a 

yellow solid residue, which was washed with a diethyl 

ether/hexane mixture (1:1 v/v; 3 x 20 mL) and dried in vacuo. 

Yield: 0.297 g (88%). IR (KBr):  = 3560 (br, OH), 1633 (m, 

C=N) cm-1. 31P{1H} NMR (CDCl3):  = 28.0 (s) ppm. 1H NMR 

(CDCl3):  = 11.90 (s, 1H, OH), 8.28 (d, J = 2.7 Hz, 1H, 

CH=N), 7.80-7.43 (m, 13H, CHarom), 7.13 (dd, J = 10.8 and 6.6 

Hz, 1H, CHarom) ppm. 13C{1H} NMR (CDCl3):  = 148.9 (d, J = 

8.8 Hz, C=N), 135.6 (d, J = 9.5 Hz, CHarom), 135.0 (s, CHarom), 

134.0 (d, J = 10.6 Hz, CHarom), 133.5 (s, CHarom), 133.3 (s, 

CHarom), 133.1 (d, J = 10.0 Hz, Carom), 132.6 (d, J = 3.2 Hz, 

CHarom), 129.1 (d, J = 15.8 Hz, CHarom), 126.2 (d, J = 66.5 Hz, 

Carom), 119.2 (d, J = 49.1 Hz, Carom) ppm. Elemental analysis 

calcd. (%) for PdC19H16Cl2NOP: C 47.28, H 3.34, N 2.90; 

found: C 47.12, H 3.39, N 3.01. 

Synthesis of [Pd{κ2-(P,N)-2-Ph2PC6H4CH=NOH}2][Cl]2 (2) 

A solution of [PdCl2(COD)] (0.100 g, 0.350 mmol) and 2-

Ph2PC6H4CH=NOH (0.214 g, 0.700 mmol) in 20 mL of 

dichloromethane was stirred at room temperature for 6 h. The 

solvent was then removed under reduced pressure to give a 

yellow solid residue, which was washed with diethyl ether (3 x 

20 mL) and dried in vacuo. Yield: 0.226 g (82%). IR (KBr):  = 

3520 (br, OH), 1616 (m, C=N) cm-1. 31P{1H} NMR (CD2Cl2):  

= 30.8 (s) ppm. 1H NMR (CD2Cl2):  = 13.8 (br, 2H, OH), 8.39 

(br, 6H, CHarom), 8.20 (d, J = 6.3 Hz, 2H, CH=N), 7.65-7.41 (m, 

18H, CHarom), 6.94 (m, 4H, CHarom) ppm. 13C{1H} NMR 

(CD2Cl2):  = 151.4 (pseudo t, J = 9.7 Hz, C=N), 136.4 (br, 

Carom), 134.4 (br, CHarom), 133.4 (m, Carom), 132.1 (br, CHarom), 

131.7 (br, CHarom), 128.9 (br, CHarom), 125.7 (m, Carom) ppm. 

Elemental analysis calcd. (%) for PdC38H32Cl2N2O2P2: C 57.92, 

H 4.09, N 3.56; found: C 58.01, H 4.03, N 3.62. 

General procedure for the catalytic rearrangement of 

aldoximes with [PdCl2{κ
2-(P,N)-2-Ph2PC6H4CH=NOH}] (1) 

The corresponding aldoxime (1 mmol), water (3 mL), and the 

palladium(II) complex 1 (0.024 g, 0.05 mmol) were introduced 

into a Teflon-capped sealed tube, and the reaction mixture 

stirred at 100 °C for 24 h. After this time, a sample of ca. 20 μL 

was taken and, after extraction with CH2Cl2 (3 mL), analyzed 

by GC to determine the composition of the reaction mixture. To 

isolate the amide products, whose identity was assessed by 

comparison of their NMR spectroscopic data with those 

reported in the literature, the solvent was eliminated under 

reduced pressure and the crude reaction mixture purified by 

column chromatography over silica gel using CH2Cl2 as eluent. 

General procedure for the catalytic dehydration of 

aldoximes with [PdCl2{κ
2-(P,N)-2-Ph2PC6H4CH=NOH}] (1) 

The corresponding aldoxime (1 mmol), acetonitrile (3 mL), and 

the palladium(II) complex 1 (0.024 g, 0.05 mmol) were 

introduced into a Teflon-capped sealed tube, and the reaction 

mixture stirred at 100 °C for 24 h. After this time, a sample of 

ca. 20 μL was taken and, after extraction with CH2Cl2 (3 mL), 

analyzed by GC to determine the composition of the reaction 

mixture. To isolate the nitrile products, whose identity was 

assessed by comparison of their NMR spectroscopic data with 

those reported in the literature, the solvent was eliminated 

under reduced pressure and the crude reaction mixture purified 

by column chromatography over silica gel using an ethyl 

acetate-hexane mixture (40:60 v/v) as eluent. 
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