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electrónica, Avda. de la Universidad, 3202, Elche, Alicante, Spain
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Abstract: We analyze particle dynamics in an optical force field generated
by helical tractor beams obtained by the interference of a cylindrical beam
with a topological charge and a co-propagating temporally de-phased plane
wave. We show that, for standard experimental conditions, it is possible
to obtain analytical solutions for the trajectories of particles in such force
field by using of some approximations. These solutions show that, in
contrast to other tractor beams described before, the intensity becomes a
key parameter for the control of particle trajectories. Therefore, by tuning
the intensity value the particle can describe helical trajectories upstream and
downstream, a circular trajectory in a fixed plane, or a linear displacement
in the propagation direction. The approximated analytical solutions show
good agreement to the corresponding numerical solutions of the exact
dynamical differential equations.
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1. Introduction

Optical trapping of particles [1] has become an essential tool for the manipulation of small ob-
jects in many disciplines such as physics or biology. In this way, new advances in laser beam
control have led to the experimental realization of tractor beams that can draw particles toward
light sources [2–7]. Recently, it was pointed out that Fano resonance of a composite metal-
lic nanoparticle can induce a negative pulling force [8]. Unlike conventional optical tweezers,
which rely on adjusting the positions of intensity gradients to move objects, tractor beams can
exert non-conservative pulling forces on particles by continuously dragging them towards the
beam sources [9]. In these tractor beams, the dynamics of particles has also been analyzed; in
particular, our team has theoretically studied the case of radially polarized zero-order Bessel
tractors beam [10], analyzing the trajectories that, in general, are linear [2, 3], [5]. As found
from many theoretical and experimental studies, non-diffracting beams are promising candi-
dates for realizing tractor beams due to their unique properties of maintaining both intensity
and spatial extent in the direction of propagation [11]. Thus, a great variety of optical fields,
ranging from the fundamental Gaussian beam, Laguerre-Gaussian beam, Airy beam, and Bessel
beam (BB) to the plasmon-based optical field, has been employed to achieve optical microma-
nipulations [12] . In this sense, more complex trajectories can be obtained using, for example,
azimuthally polarized beams [13]. Moreover, recently, an interesting class of beam that could
be used for sorting, mixing, or cell extraction applications could be obtained using generalized
radially self-accelerating helicon beams [14] due to the three-dimensional spiraling trajectories
that could be generated. In fact, a similar procedure was used in [4] for obtaining solenoidal
waves through a particular superposition of many m-th order Bessel beams that do not differ in
their relative temporal phase. In relation to these points, in this paper we propose to generate
a helical tractor beam by means of the interference of a plane wave and a cylindrical beam
(that differ in their relative temporal phase) and it is a paraxial solution to the Helmholtz equa-
tion. For this, we are going to analytically and numerically analyze the dynamics of Rayleigh
particles inside this tractor beam.

2. Theoretical background

We consider a linearly polarized electric field ~E, obtained by a superposition of a plane wave
(PW) and a paraxial solution of the Helmholtz equation in (r,ψ ,z) cylindrical coordinates (i.e.,
a cylindrical beam (CB) like Bessel beams or Laguerre-Gaussian beams, etc.) propagating in
the ẑ direction given by:

~E = A [η Exp(i(k1 z−ξ t))+ Exp(i(k2 z+mψ))G(r)] x̂ (1)

where k1 and k2 are the wave numbers of the beams in a medium of refractive index n, G(r) is
the radial solution to the Helmholtz equation in cylindrical coordinates, A is the electric field
amplitude, 0 < η < 1 is the beam ratio between the plane wave and CB beam. The PW and the
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CB beams differ in their relative phases not only in the helical phase given by the topological
charge m, but also in a temporal linear function ξ t that is critical for tractor working [5].
It should be noted, that the solenoidal beam described by Eq.(1) operates due to the relative
phase difference between the PW and CB beams (ξ t), and it is quite different to that showed
in [4], because the second one uses periodic axial intensity gradients with discrete propagation
invariance to achieve forward scattering from the interference between the incident field and
the dipole radiation field of an illuminated object [5].

The optical forces acting on a particle in the Rayleigh regime (particle radius rp << λ ) as a
consequence of an electric field given by Eq. ( 1) can be expressed according to [15], as:

~F =
1
2

ℜ

[
α̂ Ex

(
∂E∗x
∂ r

r̂+
1
r

∂E∗x
∂ψ

ψ̂ +
∂E∗x
∂ z

ẑ
)]

(2)

where ℜ denotes the real part of the expression, ∗ is the complex conjugate value, and α̂ is the
complex polarizability of the particle:

α̂ = αR + iαI (3)

αR and αI are the real and imaginary parts of the polarizability, respectively, which for the
dielectric particles can be obtained, for example, from [16].

The deterministic trajectories of particles can be obtained by solving the equation:

m0
d2~R
dt2 = ~F(~R(t))−κ

d~R
dt

(4)

where ~R(t) is the position vector of the particle at time t, m0 is the particle mass, and −κ
d~R
dt is

the frictional force. It is important to remark that Eq. (4) does not take into account the thermal
effects, that could be included by using the Langevin equation instead [10].

2.1. Approximated solution

Assuming that the inertia force is smaller than the drag force (over-damped case), the left-hand
side of Eq.(4) vanishes, so introducing Eqs.(1,2) and 3 in Eq. (4), motion particle equations can
be written as:  ṙ

ψ̇

ż

= M

 1
Sin[H(t)]
Cos[H(t)]

 (5)

where ṗ, (p= r,ψ,z) represents the temporal derivative of the p-coordinate, the function H(t) =
(k1− k2)z(t)−ξ t−mψ(t) = ∆kz(t)−ξ t−mψ(t) describes the temporal coupling of the axial
and azimuthal variables, and the constant matrix M is defined as:

M = Ω

 αR G(r) Ġ(r) −αI η Ġ(r) αR η Ġ(r)
mαI G(r)2

r2
mαR η G(r)

r2
mαI η G(r)

r2

αI (k1 η2 + k2 G(r)2) (k2− k1)αR η G(r) (k1 + k2)αI η G(r)

 (6)

where we have used the parameter Ω = A2/(2κ) = I0/(κ ncε0) (I0 being the intensity of the
field I0 = ncε0 A2/2 ). The motion equation for the radial coordinate is a typical equation for
an optical trap, where the particles are quickly trapped in the radial positions rq that satisfy,
independently of their axial and azimuthal positions, the equation Ġ(r)|r=rq = 0.
Therefore, at these points rq, matrix elements M11, M12 and M13 are null, so Eq. (5) can be
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rewritten as:

ṙ = 0 ⇒ r = rq (7)
ψ̇ = vψ0 + vψ Cos(H(t)−αψ) (8)
ż = vz0 + vz Cos(H(t)−αz) (9)

where we have introduced the parameters:

vz0 = ΩαI (k1 η
2 + k2 G(rq)

2)

vψ0 =
ΩmαI G(rq)

2

r2
q

vz = Ωη |G(rq)|
√
(k1 + k2)2 α2

I +(k1− k2)2 α2
R (10)

Tan(αz) =
(k2− k1)αR

(k2 + k1)αI

vψ =
Ωη |mG(rq)|

√
α2

I +α2
R

r2
q

Tan(αψ) =
αR

αI

Parameters vz0 and vψ0 represent the axial and angular velocity that the particles would obtain
in absence of interference, namely, if the electric fields in Eq.(1) were incoherent, while vz and
vψ correspond to the axial and angular velocity due to the interference, respectively.
In order to solve the general case given by Eqs.(8,9), it is necessary to uncouple the ψ(t) and
z(t) variables. To do this, removing function H(t) from Eqs.(8,9) obtains that axial velocity ż
and angular velocity ψ̇ fulfill the following ellipse equation:(

ż− vz0

vz

)2

+

(
ψ̇− vψ0

vψ

)2

−2
(

ż− vz0

vz

) (
ψ̇− vψ0

vψ

)
Cos(δ ) = Sin(δ )2 (11)

where δ = αz−αψ . Using the definitions of αz and αψ given in Eq. (10), the key parameters
Cos(δ ) and Sin(δ ) = [1−Cos(δ )2]1/2 can be written as:

Cos(δ ) =
(k1 + k2)α

2
I +(−k1+ k2)α2

R

(k1+ k2)αI

√
(α2

I +α2
R)(1+

(k1−k2)2α2
R

(k1+k2)2α2
I

We center our study on the case of Rayleigh dielectric particles so we can assume that αR >>αI
[3] and then, using Eq. (12), we can approximate:

Cos(δ )≈−Sign(k1− k2) =−1 (12)

Sin(δ )≈− 2k1αI

αR|k1− k2|
< 0 (13)

where we have assumed that the wave number of PW is higher than the one of CB (k1 > k2).
For Rayleigh particles, |Sin(δ )|<< 1. Therefore, Eq.(11) can be simplified to:(

ż− vz0

vz
+

ψ̇− vψ0

vψ

)
= |Sin(δ )| (14)
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Thus, by solving differential equation 14, the temporal relation between axial and azimuthal
coordinates is given by:

ψ(t) = A1 t +A2 z(t)+A3 (15)

where:

A1 = vψ0 + vψ

(
vz0

vz
+ |Sin(δ )|

)
(16)

A2 =
−vψ

vz
(17)

A3 = ψ0−A2 z0 (18)

with ψ0 and z0 the initial position coordinates of the particle.
Therefore, by using the temporal relation between the axial and azimuthal coordinates (Eq.

(15)), it is possible to express H(t) only as a function of the time and the z(t) or ψ(t) coordinate,
so differential equations 8-9 can be written as:

ż = vz0 + vz Cos [(∆k−mA2)z(t)− (ξ +mA1)t−mA3−αz]

ψ̇ = vψ0 + vψCos
[(

∆k

A2
−m

)
ψ(t)−

(
ξ +

∆kA1

A2

)
t− ∆kA3

A2
−αψ

]
(19)

Previous equations show that trapped particles are axially and azimuthally translated with trac-
tor velocities:

vzt =
(ξ +mA1)

∆k−mA2
(20)

vψt =
(ξ A2 +∆k A1)

∆k−mA2
(21)

Analytical solutions to Eqs.(19) are given by:

z(t) = vzt t + fz(t)

ψ(t) = vψt t + fψ(t) (22)

where fz and fψ are the functions:

fz(t) =
mA3 +αz +2Tan

[√
vz+vz0−vzt Tanh[

∆k−mA2
2
√

vz+vz0−vzt
√

vz−vz0+vzt (t−c1)]√
vz−vz0+vzt

]−1

∆k−mA2
(23)

fψ(t) =

∆kA3 +αψ A2 +2A2Tan

[√
vψ+vψ0−vψt Tanh[

∆k−mA2
2A2

√
vψ+vψ0−vψt

√
vψ−vψ0+vψt (t−c2)]√

vψ−vψ0+vψt

]−1

∆k−mA2
(24)

c1 and c2 are constants that take boundary conditions into account. Moreover, it must be noted
that fz and fψ are bounded functions that verify fz < vzt t and fψ < vψt t, so Eqs.(22) can be
approximated to:

z(t)≈ vzt t

ψ(t)≈ vψt t (25)
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As a consequence, the position’s particle vector ~R(t) can be written as:

~R(t) = rq Cos(vψt t)x̂+ rq Sin(vψt t)ŷ+ p
vψt

2π
tẑ (26)

where p = 2πvzt
vψt

. Equation 26 shows that particles describe a helical motion where ẑ is the axis
of the helix, rq is the radius, p is the pitch and vψt is the angular frequency of the particle vector.
Then, ~R(t) traces a helix whose end point moves around a cylinder once every 2π

vψt
units of time

and moves a distance p in the direction ẑ for every revolution around the cylinder.

2.2. Tractor velocity intensity dependence

In this section, we are going to assume that m ≥ 0. Parameters A1 and A2 play an important
role in the movement of particles, so it is important to analyze their relative values. Taking into
account the definitions given by Eqs.(10), it can be deduced that velocities vψ0,vψ ,vz0,vz are
greater than or equal to zero, and as a result, A1≥ 0 and A2≤ 0. It is important to remark that the
A1 parameter depends on the position of the maximum rq where the particle is located, and due
to the dependence of velocities vψ0 and vψ on Ω, A1 is proportional to the intensity. However,
A2 depends only on rq, while it does not on I0. According to this, we can write A1 = a1(rq) I0
and A2 = a2(rq), with (a1(rq) ≥ 0 and a2(rq) ≤ 0). Taking into account this fact, the tractor
velocities and pitch can be rewritten as:

vzt =
(ξ +ma1(rq)I0)

∆k−ma2(rq)

vψt =
(ξ a2(rq)+∆k a1(rq)I0)

∆k−ma2(rq)
(27)

p =
2π(ξ +ma1(rq)I0)

(ξ a2(rq)+∆k a1(rq)I0)

Previous equations show that pitch, axial, and azimuthal tractor velocities (and as a conse-
quence trajectories given in Eq.(26)) depend on the intensity, the topological charge, the local
maximum where the particle is located, the relative phase difference between the PW and CB
beam, and of course, the amplitude ratio η between the beams. It can be noted that in the limit
case in which η = 0, there is no action of the tractor beam (ξ = 0) and the particle dynamic
is controlled only by the Bessel beam. The stability of the negative pulling force for a particle
in a Bessel beam has been discussed in the reference [17]. In the other cases, the influence of
amplitude ratio η in the particle movement is included in the a1 parameter in a complex way.
In this sense, a1 shows a parabolic dependence on η , but the parabola’s coefficients change
basically with radial position, topological charge, and intensity.

If there is no topological charge (m = 0), then vψ and vψ0 are null, as a consequence a1(rq) =
a2(rq) = 0, and then from Eq.(27), it can be deduced that azimuthally tractor velocity vψt is zero
and the axial tractor velocity is equal to that obtained in reference [5] (vzt =

ξ

∆k
). In this case,

all particles are translated upstream or downstream (depending on the sign of the ξ parameter),
and the helix trajectory given by Eq. (26) is reduced to a linear movement in the ẑ direction [5].
Therefore, the lack of topological charge implies that axial tractor velocity does not depend on
intensity I0.
In the case of null relative phase difference ξ = 0 and non-null topological charge m 6= 0, it can
be also deduced from Eqs.(27,26) that a helical trajectory is obtained with the tractor velocities
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and pitch:

vzt =
ma1(rq)I0

∆k−ma2(rq)

vψt =
∆k a1(rq)I0

∆k−ma2(rq)
(28)

p =
2πm
∆k

where, under these conditions, vzt > 0; then, particles move upstream describing a helix in the
positive ẑ direction with velocities that are proportional to the intensity I0 and vary for every
rq position. It is interesting to point out that particles can not be moved downstream for any m
parameter value. Furthermore, in this case, the pitch is constant and independent of the intensity
and the radial position of particles rq.
The most interesting cases are obtained when the relative phase difference ξ and the topological
charge m are both non-null. Eqs. (27) show that vzt can be positive, negative, or null, and vψt
is ever positive or null depending on the intensity I0 and the position of the intensity maximum
rq. Thus, the behavior of particle movement could be very different by adequately choosing the
intensity and ξ ratio, so we can obtain:

1. All trapped particles describe a helix upstream.
In this case, it is necessary that vzt > 0, so, according to Eq.(20):

vzt > 0 ⇐⇒ ξ +ma1(rq)I0 > 0 (29)

If ξ is positive, independently of the position trap rq, this inequality is verified for all
particles. For negative values of the ξ parameter, this inequality is fulfilled for particles
located at position traps rq that satisfy the condition |ξ |< ma1(rq)I0, so negative values
of ξ can generate upstream movement in the helical tractor beams.

2. All trapped particles describe a helix downstream.
In this case, it is necessary that vzt < 0, so, according to Eq.(20):

vzt < 0 ⇐⇒ ma1(rq)I0 <−ξ (30)

This inequality is verified only if ξ is negative and |ξ |> ma1(rq)I0.

3. All trapped particles describe a helix except the corresponding ones located at the
intensity maxima position rq = rqψ that describe a circular movement at the initial z0
plane.
In this case, it is necessary that vzt(rqψ) = 0, so, according to Eq.(20):

vzt = 0 ⇐⇒ I0 = Iqψ =
−ξ

ma1(rqψ)
(31)

Then, intensity Iqψ selects particles located at the radial trap rqψ and moves them in a
circular trajectory at the initial z0 plane, while all the other ones describe helical trajecto-
ries. Then, it is possible to control the type of particle’ movement by using the adequate
intensity. Note that the intensity Iqψ is positive only if ξ is negative, so, in general, in this
case, the helical movement will be downstream.

4. All trapped particles describe a helix upstream except the ones located at intensity
maxima position rq = rqz that show a linear movement in the ẑ direction.
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In this case, it is necessary that vzt > 0 for all particles (so according to the discussion of
point 1, we choose ξ > 0) and vψt(rqz) = 0, so, from Eq.(20):

vψt = 0 ⇐⇒ I0 = Iqz =
−ξ a2(rqz)

∆k a1(rqz)
(32)

Then, intensity Iqz selects particles located at the radial trap rqz and moves them linearly
in the ẑ direction, while all the other ones, describe upstream helical trajectories. Then,
by using the right intensity, linear movement along the ẑ direction and an upstream helix
can be chosen. Note that the intensity Iqz is positive only when ξ is positive, so it is not
possible to obtain a downstream helix movement.

3. Comparison between exact numerical results and approximations

In this section, we are going to compare our approximated solutions described in previous sec-
tions and the corresponding exact numerical solution to Eq.(4). For solving coupled differential
equations we have used a Runge-Kutta fourth-order method using the same boundary condi-
tions in numerical calculations as in approximated solutions (with initial velocity particles equal
to 0). We have also used a Bessel beam as the CB beam in Eq.(1), then we take k2 = k1Cos(θ)
and the radial function G(r) = Jm(k1Sin(θ)r), with Jm the Bessel function of the first kind of
order m. Moreover, the constants κ = 6πη1rp and m0 = 4

3 ρπr3
p (with rp the particle radius)

have been obtained using the water viscosity coefficient η1 = 8.9 ×10−4 (Pa s) and the mate-
rial density (PMMA) ρ = 1.19 × 103 (Kg m−3).The other numerical values used in our study
are given in table 1.

Table 1. Values of the parameters used in the numerical simulations
θ λ (nm) ξ (Hz) rp n=

√
ε εp η

3π

23 633 ±10 λ

30 1.33 2.223 0.5

Due to the large number of possible cases, we will focus on the results described by
Eqs.(31,32).
Figure 1 shows the axial length, axial velocity, angular velocity and pitch obtained at a fixed
time t = 5s for ξ =−10Hz as a function of the intensity position maxima rq using three differ-
ent topological charges (m = 1, 2, 3) by accomplishing vzt = 0 (Eq.(31)) at the first maximum
position r1. Under this condition, the obtained intensities are I1ψ = 0.71, 0.6, 0.56W/cm2 for
topological charges m = 1, 2, 3, respectively. As can be observed, good agreement is obtained
between approximated analytical equations and exact numerical results. As was expected, par-
ticles located at the r1 maxima position do not move axially, but describe a circular movement
of angular velocity ψ̇ = vψt ≈ −ξ

m . It can also be observed that, for a fixed topological charge,
axial displacement increases as rq rises, although when the topological charge increases, ax-
ial length is lower for equivalent maxima rq. 3D helical trajectories can be observed in Fig. 2
for the particular cases of a topological charge m = 2 and condition vzt = 0 obtained with an
intensity I0 = I1ψ = 0.6W/cm2. It can be seen that particles located at maxima r2, r3 and r4
describe a downstream helix, with the numerical result very close to the obtained one by means
of analytical Eqs.(26). As was previously mentioned, the particles located at the maximum r1
describe a circular trajectory.
Finally, we are going to realize the corresponding study when vψt = 0 (Eq.(32)). Figure 3 shows
the axial length, axial velocity, angular velocity, and pitch obtained at a fixed time t = 5s for
ξ = 10Hz as a function of the intensity position maxima rq using three different topological
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Fig. 1. (a) Axial length, (b) axial velocity, (c) angular velocity, and (d) pitch at a fixed time t = 5s and
ξ = −10Hz as a function of the intensity position maxima rq. Topological charge m = 1: (approxi-
mated red, numerical blue); m = 2: (approximated green, numerical magenta); m = 3: (approximated
orange, numerical black).

charges (m = 1, 2, 3) with the condition given by Eq.(32) vψt = 0 for the first maximum po-
sition r1. Under this condition, the intensities are I1z = 4.9, 6.1, 6.8W/cm2 for the topological
charges m = 1, 2, 3 respectively. As can be observed, good agreement between approximated
analytical equations and exact numerical results is shown, but small differences can be noted
for the topological charge m = 1 case. From Fig. 3, as was mentioned, particles located at the
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Fig. 2. Numerical and analytical helical trajectories for a topological charge m = 2, and condition
vzt = 0 obtained with an intensity I0 = I1ψ = 0.6W/cm2.
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Fig. 3. (a) Axial length, (b) axial velocity, (c) angular velocity, and (d) pitch at a fixed time t = 5s and
ξ = 10Hz as a function of the intensity position maxima rq. Topological charge m = 1: (approximated
red, numerical blue); m = 2: (approximated green, numerical magenta); m = 3: (approximated orange,
numerical black).

r1 maxima describe a linear movement on the z-axis because the angular velocity ψ̇ = vψt = 0.
3D helical trajectories can be observed in Fig. 4 for the particular cases of a topological charge
m = 2, and the condition vψt = 0 obtained by an intensity I0 = I1ψ = 6.1W/cm2 . It can be
seen that particles located at the maxima r2, r3, and r4 describe an upstream helix, with the
numerical result very close to that obtained by means of analytical Eqs. (26).
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Fig. 4. Numerical and analytical helical trajectories for a topological charge m = 2, and condition
vψt = 0 obtained with an intensity I0 = I1z = 6.1W/cm2.
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4. Conclusions

Particle dynamic trajectories inside helical tractor beams have been analyzed. We have demon-
strated that nanoparticles in helical tractor beams can describe helical upstream, helical down-
stream, linear, or circular trajectories depending on the tractor velocities (axial and angular),
that can be controlled by means the intensity of the beam. This dependence of the intensity of
velocities results from the coupling between axial and azimuthal coordinates in the dynamic
equations. These results, could be applied in the field of particle sorting and assembly of syn-
thetic or biological nano-objects.
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