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ABSTRACT. Given a convex optimization problem (P) in a locally con-
vex topological vector space X and with an arbitrary number of con-
straints, we consider three possible dual problems of (P), namely, the
usual Lagrangian dual (D), the perturbational dual (Q), and the sur-
rogate dual (A), the last one recently introduced in [7]. As shown by
simple examples, these dual problems may be all different. This paper
provides conditions ensuring that inf(P) = max(D), inf(P) = max(Q),
and inf(P) = max (A) (dual equality and existence of dual optimal so-
lutions) in terms of the so-called closedness regarding to a set. Sufficient
conditions guaranteeing min(P) = sup(Q) (dual equality and existence
of primal optimal solutions) are also provided, for the nominal problems
and also for their perturbational relatives. The particular cases of con-
vex semi-infinite optimization problems (in which either the number of
constraints or the dimension of X, but not both, is finite) and linear in-
finite optimization problems are analyzed. Finally, some applications to
the feasibility of convex inequality systems and to the so-called convex
games are described.
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1. INTRODUCTION

Given m + 1, with m > 1, convex lower semicontinuous (Isc) proper
functions f, f1, ..., fm on a (real) separated locally convex topological vector
space X and a non-empty closed convex subset C' of X, let us consider the
conver semi-infinite problem (semi-infinite as the number of constraints is
finite but the dimension of X is infinite)

(Pn) mljnf(a:), st.xz e, fi(z) <0, ..., fm(x) <O0.

Relaxing the inequality constraints, the Lagrangian dual of (P,,) is classi-
cally defined as

m

(P) m}z\xx;gg f(z)+ Zl)\zfz(x) s st A= (A, Ap) € R

1=
Clearly, some care is necessary in order to give a precise sense to the expres-
sion 0 x (+o00) that may appear in (P),) formulation. Following Rockafellar
[16, p.24], we may adopt the rule 0 x (+00) = 0. Another possibility is to

set 0 X (+00) = 400, a choice made for instance by Zalinescu [17, p.39].
1
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We shall denote by (D,,) and (@) the corresponding versions of (P),) as-
sociated with these rules. It holds that the corresponding optimal values of
these problems satisfy

—00 < sup(Dp,) < sup(Qp) < inf (Pp,) < +o0.

Given a family {f;, ¢t € T'} of convex lsc proper functions on X, where T'
is a possibly infinite index set, let us consider now the general conver infinite
problem

(P) min f(z), st.x € C, fi(z) <0, teT,
x
whose feasible set is F'N C' where
F=N[fi<0={reX: fi(x) <0, teT}.
tel

The associated Lagrange dual is classically defined as (see, e.g. [3], [5],
[7], etc.),

(D) max inf ( Fl@)+ 3 N ft(ac)> ;s A= (A er € RYY,

N zeC
* teT

with Rf) denoting the positive cone of the space R() of functions A : T — R
whose support supp A := {t € T': \; # 0} is finite, and

o, if A = 0r,
Z Atft(ﬂf) o { Ztesupp)\ Atft(x)ﬂ if A 7é 0T7

teT

where O represents the null-function. It is worth noting that in the finitely
constraints case, that is 7' = {1,...,m}, the Lagrangian dual (D) coincides
with (D,,) while the generalization of (Q,,) is given by (e.g. [1], [7], [17])

. (T)
(Q) miixmelgrf;M (f(ac) + Z )\tft(a:)> , st AeRYY,
teT
where M := ﬂteT dom f;. Observe that if M D C'Ndom f, then (D) = (Q).

Finally, replacing the set Rf) by P(T) := Rf)\ {07} in the dual problem

(D), the following surrogate dual problem (A) was introduced in [7]:

(A) max ;gg (f(a:) + ; /\tft(:z:)> , st A e P(T).
One always has the following relations among the optimal value of these
problems:

(1.1) —o0 < sup(A) <sup(D) < sup(Q) < inf (P) < +oo.

The paper is organized as follows. Assuming that inf(P) < +o0, Section
2 is concerned with the characterization of the so-called strong duality prop-
erty for the three pairs of dual problems, which respectively accounts for
the relations inf(P) = max(D), inf(P) = max(Q), and inf(P) = max (A)
(i.e., both optimal values coincide and the dual optimal values are attained)
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in terms of a property called w*-closedness regarding to suitable sets (see
[1], [15]). This is the purpose of Theorem 1, the main result in Section 2.
Section 3 is devoted to the relation min(P) = sup(A) (i.e., we have again
dual equality plus attainability of the primal optimal value). Theorem 2
provides sufficient conditions based on the notion of quasicontinuity and re-
cession assumptions. This result improves the one obtained in [7, Theorem
4.7] in the sense that we do not assume that inf(P) < +oo but only that
sup(A) < +oo. It turns out that the use of this weakened assumption has
important consequences. Section 4 shows applications of Theorem 2. In
fact, Corollary 1 provides a new general form of the Clark-Duffin’s Theorem
in terms of the finite intersection property (Corollary 2), while Corollaries 3
and 4 deal with the existence of solutions of convex infinite systems. Also in
Section 4, Theorems 1 and 2 are applied to prove the minimax theorem for a
bipersonal convex zero-sum game, as well as the existence of optimal strate-
gies for both players under certain assumptions. Section 5 is concerned with
the perturbations of the convex infinite problem (P) (Corollary 5), leading
us to the characterization of the property min(P) = sup(Q) and its per-
turbational relatives in terms of w*-closedness regarding to a set (Theorem
3 and Corollary 7). In this way, Theorems 2 and 3, and Corollaries 5 and
7 complete and improve the results obtained in Section 5 of [7]. In the
last Section 6 we apply the previous results to linear infinite optimization
problems. Corollaries 8-11 provide the most important results in this field.

2. THE INF-MAX PROPERTY

We shall start this section with some necessary notation and preliminaries.
Given a non-empty subset A of a (real) separated locally convex tvs, we
denote by co A, cone A, aff A, AT, and A~, the convex hull of A, the convex
cone generated by AU{0x}, the smallest linear manifold containing A, the
positive polar cone of A, and the negative polar cone of A, respectively. If
A C X*, where X* is the topological dual of X, it holds that AT™" = A=~ =
cl”” cone A. We denote by Cs the recession cone of the non-empty closed
convex set C.

Having a function g : X — R := RU {00}, we denote by epi g, epi, g,
and g* the epigraph, the strict epigraph, and the Legendre-Fenchel conjugate
of g, respectively. The function g is proper if epig # () and never takes the
value —o0, it is convex if epi g is convex, and it is lower semicontinuous (lsc,
in brief) if epi g is closed. We denote by I' (X)) the class of lsc proper convex
functions on X. The function clcog : X — R is the Isc convex function
such that epi(clcog) = clco(epig).

The indicator function of A C X is represented by ig (i.e. is(z) = 0
if v € A, and is(x) = 400 if x ¢ A), and support function of A is the
conjugate of its indicator, i.e. ij. One has i}y =i 4, = i:l(co A)°

Given g € T'(X), we denote by goo its recession function, i.e. the convex
function whose epigraph is (epig)eo. Omne has goo = iy, (e.g. [17,
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Exercise 2.35]), and
[goo < 0] = (dom g*)” = (conedom g*)™,
yielding
cl*” conedom g* = [goo < 0] .
Moreover [goo < 0] = [g < A], for all X such that [g < ] # 0.
Associated with the dual problems (A), (D) and (Q) we introduce the
functions h, k, £ : X* — R, respectively defined by

h:=infycp(T) (fc + D er )\tft)* ;
(21) k= ianGRiT) (fC + ZtET )\tft)* )

0= inf)\E]RS_T) (form + er Mefe)™

where fo = f +ic and fonm = f +icnm-
The following properties can easily be proved following the same argu-
ments that in [7, Lemmas 3.1 and 3.2]:

(1) ¢, k and h are convex, and ¢ < k < h,

(2) =€(0x+) =sup(Q), =k (0x+) = sup(D), and —h (0x~) = sup(A),

(3) & =Fk*=h" = feor,

(4) =0 (0x+) = —k** (0x+) = =h** (0x~) = inf (P).

The functions h, k and £ can be improper, possibility which was excluded
in [7]. For instance, if C' N dom f = (), we obviously have h = k = { = —cc.
In the following simple example, the functions fo+ ) ,cr A¢ f; are all proper:
Example 1. Let X = C =R?, f(z) = 21,7 = {1}, and fi (z) = exp (z2).
We have F' = (), and so inf (P) = inf {z; : exp (z2) < 0} = 400. Moreover

sup(A) = sup(D) = sup(Q) = sup inf (z1 + Nexp (z2)) = —o0.
A>0 z€R?
For A > 0, Theorem 2.3.1 [(v),(viii)] in [17] allows us to write
(f +Af1)" (21, 23) = iy (27) + Aexp™ (A "'a),

where we denote by exp* the conjugate of the exponential function exp, i.e.

+00, u < 0,
exp® (u) =< 0, u =0,
ulnu —u, u>0.
Therefore
~+00, x] #1or z5 <0,
(f+Af1)" (z7,25) =< 0, i =1and x5 =0,
zylnzy — x5 —25In X, 27 =1 and x5 > 0,
and
+oo, ] #1or a3 <0,
h(ha3) = inf (4 M) (has) =4 0, af=land 25 =0,

—o0, ] =1 and x5 > 0.
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We clearly have h = k = /f and h* = k* = {* = +00 = f+i
that these functions are convex but neither proper nor lsc.

onp- Observe

We also introduce the sets

A= U epi (fC"‘ZteT )‘tft)*’
AEP(T)
B = U epi (fC + ZtGT Atft)* )
rer("
¢:= U epi(fenm + X ier )‘tft)* :
Aer(")

It holds that
epigh C A Cepih, epigk CB Cepik, epigf C € Cepit,

and denoting by h,k and £ the w*-lsc hull of h,k and ¢, respectively, we
have
(2.2) epih =cl” A, epik =cl¥" B, epil=cl" €.

Assuming that C N F Ndom f # () one has, by the convexity of h, k and
¢, and (3) above,
(2.3) h=k=10= (fonr)" =h™ = kK™ = **,
We will need the following notion ([1], see also [15]).

Definition 1. Given two subsets A, B of a topological space, A is said to be
closed regarding to B if BNcl A= BN A.

We are now in a position to state the main result of this section.

Theorem 1. Assume that inf (P) < +oo. The following assertions are
equivalent:
(i) A (resp. B, resp. €) is w*-closed regarding to the set {0x~} x R.
(79) inf (P) = max(A) (resp. inf (P) = max(D), resp. inf (P) = max(Q)),
including the value —oo.
Proof. We only give the proof relative to (A), the two other ones being
similar.
Since inf (P) < 400, one has CNFNdom f # () and, by (2.3), h = (forr)*.
Assume first that inf (P) = —oo. By (1.1) we have

igf (f + Z)\tft> = —oo for any A € P(T),

teT

and so, inf (P) = —oo = max(A). On the other hand, h (0x+) = —inf (P) =
+o0 and, by (2.2),

({0x+} x R) Nel” A =({0x-} x R) Nepih =0,
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implying that 2 is w*-closed regarding to {Ox+} x R. So, in the case that
inf (P) = —o0o, we have proved that statements (i) and (i7) are simultane-
ously true.

Assume now that o :=inf (P) € R. By (4), (2.2) and (2.3) we have

(0x+, —) € epih*™* =epih = v 9.

Assuming that (i) holds we get (Ox+, —a) € 2, and there exists A € P(T)
such that (fo 4+ > ,cr tht)* (0x+) < —a. This yields

sup(A) <inf (P) =a < igf {fo + Z)\tft} < sup(A)

teT

and (i7) is proved.

Assume now that (i4) holds and let (Ox«,7) € ¢l 2. By (4), (2.2) and
(2.3), one has (0x=,7) € epi A** and —inf (P) = h** (0x+) < r. By (i), there
exists A € P(T) such that —inf (P) = (fo + Y er tht)* (0x~+) and we have

(OX*7T> € epl (fc +Z)\tft> - le

teT

proving that (z) holds. O

The next examples compare the characterizations of the inf-max property
provided by Theorem 1 with the so-called Slater condition:

3z € C Ndom f such that f; (T) <0Vt e T.

When T is finite, it is known that —oo < inf (P) = max(Q) < +o0o whenever
the above Slater condition holds ([17, Theorem 2.9.3]).

Example 2. Let X = C = R?, f(z) = exp(z2), T = {1}, and f (x) =
r1 +igxr, (z). We have inf (P) = inf {exp (z2) : £1 < 0,22 > 0} = 1. Thus,
min (P) = 1, with primal optimal set S (P) = R_x {0}. In order to check
the conditions of Theorem 1, we must compute the functions (f + \f1)* for
all A > 0. If A > 0, then

rslnxl — x5, ] =N\ x5 > 1,
(f+ A1) (%) =< —1, i =\, x5 <1,
400, otherwise.

The above equation remains valid for A = 0 under the rule 0 x (+00) = 400
(as in (Q)), but not under the rule 0 x (+00) = 0 (as in (D)), in which case

rylnay — a5, 2] =0, x5 >0,
(f +0f)" (=) = ¢ 0, o1 =13 =0,
400, otherwise.
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Using again the symbol exp* for the conjugate of the exponential function
exp we have
A= Ryy x (epi(exp”) + Ry (=1,0)),
B = AU ({0} x epi(exp”)),
¢= R, x (epi(exp*) + Ry (=1,0)) = cl*" 2.

The closedness of € entails its closedness regarding {(0,0)} x R, while 2 and
B do not enjoy this property as 2N ({(0,0)} xR) =0, BN ({(0,0)} xR) =
{(0,0,7) : 7 > 0}, and

(1" 2) N ({(0,0)} x R) = (c1*” B)N({(0,0)} x R) = {(0,0,7) : + > —1}.

Thus, by Theorem 1, inf (P) = max(Q) holds while both inf (P) = max(A)
and inf (P) = max(D) fail. Indeed, infgpz {f + Af1} = —oo for all A > 0,
and

‘ - 07 for (D)7
1£2f{f+0f1}—{ 1, for (Q).

So, inf (P) = max(Q) = 1 (attained for A = 0) while sup (D) = max(D) =0
(attained for A = 0) and sup (A) = —oo. Hence, the Slater condition does
not guarantee the relation inf (P) = max(D), neither sup (D) = sup (@) nor
sup (D) =sup (A).

Example 3. Let X = C =R, f(z) =exp(z), T = {1}, and fi (z) = x.
Then, the primal problem is

(P) minexp (z), s.t. 2 <0,
with associated dual problems
A inf .
(A) max inf (exp (z) + A\x)), s.t. A >0,
and
(D) =(Q) max in]% (exp (z) + A\x)), s.t. A > 0.
e
One has
—o0 = sup(A) < 0 = max(D) = max(Q) = inf (P).
Observe that, for any A > 0, one has by [17, Theorem 2.3.1(vii)]
(f + M) (") = f*(=" = N),
so that epi (f + Af1)" = epi(exp*) + (X, 0) . Thus,

A = U epi(f+Af1)" = epi(exp”) + (R4 x {0}),
A>0

and, analogously, B = € = epi(exp*) + (R4 x {0}). Since
AN ({0} x R) =0 # {0} x Ry = (c1*" A) N ({0} x R),
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2l is not closed regarding {0} xR while 8 = € is closed and, a fortiori, closed
regarding {0} x R. Observe that, once again in this case, Slater condition
holds and, however, sup(A) # sup(D).

Example 4. Let X =R, C =[-1,1], f(x) = —2, T ={1},and f1 (z) =z
if £ >0, fi(x) =0if 2 <0. Now we have

(P) min{—=z, s.t. z € [-1,1], = <0},
with associated dual problems
= i — LA >
(D) = (@) max_inf_ (<2 + i (@), 5. A0,

A
One has inf_j<;<; (—z 4+ Af1 (z))) = 0 = inf (P) for any A > 1. Conse-
quently,

(A) max 711%15;1 (—z+ Af1(x))), st. A>0.

max(A) = max(D) = max(Q) = min (P) = 0.

In fact, for any A > 0, one has

U+Aﬁf@ﬂ={

and so A =B = € = [—1,4+o00[ X Ry is closed. However, Slater condition
is not satisfied, and this shows that it is sufficient, but not necessary, for
having inf (P) = max(Q) < +oo.

Example 5. Let X = C =R, f(z) =22, T = {1}, and fi (v) = 24 — L.
Thus, Slater condition holds and we have

(P) mmx , sty —1 <0,

0, 1<z < A—1,
400, otherwise,

(A) m)E\LX;IGII% {2+ X(zy — 1))}, st. A >0,

and
(D) = (Q) m}z\txig&{f +A(wy — 1))}, st A>0.

By the Moreau-Rockafellar Theorem (see, for instance, [1, Theorem 7.6])

epi (f + Af1)" =epi f* +epi(\f1)" = epif*+ \epi f]
for any A > 0. Setting pos(z) = z4, © € R, one has f; = pos(-) — 1,
fi =pos*(-) + 1 =1ijq + 1, and so epi f; = [0,1] x [1, +oc[. Thus,
A = {Jepi(f+ A1)
A>0

=epi f*+ U [0,A] x [A, +o0[
A>0

} 2*,r) £ (0,0), 0 <a* <7}
) }U{(x r):0<az*—2<r}
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while
B=C =AUepi f*
2

:{(x*,r) rxt <2, (J:Z) §T}U{(m*,r):0§a:*—2§r}.

So, B = € is closed and equal to epi (f + i],oo,l])* = ¢l 9. Since
2N ({0} x R) = {0} x]0, +00[ # {0} x Ry, = (c”" 20) 1 ({0} x R),

2l is not closed regarding to {0} x R. This is the reason why sup(A) is not

attained while sup(D) = sup(Q) is attained.

A 3
k"
X
AY
A" 24
\
b
"
A 14
N s
h i
L -
- -
— -

T T T =81 - T T T T
3 2 1 o 1 2 3 4

FIGURE 1. The set 2 in Example 5

3. THE MIN-SUP PROPERTY
With each convex infinite problem
(P) min f(z), st.x € C, fi(z) <0, teT,
x

we associate the closed convex cone

ree(P) = < 01N Cox 1 (1 [0 < 1)

teT

Obviously, rec(P) = {0x} if and only if there is no common direction of
recession to all the data of (P), namely: f,C, f;,t € T, and it is a linear
space if and only if any direction of recession, say d, which is common to
all the data of (P), if any, is equilibrated in the sense that the opposite

direction —d is also common to all the data of (P).
With the convex infinite system formed by the constraints of (P),

o:={fi(x) <0,teT; ze€C},
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is associated the so-called characteristic cone ([2], [3], [6], etc.)
K := cone {epi(ig) U ( U epi ft*> } = epi(ipy) + cone < J epi ft*> :
teT teT

Now we will make precise some links between K and the epigraph of the
function h defined in (2.1). To this end we will just assume that (compare
with [5] and [7])

(3.1) fo+ Z At ft is proper for any A € P(T).
teT

Given A € P(T') we denote by Uier (A¢f)* the infimal convolution of the
functions (Arfy)", t € supp A\, i.e.

(Crer (Aefe)?) (27) = inf{ > NS (@) X ar= ﬂf*}
tesupp A tesupp A
We thus have (e. g. [17, Theorem 2.3.1(ix)])
(Trer M f)) =D Mefes fo+ D Mfr = (fOiE0 (Drer (A f)™)"

teT teT
and, thanks to (3.1),

(fc + m) = o (f*OiE0 (Dher (ufe))) -

tel
Consequently,

epi (fc + Z )\tft> = v (epl + epi(ip) Z At epi ft)

teT teT
so that, by (2.2),

¥ epih =l c?” (epi f* + epi(ify) + > yer Avepi f )}

)\GIP(T)

=¥ {ep1f*+ep1 )+ U (EteT)‘tepift*)}

epi f* +epi(if) + U (Cier Aeepi ff)
/\eR( )
= ¥ (epi f* + K).
We thus have
cl”” coneepih = cl*” cone (clw* epi h) = ¢l cone (epi f*+ K)
and, finally,
(3.2) cl*” coneepih = cI¥” (K + coneepi f*).
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Denoting by II the projection of X* x R onto X* one has, according to
(3.2),

1" conedom h = ¢l coneII (epi k) = ¢l II (cone epi h)
=¥ 11 (Clw* cone epi h) = cl“" TI (K + coneepi f*).

Using the definition of K we get the key relation

(3.3) cl*" conedom h = cl*” (b (C) + cone < J dom ft*) + cone dom f*) ,
teT

where b (C') := dom(if,) denotes the barrier cone of C.
Since the condition

(3.4) cl“” conedom h is a linear space

will be of crucial importance in the sequel, we summarize below some equiv-
alent reformulations of (3.4). To this aim we need the following equivalence
whose simple proof is omitted: Having a linear space U and a function
g : U — R it holds that

(3.5) (domg) x R=(epig) — {0y} x R4.

Proposition 1. Assume that (3.1) holds. Then, each of the following state-
ments is equivalent to (3.4):

(i) rec (P) is a linear space.
(1) cl*” <b (C) + cone < UT dom ff) + cone dom f*) is a linear space.
te
(i4) c¥” (K 4 coneepi f* — {0x+} x Ry) is a linear space.
() cl¥” (K Uepi f*U{(0x«,—1)}) is a linear space.
(v) el (b (C) x R + cone (tUT epi ft*> + cone epif*) is a linear space.
€

Proof: By taking the negative polar cone we obtain that (i) < (i7). By
(3.2) and (3.5) one has

(clw* cone dom h) xR =cl” cone(epih — {0x:} x Ry)
= cl?” (clw* coneepih — {0x~} X R+>
= cl¥" (K + coneepi f* — {0x+} x Ry).
It follows that (3.4)<> (4i7). Since K is a cone, one has
K + coneepi f* — {Ox+} x Ry = cone (K Uepi f*U{(0x+,—1)}).

We thus have (i7i) < (iv). By (3.5) one has epi(ii,) —{0x+ } xRy = b (C) xR.
From the very definition of K, it follows that (iii) < (v). O
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3.1. Quasicontinuity and subdifferentiability. We denote by w (respec-
tively, 7*) the weak topology on X (respectively, the Mackey topology on
X*). Following [10] and [11], a convex function g : X* — R is said to be 7*-
quasicontinuous when the affine hull of dom g, aff dom g, is w*-closed and of
finite codimension, and the restriction of g to the relative interior of dom g,
say ri” dom g, is continuous with respect to the topology induced by 7*.

If g is w*-Isc and proper, one has ([12, Theorem 7.7.6]):

g is T7*-quasicontinuous < ¢g* is w-inf-locally-compact,

meaning that for each r € R, the sublevel set [¢* < r| is w-locally-compact.

Any extended real-valued convex function which is majorized by a 7*-
quasicontinuous convex function is 7*-quasicontinuous too [14, Theorem 2.4].
Accordingly, the convex function h defined in (2.1) is 7*-quasicontinuous
whenever there exists A € P(T) such that fo + > ,cp M ft is w-inf-locally-
compact (this fact is observed in [7, p.11]). Such a condition is in particular
fulfilled when C' is w-locally-compact, e.g. when X is finite dimensional.

We will use the following subdifferentiability criterion [14, Theorem 3.3].

Lemma 1. Let g : X* — R be convexr and 7*— quasicontinuous. Assume
that g (0x+) > —oo and I conedom g is a linear space. Then, dg (0x+)
is the sum of a mon-empty w-compact convex set and a finite dimensional
linear space.

3.2. The main result. Remember that by S (P) we denote the optimal
solution set of the convex infinite problem

(P) H;}inf(:z:), st.zeC, fi(x) <0, teT,

and recall also the formulation of the surrogate dual (A) of (P) :

(A) m)z\xxiréf (f—l— Z)\tft> , st A e P(T).

teT

Theorem 2. Assume that the following assumptions are fulfilled:

(3.6) sup(A) < +oo,

(3.7) EN= RSrT) such that fo + thft s w-inf-locally-compact,
teT

and

(3.8) rec (P) is a linear space.

Then, min(P) = sup(A) € R, and S (P) is the sum of a non-empty w-
compact convex set and a finite dimensional linear space.

Proof: Let us apply Lemma 1 to g = h. By (3.6) one has h (0x+) > —o0.
By (3.7), h is 7*-quasicontinuous and, by (3.3), (3.8) and the equivalence
(i) < (i) in Proposition 1, cI“” conedomh is a linear space. By Lemma
1, Oh (0x~) is the sum of a non-empty w-compact convex set and a finite
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dimensional linear space. Now x € 0h (0x+) means that —h (0x~) = h* (z) =
fenr (x) € R. In other words, z is feasible for (P) and

inf (P) > sup(A) = h* (z) = f (z) > inf (P).

We thus have min(P) = sup(A) € R and 0h (0x+) C S(P). To complete
the proof, take T € S (P) and write

+00 > sup(A) = —h*(0x+) = min(P) = f(T) = fonr(T) = A" (T),
ie, h*(Z) + h(0x+) =0 = (0x+,T), entailing T € Ih (0x+). O

Let us revisit the examples of Section 2, where X is finite dimensional and
sup(A) < 400, so that Theorem 2 applies whenever rec (P) is a linear space.
This is the case of Examples 4 and 5, where rec (P) = {0}, with sup(A)
attained in Example 4 but not in Example 5. Observe that, in Example 2,
rec (P) = R_ x {0}, with inf(P) = 1 # —oo = sup(A), while, in Example
3, rec (P) = R_, with inf(P) = 0 # —oo = sup(A).

Remark 1. The same conclusion is obtained in [7, Theorems 4.7 and 4.8]
replacing condition (3.6) by the stronger assumption that inf (P) < +oo.

Remark 2. In the case that sup(A) = 400, all the problems (P), (D) and
(Q) share the same value.

Now provide a new version of the famous Clark-Duffin Theorem for semi-
infinite optimization with T finite. We are concerned with the problems

(Pn) mmlnf(m), st.xeC fi(z) <0, ..., fm(x) <0,

m inf Nifi |, st (A, .o, Am) € R,
(Qm) maxin <f+; f) st (A1 Am) € RY

with the rule 0 x (+00) = +o0,

(Dm) m)E\LX igf (f + Z )\1f1> , s.t. ()\1, v )\m) € RT,
=1

with the rule 0 x (+00) = 0, and

(An) m)z\xxiléf (f + ;)\zﬁ) ; 8.t (A e, Am) € RN {Orm },

where X is a locally convex separated tvs, C' a non-empty closed convex
subset of X and f, f1,..., fm, € T'(X). The next result is to be compared
with [9, Theorem 5.1] and [4, Theorem 3.1].

Corollary 1. Assume that sup(A,,) < +o0, that there exists X € R such
that fo + Y0 Nifi is w-inf-locally-compact, with the rule 0 x (+00) = 0,
and that rec (Py,) is a linear space. Then,

sup(A,,) = sup(Dy,) = sup(Qy,) = min(P,,) € R
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and S (Pp,) is the sum of a non-empty w-compact convexr set and a finite
dimensional linear space.

Remark 3. If X is finite dimensional, the second assumption in the state-
ment of Corollary 1 is superfluous.

4. APPLICATIONS

4.1. The finite intersection property. Recall that a family {Cy, t € T'}
of sets of a topological space is said to have the finite-intersection property
if the intersection (1, C} is non-empty whenever each finite subfamily of
{C}, t € T} has a non-empty intersection. As a substitute of compactness
we have the following result:

Corollary 2. Let {Cy, t € T'} be a family of closed convex subsets of a lo-
cally convex separated tvs having the finite-intersection property. Moreover,
assume the existence of t1, ..., tn, € T such that (=, Cy, is w-locally-compact
and that (V,ep (Ct) o 15 a linear space. Then (\,cp Ct is the sum of a non-
empty w-compact convex set and a finite dimensional linear space.

Proof Apply Theorem 2 with C' = X, f = 0, and f; = i¢,, t € T,
observing that S(P) = (\,er Ct, rec(P) = (Ve (Ci) o, and sup(A) <
+oo amounts to say that the family {C;, ¢t € T'} has the finite-intersection
property. [l

Remark 4. Taking C = X =R, f =0, and f; =i} {o[, ¢ > 0, in Theorem
2, we get M = () and, since the family {[t,+oo[, ¢t > 0} has the finite-
intersection property, one gets

max(A) = max(D) =0 < +oo0 = sup(Q) = inf (P).

Since rec (P) = [0, 4+00] is not a linear space, the assumption (3.8) in Theo-
rem 2 is not satisfied.

4.2. Convex infinite systems. In this section we still apply Theorem 2
in the case that f = 0. We denote by (F) the corresponding convex infinite
problem, and by
o:={fi(z) <0, teT; zeC},
the general infinite convex system associated with the constraints of (P),
whereas K is the characteristic cone of 0. The feasible set CNF of o coincides
with S (P). It may be empty even if we assume that sup(Ag) < 400 (see
Remark 4).
The function hg associated with (P) is

ho= inf [ic+ A .
0=t (1(1 tEZT tft)
Assuming that
(4.1) ic+ Z At ft is proper for any A € P(T),
teT
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which is the counterpart of (3.1) and it is weaker than sup(Ag) < +oo, it
holds that

cl” epihg = ¥ K
and, recalling (3.3),

cl¥” cone dom hgy = I <b (C) + cone ( J dom f;)) )

teT

Let us define the recession cone associated with o by

rec (o) :=rec (Py) = Coo N <ﬂ [(ft)oo < O]> .
teT
Assuming that (4.1) holds, the following assertions are equivalent (see Propo-
sition 1):

0) rec(o) is a linear space,

i) ol (b (C) + cone ( J dom f{‘)) is a linear space,
teT
.Z *

iig) cl¥ (K —{0x-} x R;) is a linear space,
ivg)  cl¥ cone (K U {(0x+,—1)}) is a linear space,

vg) el (b (C) x R + cone < U epi ff)) is a linear space.
teT

7
t
t

(
(
(
(
(

We are now in a position to state a generalization of Fan’s Theorem in
general locally convex separated tvs:

Corollary 3. Assume that

(4.2) X € R such that ic + infi is w-inf-locally-compact,
i=1

and that

(4.3) rec (o) is a linear space.

Then, the infinite convexr system o is consistent if and only if

4.4 inf Mfr < A e P(T).
(1.49) > 0fo <0 for any A € P(T)

Proof: Necessity is obvious. Sufficiency comes from Theorem 2 by taking
f=0. (]
Remark 5. With the same assumptions, statement (4.4) in Corollary 3 is
equivalent to

vA e R, 3z € C such that Y Acf (2) <0
teT

that appears in [2, Theorem 3.5].
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In [2, Theorem 3.5] it is assumed that either K is w*-closed or K is solid if
X is infinite dimensional, and rec (o) = {Ox~}. We now provide an example
where none of these two conditions is satisfied while Corollary 3 does work.

Example 6. Let X be a reflexive Banach space whose open (respectively,
closed) unit dual ball is represented by B* (resp., B'). Notice that the
topology 7 coincides with the dual norm topology. Given a € X, a # Oy,
let us set H := {a}" and consider

D:=HnNB"
It holds that cone D = aff D = H, a closed hyperplane, and Ox~ € riD =

H N B*. Setting f; := i}, — %, t > 0, we get a family of functions in I" (X))
having the same recession cone, namely,

[(ft)o <0] = [i} <0] = H- =R{a}, for all t > 0.
Since ff = ip + % is T7*-quasicontinuous, any f; is w-inf-locally-compact.
Consequently, the system
o:={fi(x) <0, t >0}
satisfies the assumptions of our Corollary 3. However,
K = cone (U epi 7 ) = (1 x 10,405 U {(0x-,0)
>

is not w*-closed, K C H x R is not solid, and rec(0) = R{a} is not
{(0x~+,0)}. Consequently, the assumptions of [2, Theorem 3.5] are not sat-
isfied.

Given m > 1, t1,....,t,, € T, and € > 0, let us consider the system
o(t1,.ntm,e) ={fr,(x) <e, i=1,...m, v € C}.

Corollary 4. Assume that (4.2) and (4.3) hold. Then the convex in-
finite system o is consistent if and only if all the semi-infinite systems
o (t1,eeytm,€), m>1, t1, ...ty € T, € > 0, are consistent.

Proof: Necessity is obvious; now we show the sufficiency. Applying
Corollary 3, we have just to verify that (4.4) holds. So, let A € P(T") and
supp A = {t1,...,t; } . For any a > 0 there exists T € C such that

(0%
fu@) £ &
Zj:l,...,m )\j

,i=1,...,m.

We thus have .

D ANSi@) = 3 Mifu (@) < o
teT =1

Since o > 0 is arbitrary, we have that (4.4) holds.

Remark 6. In Corollaries 3 and 4, the solution set of the convex infinite
system o is either empty or the sum of a non-empty w-compact convex set
and a finite dimensional linear space.
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4.3. Convex infinite zero-sum games. Given a family F :={f;, t € T}
of convex Isc proper functions on X, where T is a possibly infinite index set,
and a non-empty closed convex set C' C X, where X is a (real) separated
locally convex tvs, we consider a bipersonal zero-sume game whose elements
are the following:

Strategies of Player I: The elements of X := {)\ € R DD ter M= }

Strategies of Player II: The elements of C.
Payoff function to Player I: The function p : ¥ x C' — R U {400} defined

by
T) = Z e fe(x)

teT
This game is denoted by {F, C}. We shall assume that CN(Nger dom f;) #

() in order to preclude the nonsense case p = +oo. Its mazimin and minimaz
values are, respectively,

= sup inf p()\ x) = sup inf Z At fe(z

Aex zel ez zel
and
vrr = inf supp(A, z) = inf supZ)\tft = 1nf sup fi(x).
zcC \ex v€CNex {27 Cter

vy represents the supremum payoff that Player I may guarantee to him(her)self,
whereas vyy is the infimum amount that he(she) will have to pay to Player
1. Obviously v; < vyy.

The following proposition extends to infinite games Theorems 3.2 and 4.1
n [13].

Proposition 2. Consider the game {F,C}, and assume that the set Coo N

(Mier [(ft)oo < 0]) is a linear subspace as well as the existence of X e R(T)

such that ic + > ,cp /\tft is w-inf-locally-compact. Then:

(1) The minimax theorem holds true: vy = vrr. This common value v =
vr = vys 18 called game value.

(13) The set of optimal strategies of Player II is non-empty, i.e.

11:={xe€C: v=sup fi(T)} # 0.
teT

(iii) If the set Ao := U epi(ic + 3 er Me(fr — v))* is w*-closed re-
AEP(T)
garding {0%} x R, the set of optimal strategies of Player I is non-empty,
i.€.
S;={AeX: v= 1an)\tft )} #£ 0.

teT

Proof (i) According with Corollary 3, under the current assumptions,
one and only one of the following alternatives hold:
(a) There exists z € C such that fi(z) <0, for all ¢t € T
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(b) There exist A € ¥ and € > 0 such that 3, A fy(z) > € for all z € C
(this is the negation of (4.4)).

Observe that (a) implies vy < 0, whereas (b) implies v; > 0. Then, the
inequalities v; < 0 < vy cannot be verified simultaneously.

For any real number a we consider the game {F¢, C'} where F* := { f;(-)—
a, t € T}. It is obvious that the associated maximin and minimax values
are

vf =vr —a and V7 = v — .
Since v{ < 0 < v{; is impossible, v; < a < vyr is impossible too, for every
scalar . Hence vy = vyjy.

(73) Here, and also in (iii), we shall assume that v = vy = vy = 0;
otherwise we will consider the game {F", C'} having value equal to zero and
the same sets of optimal strategies for both players. According with this
assumption

Sip={zcC: 0=supfy(z)} and S;:={A€X: 0= inf thft(a:)}.
teT e eT

Reasoning by contradiction, if S;; = 0, the system o := {fi(x) <0, t €
T; = € C} has no solution, i.e. (a) above fails and so, (b) holds, but this
entails v = vy > 0.

(7i7) It is a consequence of Theorem 1 applied to the pair of dual problems

(Pp) min0, s.t. z € C, fi(x) <0, t €T,
and

: — (T)
(Ao) IH)E\%X;Ielg (teZT )\tft(ib)) , 8.t A= ()\t)tET S P+ .

Under the current set of assumptions we have min(Fp) = 0 = max(Ag) = v.
If X0 ¢ IP(E) is optimal for (A), (3,cr A7) 1A € Sy, and we are done. O

5. PERTURBATIONAL APPROACH

Having p = (p);er € R”, we consider the parametric convex infinite
problem
(P*) min f(z), st.x € C, fi(x) < —py, t €T,
x

where f, fi,t € T, are proper convex functions defined on the locally convex
separated tvs X, and C' C X is a non-empty convex set. Let us observe that
all these problems have the same recession cone:

rec (P*) = rec (POT) =rec (P).
Considering the associated dual problems

(D*) max {Zwt + inf (f + ZA%) } st Aer)

te’T teT
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(AM) m}g}x{Z)\tut—i—igf <f+2)\tft>}, s.t. A e P(T),

teT teT
we can thus state, applying Theorem 2:

Corollary 5. Assume that (3.7) and (3.8) hold. For any u € RT we have
either

min (P") = sup(D*) = sup(A*) € R,
or
inf (P*) = sup(D#) = sup(A*) = +o0.
By using the value function v: RT — R,
v () = inf (P),
we can develop in a natural way the classical perturbational duality theory

for convex infinite problems (see, e.g. [1], [17]) by computing the conjugate
of v, namely,

. . T
(51) —o* ()\) _ lnfC’ﬂM (f + ZtET )‘tft) ) if A e Ri )7 e
—00, if A e RONRY,

and defining the perturbational dual of (P*) as

Q") m}z\xx{z Aepy + inf <f+z>\tft> } st. A e R,

teT teT

We observe that (QOT) coincides with the problem (@) defined in Section 1.
One has, in general, the following well-known properties:

a) —oo < sup(A*) < sup(D¥) < sup(Q*) = v™* () < v (p) = inf (P*) <

b) E := U {((f @))ser f ()} + R x Ry is convex,
zeCNMnNdom f

¢) v is convex,
d) epi,v C E := {(u,r) eRT xR : (—p,r) € E} C epiv, and
e) epiv = clepiv = clE.

Observe that all these properties are true just assuming the convexity of
the data of (P): f,C, fi,t € T.

Theorem 3. Assume that f, fi : X — RU{+o0} are proper convex and C
is a non-empty convex subset of the locally convex tvs X such that

N (T) : by _
(5.2) dX € Ry’ such that 1%11f\4 (f + Z )\tft> #+ —00.

C
teT

Then, for any p € RT | the following statements are equivalent:
(1) min (P*) = sup(Q") € R or sup(Q") = +o0.
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(i) E is closed regarding to {—u} x R.

Proof: By (5.1) and (5.2) one has v*(\) < 400 and so, domv* # 0.
Since v is convex, T = v** (either v is proper or +o00 = v** =7 =v).
Let us begin with the case that sup(Q*) = +oo. Then T (u) = +00 and

0= {prxR)Nepiv = ({u} x R)N lE.

So, E is closed regarding to {u} X R and, equivalently, F is closed regarding
to {—u} x R. Thus, if sup(Q*) = +oo, the statements (i) and (i) are
simultaneously satisfied.

Assume now that 5 := sup(Q*) < +oo. By (5.2) we have § € R and so
(1, B) € clepiv = CIE, that is,

(5.3) (=1, B) € cl E.

Assume that (i) holds and let (—u,r) € cl E, so that v (u) = 8 < r. Taking
TeS(PF)wegett € CNMNdom f, f; (T) < —py,t € Tyand f(T) = <.
So,
(~1.7) € {((fr @)rer, f @)} +RY xRy C B,
and (77) holds.
Conversely, assume that (i7) holds. By (5.3) we thus have (—pu,7) € E,
and there exists T € C'N M Ndom f such that

f(7) < —py, tET, (z) < B <inf (PF).

Since 7 is feasible for (P*), we obtain (7). O
Let us come back to Clark-Duffin duality frame and the related problems

(Pm) and (Qm) -

Corollary 6. Let f, f1,..., fm : X — RU{+o0} be proper convex functions
and C be a non-empty conver subset of X. Assume that

m
I\ € R such that irclf (f + Z)\Zfz> # —00
i=1
with the rule 0 x (+00) = +o00. Then the following statements are equivalent:

(1) min (Pp,) = sup(@Qm) € R or sup(Q,) = +00.
(ii) the convex set

zeCnNdom fNdom f1N...Ndom fy,

is closed regarding to {Ogm } x R.

Proof: Observe that (Pp,) = (P%™), (Qm) = (Q"™), and apply The-
orem 3 with T'={1,...,m}. O

This section ends with an application of Theorem 3 to the convex system

o:={fi(x) <0,teT; ze€C},
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where f; : X — RU{+o00}, t € T, are proper convex and C' is a non-empty
convex subset of X. Let us recall that M = [,c, dom f;. We have (compare
with Corollary 3):

Corollary 7. Let o be as above and assume that

cnM

(5.4) inf (Z A ft> <0 for any A e R,
teT

Then o is consistent if and only if

U {((fr @)er,0)} + REY x R,
zeCNM

is closed regarding {07} x R.

Proof: Apply Theorem 3 with f = 0 and p = O7. Observe that (5.2)
is satisfied (with A = Or) and that (5.3) amounts to sup(Q*) = 0. Then it
suffices to notice that min (P*) = 0 amounts to say that o is consistent. [J

6. LINEAR INFINITE PROBLEMS

In this section we will apply the previous results, essentially Theorems 1,
2 and 3, to the linear infinite problem

(P) mxin (c",x), st.xeC, (zf,x) <mry teT,

where (z},7) € X* xR, t € T, ¢* € X*, and C is a closed convex cone in
the locally convex separate tvs X.
One has straightforwardly,

(D) =(Q) max — (ic+ (c* + Z)xﬂ;,’f) + Z)\ﬂ’t> , st A€ RSFT).
teT teT

Modifying the feasible set (but not the value) of (D) we get a classical
Haar dual-type problem

# _ (T) * + _
(D7) max Z)\trt, st.AeR ,Z)\txt eCm —c".
teT teT

In order to apply Theorem 1 to the present situation, let us introduce the
w*-continuous linear mapping

A:RTD 5 X* xR, A(N) :Zkt(:ci‘,rt)-
teT
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Denoting by K the characteristic cone of o := {(zf,z) <r, t €T, x € C},
one has

K =epi(i},) + cone < U epi(xf — Tt)*>
teT

= C~ xRy + cone ( U epi(ife;y + Tt))
teT

—C xRy + A (RT)) 4+ {0x} xRy
=C xRy +A(RD

Corollary 8. Assume that (P) is consistent. Then, the following state-
ments are equivalent:

(1) sup(D#) = —cc or inf (P) = max(D?) € R.
(i) K is w*-closed regarding to {—c*} x R.

Proof: Theorem 1 establishes that (i) holds if and only if B is w*-closed
with respet to {Ox+} x R. In this linear setting, we get straightforwardly,
(T)
for any A € RY 7,

epi (ic +c+ Z)\t (xf — rt)> =(c"0)+AN)+C xRy

teT
Consequently,
B =(c"0)+A (]R{@) +C™ xRy =(c",0)+ K,
and B is w*-closed regarding to {Ox+} x R if and only if (i7) holds. O

Corollary 9. Assume that (P) and (D%) are consistent. Then, the follow-
ing statements are equivalent:

(i) inf (P) = max(D#) € R (i.e., (P) and (D¥) are in strong duality).

(ii) K is w*-closed regarding to {—c*} x R.

Remark 7. According to the assumptions of Theorem 3, the convex cone
C does not need to be closed in Corollary 9.

We will now apply Theorem 3 for y = Op to the linear infinite problem

(P). To this end, let us consider the continuous linear mapping
L:X— ]RT X R) L (‘T) = (((1":71">)t€T ) <C*a$>) .

We have (compare with [7, Theorem 5.5]):
Corollary 10. Assume that ¢* € C*T —cone {z},t € T}. Then, the following
statements are equivalent:
(1) sup(D#) = 400 or min (P) = sup(D#) € R.
(i4) L (C) + RY x Ry is closed regarding to {(r¢),cqp} X R.
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Proof: Applying Theorem 3 we observe that (5.2) is equivalent to ¢* €
Ct — cone {x},t € T}, and we have

E=L(C)+RE xRy — {(r),er} x {0}.

Consequently, F is is closed regarding to {Or} x R amounts to statement
(74) in Corollary 9, and we are done.
Finally, we will apply Theorem 2 to the linear infinite problem

# _ * + ok
(A7) max Z)\trt, s.t. A e P(T), Z)‘twt eC™ —c".
teT teT

We thus have, directly from Theorem 2 (compare with [7, Corollary 4.5],
where it is assumed that (P) is consistent):

Corollary 11. Assume that the closed convexr cone C' is w-locally compact
and

CNicr<0In ( N [zf < O]) is a linear space.
teT

Then either sup(A#) = sup(D#) = inf (P) = 400 or min P = sup(A#) =

sup(D?) € R, and S (P) is the sum of a non-empty w-compact convexr set

and a finite dimensional linear space.
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