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Abstract. Given a convex optimization problem (P ) in a locally con-
vex topological vector space X and with an arbitrary number of con-
straints, we consider three possible dual problems of (P ) ; namely, the
usual Lagrangian dual (D) ; the perturbational dual (Q) ; and the sur-
rogate dual (�) ; the last one recently introduced in [7]. As shown by
simple examples, these dual problems may be all di¤erent. This paper
provides conditions ensuring that inf(P ) = max(D); inf(P ) = max(Q);
and inf(P ) = max (�) (dual equality and existence of dual optimal so-
lutions) in terms of the so-called closedness regarding to a set. Su¢ cient
conditions guaranteeing min(P ) = sup(Q) (dual equality and existence
of primal optimal solutions) are also provided, for the nominal problems
and also for their perturbational relatives. The particular cases of con-
vex semi-in�nite optimization problems (in which either the number of
constraints or the dimension of X, but not both, is �nite) and linear in-
�nite optimization problems are analyzed. Finally, some applications to
the feasibility of convex inequality systems and to the so-called convex
games are described.
AMS Classif: [2010] Primary 90C25, Secondary 49N15, 46N10.
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1. Introduction

Given m + 1, with m � 1; convex lower semicontinuous (lsc) proper
functions f; f1; :::; fm on a (real) separated locally convex topological vector
space X and a non-empty closed convex subset C of X; let us consider the
convex semi-in�nite problem (semi-in�nite as the number of constraints is
�nite but the dimension of X is in�nite)

(Pm) min
x
f(x); s:t: x 2 C; f1(x) � 0; :::; fm(x) � 0:

Relaxing the inequality constraints, the Lagrangian dual of (Pm) is classi-
cally de�ned as

(P 0m) max
�
inf
x2C

 
f(x) +

mX
i=1

�ifi(x)

!
; s:t: � := (�1; :::; �m) 2 Rm+ :

Clearly, some care is necessary in order to give a precise sense to the expres-
sion 0� (+1) that may appear in (P 0m) formulation. Following Rockafellar
[16, p.24], we may adopt the rule 0 � (+1) = 0: Another possibility is to
set 0 � (+1) = +1; a choice made for instance by Z¼alinescu [17, p.39].
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We shall denote by (Dm) and (Qm) the corresponding versions of (P 0m) as-
sociated with these rules. It holds that the corresponding optimal values of
these problems satisfy

�1 � sup(Dm) � sup(Qm) � inf (Pm) � +1:
Given a family fft; t 2 Tg of convex lsc proper functions on X; where T

is a possibly in�nite index set, let us consider now the general convex in�nite
problem

(P ) min
x
f(x); s:t: x 2 C; ft(x) � 0; t 2 T;

whose feasible set is F \ C where
F :=

T
t2T

[ft � 0] = fx 2 X : ft(x) � 0; t 2 Tg :

The associated Lagrange dual is classically de�ned as (see, e.g. [3], [5],
[7], etc.),

(D) max
�
inf
x2C

 
f(x) +

X
t2T

�tft(x)

!
; s:t: � := (�t)t2T 2 R(T )+ ;

with R(T )+ denoting the positive cone of the space R(T ) of functions � : T ! R
whose support supp� := ft 2 T : �t 6= 0g is �nite, andX

t2T
�tft(x) :=

�
0; if � = 0T ;P
t2supp� �tft(x); if � 6= 0T ;

where 0T represents the null-function. It is worth noting that in the �nitely
constraints case, that is T = f1; :::;mg ; the Lagrangian dual (D) coincides
with (Dm) while the generalization of (Qm) is given by (e.g. [1], [7], [17])

(Q) max
�

inf
x2C\M

 
f(x) +

X
t2T

�tft(x)

!
; s:t: � 2 R(T )+ ;

where M :=
\

t2T
dom ft: Observe that if M � C \dom f; then (D) � (Q):

Finally, replacing the set R(T )+ by P(T ) := R(T )+ n f0T g in the dual problem
(D); the following surrogate dual problem (�) was introduced in [7]:

(�) max
�
inf
x2C

 
f(x) +

X
t2T

�tft(x)

!
; s:t: � 2 P(T ):

One always has the following relations among the optimal value of these
problems:

(1.1) �1 � sup(�) � sup(D) � sup(Q) � inf (P ) � +1:
The paper is organized as follows. Assuming that inf(P ) < +1; Section

2 is concerned with the characterization of the so-called strong duality prop-
erty for the three pairs of dual problems, which respectively accounts for
the relations inf(P ) = max(D); inf(P ) = max(Q); and inf(P ) = max (�)
(i.e., both optimal values coincide and the dual optimal values are attained)
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in terms of a property called w�-closedness regarding to suitable sets (see
[1], [15]). This is the purpose of Theorem 1, the main result in Section 2.
Section 3 is devoted to the relation min(P ) = sup(�) (i.e., we have again
dual equality plus attainability of the primal optimal value). Theorem 2
provides su¢ cient conditions based on the notion of quasicontinuity and re-
cession assumptions. This result improves the one obtained in [7, Theorem
4.7] in the sense that we do not assume that inf(P ) < +1 but only that
sup(�) < +1: It turns out that the use of this weakened assumption has
important consequences. Section 4 shows applications of Theorem 2. In
fact, Corollary 1 provides a new general form of the Clark-Du¢ n�s Theorem
in terms of the �nite intersection property (Corollary 2), while Corollaries 3
and 4 deal with the existence of solutions of convex in�nite systems. Also in
Section 4, Theorems 1 and 2 are applied to prove the minimax theorem for a
bipersonal convex zero-sum game, as well as the existence of optimal strate-
gies for both players under certain assumptions. Section 5 is concerned with
the perturbations of the convex in�nite problem (P ) (Corollary 5), leading
us to the characterization of the property min(P ) = sup(Q) and its per-
turbational relatives in terms of w�-closedness regarding to a set (Theorem
3 and Corollary 7). In this way, Theorems 2 and 3, and Corollaries 5 and
7 complete and improve the results obtained in Section 5 of [7]. In the
last Section 6 we apply the previous results to linear in�nite optimization
problems. Corollaries 8-11 provide the most important results in this �eld.

2. The inf-max property

We shall start this section with some necessary notation and preliminaries.
Given a non-empty subset A of a (real) separated locally convex tvs, we
denote by coA, coneA; a� A; A+; and A�, the convex hull of A, the convex
cone generated by A[ f0Xg ; the smallest linear manifold containing A; the
positive polar cone of A, and the negative polar cone of A, respectively: If
A � X�; where X� is the topological dual of X, it holds that A++ = A�� =
clw

�
coneA: We denote by C1 the recession cone of the non-empty closed

convex set C:
Having a function g : X ! R := R [ f�1g; we denote by epi g; epis g;

and g� the epigraph, the strict epigraph, and the Legendre-Fenchel conjugate
of g, respectively. The function g is proper if epi g 6= ; and never takes the
value �1, it is convex if epi g is convex, and it is lower semicontinuous (lsc,
in brief) if epi g is closed. We denote by � (X) the class of lsc proper convex
functions on X. The function cl co g : X �! R is the lsc convex function
such that epi(cl co g) = cl co(epi g):
The indicator function of A � X is represented by iA (i.e. iA(x) = 0

if x 2 A; and iA(x) = +1 if x =2 A), and support function of A is the
conjugate of its indicator, i.e. i�A: One has i

�
A = i

�
coA = i

�
cl(coA):

Given g 2 � (X), we denote by g1 its recession function, i.e. the convex
function whose epigraph is (epi g)1. One has g1 := i�dom g� (e.g. [17,
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Exercise 2.35]), and

[g1 � 0] = (dom g�)� = (cone dom g�)� ;
yielding

clw
�
cone dom g� = [g1 � 0]� :

Moreover [g1 � 0] = [g � �]1 for all � such that [g � �] 6= ;.
Associated with the dual problems (�); (D) and (Q) we introduce the

functions h; k; ` : X� ! R, respectively de�ned by

(2.1)

h := inf�2P(T )
�
fC +

P
t2T �tft

��
;

k := inf
�2R(T )+

�
fC +

P
t2T �tft

��
;

` := inf
�2R(T )+

�
fC\M +

P
t2T �tft

��
;

where fC := f + iC and fC\M = f + iC\M :
The following properties can easily be proved following the same argu-

ments that in [7, Lemmas 3.1 and 3.2]:
(1) `; k and h are convex, and ` � k � h;
(2) �` (0X�) = sup(Q); �k (0X�) = sup(D); and �h (0X�) = sup(�);

(3) `� = k� = h� = fC\F ;
(4) �`�� (0X�) = �k�� (0X�) = �h�� (0X�) = inf (P ) :

The functions h; k and ` can be improper, possibility which was excluded
in [7]. For instance, if C \ dom f = ;; we obviously have h = k = ` � �1.
In the following simple example, the functions fC+

P
t2T �tft are all proper:

Example 1. Let X = C = R2; f (x) = x1; T = f1g ; and f1 (x) = exp (x2) :
We have F = ;; and so inf (P ) = inf fx1 : exp (x2) � 0g = +1: Moreover

sup(�) = sup(D) = sup(Q) = sup
��0

inf
x2R2

(x1 + � exp (x2)) = �1:

For � > 0; Theorem 2.3.1 [(v),(viii)] in [17] allows us to write

(f + �f1)
� (x�1; x

�
2) = if1g(x

�
1) + � exp

�(��1x�2);

where we denote by exp� the conjugate of the exponential function exp, i.e.

exp� (u) =

8<: +1; u < 0;
0; u = 0;
u lnu� u; u > 0:

Therefore

(f + �f1)
� (x�1; x

�
2) =

8<: +1; x�1 6= 1 or x�2 < 0;
0; x�1 = 1 and x

�
2 = 0;

x�2 lnx
�
2 � x�2 � x�2 ln�; x�1 = 1 and x

�
2 > 0;

and

h (x�1; x
�
2) = inf

�>0
(f + �f1)

� (x�1; x
�
2) =

8<: +1; x�1 6= 1 or x�2 < 0;
0; x�1 = 1 and x

�
2 = 0;

�1; x�1 = 1 and x
�
2 > 0:
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We clearly have h = k = ` and h� = k� = `� = +1 = f+iC\F : Observe
that these functions are convex but neither proper nor lsc.

We also introduce the sets

A :=
S

�2P(T )
epi
�
fC +

P
t2T �tft

��
;

B :=
S

�2R(T )+

epi
�
fC +

P
t2T �tft

��
;

C :=
S

�2R(T )+

epi
�
fC\M +

P
t2T �tft

��
:

It holds that

epis h � A � epih; epis k � B � epi k; epis ` � C � epi `;

and denoting by h; k and ` the w�-lsc hull of h; k and `; respectively, we
have

(2.2) epih = clw
�
A; epi k = clw

�
B; epi ` = clw

�
C:

Assuming that C \ F \ dom f 6= ; one has, by the convexity of h; k and
`; and (3) above,

(2.3) h = k = ` = (fC\F )
� = h�� = k�� = `��:

We will need the following notion ([1], see also [15]).

De�nition 1. Given two subsets A;B of a topological space, A is said to be
closed regarding to B if B \ clA = B \A:

We are now in a position to state the main result of this section.

Theorem 1. Assume that inf (P ) < +1: The following assertions are
equivalent :
(i) A (resp. B; resp. C) is w�-closed regarding to the set f0X�g � R:
(ii) inf (P ) = max(�) (resp. inf (P ) = max(D); resp. inf (P ) = max(Q)),
including the value �1.

Proof. We only give the proof relative to (�); the two other ones being
similar.
Since inf (P ) < +1; one has C\F\dom f 6= ; and, by (2.3), h = (fC\F )�:
Assume �rst that inf (P ) = �1: By (1.1) we have

inf
C

 
f +

X
t2T

�tft

!
= �1 for any � 2 P(T );

and so, inf (P ) = �1 = max(�): On the other hand, h (0X�) = � inf (P ) =
+1 and, by (2.2),

(f0X�g � R) \ clw� A =(f0X�g � R) \ epih = ;;
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implying that A is w�-closed regarding to f0X�g � R: So, in the case that
inf (P ) = �1; we have proved that statements (i) and (ii) are simultane-
ously true.
Assume now that � := inf (P ) 2 R: By (4), (2.2) and (2.3) we have

(0X� ;��) 2 epih�� = epih = clw� A:

Assuming that (i) holds we get (0X� ;��) 2 A; and there exists � 2 P(T )
such that

�
fC +

P
t2T �tft

��
(0X�) � ��: This yields

sup(�) � inf (P ) = � � inf
C

(
fC +

X
t2T

�tft

)
� sup(�)

and (ii) is proved.
Assume now that (ii) holds and let (0X� ; r) 2 clw� A: By (4), (2.2) and

(2.3), one has (0X� ; r) 2 epih�� and � inf (P ) = h�� (0X�) � r: By (ii), there
exists � 2 P(T ) such that � inf (P ) =

�
fC +

P
t2T �tft

��
(0X�) and we have

(0X� ; r) 2 epi
 
fC +

X
t2T

�tft

!�
� A;

proving that (i) holds. �

The next examples compare the characterizations of the inf-max property
provided by Theorem 1 with the so-called Slater condition:

9x 2 C \ dom f such that ft (x) < 0 8t 2 T:

When T is �nite, it is known that �1 � inf (P ) = max(Q) < +1 whenever
the above Slater condition holds ([17, Theorem 2.9.3]).

Example 2. Let X = C = R2; f (x) = exp (x2) ; T = f1g ; and f1 (x) =
x1+iR�R+ (x) : We have inf (P ) = inf fexp (x2) : x1 � 0; x2 � 0g = 1: Thus,
min (P ) = 1; with primal optimal set S (P ) = R��f0g : In order to check
the conditions of Theorem 1, we must compute the functions (f + �f1)

� for
all � � 0: If � > 0; then

(f + �f1)
� (x�) =

8<: x�2 lnx
�
2 � x�2; x�1 = �; x

�
2 > 1;

�1; x�1 = �; x
�
2 � 1;

+1; otherwise.

The above equation remains valid for � = 0 under the rule 0� (+1) = +1
(as in (Q)), but not under the rule 0� (+1) = 0 (as in (D)), in which case

(f + 0f1)
� (x�) =

8<: x�2 lnx
�
2 � x�2; x�1 = 0; x

�
2 > 0;

0; x�1 = x
�
2 = 0;

+1; otherwise.
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Using again the symbol exp� for the conjugate of the exponential function
exp we have

A = R++ � (epi(exp�) + R+ (�1; 0)) ;
B = A [ (f0g � epi(exp�));
C = R+ � (epi(exp�) + R+ (�1; 0)) = clw

�
A:

The closedness of C entails its closedness regarding f(0; 0)g�R; while A and
B do not enjoy this property as A\ (f(0; 0)g�R) = ;; B\ (f(0; 0)g�R) =
f(0; 0; r) : r � 0g ; and

(clw
�
A) \ (f(0; 0)g � R) = (clw�B)\(f(0; 0)g � R) = f(0; 0; r) : r � �1g :

Thus, by Theorem 1, inf (P ) = max(Q) holds while both inf (P ) = max(�)
and inf (P ) = max(D) fail. Indeed, infR2 ff + �f1g = �1 for all � > 0;
and

inf
R2
ff + 0f1g =

�
0; for (D) ;
1; for (Q) :

So, inf (P ) = max(Q) = 1 (attained for � = 0) while sup (D) = max(D) = 0
(attained for � = 0) and sup (�) = �1: Hence, the Slater condition does
not guarantee the relation inf (P ) = max(D); neither sup (D) = sup (Q) nor
sup (D) = sup (�) :

Example 3. Let X = C = R; f (x) = exp (x) ; T = f1g ; and f1 (x) = x:
Then, the primal problem is

(P ) min
x
exp (x) ; s:t: x � 0;

with associated dual problems

(�) max
�
inf
x2R

(exp (x) + �x)) ; s:t: � > 0;

and
(D) � (Q) max

�
inf
x2R

(exp (x) + �x)) ; s:t: � � 0:

One has

�1 = sup(�) < 0 = max(D) = max(Q) = inf (P ) :

Observe that, for any � > 0; one has by [17, Theorem 2.3.1(vii)]

(f + �f1)
� (x�) = f�(x� � �);

so that epi (f + �f1)
� = epi(exp�) + (�; 0) : Thus,

A =
S
�>0

epi (f + �f1)
� = epi(exp�) + (R++ � f0g);

and, analogously, B = C = epi(exp�) + (R+ � f0g): Since

A \ (f0g � R) = ; 6= f0g � R+ = (clw
�
A) \ (f0g � R) ;
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A is not closed regarding f0g�R while B = C is closed and, a fortiori, closed
regarding f0g � R: Observe that, once again in this case, Slater condition
holds and, however, sup(�) 6= sup(D):

Example 4. Let X = R; C = [�1; 1] ; f (x) = �x; T = f1g ; and f1 (x) = x
if x � 0; f1 (x) = 0 if x < 0: Now we have

(P ) min
x
f�x; s:t: x 2 [�1; 1]; x � 0g;

with associated dual problems

(D) � (Q) max
�

inf
�1�x�1

(�x+ �f1 (x))) ; s:t: � � 0;

(�) max
�

inf
�1�x�1

(�x+ �f1 (x))) ; s:t: � > 0:

One has inf�1�x�1 (�x+ �f1 (x))) = 0 = inf (P ) for any � � 1: Conse-
quently,

max(�) = max(D) = max(Q) = min (P ) = 0:

In fact, for any � � 0; one has

(f + �f1)
� (x�) =

�
0; �1 � x� � �� 1;
+1; otherwise,

and so A = B = C = [�1;+1[ � R+ is closed. However, Slater condition
is not satis�ed, and this shows that it is su¢ cient, but not necessary, for
having inf (P ) = max(Q) < +1.

Example 5. Let X = C = R; f (x) = x2; T = f1g ; and f1 (x) = x+ � 1:
Thus, Slater condition holds and we have

(P ) min
x
x2; s:t: x+ � 1 � 0;

(�) max
�
inf
x2R

�
x2 + � (x+ � 1))

	
; s:t: � > 0;

and
(D) � (Q) max

�
inf
x2R

�
x2 + � (x+ � 1))

	
; s:t: � � 0:

By the Moreau-Rockafellar Theorem (see, for instance, [1, Theorem 7.6])

epi (f + �f1)
� = epi f� + epi (�f1)

� = epi f� + � epi f�1

for any � > 0: Setting pos (x) = x+; x 2 R; one has f1 = pos(�) � 1;
f�1 = pos

�(�) + 1 = i[0;1] + 1; and so epi f�1 = [0; 1]� [1;+1[ : Thus,
A =

S
�>0

epi (f + �f1)
�

= epi f� +
S
�>0

[0; �]� [�;+1[

=
n
(x�; r) : (x

�)2

4 � r
o
+ f(x�; r) : (x�; r) 6= (0; 0) ; 0 � x� � rg

=
n
(x�; r) : x� � 2; (x

�)2

4 < r
o
[ f(x�; r) : 0 < x� � 2 � rg
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while
B = C = A [ epi f�

=
n
(x�; r) : x� � 2; (x

�)2

4 � r
o
[ f(x�; r) : 0 � x� � 2 � rg :

So, B = C is closed and equal to epi
�
f + i]�1;1]

��
= clw

�
A: Since

A \ (f0g � R) = f0g� ]0;+1[ 6= f0g � R+ = (clw
�
A) \ (f0g � R) ;

A is not closed regarding to f0g � R: This is the reason why sup(�) is not
attained while sup(D) = sup(Q) is attained.

Figure 1. The set A in Example 5

3. The min-sup property

With each convex in�nite problem

(P ) min
x
f(x); s:t: x 2 C; ft(x) � 0; t 2 T;

we associate the closed convex cone

rec(P ) := [f1 � 0] \ C1 \
� T
t2T

[(ft)1 � 0]
�
:

Obviously, rec(P ) = f0Xg if and only if there is no common direction of
recession to all the data of (P ); namely: f; C; ft; t 2 T , and it is a linear
space if and only if any direction of recession, say d; which is common to
all the data of (P ); if any, is equilibrated in the sense that the opposite
direction �d is also common to all the data of (P ):
With the convex in�nite system formed by the constraints of (P );

� := fft(x) � 0; t 2 T ; x 2 Cg ;
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is associated the so-called characteristic cone ([2], [3], [6], etc.)

K := cone

�
epi(i�C) [

� S
t2T

epi f�t

��
= epi(i�C) + cone

� S
t2T

epi f�t

�
:

Now we will make precise some links between K and the epigraph of the
function h de�ned in (2.1). To this end we will just assume that (compare
with [5] and [7])

(3.1) fC +
X
t2T

�tft is proper for any � 2 P(T ):

Given � 2 P(T ) we denote by �t2T (�tft)� the in�mal convolution of the
functions (�tft)

� ; t 2 supp�; i.e.

(�t2T (�tft)�) (x�) = inf
( P
t2supp�

(�tft)
� (x�t ) :

P
t2supp�

x�t = x
�

)
:

We thus have (e.g. [17, Theorem 2.3.1(ix)])

(�t2T (�tft)�)� =
X
t2T

�tft; fC +
X
t2T

�tft = (f
��i�C� (�t2T (�tft)�))

�

and, thanks to (3.1), 
fC +

X
t2T

�tft

!�
= clw

�
(f��i�C� (�t2T (�tft)�)) :

Consequently,

epi

 
fC +

X
t2T

�tft

!�
= clw

�

 
epi f� + epi(i�C) +

X
t2T

�t epi f
�
t

!
;

so that, by (2.2),

clw
�
epih = clw

�

( S
�2P(T )

clw
� �
epi f� + epi(i�C) +

P
t2T �t epi f

�
t

�)

= clw
�

(
epi f� + epi(i�C) +

S
�2P(T )

�P
t2T �t epi f

�
t

�)

= clw
�

8<:epi f� + epi(i�C) + S
�2R(T )+

�P
t2T �t epi f

�
t

�9=;
= clw

�
(epi f� +K) :

We thus have

clw
�
cone epih = clw

�
cone

�
clw

�
epih

�
= clw

�
cone (epi f� +K)

and, �nally,

(3.2) clw
�
cone epih = clw

�
(K + cone epi f�) :
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Denoting by � the projection of X� � R onto X� one has, according to
(3.2),

clw
�
cone domh = clw

�
cone� (epih) = clw

�
�(cone epih)

= clw
�
�
�
clw

�
cone epih

�
= clw

�
�(K + cone epi f�) :

Using the de�nition of K we get the key relation

(3.3) clw
�
cone domh = clw

�
�
b (C) + cone

� S
t2T

dom f�t

�
+ cone dom f�

�
;

where b (C) := dom(i�C) denotes the barrier cone of C:
Since the condition

(3.4) clw
�
cone domh is a linear space

will be of crucial importance in the sequel, we summarize below some equiv-
alent reformulations of (3.4). To this aim we need the following equivalence
whose simple proof is omitted: Having a linear space U and a function
g : U ! R it holds that

(3.5) (dom g)� R = ( epi g)� f0Ug � R+:

Proposition 1. Assume that (3.1) holds. Then, each of the following state-
ments is equivalent to (3.4):

(i) rec (P ) is a linear space.

(ii) clw
�
�
b (C) + cone

� S
t2T

dom f�t

�
+ cone dom f�

�
is a linear space.

(iii) clw
�
(K + cone epi f� � f0X�g � R+) is a linear space.

(iv) clw
�
(K [ epi f� [ f(0X� ;�1)g) is a linear space.

(v) clw
�
�
b (C)� R+ cone

� S
t2T

epi f�t

�
+ cone epi f�

�
is a linear space.

Proof: By taking the negative polar cone we obtain that (i) , (ii): By
(3.2) and (3.5) one has�

clw
�
cone domh

�
� R = clw

�
cone (epih� f0X�g � R+)

= clw
�
�
clw

�
cone epih� f0X�g � R+

�
= clw

�
(K + cone epi f� � f0X�g � R+) :

It follows that (3.4), (iii): Since K is a cone, one has

K + cone epi f� � f0X�g � R+ = cone (K [ epi f� [ f(0X� ;�1)g) :

We thus have (iii), (iv): By (3.5) one has epi(i�C)�f0X�g�R+ = b (C)�R:
From the very de�nition of K; it follows that (iii), (v): �
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3.1. Quasicontinuity and subdi¤erentiability. We denote by w (respec-
tively, ��) the weak topology on X (respectively, the Mackey topology on
X�). Following [10] and [11], a convex function g : X� ! R is said to be ��-
quasicontinuous when the a¢ ne hull of dom g; a� dom g; is w�-closed and of
�nite codimension, and the restriction of g to the relative interior of dom g;
say ri�

�
dom g, is continuous with respect to the topology induced by ��:

If g is w�-lsc and proper, one has ([12, Theorem 7.7.6]):

g is ��-quasicontinuous, g� is w-inf-locally-compact,

meaning that for each r 2 R, the sublevel set [g� � r] is w-locally-compact.
Any extended real-valued convex function which is majorized by a ��-

quasicontinuous convex function is ��-quasicontinuous too [14, Theorem 2.4].
Accordingly, the convex function h de�ned in (2.1) is ��-quasicontinuous
whenever there exists � 2 P(T ) such that fC +

P
t2T �tft is w-inf-locally-

compact (this fact is observed in [7, p.11]). Such a condition is in particular
ful�lled when C is w-locally-compact, e.g. when X is �nite dimensional.
We will use the following subdi¤erentiability criterion [14, Theorem 3.3].

Lemma 1. Let g : X� ! R be convex and ���quasicontinuous. Assume
that g (0X�) > �1 and clw

�
cone dom g is a linear space. Then, @g (0X�)

is the sum of a non-empty w-compact convex set and a �nite dimensional
linear space.

3.2. The main result. Remember that by S (P ) we denote the optimal
solution set of the convex in�nite problem

(P ) min
x
f(x); s:t: x 2 C; ft(x) � 0; t 2 T;

and recall also the formulation of the surrogate dual (�) of (P ) :

(�) max
�
inf
C

 
f +

X
t2T

�tft

!
; s:t: � 2 P(T ):

Theorem 2. Assume that the following assumptions are ful�lled :

(3.6) sup(�) < +1;

(3.7) 9� 2 R(T )+ such that fC +
X
t2T

�tft is w-inf-locally-compact,

and

(3.8) rec (P ) is a linear space.

Then, min(P ) = sup(�) 2 R, and S (P ) is the sum of a non-empty w-
compact convex set and a �nite dimensional linear space.

Proof: Let us apply Lemma 1 to g = h: By (3.6) one has h (0X�) > �1:
By (3.7), h is ��-quasicontinuous and, by (3.3), (3.8) and the equivalence
(i) , (ii) in Proposition 1, clw

�
cone domh is a linear space. By Lemma

1, @h (0X�) is the sum of a non-empty w-compact convex set and a �nite
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dimensional linear space. Now x 2 @h (0X�)means that�h (0X�) = h� (x) =
fC\F (x) 2 R: In other words, x is feasible for (P ) and

inf (P ) � sup(�) = h� (x) = f (x) � inf (P ) :
We thus have min(P ) = sup(�) 2 R and @h (0X�) � S (P ). To complete
the proof, take x 2 S (P ) and write

+1 > sup(�) = �h�(0X�) = min(P ) = f(x) = fC\F (x) = h
�(x);

i.e., h�(x) + h(0X�) = 0 = h0X� ; xi, entailing x 2 @h (0X�). �
Let us revisit the examples of Section 2, where X is �nite dimensional and

sup(�) < +1; so that Theorem 2 applies whenever rec (P ) is a linear space.
This is the case of Examples 4 and 5, where rec (P ) = f0g ; with sup(�)
attained in Example 4 but not in Example 5. Observe that, in Example 2,
rec (P ) = R� � f0g ; with inf(P ) = 1 6= �1 = sup(�); while, in Example
3, rec (P ) = R�; with inf(P ) = 0 6= �1 = sup(�):

Remark 1. The same conclusion is obtained in [7, Theorems 4.7 and 4.8]
replacing condition (3.6) by the stronger assumption that inf (P ) < +1:

Remark 2. In the case that sup(�) = +1; all the problems (P ) ; (D) and
(Q) share the same value.

Now provide a new version of the famous Clark-Du¢ n Theorem for semi-
in�nite optimization with T �nite. We are concerned with the problems

(Pm) min
x
f(x); s:t: x 2 C; f1(x) � 0; :::; fm(x) � 0;

(Qm) max
�
inf
C

 
f +

mX
i=1

�ifi

!
; s:t: (�1; :::; �m) 2 Rm+ ;

with the rule 0� (+1) = +1;

(Dm) max
�
inf
C

 
f +

mX
i=1

�ifi

!
; s:t: (�1; :::; �m) 2 Rm+ ;

with the rule 0� (+1) = 0; and

(�m) max
�
inf
C

 
f +

mX
i=1

�ifi

!
; s:t: (�1; :::; �m) 2 Rm+� f0Rmg ;

where X is a locally convex separated tvs, C a non-empty closed convex
subset of X and f; f1; :::; fm 2 � (X) : The next result is to be compared
with [9, Theorem 5.1] and [4, Theorem 3.1].

Corollary 1. Assume that sup(�m) < +1; that there exists � 2 Rm+ such
that fC +

Pm
i=1 �ifi is w-inf-locally-compact, with the rule 0 � (+1) = 0;

and that rec (Pm) is a linear space. Then,

sup(�m) = sup(Dm) = sup(Qm) = min(Pm) 2 R
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and S (Pm) is the sum of a non-empty w-compact convex set and a �nite
dimensional linear space.

Remark 3. If X is �nite dimensional, the second assumption in the state-
ment of Corollary 1 is super�uous.

4. Applications

4.1. The �nite intersection property. Recall that a family fCt; t 2 Tg
of sets of a topological space is said to have the �nite-intersection property
if the intersection

T
t2T Ct is non-empty whenever each �nite subfamily of

fCt; t 2 Tg has a non-empty intersection. As a substitute of compactness
we have the following result:

Corollary 2. Let fCt; t 2 Tg be a family of closed convex subsets of a lo-
cally convex separated tvs having the �nite-intersection property. Moreover,
assume the existence of t1; :::; tm 2 T such that

Tm
i=1Cti is w-locally-compact

and that
T
t2T (Ct)1 is a linear space. Then

T
t2T Ct is the sum of a non-

empty w-compact convex set and a �nite dimensional linear space.

Proof Apply Theorem 2 with C = X; f � 0; and ft = iCt ; t 2 T;
observing that S (P ) =

T
t2T Ct; rec (P ) =

T
t2T (Ct)1 ; and sup(�) <

+1 amounts to say that the family fCt; t 2 Tg has the �nite-intersection
property. �
Remark 4. Taking C = X = R; f � 0; and ft = i[t;+1[; t > 0; in Theorem
2, we get M = ; and, since the family f[t;+1[ ; t > 0g has the �nite-
intersection property, one gets

max(�) = max(D) = 0 < +1 = sup(Q) = inf (P ) :

Since rec (P ) = [0;+1[ is not a linear space, the assumption (3.8) in Theo-
rem 2 is not satis�ed.

4.2. Convex in�nite systems. In this section we still apply Theorem 2
in the case that f � 0:We denote by (P0) the corresponding convex in�nite
problem, and by

� := fft(x) � 0; t 2 T ; x 2 Cg ;
the general in�nite convex system associated with the constraints of (P0) ;
whereasK is the characteristic cone of �: The feasible set C\F of � coincides
with S (P0) : It may be empty even if we assume that sup(�0) < +1 (see
Remark 4).
The function h0 associated with (P0) is

h0 = inf
�2P(T )

 
iC +

X
t2T

�tft

!�
:

Assuming that

(4.1) iC +
X
t2T

�tft is proper for any � 2 P(T );
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which is the counterpart of (3.1) and it is weaker than sup(�0) < +1; it
holds that

clw
�
epih0 = cl

w� K

and, recalling (3.3),

clw
�
cone domh0 = cl

w�
�
b (C) + cone

� S
t2T

dom f�t

��
:

Let us de�ne the recession cone associated with � by

rec (�) := rec (P0) = C1 \
� T
t2T

[(ft)1 � 0]
�
:

Assuming that (4.1) holds, the following assertions are equivalent (see Propo-
sition 1):

(i0) rec (�) is a linear space,

(ii0) clw
�
�
b (C) + cone

� S
t2T

dom f�t

��
is a linear space,

(iii0) clw
�
(K � f0X�g � R+) is a linear space,

(iv0) clw
�
cone (K [ f(0X� ;�1)g) is a linear space,

(v0) clw
�
�
b (C)� R+ cone

� S
t2T

epi f�t

��
is a linear space.

We are now in a position to state a generalization of Fan�s Theorem in
general locally convex separated tvs:

Corollary 3. Assume that

(4.2) 9� 2 Rm+ such that iC +
mX
i=1

�ifi is w-inf-locally-compact,

and that

(4.3) rec (�) is a linear space.

Then, the in�nite convex system � is consistent if and only if

(4.4) inf
C

X
t2T

�tft � 0 for any � 2 P(T ):

Proof: Necessity is obvious. Su¢ ciency comes from Theorem 2 by taking
f � 0: �

Remark 5. With the same assumptions, statement (4.4) in Corollary 3 is
equivalent to

8� 2 R(T )+ ; 9x� 2 C such that
X
t2T

�tft (x�) � 0

that appears in [2, Theorem 3.5].
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In [2, Theorem 3.5] it is assumed that either K is w�-closed or K is solid if
X is in�nite dimensional, and rec (�) = f0X�g :We now provide an example
where none of these two conditions is satis�ed while Corollary 3 does work.

Example 6. Let X be a re�exive Banach space whose open (respectively,
closed) unit dual ball is represented by B� (resp., B�). Notice that the
topology �� coincides with the dual norm topology. Given a 2 X; a 6= 0X ;
let us set H := fag? and consider

D := H \ B�:
It holds that coneD = a�D = H; a closed hyperplane, and 0X� 2 riD =
H \ B�: Setting ft := i�D � 1

t ; t > 0; we get a family of functions in � (X)
having the same recession cone, namely,

[(ft)1 � 0] = [i�D � 0] = H? = Rfag, for all t > 0:
Since f�t = iD +

1
t is �

�-quasicontinuous, any ft is w-inf-locally-compact.
Consequently, the system

� := fft(x) � 0; t > 0g
satis�es the assumptions of our Corollary 3. However,

K = cone

�S
t>0
epi f�t

�
= (H � ]0;+1[) [ f(0X� ; 0)g

is not w�-closed, K � H � R is not solid, and rec (�) = Rfag is not
f(0X� ; 0)g : Consequently, the assumptions of [2, Theorem 3.5] are not sat-
is�ed.

Given m � 1; t1; :::; tm 2 T; and " > 0; let us consider the system
� (t1; :::; tm; ") := ffti(x) � "; i = 1; :::;m; x 2 Cg :

Corollary 4. Assume that (4.2) and (4.3) hold. Then the convex in-
�nite system � is consistent if and only if all the semi-in�nite systems
� (t1; :::; tm; ") ; m � 1; t1; :::; tm 2 T; " > 0; are consistent.

Proof: Necessity is obvious; now we show the su¢ ciency. Applying
Corollary 3, we have just to verify that (4.4) holds. So, let � 2 P(T ) and
supp� = ft1; :::; tmg : For any � > 0 there exists x 2 C such that

fti(x) �
�P

j=1;:::;m �j
; i = 1; :::;m:

We thus have X
t2T

�tft(x) =
mP
i=1
�tifti(x) � �:

Since � > 0 is arbitrary, we have that (4.4) holds.

Remark 6. In Corollaries 3 and 4, the solution set of the convex in�nite
system � is either empty or the sum of a non-empty w-compact convex set
and a �nite dimensional linear space.



NEW GLIMPSES ON CONVEX DUALITY 17

4.3. Convex in�nite zero-sum games. Given a family F := fft; t 2 Tg
of convex lsc proper functions on X; where T is a possibly in�nite index set,
and a non-empty closed convex set C � X, where X is a (real) separated
locally convex tvs, we consider a bipersonal zero-sume game whose elements
are the following:

Strategies of Player I : The elements of � :=
n
� 2 R(T )+ :

P
t2T �t = 1

o
:

Strategies of Player II : The elements of C:
Payo¤ function to Player I : The function p : ��C ! R [ f+1g de�ned

by

p(�; x) :=
X
t2T

�tft(x):

This game is denoted by fF ; Cg. We shall assume that C\(\t2T dom ft) 6=
; in order to preclude the nonsense case p � +1. Its maximin and minimax
values are, respectively,

vI = sup
�2�

inf
x2C

p(�; x) = sup
�2�

inf
x2C

X
t2T

�tft(x);

and
vII = inf

x2C
sup
�2�

p(�; x) = inf
x2C

sup
�2�

X
t2T

�tft(x) = inf
x2C

sup
t2T

ft(x):

vI represents the supremum payo¤that Player I may guarantee to him(her)self,
whereas vII is the in�mum amount that he(she) will have to pay to Player
I. Obviously vI � vII .
The following proposition extends to in�nite games Theorems 3.2 and 4.1

in [13].

Proposition 2. Consider the game fF ; Cg, and assume that the set C1 \�T
t2T [(ft)1 � 0]

�
is a linear subspace as well as the existence of e� 2 R(T )+

such that iC +
P
t2T
e�tft is w-inf-locally-compact. Then:

(i) The minimax theorem holds true: vI = vII : This common value v =
vI = vII is called game value.
(ii) The set of optimal strategies of Player II is non-empty, i.e.

SII := fx 2 C : v = sup
t2T

ft(x)g 6= ;:

(iii) If the set A0 :=
S

�2P(T )
epi
�
iC +

P
t2T �t(ft � v)

�� is w�-closed re-
garding f0�Xg � R, the set of optimal strategies of Player I is non-empty,
i.e.

SI := f� 2 � : v = inf
x2C

X
t2T

�tft(x)g 6= ;:

Proof (i) According with Corollary 3, under the current assumptions,
one and only one of the following alternatives hold:
(a) There exists bx 2 C such that ft(bx) � 0; for all t 2 T:
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(b) There exist b� 2 � and � > 0 such thatPt2T
b�tft(x) � � for all x 2 C

(this is the negation of (4.4)).
Observe that (a) implies vII � 0, whereas (b) implies vI > 0: Then, the

inequalities vI � 0 < vII cannot be veri�ed simultaneously.
For any real number � we consider the game fF�; Cg where F� := fft(�)�

�; t 2 Tg. It is obvious that the associated maximin and minimax values
are

v�I = vI � � and v�II = vII � �:
Since v�I � 0 < v�II is impossible, vI � � < vII is impossible too, for every
scalar �. Hence vI = vII :
(ii) Here, and also in (iii), we shall assume that v = vI = vII = 0;

otherwise we will consider the game fFv; Cg having value equal to zero and
the same sets of optimal strategies for both players. According with this
assumption

SII := fx 2 C : 0 = sup
t2T

ft(x)g and SI := f� 2 � : 0 = inf
x2C

X
t2T

�tft(x)g:

Reasoning by contradiction, if SII = ;, the system � := fft(x) � 0; t 2
T ; x 2 Cg has no solution, i.e. (a) above fails and so, (b) holds, but this
entails v = vI > 0:
(iii) It is a consequence of Theorem 1 applied to the pair of dual problems

(P0) min
x
0; s:t: x 2 C; ft(x) � 0; t 2 T;

and

(�0) max
�
inf
x2C

 X
t2T

�tft(x)

!
; s:t: � := (�t)t2T 2 P(T )+ :

Under the current set of assumptions we have min(P0) = 0 = max(�0) = v:
If �0 2 P(T )+ is optimal for (�), (

P
t2T �

0
t )
�1�0 2 SI ; and we are done. �

5. Perturbational approach

Having � = (�t)t2T 2 RT ; we consider the parametric convex in�nite
problem

(P�) min
x
f(x); s:t: x 2 C; ft(x) � ��t; t 2 T;

where f; ft; t 2 T; are proper convex functions de�ned on the locally convex
separated tvs X; and C � X is a non-empty convex set. Let us observe that
all these problems have the same recession cone:

rec (P�) = rec
�
P 0T

�
= rec (P ) :

Considering the associated dual problems

(D�) max
�

(X
t2T

�t�t + inf
C

 
f +

X
t2T

�tft

!)
; s:t: � 2 R(T )+ ;
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(��) max
�

(X
t2T

�t�t + inf
C

 
f +

X
t2T

�tft

!)
; s:t: � 2 P(T );

we can thus state, applying Theorem 2:

Corollary 5. Assume that (3.7) and (3.8) hold. For any � 2 RT we have
either

min (P�) = sup(D�) = sup(��) 2 R;
or

inf (P�) = sup(D�) = sup(��) = +1:

By using the value function v : RT ! R;
v (�) := inf (P�) ;

we can develop in a natural way the classical perturbational duality theory
for convex in�nite problems (see, e.g. [1], [17]) by computing the conjugate
of v; namely,

(5.1) �v� (�) =
(
infC\M

�
f +

P
t2T �tft

�
; if � 2 R(T )+ ;

�1; if � 2 R(T )�R(T )+ ;

and de�ning the perturbational dual of (P�) as

(Q�) max
�

(X
t2T

�t�t + inf
C\M

 
f +

X
t2T

�tft

!)
; s:t: � 2 R(T )+ :

We observe that
�
Q0T

�
coincides with the problem (Q) de�ned in Section 1.

One has, in general, the following well-known properties:

a) �1 � sup(��) � sup(D�) � sup(Q�) = v�� (�) � v (�) = inf (P�) �
+1;
b) E :=

S
x2C\M\dom f

��
(ft (x))t2T ; f (x)

�	
+ RT+ � R+ is convex,

c) v is convex,

d) epis v � bE := �(�; r) 2 RT � R : (��; r) 2 E	 � epi v; and
e) epi v = cl epi v = cl bE:
Observe that all these properties are true just assuming the convexity of

the data of (P ) : f; C; ft; t 2 T:

Theorem 3. Assume that f; ft : X ! R[f+1g are proper convex and C
is a non-empty convex subset of the locally convex tvs X such that

(5.2) 9� 2 R(T )+ such that inf
C\M

 
f +

X
t2T

�tft

!
6= �1:

Then, for any � 2 RT ; the following statements are equivalent :
(i) min (P�) = sup(Q�) 2 R or sup(Q�) = +1:
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(ii) E is closed regarding to f��g � R:

Proof: By (5.1) and (5.2) one has v�(�) < +1 and so, dom v� 6= ;.
Since v is convex, v = v�� (either v is proper or +1 = v�� = v = v):
Let us begin with the case that sup(Q�) = +1: Then v (�) = +1 and

; = (f�g � R) \ epi v = (f�g � R) \ cl bE:
So, bE is closed regarding to f�g�R and, equivalently, E is closed regarding
to f��g � R: Thus, if sup(Q�) = +1; the statements (i) and (ii) are
simultaneously satis�ed.
Assume now that � := sup(Q�) < +1: By (5.2) we have � 2 R and so

(�; �) 2 cl epi v = cl bE; that is,
(5.3) (��; �) 2 clE:
Assume that (i) holds and let (��; r) 2 clE; so that v (�) = � � r: Taking
x 2 S (P�) we get x 2 C\M\dom f; ft (x) � ��t; t 2 T; and f (x) = � � r:
So,

(��; r) 2 f((ft (x))t2T ; f (x))g+ R(T )+ � R+ � E;
and (ii) holds.
Conversely, assume that (ii) holds. By (5.3) we thus have (��; r) 2 E;

and there exists x 2 C \M \ dom f such that
ft (x) � ��t; t 2 T; f (x) � � � inf (P�) :

Since x is feasible for (P�) ; we obtain (i). �
Let us come back to Clark-Du¢ n duality frame and the related problems

(Pm) and (Qm) :

Corollary 6. Let f; f1; :::; fm : X ! R[f+1g be proper convex functions
and C be a non-empty convex subset of X: Assume that

9� 2 Rm+ such that inf
C

 
f +

mX
i=1

�ifi

!
6= �1

with the rule 0�(+1) = +1: Then the following statements are equivalent :
(i) min (Pm) = sup(Qm) 2 R or sup(Qm) = +1:
(ii) the convex setS

x2C\dom f\dom f1\:::\dom fm
f((f1 (x) ; :::; fm (x)) ; f (x))g+ Rm+ � R+

is closed regarding to f0Rmg � R:

Proof: Observe that (Pm) �
�
P 0Rm

�
; (Qm) �

�
Q0Rm

�
; and apply The-

orem 3 with T = f1; :::;mg : �
This section ends with an application of Theorem 3 to the convex system

� := fft(x) � 0; t 2 T ; x 2 Cg ;



NEW GLIMPSES ON CONVEX DUALITY 21

where ft : X ! R[f+1g ; t 2 T; are proper convex and C is a non-empty
convex subset of X: Let us recall that M =

T
t2T dom ft:We have (compare

with Corollary 3):

Corollary 7. Let � be as above and assume that

(5.4) inf
C\M

 X
t2T

�tft

!
� 0 for any � 2 R(T )+ :

Then � is consistent if and only ifS
x2C\M

f((ft (x))t2T ; 0)g+ RT+ � R+

is closed regarding f0T g � R:

Proof: Apply Theorem 3 with f � 0 and � = 0T : Observe that (5.2)
is satis�ed (with � = 0T ) and that (5.3) amounts to sup(Q�) = 0: Then it
su¢ ces to notice that min (P�) = 0 amounts to say that � is consistent. �

6. Linear infinite problems

In this section we will apply the previous results, essentially Theorems 1,
2 and 3, to the linear in�nite problem

(P ) min
x
hc�; xi ; s:t: x 2 C; hx�t ; xi � rt; t 2 T;

where (x�t ; rt) 2 X� � R; t 2 T; c� 2 X�; and C is a closed convex cone in
the locally convex separate tvs X:
One has straightforwardly,

(D) � (Q) max
�
�
 
iC+

 
c� +

X
t2T

�tx
�
t

!
+
X
t2T

�trt

!
; s:t: � 2 R(T )+ :

Modifying the feasible set (but not the value) of (D) we get a classical
Haar dual-type problem

(D#) max
�
�
X
t2T

�trt; s:t: � 2 R(T )+ ;
X
t2T

�tx
�
t 2 C+ � c�:

In order to apply Theorem 1 to the present situation, let us introduce the
w�-continuous linear mapping

� : R(T ) ! X� � R; � (�) =
X
t2T

�t (x
�
t ; rt) :
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Denoting byK the characteristic cone of � := fhx�t ; xi � rt; t 2 T; x 2 Cg ;
one has

K = epi(i�C) + cone

� S
t2T

epi (x�t � rt)
�
�

= C� � R+ + cone
� S
t2T

epi(ifx�t g + rt)

�
= C� � R+ + �

�
R(T )+

�
+ f0X�g � R+

= C� � R+ + �
�
R(T )+

�
:

Corollary 8. Assume that (P ) is consistent. Then, the following state-
ments are equivalent :
(i) sup(D#) = �1 or inf (P ) = max(D#) 2 R:
(ii) K is w�-closed regarding to f�c�g � R:

Proof: Theorem 1 establishes that (i) holds if and only if B is w�-closed
with respet to f0X�g � R. In this linear setting, we get straightforwardly,
for any � 2 R(T )+ ;

epi

 
iC + c

� +
X
t2T

�t (x
�
t � rt)

!�
= (c�; 0) + � (�) + C� � R+:

Consequently,

B = (c�; 0) + �
�
R(T )+

�
+ C� � R+ = (c�; 0) +K;

and B is w�-closed regarding to f0X�g � R if and only if (ii) holds. �

Corollary 9. Assume that (P ) and (D#) are consistent. Then, the follow-
ing statements are equivalent :
(i) inf (P ) = max(D#) 2 R (i.e., (P ) and (D#) are in strong duality).
(ii) K is w�-closed regarding to f�c�g � R:

Remark 7. According to the assumptions of Theorem 3, the convex cone
C does not need to be closed in Corollary 9.

We will now apply Theorem 3 for � = 0T to the linear in�nite problem
(P ) : To this end, let us consider the continuous linear mapping

L : X ! RT � R; L (x) =
�
(hx�t ; xi)t2T ; hc

�; xi
�
:

We have (compare with [7, Theorem 5.5]):

Corollary 10. Assume that c� 2 C+�cone fx�t ; t 2 Tg : Then, the following
statements are equivalent :
(i) sup(D#) = +1 or min (P ) = sup(D#) 2 R:
(ii) L (C) + RT+ � R+ is closed regarding to

�
(rt)t2T

	
� R:
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Proof: Applying Theorem 3 we observe that (5.2) is equivalent to c� 2
C+ � cone fx�t ; t 2 Tg, and we have

E = L (C) + RT+ � R+ �
�
(rt)t2T

	
� f0g :

Consequently, E is is closed regarding to f0T g � R amounts to statement
(ii) in Corollary 9, and we are done.
Finally, we will apply Theorem 2 to the linear in�nite problem

(�#) max
�
�
X
t2T

�trt; s:t: � 2 P(T );
X
t2T

�tx
�
t 2 C+ � c�:

We thus have, directly from Theorem 2 (compare with [7, Corollary 4.5],
where it is assumed that (P ) is consistent):

Corollary 11. Assume that the closed convex cone C is w-locally compact
and

C \ [c� � 0] \
� T
t2T

[x�t � 0]
�
is a linear space.

Then either sup(�#) = sup(D#) = inf (P ) = +1 or minP = sup(�#) =
sup(D#) 2 R; and S (P ) is the sum of a non-empty w-compact convex set
and a �nite dimensional linear space.
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