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Abstract 

The interface between Au(hkl) basal planes and the ionic liquid 1-Ethyl-2,3-dimethyl 

imidazolium bis(trifluoromethyl)sulfonil imide was investigated by using both cyclic 

voltammetry and laser-induced temperature jump. Cyclic voltammetry showed 

characteristic features, revealing surface sensitive processes at the interfaces 

Au(hkl)/[Emmim][Tf2N]. From laser-induced heating the potential of maximum entropy 

(pme) is determined. Pme is close to the potential of zero charge (pzc) and, therefore, 

the technique provides relevant interfacial information. The following order for the pme 

values has been found: Au(111) > Au(100) > Au(110). This order correlates well with 

work function data and values of pzc in aqueous solutions. 
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Introduction 

There has recently been considerable interest in the use of room temperature ionic 

liquids (RTILs) as solvent in a broad range of chemicals applications, including organic 

synthesis, transition-metal catalyzed reactions, synthesis of macromolecules and 

nanoparticles, separation processes and spectroscopic measurements[1, 2]. Such 

applications take advantage of its ability to perform processes that could not be possible 

in aqueous solutions thanks to its increased thermal stability, particular interaction with 

some reactants and low vapor pressure. Being composed entirely of ions, RTIL have 

many electrochemical applications in electrocatalysis, electrodeposition or as solvent in 

energy devices (batteries and supercapacitors)[3-6]. 

Despite numerous contributions in the field, the information about the electrochemical 

interphase between RTILs and well-defined surfaces is scarce. Due to the ionic nature 

of the RTIL, rationalization of capacitance data using Gouy-Chapman-Stern model is 

not possible [7] and indirect information techniques are needed [8-20]. The laser 

temperature jump (LTJ) method has proved valuable in this context. In Au(hkl)/water 

[21] and Pt(hkl)/water solution [22, 23] interfaces,  this experiment supplies the value of 

the potential of maximum interfacial entropy (pme), which has been shown to be close 

to the potential of zero charge (pzc). This technique has recently been successfully 

applied to the Pt(111)/ [Emmim][Tf2N] interface [24]. 

In this ion-crowded environment, coulombic interactions are certainly the most 

important in the electrolyte side of the interface. Still, other interaction such as 

hydrogen bonding between anions and cations must also be considered [25].  In the IL 

chosen in this study, this latter interaction has been decreased because the hydrogen 

position in C2 is methylated. Combination of voltammetric and LTJ data performed on 

well-defined Au(hkl) flame annealed electrodes in contact with purified 

[Emmim][Tf2N] have been used to characterize these different interfaces. Results are 

compared with classical data in aqueous solutions.  

 

Experimental 

The [Emmim][Tf2N] was purchased from IoLiTec (>99% purity, halides<100ppm, 

water<60ppm).  It was purified following Kolb’s procedure [26], namely, dried under 

vacuum (P<0.002 mbar) more than 24h at 80ºC, followed by treatment with a molecular 

sieve not larger than 3A. The latter is a key step in the purification process [26-29]. 

A waveform generator (EG&G PARC 175) together with a potentiostat (eDAQ EA161) 

and a digital recorder (eDAQ ED401) was employed for cyclic voltammetry 

experiments. As a quasi-reference electrode, a silver wire was used, but potentials were 

further referred to Cobaltocenium scale [30]. A Au wire was used as counter electrode. 

Experiments were carried out with Au(hkl) in the meniscus configuration. A 

thermostatted cell was used in order to keep the temperature at 25 ºC. Before each 
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experiment, each Au(hkl) electrode was flame-annealed and cooled down to room 

temperature under Ar atmosphere. 

The LTJ experiment was described elsewhere.[21, 24]. In this experiment, a Nd:YAG 

pulsed laser is used to cause a sudden change of the temperature of the interphase while 

the open circuit potential of the working electrode is measured during the temperature 

relaxation. A system of switches is used to connect / disconnect the potentiostat 

allowing the polarization of the electrode at the desired potential. In this way, the 

potentiostat is disconnected just before firing the laser, to ensure true coulostatic 

conditions. The measured change of the potential contains contributions from the 

response of the double layer to the temperature change, the spillover of electrons and 

the thermodiffusion potential. However, it has been demonstrated before [21,24] that 

the main contribution comes from the effect of the temperature on the polarization of 

solvent molecules.  

 

Results  

Voltammetric experiments 

Characteristic voltammetric profiles of Au(100) and Au(110) electrodes in contact with 

[Emmim][Tf2N] are shown in  Figure 1. In both cases, a broad capacitive current signal, 

which increases linearly with the sweep rate, is superimposed to different couples of 

sharp peaks. These sharp peaks are similar to those observed during adsorption of 

organic adlayers on Au(hkl) single crystals corresponding to 2D phase transitions 

between different ordered structures [31]. Similar sharp peaks are also observed during 

anion adsorption on Pt(hkl) and Au(hkl) single crystals [32-34]. Interestingly, the 

characteristic voltammograms are structure sensitive. Starting with Au(110), the most 

open structure, Figure 1A, three peaks are seen at 1.34, 1.40 and 1.51 V in the positive 

going sweep. The peaks in the negative going sweep are located at slightly lower 

potentials, between 10-20 mV less positive than the corresponding anodic counterpart. 

The interface Au(100)/ [Emmim][Tf2N], figure 1B, features only two couples of peaks, 

at 1.41 and 1.99 V in the positive-going sweep, with counterparts only 10 mV less 

positive. The voltammogram is quite stable within this potential range. However, if the 

upper potential limit is increased, a broad feature starts appearing that modifies the 

overall profile and both peaks disappear from the voltammogram (Figure 1C). One 

tentative explanation for this behavior would be that some decomposition product 

remains adsorbed on the surface. Another possible explanation would be that a 

reconstruction formed after flame annealing has been lifted during the excursion to high 

potentials. Additional STM information would be required to discriminate both 

possibilities. 

The most complex voltammetric profile corresponds to Au(111) electrodes (Figure 2A). 

There are numerous couples of spikes superimposed to two broad capacitive processes 

that grow below and over 1.7 V, respectively. The reversibility of the peaks is similar to 
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the previous cases, with a peak to peak separation around 10-20mV. This profile is 

extremely dependent on the scanned potential window. If the upper potential limit is 

decreased to 1.6 V (curve a), only a doublet of peaks is observed around 1.44 V. 

Increasing the upper limit to 2.1 V (curve b) reveals a sharp peak at 2.0 V. Further 

increasing the upper limit to 2.7 V (curve c), causes the disappearance of the doublet at 

1.44 V, with the development of a new couple at 1.34 V and the transformation of the 

peak at 2.00 V into a new sharper peak at 1.89 V. This peak, centered at 1.89 V, can be 

used to identify the presence of Au(111) domains in polycrystalline samples. The least 

quasi-reversible couples at higher potentials (at 2.31 V/2.26 V, and 2.58 V/2.49 V, 

respectively) do not seem to be affected by the potential scan limit. Cycling the 

potential in the upper region does not exert further changes in the voltammetric profile. 

However, if then the potential is cycled again in the low potential region, the peaks at 

1.44 (a1) and 2.0 V (b1) tend to grow, while those at 1.34 (a2) and 1.89 V (b2) tend to 

decrease. One plausible explanation for this behaviour would be based on the 

perseverance of the 3x22 surface reconstruction at low potential [35]. Peaks a1 and b1 

would correspond to phase transitions on the reconstructed surface. Then, the excursion 

to E>2.1 V would cause the lifting of the reconstruction and the appearance of new 

phase transitions, a2 and b2. Negative polarization after lifting of the reconstruction 

could induce again (partial) reconstruction of the surface and then the recovery of the 

corresponding phase transitions. An alternative explanation would imply the existence 

of slow reorganization phenomena in the first cation adlayer in contact with the 

electrode surface. In this regards, while signals from region c-c’ keep unaffected by the 

sweep rates, the sharp features in regions a-a’ and b-b’ slightly diminish when the scan 

rate is decreased but tend to recover their intensity when the sweep rate increases again. 

This observation could indicate that these peaks do not correspond to true 

thermodynamic phase transitions, but to metastable situations in which the ionic layer is 

continuously driven by the potential change.  

A question still remaining is the possible effect of impurities in the ionic liquid, 

especially the small content of water remaining after the purification procedure which 

could be incorporated into the ionic network. Deliberated additions of water into the IL 

indicate that this impurity causes a significant increase of the background capacity and 

the decrease of the sharp spikes reported above (Figure 2B). The presence of small 

water contents also tend to decrease the potential window before solvent decomposition 

and that causes the disappearance of the most positive sharp spikes. This experiment 

demonstrates that water content under the present conditions is lower than 100 ppm and 

that water is not at the origin of the particular voltammetric behaviour observed here. 

Still, we cannot rule out completely the participation of water at the interface [36]. 

An additional experiment was performed to check the existence of irreversibly adsorbed 

species, that could be formed either from the decomposition of the components of the IL 

or from impurities that might be present in it. For this purpose, the voltammetric profile 

of the Au(111) electrode in 0.5 M sulphuric acid solution was recorded after the 

voltammogram in the ionic liquid. After the experiment in the IL and before introducing 
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the electrode in the cell with the aqueous solution the electrode was just sonicated for a 

few minutes in pure water to remove the drop of IL, but not flame annealing was 

performed to preserve the structure of the surface as was emersed from the IL. Figure 

2C shows the comparison of this voltammogram with the one obtained after the usual 

flame annealing treatment. The profiles are essentially identical, indicating that no 

irreversibly adsorbed species are formed in the IL. In particular, the sharp spike due to 

the sulphate disorder/order phase transition is unaffected, demonstrating that the surface 

remains clean and well-ordered under the presence of the IL.  

Laser pulse heating experiments 

Figure 3A shows the results of laser pulse heating experiments for Au(111). It is clearly 

seen that transients change from negative to positive when potential is increased. 

Similar results are obtained for the other basal planes. When the measurements at 

different potentials are performed continuously, without annealing in between, a 

hysteresis is observed between both direction scans. This behavior was previously 

observed for Pt(111) and attributed to the slow exchange of the cation by the anion in 

the ionic layered structure [11, 37]. However, the hysteresis for Au is much lower than 

in the case of Pt(111)[24]. This would agree with the expected lower adsorption 

strength of the [Emmim][Tf2N] components at gold electrodes.   

To overcome these difficulties, to obtain the results reported in figure 3, the electrode 

was annealed after each measurement at each potential. After annealing, the electrode 

was contacted with the IL at the desired potential and potential was scanned at 100 

mV/s in a narrow potential range to ensure the reproducibility of the voltammetric 

profile. The potential were the laser induced transient reverses sign has been marked 

with an arrow in figure 3B, together with the voltammetric profiles corresponding to 

broader potential window. It can be seen that the highest pme corresponds to Au(111), 

the lowest being that of Au(110), in good agreement with pzc’s in aqueous solution or 

work function measurements[38]. As it can be seen in Figure 3B, in all cases the pme is 

located between the onset of cation reduction and the characteristic voltammetric 

features described above. Therefore, those features are more likely related to interfacial 

processes where anion presence closer to the electrode is clearly dominant. 

Conclusions 

The use of purified [Emmim][Tf2N] has revealed unexpected structure sensitivity 

processes for the three Au(hkl) basal plane electrodes. Among different underlying 

behavior holding most of the capacitive charge, characteristic sharp spikes have been 

identified. In the case of Au(111) the surface appears to be quite dynamic and strongly 

dependent of the potential window used. Since such a voltammetric behaviour reported 

in the present work have not been reported previously for other IL, we conclude that the 

chemical nature of the triply methylated cation is at the origin of the surface sensitive 

voltammetric features. 
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Laser heating experiments enable to determine the pme values of the three interfaces. 

The most positive one is that of Au(111)/ [Emmim][Tf2N] and the most negative one 

corresponds to Au(110)/ [Emmim][Tf2N], in good agreement with pzc values in water 

solution. It appears that this transient temperature technique supplies significant 

information of the fundamental properties of Au(hkl)/IL interfaces. More work is in 

progress to advance in the study of this fundamental subject.  
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Figure 1: Cyclic voltammograms for A) Au(110) and B) Au(100) in [Emmim][Tf2N]. 

C): For Au(100), effect of the increase of the upper potential limit up to 2.40 V. Scan 
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Figure 2: Cyclic voltammograms for: A) Au(111)/[Emmim][Tf2N], different potential 

limits; B) Au(111)/[Emmim][Tf2N] after adding small amounts of water: a) 0 ppm  b) 

56.5 ppm , c) 112.5 ppm, d) 544.3 ppm and  e) 3125 ppm; C) flame annealed Au(111) / 

0.5M H2SO4 first (black dashed line) and second (black solid line) cycle, and after 

cycling the electrode in the IL (red solid line). Scan rate: 50 mVs
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indicate the increase of water content. 

 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A) Laser-induced coulostatic potential transients measured for a Au(111) in 

[Emmim][Tf2N],  B) Cyclic voltammogram for the different Au basal planes in contact 

with [Emmim][Tf2N], showing the electrochemical potential window. Potential of 

maximum entropies for each interface are indicated by arrows. Error bars indicate the 

uncertainty in the pme determination. Scan rate: 50mV s
-1 
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Highlights 

The interphase between Au(hkl) and the ionic liquid [Emmim][Tf2N] is investigated. 

The voltammetric profile contains sharp peaks corresponding to phase transitions. 

These sharp peaks are very sensitive to the crystallographic structure. 

Laser induce temperature jump is used to determine the potential of maximum entropy. 


