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Abstract

The use of 3D data in mobile robotics applications provides valuable infor-
mation about the robot’s environment. However usually the huge amount
of 3D information is difficult to manage due to the fact that the robot stor-
age system and computing capabilities are insufficient. Therefore, a data
compression method is necessary to store and process this information while
preserving as much information as possible.

A few methods have been proposed to compress 3D information. Nev-
ertheless, there does not exist a consistent public benchmark for comparing
the results (compression level, distance reconstructed error, etc.) obtained
with different methods. In this paper, we propose a dataset composed of
a set of 3D point clouds with different structure and texture variability to
evaluate the results obtained from 3D data compression methods. We also
provide useful tools for comparing compression methods, using as a baseline
the results obtained by existing relevant compression methods.

Keywords: 3D data, Data compression, Dataset

1. Introduction

In the recent years, the number of applications using 3D data processing
has considerably increased due to the appearance of cheap 3D sensors such as
Microsoft Kinect. This 3D information, usually provided as a set of 3D points
obtained by 3D cameras is useful in many applications, such as medicine,
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entertainment industry, robotics, and many others. However, it is difficult
to both manage the huge amount of data obtained by these cameras for
common 3D application and just store it for further processing. In the present
paper we describe a dataset that allows 3D point compression, evaluation and
benchmarcking.

There exists a bunch of datasets for 3D applications. To evaluate current
challenging computer vision problems we can find specific datasets for object
detection and recognition, simultaneous localization and mapping (SLAM),
human behavior recognition, gesture recognition, etc.

In [1], a dataset for human grasping behavior evaluation in unstructured
environments is presented. Wide-angle head-mounted camera videos are
recorded by two housekeepers and two machinists during their regular work
activities, and the grasp types, objects, and tasks are analyzed. The full
dataset represents a wide range of grasping action behaviors spanning much
of the typical human hand usage.

For robotic algorithms, a huge amount of training data containing both
people and environment is required. The dataset presented in [2] is specif-
ically designed for training and testing algorithms for people detection in
indoor environments. [3] provides a large dataset containing RGB-D and
ground-truth data aiming to establish a novel benchmark for the evalua-
tion of visual odometry and visual Simultaneous Localization And Mapping
(SLAM) systems.

Several datasets are focused on object recognition. [4] includes over 50
classes of color and depth image pairs, gathered in real domestic and office
environments. The 3D Table Top Object Dataset [5] has three categories
(mouse, mug and stapler) and provides 200 test images with cluttered back-
grounds. [6] is a large labeled dataset containing hundreds of objects and
more than fifty categories. The main objective of this work was to intro-
duce some techniques for RGB-D based object recognition demonstrating
that the combination of color and depth information, leads to a substantial
improvement of recognition performance.

A general purpose dataset for 3D computer vision tasks is presented in
[7]. It could be used to benchmark multiple problems, such as 3D mesh
reconstruction (with and without RGB-D), object instance recognition, and
object categorization. The authors had invited dataset users to contribute
adding new objects with the aim of increasing the dataset size continuously,
providing new test scenes and results through the authors’ website. Moreover,
they present a method to calibrate a multi-camera system and many other




modules.

However, to the best of our knowledge, there does not exist a dataset
that allows 3D point cloud compression evaluation and benchmarking. In
this paper, we propose a new dataset specifically designed for testing 3D
compression methods. It is composed of a comprehensive set of both real
and synthetic 3D images. The dataset also includes several methods for the
automation of the testing task. It also allows to perform the test under
different combinations of texture and structure, which are the aspects that
most affect compression methods. Furthermore, we include some statistic
tools for the analysis of the obtained results. (compression ratio, mean error,
and many others).

All the data is available online under the Creative Commons Attribution
license (CC-BY 3.0) at

http://www.rovit.ua.es/dataset /3dcomet /

The rest of the paper is organized as follows: Section 2 contains a brief
review of common 3D compression methods. Section 3 explains the moti-
vation of the dataset. In Section 4 we describe the dataset. Then, Section 4
introduces the provided evaluation and comparison tools for 3D compression
methods. Finally, Section 6 draws the conclusions and directions for future
work.

2. 3D Data Compression

3D data compression increases the bandwidth available for data transfer
and allows to reduce physical storage. Both features are desirable in robotics
applications, specially for real time applications.

There are several classifications of compression methods based on loss of
information, codification or point clustering. In a classification based on loss
of information, there are two types of methods: lossy and lossless. Once a
point cloud has been compressed and decompressed, lossless methods return
the same original point cloud without any error in point color or coordinates.
On the other hand, lossy methods usually return point clouds with some
€rrors.

Some lossy methods are based on space organization, using different struc-
tures to address data compression i.e. a hexagonal grid [8], or an octree [9].
After that, an encoding process is applied to these structures in order to
minimize redundancy. Changes between different frames are detected in a
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real time sequence, and this allows to encode the information that has been
changed, so that it is not necessary to transmit or store all information. Spa-
tial division is parametrized so that the level of precision-compression can
vary and in this way the execution time can be controlled.

Lossless methods preserve all the information of the point cloud. In [10],
an octree is also used as an element to represent space, and encoding is
used to reduce information size. Using the same technique, [11] shows how
it is possible to encode point clouds with more than 1 billion of points.
Moreover, with an efficient memory implementation, it is also possible to
use the compressed dataset as input for other high level algorithms such as
RANSAC.

Codification based compression methods take advantage of the informa-
tion redundancy which is commonly found in large streams of data. As an
example of this kind of techniques, general compression algorithms such as
the well known [12] or [13] can be outlined. General data compression is
a well established field of research and we can find highly optimized imple-
mentations. Nevertheless, it is difficult to use a general compression method
under specific time requirements. Moreover, it is necessary to decompress
the data before using it, which represents another disadvantage for this kind
of methods. Furthermore, datasets in which information redundancy is min-
imal, can be hardly compressed by lossless algorithms.

Assuming a certain loss of information, we can find in the literature some
techniques based on point clustering using geometric considerations. [14] uses
the eigenvalues from the whole point cloud to extract curvature information,
detecting repetitions and removing duplicities. [15] makes a plane extraction,
concave hull and Delaunay triangulation to replace coplanar points by planar
patches. [16] combines normal saliency with the point cloud structure in an
octree.

This kind of algorithms are highly dependent on point cloud structure
to get great compression ratios. The more structure the point cloud has,
the better compression ratio is obtained. In contrast, for point clouds in
which data are mainly unstructured, the compression ratio obtained is low.
Furthermore, the presence of noise in the data can affect both the compres-
sion rate and accuracy of these methods. Nevertheless, as those methods
perform structure extraction and point clustering, the compressed data ob-
tained can be used for other processing methods like data registration. It
is also possible to increase the compression ratio by applying an encoding
method to the already compressed data set. Following this approach, in [17]
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a curve model prediction is applied to compress input data. After that, a
codification method is used for reducing the transmission bit-rate.

3. Motivation

Nowadays, there is an increasing interest in methods that reduce the size
of a 3D data set. These methods can be used to improve the transfer rate of
the datasets or to reduce the disk space required to store them. Therefore, it
is interesting to know how existing 3D compression methods perform under
different conditions, as it is important to have a mechanism to compare those
methods to the ones that may appear in the near future. Nevertheless, to
the best of our knowledge, there does not exists yet a standard dataset that
could be used to establish the strengths and weaknesses of each approach.
Untill now, each of the proposed method uses its own dataset to test its
throughput and to make comparisons between methods. In order to make
this task easier, we present in this paper a comprehensive data set for 3D
compression methods. It also includes all the required tools to test and
compare those methods. Finally, four baseline methods are provided and
evaluated showing the obtained results.

4. Dataset Description

The dataset includes real 3D images, obtained from a RGB-D sensor like
the Kinect [18] camera or the Primesense carmine 1.09 short range sensor,
along with synthetic images generated from 3D virtual models. Real images
allow to test and compare 3D compression methods in normal working con-
ditions whereas synthetic images give us a ground truth that allows to obtain
quantitative results for each tested method.

We have used a quantitative and qualitative approach to clas-
sify images in the dataset. The qualitative approach organizes 3D
images following the two main criteria that affect the performance
of 3D data compression methods: the level of texture present in
the surfaces of the scene and its structure level.

In this way we differentiate three categories according to the texture level:
3D images that present plain or low texture, those with a medium texture
detail and, finally, scenes that are highly textured. Regarding the scene
structure we differentiate: a first level of point clouds highly structured in
which most of the objects are formed by simple geometric forms like planes;
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Table 1: Dataset examples of real data.

point clouds with a medium level of structure in which the unstructured ob-
jects, like trees, bushes, etc., present in the scenes are in the same proportion
than the structured ones; finally, a category of images mainly formed by
unstructured objects.

The qualitative approach is supported by quantitative values
calculated from the point clouds. We propose to use two mea-
sures, one for structure and one for texture. For the structure, we
have included the curvature metric. For a given a 3D point, the
eigenvalues of the covariance matrix of a set of 3D point neighbors
are calculated. This covariance matrix is the same as the one used
for normal calculation. The curvature for this point is obtained
using the formula:

Ao

R VNI VI (1)

where )\; are the eigenvalues of the covariance matrix and )\, is the
smallest one. The curvature for a point cloud is the mean value
for all the 3D points and is returned when the normals of a 3D
point cloud are calculated with the PCL library. Note that a low




Table 2: Curvature data calculations of structure and texture categories

Structure | Real | Synthetic || Texture | Real | Synthetic
Low 0,060 | 0,073 Low 6,78 | 3,05
Medium | 0,043 | 0,023 Medium | 7,23 | 6,33
High 0,017 | 0,018 High 7,33 | 6,83

curvature value indicates high structure, having in mind that we
define structure as the presence of planes.

For texture analysis, we have included the entropy metric. The
entropy of an image is a statistical measure of randomness that can
be used to characterize the texture of the input image. Entropy is
defined as:

Fentropy(l) = —px* log(p) (2)

where p contains the histogram counts

Table 2 shows the mean values of the different categories for
the quantitative measures. This demonstrates the reliability of the
qualitative classification.

The dataset contains a total of 102 point clouds in PCD (Point Cloud
Data) format. For each type of data (real or synthetic) we then subdivide it
into three new levels or categories of structure appearance which represent
high, medium or low structure presence. Then for each structure category
we subdivide it into three levels or categories of texture appearance. Each
category consists of five different point clouds in order to add some variability
to the dataset. Finally, we add a special group in order to include a more
challenging set of point clouds. These special point clouds are divided into
real and synthetic with six examples of each category.

Tables 1 and 3 show examples of each category of structure/texture of
the real and synthetic point clouds respectively. Table 4 shows two examples
of the special category of both real and synthetic.

We used different devices and tools to obtain all the point clouds. Eight
of the provided point clouds came from the TUM-RGBD-Dataset [3]. We
acquired and generated the rest of the data using different technologies and
devices. Basically, we acquired the dataset using a Primesense Carmine 1.09
and a Microsoft Kinect (v1). For the synthetic point clouds, we used our own
application which works with different models and can be applied to different
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Table 3: Dataset examples of synthetic data.

textures. Using a Raycasting method, we simulated a depth-sensor avoiding
acquisition errors (outliers, noise) and obtaining ground truth data for later
validation. The capture of synthetic 3D information is made using
Java3D. We use different loaders to introduce objects in a scene
that are positioned to create scenes. Primitives as cubes, spheres
an planes are also used. In our case we use different scenes to create
artificially the different degrees of structure in the dataset. For
each created scene we use PickSegment objects to simulate beams
according to a pinhole camera model, and with PickIntersection
and PickResult we get the intersection point coordinates and its
rob color. We fixed some restrictions in geometry of the virtual
camera to approximate Kinect parameters: horizontal opening 57,
vertical 43, resolution of 640x480 pixels and maximum distance.
Java3D features allow textures and colors to be applied to objects.
Thus we can compose scene variations and evaluate the effect of
textures in compression methods.
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Table 4: Examples of point clouds of the special category.

5. Tools of the Dataset

We have included two tools in our dataset in order to facilitate the anal-
ysis and evaluation of different 3D compression methods. The first tool
is the statistics generator. This is a an application that analyses the re-
sults of a given method, developed in C++ using the PointCloud library|[19].
The structure for each test is organized in a directory with three subdirecto-
ries: original, compressed and decompressed data. These three subdirectories
must keep the original structure. The original data are the images in PCD
binary (uncompressed) format. Then, from the compressed data, each file is
compared with the original one, obtaining the compression ratio (see Equa-
tion 3), which is the ratio between the compressed file size and the original
one. From the uncompressed subdirectory and for each file, the Root Mean
Square (RMS) error for distance and color are calculated. These errors are
obtained by searching for each point in the uncompressed file the closest point
in the original file. The result is stored in a text file where each line contains
the name of the file, the compression ratio, the mean metric distance and the
mean color distance. This is due to lower color variance and therefore the
color distance between the original and the compressed color is lower.

C d si
Compression rate = om.pr.esse -51ze * 100 (3)
Original size

The second tool is a Gnuplot script which shows plots from the files gener-
ated with the previous tool. It takes one or more files containing compression
rates, distance and color errors for each file in the dataset. The script has




several input parameters. The first one is a string with the input files. Up
to 6 files can be given to the script. If no other parameter is selected, the
obtained output is similar to the one showed in Figure 1, three plots with
the mean and standard deviation of all the files in the dataset, grouped by
real, synthetic and special data.

Figure 1 shows the results obtained using two specific 3D com-
pression methods available in the PointCloud library and two gen-
eral compression methods provided along with most of the com-
pression utilities like 7Zip. We have also added another geometric
compression method. Regarding the methods implemented in the
PointCloud library, we have used the octree based compression [9]
using the 24 bits version (we have not found differences in the
8 and 32 bits versions) and the PCD binary compression (Marc
Lehmann’s LZF algorithm, an implementation can be found in the
LibLZF library ') methods. The first one is a lossy method and the
second is a lossless one. We have also included another compres-
sion method implemented with the PCL library [15], which is based
on point grouping. This method has some parameters that need
to be tuned to obtain the best results. We show two executions
of this method changing the k parameter, used for applying the
Kmeans method for segmentation: Morell2014k1 is for k=1 and
Morell2014k5 for k=5. Moreover, we have used two file compres-
sion methods (both lossless): the gzip or LZ77 method (variation
of [12]) and the bzip2 or Burrows method [13].

The results in Figure 1 are organized in four categories (the
qualitative classification is explained above). The Complete cate-
gory contains all the dataset: Synthetic (all the point clouds gen-
erated synthetically); Real (the point clouds taken with the Kinect
camera) and, finally, the Special category (composed of several
point clouds with special configurations different from the previ-
ous categories). An example of special category is one point cloud
with a map reconstruction of 360 degrees. Inside each category
and for each value (compression rate, distance and color error) the
mean value and the standard deviation of all point clouds in that
category is presented.

thttp://software.schmorp.de/pkg/liblzf
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In this first result, the Morell2014k1 is the one which provides
the best compression rates but the texture error is too high. This
is due to the fact that with k=1 the method is not able to recon-
struct the texture of the point cloud as all the colors of a plane
are replaced by one single color. With k=5 the method is not able
to compress as much as with k=1, but the texture error is lower.
However, the Octree method provides a good compression rate
(below the lossless methods) and the distance and texture errors
are insignificant.
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Figure 1: Comparison of the tested 3D compression methods with the whole dataset.

A second input parameter can be selected in order to show a de-
sired information: for example, results from the complete dataset
with respect to different levels of structure, or results using only
the synthetic data with respect to different levels of texture (sub-
set). This last option is shown in Figure 2. Different combinations
are allowed for evaluating the complete, real and synthetic data,
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texture and structure levels as different subsets. In this case, a sim-
ilar procedure used for plots is shown in Figure 1. For example,
all the point clouds with high texture are included in the category
Texture High and the mean and standard deviation is presented.
In this case, the behavior of the Morell2014 and Octree method
is similar to the previous one. It has to be outlined that with a
low texture, the Octree method is able to get a better compression
rate and the texture error is lower than for higher textures.
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40 | | | B
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Texture High |-
Texture Medium -
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Figure 2: Comparison of the tested 3D compression methods using synthetic data and
showing different levels of texture.

As shown in Figures 1 and 2, binary methods (PCD, LZ77 and
Burrows) provide a reasonable compression rate (over 60%). The
comparison of only these 3 methods shows that, although PCD
(the compression method provided by the PCL library) gives worse
compression rates than the other two, it is worth using it as it is
included in the PCL and does not require the use of an exter-
nal method (from operating system). Obviously, as it is a lossless
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method it does not have neither distance nor color error in the
reconstructed point clouds. With real images, these methods are
able to get a better compression rate. This is due to the fact that
synthetic images contain much less 3D points (a real point cloud
could have more than 300.000 3D points and a synthetic one only a
few thousands) and thus the file size for synthetic images is smaller
and the compression rate is lower.

Geometric methods (Octree and Morell2014) are able to get a
better compression rate as they make use of geometric informa-
tion. Although Morell2014K1 gets better compression rate than
the Octree method, it gives a bigger distance and color error. The
compression rate of both methods is less affected by the real and
synthetic point clouds. The analysis of the Octree method shows
that it works better with real point clouds since this kind of point
clouds are organized. In an organized point cloud each 3D point
has a high probability of being close to a neighbor (in the range
image). Thus, the points to compress are close in the 3D space and
the Octree method takes advantage of this feature.

Figure 2 shows an example of a different way to compare com-
pression methods. In this case, we show the results with respect to
texture level. Binary methods are not affected by the texture level.
Again the geometric methods provide better compression rates al-
though the Octree method is able to get a better compression rate
when the texture is low.

We then present the results obtained from the quantitative
measures. Figure 3, 4 and 5 show the results for curvature and
entropy metrics. For each figure, the results (compression rate,
distance and color error) with respect to curvature and entropy
are shown. Our tool can provide separated plots for real and syn-
thetic point clouds. We found that this feature is very useful as
we have detected that the compression methods behave differently
when working with real or synthetic point sets. While with real
point clouds binary methods are able to get an acceptable and
very similar (40%) compression rate, geometric methods provide
significantly better compression rates. As explained before, binary
methods do not compress well the synthetic point clouds due to
the low file size. With respect to geometric methods, it seems that
a high curvature level provide a better compression rate in real im-
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Figure 3: Showing the compression rate of the tested 3D compression methods with respect
to curvature and entropy.

ages, but the differences are not significative. The opposite occurs
with entropy level. The first conclusion is that all the compression
methods work better with real point clouds (i.e. organized ones).

6. Conclusions

3D data compression is a challenging and relevant topic specially for mo-
bile robotics where large amounts of 3D data are processed. Several methods
have been proposed to deal with this problem. In this paper, we present a
dataset which can serve as a benchmark for comparison and evaluation of
different 3D compression methods. The dataset has been proposed to cap-
ture the variability of different parameters: real and synthetic data, different
structure and texture levels. Together with the data, we have developed some
useful tools for execution and evaluation of existing 3D compression methods
in order to obtain an easy way to perform comparison among methods.

As an example, we have included the analysis of the comparison of five
existing methods. The Octree lossy method obtained a good compression rate
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Figure 4: Showing the distance error of the tested 3D compression methods with respect
to curvature and entropy.

with some decompression error in space and color distance. The Morell2014
method is a bit difficult to tune up for a generic point cloud. It has too
many parameters which resulted to be critical for obtaining good results for
images with any kind of structure and texture. Regarding the tested lossless
methods, the best results in the entire dataset and the different categories
were obtained with the Burrows o bzip2 method. With this example we
show the validity and and usefulness of the proposed dataset for comparing
compression methods for 3D data.

As future work we will extend the dataset to include more variability and
identify special data that may be challenging for existing methods.
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