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HIGHLIGHTS
• Presentation of a BoW implementation in the Point Cloud Library
• Proposal of a general framework for semantic localization systems
• The framework allows for integrations of future 3D features and keypoints
• The Harris3D detector outperforms uniform sampling with fewer detected 

keypoints
• BoW descriptors obtain better results than the ESF global feature
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Abstract

The semantic localization problem in robotics consists in determining the
place where a robot is located by means of semantic categories. The problem
is usually addressed as a supervised classification process, where input data
correspond to robot perceptions while classes to semantic categories, like
kitchen or corridor.

In this paper we propose a framework, implemented in the PCL library,
which provides a set of valuable tools to easily develop and evaluate seman-
tic localization systems. The implementation includes the generation of 3D
global descriptors following a Bag-of-Words approach. This allows the gen-
eration of fixed-dimensionality descriptors from any type of keypoint detec-
tor and feature extractor combinations. The framework has been designed,
structured and implemented to be easily extended with different keypoint
detectors, feature extractors as well as classification models.

The proposed framework has also been used to evaluate the performance
of a set of already implemented descriptors, when used as input for a spe-
cific semantic localization system. The obtained results are discussed paying
special attention to the internal parameters of the BoW descriptor genera-
tion process. Moreover, we also review the combination of some keypoint
detectors with different 3D descriptor generation techniques.
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1. Introduction

The semantic localization problem can be defined as the problem of de-
termining the place where a robot is located by means of semantic cate-
gories. The problem is usually addressed as a supervised classification pro-
cess, where input data correspond to robot perceptions, and classes to se-
mantic room/place categories like kitchen, bathroom, or corridor. Com-
monly, this classification process is tackled by using models that require
fixed-dimensionality inputs, such as SVMs [17] or Bayesian Network classi-
fiers [34]. To transform robot perception into fixed-dimensionality descrip-
tors, we can choose for using global features or build them from a set of local
features following the well-known Bag-of-Words (BoW) approach [33].

During the last decade, the semantic location problem has attracted the
attention of the scientific community, becoming one of the well-known prob-
lems in robotics. In fact, several image processing techniques, evaluation
datasets, open challenges, and different approaches has been proposed so far,
as it is shown in a survey paper [8] recently published. Actually, the semantic
information about the place where the robot is located can be very helpful for
more specific robotic tasks like autonomous navigation, high-level planning,
simultaneous location and mapping (SLAM), or human-robot interaction.

The Point Cloud Library (PCL [21]) has become, in less than four years
from its first release, the most widely used open source project for 2D/3D
image and point cloud processing. The PCL proposes several algorithms
for most of the well-known problems in computer vision: feature extraction,
surface reconstruction, image registration, model fitting, and segmentation.
Moreover, it implements standard machine learning techniques for clustering
and supervised classification. However, PCL does not currently provide a
standard procedure for generating 3D global descriptors from local ones.
This could be carried out by following a BoW approach, which would allow
PCL users to take advantage of all the useful 3D local features included in
the library for a wider range of problems. Concretely, any type of 3D local
feature could be properly used as input for the semantic localization problem.

In this article, we propose a PCL implementation of the BoW approach
relying on machine learning techniques already implemented in the library.
Several 3D global descriptors generated with such approach are evaluated
when serving as input for the semantic localization problem. Therefore, the
purpose of this work is two fold: one one hand, to propose a general frame-
work to easily develop and evaluate semantic localization systems using 3D
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point cloud information as input data; and, on the other hand, to implement
it in the PCL, taking advantage of the availability of 3D image processing
techniques; both with the aim at providing a set of tools to be useful for the
PCL community.

Then, the three major contributions of this work are:

• The generation of 3D global descriptors from PCL local features fol-
lowing a Bag-of-Words approach, which will allow the generation of
fixed-dimensionality descriptors from any kind of keypoint detector and
feature extractor combination.

• The definition of a common framework to develop and evaluate seman-
tic localization systems within PCL. This framework has been designed
and implemented to be easily extended with different and new keypoint
detectors, feature extractors and classification models.

• The experimentation carried out with a challenging benchmark, which
provides sequences of labeled RGB-D images acquired with a mobile
robot within indoor office environments. In this experimentation, we
evaluate the internal parameters that take part in the BoW approach
(e.g. the dictionary size), but we also discuss the role of the keypoint
detectors and feature extractors.

The rest of the paper is organized as follow: in Section 2, a more detailed
description of the semantic localization problem is presented, as well as a
review of some recent proposal to deal with that problem. Section 3 presents
the design and development of the proposed framework. In Section 4, the
specific contributions of this work to the PCL are described. In Section 5
the experimental results carried out to demonstrate the functionality and
usability of this work are presented. Finally, in Section 6 the main conclusions
and future works are outlined.

2. Semantic Localization

2.1. Problem definition
As stated before, the semantic localization problem can be formulated

as a classical statistical pattern recognition problem as follows. Let I be
a perception from a robot (in our case an RGB-D image), d(I) a function
that generates a specific descriptor given I, and M a classification model
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that provides the class posterior probability PM(c|d(I)), where c is a class
label from a set of predefined class categories C. Then, this problem can be
stated, without loss of generality, as the problem of finding the optimal label
ĉ according to:

ĉ = arg max
c∈C

PM(c|d(I))

In general, and following that approach, we can identify two main steps
to be performed when designing and building a semantic localization system:

1. To carry out a descriptor generation process given the input perception.
2. To design a classifier capable of discriminating among the different

types of scenes. This classifier will be trained using the descriptors
generated in the previous step.

A more detailed description of these two steps is shown in Section 3.

2.2. Related work
Here we review the most outstanding approaches related to the semantic

localization problem. While this problem has been extensively studied [8],
we firstly detail the internal stages of this process to then identify those
techniques with higher relevance.

The semantic localization problem consists of the process of acquiring an
image, generate a suitable representation (that is, an image descriptor) and
classify the imaged scene [32]. This classification can be performed according
to a) high-level features of the environment, like detected objects [19, 30, 6],
b) global image representations [16], or c) local features [28]. A method
for scene classification based on global image features was presented in [27],
where the temporal continuity between consecutive images was exploited
using a Hidden Markov Model. In [15], a scene classifier with range data as
input information and AdaBoost as the classification model is proposed. In
2006, Pronobis et al. [18] developed a visual scene classifier using composed
receptive field histograms [11] and SVMs.

The use of the Bag of Words (BoW) technique [5] can also be considered
a remarkable milestone for visual semantic scene classification. The BoW
process starts by creating a visual dictionary of representative features, also
known as visual words. Next, each extracted feature is assigned to the closest
word in the dictionary. Then, a histogram representing the number of oc-
currences of each visual word is computed. This histogram is finally used as
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the image descriptor. An extensive evaluation of BoW features representa-
tions for scene classification was presented in [33], demonstrating that visual
words representations are likely to produce superior performance. In [9], an
extension of the BoW technique using a spatial pyramid was proposed. Also,
this work is one of the most relevant works related to scene classification
allowing to merge local and global information into a single image descrip-
tor. The spatial pyramid approach has been successfully applied to several
semantic localization problems, and it can be considered a standard solution
for generating descriptors.

All mentioned works used visual cameras as input devices. However, vi-
sual cameras are highly affected by changing lighting conditions. The lighting
variations can occur due to different external weather conditions, but also
because of the presence or lack of artificial lights. This reason makes the use
of RGB-D cameras very useful in current semantic localization approaches,
even to deal with real-time constraints as proposed in [10].

3. Framework Design

In this section, we describe the BoW framework proposed to manage the
semantic localization problem, which has been previously defined as a clas-
sical supervised classification problem. Therefore, we assume the following
initial setup. We are provided with, at least, two sequences of RGB-D im-
ages acquired with a mobile robot. The RGB-D images represent scenes from
an office indoor environment, such as Universities or Government buildings.
Each RGB-D image from the first sequence (training) is labeled with the se-
mantic category of the room where it was acquired, using labels as "kitchen"
or "corridor". The problem consists in determining the label for the RGB-D
images from the second sequence (test).
The framework proposed includes the following steps:

1. Extract features from training and test RGB-D data. The goal of this
step is to find an appropriate image representation, suitable for serving
as input in subsequent steps. It involves a set of sub-tasks.

(a) Select a keypoint detection method, which reduces the amount of
points to work with and speeds up the process.

(b) Select a feature extraction procedure. The combination of key-
points and features should present some specific characteristics:
efficiency, repeatability, distinctiveness and accuracy [28, 14].
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(c) For each keypoint detected, extract the descriptor associated to
the selected feature when possible. We can find some keypoints
not meeting the feature requirements, such as a number of sur-
rounding points within a neighborhood. This fact can reduce the
final number of features extracted from the RGB-D image.

2. Transform the features extracted into global descriptors with fixed-
dimensionality using a BoW approach.

(a) Merge all the features extracted from the complete training se-
quence into a single set of features.

(b) Perform a k-means clustering over this set to select a subset of k
representative features. This subset of features is known as the
dictionary, and its size k should have been previously defined.

(c) For each training and test RGB-D image, assign all their (previ-
ously extracted) features with the closest word in the dictionary.
Then, compute a histogram over these assignations whose dimen-
sionality corresponds to the dictionary size. This histogram is
then used as image descriptor.

3. Train a classification model using the training sequence. Based on
the training descriptors generated in the previous step (and the room
labels), we train a SVM classifier [29]. Thanks to the use of fixed-
dimensionality inputs, most of the classifiers capable of managing con-
tinuous data could be used.

4. Classify the whole test sequence. The last step classifies each test
descriptor with the SVM model computed in the training stage.

Fig. 1 shows the descriptor generation process from a set of extracted fea-
tures. It can be observed how the final descriptor presents the same dimen-
sionality for all the input images, even when a different number of features
were extracted from them.

4. Point Cloud Library Contributions

In this section, we describe the two main contributions to the PCL. The
source code of the provided tool is available online under the Creative Com-
mons Attribution license (CC-BY 3.0) at

https://bitbucket.org/vmorell/semanticlocalization
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Figure 1: Descriptor generation process from the features extracted and a dictionary of
3D words previously computed.

4.1. 3D global descriptors from local features
Although there are several global descriptors for 3D data, as previously

commented in Section 2, the BoW approach could be used for describing
the whole point cloud using local features. This global feature, a histogram,
could be used for other tasks purposes. Local features could come from
any combination of 3D keypoint detectors and features. In the presented
framework, it is quite easy to modify the code to include different keypoint
detectors and feature methods. We provide in the code some experimentation
with several 3D local keypoint detectors and feature descriptors available in
the PCL. We briefly describe them.

One of the simplest detector is Uniform Sampling (US). US builds a 3D
voxel grid with the input data and takes the centroid (average point inside
a voxel) of the voxel grid as keypoint. The resulting point cloud is then
reduced and downsampled in a uniform way. Another keypoint detector is
Harris3D [23]. The implementation available in PCL takes the normals to
the input pointcloud as the input for this detector. For each point, it selects
points in a given neighborhood and calculates a covariance matrix of the
normals at those points. Then, a value is calculated for each point based on
the determinant and trace of the covariance matrix (as proposed in [7] for
2D). After a local maximum suppression method is applied, the surviving
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points are the keypoints for the input point cloud.
The Normal Aligned Radial Feature (NARF) [24] keypoint detector and

feature descriptor uses the range image, instead of the point cloud, to calcu-
late the descriptor. The keypoint detector finds borders in the range image
and calculates a score, indicating how the surface changes on each point.
After this score is calculated, a smoothing process and non-maximum sup-
pression are applied. With regard to the feature extraction process, NARF
extracts a descriptor from each keypoint and its neighborhood. A star pattern
is used, and for each beam of the pattern, it calculates the intensity changes
along the cells lying under the beam. Then, for each beam, a value in the
range [−0.5, 0.5] is obtained. To make it invariant against rotation, the pre-
dominant orientation is calculated. Another feature used in the framework
is the Signature of Histograms of OrienTations (SHOT) [25]. The descriptor
is calculated by concatenating a set of local histograms over the 3D volume
defined by a 3D grid centered at a keypoint. For each local histogram and for
each point, the angular difference between the normal in the point and the
normal in the keypoint is accumulated in the histogram. A variant is Color-
SHOT [26], which adds a color histogram to the original SHOT descriptor.

Another two features used in our experiments are based on the Point
Feature Histogram (PFH) [22]. PFH selects from a keypoint, a set of points
in a given neighborhood. For each two points in that neighborhood, PFH
calculates four values which together express geometric relationship between
those points. The four values are concatenated and a histogram is calcu-
lated using the values of all the possible combination of points. The first
variation of PFH is the Fast Point Feature Histogram [20], which improves
the efficiency of the original feature by not processing some points in the
neighborhood. The second one is PFH-RGB, which includes color to the
geometrical information.

Regarding the BoW implementation, it includes the following stages:
features extraction (from selected keypoints), dictionary generation, fea-
tures/words association (also known as features quantization), and histogram
representation computing words frequencies. The first stage relies on a key-
point/feature combination and generates a set of features. A dictionary is
generated from this set by using the functionalities provided by the machine
learning module included in the PCL. Concretely, we take advantage of the
k-means implementation using the set of features as input. The resulting k
centroids are then established as dictionary words. The association between
features and words, as well as the histogram computation, are also carried
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out from the functionalities of the machine learning PCL module.

4.2. Framework for semantic localization
Our main contribution in this paper is the development of a framework

that could be used for experimentation in semantic localization. Our main
goal building this framework is the suitability for future development, i.e., it
must be easy to integrate different keypoint detectors and feature descriptors,
as well as to use others classification methods.

For that reason, we have defined a diagram class (see Fig. 2) where several
abstract classes and methods are presented. The SemanticLocalization
class implements some methods: readConfiguration, which reads a configu-
ration file containing the point clouds to be used as input to the method; test
and validate are used for testing and validating the method (these meth-
ods call the train and classify abstract methods), and finally showResults
that shows the results of the classification. So train and classifyFrame are
abstract and must be implemented in inherited classes. This class also has
several attributes: frames are the input point clouds for the classification,
while detector and features are the keypoint detector method and feature
descriptor to be used in the classification, respectively.

We also provide two different classification methods, both making use of
the BoW descriptors as input data. The first one is the Support Vector Ma-
chine (SVM) [1], which learns to classify elements from two different classes
finding a hyperplane which provides less classification error. By other hand,
we have used the k-Nearest-Neighbors (k−NN) [4] method that directly uses
the training data as model. Given a new element to classify, the k nearest
neighbors from the training data are selected. The new element is assigned
to the class with more elements in the neighborhood. Other supervised clas-
sification methods could be incorporated easily.

The SemanticLocalizationBoW class inherits from
SemanticLocalization and uses a BoW approach. To do that, an attribute
class dictionary contains the dictionary to be used in the classification
process. In this class, two methods are implemented: computeDictionary
that must be called before training, and wordsAssignation where the words
from the data are calculated. From this class, two other classes are defined,
depending on the classification method used: SemanticLocalizationBoWSVM
that needs to define a SVMModel, and SemanticLocalizationBoWKNN that
does not need to define any additional attribute.
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SemanticFeatureExtractorColorSHOT

void loadFeatures(path,features);
void saveFeatures(path,features);
void extractFeatures(src,keypoints,features);

SemanticFeatureExtractorSHOT

void loadFeatures(path,features);
void saveFeatures(path,features);
void extractFeatures(src,keypoints,features);

SemanticFeatureExtractorNARF

void loadFeatures(path,features);
void saveFeatures(path,features);
void extractFeatures(src,keypoints,features);

SemanticFeatureExtractorPFHRGB

void loadFeatures(path,features);
void saveFeatures(path,features);
void extractFeatures(src,keypoints,features);

SemanticKeypointDetectorUniform

void detectKeypoints(src,keypoints);
SemanticKeypointDetectorHarris3D

void detectKeypoints(src,keypoints);

SemanticLocalization

std::vector<Frame_Item> frames;
SemanticKeypointDetector * detector;
SemanticFeatureExtractor * extractor;

virtual void train();
virtual int classifyFrameScene(features);
virtual void test();
virtual void validate();
void readConfiguration();
private void showResults();

SemanticLocalizationBoW

int dictionarySize;
std::vector<float*> dictionary;

void wordAssignation(features,trainingWords);
void computeDictionary(features,dictionary);

SemanticLocalizationBoWSVM

svm_parameter svmParameters;
int maxTrainingFeatures;
std::vector<float*> trainingWords;
std::vector<int> trainingClasses;    

void wordAssignation(features,trainingWords);
void computeDictionary(features,dictionary);
int classifyFrameScene(features);
void train();
void test();
void validate();

SemanticLocalizationBoWKnn

int kValue;    

int classifyFrameScene(features);
void train();
void test();
void validate();

SemanticLocalizationLocalFeatures

....

int classifyFrameScene(features);
void train();
void test();
void validate();
...

SemanticKeypointDetectorNARF

void detectKeypoints(src,keypoints);

SemanticFeatureExtractorFPFH

void loadFeatures(path,features);
void saveFeatures(path,features);
void extractFeatures(src,keypoints,features);

SemanticKeypointDetector

string name;

virtual void detectKeypoints(src,keypoints);

SemanticFeatureExtractor

string name;
int dimensionality;

virtual void loadFeatures(path,features);
virtual void saveFeatures(path,features);
virtual void extractFeatures(src,keypoints,features);

Figure 2: Class diagram of the implemented framework.

Using this scheme, the final user can focus on implementing its method,
or using different keypoint detectors and feature descriptors, thus providing
an easy way to make experiments in semantic localization.

5. Experimental results

5.1. Dataset description: ViDRILO
All the experimentation included in this article has been carried out using

ViDRILO: the Visual and Depth Robot Indoor Localization with Objects in-
formation dataset [13]. This dataset, whose overall characteristics are shown
in Table 1, provides five different sequences of RGB-D images captured by a
mobile robot within an office indoor environment.

Each RGB-D image is annotated with the semantic category of the room it
was acquired, from a set of ten room categories. Unreleased sequences from
ViDRILO have been successfully used in the RobotVision at ImageCLEF
competition [12] in 2013 and 2014 [3, 2]. Fig. 3 shows exemplar images for
each one of the ten room categories using the following codes: CR (Corri-
dor), HA (Hall), PO (Professor Office), SO (Student Office), TR (Technical
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Table 1: Overall ViDRILO sequences distribution.
Sequence Number of Frames Floors imaged Dark Rooms Time Span
Sequence 1 2389 1st,2nd 0/18 0 months
Sequence 2 4579 1st,2nd 0/18 0 months
Sequence 3 2248 2nd 4/13 3 months
Sequence 4 4826 1st,2nd 6/18 6 months
Sequence 5 8412 1st,2nd 0/20 12 months

Room), TO (Toilet), SE (Secretary Office), VC (Video Conference Room),
WH (Warehouse), and EA (Elevator Area).

CR EA HA PO SE

SO TO TR VC WH

Figure 3: Exemplar visual images for all room categories in ViDRILO.

To focus on the internal parameters of the BoW approach, the experi-
mentation stage is limited to the use of Sequence 1 and Sequence 2 from
the dataset. The room distribution for these sequences is shown in Fig. 4.
We opted for this selection to evaluate the use of the BoW approach in a
general semantic localization benchmark. Namely, Sequences 3-5 involve en-
vironmental modifications with respect to the initial acquisitions due to the
time span (3, 6 and 12 months respectively). These modifications are caused
by the human activity: some objects can change their location (e.g. trashes
and phones), while others are added or removed from the environment (e.g.
tabletop papers and ballpoint pens). The use of Sequences 3-5 increases the
challenging of the problem, and it would require the use of non-standard so-
lutions to cope with domain adaptation. The robot used for the acquisition
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of Sequences 1-2 followed a similar path but in the opposite direction, which
affects the viewpoint of the imaged scenes. Here, we can observe that we are
facing a challenging problem due to the dataset is highly unbalanced: most
of the RGB-D images belong to the "Corridor" category.

Room

D
is
tr
ib
u
ti
o
n
(%
)

Sequence1

Sequence2

Corridor Hall ProfOffice StOffice TechRoom Toilet SecOfficeVideoConfR WarehouseElevArea

0
1
0

2
0

3
0

4
0

5
0

6
0

Figure 4: Room distribution for Sequences 1 and 2 in the ViDRILO dataset.

5.2. Study of keypoints detection
Three different keypoints detection methods are evaluated in this work:

NARF, Harris3D, and Uniform Sampling, all of them implemented in the
PCL. These methods select a subset of 3D points from an input cloud using
different methods, but they differ in the average amount of selected points.
In the following, we describe the internal parameters used for the experimen-
tation. We only fixed those parameters that should be explicitly established.
The rest of parameters were set to their default values. Regarding the NARF
detector, we used a support size of 20 cm. This parameter represents the
diameter of the sphere used to find neighboring points, and therefore to es-
timate if a point belongs to a border or not. With respect to the Harris3D
detector, we used a threshold of 0.01 as we found it as a reasonable value to
remove weak keypoints. Finally, the Uniform Sampling detector internally
uses a voxel grid unsupervised downsampling method. We opted for a radius
of 0.03 meters, which makes keypoints being selected using tiny 3D boxes
whose volume is 3 cubic centimeters.

Fig. 5 graphically presents the keypoint detection with these three tech-
niques. We selected NARF, Harris3D and Uniform Sampling to study the
effect of detecting a small, medium and large number of keypoints respec-
tively.
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Input RGB-D Image

NARF: 27 Harris3D: 2445 Unif. Sampling: 12412

Figure 5: Keypoint detection with NARF (bottom left), Harris3D (bottom center) and
Uniform Sampling (botoom right) for a sample RGB-D image (top). The number indicates
the amount of keypoints detected with each method

5.3. Semantic Localization results
We test our approach for the generation of semantic localization systems

on the ViDRILO dataset. Concretely, we evaluated the generalization capa-
bilities by generating classifiers using Sequence 2 (4579 RGB-D images) for
training. These systems are then used to classify the 2389 RGB-D images
from Sequence 1. Both sequences were acquired in the same building during
two consecutive days.

The following internal parameters are evaluated:

• 3 Keypoint detectors: NARF, Harris3D, and Uniform Sampling.

• 5 Feature extractors: NARF, SHOT, Color-SHOT, PFH-RGB, and
FPFH.

• 4 Dictionary sizes: 25, 50, 100, and 200.

• 2 Classification models:
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– SVM classifier (exponential chi-square kernel).

– k-Nearest-Neighbor (k = 7).

Fig. 6 shows the accuracies obtained with all the semantic classifiers, and
we can extract some remarks from these results. Firstly, we can observe
that the SVM classifier outperforms the use of k-NN in most of the cases.
The two classification models evaluated in this work behave different with
respect to the dictionary size. Increasing the size of the dictionary always
has a positive impact on the accuracy when using SVM, but not with k-
NN. Regarding the keypoint detection method, NARF is the one presenting
the worst results, as it could have been expected. At this point, we should
outline the bad behavior of the combination of NARF as keypoint detector
and feature extraction techniques. The main differences between Harris3D
and Uniform Sampling are related to the classification models. That is, the
improvement obtained thanks to the use of Uniform Sampling (with respect
to Harris3D) is notoriously greater when using k-NN as classification model.

An analysis of the feature extraction methods exposes PFHRGB and
Color-SHOT as the most promising techniques. On the contrary, NARF,
FPFH and SHOT features present the lower accuracies. It should be taken
into account that PFHRGB and Color-SHOT are the only two features that
integrate color information. The overall highest accuracy (69.17) was ob-
tained with a SVM and a combination of Harris3D and PFHRGB as keypoint
detector and feature extractor respectively. Therefore, we can conclude that
the use of Uniform Sampling is not needed unless a k-NN classifier is used.
The use of Harris3D as keypoint detection technique notoriously reduces the
amount of data to work with and speeds up the 3D processing.

We also evaluated the use of one of the state-of-the-art global 3D feature:
the Ensemble of Shape Functions (ESF) [31]. Using the ESF descriptor, we
trained both SVM and k-NN classifiers from Sequence 2 and tested against
Sequence 1. We obtained an accuracy value of 58.48% with k-NN and 64.49%
with the SVM classifier. Consequently, the BoW approach allowed us to
outperform the ESF global descriptor. Moreover, we obtained better results
using descriptors whose dimensionality is notoriously lower than for the ESF
descriptor (200 vs 640). This difference in the descriptor dimensionality
would result in classification models that can be trained in a lower amount
of time, and perform RGB-D images classification much faster.
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Keypoint Detection = NARF
SVM Classifier k−NN Classifier
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Figure 6: Semantic localization overall results. Accuracy values obtained by training a
SVM (left) or k-NN classifier (right) with Sequence 2 and evaluating against Sequence 1
from the ViDRILO dataset [13].
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6. Conclusions and future work

Semantic localization is a challenging problem in robotics. We have pre-
sented in this article a framework for the generation of global 3D descriptors
from local ones following a BoW approach. This framework has been imple-
mented in the Point Cloud Library and evaluated in the semantic localization
problem.

Based on the experimentation stage, we can affirm that PFHRGB and
Color-SHOT are the two 3D local features with the best performance. Har-
ris3D exposed as the most appropriate keypoint detection method, due to
it notoriously reduces the amount of data to work with respect to Uniform
Sampling. The proposed BoW framework obtained higher accuracies than
the use of the well-known global 3D feature ESF.

As future work, we have in mind the experimentation with a wider variety
of 3D features and keypoint detection methods. Moreover, larger dictionary
sizes will also be considered.
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