
3D Model Reconstruction using Neural Gas Accelerated

on GPU

Sergio Orts-Escolano, Jose Garcia-Rodriguez, Antonio Jimeno-Morenilla,
Jose Antonio Serra-Perez, Alberto Garcia

Department of Computing Technology at University of Alicante. Alicante (Spain)

Vicente Morell, Miguel Cazorla

Department of Computational Sciences and Artificial Intelligence at University of
Alicante. Alicante (Spain)

Abstract

In this work, we propose the use of the Neural Gas (NG), a neural network

that uses an unsupervised competitive hebbian learning (CHL), to develop

a reverse engineering process. This is a simple and accurate method to

reconstruct objects from the point cloud obtained from overlapped multiple

views using low cost sensors. In contrast to other methods that may need

several stages that include downsampling, noise filtering and many other

tasks, the NG automatically obtains the 3D model of the scanned objects.

To demonstrate the validity of our proposal we tested our method with

several models and performed a study of the neural network parameterization

calculating the quality of representation and also comparing results with

other neural methods like Growing Neural Gas and Kohonen maps or clasical

Email addresses: sorts@dtic.ua.es (Sergio Orts-Escolano), jgarcia@dtic.ua.es
(Jose Garcia-Rodriguez), jimeno@dtic.ua.es (Antonio Jimeno-Morenilla),
jserra@dtic.ua.es (Jose Antonio Serra-Perez), agg180@alu.ua.es (Alberto Garcia),
vmorell@dccia.ua.es (Vicente Morell), miguel@dccia.ua.es (Miguel Cazorla)

Preprint submitted to Applied Soft Computing January 7, 2015

methods like Voxel Grid. We also reconstructed models acquired by low cost

sensors that can be included in virtual and augmented reality environments

to redesign or manipulation purpose. Since the NG algorithm has a strong

computational cost we propose its acceleration. We have redesigned and

implemented the NG learning algorithm to fit it onto a Graphic Processor

Unit using CUDA. A speed-up of 180x faster is obtained compared to the

sequential CPU version.

Keywords:

Neural Gas, Topology Preservation, 3D Model Reconstruction, Graphics

Processor Units.

1. Introduction

A 3D model of a free-form object [1] is constructed by acquiring multiple

viewpoints so that its surface is completely covered. These views are then

registered in a common coordinate basis and the implicit surface defined by

the 3D data is computed obtaining a 3D mesh.

Although many algorithms have already been proposed for mesh gener-

ation from an unorganized point cloud [2, 3, 4, 5, 6, 7], existing techniques

have various limitations mainly in terms of their applicability to free-form

objects, accuracy, efficiency, and the discriminating capability of the gener-

ated representation. An excellent survey of free-form object representation

and recognition techniques can be found in [8]. In addition, a brief survey is

presented in Section 2 for completeness.

The three-dimensional representation of an object provides a higher de-

gree of realism. This factor has been implemented at different stages of pro-

2

duction processes in order to improve productivity and quality. Moreover,

the combination of the acquired and reconstructed 3D models with virtual

and augmented reality environments allows the users to interact with them

and also developing a virtual manufacturing system as an application of aug-

mented reality to improve several process stages [9], including quality control,

human-machine interface and information flows, practicing e-commerce and

possibility of implementing different production philosophies. [10] presented

the Direct Modelling approach, which allows the user to intuitively select

geometric entities in real time regardless of the modifications made. This

was initially developed for conceptual design and architectural planning [11].

[12] showed the advantages derived from using a semi-immersive environ-

ment, combining stereoscopic vision with 3D inputs, addressed to conceptual

and aesthetic design.

In the last years, neural networks approaches have become popular in dif-

ferent fields, including computer graphics problems. Neural networks have

been extensively used for data clustering. In particular, self-organising mod-

els [13] place their neurons so that their positions within the network and

connectivity between different neurons are optimised to match the spatial

distribution of activations. As a result of this optimization, existing rela-

tionships within the input space will be reproduced as spatial relationships

among neurons in the network. The final result of the self-organising or

competitive learning process is closely related to the concept of Delaunay

triangulation of the input space corresponding to the reference vectors of

neurons in the network. Traditionally, it has been suggested that this trian-

gulation, result of competitive learning, preserves the topology of the input

3

space. However, [14] introduced a new condition which restricts this quality.

Thus, self-organising maps or Kohonen maps are not Topology Preserving

Networks (TPN) as has traditionally been considered, since this condition

only would happen in the event that the topology or dimension of the map

and the input space coincide. The Growing Cell Structures [15] are not TPN

since the topology of the network is established a priori.

In the case of the Neural Gases like Neural Gas (NG) [16] or Growing

Neural Gas (GNG) [17], the mechanism for adjusting the network through a

competitive learning generates an induced Delaunay triangulation. Martinetz

and Schulten [14] demonstrated that these models are TPN.

Neural Gases have been widely used in recent years for different applica-

tions, mainly for clustering or topology learning. In [18] the representation

obtained with the neural network structure is used to represent road net-

works and build an intelligent navigation system. [19] and [20] use the NG

to build character recognition systems. [21] applied the NG to reconstruct

3D surfaces but no quantitative quality of representation data is provided

with only qualitative examples and comparisons with the GNG model.

There are also a number of works using GNGmodels for 3D reconstruction

tasks [22, 5, 23, 24]. However, based on our previous experience [25, 26] we

demonstrated that Neural Gas quality of representation capability is higher

than the GNG one which makes NG model more accurate for the proposed

problem.

Moreover, the NG learning algorithm has a higher level of parallelism

and is more suitable to be implemented onto graphic processor units (GPUs)

compared to other growing self-organising networks which have been already

4

implemented onto the GPU [27, 28].

In general, in previous works [29, 30], we demonstrated using the GNG

algorithm, that self-organizing maps, due to their stochastic nature can han-

dle corrupted data and noisy information, being able to interpolate missing

data from the input space. This feature makes NG model advantageous for

working with noisy 3D data provided by low-cost RGB-D sensors.

We propose the use of the Neural Gases to reconstruct objects from the

point cloud obtained from overlapped multiple views. As a difference with

other methods that may need several stages that includes downsampling,

noise filtering, surface triangulation, and many other tasks, the proposed

NG-based algorithm automatically obtains the 3D model from the scanned

objects. Moreover, overlapping scanned data may produce unsatisfactory

results, as a simple connection of consecutive scan points would lead to wrong

surfaces. The proposed algorithm therefore does not make any assumption

about the topology of the data. It takes unorganized three-dimensional data

points as input and generates a 3D mesh that represents the underlying

surface.

The main contributions of this paper are the following. An extension

of the NG algorithm considering colour information and producing meshes

with faces during the learning stage. An accelerated implementation on the

GPU, considerably accelerating the original algorithm compared to the CPU

version. A fully integrated framework to perform 3D object reconstruction

using low-cost RGB-D sensors and finally an extensive study of the proposed

method, comparing the obtained results with related methods and under

different noise conditions.

5

The remainder of the paper is organized as follows. Section 2 reviews

the most used methods for 3D surface reconstruction. Section 3 presents the

proposed NG-based algorithm and demonstrates its capacities to reconstruct

3D models. Moreover, Section 3 presents an accelerated implementation of

the NG algorithm on graphics processor units using CUDA. Next, Section 4

presents several experiments, showing qualitative and quantitave results of

the proposed method compared to related works. Finally, in Section 5, the

conclusions of the work and further directions of the research are presented.

2. 3D Reconstruction methods

This section will review the most used methods and techniques for the

reconstruction of three dimensional surfaces.

2.1. Delaunay and α shapes

Reconstruction with Delaunay methods in three dimensions consists on

the extraction of tetrahedron surfaces from the initial point cloud. The con-

cept of alpha-shape formalizes the intuitive notion of ”shape” for a set of

points in the space. One of the earliest approaches is based on α-shapes [31].

Given a finite point set S, and the real parameter α, the alpha-shape of S is a

polytope (the generalization to any dimension of a two dimensional polygon

and a three-dimensional polyhedron) which is neither convex nor necessarily

connected. For a large α value, the α-shape is identical to the convex-hull of

S. If the alpha value decreases progressively, non-convex shapes with cavities

are obtained.

The algorithm proposed by [31] eliminates all tetrahedrons which are de-

limited by a surrounding sphere smaller than α. The surface is then obtained

6

with the external triangles from the resulting tetrahedron. Another approach

is based on labelling the initial tetrahedrons as interior and exterior. The

resulting surface is generated from the triangles found in and out. This idea

first appeared in [32] and was later performed by Powercrust in [33] and

the algorithm called Tight Cocone [34]. Both methods have been recently

extended for reconstructing point clouds with noise [34, 35].

The main advantage of most Delaunay based methods is that fit very

accurately the surface defined by the original point cloud. However, the

method is very sensitive to noise since it is an interpolation based method

that produces undesirable results with noisy data. Therefore, the quality of

the points obtained in the digitization process determines the feasibility of

these methods. Due to the use of the whole point cloud set to obtain the most

accurate triangulation, considering the Delaunay rule, the digitized points

on the surface with an error considered above the limit, will be explicitly

represented on the reconstructed surface geometry.

2.2. Zero-set methods

Implicit reconstruction methods (or zero-set methods) reconstruct the

surface using a distance function which assigns to each point in the space

a signed distance to the surface S. The polygonal representation of the

object is obtained by extracting a zero-set using a contour algorithm. Thus,

the problem of reconstructing a surface from a disorganized point cloud is

reduced to the definition of the appropriate function f with a zero value

for the sampled points and different to zero value for the rest. In [36] was

established the use of such methods with the algorithm called Marching-

Cubes. This algorithm has evolved in different variants, [2] used a discrete

7

function f , in [6] a polyharmonic radial basis function is applied to adjust the

initial point set. Other approaches include the adjustment function Moving

Least Squares [37, 38] and basic functions with local support [39], based on

the Poisson equation [7].

Those methods have the problem of loss of the geometry precision in

areas with extreme curvature, i.e., corners, edges. Furthermore, pretreatment

of information by applying some kind of filtering technique also affects the

definition of the corners. There are several studies related to post-processing

techniques used in the reconstruction for the detection and refinement of

corners [38, 40] but these methods increase the complexity of the solution.

2.3. Voxel Grid

The Voxel Grid filtering technique is based on the input space sampling

using a grid of 3D voxels to reduce the number of points. This technique has

been traditionally used in the area of computer graphics to subdivide the

input space and reduce the number of points [41, 42].

For each voxel, a centroid is chosen as the representative of all points.

There are two approaches, the selection of the voxel centroid or the centroid

calculation by using the points lying within the voxel. The calculation of

the mean point has a higher computational cost, but offers better results.

Thus, a subset of the input space is obtained that roughly represents the

underlying surface. The Voxel Grid method presents the same problems as

other filtering techniques: impossibility of defining the final number of points

that represent the surface, geometric information loss due to the reduction

of points inside a voxel and sensitivity to noisy input spaces. This method

will be compared with our NG based 3D reconstruction method, as it offers

8

similar features for efficient mesh downsampling.

2.4. Surface reconstruction based on Self-Organizing Maps

Considering the 3D representation problem from a computational intelli-

gence approach and based on self-organization maps, a different perspective

to obtain 3D reconstructions is proposed. These methods could be consid-

ered as flexible and growing models considering if the topology of the selected

map has a priori topology or otherwise they grows until a condition is ful-

filled. Moreover, we can find some similarities or correspondences between

the neural network map and the 3D representation obtained. Nodes of the

neural network map correspond to vertices of a mesh and connections be-

tween nodes correspond to the edges. Therefore, in this works the terms

node and vertex, and connection and edge are used interchangeably. From

this perspective, some methods were proposed based on self-organizing maps.

In [43] it is proposed the use of Kohonen’s self-organizing map for surface

reconstruction using as an input data unorganized point clouds. Moreover,

since Kohonen’s map does not produce regular faces, an edge collapse op-

eration was introduced eliminating dangling faces. This approach presents

some drawbacks as if the real object surface has concave structures, applying

Kohonen’s learning algorithm has some difficulties to correctly approximate

those parts. In addition, as the Kohonen’s algorithm has a high computa-

tional cost, the single thread CPU implementation presented in this work

took more than one hour to represent the Stanford bunny model. Presented

method was only tested with synthetic data and the bunny model, which

is comprised of 34, 834 points. Junior et al. [44], extended [43] introduc-

ing new mesh operators that allowed it to perform improvements on the

9

surface geometry: edge swap, edge collapse, vertex split and triangle sub-

division. Moreover, the method introduced a new step to remove unstable

vertices using the mean distance and the standard deviation of the 3D rep-

resentation regarding the sampled input space. Although this new approach

improved the surface geometry, the method does not deal with concave or

non-convex regions and the initial structure of the representation has to be

pre-established considering the topology of the input space. The fixed struc-

ture of the SOM does not learn the spatial relationships between the vertices

and therefore does not generate a model that accurately represents the shape

of the input space.

In [45] it is used the Growing Cell Structures (GCS) [15] algorithm to

reconstruct objects surface. Meshes operators are used to change the con-

nectivity of the mesh and therefore final topology is always equivalent to the

initial mesh.

The Topology Representing Networks (TRN), proposed by [14], does not

have a fixed structure and also does not impose any constraint about the con-

nection between the nodes. In contrast, this network has a pre-established

number of nodes, and therefore, it is not able to generate models with dif-

ferent resolutions. The algorithm was also coined with the term Neural Gas

(NG) due to the dynamics of the feature vectors during the adaptation pro-

cess, which distributes themselves like a gas within the data space. Barhak

[46] proposed a NG-based surface reconstruction algorithm since this network

has the ability to accurately represent the topology of a point cloud.

In [22], the GNG network is employed to model a point cloud and those

regions that need further sampling in order to obtain a more accurate model.

10

Rescanning at higher resolution is performed for each identified region of

interest and a multi-resolution model is built. In this work, only nodes of

the generated map are used as the work is focused on sampling capabili-

ties of the GNG. MGNG [23] applied some postprocessing steps in order to

perform surface reconstruction once the map is generated using the original

GNG algorithm. Most of these approaches were tested against CAD mod-

els or synthetic data and only few experiments were performed on objects

acquired with 3D sensors. In [47], the GNG algorithm was modified in or-

der to produce topological faces. The extended method was called Growing

Self-Reconstruction Maps (GSRM) and some learning steps as CHL and the

operation of vertex insertion and removal were also modified. Most experi-

ments of this work were performed on the Stanford dataset, which had been

previously filtered and therefore the surface reconstruction step does not have

to deal with noisy input spaces produced by common 3D sensors. In [47, 46]

the Competitive Hebbian Learning was extended considering the creation of

2-manifold meshes and face reconstruction. However, it was also required to

apply some post-processing steps to create a complete model.

Although the use of the SOM-based techniques as NG, GCS or GNG for

3D input space representation and surface reconstruction has already been

studied and successful results have been reported, there are some limita-

tions that still persist. Most of these works assumed noise-free point clouds.

Therefore, applying these methods on challenging real-world data obtained

using noisy 3D sensors have not been object of study yet. Moreover, with

11

the advent of low cost RGB-D cameras as the Microsoft Kinect 1 partial

point clouds have to be considered. Besides providing 3D information, these

devices also provide colour information, feature that was not considered in

the revised works.

As the original NG algorithm does not produce faces and the generated

map is a wire-frame representation model, we proposed to extend the original

algorithm to produce full coloured meshes (faces). In addition, the proposed

method will be tested using noisy data obtained from low-cost RGB-D sen-

sors.

3. Neural Gas Based Surface Reconstruction

One way of selecting points of interest in 3D point clouds is to use a

topographic mapping where a low dimensional map is fitted to the high di-

mensional manifold of the shape, whilst preserving the topographic structure

of the data. A common way to achieve this is by using self-organising neural

networks where input patterns are projected onto a network of neural units

such that similar patterns are projected onto units adjacent in the network

and vice versa. As a result of this mapping a representation of the input

patterns is achieved that in post-processing stages allows to exploit the rela-

tionship of similarity of the input patterns [48].

3.1. Neural Gas Algorithm

Neural Gas is an unsupervised soft competitive clustering algorithm that

given some input distribution in Rd, creates a graph, or network of nodes,

1Kinect for XBox 360: http://www.xbox.com/kinect Microsoft

12

where each node in the graph has a position in Rd. The model can be used

for vector quantization by finding the code-vectors in clusters. These code-

vectors are represented by the reference vectors (the position) of the nodes.

It can also be used for finding topological structures that closely reflects

the structure of the input distribution. Neural Gas learning is a dynamic

algorithm in the sense that if the input distribution slightly changes over

time, it is able to adapt, moving the nodes to the new input space.

Neural Gas uses Competitive Hebbian Learning (CHL). CHL assumes

a number of centers (neurons) in Rn and successively inserts topological

connections among them by randomly evaluating input signals from a data

distribution, in this case the three-dimensional space. This scheme is com-

bined with the Neural Gas algorithm, allowing the neurons movement based

on a decaying scheme. For each input signal ξ adapt the k-nearest centers

(neurons) whereby k is decreasing from a large initial to a small final value.

This step allows the adaption of the neurons to the input manifold.

The network is specified as:

A set A of nodes (neurons). Each neuron c ∈ A has its associated refer-

ence vector wc ∈ Rd. The reference vectors can be regarded as positions in

the input space of their corresponding neurons.

A set of edges (connections) between pairs of neurons. These connections

are not weighted, and its purpose is to define the topological structure. An

edge aging scheme is used to remove connections that are invalid due to the

motion of neurons during the adaptation process.

Neural Gas uses parameters that decay exponentially according to time

and the distance to the input pattern.

13

The Neural Gas with CHL algorithm is the following:

1. Initialize the set A to contain N units ci

A = {c1, c2, ..., cN} (1)

With reference vectors Wci ∈ Rd chosen randomly according to p(ξ).

Initialize the connection set C,C ⊂ A× A, to the empty set:

C = ∅ (2)

Initialize the time parameter t

t = 0 (3)

2. Generate at random an input signal ξ according to p(ξ).

3. Order all elements of A according to their distance to ξ, i.e., find the

sequence of indices (i0, i1, ..., iN−1) such that wi0 is the reference vector

closest to ξ, wi1 , is the reference vector second-closest to ξ and wik ,

k = 0, ..., N − 1 is the reference vector such that k vectors wj exists

with ||ξ − wj|| ≤ ||ξ − wk||. We denote with ki(ξ, A) the number k

associated with wi.

4. Adapt the reference vectors according to

△wi = ϵ(t) · hλ(ki(ξ, A)) · (ξ − wi) (4)

14

With the following time-dependencies

λ(t) = λi(λf/λi)
t/tmax (5)

ϵ(t) = ϵi(ϵf/ϵi)
t/tmax (6)

hλ(k) = exp(−k/λ(t)) (7)

5. If it does not exist already, create a connection between i0 and i1:

C = C ∪ {(i0, i1)} (8)

Set the age of the connection between i0 and i1 to zero (”refresh” the

edge):

age(i0, i1) = 0 (9)

6. Increment the age of all edges emanating from i0

age(i0,i) = age(i0,i) + 1 ∀i ∈ Ni0 (10)

Thereby, Nc is the set of direct topological neighbors of c.

7. Remove edges with an age larger than the maximal age T (t) whereby

T (t) = Ti(Tf/Ti)
t/tmax (11)

15

8. Increase the time parameter t:

t = t+ 1 (12)

9. If t ≤ tmax continue with step 2

In summary, the learning step of the NG is based on the Euclidean dis-

tance between the input space (3D points) and the neurons structure. Every

iteration neurons are sorted by their Euclidean distance to the input pattern

that has been randomly selected (activated). Neurons are moved towards the

selected input pattern during this step using a decaying function based on

the previously calculated Euclidean distance and a time function (iteration).

Thanks to this learning step, the neural map is adapted to the topology of

the input data. The learning step is defined as a single iteration over the

steps detailed above.

Furthermore, the proposed NG method was modified compared to the

original version, considering also original point cloud colour information.

Once NG network has been adapted to the input space and it has finished

learning step, each neuron of the network takes colour information from near-

est neighbours in the original input space. Colour information of each neuron

is calculated as the average of weighted values of the K-nearest neighbours,

obtaining a interpolated value of the surrounding point. Color values are

weighted using Euclidean distance from input pattern to its closest neuron

reference vector. In addition, this search is considerably accelerated using

a Kd-tree structure [49]. Colour down-sampling is performed in order to

transfer color information from points to mesh triangles.

16

3.2. Topology preservation

The final result of the self-organising or competitive learning process is

closely related to the concept of Delaunay triangulation. The Voronoi region

of a neuron consists of all points of the input space for what this is the winning

neuron. Therefore, as a result of CHL a graph (neural network structure)

is obtained whose vertices are the neurons of the network and whose edges

are connections between them, which represents the Delaunay triangulation

of the input space corresponding to the reference vectors of neurons in the

network.

Traditionally, it has been suggested that this triangulation, result of com-

petitive learning, preserves the topology of the input space. However, [14]

introduces a new condition which restricts this quality.

It is proposed that Φw of V in A preserves the neighbourhood when

vectors that are close in the input space V are mapped to nearby neurons

from network A. It is also noted that the inverse mapping preserves the

neighbourhood if nearby neurons of A have associated feature vectors close

in the input space.

Φ−1
w : A → V, c ∈ A → wc ∈ V (13)

Combining the two definitions, it can be defined the Topology Preserving

Network (TPN) as the network A whose mappings Φw and Φ−1
w preserve the

neighborhood.

Thus, self-organising maps or Kohonen maps are not TPN as has tra-

ditionally been considered, since this condition only would happen in the

event that the topology or dimension of the map and the input space coin-

17

cide. Since the network topology is established a priori, possibly ignoring the

topology of the input space, it is not possible to ensure that the mappings

Φw and Φ−1
w preserve the neighborhood.

The Growing Cell Structures [15] are not TPN since the topology of the

network is established a priori (triangles, tetrahedra, ...). However, it im-

proves the performance compared to Kohonen maps [13], due to its capacity

of insertion and removal of neurons.

In the case of the Neural Gases like Growing Neural Gas and Neural Gas,

the mechanism for adjusting the network through a competitive learning

generates an induced Delaunay triangulation, a graph obtained from the

Delaunay triangulation, which has only edges of the Delaunay triangulation

of points which belong to the input space V . [14] demonstrated that these

models are TPN.

This capability can be used, for instance, in the application of these

models to the representation of objects in different dimensions.

In a previous comparative study [25] with Kohonen Maps, Growing Cell

Structures and Neural Gas, it was demonstrated that Kohonen Maps and

Growing Cell Structures are not topology preserving neural networks. Only

NG and GNG are topology preserving networks.

3.2.1. Topology preservation measures

The adaptation of the self-organising neural networks is often measured

in terms of two parameters: 1) resolution and 2) degree of preservation of

the topology of the input space.

The most widely used measure of resolution is the quantization error [13],

which is expressed as:

18

E =
∑
∀ξ∈Rd

∥wsξ − ξ∥ · p(ξ) (14)

where sξ is the closest neuron to the input pattern ξ.

However, as NG is used to reconstruct a model from an unorganized noisy

point cloud in a reverse-engineering application, it is needed to know the real

distance from the generated structure to the input data of the reconstructed

model. This measure specifies how close our reconstructed surface is from the

original model, removing noisy data generated by 3D sensors and the align-

ment process. Therefore, calculating the mean square error (MSE) between

filtered point cloud and the input data shows the NG input space adaptation

and noise removal capabilities. In order to obtain a quantitative measure of

the input space adaptation of the generated map, we computed the Mean

Square Error (MSE) of the map against sampled points (input space).

MSE1 =
1

|V |
∑
∀p∈V

min
i∈A

d(p− wi)
2 (15)

where V is the input space, p is a sample that belongs to the input space, i

is the neuron with the minimum distance to the input space sample and wi

is the neuron’s weight. d(p−wi)
2 is the squared euclidean distance between

the closest neuron and the input point p. This measure is computed once

network topology learning step is completed.

Moreover, we computed the mean squared error considering distances

from the neurons that conform the map to the input space, considering both

directions and therefore having a more accurate metric of the input space

adaptation.

19

MSE2 =
1

|A|
∑
∀c∈A

min
i∈V

d(c− wi)
2 (16)

where A is the generated self-organizing map, c is a neuron that belongs

to the map, i is sample of the input space with minimum distance to the

selected neuron and wi is the sample weight vector. d(c−wi)
2 is the squared

euclidean distance between the closest input point and the neuron c. This

measure is also computed once network topology learning step is completed.

Combining mean squared distances in both directions we obtain a useful

measure of the map adaptation to the input space. In experiments section

we will consider the MSE as the product of MSE1 and MSE2.

3.3. NG 3D Surface Reconstruction

3D reconstruction can be considered as a cluster-seeking problem in which

the goal is finding a finite number of points that describe the surface precisely.

A representation structure (graph) is automatically created by minimizing

the error of the self organising map adaptation to the input space to be

represented (point cloud).

The ability of neural gases to preserve the topology of the input space will

be evaluated in this work with the representation of 3D objects. Identifying

the points of the input data that belong to objects allows the network to

adapt its structure to this input subspace, obtaining an induced Delaunay

triangulation of the object.

Figure 1 shows different 3D models reconstructed using original NGmethod.

Different number of neurons have been used since original models are repre-

sented with different number of points.

20

Figure 1: Reconstructed 3D models using NG method (wire-frame representation). From

left to right: Bunny, Horse and Armadillo. The number of neurons of the reconstructed

models is 5k, 8k and 15k.

As we can see in Figure 1 and as we commented above, original NG algo-

rithm only produces a wire-frame representation of the input data. In order

to create a complete mesh, we extended the original algorithm considering

the face creation step during the learning process. Steps 5, 6 and 7 of the

original algorithm introduced above were modified considering face creation.

Below we can find the modified steps for considering face creation during

the learning process of the NG algorithm

5. If it does not exist already, create a connection between i0 and i1:

C = C ∪ {(i0, i1)} (17)

5.1. if i0 and i1 have two common neighbours n0 and n1

5.1.1. if n0 and n1 are already connected then

21

Remove edge between n0 and n1

C = C − {(n0, n1)} (18)

Coincident faces to the vertices n0,n1 are removed

F = F − {incidentFaces(n0, n1)} (19)

Create two faces using n0, n1, i0 and i1

F = F ∪ {(n0, i0, i1), (n1, i0, i1)} (20)

5.1.2. if n0 and n1 are not connected

Create two faces using n0, n1, i0 and i1

F = F ∪ {(n0, i0, i1), (n1, i0, i1)} (21)

5.2. if i0 and i1 have one common neighbours n0

Create one face using n0, i0 and i1

F = F ∪ {(n0, i0, i1)} (22)

6. If a connection between i0 and i1 already exist:

Set the age of the connection between i0 and i1 to zero (”refresh” the

edge):

age(i0, i1) = 0 (23)

6.1. if i0 and i1 have common neighbours Nn = n0, n1, n2, ..., ni

For each common neighbour ni create a face f using ni, i0, i1.

F = F ∪ {(ni, i0, i1)} (24)

22

6.2. if i0 and i1 have zero common neighbours

6.2.1. if there are two neighbours n0 and n1 of i1 and i2 respectively

that are connected but are not common to i1 and i2 then

Triangulate hole: create two faces.

Create two faces using n0, n1, i0 and i1

F = F ∪ {(i0, i1, n0), (i1, n0, n1)} (25)

6.2.2. if there are two neighbours n0 and n1 of i1 and i2 respectively

that are not connected between them and are not common to

i1 and i2 and also have a common neighbour n2 then

Triangulate hole: create three faces.

Create three faces using n0, n1, n2 i0 and i1

F = F ∪ {(i0, i1, n2), (i1, n1, n2), (i1, n0, n2)} (26)

Finally, we also extended step 7 removing those faces incident to the edges

with an age larger than the maximal age T (t) that is defined in the original

algorithm (step 7).

Thanks to these new changes, the proposed version of the NG algorithm

is able to create a mesh instead of a wire-frame representation. Figure 2

shows different 3D models reconstructed using the proposed NG extension

for 3D surface reconstruction.

4. Neural Gas implementation onto Graphics Processor Units

As the NG learning algorithm has a high computational cost, we propose

a method to accelerate it using GPUs and taking advantage of the many-

core architecture provided by these devices, as well as their parallelism at

23

Figure 2: Reconstructed 3D models using the proposed NG-based method (mesh). From

left to right: Bunny, Horse and Armadillo. The number of neurons of the reconstructed

models is 5k, 8k and 15k.

the instruction level. GPUs are specialised hardware for computationally

intensive high level parallelism that uses a higher number of transistors to

process data and less for flow control or management of the cache, unlike in

CPUs. We have used the architecture and the programming tools (language,

compiler, development environment, debugger, libraries, etc.) provided by

NVIDIA to exploit their hardware parallelism.

4.1. Cuda architecture

A CUDA compatible GPU is organised in a set of multiprocessors [50].

These multiprocessors called Streaming Multiprocessors (SMs) are highly

parallel at thread level. Each SM consists of a series of Streaming Processors

(SPs) that share the control logic and cache memory. Each of these SPs can

be launched in parallel with a huge amount of threads. CUDA architecture

reflects a SIMT model: Single Instruction, Multiple Threads. These threads

are executed simultaneously working on large data in parallel. Each of them

runs a copy of the kernel on the GPU and uses local indexes to be identi-

24

fied. Threads are grouped into blocks to be executed. The number of blocks

that are executed depends on the resources available on the multiprocessor,

scheduled by a system of priority queues. CUDA architecture also has a

memory hierarchy. Different types of memory can be found: constant, tex-

ture, global, shared and local registries. In the last few years, a large number

of applications have used GPUs to speed up the processing of neural network

algorithms [51, 52, 53, 54, 55, 56], face representation and tracking [57] or

pose estimation [58].

4.2. Neural Gas onto GPUs

In order to identify algorithm steps with a larger computational complex-

ity a profiling analysis was performed. Steps 3, 4 and 7, corresponding to

Euclidean distances calculation, distances sorting, weights update and edges

removing, were identified as steps with the larger computational cost. In

addition, many of these operations performed in the NG algorithm can be

parallelised because they act on all the neurons of the network simultaneously.

That is possible because there is no direct dependence between neurons at

the operational level. However, there exists dependence in the adjustment of

the network, which makes necessary the synchronization after each iteration

t.

The first stage of the algorithm that was accelerated is the calculation of

Euclidean distances. This stage calculates the Euclidean distance between a

random pattern and each of the neurons. This task takes place in parallel by

running the calculation of each neuron distance on as many threads as neu-

rons the network contains. It is possible to calculate more than one distance

per thread. This approach increases the level of parallelism as the number

25

of neurons is increased, obtaining a larger speed-up for a large number of

neurons.

The second parallelized task was the neurons sorting step, correspond-

ing to step 3 of the NG method. For this task, we used a parallel sorting

technique implemented in the Thrust library [59]. Thrust dispatches a highly-

tuned Radix Sort algorithm [60] which is considerably faster than alternative

comparison-based sorting algorithms such as Merge Sort [61].

Once neurons have been sorted, weights update step is computed in par-

allel, launching as many threads as neurons comprise the network. Before

continuing with the next possible parallelizable step, NG learning algorithm

establishes that an edge between first and second winner neurons has to be

created (step 5). Moreover, all edges emanating from winner neuron incre-

ment their age (step 6). Steps 5 and 6 are not possible to implement in

parallel since they affects to only two neurons and their computational cost

is really low. Therefore, in order to avoid data communication between CPU

and GPU, steps 5 and 6 are performed sequentially on the GPU, launching

one GPU thread that performs edge creation and age increment. Finally,

step 7 which corresponds to edge age checking is performed in parallel. Par-

allelizing the algorithm in this way, communication between CPU memory

and GPU memory is avoided during the algorithm execution and therefore

the main computational bottleneck is prevented.

5. Experiments

In this section, some experiments related with the input space adaptation

and 3D reconstruction capabilities of the NG method are presented. Firstly,

26

it is performed a comparison with other competitive self-organizing models

such as the traditional Self-Organizing Map and the Growing Neural Gas.

Quality of representation is studied depending on the parameters established

for the selected method (iterations and number of neurons), obtaining dif-

ferent adaptation mean square errors (MSEs). Furthermore, a comparison

between state-of-the-art Voxel Grid filtering method and the NG is presented

demonstrating the accuracy of the representation generated by the NG net-

work structure. Experiments were performed using noise-free models with

added Gaussian noise to simulate noisy data commonly present in low-cost

sensors. This scenario provides us with a validation set for testing the NG

capability to deal with noisy inputs. Moreover, 3D surface reconstruction

capabilities of the proposed method are evaluated and compared against the

state-of-the-art Poisson surface reconstruction method. Finally, a perfor-

mance analysis of the GPGPU accelerated implementation is carried out in

order to show the achieved speed-up compared to a CPU implementation.

5.1. Quality of representation

In the first experiment, using the 3D Stanford bunny model, a comparison

with other self-organizing models was carried out. Stanford bunny model

has 34,834 points. Different levels of Gaussian noise, number of neurons and

number of iterations were exhaustively tested obtaining the above commented

adaptation MSE error compared to the original model (noise-free). In this

way, a downsampled model of the noisy input space is created using different

self-organizing models and then input space error is computed against noise-

free input space.

Figures 3 and 4 show obtained results for the mean square adaptation

27

0.00E+00

5.00E-13

1.00E-12

1.50E-12

2.00E-12

2.50E-12

3.00E-12

3.50E-12

4.00E-12

4.50E-12

5.00E-12

50000 100000 200000 300000 500000

A
d
a
p
ta

ti
o
n
 M

S
E
 (

m
)

Iterations t

Stanford Bunny = 0.0004

GNG 3500n

GNG 7000n

GNG 10000n

GNG 17000n

NG 3500n

NG 7000n

NG 10000n

NG 17000n

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

7.00E-10

50000 100000 200000 300000 500000

A
d
a
p
ta

ti
o
n
 M

S
E
 (

m
)

Iterations t

Stanford Bunny = 0.0004
GNG 3500n

GNG 7000n

GNG 10000n

GNG 17000n

NG 3500n

NG 7000n

NG 10000n

NG 17000n

Kohonen 3500n

Kohonen 7000n

Kohonen 10000n

Kohonen 17000n

Figure 3: Input space adaptation comparison between different self-organizing models. A

level of noise σ = 0.0004 meters is applied on the Stanford Bunny. Top: comparison

between NG and GNG. Bottom: same comparison including Kohonen and zooming out

the chart.

28

0.00E+00

1.00E-12

2.00E-12

3.00E-12

4.00E-12

5.00E-12

6.00E-12

50000 100000 200000 300000 500000

A
d
a
p
ta

ti
o
n
 M

S
E
 (

m
)

Iterations t

Stanford Bunny = 0.0015

GNG 3500n

GNG 7000n

GNG 10000n

GNG 17000n

NG 3500n

NG 7000n

NG 10000n

NG 17000n

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

50000 100000 200000 300000 500000

A
d
a
p
ta

ti
o
n
 M

S
E
 (

m
)

Iterations t

Stanford Bunny = 0.0015
GNG 3500n

GNG 7000n

GNG 10000n

GNG 17000n

NG 3500n

NG 7000n

NG 10000n

NG 17000n

Kohonen 3500n

Kohonen 7000n

Kohonen 10000n

Kohonen 17000n

Figure 4: Input space adaptation comparison between different self-organizing models. A

level of noise σ = 0.0015 meters is applied on the Stanford Bunny. Top: comparison

between NG and GNG. Bottom: same comparison including Kohonen and zooming out

the chart.

29

error of adaptation of different self-organizing models. On the top of both

figures we can see a comparison between NG and GNG algorithms. On

the bottom it is shown the same comparison but including results from the

Kohonen representation. Since the Kohonen representation obtained a higher

error compared to GNG and NG, it was necessary to zoom out the presented

data (Figures 3 and 4 (bottom)) to make it clear. From presented results

it can be extracted that the number of iterations parameter converges to

a similar spatial approximation error after a defined number of iterations

for different models but the NG achived a lower error compared to GNG or

Kohonen (traditional SOM). Besides, this was demonstrated using different

number of neurons and levels of Gaussian noise. Number of chosen neurons

represents 10%, 20%, 30% and 50% of the original number of points in the

input space. Finally, it is also demonstrated how as the number of neurons

is increased, the MSE error decreased converging to a similar error for latest

configurations, 10,000 and 17,000 number of neurons. However, using a large

number of neurons will cause that present error in the original model to be

also present in the reconstructed model. Therefore, using a reduced number

of points to represent noisy models is convenient.

In the case of the Kohonen map it can be also visually apreciated how the

adaptation of the generated map is worse compared to the one obtained by

GNG or NG algorithms. Figure 5 shows the reconstructed map created using

Kohonen algorithm (top) and NG (bottom). As it can be seen, Kononen map

does not adapt in an accurate way to the input space, creating some gaps

and holes in the representation.

30

Figure 5: Front and back views of the generated representation using Kohonen (top) and

Neural Gas (bottom).

31

5.2. Neural Gas vs Voxel Grid

The second experiment demonstrates the accuracy of the representation

generated by the NG network structure compared with other filtering meth-

ods (not based on self-organizing models) such as the Voxel Grid.

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

3500n 7000n 10000n 170000n

A
d
a
p
ta

ti
o
n
 M

S
E
 (

m
)

Number of points

NG vs VG. Spatial approximation comparison

VG

NG 50000t

NG 100000t

NG 200000t

NG 300000t

NG 500000t

Figure 6: NG parameters study using Stanford bunny model. Three different levels of

noise α are applied.

In Figure 6 it is showed how the NG method provides a lower MSE and

therefore better adaptation to the original input space, maintaining a better

quality of representation in areas with a high degree of curvature and elimi-

nating the noise generated by the sensor. The Voxel Grid method eliminates

noise with the sacrifice of information loss of the input space and therefore a

worse adaptation. These experiments were performed using different number

of points, and in the case of the NG it has been tested with different number

of iterations t, obtaining better results with a larger number of iterations

32

with the sacrifice of larger computation times. Voxel Grid method presents

other drawbacks as it does not allow specifying a fixed number of points, as

the number of points are given by the voxel size used for building the grid.

We used the same number of points to perform a fair comparison. By con-

trast, the NG allows to specify the exact number of points that represent the

input space. In Figure 7 it can be visually appreciated the results discussed

in Figure 6. It can be observed how the adaption of the filtered points ob-

tained with the Voxel Grid method produces less accurate results than the

ones obtained using the NG method.

Another advantage of the NG method for surface reconstruction is showed

in Figure 8. NG method allows establishing the number of vertex that rep-

resents the reconstructed model, obtaining models with different resolution

depending on the number of neurons that comprises the network. Moreover,

as the input data is not entirely processed, but it is only sampled one point

at time, the time performance of the algorithm is practically independent of

the size of the input data set, enabling the use of large datasets.

5.3. Evaluation of surface reconstruction accuracy

We performed an experiment to evaluate the accuracy of the surface re-

construction results obtained by the proposed method compared against one

of the state-of-the-art methods, the Poisson surface reconstruction algorithm.

We have used Poisson algorithm for creating meshes from different noisy in-

put clouds that were shown above (synthetic model). As in Poisson method

it is possible to define the level of depth (accuracy) we want to obtain in

the final reconstruction, we performed experiments with different levels of

accuracy and therefore number of points. Poisson uses, during the first stage

33

Figure 7: Filtering quality using 10,000 points. NG vs Voxel Grid comparison. Top left:

original noise-free model. Top right: noisy model α=0.6 mm. Bottom left: filtered model

using NG method (200, 000). Bottom right: filtered model using Voxel Grid.

34

Figure 8: Horse model reconstructed incrementally from an unorganized point cloud of

148k points. From left to right, the number of vertex of the reconstructed mesh is 1k,2.5k

and 8k.

of the process, a voxel grid approach to subdivide the space, so similar draw-

backs as the ones commented in Section 5.2 were found.

As in previous experiments, we performed the evaluation using noise-

free models with added Gaussian noise to simulate noisy data. In order to

evaluate the accuracy of the 3D surface reconstruction (mesh) we used a new

metric tool to measure the quality of the generated mesh. We computed

Hausdorff distance (using the Metro tool [62]) between the synthetic mesh

model and the reconstructed ones. In this way, we can see how well methods

perform surface reconstruction in presence of noise, and also to measure the

adaptation of the reconstructed mesh against the original one (validation

set).

Figure 9 shows the results of applying both reconstruction methods to

a noisy synthetic point cloud with Gaussian error equals to 1 millimetres

(first row). It can be seen how the Poisson algorithm (second row, left) is

not able to correctly reconstruct the horse legs due to the amount of error in

that area, creating a deformed shape. The rest of the model is successfully

35

reconstructed, but as we will see later, this reconstruction is not an accurate

one since most generated surfaces are approximated, and therefore there

exist error in terms of Euclidean distance to the original point cloud. We

can appreciate this problem on the top part of the horse head, where the

geometry of the horse head is not really accurate. The Growing Neural Gas

(second row, right) is able to generate a more accurate reconstruction of the

original point cloud compared to Poisson. Finally, on the bottom part of the

Figure 9 we can see a color map of the distribution error computed using

Haussdorff distance. It ranges from red to blue, using red for the areas with

largest error and blue for the areas with lowest error. From this color map it

can be appreciated how Poisson is not able to reconstruct some parts of the

horse model. This happens just because Poisson creates an approximation

of the input data and with the presence of noise these approximated surfaces

do not accurately represent the original model.

Since both approaches allow us to create meshes with different resolu-

tion, we performed the same experiment showed above but increasing the

precision of the reconstructed meshes. In Poisson method, we can adjust

the depth level parameter, which allows the creation of smaller voxels during

the construction of the grid and therefore a more accurate mesh with larger

detail. In the case of the proposed method, we can modify the number of

neurons (points) and iterations (sampling) during the learning step, so the

final reconstructed mesh will increase its precision having a larger number of

triangles.

Finally, Table 1 shows all computed Hausdorff distances for all the tests

performed using the synthetic model and different levels of noise and accu-

36

Figure 9: Evaluation of the surface reconstruction accuracy. First row, left column, noise-

free point cloud. Right column, point cloud with added Gaussian noise (1 mm). Second

row: left, surface reconstruction results using the Poisson method (depth level 6, 3800

points). Right: using the proposed NG-based method (3800 neurons, 200000 iterations).

Third row: color maps of the error distribution, left: color map showing the error of the

Poisson reconstruction, right: error of the NG-based reconstruction.

37

racy. It can be seen how the NG-based algorithm outperforms the Poisson

surface reconstruction algorithm for models with a certain amount of noise.

In most cases as we previously shown, the reconstructed models obtained us-

ing Poisson-based method are not able to correctly represent the noisy input

data, and therefore in most of these cases the Hausdorff distance (error) is

larger compared to the one obtained using the NG algorithm. In addition,

we also observed that not only the mean distance is larger, but also the final

reconstructed model contains more outliers. This fact is extracted from the

maximum error computed using the Hausdorff distance, which is also shown

in Table Table 1 . Errors presented in Table 1 are in millimeters. Moreover,

Poisson method does not allow to define the number of points for the final

reconstructed model while in contrast the proposed method allows to define

the number of points that the generated model will have. For these experi-

ments and to establish a fair comparison between both methods we defined

for the GNG method the same number of points that Poisson algorithm cre-

ated for different levels of depth, which is the parameter that enable us to

define the accuracy of the reconstructed model.

5.4. Object reconstruction using low cost sensors

The combination of the acquired and reconstructed 3D models with vir-

tual and augmented reality environments allows the users to interact with

them and also developing a virtual manufacturing system as an application

of augmented and virtual reality to improve several process stages. In this

experiment, we applied the proposed method to an unorganized point cloud

of an object captured using the Kinect sensor. Obtained point clouds from

different views of the object were aligned using an existing marker-based ap-

38

Method Error Points Min Max Mean RMS

Poisson 1 3,800 0 9.333 0.626 0.958

GNG 1 3,800 0 5.075 0.307 0.41

Poisson 2 3,800 0 12.651 1.805 2.69

GNG 2 3,800 0 4.175 0.569 0.701

Poisson 1 10,000 0 11.975 0.726 1.202

GNG 1 10,000 0 5.354 0.419 0.55

Poisson 2 10,000 0 12.652 1.513 2.411

GNG 2 10,000 0 3.869 0.528 0.654

Table 1: Hausdorff distances (millimeters) from the reconstructed models to the original

noise-free models.

proach [63]. Since the Kinect is essentially a stereo camera, the expected

error on its depth measurements is proportional to the distance squared. It

ranges from a few millimeters up to about 4-5 cm at the maximum range of

the sensor (4 meters). More information about the Kinect sensor error can be

found in [64]. Therefore, the proposed method is able to deal with noisy data

provided by the Kinect sensor obtaining an accurate 3D surface reconstruc-

tion of the captured object without applying other filtering or downsampling

additional techniques. Figure 11 shows a 3D reconstructed model computed

using the NG method and acquired with a low cost sensor.

The builder helmet model reconstructed in Figure 10 and the textured

model presented in Figure 11 could be used in virtual and augmented reality

applications, allowing its rendering in a very realistic way. The same occurs

in entertainment applications as video-games. The proposed method allows

39

Figure 10: Builder helmet reconstructed using the proposed method. Left: Point cloud

obtained using the Kinect sensor and the marker based-approach. Center and right: Dif-

ferent views of the 3D reconstructed surface using the NG method.

designers to capture real objects that are present in our environment using

low cost sensors like the Kinect and introduce the reconstructed model in

their CAD applications.

The three-dimensional representation of the models provides a higher

degree of realism. This factor has been implemented at different stages of

production processes in order to improve productivity and product quality.

In Figure 11 it is showed the final reconstructed models of some objects

captured using the Kinect sensor. Models texture was transferred from color

points of the neurons to mesh triangles interpolating point colors.

5.5. Accelerated GPU Implementation

Finally, in this section, some experiments were performed to validate the

accelerated GPU implementation of the proposed NG algorithm. Moreover,

some performance tests were carried out comparing the speed-up obtained

by our implementation with a naive CPU implementations of the original

NG algorithm.

The accelerated version of the NG algorithm has been developed and

40

Figure 11: (Left) RGB image. (Right) Different views of the reconstructed objects using

the proposed method.

tested on a machine with an Intel Core i3 540 3.07 GHz and different CUDA

capable devices. Table 5.5 shows different models that we have used and

their features.

Device Model Capability SMs cores per SM Global Mem Bandwidth Mem

Quadro 2000 2.1 4 192 1 GB 41.6 GB/s

GeForce GTX 480 2.0 15 480 1.5 GB 177.4 GB/s

Table 2: CUDA capable devices used in experiments

41

5.5.1. Speed-up

First performed experiment demonstrates how the speed-up obtained us-

ing GPU-based NG implementation is affected by the algorithm learning

parameters. As we discussed in Section 4, parallelism of the GPU imple-

mentation is mainly limited by the number of neurons that we use and the

number of iterations that the algorithm performs does not affect the speed-

up obtained. Experiments performed demonstrated that larger number of

neurons obtains larger acceleration. This statement is demonstrated in the

Figure 12, where two different experiments were performed. First one (top),

given a fixed number of neurons runtime execution is measured using different

number of iterations. Second one (bottom), runtime execution is measured

establishing a fixed number of iterations and increasing the number of neu-

rons. On the top part of the Figure 12, it can be seen how the obtained

speed-up is in the range of 9-11x not changing considerably as the num-

ber of iterations increases, while on the bottom part it is shown how as the

number of neurons increases the speed-up obtained is considerably improved,

obtaining a speed-up close to 180x for 100, 000 neurons.

In addition, GPU-based implementation was tested exhaustively on differ-

ent 3D models with different features and using different learning parameters

in order to compare speed-up obtained related to sequential CPU version.

Table 3 shows runtime executions for different models with different number

of points and using different learning parameters. We can conclude that as

we increase the number of neurons and number of iterations the speed-up

achieved by the GPU-based NG implementation is considerably increased.

Moreover, it is demonstrated again in Table 3, that the number of neurons

42

9

9.5

10

10.5

11

11.5

0

5000

10000

15000

20000

25000

30000

35000

40000

50000 100000 300000 500000 1000000

S
p
e
e
d
-u

p

R
u
n
ti
m

e
 (

s
)

Iterations

Runtime NG 10,000n CPU vs GPU

NG 10000n Speed-up NG 10000n CPU NG 10000n GPU

0

20

40

60

80

100

120

140

160

180

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

10000 20000 50000 100000

S
p
e
e
d
-u

p

R
u
n
ti
m

e
 (

s
)

Neurons

Runtime NG 100,000p CPU vs GPU

NG 100000p Speed-up NG 100000p CPU NG 100000p GPU

Figure 12: (Top) Runtime execution (GPU GTX480) (lines) and speed-up (bars) for a

fixed number of neurons (10, 000) and different number of iterations. (Bottom) Runtime

execution (GPU GTX480) (lines) and speed-up (bars) for a fixed number of iterations

(100, 000) and different number of neurons.

43

parameter has more influence in the speed-up achieved than the number

of iterations parameter. These results also demonstrate how the proposed

methods is suitable for massively parallel architectures such as the GPU,

where each thread processes one of the neurons.

Model Npoints Nneurons Iterations CPU time (s) GTX480 time (s) Speed-up Q2k time (s) Speed-up

Bunny 34,834 3,000 60,000 233.406 114.468 2.039x 109.802 2.125x

Bunny 34,834 5,000 80,000 611.39 192.213 3.180x 160.771 3.802x

Horse 48,485 5,000 80,000 605.561 153.669 3.940x 169.053 3.582x

Horse 48,485 8,000 100,000 1918.979 309.3116 6.204x 256.864 7.470x

Armadillo 172,974 10,000 150,000 4306.184 572.912 7.516x 526.822 8.173x

Armadillo 172,974 15,000 200,000 12881.386 1040.818 12.376x 1005.559 12.810x

Happy Buda 543,652 20,000 300,000 34189.155 2257.832 15.142x 1096.175 31.189x

Dragon 3,609,600 50,000 600,000 431100.45 4453.178 96.807x 8011.181 53.812x

Table 3: Speed-up obtained using accelerated version of the NG algorithm on different 3D

models.

In Table 3 it is also shown the speed-up achieved for different GPUs. For

a small number of neurons devices behave similarly, but as the number of

neurons is increased and therefore the parallelism is also higher, the device

with more number of cores (GTX480) achieves better performance (speed-

up).

5.5.2. Adjustments per second

We have also performed another experiment that shows how the accel-

erated version of the NG is not only capable of learning faster than CPU,

but also obtains more adjustments per second than the sequential CPU im-

plementation. For instance, learning a network of 20, 000 neurons we can

perform 130.71 adjustments per second using the GPU while the single-core

CPU gets 8.77 adjustments per second. This means that GPU implemen-

tation can obtain a good topological representation with time constraints.

44

Figure 13 shows the different adjustments rates per second performed by

GPU compared to CPU implementation. It is also shown that when in-

creasing the number of neurons in the CPU, it cannot handle a large rate of

adjustments per second.

130.85

34.83 8.77

416.20

263.97

130.71

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

5000 10000 20000

It
e
ra

ti
o
n
s

Number of neurons

NG CPU vs GPU. Iterations per second

NG CPU

NG GPU GTX480

Figure 13: Computed iterations per second. NG CPU vs GPU.(GTX480).

6. Conclusions

In this paper, we have proposed the use of the Neural Gas model to

reconstruct objects from the point cloud obtained from overlapped multiple

views using low cost sensors. A difference to other methods that may need

several stages that includes downsampling, noise filtering and many other

tasks, the NG automatically obtains the 3D model of the scanned objects.

To demonstrate the validity of our proposal we tested our method with

several models and performed a study of network parameterization calcu-

lating the quality of representation and also comparing results with other

neural methods like GNG and Kohonen maps and also traditional methods

45

like Voxel Grid. We also reconstruct models acquired with low cost sen-

sors that can be included in virtual and augmented reality environments to

redesign or manipulation purpose.

In order to accelerate the NG algorithm we have redesigned and imple-

mented the NG learning algorithm to fit it onto a Graphic Processor Unit

using CUDA obtaining in the best case a speed-up of 180x relative to CPU

version.

As a further work we plan to use different sensors to acquire models and

accelerate the whole process onto GPUs.

7. Acknowledgments

This work was partially funded by the Spanish Government DPI2013-

40534-R grant. Experiments were made possible with a generous donation

of hardware from NVDIA.

References

[1] P. Besl, N. McKay, A method for registration of 3-d shapes, IEEE Trans.

on Pattern Analysis and Machine Intelligence 14 (2) (1992) 239–256.

doi:10.1109/34.121791.

[2] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface

reconstruction from unorganized points, SIGGRAPH Comput. Graph.

26 (2) (1992) 71–78. doi:10.1145/142920.134011.

URL http://doi.acm.org/10.1145/142920.134011

46

[3] K. Zhou, M. Gong, X. Huang, B. Guo, Data-parallel octrees for sur-

face reconstruction, IEEE Transactions on Visualization and Computer

Graphics 17 (5) (2011) 669–681. doi:10.1109/TVCG.2010.75.

[4] W. Saleem, O. Schall, G. Patan, A. G. Belyaev, H.-P. Seidel, On stochas-

tic methods for surface reconstruction., The Visual Computer 23 (6)

(2007) 381–395.

[5] R. L. M. do Rego, A. F. R. Araujo, F. B. de Lima Neto, Growing

self-organizing maps for surface reconstruction from unstructured point

clouds, in: Proc. Int. Joint Conf. Neural Networks IJCNN 2007, 2007,

pp. 1900–1905. doi:10.1109/IJCNN.2007.4371248.

[6] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.

Fright, B. C. McCallum, T. R. Evans, Reconstruction and represen-

tation of 3d objects with radial basis functions, in: Proceedings of

the 28th annual conference on Computer graphics and interactive tech-

niques, SIGGRAPH ’01, ACM, New York, NY, USA, 2001, pp. 67–76.

doi:10.1145/383259.383266.

[7] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, in:

Proceedings of the fourth Eurographics symposium on Geometry pro-

cessing, SGP ’06, Eurographics Association, Aire-la-Ville, Switzerland,

Switzerland, 2006, pp. 61–70.

[8] R. J. Campbell, P. J. Flynn, A survey of free-form object representation

and recognition techniques, Comput. Vis. Image Underst. 81 (2) (2001)

166–210. doi:10.1006/cviu.2000.0889.

47

[9] A. R. A. Khan, W.A., K. Cheng, Virtual Manufacturing, Vol. XVIII,

802 p, Springer-Verlag, London., 2011.

[10] J.-Y. Oh, W. Stuerzlinger, J. Danahy, Sesame: towards better 3d con-

ceptual design systems, in: Proceedings of the 6th conference on De-

signing Interactive systems, DIS ’06, ACM, New York, NY, USA, 2006,

pp. 80–89. doi:10.1145/1142405.1142419.

[11] M. Fiorentino, A. Uva, M. D. Fabiano, G. Monno, Improving bi-

manual 3d input in cad modelling by part rotation optimisation,

Computer-Aided Design 42 (5) (2010) 462 – 470, advanced and Emerg-

ing Virtual and Augmented Reality Technologies in Product Design.

doi:http://dx.doi.org/10.1016/j.cad.2008.12.002.

[12] M. Fiorentino, R. de Amicis, G. Monno, A. Stork, Spacedesign: A mixed

reality workspace for aesthetic industrial design, in: Proceedings of the

1st International Symposium on Mixed and Augmented Reality, ISMAR

’02, IEEE Computer Society, Washington, DC, USA, 2002, pp. 86–.

[13] T. Kohonen, Self-Organising Maps, Vol. 3rd ed. 2001, XX, 502 p,

Springer-Verlag, 2001.

[14] T. Martinetz, K. Schulten, Topology representing networks, Neural

Netw. 7 (3) (1994) 507–522. doi:10.1016/0893-6080(94)90109-0.

[15] B. Fritzke, Growing cell structures - a self-organizing network for unsu-

pervised and supervised learning, Neural Networks 7 (9) (1994) 1441 –

1460. doi:http://dx.doi.org/10.1016/0893-6080(94)90091-4.

48

[16] T. M. Martinetz, S. G. Berkovich, K. J. Schulten, ‘neural-gas’ network

for vector quantization and its application to time-series prediction 4 (4)

(1993) 558–569.

[17] B. Fritzke, A Growing Neural Gas Network Learns Topologies, Vol. 7,

MIT Press, 1995, pp. 625–632.

[18] J. Vaščák, Using neural gas networks in traffic navigation, Acta Technica

Jaurinensis 2 (2) (2009) 203–215, iSSN 1789-6932.

[19] F. Camastra, A. Vinciarelli, Combining neural gas and learning vec-

tor quantization for cursive character recognition., Neurocomputing 51

(2003) 147–159.

[20] B. ling Zhang, M. yue Fu, H. Yan, Handwritten signature verification

based on neural ‘gas’ based vector quantization, in: ICPR ’98 Pro-

ceedings of the 14th International Conference on Pattern Recognition-

Volume 2 - 1862-1864, 1998, pp. 17–20.

[21] M. Melato, B. Hammer, K. Hormann, Neural gas for surface recon-

struction, Tech. Rep. II-07-08, Department of Informatics, Clausthal

University of Technology (Nov. 2007).

[22] A.-M. Cretu, E. M. Petriu, P. Payeur, Evaluation of growing neural gas

networks for selective 3d scanning, in: Proc. Int. Workshop Robotic and

Sensors Environments ROSE 2008, 2008, pp. 108–113.

[23] Y. Holdstein, A. Fischer, Three-dimensional surface reconstruction using

meshing growing neural gas (mgng), Vis. Comput. 24 (2008) 295–302.

49

[24] V. Morell, M. Cazorla, S. Orts-Escolano, J. Garcia-Rodriguez, 3d maps

representation using GNG, in: 2014 International Joint Conference on

Neural Networks, IJCNN 2014, Beijing, China, July 6-11, 2014, 2014,

pp. 1482–1487. doi:10.1109/IJCNN.2014.6889828.

[25] F. Florez, J. M. Garcia-Rodriguez, J. Garćıa, A. Hernandez, Hand ges-

ture recognition following the dynamics of a topology-preserving net-

work, in: Proc. Fifth IEEE Int Automatic Face and Gesture Recognition

Conf, 2002, pp. 318–323.

[26] J. G. Rodŕıguez, A. Angelopoulou, J. M. G. Chamizo, A. Psarrou,

S. Orts-Escolano, V. Morell-Giménez, Autonomous growing neural gas

for applications with time constraint: Optimal parameter estimation,

Neural Networks 32 (2012) 196–208. doi:10.1016/j.neunet.2012.02.032.

[27] G. Parigi, A. Stramieri, D. Pau, M. Piastra, Gpu-based parallel im-

plementation of a growing self-organizing network., in: J.-L. Ferrier,

A. Bernard, O. Y. Gusikhin, K. Madani (Eds.), ICINCO (1), SciTePress,

2012, pp. 633–643.

[28] S. Orts, J. Garcia-Rodriguez, D. Viejo, M. Cazorla, V. Morell, Gpgpu

implementation of growing neural gas: Application to 3d scene recon-

struction, J. Parallel Distrib. Comput. 72 (10) (2012) 1361–1372.

[29] S. Orts-Escolano, V. Morell, J. Garcia-Rodriguez, M. Cazorla, Point

cloud data filtering and downsampling using growing neural gas,

in: The 2013 International Joint Conference on Neural Networks,

50

IJCNN 2013, Dallas, TX, USA, August 4-9, 2013, 2013, pp. 1–8.

doi:10.1109/IJCNN.2013.6706719.

[30] J. Garcia-Rodriguez, M. Cazorla, S. Orts-Escolano, V. Morell, Improv-

ing 3d keypoint detection from noisy data using growing neural gas,

in: Advances in Computational Intelligence - 12th International Work-

Conference on Artificial Neural Networks, IWANN 2013, Puerto de la

Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II, 2013, pp.

480–487. doi:10.1007/978-3-642-38682.

[31] H. Edelsbrunner, E. P. Mücke, Three-dimensional alpha shapes, ACM

Trans. Graph. 13 (1) (1994) 43–72. doi:10.1145/174462.156635.

[32] J.-D. Boissonnat, Geometric structures for three-dimensional

shape representation, ACM Trans. Graph. 3 (4) (1984) 266–286.

doi:10.1145/357346.357349.

[33] N. Amenta, S. Choi, R. K. Kolluri, The power crust, in: Proceed-

ings of the sixth ACM symposium on Solid modeling and applica-

tions, SMA ’01, ACM, New York, NY, USA, 2001, pp. 249–266.

doi:10.1145/376957.376986.

[34] T. K. Dey, S. Goswami, Tight cocone: a water-tight surface reconstruc-

tor, in: Proceedings of the eighth ACM symposium on Solid modeling

and applications, SM ’03, ACM, New York, NY, USA, 2003, pp. 127–

134. doi:10.1145/781606.781627.

[35] B. Mederos, N. Amenta, L. Velho, L. H. de Figueiredo, Surface recon-

51

struction for noisy point clouds, in: Third Eurographics Symposium on

Geometry Processing, Vienna, Austria, July 4-6, 2005, 2005, pp. 53–62.

[36] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d

surface construction algorithm, in: SIGGRAPH ’87: Proceedings of

the 14th annual conference on Computer graphics and interactive tech-

niques, Vol. 21, ACM Press, New York, NY, USA, 1987, pp. 163–169.

doi:10.1145/37401.37422.

[37] C. Shen, J. F. O’Brien, J. R. Shewchuk, Interpolating and approximating

implicit surfaces from polygon soup, ACM Trans. Graph. 23 (3) (2004)

896–904. doi:10.1145/1015706.1015816.

[38] S. Fleishman, D. Cohen-Or, C. T. Silva, Robust moving least-squares

fitting with sharp features, ACM Trans. Graph. 24 (3) (2005) 544–552.

doi:10.1145/1073204.1073227.

[39] C. Walder, B. Schlkopf, O. Chapelle, Implicit surface modelling with a

globally regularised basis of compact support., Comput. Graph. Forum

25 (3) (2006) 635–644.

[40] C. C. L. Wang, Incremental reconstruction of sharp edges on

mesh surfaces, Comput. Aided Des. 38 (6) (2006) 689–702.

doi:10.1016/j.cad.2006.02.009.

[41] C. Connolly, Cumulative generation of octree models from

range data, in: Robotics and Automation. Proceedings. 1984

IEEE International Conference on, Vol. 1, 1984, pp. 25–32.

doi:10.1109/ROBOT.1984.1087212.

52

[42] L. Kobbelt, M. Botsch, A survey of point-based techniques in computer

graphics, Computers & Graphics 28 (2004) 801–814.

[43] Y. Yu, Surface reconstruction from unorganized points using self-

organizing neural networks yizhou yu, in: In IEEE Visualization 99,

Conference Proceedings, 1999, pp. 61–64.

[44] A. Junior, A. D. D. Neto, J. de Melo, Surface reconstruction using neural

networks and adaptive geometry meshes, in: Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on, Vol. 1, 2004,

pp. –807. doi:10.1109/IJCNN.2004.1380023.

[45] I. Ivrissimtzis, W.-K. Jeong, H.-P. Seidel, Using growing cell structures

for surface reconstruction, in: Shape Modeling International, 2003, pp.

78 – 86.

[46] J. Barhak, Freeform objects with arbitrary topology from multirange

images., Ph.D. thesis, Israel Institute of Technology, Haifa, Israel (2002).

[47] R. L. Mendona Ernesto Rego, A. F. R. Araujo, F. B. de Lima Neto,

Growing self-reconstruction maps 21 (2) (2010) 211–223.

doi:10.1109/TNN.2009.2035312.

[48] A. Angelopoulou, J. G. Rodriguez, A. Psarrou, Learning 2d hand shapes

using the topology preservation model gng, in: Computer Vision ECCV

2006, Vol. 3951 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, 2006, pp. 313–324.

[49] J. H. Friedman, J. L. Bentley, R. A. Finkel, An algorithm for finding

53

best matches in logarithmic expected time, ACM Transactions on Math-

ematics Software 3 (3) (1977) 209–226.

[50] D. B. Kirk, W.-m. W. Hwu, Programming Massively Parallel Processors:

A Hands-on Approach, 1st Edition, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2010.

[51] H. Jang, A. Park, K. Jung, Neural network implementation using cuda

and openmp, in: Proc. DICTA ’08.Digital Image Computing: Tech-

niques and Applications, 2008, pp. 155–161.

[52] S. Oh, K. Jung, View-point insensitive human pose recognition using

neural network and cuda 3 (12) (2009) 643 – 646.

[53] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, A. Veidenbaum,

Efficient simulation of large-scale spiking neural networks using cuda

graphics processors, in: Proc. Int. Joint Conf. Neural Networks IJCNN

2009, 2009, pp. 2145–2152.

[54] C.-F. Juang, T.-C. Chen, W.-Y. Cheng, Speedup of implementing fuzzy

neural networks with high-dimensional inputs through parallel process-

ing on graphic processing units, IEEE T. Fuzzy Systems 19 (4) (2011)

717–728.

[55] J. Garcia-Rodriguez, A. Angelopoulou, V. Morell, S. Orts, A. Psarrou,

J. M. Garcia-Chamizo, Fast image representation with gpu-based grow-

ing neural gas, in: IWANN (2), 2011, pp. 58–65.

[56] J. Igarashi, O. Shouno, T. Fukai, H. Tsujino, 2011 special issue: Real-

time simulation of a spiking neural network model of the basal ganglia

54

circuitry using general purpose computing on graphics processing units,

Neural Netw. 24 (2011) 950–960.

[57] F. Nasse, C. Thurau, G. A. Fink, Face detection using gpu-based con-

volutional neural networks, in: Proceedings of the 13th International

Conference on Computer Analysis of Images and Patterns, CAIP ’09,

Springer-Verlag, Berlin, Heidelberg, 2009, pp. 83–90.

[58] S. Oh, K. Jung, View-point insensitive human pose recognition using

neural network and cuda 3 (12) (2009) 643 – 646.

[59] N. Bell, J. Hoberock, Thrust: A Productivity-Oriented Library for

CUDA,, Elsevier, 2011, Ch. ch. 26, pp. pp. 359–371.

[60] D. G. Merrill, A. S. Grimshaw, Revisiting sorting for gpgpu stream archi-

tectures, in: Proceedings of the 19th international conference on Parallel

architectures and compilation techniques, PACT ’10, ACM, New York,

NY, USA, 2010, pp. 545–546. doi:10.1145/1854273.1854344.

[61] N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms

for manycore gpus, in: Proceedings of the 2009 IEEE International Sym-

posium on Parallel&Distributed Processing, IPDPS ’09, 2009, pp. 1–10.

[62] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measuring error on sim-

plified surfaces, Tech. rep., Paris, France, France (1996).

[63] J. Kramer, N. Burrus, F. Echtler, M. Parker, D. H. C., Hacking the

Kinect, Technology in Action, 2012, Ch. 9. Object Modeling and Detec-

tion, pp. 173–206.

55

[64] K. Khoshelham, S. O. Elberink, Accuracy and resolution of kinect depth

data for indoor mapping applications, Sensors 12 (2) (2012) 1437–1454.

56

