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Abstract 

The objective of this research was to develop lightweight cement mortars with good thermal-insulation 

properties by incorporating expanded polystyrene (EPS) and paper sludge ash (PSA), both of which are 

problematic waste materials. The mortars formed had low thermal conductivity and low bulk density 

compared to control samples. Ground EPS produced lower thermal conductivity samples than powdered 

EPS. Resource efficient mortars containing up to 20% PSA, and 60% of EPS are considered suitable for 

use in rendering and plastering applications. 

Keywords: rendering mortar, supplementary cementitious material, waste, paper sludge ash, expanded 

polystyrene, lightweight aggregate, thermal conductivity. 

1. Introduction

The resource efficiency of construction and building materials is a major contemporary issue facing 

industry. Many regions of the world are experiencing problems disposing of increasing amounts of 

municipal solid waste and miscellaneous industrial wastes. In addition, given the major CO2 emissions 

associated with the Portland cement manufacture process, much research in the field of construction 

materials is focused on using environmentally-sustainable raw materials. Consequently, a considerable 

body of literature has accumulated in recent years documenting the behaviour of construction materials 

in which traditional components have been replaced by waste materials, either as supplementary 

cementitious materials or as aggregate. These materials include ground granulated blast-furnace slag 
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(1), coal fly ash (2), silica fume (3), glass (4-7), paper sludge (8), rubber, micronized tyre fibre and milled 

electrical cable waste (9), expanded polystyrene (10), expanded perlite (11,12), or agro waste as: rice 

husk ash (13), wheat straw ash (14) and sugarcane bagasse ash (15). Incorporating waste materials 

alters the mechanical and physical properties and durability of cementitious materials. In this research, 

paper sludge ash (PSA) was used as a supplementary cementitious material and expanded polystyrene 

was used as lightweight aggregate. 

The pulp and paper industry in Europe produces 11 million tonnes of paper sludge waste per annum 

(16). During processing paper sludge is often dewatered and combusted to recover energy and reduce 

the volume of waste requiring disposal to landfill. This produces paper sludge ash (PSA), with 10-15 kg 

generated for every tonne of paper manufactured (16). Although the composition of PSA varies, it 

typically contains lime (CaO), silica (SiO2) and alumina (Al2O3) and for this reason has been used as a 

supplementary cementitious material (SCM) (8,17). Paper sludge contains a high proportion of organic 

matter, in the form of cellulose, as well as inorganic compounds, such as clays and calcium carbonate 

(18). The mineralogical composition of PSA depends on the combustion temperature. If combustion

occurs in the range of 700-750 C, clay minerals in the paper sludge such as kaolinite will be transformed 

into metakaolinite (MK) (18) and the PSA will behave as a pozzolanic material (8, 17, 19). However, if the 

PSA is produced at higher temperatures between 850-1200 C then it does not contain any observable 

MK and the PSA behaves as a hydraulic material (20-22), and this is the case of the PSA used in this 

research.  

Expanded polystyrene (EPS) is a low-density, inert, hydrocarbon thermoplastic that is extensively used in 

packaging and thermal insulation (23). EPS is stable in the presence of most other chemicals with the 

exception of concentrated acids, organic solvents and saturated aliphatic compounds which dissolve EPS 

(24). Complete combustion of EPS in an atmosphere with sufficient oxygen produces carbon dioxide 

(CO2) and water. If oxygen is limited, the combustion products are mainly carbon monoxide gas (CO) and 

soot particles (C) (25). No references were found to emission of hazardous organic volatile compounds 

from EPS and when EPS is used in mortars it is contained in an inflammable inorganic matrix. 
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Over 30 countries have signed an international agreement to maximise reuse and recycling of EPS (24). 

Lightweight concretes manufactured with EPS have been used in a range of applications including 

rendering panels, flooring, concrete blocks, road pavements and in railway and marine structures (26-

29). The literature on concrete containing EPS has focused on characterising the mechanical properties 

of these materials and has investigated the effects of using EPS with different grain sizes, organic 

additives and other additions such as fly ash and silica fume (10, 30, 31). Other studies have 

characterised the mechanical and thermal properties of concrete containing EPS (32). EPS beads have 

been used to design thermally insulating composites made with foamed cement pastes, using additives 

to prevent segregation and improve adherence (33). However, only a limited amount of research has 

investigated commercial EPS (34) or various types of waste EPS (35, 36) in cement mortars. More recent 

work reported the properties of cement mortars where Portland cement (CEM I) was replaced by 

cements with lower clinker (CEM II and CEM III) (37). Due to the high volume of waste EPS and the 

environmental issues associated with EPS it is important to develop new beneficial reuse applications 

for this material that exploit lightweight and thermal insulating properties. 

The use of lightweight aggregates reduces the thermal conductivity of cement-based materials (38). The 

thermal conductivity of construction products is an increasingly important parameter that significantly 

influences the energy associated with heating and cooling buildings. The impact of different materials 

on the thermal conductivity of cement based materials, including cellulose and glass fibre, mineral wool, 

polystyrene, urethane foam and vermiculite (39-43) has been investigated. Nonetheless, there remains 

a requirement for high thermally-insulating mortars with good dimensional stability in the construction 

industry. The use of industrial by-products to reduce the thermal conductivity of cement-based 

materials has significant advantages associated with improved resource efficiency. Relevant research 

has included work on lightweight cement-based materials containing waste glass, fly ash, silica fume, 

tyre rubber, expanded clay, wood and paper (44-48). 

The objective of this research was to evaluate the influence of PSA and EPS on the thermal properties of 

cement mortars and produce resource efficient lightweight cement mortars with thermal-insulating 
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properties. These mortars in which PSA acts as an SCM and EPS as a lightweight aggregate have 

potential applications as sustainable masonry and plaster materials. Two types of waste EPS, ground and 

powdered, were used as lightweight aggregates. This is in contrast to previous research which has used 

commercial EPS spheres rather than waste EPS. In addition, up to 80% by mass of Portland cement was 

replaced by PSA, whereas in previous research only up to 20% of cement was replaced by PSA (49, 50). 

The thermal conductivity, workability, bulk density and compressive strength of mortars are reported. 

2. Materials and methods

2.1. Materials 

Portland cement (type CEM II /A-LL 32,5R, Lafarge Cement UK) and silica sand with a maximum particle 

size of 2 mm, a bulk density of 1.60 g/cm3 complying with European standard EN 196-1:2005 were used 

(51). PSA was obtained from a major paper mill producing newsprint operating in SE England. The 

chemical composition of the CEMII and PSA, showing major components as oxides determined by XRF 

are shown in Table 1. The specific surface determined using the Blaine Method according to standard EN 

196-6 (52) of PSA and CEM II were 2060 cm2/g and 4700 cm2/g, respectively. The density of PSA was 2.7 

g/cm3 and CEM II was 3.2 g/cm3. Figure 1 shows the particle size distribution of PSA and cement 

obtained by laser diffraction (Coulter LS 230). The particle size distribution for PSA was multimodal with 

maximums at 0.5 μm, 4.0 μm and 55.1 μm. The particle size distribution for CEM II was also multimodal 

with maximums at 0.3 μm, 18.0 μm and 127.6 μm. The maximum particle size present in both PSA and 

CEM II was approximately 200 μm.  

Figure 2 shows an SEM micrograph (Hitachi S-3000N with BRUKER X-Flash 3001 detector) of a large PSA 

particle. This shows a porous, heterogeneous structure with high surface roughness resulting from the 

agglomeration of individual mineral grains produced during the combustion process (22). 

Ground and powdered EPS were supplied by “Asociación Nacional de Poliestireno Expandido” (ANAPE 

(Madrid, Spain) (24). These had a loss of ignition of 100%, softening point between 80 and 100 C, and 
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water absorption by immersion, after 28 days, between 1 and 3% volume. The differences between the 

two types of EPS mainly related to particle size. Both were obtained by mechanical grinding and sieving 

waste EPS. 100% of the ground EPS particles passed through a 1 mm sieve and the bulk density was 

0.013 g/cm3. All the particles of powdered EPS passed through a 0.5 mm sieve and this had a slightly 

higher bulk density of 0.022 g/cm3. 

An air-entraining agent (A, BASF Rheomix 934), a water retaining additive (R, Hydroxypropyl 

methylcellulose TER CELL HPMC 15 MS PF), a superplastizicer (S, BASF Rheomix GT 205 MA) and a 

dispersible polymer (V, VINNAPAS 5028E) were also used to form optimum mortar samples. 

2.2. Preparations of mortars 

All the mortar samples were produced following the procedures described in EN 196-1 (51). The mix 

designs are shown in Table 2. The samples were prepared with a binder/sand ratio (by weight) of 1:3 

(i.e. 1 part of binder (CEM II/PSA) to 3 parts of silica sand), with PSA systematically replacing up to 80% 

by mass of CEM II. The EPS was dosed as an addition to the total mortar volume, expressed as the 

apparent volume of sand (v/v%). Additives were added to mortars as a percentage of the weight of the 

total binder (w/w%). 

The optimum dosage of EPS and the additives used in the mixes (A, R, S and V) was determined in a 

previous study (37). Preparation of mortars with no additives or one additive failed to achieve the 

desired physical, mechanical and durability properties (35, 36). The software NEMRODW (53) was used 

to build and analyse the D-optimal design to determine the optimal composition of mortars containing 

ground and powdered EPS used in the current study. These optimal mortars are denoted as g0PSA and 

p0PSA (Table 2) and comply with the EU standards for masonry mortars, rendering and plaster (54, 55). 

Optimal EPS dosage when silica sand and CEM II were used, was determined as 60 v/v%, for both 

ground and powdered EPS. Further, the optimal additives mixes selected were 0.4%A, 0.1%R, 0.5%S and 

6%V for the EPS ground and 0.8%A, 0.1%R, 0.8%S and 6%V for EPS powdered (Table 2). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In addition, three control mortars were produced in order to compare with obtained results and analyse 

the effect of PSA and EPS on mortar properties, with the compositions shown in Table 2. The first 

control mortar did not contain any EPS or PSA (control C). The second control contained no EPS and 20% 

PSA (control P). The third control mortar contained 20%PSA, no EPS and an additive mix of 0.8% A, 0.1% 

R, 0.8% S and 6% V (control PA). 

The quantity of water in the mix was controlled to maintain constant workability for different types of 

samples, as defined by EN 1015-2:1998 (56). Mortars with a bulk density above 1200 kg/cm3 were 

prepared with a flow table spread of 175±10 mm. For lower density mortars with bulk densities 

between 600 and 1200 kg/cm3, the mix water was controlled to give a flow table spread of 160±10 mm. 

Triplicate 50x50x50 mm samples were cast and kept in moulds for 24 hours at 23±2 °C, during which 

time they were covered with a plastic film to minimize water evaporation. They were then removed 

from the moulds and cured underwater for 28 days at 23±2 °C (20, 22, 63). This fact, together with the 

requirements of the standards for rendering, plastering and masonry that require compressive strength 

at 28 curing time (54, 55), justifies the curing time of 28 days used prior to testing compressive strength. 

Previous studies have shown that the thermal conductivity of cementitious materials can increase by up 

to 5% for each 1 wt.% of water retained in the material. Samples were therefore dried at 70±2 °C for 7 

days prior to thermal conductivity testing (57). 

2.3. Methods for mortar characterisation 

2.3.1. Workability, bulk density and thermal conductivity testing 

The flow table method (EN 1015-3:2007 (58)) was used in order to determine the amount of PSA and 

water in each mortar. The amount of water was that needed to achieve a workability between the 

values given in EN 1015-2 (56) (see Section 2.2). 

Volumetric densities of dried mortar samples were obtained from the sample mass and dimensions. 

These samples were then used to determine thermal conductivity using a TT-TC Probe (Therm Test Inc.). 

This is a non-destructive test based on the Mathis modified hot-wire technique (59) that measures the 
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temperature rise at a defined distance from a linear heat source in contact with the test material (60). 

The heat source is assumed to have a constant and uniform output along the length of the test sample 

and the thermal conductivity is then derived directly from the resulting change in temperature over a 

known time interval (61). This technique has previously been used to evaluate the thermal conductivity 

of cement mortars and pastes (62). 

2.3.2. Strength testing and microstructural analysis 

The compressive strengths of wet mortar samples were determined after 28 days curing using a 

hydraulic press (Controls Automax 5 series) following EN 196-1 (51). The microstructure of selected 

samples was studied by examining fracture surfaces using SEM (Hitachi S-3000N with BRUKER X-Flash 

3001 detector). 

3. Results and discussion

3.1. Workability test 

Workability tests were used to determine the appropriate water/binder ratio given in Table 2. 

Workability ranges for mortars with a fresh bulk density above 1200 kg/cm3 were prepared with a flow 

table spread of 175±10 mm, while for lower density mortars with fresh bulk densities between 600 and 

1200 kg/cm3 the mix water was controlled to give a flow table spread of 160±10 mm (56). Figure 3 

shows the relationship between mortar workability and paper sludge addition with the water/binder 

ratio. This relationship was inversely proportional, i.e. as the workability reduced with increasing PSA 

addition, the water/binder ratio increased from 0.6 for up to 20wt.% PSA additions to 1.3 when 80 wt.% 

of CEM II was replaced by PSA.  

The spread on the flow table for control mortar C (0%EPS, 0% PSA) was 193±2 mm. This significantly 

decreased to 127±1 mm for samples containing 20% PSA (control mortar P) when the water/binder ratio 

remained constant at 0.6. This equates to a reduction in workability of 34%. However, the workability 

only reduced by 7% for control mortar PA that contained 20wt.% PSA and the mix of additives given in 
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Table 2 (0.8%A/0.1%R/0.8%S/6%V). These results with the control mortars without additives (C and P) 

highlight the requirement of adding more water and/or working with additives (Table 2) in order to 

achieve compliant workability values (56). The significant porosity in PSA could have a negative impact 

on the workability of cement-based materials. The mix water used to make mortars is absorbed by the 

interconnected open porosity of PSA, and this causes a marked reduction in workability which required 

the use of plasticizer or additional water (63). 

When mortars contained EPS but no PSA (types g0PSA and p0PSA), the reduction in workability was 

reduced (1.5% for EPS ground and 5% for EPS powdered) compared with control mortar C (0%EPS, 

0%PSA). Nevertheless, a higher water/binder ratio was required when mortars contained PSA (Figure 3) 

to achieve the target workability. Higher PSA contents needed higher water/binder ratios. For example, 

to obtain a flow table spread of 180±1 mm for 10% PSA and 60% EPS ground, a water/binder ratio of 

0.60 was required. However, to obtain the same workability value of 180±1 mm for 30% PSA and the 

same EPS content (60%EPSground), a water/binder of 0.75 was required. 

There were clear differences between the two types of EPS. With powdered EPS it was possible to 

replace up to 50% of the cement while still keeping within workability limits. However using ground EPS, 

it was possible to replace up to 80% of cement. Although the workability of the mortars containing 80% 

of ground EPS was relatively low at 159 mm, these mortars had the lowest bulk density, and for this 

reason the value obtained for the flow table spread were acceptable. 

3.2. Thermal Conductivity and dry bulk density 

Figure 4 shows the variation in thermal conductivity with PSA addition for mortars prepared using 

ground and powdered EPS. The presence of PSA in mortars caused significant reductions in thermal 

conductivity. Addition of 20% PSA caused a 23% reduction in thermal conductivity, relative to the 

control mortar C (0%EPS, 0%PSA). The largest reduction in thermal conductivity for mortars without EPS 

(control mortars) was for control mortar PA. This had a reduction of 55% compared to the control 

mortar C (0% EPS, 0%PSA). This decrease in thermal conductivity is due to the significant reduction in 
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bulk density (Table 3) of this mortar due to the presence of the air-entraining agent (A). This 

demonstrates the strong correlation between thermal conductivity and bulk density. 

The presence of EPS in mortars significantly reduced the thermal conductivity, as can be seen by 

comparing control mortar C with mortars containing EPS but no PSA, such as samples g0PSA and p0PSA 

(Figure 4, Table 2). Reductions in thermal conductivity of 60% for ground EPS and 47% for powdered EPS 

were observed. The effect of the type of EPS used was discussed in previous work on the mechanical, 

physical and microstructural properties of mortars made with EPS as lightweight aggregate (33,34). The 

higher thermal conductivity of mortars containing EPS powdered compared to mortars containing EPS 

ground is due to the higher bulk density. This is due to both the higher density of EPS powdered and its 

morphology. The process in which waste EPS particles are powdered reduces the entrained air which is 

a characteristic of EPS (Figure 5a). However, in the case of ground EPS the particles still contain air, and 

this explains the lower bulk density (Figure 5b). When mortars contained both types of waste (EPS and 

PSA), these differences between the types of EPS continued. The thermal conductivity of mortars made 

with 10% of PSA was 0.63±0.11 W/m·K for powdered EPS, and 0.57±0.01 W/m·K for ground EPS. This 

agrees with the lower bulk density of mortars containing ground EPS and 10% PSA (1.05±0.01 g/cm3) 

compared to the bulk density of mortars containing powdered EPS and also 10%PSA (1.17±0.01 g/cm3).  

For both types of EPS there was a general decrease in thermal conductivity as the proportion of PSA 

increased. With 30% PSA, reductions in thermal conductivity of 70% for ground EPS ground and 68% for 

powdered EPS were obtained compared to control mortar C. Reductions of 23% for ground EPS and 39% 

for powdered EPS were obtained for 30% PSA samples compared with mortars containing EPS but no 

PSA (i.e. g0PSA and p0PSA respectively).  

Control mortar PA also had reduced thermal conductivity compared to control mortars C and P, the 

respective values being 0.72±0.08, 1.60±0.11 and 1.23±0.12 W/m·K. This is because of the presence of 

additives, in particular the air-entraining agent, which also reduces density. The respective bulk densities 

were 1.23±0.07, 2.05±0.01 and 1.98±0.01 g/cm3 for mortars PA, C and P (Table 3). As the loading of 

ground PSA increased above 30%, reductions in thermal conductivity were relatively minor but 
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consistent. For ground EPS mortars containing the highest dosage of PSA (70% and 80%), the thermal 

conductivity decreased by 77% compared to the control mortar C (0%EPS, 0%PSA), and 42% compared 

to g0PSA (60%EPS, 0%PSA).  

This data shows that increasing additions of PSA reduced the thermal conductivity. All mortars 

containing PSA had lower thermal conductivity than control mortars C and P, which contained no PSA or 

EPS (C) and 20% PSA and 0%EPS (P). PSA reduces thermal conductivity in mortars because it is an 

inherently porous material. 

3.3. Compressive strength 

Figure 6 shows compressive strength data for samples after curing for 28 days. Compressive strength 

tended to decrease with PSA dosage. The compressive strength of control mortar P (0% EPS, 20% PSA) 

was approximately 5% less than control mortar C (0%EPS, 0%PSA). The additives in control mortar PA 

(0% EPS, 20%PSA, 0.8A/0.1R/0.8S/6V) caused a 79% reduction in strength compared to control mortar C 

(0%EPS, 0%PSA). A similar reduction of 84% was obtained for the g0PSA sample (60% ground EPS, 

0%PSA, 0.4A/0.1R/0.5S/6V). The reduction in strength was not due to the amount of EPS in the samples 

but was caused by the additives used to obtain suitable workability. 

A reduction in compressive strength of 65% compared to control mortar C was observed for the same 

sample but with powdered EPS (p0PSA). This reduction was lower than for ground EPS despite the fact 

that the additives mix used for mortars containing powdered EPS had a higher amount of air-entraining 

agent than samples made with ground EPS. This highlights the differences between the two types of 

waste EPS. In general, smaller reductions in compressive strength compared to control mortars were 

obtained for mortars with powdered EPS than with ground EPS. These differences are consistent with 

the bulk density for each type of EPS (bulk density for powdered EPS and ground EPS, 0.022 and 0.013 

g/cm3 respectively), as well as the morphology of EPS (Figure 5). Consequently, the use of powdered 

EPS produces mortars with higher bulk density and higher compressive strength relative to those with 

ground EPS. 
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For both types of EPS, samples with a 10% PSA showed a reduction in compressive strength compared 

to the samples without PSA (g0PSA and p0PSA). These reductions were 9% for ground EPS and 54% for 

powdered EPS. Though the reduction for mortars with powdered EPS were higher than for ground EPS, 

the compressive strength values for mortars with 10% PSA were similar: 3.6±0.1 MPa for ground EPS 

and 4.0±0.2 MPa for powdered EPS. However, the compressive strength of mortars was either improved 

or maintained when the dosage of PSA increased from 10% to 20% PSA. These results agree with 

previous studies on the compressive strength of mortars made with a commercial Portland cement 

(CEM I 52.5N), standard silica sand, a water/binder ratio of 0.5, a mass ratio of binder to sand of 1:3 and 

up to 20% PSA replaced by cement (50). Figure 6 also shows a sharp decrease in compressive strength 

from 4.7±0.3 to 1.0±0.1 MPa (80%) on increasing the PSA content from 20% to 30% for mortars 

containing ground EPS. Furthermore, a lower decrease in strength, 21%, was observed for mortars 

containing powdered EPS when the amount of PSA increased from 20 to 30%. This highlights the 

advantages of using powdered EPS in terms of compressive strength. 

Figure 5b shows the fracture surface of a mortar sample g30PSA (30% PSA, 60% ground EPS, 

0.4A/0.1R/0.5S/6V), in which a ground EPS particle is visible. It can be seen how the EPS particle has a 

characteristic honeycomb structure, which gives this type of EPS low bulk density. Moreover, the 

cement paste in this sample had high porosity, which could be due to the additives, as well as the 

water/binder ratio for the samples containing 20% PSA and 30%PSA. In the case of mortars with 20%PSA 

(g20PSA) the water/binder ratio used was 0.6, while for mortars containing 30%PSA (g30PSA) the 

water/binder ratio used was 0.75 (Table 2). This increase in water/binder ratio caused a decrease in 

compressive strength. In addition, the high amount of PSA may cause the alkaline reserves of the 

cement to be consumed, leaving unreacted PSA. In this situation PSA is expected to behave as inert 

filler. The particle size range and variable composition of PSA is likely to result in variable hydration 

behaviour, in which some phases contribute to hydration products while other phases are inert (20). The 

results of compressive strength for the samples tested show a positive correlation with bulk density of 

these mortars.  
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3.4. Optimum mortars based on EU standards for rendering, plastering and masonry 

High compressive strength is less critical when mortars are used for masonry. The relevant EU standard 

specifies that type CS III mortars must have a compressive strength greater than 3.5 MPa to be used for 

rendering and plastering (54). Therefore mortars containing up to 20% PSA, using either powdered or 

ground EPS are suitable for type CS III rendering and plastering application. However, type CS II mortars 

must have compressive strength of between 1.5 and 5.0 MPa. Mortars with up to 30% PSA using 

powdered EPS and up to 20% PSA with ground EPS are appropriate (Table 4). Type CS I mortars must 

have compressive strengths between 0.4 and 2.5 MPa and for this application mortars containing 

between 30 and 60% PSA and ground EPS and between 40 and 50% PSA for powdered EPS are suitable. 

With respect to masonry mortar types M1, M2.5, M5, M10, M15 and M20 (55), PSA containing mortars 

are only suitable for M1 and M2.5 applications. For these classifications mortars containing up to 20% 

PSA for ground EPS, and up to 40% PSA for powdered EPS are suitable. However, for M2.5 mortars 

containing up to 20% PSA for ground EPS and up to 30% PSA for powdered EPS are appropriate. 

4. Conclusions

The following conclusions resulted from this research: 

(1) Mortars containing PSA and EPS had lower thermal conductivity than control mortars. For example,

thermal conductivities of mortars containing 30% PSA were reduced by 70% for ground EPS and 68% for 

powdered EPS relative to the control mortars which contained neither PSA or EPS. 

(2) Bulk densities of mortars were also reduced by PSA and EPS. In the case of mortars containing 30%

PSA, densities were reduced by 45% for ground EPS and 42% for powdered EPS relative to the control 

mortar C. 

(3) The reductions in compressive strength relative to control mortars were lower for mortars containing

powdered EPS than with ground EPS. For mortars containing 30% PSA the compressive strengths were 

reduced by 96% for ground EPS and 88% for powdered EPS relative to the control mortar C. 
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(4) Ground EPS reduced thermal conductivity, bulk density and compressive strength more than an

equivalent amount of EPS powdered.  

(5) Mortars containing up to 20% PSA, and either powder or ground EPS are suitable for type CS III

rendering and plastering applications in the EU. For type CS II applications, mortars containing up to 30% 

PSA (with powdered EPS) and up to 20% PSA (with EPS ground) are appropriate. For CS I applications, 

mortars containing between 30 – 60% PSA (for ground EPS) and between 40 – 50% PSA (powdered EPS) 

are suitable. 

(6) It is possible to manufacture sustainable mortars containing PSA and EPS that are in compliance with

EU standards for rendering, masonry and plastering mortars. 
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Figure 1. Particle size distribution for paper sludge ash (PSA) and CEM II by laser diffraction (Coulter LS 230) 

Figure
Click here to download Figure: Figures_V.Ferrandiz_etal.docx



Figure 2. SEM micrograph showing a large PSA particle 



Figure 3. Effect of PSA on the workability and water/binder ratio used in 

mortars C = 0%EPS+0%PSA; P= 0%EPS+20%PSA; PA= 0%EPS+20%PSA+additives 
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Figure 4. Effect of PSA addition on thermal conductivity of mortars samples with 60% v/v% of sand added 
by EPS, where the control mortars were: C= 0%EPS+0%PSA; P= 0%EPS+20%PSA; PA= 0%EPS+20%PSA
+additives 
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Figure 5a. SEM image of sample p30PSA showing powered EPS particles in mortar matrix 

Figure 5b. SEM image of sample g30PSA showing a ground EPS particle in mortar matrix 



Figure 6. Effect of PSA addition on the compressive strength of mortar samples with 60 v/v% of sand added 
by EPS, where the control mortars were: C= 0%EPS+0%PSA; P= 0%EPS+20%PSA; PA= 0%EPS+20%PSA

+additives 
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Table 1  

Chemical Composition of Portland cement and PSA determined by XRF, as oxides (>0.1wt.%) 

wt.% CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O Na2O TiO2 P2O5 
CEM II/A-LL 32,5R 62.88 15.07 3.40 2.26 3.18 1.42 0.56 0.36 0.20 0.19 

PSA 54.20 20.46 12.10 0.82 0.40 3.38 0.42 0.21 0.32 0.28 

Table
Click here to download Table: Tables_V.Ferrandiz_etal.docx



Table 2 

Composition of mortar samples containing expanded polystyrene (EPS) and paper sludge ash (PSA). 

Sample ID Cement 
Paper 

Sludge Ash 
EPS 

Binder/sand 
ratio 

Water/binder 
ratio 

%w/w 
% w/w 
cement 

% v/v 
sand 

Control mortar 
(0%EPS, 0%PSA) 

C 100 0 0 0.33 0.60

Control mortar 
(0% EPS, 20%PSA) 

P 80 20 0 0.33 0.60

Control mortar 
(0% EPS, 20%PSA, 

0.8A/0.1R/0.8S/6V) 
PA 80 20 0 0.33 0.60

EPS ground 
(0.4A/0.1R/0.5S/6V) 

g0PSA 100 0 60 0.33 0.60 
g10PSA 90 10 60 0.33 0.60 
g20PSA 80 20 60 0.33 0.60 
g30PSA 70 30 60 0.33 0.75 
g40PSA 60 40 60 0.33 1.00 
g50PSA 50 50 60 0.33 1.20 
g60PSA 40 60 60 0.33 1.20 
g70PSA 30 70 60 0.33 1.20 
g80PSA 20 80 60 0.33 1.30 

EPS powdered 
(0.8A/0.1R/0.8S/6V) 

p0PSA 100 0 60 0.33 0.60 
p10PSA 90 10 60 0.33 0.60 
p20PSA 80 20 60 0.33 0.60 
p30PSA 70 30 60 0.33 0.75 
p40PSA 60 40 60 0.33 1.00 
p50PSA 50 50 60 0.33 1.20 

Note: EPS in addition of sand 
A = air-entraining agent (BASF Rheomix 934)  
R = water retaining additive (Hydroxypropyl methylcellulose TER CELL HPMC 15 MS PF) 
S = superplastizicer (BASF Rheomix GT 205 MA) 
V = dispersible polymer (VINNAPAS 5028E) 



Table 3 

Dry bulk density of mortars containing EPS and paper sludge ash as well as for control mortars 

EPS type Sample ID Water/binder Bulk density (g/cm3) 

Control mortars 
C 0.60 2.05±0.01 
P 0.60 1.98±0.01 

PA 0.60 1.23±0.07 

EPS ground 

g0PSA 0.60 1.06±0.02 
g10PSA 0.60 1.05±0.01 
g20PSA 0.60 1.21±0.02 
g30PSA 0.75 0.92±0.01 
g40PSA 1.00 1.01±0.03 
g50PSA 1.20 1.10±0.03 
g60PSA 1.20 0.98±0.02 
g70PSA 1.20 0.95±0.02 
g80PSA 1.30 0.88±0.01 

EPS powdered 

p0PSA 0.60 1.46±0.06 
p10PSA 0.60 1.17±0.04 
p20PSA 0.60 1.24±0.03 
p30PSA 0.75 1.23±0.04 
p40PSA 1.00 1.18±0.01 
p50PSA 1.20 1.13±0.02 



Table 4 

Comparison of mortars with relevant EU standards 

EPS type Sample ID Standard 
EN 998-1 EN 998-2 

Control 
mortars 

C CSIV M20 
P CSIV M20 

PA CSIII M5 

EPS ground 

g0PSA CSIII, CSII M2.5 
g10PSA CSIII, CSII M2.5 
g20PSA CSIII, CSII M2.5 
g30PSA CSI M1 
g40PSA CSI - 
g50PSA CSI - 
g60PSA CSI - 
g70PSA - - 
g80PSA - - 

EPS powdered 

p0PSA CSIV M5 
p10PSA CSIII, CSII M2.5 
p20PSA CSIII, CSII M2.5 
p30PSA CSII M2.5 
p40PSA CSI M1 
p50PSA CSI -




