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Abstract

This paper proposes an adaptive algorithm for clustering cumulative prob-
ability distribution functions (c.p.d.f.) of a continuous random variable,
observed in different populations, into the minimum homogeneous clusters,
making no parametric assumptions about the c.p.d.f.’s. The distance func-
tion for clustering c.p.d.f.’s that is proposed is based on the Kolmogorov-
Smirnov two sample statistic. This test is able to detect differences in posi-
tion, dispersion or shape of the c.p.d.f.’s. In our context, this statistic allows
us to cluster the recorded data with a homogeneity criterion based on the
whole distribution of each data set, and to decide whether it is necessary to
add more clusters or not. In this sense, the proposed algorithm is adaptive as
it automatically increases the number of clusters only as necessary; therefore,
there is no need to fix in advance the number of clusters. The output of the
algorithm are the common c.p.d.f. of all observed data in the cluster (the
centroid) and, for each cluster, the Kolmogorov-Smirnov statistic between
the centroid and the most distant c.p.d.f. The proposed algorithm has been
used for a large data set of solar global irradiation spectra distributions. The
results obtained enable to reduce all the information of more than 270000
c.p.d.f.’s in only 6 different clusters that correspond to 6 different c.p.d.f.’s.
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functions, Kolmogorov-Smirnov two-sample test

1. Introduction

It is increasingly common to have a huge amount of data in many re-
search fields, due to improved storage and easy access of the new computer
systems. The challenges now facing researchers relate to the extraction of
useful knowledge from all this stored information. In some systems, it is
sufficient to use simple statistic summary of data such as mean and standard
deviation of data. However, in many other systems, these simple statistics
are not enough, and it is necessary to keep other statisitcal information, such
as the distribution of the possible values that characterize the system. The
empirical cumulative probability distribution function (c.p.d.f.) is a good
tool to preserve inherent information such as variability and distribution of
values. One of the problems with using this type of functions, when working
with large amounts of data, is to determine how many different c.p.d.f.’s are
necessary to keep all possible situations of the variable.

The analysis of empirical c.p.d.f.’s are useful in several domains, for in-
stance: for storing data on sales for each customer, (Sakurai et al., 2008) and
(Applegate et al., 2011); for analyzing images, (Spellman et al., 2005); for
clustering images (Dontg et al., 2006) and (Lin et al., 2014); and for char-
acterizing some meteorological parameters, (Mora et al., 2005), (Mora and
Mora-López, 2010) and (Vrac et al., 2011).

Methods exist to decide whether or not the c.p.d.f.’s of two or more
data sets are equal (homogeneously equal). However, when many empirical
c.p.d.f.’s are obtained for the same variable (with data recorded from different
populations), it would be useful to determine how many different c.p.d.f.’s
really exist for that variable. That is, it may be interesting, or even necessary,
to group all the available empirical c.p.d.f.’s in fewer clusters so that all
c.p.d.f.’s in each cluster can be considered equal.

A model-based approach can be used to address the problem of cluster-
ing data according to (Montanari and Calo, 2013) in which a wavelet-based
representation for the elements in the space is used and the clustering is
accomplished by using mixture models for hyper-spherical data. Several dif-
ferent data mining techniques can be also used to face this problem. The
goal of clustering data is to partition a data set into homogeneous clusters,
see for instance the overviews of clustering in the literature (Ruspini, 1969),
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(Hartigan, 1975) and (Jain and Dubes, 1988). Many different research areas
have used clustering techniques such as text mining, statistical learning and
pattern recognition (Jain et al., 1999), (Duda et al., 2001), (Hastie et al.,
2001). Recently, different clustering methods and optimizations have been
used to solve clustering tasks such as in (Lin et al., 2014) for image retrieval;
in (Zhao et al., 2014) for image segmentation; in (Portela et al., 2014) for
brain image fragmentation; in (Jun et al., 2014) to cluster documents.

Clustering techniques are based on using some type of distance func-
tions, such as quadratic distance of Mahalanobis, Hausdorff distance or the
Minkowsky metric, Jain and Dubes (1988). The Euclidean distance is one
of the most common used among the different Minkowski distance metrics.
It has been previously used to cluster cumulative probability distribution
functions of solar spectral irradiance curves, (Moreno-Saéz and Mora-López,
2014). In that paper the authors work with a large amount of solar radiation
spectra and analyze how many different spectra there are using the c.p.d.f.
of each spectrum as a multidimensional variable representing the spectrum;
using the k-means algorithm these curves are grouped into several distinct
clusters.

Instead of using these metrics here we propose a more suitable metric
for analyzing, comparing and clustering c.p.d.f.’s already used in Statistics
that is based on the use of the Kolmogorov-Smirnov two sample statistic.
Moreover, we propose the use of an adaptive learning algorithm for clustering
all the observed c.p.d.f.’s that extensively uses the results of K-S test. The
problem we address in this paper is to find a clustering method for c.p.d.f.’s
of a continuous random variable into the minimum homogeneous clusters
assuming that each set of observations is randomly drawn for an unknown
distribution.

This paper is organized as follows. The c.p.d.f., the measure proposed
to compare c.p.d.f.’s and the k-means clustering technique are described in
the second section. In the third section, the proposed methodology and the
adaptive algorithm for clustering data are described. The fourth section de-
scribes data used for checking the proposed methodology. In the fifth section,
the results obtained when the proposed methodology is used for actual solar
global irradiance spectra data are presented. Finally, the conclusions of the
work are summarized in the sixth section.
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2. Materials and methods

2.1. Comparing cumulative probability distribution functions

The cumulative probability distribution function (c.p.d.f.) of a random
variable X, FX(·), is defined as

FX(t) = Pr(X ≤ t) (1)

for any real number t. Given observations {Xi}ni=1 of the random variable
X, the empirical c.p.d.f. is defined as F̂X(t) ≡ n−1

∑n
i=1 I(Xi ≤ t) for any

real number t, where I(A) is the indicator function of event A, which takes
the value 1 if A is true or 0 otherwise. If the observations are independent
and identically distributed (i.i.d.), with the same distribution as X, it is well-
known that the empirical c.p.d.f. is an appropriate estimate of the c.p.d.f.
of X.

Assume that we are given i.i.d. observations {Xi}ni=1 of the random vari-
able X, and i.i.d. observations {Yi}mi=1 of the random variable Y. Note that
X and Y might denote the same phenomenon observed at two different pop-
ulations. Suppose that we want to test the null hypothesis

H0 : FX(·) = FY (·), (2)

versus the general alternative hypothesis

Ha : FX(·) 6= FY (·), (3)

making no parametric assumption about the shape of these c.p.d.f.’s. This
is known as the “test of homogeneity between two samples”. If FX(·) and
FY (·) are continuous and the sample sizes n and m are large enough, the test
can be performed using the Kolmogorov-Smirnov two-sample statistic, which
compares the empirical c.p.d.f.’s obtained with each sample and is defined as

DF̂X(t),F̂Y (t) = Dn,m ≡
(

nm

n+m

)1/2

sup
t∈R

∣∣∣F̂X(t)− F̂Y (t)
∣∣∣ . (4)

The null hypothesis is rejected with significance level α if Dn,m > tα, where tα
is a critical value that only depends on α; e.g. if α = 0.05, then tα = 1.36 (for
details, see Rohatgi and Saleh (2000)). Note that the Kolmogorov-Smirnov
two-sample test enables to compare the empirical c.p.d.f.’s of two different
samples without assuming any underlying parametric model for the samples,
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i.e. it is a nonparametric test. An initial benefit of this type of test is that
it does not impose any previous restriction of the data. Also note that that
this test is able to detect differences in position, dispersion or shape of the
c.p.d.f.’s of the two samples.

2.2. Clustering methods

The aim of clustering is to partition a data set (distributions) into groups,
in such a way that one observation is more similar to the others of its cluster
than to observations in other clusters according to some objective function
that defines similarity or dissimilarity among objects (Han et al., 2006). It is
based on analyzing one or more attributes to identify a cluster of correlating
results.

Several partitional and hierarchical heuristic clustering methods have
been proposed for clustering a set of observations, according the classifica-
tion proposed by (Jain et al., 1999). Hierarchical algorithms recursively find
nested clusters. They are not usually suitable for large data sets as they have
quadratic or higher complexity in the size of samples. In contrast, partitional
algorithms have lower complexity as they find all the clusters simultaneously
as a partition of the data without imposing hierarchical structure. Both
approaches are based on distance or dissimilarity measures. Hierarchical
clustering algorithms produce partitions based on a criterion for merging or
splitting clusters based on similarity. Partitional clustering algorithms obtain
the partition that optimizes (locally) a clustering criterion.

Among the different clustering methods k-means, (MacQueen, 1967), is
the most widely partitional clustering algorithm used (Celebi et al., 2013),
(Jain et al., 1999) and (Celebi et al., 2013). The main problems of this
method are that it may converge to a local minimum and that it depends
on the selection of the initial centroids, as it has been pointed out by several
authors, Jain et al. (1999), (Krishnasamy et al., 2014). Another problem
of the classic k-means algorithm is that it tends to produce clusters with
relatively uniform sizes as it finds it difficult to deal with imbalanced data,
(Wu et al., 2007). Another of the limitations of the k-means technique is
that the number of clusters needs to be fixed in advance.

Many heuristic approaches have been proposed over the years in order
to address these problems. For instance, (Fathian et al., 2007) propose a
honey-regarding bee-mating optimization; (Chen and Ye, 2004) and (Cura,
2012) propose a particle swarm optimization based aprorach; (Hatamlou,
2013) proposes a black hole optimization algorithm; and (Krishnasamy et
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al., 2014) propose a hybrid approach based on modified cohort intelligence
and k-means.

On the other hand, distance measures independent of clustering methods
may not take into account the degradation of clustering performance, as has
been pointed out by (Wu et al., 2009). They had shown that a data dis-
tribution view is of great use for selecting the right measures for clustering.
The data for which we propose the adaptive clustering algorithm are cumu-
lative probability distribution functions, using parameters related to these
functions, such as the statistics proposed in this paper, the distance measure
seems reasonable.

The k-means partition minimizes the sum, over all of the clusters, of
the within-cluster sums of point-to-cluster-centroid distances. The squared
Euclidean distance from the sample to its cluster was used to measure the
similarity between each observation and the centroid of each cluster when
using c.p.d.f. data. According to (Moreno-Saéz and Mora-López, 2014),
algorithm 1 was used for clustering c.p.d.f.’s.

Input : K (the number of clusters) and the Training set
({x(1), x(2), . . . , x(m)}, where x(i) ∈ Rn corresponds to F (λi))

Randomly initialize K cluster centroids µ1, µ2, . . . , µK ∈ Rn;
repeat

for i← 1 to m do
c(i) = index j of the cluster centroid µj closest to
x(i), Dx(i),µj = min{Dx(i),µk

}, k = 1 · · ·K (using Eq. 4)

end
for i← 1 to K do

µi = the average of the points assigned to cluster i (this is the
new centroid of the cluster);

end

until Assigned indices c(i) do not change;

Output: Cluster for each sample (K clusters) and K centroids
(c.p.d.f).

Algorithm 1: k-means algorithm.
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3. Proposed methodology

3.1. Proposed adaptive learning algorithm for clustering c.p.d.f.’s

The problem of finding the best partition of a set of observations is np-
hard problem. The problem can be formulated as follows. Given a set of
empirical c.p.d.f.’s, (y1, y2, . . . , yp), each of them obtained with ni observa-
tions, i.e.:

yi = Fx(i)(t) = n−1i

ni∑
j=1

I(x(i)j ≤ t) (5)

the objective is to partition the p c.p.d.f.’s into k sets {S1, S2, . . . , Sk} = S
where k is the minimum possible number of sets that satisfies:

∀Si ∈ S, i = 1 . . . k, ∀ pair(y(i)j , y
(i)
l ) ∈ Si,

Dj,l ≡
(

njnl

nj+nl

)1/2
supt∈R

∣∣∣Fx(j)(t)− Fx(l)(t)∣∣∣ < tα.
(6)

and nj and nl are the sizes of c.p.d.f.’s y
(i)
j and y

(i)
l respectively, both

c.p.d.f.’s belonging to cluster i. It is also required that k ≤ kmax, where kmax
is the maximum number of clusters that could generate the algorithm. If the
number of clusters is greater than kmax, the proposed algorithm obtains the
maximum distance observed for each cluster (using the Kolmogorov-Smirnov
two sample test). With this value it is possible to know the significance level
of the hypothesis of homogeneity among all the c.p.d.f.’s in each cluster.

To achieve this objective, an adaptive clustering algorithm is proposed.
This algorithm starts with all c.p.d.f.’s in one cluster and randomly selects
one c.p.d.f. as the centroid of the cluster. Using this centroid, the empirical
Kolmogorov-Smirnov statistic is estimated for this centroid and each one
of the c.p.d.f.’s in the cluster. The following process is then repeated until
all the estimated statistics are lower that the theoretical or the maximum
number of specified cluster is reached:

• For each obtained cluster, obtain the maximum empirical Kolmogorov-
Smirnov statistic estimated using the centroid of the cluster and each
one of the c.p.d.f.’s of the cluster. If these maximum (one for each
cluster) values are lower that the theoretical statistic, then stop (for an
fixed significance level).
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• Use the c.p.d.f. that corresponds to the maximum value among maxi-
mum values of all clusters as the centroid of a new cluster if the number
of clusters is lower that the number of maximum specified clusters, oth-
erwise stop.

• Assign each c.p.d.f. to the cluster for which the value of the Kolmogorov-
Smirnov statistic estimated with the c.p.d.f. and the centroid of the
cluster is lower.

Therefore, the process terminates either because all empirical statistics
are less than the theoretical statistic or because the maximum number of
specified clusters is reached. In the first case, it is possible to ensure that
all analyzed c.p.d.f.’s can be represented only using the number of clusters
created. In the latter case there may be two types of clusters:

• Those in which the empirical maximum distance observed (empirical
statistic) is less than the theoretical statistic. All the c.p.d.f.’s are equal
in these clusters.

• Those in which the empirical maximum observed distance is greater
than the theoretical. In this case, the empirical statistic can be used
to obtain the level of significance in the assumption of homogeneity in
the cluster.

The output of the algorithm are the common c.p.d.f. of all observed data
in the cluster (the centroid) and, for each cluster, the Kolmogorov-Smirnov
statistic between the centroid and the most distant c.p.d.f

The proposed method is shown in algorithm 2.
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Input : kmax (the maximum number of clusters) and the Training set
({y1, y2, . . . , yp}, where yj ∈ Rn corresponds to Fx(j)(t))

Initialize number of clusters: k ← 1
Randomly select one yj (c.p.d.f.) and assign it to the centroid of
cluster 1, cpdf (1) ← yj ∈ Rn;
repeat

for j ← 1 to p do
cj = index of the cluster centroid i for which
Dj = min{Di,j} i = 1 . . . k according to Eq. 4;
c.p.d.f. j is assigned to cluster i

end
for i← 1 to k do

D
(i)
max ← max{D(i)

j } j = 1 . . . l being l the number of c.p.d.f.’s in

cluster i c
(i)
max ← m |Dm ≡ D

(i)
max

end

Dk = max{D(i)
max} i = 1 . . . k,

if (Dk > tα) ∧ (k < kmax) then
k ← k + 1
cpdf (k) = yj being j the index of c.p.d.f. corresponding to Dk−1

end

until (Dk < tα) ∨ (k > kmax);

Output: Minimum number of clusters for c.p.d.f’s and significance
level of homogeneity hypothesis for each cluster.

Algorithm 2: Proposed adaptive algorithm.
The proposed adaptive selection of centroids is based on a similar method-

ology to the one proposed in the Maximim method, (Gonzalez, 1985) and
(Katsavounidis et al., 1994), and in the k-means++ method, (Arthur and
Vassilvitskii, 2007). In both approaches, the first center is also randomly
selected and the following centroids are selected using the greatest minimum-
distance in Maxmin method and a variant that chooses centers at random
but weighs the data points according to their squared distance from the al-
ready chosen closest center in k-means++. However both methods always
divide the samples into the previously specified number of clusters. In our
proposal, the number of clusters can be fixed in advance but it is also pos-
sible to decide (and minimize) automatically the number of clusters using
the significance level of the Kolmogorov-Smirnov two sample test used for
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estimating the centroids.
The proposed algorithm is O(kn), where n is the number of observations

and k the number of clusters according (Gonzalez, 1985). Moreover, this
algorithm guarantees solutions with an objective function value within twice
the optimal solution value.

4. Data description

The proposed methodology was checked for solar spectral irradiance mea-
surements recorded at the Photovoltaic Systems Laboratory of the University
of Malaga. Each observation is composed of 920 variables (920-dimensional
space). A Grating Spectroradiometer prepared for continuous outdoor ex-
posure was to record them. It shortens the measurement to the range of 10
msec to 5sec. The geographical coordinates of the Laboratory are latitude
36.7o N and longitude 4.5o W, height 50 m. Measurements were collected
from November 2010 to May 2012. Spectra were obtained with a spectral
resolution of below 8 nm at a wavelength interval of 0.75 nm. For this study,
we used the irradiance values that correspond to spectra whose wavelengths
range from 350 to 1050 nm. A total of 920 values were used for each spec-
trum, and a total of 282,318 spectrum (samples) were used.

5. Results and discussion

We checked whether two solar spectral irradiance distributions are the
same to decide how many different solar spectral irradiance distributions
are in the recorded data using the proposed adaptive clustering method.
Formally, we obtained the following:

{Xλi}λn=1050
λ1=350 and {Yλi}λn=1050

λ1=350

which are the solar spectral irradiance values for the different wavelengths
λi of two measurements. Denote:

f̂X(λj) ≡
Xλj

E
(X)
t

(7)

where E
(X)
t is the total amount of energy received for all wavelength for

spectra X, according to Ec.8:
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E
(X)
t =

1050∑
λi=350

Xλi (8)

The sample sizes for this experiment are 920 as it is the number of so-
lar spectral irradiances measured (one for each wavelength recorded by the
measurement equipment). Specifically, for a real number λj in the range
[350.0− 1050.0] (which corresponds to one of the wavelengths measured), we
define:

F̂X(λj) ≡
λj∑

λi=350

f̂X(λi) and F̂Y (λj) ≡
λj∑

λi=350

f̂Y (λi) (9)

and for these functions we checked the hypothesis of Eq.2 by estimating
the Kolmogorov-Smirnov statistic, Eq.4, in the proposed adaptive algorithm
2 (significance level=0.05).

First, we checked the performance of the adaptive algorithm. Table 1
shows the maximum distance estimated in each cluster for each iteration
when the algorithm is executed. Initially, all the data are in one only cluster
and the number of clusters is increased in 1 more cluster in each iteration.
The algorithm stops when all the clusters meet the homogeneity test or when
the number of clusters is equal to the maximum allowed clusters. In this case,
the algorithm ends when there are 6 clusters.

Number Max distance for homogeneity test
of

clusters 1 2 3 4 5 6
1 0.119
2 0.078 0.077
3 0.068 0.041 0.053
4 0.052 0.041 0.053 0.038
5 0.047 0.041 0.050 0.038 0.051
6 0.038 0.039 0.038 0.038 0.038 0.036

Table 1: Maximum distances in each cluster using the proposed adaptive algorithm

The obtained results agree with previously reported results obtained for
clustering c.p.d.f.’s of solar spectra irradiance data, see (Moreno-Saéz and
Mora-López, 2014). The advantages of the proposed method are that it is
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possible to ensure that all c.p.d.f.’s in each cluster fulfill the Kolmogorov-
Smirnov two sample test and that the c.p.d.f.’s are clustered using the mini-
mum number of different clusters without a value for the number of clusters
being previously set.

Second, we checked the algorithm by executing it several times and ana-
lyzing the obtained results. Moreover, we executed the classical k-means al-
gorithm also using the Kolmogorov-Smirnov two-sample test as metric. The
number of times both algorithms were executed is 20. For each execution, we
obtained the maximum distance among the c.p.d.f.’s in each cluster and the
number of clusters in which the homogeneity test among the data is not met
when the classical k-means and the proposed adaptive clustering algorithm
are used. The maximum distance observed and the number of iterations in
each execution for both algorithms are shown in Figure 1.

Figure 1: Number of iterations and maximum experimental Kolmogorov-Smirnov statistics
in each execution of the adaptive proposed algorithm � and the classical k-means algorithm
�.

As can be observed, the proposed adaptive algorithm is able to cluster
observations using fewer iterations than the classical k-means as only five or
six iterations are necessary in most cases while the classic k-means algorithm
required between 10 and 20 iterations. Moreover, the Kolvomorov-Smirnov
experimental statistics (maximum distances) to the groups obtained with
the proposed algorithm are in all cases lower than the critical values for
significance levels smaller than 0.2 while those obtained with the classical
algorithm are smaller than the critical values for significance levels smaller
than 0.1 significance. This suggests that the proposed algorithm clusters
better the observations taking into account the Kolmogorov-Smirnov two
sample test.
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We have also analyzed the size of the different clusters. Figure 2 shows
the distribution of the samples in each cluster for two different executions of
both algorithms.

Figure 2: Percentage of samples in each cluster for two different executions of the classical
k-means and the proposed adaptive algorithms.

As can be observed, the proposed adaptive algorithm generates fewer clus-
ters (6 versus 10 generated by the classical k-means) and the generated clus-
ters have very different sizes while the classical k-means tends to distribute
the observations in clusters more homogeneous, as it has been pointed out by
(Wu et al., 2007). The algorithm is valid for imbalanced data sets as it does
not tend to produce clusters with similar sizes. Conversely, the proposed
algorithm relaxes the constraints of homogeneity in all cluster, also in the
case that the number of clusters is greater than the maximum prefixed. In
this case, the algorithm obtains an approximation of the significance level of
homogeneity in each cluster.

6. Conclusions

An adaptive algorithm for clustering cumulative probability distribution
functions of a continuous random variable into the minimum homogeneous
clusters is proposed. The main contributions of the work are the proposed use
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of a new distance function for clustering c.p.d.f.’s and the automatic selection
of the number of necessary clusters (limited by a prefixed maximum value).

The Kolmogorov-Smirnov two sample statistic is proposed as a distance
function in the algorithm. This statistic is used to establish the homogeneity
of observations in each cluster. This new distance function allows us to use
significant statistic information in the observation-cluster process.

The number of clusters does not need to be fixed in advance as the adap-
tive algorithm is able to decide when it is necessary to add new clusters.
Specifically, the decision to add a new cluster depends on the Kolmogorov-
Smirnov two sample statistic of each cluster and the specified significance
level for the homogeneity of clusters.

The proposed algorithm relaxes the homogeneity constraints in all clusters
in the case that the number of clusters is greater than the maximum prefixed.
In this case, the algorithm is capable of obtaining either the minimum number
of clusters that meet the Kolmogorov-Smirnov two-sample test for a fixed
significance level or an approximation of the significance level of homogeneity
in each cluster in which the Kolmogovor-Smirnov test rejects the equality
among the data in the cluster.

The algorithm is valid for imbalanced data sets as it does not tend to
produce clusters with similar size but focuses on obtaining clusters in which
the Kolmogorov-Smirnov statistics is minimum (it is the proposed distance
measurement among c.p.d.f.’s).

The algorithm has been checked using actual data. The obtained results
show that the algorithm is capable of clustering a large amount of cumulative
probability functions in only 6 clusters, ensuring homogeneity in all cluster
(significance level 0.05). Moreover, the algorithm achieves better distribution
of observations in each cluster than the classical k-means algorithm.

Future research lines are, first, to analyze whether the algorithm is use-
ful for other types of data that also use c.p.d.f.’s, such as image processing,
clustering documents or brain image fragmentation. Furthermore, it would
be of interest to improve the algorithm both to allow a fast estimation of
Kolmogorov-Smirnov statistic by reusing the information estimated in pre-
vious iterations and to enable the detection of outliers.
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