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22 1 Problem Statement: Why Differentials? Why is it Important to Analyse
23 How Differentials are Taught and Learned in Physics Classes?

24 Differential calculus (DC) provides quantitative research methods for studying the process

25 of change and the dependency of one variable on others (Aleksandrov et al. 1956). Its

26 invention in the seventeenth century represented a major boost for many branches of

27 science, and it has been considered as ‘the most powerful theoretical tool ever constructed

28 by men throughout history’ (Rossi 1997, p. 199) and ‘the main quantitative tool for the

29 research of scientific problems for the last three centuries (…) without which physics and

30 modern technology would not exist’ (Kleiner 2001, p. 138). The calculus is one of the great

31 triumphs of modern civilization (Dray and Manogue 2010), it lies at the foundation of our

32 scientific world view and it is important for an understanding of who we are as a society

33 (Bressoud 1992).

34 Because of its relevance in the progress of scientific knowledge, DC is first used in

35 Spain in the teaching of maths and physics in the final years of high school (in the techno-

36 scientific branch, for 17- to 18-year-old students) and becomes an essential part of uni-

37 versity education. Typically, DC in physics is not a straightforward application of the ideas

38 already learned in maths. A reinterpretation of these ideas in the physics context is required

39 (Meredith and Marrongelle 2008; Uhden et al. 2012). Maths used in physics, and pure

40 maths, have distinct objectives because the aim of physics is the description and under-

41 standing of a physical system, and not the resolution of equations and the expressing of the

42 most abstract possible relationships (Redish 2006). This latter author proposes a model to

43 describe the bare bones of how we use maths in physics (see Fig. 1).

44 Once the physical analysis of a real-world problem or situation has been made, step #1

45 is a mathematization process or mathematical modelling that consists of expressing the

46 ideas of the initial analysis through mathematical concepts and relationships. Uhden et al.

47 (2012) distinguish different levels of mathematization and propose a greater intertwining

48 of physics and mathematics models.

49 This ‘translation’ from the physical context to the abstract level of the mathematical one

50 requires an understanding of the mathematical framework to be used, that is to say, the

51 mathematical concepts and their relationships (White and Mitchelmore 1996). Usually,

52 conventional teaching at all levels pays no attention to the first step and focuses on step #2:

53 how to operate with the initial mathematical expressions to get a numerical or algebraic

54 result. This imbalance has clear consequences for students: on the one hand, it leads them

55 to turn physics problem-solving into maths problem-solving, and on the other hand, it

56 affects their beliefs on how they are expected to use mathematics in physics (Redish 2006).

57 When using DC in physics situations, the basic concept that appears in the mathema-

58 tization process is the one of the differential calculus, referring to independent variables

Fig. 1 A model for the use of

maths in science (Redish 2006)
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59 and as part of differential expressions. For instance, F�dx is used to introduce the concept

60 of work; dq = q�dx for calculating the charge of a unidimensional charged rod; dN = -

61 k�N�dt to study nuclear decay; dI = R2�dM to calculate the moment of inertia; and dT = -

62 a�(T-Ta)�dt to obtain the functional expression for the cooling of an object over time. If we

63 want students to learn how to mathematize real-world problems when DC is required, a

64 conceptual understanding of this kind of expression and the situations in which these

65 expressions are necessary is essential.

66 But differential is a polysemic concept. Its meaning and role are different in maths and

67 physics—in maths, the differential is concerned with substantiating and formalizing cal-

68 culus beyond the physical context, and in physics, it is centred on the productive use of a

69 set of concepts and reasoning regardless of rigour (Artigue and Viennot 1987; Dunn and

70 Barbanel 2000). This polysemic character of the differential is also found in education. It is

71 not only its role and meaning that are different in the teaching of maths and physics, but

72 even possible to acknowledge different conceptions within these areas (Alibert et al. 1989;

73 Artigue and Viennot 1987; Dray and Manogue 2010).

74 Our aim in this paper is to identify the conception or conceptions of the differential that

75 are used by students in physics and assess whether these conceptions are the most ap-

76 propriate to allow them to mathematize or, on the contrary, whether they are only useful to

77 allow students to handle in a mathematical way expressions that have already been given

78 mathematically.

79 This search for conceptual transparency must be pursued from the very introduction of

80 DC in physics teaching (as it is, in our experience, in physics courses in upper high school

81 and in the first courses of college physics). Precisely because of their introductory nature,

82 when the physics situations that are being studied are not very complex, reasoning, and a

83 clear justification of what we do when we face real-world physics problems, should be

84 distinctive characteristics of these physics courses. Otherwise, it might happen that the

85 teaching never addresses the necessary requirements for mathematizing physics situations

86 and, in this way, we might encourage mechanical behaviour in students and incomplete or

87 incoherent conceptions about the use of DC in physics, with consequent feelings of in-

88 security when students try to mathematize physics problems.

89 This is the reason why we have studied how students in their final year of high school,

90 after the conventional introduction of differential calculus in physics, conceive and justify

91 differential expressions, what perceptions they have of what they are expected to be able to

92 do with DC in physics and, also, the extent to which these ideas and perceptions remain

93 unchanged among university students.

94 This work is organized in two parts. In the first part, we will summarize some findings

95 of other studies on the usual approach to teaching and learning differential calculus [2].

96 Then, we will introduce [3, 4] some different conceptions of the differential from the point

97 of view of both physics and mathematics (our students are affected by both). And in the

98 last section of the first part, we will assess the possible usefulness and shortcomings of

99 these conceptions [5] for helping in the mathematization process.

100 In the second part, we will describe the experimental design [6], and we will analyse the

101 data [7] on students’ ideas about the use of the differential, and the justification for that use,

102 and their perceptions of how they are supposed to use DC in physics. In the last section [8],

103 the main conclusions and implications for teaching that are derived from the results are

104 summarized.
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105 2 Some Prior Work About the Teaching and Students’ Use of Differential
106 Calculus

107 In this section, we will try to give a brief summary of some contributions of the literature

108 on how DC is taught and learned in mathematics and how it is used in physics.

109 Research in mathematics education has highlighted the poor conceptual understanding

110 that students, and also teachers, have of DC.1 That poor understanding affects not only the

111 main ideas of calculus, like derivative or integral, but also other related concepts such as

112 variable, function, limit and infinite. Some ideas have been identified as acting as barriers

113 to good learning, such as conceiving the tangent as a straight line that touches the curve at

114 only one point (Ferrini-Mundy and Lauten 1994; Speiser and Walter 1994), considering the

115 surface to be generated by the accretion of lines or the volume by the accretion of surfaces

116 (Schneider 1991; Turégano 1998), rejecting the existence of so-called mental objects as

117 opposed to empirical ones (Schneider 1992; Speiser and Walter 1994), or performing

118 known operations on misunderstood symbols (White and Mitchelmore 1996).

119 Most of the above-mentioned authors point to the merely algorithmic approach used in

120 teaching [that is, the exclusively pragmatic perspective of the mathematics (Uhden et al.

121 2012)] as the basis of these shortcomings. After all, a large number of maths teachers and

122 of maths teachers’ trainers explicitly assume an instrumentalist view of maths (Moreno

123 2001; Mura 1993, 1995; Pereira de Ataı́de and Greca 2013). The research of Nagy et al.

124 (1991) highlighted this algorithmic tendency in calculus teaching: an analysis of sessions

125 focused on studying calculus, including exams, showed a clear predominance of the

126 techniques category over other categories relating to the meaning of concepts, when and

127 why they should be used, etc. This operational view is absorbed by the students, who end

128 up believing that doing maths is restricted to performing specific operations with mean-

129 ingless symbols (Habre and Abboud 2006; Porter and Masingila 2000), and this does not

130 necessarily lead to greater procedural confidence (Engelbrecht et al. 2005).

131 If we add to this algorithmic approach the usual tendency to give mathematics only a

132 technical role in physics, emphasizing mathematical manipulations, it seems logical that

133 when students use differential calculus in physics, they know how to perform the calcu-

134 lations, but they have difficulty connecting the physical world with mathematics. As

135 several works have shown, although students know how to calculate integrals in a specific

136 physics problem, they have difficulties related to the conceptual understanding. For in-

137 stance, at all levels when approaching physical situations, students have difficulties in

138 understanding the integral as a limit and interpreting the result as an exact value, in

139 deciding when it is necessary to use the integral concept, in establishing the integration

140 limits and, especially, in writing down the correct differential expression that represents a

141 concrete physical situation or giving meaning to the product f(x)�dx when constructing an

142 integral.2

143 The above survey highlights the shortcomings in teaching and the difficulties for stu-

144 dents in performing the mathematization process. The relevant role of the differential in

145 this process means that it is necessary to address the understanding of its role and meaning

1FL01 1 Artigue et al. (1989), Berry and Nyman (2003), Ferrini-Mundy and Gaudard (1992), Ferrini-Mundy and

1FL02 Graham (1991), Labraña (2001), Mahir (2009), Nagle et al. (2013), Orton (1983a, b), Porter and Masingila

1FL03 (2000), Schneider (1991, 1992), Tall (1985, 1992), Thompson (1994), among many others.

2FL01 2 See, for example, Meredith and Marrongelle (2008), Hu and Rebello (2013), Sealey (2014), Von Korff

2FL02 and Rebello (2014), and Wilcox et al. (2013).

R. López-Gay et al.

123

Journal : Small 11191 Dispatch : 26-3-2015 Pages : 23

Article No. : 9757 h LE h TYPESET

MS Code : SCED-D-14-00108 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

146 from the mathematical perspective, as well as to identify and assess the different con-

147 ceptions about the differential as used in physics.

148 3 The Concept of the Differential in Teaching Mathematics

149 In this section, we will briefly characterize some different, and more frequent, roles and

150 meanings that the differential has in teaching maths.

151 1. The differential as a merely formal instrument with no meaning in itself. DC teaching

152 has remained loyal to nineteenth century mathematics, represented by the work of

153 Cauchy who, by means of an accurate definition of limit, banished from calculus the

154 ambiguity and lack of rigour that can both be attributed to Leibnitz’s differential

155 (Martı́nez Torregrosa et al. 2006). Cauchy defined the differential as an expression

156 involving the derivative: df = f0(x)�dx, with an arbitrary (big or small) increment dx of

157 the variable, and it thus became a simple formal instrument, necessary for the

158 abbreviation of certain proofs. The differential was then detached from the ambiguity

159 of the infinitely small quantities, but it was devoid of all physical meaning: it was just

160 the result of multiplying the derivative by the increment of the independent variable.

161 As Freudenthal (1973, p. 550) says: ‘Useless differentials can readily be dismissed. If

162 dy and dx occur only in the combination dy/dx, or under the integral sign after the

163 integrand, the question as to what dx and dy mean individually is as meaningful as to

164 ask what the ‘‘l’’, ‘‘o’’, ‘‘g’’ in ‘‘log’’ mean’.

165 2. The differential as a linear approximation (but never used in practice). Modern

166 calculus texts, if they introduce the differential and assign it some meaning, usually do

167 this as a linear approximation of the increment: Dy & f0dx = dy. However, after that,

168 in practice, the differential only appears as part of algorithmic developments and plays

169 a similar role to that in conception #1. This conception has been criticized because,

170 although it usefully refers to the idea of linear approximation, the identification with

171 the differential is unnecessary (Dray and Manogue 2010). These authors suspect that

172 this unnecessary identification is done to avoid any risk of identifying differentials

173 with infinitesimals.

174 In recent decades, two conceptions of the differential have been proposed that give it

175 back its central role in the structure of DC: the Fréchet differential and the infinitesimal

176 differential.

177 3. The differential as a tangential linear estimate. The Fréchet differential, whose

178 original definition in 1911 had its origin in the analysis of functions of infinite

179 variables, is used in some textbooks to introduce the analysis of functions of one

180 variable (Del Castillo 1980; Hallez 1989, p. 67). For this particular case, Fréchet

181 would define differentiability and the differential in this way:

182 A function f(x) admits a differential, in my sense, in point x0 if there is a

183 homogeneous and linear function of the increment, let it be A�Dx, that does not

184 differ from the increment of the function Df, that starts from the value f(x0), in more

185 than an infinitely small value in relation with Dx. The differential is then, by

186 definition, df = A�Dx.
187 (…) This definition is expressed by the formula: Df = df ? e�Dx, where e goes to

188 zero when Dx goes to zero. It reminds us of the old definition, as the principal part,
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189 and it presents all its advantages, but it overcomes the objections of lack of rigour

190 that quite correctly had been put forward to it (Artigue 1989, p. 34).
191

192 This then means that df is an approximation of Df and that it is linear respect to

193 Dx. However, it cannot be any linear approximation but it is the one that meets an

194 additional condition: (Df–df) must be infinitely small in relation to Dx. This does not mean

195 that Df or df is infinitely small. The condition imposed on the differential can also be

196 expressed by saying that (Df–df) goes to zero faster than Dx. This last condition is

197 equivalent to either of the two following ones:

198 • The Riemann sum of the approximations (df) must coincide with the increment:

199
lim
N!1

dfi ¼ lim
N!1

Dfi ¼ Df , that is, $df = Df. This step from the approximation (df) to the

200 exactness (Df) is only possible if the approximation fulfils Fréchet’s condition. In fact,

201 for the Riemann sum $(df–Df) to be zero, the limit of N�(df–Df) when N goes to infinity

202 must be zero, that is, the limit of (df–Df)/Dx must be zero when Dx goes to zero, but this

203 is a precise condition required by Fréchet for the differential.

204 • The differential quotient df/dx equals the derivative f0. We will see that if the

205 approximation df fulfils Fréchet’s condition, then its slope will coincide with the

206 derivative. In effect, as df is a linear function of the increment, its slope df/Dx has a

207 constant value and therefore the Fréchet condition can be expressed as:

208
lim
Dx!0

ðdf�Df Þ
Dx

¼ 0 ! df

dx
� lim

Dx!0

Df

Dx
¼ 0 ! df

dx
¼ lim

Dx!0

Df

Dx
. The second member of this last

209 equality is the derivative of the function, if it exists, and since for a single independent

210 variable Dx = dx, then: f0 = df/dx.

211 The combination of these two forms of expressing the Fréchet condition leads directly

212 to the fundamental theorem: $h�dx equals DF if and only if: h�dx = dF, that is, h = dF/

213 dx = F0. We have addressed these ideas in more detail in other works (Martı́nez Torre-

214 grosa et al. 2002, 2006).

215 4. The differential as an infinitesimal. This last conception brings back the original idea

216 of Leibniz: the differential as an infinitesimal, but this time in a rigorous way based on

217 the non-standard analysis introduced by Robinson in the 1960s. Robinson built up a

218 large set of numbers that includes real numbers, infinitesimals and infinite numbers.

219 The infinitesimals are nonzero numbers that are lower than any real number. There are

220 a few introductory calculus texts based on Robinson’s ideas; among these, the text of

221 Keisler (2000) is worth quoting. Keisler introduces the main DC ideas (derivative,

222 differential, integral and the fundamental theorem) by means of this new set of

223 numbers and without the concept of limit. Next, we briefly present the conception of

224 the differential as an infinitesimal, but we recommend the study of Keisler’s text.

225 If Dx is an infinitesimal, then Df is also an infinitesimal and the derivative f0 is defined, if

226 it exists, as the nearest real number to the quotient Df/Dx (which is called the standard part

227 of this quotient) (Keisler 2000, pp. 55–57). The differential is defined as the product of a

228 real number times an infinitesimal: df = f0�Dx, which is also an infinitesimal. Here again,

229 for the independent variable, Dx = dx, and thus, we can write: df = f0�dx. The so-called

230 theorem of the increment demonstrates that if Dx is an infinitesimal, then there exists

231 another infinitesimal e that satisfies: Df = df ? e�Dx (Keisler 2000, pp. 55–57).

232 We highlight some characteristics of this conception to avoid any possible inadequate

233 interpretations. The differential is an infinitesimal, but not an infinitesimal increment. df is

234 an approximation of the increment Df; however, it is not just any approximation but it is the

R. López-Gay et al.

123

Journal : Small 11191 Dispatch : 26-3-2015 Pages : 23

Article No. : 9757 h LE h TYPESET

MS Code : SCED-D-14-00108 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

235 one that meets an additional condition related to the quotient (Df-df)/Dx. For the in-

236 finitesimal differential, the condition is expressed by saying that this quotient must be an

237 infinitesimal, while in the case of the Fréchet differential, it is said that the limit of this

238 quotient goes to zero when Dx goes to zero.

239 The fundamental difference between the two is that for the infinitesimal differential, the

240 emphasis is on its value (which is lower than that of any real number), while the Fréchet

241 differential puts the emphasis on the linear nature of this estimation of Df, highlighting

242 what the French mathematician Dieudonné (1960, p. 145) considered to be the funda-

243 mental idea of calculus: the approximation of any function by linear functions (Artigue and

244 Viennot 1987; Martı́nez Torregrosa et al. 2006).

245 Sofronas et al. (2011) have shown that the conventional teaching of calculus does not

246 incorporate the idea of approximation. Similarly, the analysis of French calculus texts by

247 Alibert et al. (1989, p. 10) concludes that, although the idea of approximation associated with

248 the differential in mathematics was introduced in the 1960s, there were no changes in

249 practice, and it continued to be considered as a merely formal instrument, useful for devel-

250 oping operations.

251 4 The Differential Concept in Physics Teaching

252 In this section, we will briefly describe some different conceptions that are used or could be

253 used in physics teaching. This description is based on the results of an analysis of high

254 school physics texts (in Spain) and university physics texts for the first courses of science

255 and engineering degrees (López-Gay 2002), on our experience as physics teachers in high

256 schools and for the first courses of engineering degrees, and on the study presented above

257 from the mathematical perspective. From now on, we will continue to use the mathematical

258 notation (f, x…) when referring to general physics equations and magnitudes, and we will

259 only change this notation for specific physics situations.

260 1. The meaningless differential. A few (fortunately!) physics textbooks use differentials

261 without assigning them any meaning, whether explicit or implicit. It seems that they

262 consider differentials to be part of an intermediate routine that leads to derivatives and

263 integrals, in a similar way to conceptions #1 and #2 of the previous section. The

264 following fragment comes from an upper high school standard physics textbook:

265 ‘According to the equation F = q�v�B�sina, the force exerted by the magnetic field on

266 the charge dq is: dF = dq�v�B�sina (…) that is the force that an element of electric

267 current will suffer inside a magnetic field’.

268 2. The differential as an infinitesimal increment. According to this conception, df is equal to

269 an infinitesimal Df, produced by an also infinitesimal Dx. The terms infinitesimal, very

270 small, tiny or extremely small are used to express the same idea. Indeed, explicit

271 definitions of this conception are sometimes expressed: ‘df is the limit ofDfwhenDx goes

272 to zero’. But if this is the case, if f(x) is continuous, then df will always be zero.

273 This intuitive conception is similar to the original idea of Leibniz, an ambiguous idea

274 removed from calculus in the nineteenth century. As we have already seen, infinitesimals

275 were reinserted into mathematics, free of any suspicion, in the 1960s, although their use in

276 DC teaching continues to be marginal. Moreover, from the mathematical perspective, the

277 infinitesimal differential is not equal to Df. Therefore, modern calculus legitimates the use

278 of infinitesimals but not the interpretation of df as an infinitesimal Df.
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279 3. The differential as an infinitesimal approximation. This conception considers that df is an

280 infinitesimal that is very close to the value ofDfwhenDx is infinitesimal. Here again, the

281 terms very small or extremely small are used to express the same idea. In this conception,

282 in the expression df = h�dx, dx is an infinitesimalDx, so small thathpractically remains

283 unchanged, so that df is practically identical to the extremely small Df.

284 This conception acknowledges the idea of approximation as well as the linear depen-

285 dence of df on Dx (although in other words: ‘h practically remains unchanged’), but, at the

286 same time, it uses infinitesimals or very small quantities in order to assert that (df–Df) is

287 negligible in practice; that is, df can be replaced by Df without any error. This is a very

288 similar conception to the mathematical one of the differential as an infinitesimal (Sect. 3,

289 #4), but it fails to state the additional condition that must be fulfilled by the linear

290 approximation.

291 4. The differential as linear estimate. In this conception, df is an approximation of Df, an

292 approximation that consists in supposing that Df changes uniformly with Dx, without

293 any reference to whether Dx, Df, df or (Df–df) have big or small values. According to

294 this idea, in the expression df = h�dx, dx (independent variable) is a Dx and df is an

295 approximation of the corresponding Df that is calculated by assuming that h is kept

296 constant along that Dx.

297 This conception highlights the idea of linear approximation by clearly stating the dif-

298 ference between df and Df, and it does not emphasize the idea that they can be inter-

299 changed. It is similar to the Fréchet conception (Sect. 3, #3) but, in this case, there is no

300 explicit expression of the additional condition that must be fulfilled by this linear estimate.

301 The last three conceptions have in common that they consider df as a change, as Df or as

302 an approximation of Df. Some studies indicate that in certain physical situations, the

303 interpretation is different: df can be considered as an amount and not as a change (Von

304 Korff and Rebello 2014). Therefore, when they write d/ = B�dS, they interpret d/ as the

305 amount of flux passing through an amount of surface. However, this distinction is not

306 necessary because d/ can be considered as a change in the amount of flux passing through

307 a surface, when this surface changes by an amount dS. A different issue is that many

308 physical examples are developed in terms of accumulation of quantities rather than ac-

309 cumulation of changes. We do not argue in this work about whether it is adequate to

310 proceed in this way, but, if this were the case, the change from the interpretation as change

311 to that as amount can be done without difficulties. Therefore, from now on, we will

312 interpret the differential as a change.

313 5 Critical Assessment of the Different Conceptions of the Differential
314 in Physics Teaching

315 Our concern for the differential is caused by its important role in the mathematization

316 process of physics problems and situations requiring the use of DC for their solution, that

317 is, in the first step of Redish’s schema about the use of mathematics in physics. Such a

318 process, from our standpoint, requires an understanding of the role and meaning of the

319 differential in the physical context. This means that students should be able to answer the

320 following questions in concrete physics situations: Why is it necessary to use differentials?

321 What is the meaning of the differential in physics? Why do we write down exactly that
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322 differential expression and not another one? Next, we will appraise the different concep-

323 tions of the differential according to the answers to those questions.

324 5.1 Why is it Necessary to Use Differentials?

325 • From conception 4#1, the meaningless differential, there is no answer to this question;

326 in fact, ‘differential’ is used when terms like ‘elemental’ or ‘element’ appear as cues in

327 the text to introduce the differential.

328 • From conception 4#2, the differential as an infinitesimal increment, we need

329 differentials because the magnitudes are very small. Differentials are in fact written

330 just to indicate that we are in the realm of the very small; hence, we write the

331 expression dv = a�dt because we are referring to a very tiny Dt.

332 • From conception 4#4, the differential as a linear estimate of the increment, the reason

333 we must use the differential is that the change in a magnitude is non-uniform with

334 changes in the other variable, which prevents us from calculating the Df produced by a

335 Dx. Differentials are, in fact, written to indicate a non-real change, the change that

336 would occur if the change were uniform along the Dx. Thus, the expression dv = a�dt is
337 written because the speed does not change uniformly with time, that is, because the

338 acceleration is not constant during that time interval.

339 • From conception 4#3, the differential as an infinitesimal approximation, differentials

340 are needed for a combination of the reasons given for conceptions 4#2 and 4#4.

341 5.2 What is the Meaning of the Differential in Physics?

342 • For conception 4#1, this is a nonsensical question since the differential is considered to

343 be an instrument without any meaning. When certain cues like elemental displacement

344 appear, differentials must be used.

345 • For conception 4#2, if dv = a�dt, dv is the very small change in the velocity produced

346 in the very small time interval dt. This conception assumes that is impossible to assign

347 numerical values to dv and dt because they can always be even smaller; thus, it is

348 difficult to interpret the numerical value of the acceleration at any instant, for instance,

349 a(t = 7) = 2 (SI units).

350 • For conception 4#3, if dv = a�dt, dv is an approximation of the change in the velocity

351 in a very small time interval dt, so small that the acceleration can be considered

352 constant in that interval; hence, dv is practically equal to the small Dv in that small

353 Dt. The same difficulties as in 4#2 appear when assigning numerical values to dv and

354 dt, or interpreting the numerical value of the acceleration at an instant.

355 • For conception 4#4, if dv = a�dt, dv is an estimate of the velocity change that would

356 occur in any time interval dt; this estimate is made by assuming that the acceleration is

357 constant throughout that time interval. The numerical value of the acceleration in an

358 instant, for instance, a(t = 7) = 2 (SI units) means that, from t = 7 s, if the

359 acceleration is kept constant, the speed would change by 2 m/s every second. Similarly,

360 if dt = 5 s, then dv = 10 m/s, and this would be the change in speed from t = 7 to

361 t = 12 if the acceleration was kept constant.
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362 5.3 Why Exactly that Differential Expression and not Another One?

363 • For conception 4#1, there is no answer: any expression could be written, if it is called

364 elemental and we use the differential symbol.

365 • For conception 4#2, which identifies the differential as an infinitesimal increment,

366 when we are addressing a physical situation in which we start from an already defined

367 expression for finite increments (Dx = v�Dt, Dm = q�dV…), the differential expression

368 will be exactly the same because it only indicates that those same changes are now very

369 small (dx = v�dt, dm = q�dV…). The trouble with this conception arises in physical

370 situations in which an expression for finite increments has not been previously defined.

371 Let us, for instance, look at the disintegration process of a radioactive sample. In this

372 case, dN = -k�N�dt is written with confidence, as if it were possible to know what

373 happens in very small time intervals but not in ‘normal’ time intervals. In fact, starting

374 from that expression, via integration, we arrive at: DN = N�(1 - e-k�Dt), and,

375 therefore, in order to match this conception, the differential expression should be

376 written as dN = N�(1 - e-k�dt). Starting from a particular premise, a conclusion that

377 contradicts that premise is obtained.

378 • For conception 4#4, in physical situations of the first kind (we have already defined

379 expressions for the uniform cases: Dx = v�Dt, Dm = q�dV…), the corresponding

380 differential expression is similar, because the differential approximation consists

381 precisely in assuming that there is linear behaviour even though we know that actually

382 there is not; hence, dx = v�dt, dm = q�dV… In relation to the second kind of physical

383 situation mentioned above, we must search for an expression that represents uniform

384 behaviour although we know that actually the behaviour is not uniform. From this

385 perspective, the following differential expressions could represent the corresponding

386 linear estimates for the radioactive disintegration process: dN = -k�N�dt, dN = -

387 k�N2�dt, dN = -k�dt/N… Any linear function of dt could be a good mathematical

388 candidate. However, we know that only one of them complies with the Fréchet

389 condition, dN/dt = N0, but as we do not know N(t), any of them may remain valid. As

390 in many other physical situations, we must conceive each of the linear estimates as a

391 plausible hypothesis, work mathematically on it (‘via integration’) and find a functional

392 expression for DN or of N(t), the validity of which must be empirically probed in the

393 physical situation at hand or by its coherence with other findings in the same field. In

394 such cases, we must say that differential expressions (initially) have a hypothetical

395 nature.

396 • For conception 4#3, the answer to this question is similar to that for conception 4#2 or

397 for conception 4#4, depending on whether the emphasis is on the infinitesimal value or

398 on the character of the differential as a linear approximation. Our experience is that the

399 infinitesimal value is emphasized. This conception is often based on the intuition,

400 which is apparently correct, that the sum of many thousands of very tiny

401 approximations ends up giving an accurate result because the error in each

402 approximation is practically zero. In fact, when university physics students and high

403 school physics teachers are asked to analyse a mathematical development that begins

404 with a ‘reasonable’ differential expression but produces a physically or geometrically

405 erroneous result, almost none of them regards the differential expression (called by us

406 the ‘differential hypothesis’) as doubtful. They usually check the mathematical

407 operations again and again from beginning to the end, without finding the ‘mistake’.
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408 Some contradictory situations like this, in the context of the calculus of surfaces and the

409 volumes of regular geometric objects, have been addressed by certain authors (Artigue

410 et al. 1989, pp. 31–38; Schneider 1991). When the infinitesimal character is emphasized

411 instead of the linear estimation one, it is difficult to justify why some differential ex-

412 pressions lead to a correct result and others do not.

413 5.4 Which is the more Suitable Concept of the Differential for Teaching
414 Introductory Physics Courses?

415 The answer depends on the aim of the teaching. If we wanted to focus only on the

416 mathematical operations, starting from expressions that are already known, then concep-

417 tion 4#1 could be sufficient. We are committed to helping students to learn the modelling

418 process, so we discard that conception.

419 Conception 4#2 is intuitive and, in our experience, is the most frequently used one in

420 physics teaching. However, we have identified some shortcomings in this conception:

421 • It does not allow one to identify the situations in which it is necessary to use the

422 differential, since it does not justify the need take infinitesimals when approaching a

423 concrete problem.

424 • It does not allow one to assign numerical values to explain the meaning of the

425 differential, a didactic exercise that, in general, promotes understanding; neither does it

426 provide an easy explanation of the numerical values of derivatives as quotients since,

427 again, it is necessary to refer to the quotient of two quantities that do not admit

428 numerical values.

429 • It makes it impossible to acknowledge the hypothetical nature of the differential

430 expression in some physical situations, because there is no criterion for deciding

431 between one expression and another.

432 • It fails in its internal logic: starting with an expression for an infinitesimal Df, which is

433 considered to be correct, it permits one, via integration, to obtain another different

434 expression that is also valid for an infinitesimal Df.

435 For these reasons (besides its incorrectness from a mathematical viewpoint, including

436 the viewpoint of the non-standard calculus), conception 4#2 is not the most suitable one for

437 the mathematization of physical situations.

438 Conception 4#3 preserves the intuitive character and the reference to infinitesimals that

439 is so frequent in physics teaching and, besides, avoids some of the shortcomings mentioned

440 before:

441 • It clearly identifies the situations that require that a differential expression be written:

442 these are when there is non-uniform or nonlinear behaviour.

443 • It highlights the character of the differential as an approximation and imposes a

444 condition that must be fulfilled to justify the transition from approximation to

445 exactitude via integral that the slope of the approximation (df/dx) should coincide with

446 the derivative (f0), that is to say, with the quotient of two infinitesimals.

447 • It permits one to acknowledge the hypothetical nature of the differential expressions in

448 some physical situations that have already been described.

449 • Contradictions disappear.

450 However, some drawbacks that come from the identification of differentials with in-

451 finitesimals remain. One of them is that this conception does not permit numerical values

452 to be assigned and, in this way, an explanation of the meaning of differential and the
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453 interpretation of concrete values of the derivative to be facilitated. The other shortcoming

454 is that it is extremely difficult to understand the meaning in physics of any differential

455 expression in the realm of the infinitely small, and this becomes a major drawback in

456 selecting a hypothetical differential expression when required. Moreover, this drawback

457 sometimes goes unnoticed as a result of the intuitive, but erroneous, idea that any ap-

458 proximation will end up giving the exact result if sufficiently small Dx are taken.

459 And lastly, conception 4#4 maintains the advantages of conception 4#3 while avoiding

460 the objections noted above. In particular, the differential expression makes sense for any

461 Dx whether large or small, which allows the physical meaning of the approximation to be

462 interpreted more clearly and hypothetical differential expressions to be written through

463 physical analysis, without taking extremely small values for which it seems that, in the end,

464 ‘anything goes’.

465 In accordance with these assessments, conceptions of the differential that highlight the

466 idea of approximation, whether as an infinitesimal approximation or as a linear estimate,

467 are the most suitable for facilitating the mathematization of physical situations through

468 DC. Between the two, we find some important additional advantages in the conception of

469 the differential as a linear estimate of the increment. However, we are aware that these

470 appraisals depend on our aim and, therefore, that the assessment and selection can be

471 different from another perspective and for other purposes (Ostebee and Zorn 1997).

472 6 Objectives and Experimental Design

473 Our experimental study seeks to gather data on how final-year high school students justify

474 the use of the differential in physics, assign meaning to differential expressions and per-

475 ceive how they are supposed to use DC in physics, and on the extent to which these aspects

476 evolve in university students. In this way, we expect to identify students’ conceptions and

477 the persistence of these conceptions, for a better understanding of the difficulties students

478 can have in mathematizing physical situations requiring DC.

479 We have designed a set of instruments that includes both qualitative and quantitative

480 tools:

481 • Four written questions (3 closed and 1 open). These are designed for getting data on

482 students’ conceptions of the justification and meaning of differential expressions and on

483 their perceptions of how they are expected to use DC in physics. They are measured

484 using a Likert-type scale. When the results are presented, the content of the questions

485 will be explained.

486 • Three problems to be solved by students, on physics topics with which the students

487 were familiar. In two of these problems, paragraphs were included to remind students

488 of the necessary conceptual grounds in physics for solving the problems. The wording

489 of each problem explicitly requested students to write explanatory comments,

490 especially each time they used differential calculus in solving the problem.

491 • An individual semi-structured interview on one written solved problem from which the

492 explanations had been removed. We divided the solution with horizontal lines into a

493 total of seven sections that were gradually revealed to the student during the interview.

494 For each section, the student was asked the corresponding question that appears in the

495 Appendix. The data obtained from questions 4–6 are not used in this work. The

496 objective of this audio-recorded interview was to obtain complementary qualitative
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497 information to illustrate and support the interpretation of the quantitative results

498 obtained from the students’ written responses to the questions and problems.

499 The considerable time period for our work has provided us with large sample sizes. In

500 total, the sample was made up of 488 students belonging to six high schools and four

501 Spanish universities and fulfilled a diversity of criteria with regard to both the origin of the

502 students and that of the teachers of the physics or maths courses. The respondents were

503 divided into three subgroups: 190 final-year physics high school students (in the techno-

504 scientific branch, aged 17–18 years), 153 university freshmen and 145 second- to fourth-

505 year university students. Over half the university students included in the sample were

506 physics undergraduates and the rest were studying for other scientific or engineering

507 degrees. All the students in the sample were taking a physics subject and, for the youngest,

508 a maths subject that included differential calculus topics.

509 Because our interest was in the teaching of physics in high school (when DC is in-

510 troduced for the first time), seven bright students in the final year of high school were

511 selected by their own teachers to be interviewed. We also interviewed four recent grad-

512 uates in physics or technical studies who are training to become high school teachers. We

513 chose these four recent graduates, who are now our students in a Master’s programme on

514 Teaching Physics and Chemistry at secondary level, because we believe them to be rep-

515 resentative of university students.

516 In order to decide whether there were significant differences between the results ob-

517 tained by the different sample subgroups, the Student’s t test was used with a significance

518 level lower than 5 %.

519 7 Results and Discussion

520 The results, instruments and interpretations will be grouped around the three objectives

521 mentioned above. The interpretations will be accompanied by verbatim fragments from the

522 interviews. A more detailed and thorough analysis can be found in López-Gay (2002).

523 7.1 Results on When and Why it is Necessary to Use Differentials

524 These results come from data obtained from two closed questions and from the analysis of

525 the problems solved by the students (each of the three problems was different, and adapted,

526 for each subgroup).

527 The first question aims to discover what students consider to be the best reason to justify

528 the change from increments to differentials. Each of the response items is related to one of

529 the conceptions of the differential as used in physics [4]. We used item (d) to distinguish

530 between students who justify the use of the differential by the existence of a dependency

531 relationship (Meredith and Marrongelle 2008) and those who refer to the non-uniform

532 behaviour during Dt (see Table 1).

533 Fifty-eight percentage of the secondary school students justify the step from increments

534 to differentials because these are infinitely small values (conceptions 4#2 and 4#3), and this

535 percentage increases significantly for the university degree students, with 82 % of students

536 on these higher courses choosing this option. Overall, 69 % of students chose this option.

537 By contrast, the option that justifies the step from increments to differentials because of the

538 non-uniform behaviour (conceptions 4#3 and 4#4) was chosen by only 11 % of the high

539 school students and by only 3 % of the university students. Finally, the statement related to
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540 conception 4#1 (‘‘Because we want to finish with a derivative or an integral’’) was chosen

541 by 20 % of the high school students and a slightly lower percentage of university students.

542 The second closed question was used to obtain information on the students not through

543 what they say but through what they do: we wanted to know their criteria for using DC in a

544 physics situation. This would give us information on the implicit justification for using

545 calculus. The wording of the question and the results obtained are presented in Table 2.

546 Only 15 % of the high school students correctly identify that it is necessary to use DC

547 when nonlinear relationships appear (conceptions 4#3 and 4#4); this percentage sig-

548 nificantly decreases in university students, falling to 5 % of the students in higher years of

549 university courses. Overall, 89 % of the students do not know the characteristics of a

550 situation in which DC is needed (as would be expected if they were thinking with con-

551 ceptions 4#1 and 4#2), and this percentage is higher as the education level increases.

552 At high school, 5 % of students consider it necessary to use DC in all situations, and this

553 percentage increases significantly during university education, reaching 30 % of students

554 in the higher years of university courses. On the other hand, 59 % of high school students

555 and a higher percentage of university students consider that it is necessary to use DC in all

556 cases in which position depends on time.

557 The analysis of the problems solved by students provides information on what students

558 say and do when they use differentials. The results related to justification and meaning are

559 presented in Table 3.

Table 2 Wording and results obtained from the second closed question about justification

We know the position equation of four different moving

objects. We want to calculate the instantaneous speed of each

object. Tick (4) for the cases in which the use of differential

calculus (derivatives, differentials, integrals …) is necessary

Last year high

school (N = 117)

1st U.

(N = 89)

C2nd U.

(N = 43)

% (SD) % (SD) % (SD)

a. x = 12 5.1 (2.0) 11.2 (3.4) 30.2 (7.1)

b. x = 8 ? 3t2 87.2 (3.1) 91.0 (3.0) 97.7 (2.3)

c. x = 6t - 2 72.6 (4.1) 80.9 (4.2) 93.0 (3.9)

d. x = 5 cos 3t 87.2 (3.1) 91.0 (3.0) 100 (–)

Tick all the options (a, b, c, d) 3.4 (1.7) 10.1 (3.2) 30.2 (7.1)

Tick cases where x = f(t) (b, c, d) 59.0 (4.6) 68.5 (5.0) 62.8 (7.5)

Tick only nonlinear cases (b, d) 14.5 (3.3) 9.0 (3.1) 4.7 (3.3)

Table 1 Wording and results obtained from the first closed question about justification*

In a text on kinematics, one reaches the following expression:Dv =

a�Dt, which is then written as follows: dv = a�dt
Tick (4) for which of the following reasons you think justifies

more accurately the need for taking this step

Last year high

school (N = 149)

1st U.

(N = 92)

C2nd U.

(N = 90)

% (SD) % (SD) % (SD)

a. Because we want to finish with a derivative or an integral 20.1 (3.3) 15.2 (3.8) 15.2 (3.5)

b. Because infinitely small times are being considered 57.7 (4.1) 73.9 (4.6) 82.2 (4.1)

c. Because acceleration depends on time 10.7 (2.5) 2.2 (1.5) 3.3 (1.9)

d. Because speed depends on time 17.4 (3.1) 10.9 (3.3) 6.7 (2.6)

e. I don’t know 4.7 (1.7) 4.3 (2.1) 2.2 (1.6)

* Although we asked students to choose only one statement, some of them chose more than one. This is the

reason for the sum of percentages of each column being higher than 100 %
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560 The low percentage of students who use DC to solve the problems is striking. For high

561 school students, this could be due to two main difficulties: mathematizing and using DC.

562 However, it is even harder to explain why nearly half of the university students of all

563 courses do not use DC when it is necessary to solve the problem, despite knowing the

564 physics of the problem and being given a reminder of the main physics ideas. Moreover,

565 only one out of ten students who use DC to solve the problem tries to justify its use, despite

566 being clearly asked for an explanation for the use of DC. Given the low number of students

567 who try to justify the use of DC, we do not consider it useful to distinguish between the

568 different kinds of justifications.

569 The results of Tables 1, 2, and 3 show that, when using the differential or DC to solve

570 a physics situation, most of the students cannot identify which characteristics of the

571 situation at hand lead them to use it. Moreover, when they are given certain statements,

572 their justifications refer to infinitesimal values and not to the idea of linear ap-

573 proximation. We interpret these results as showing the predominance—more marked in

574 higher education levels—of the conception of the differential as an infinitesimal in-

575 crement, as seen in both their explicit statements and the absence of criteria for when to

576 use the differential.

577 The following extracts from interviews illustrate the difficulties that students have in

578 justifying the step from increments to differentials:

579581

582 Extract 1. Pedro, a bright upper high school pupil

583 P: The top one [Dm/DV] is the definition of density and the bottom one [dm/dV] is the same but for very,

very small pieces… It would be the same but maybe here mass could be written depending on the

volume…

584 In: And couldn’t you do the same thing using the top expression?

585 P: Yes, I suppose, but I don’t really know…587

588 Extract 2. Maria, teacher in training

589 M: He has turned the increments into differentials, and I don’t know why he does that. What I don’t

understand is why he doesn’t directly replace an increment. He has gone from increments to

differential…

590 In: Why? Couldn’t he have done the same with increments?

591 M: I don’t know why he goes to differentials

592

Table 3 Results on the justification and explicit meaning of the differential when solving physics problems

When they solve problems in which they are specifically asked to

include explanatory comments each time, they use differential

calculus

Last year

high school

(N = 57)

% (SD)

1st U.

(N = 95)

% (SD)

C2nd U.

(N = 105)

% (SD)

They use differentials 17.5 (5.1) 50.5 (5.2) 44.8 (4.9)

Of them

Try to justify why they use differentials 10.0 (10.0) 4.2 (2.9) 10.7 (4.6)

Write any meaning of the differential 0 (–) 6.4 (3.6) 21.2 (6.0)
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593 7.2 Results on the Meaning of Differential Expressions

594 The open question is aimed at obtaining information on the meaning that students give to

595 the differential in a context of a familiar physics situation that is briefly described. The

596 complete wording of the question is shown in Table 6.

597 We analysed the responses to this question in order to see which conception of the

598 differential appears from the responses of each student. In the light of the responses given,

599 we have added a new unexpected category: the differential is an increment, without any

600 reference to its value (Table 4).

601 We did not consider category b as a new conception, but as an incomplete view of what

602 category c represents. Taking into account this criterion, 61 % of the students (58 % of

603 high school and university students in higher years and 70 % of freshmen) expressed their

604 conception of the differential as a small or very small infinitesimal increment. Only one out

605 of 122 students expressed the conception of the differential as an infinitesimal ap-

606 proximation (4#3).

607 Category a includes those students who do not know any meaning of ‘differential’, as

608 well as those who think that differential has no meaning. Hence, we cannot distinguish how

609 many students have the conception of the differential as a formal instrument.

610 When they are directly asked, between 58 and 72 % of students are able to express a

611 conception of the differential (Table 4). In contrast, the results obtained when analysing

612 the problems solved by students (Table 3) show how little sense students make when

613 explaining the meaning of differentials when they use them, despite being asked for

614 explanations. This could be interpreted as an effect of the algorithmic approach of calculus.

615 Our experience as teachers leads us to assume that the concept of the differential that

616 prevails in physics teaching is that of a small or very small infinitesimal increment. Why

617 then do ‘only’ 61 % of the students express this openly? We believe that it is likely that the

618 algorithmic approach of calculus induces inconsistency and a lack of confidence among

619 students, which prevent them from clearly expressing any assertion about the only, but

620 nebulous, conception they have.

621 Over the course of the interviews, a lack of meaning appeared in certain cases (extract

622 3) or an identification of the differential and an increment, with no additional conditions

623 (extract 4). However, the most frequent answer was that it was a matter of very small

624 increments, although the arguments converged on operational ideas (extract 5).

Table 4 Results of the analysis of responses to the open question about the meaning of dN

Last year high

school

(N = 52)

% (SD)

1st U

(N = 37)

% (SD)

C2nd U.

(N = 33)

% (SD)

a. They do not write any meaning 42.3 (6.9) 27.1 (7.4) 42.4 (8.7)

b. It is DN (without more accuracy) 34.6 (6.7) 29.7 (7.6) 36.4 (8.5)

c. It is a very small DN (without more accuracy) 23.1 (5.9) 40.5 (8.2) 21.2 (7.2)

d. It is a small DN that, so small that any

other magnitude is thought to be constant

0 (–) 2.7 (2.7) 0 (–)

e. It is a linear estimation of DN 0 (–) 0 (–) 0 (–)
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626

627 Extract 3. Isa, a bright high school pupil

628 I: dm is as if the mass is changed with regard to… I’m getting mixed up!

629 In: Do you know any meaning of that expression?

630 I: I know that by doing the integral you remove the ‘‘d’’, but I can’t think of one at the moment632

633 Extract 4. Julia, teacher in training

634 J: I have always taken an increment to mean the difference between the final and the initial mass, and a

differential when you do not place any limits between what is varying the mass

635 In: But, does it vary?

636 J: Of course, so it has to have limits

637 In: What difference is there then between increments and differentials?

638 J: There is no difference640

641 Extract 5. Juan, a bright high school pupil

642 J: I understand differential to mean when you want to study the parts as ‘‘tiny’’ as you want

643 In: So what is dm?

644 J: Well ‘‘tiny’’ little pieces of the… (unable to finish sentence)

645 In: Of what?

646 J: Of the mass…

647 J: (…) Every time we use differentials, my teacher says: ‘‘in order to study this curve we are going to take

the straight lines as small as we please…’’

648 J: (…) dV, dh are volume increments, height increments… he seems to take it like that

649 In: And is that what you think?

650 J: I don’t understand it… In truth, I know how to calculate integrals, but I haven’t actually understood the

differentials that occur, I see them in writing but I don’t know what they are… and, why am I going to

bother to ask, since they are going to tell me: ‘‘these are the little pieces…’’

651

652 7.3 Results on Students’ Perceptions of How they are Supposed to Use
653 Differential Calculus in Physics

654 Different works on teaching and using differential calculus [2] have revealed the pre-

655 dominance of the algorithmic approach, so the regular use of calculus in physics does not

656 take into account the mathematization process. It focuses only on the manipulation of

657 mathematical expressions. This situation is clearly reflected in the results obtained from the

658 analysis of the problems solved by students (Table 3): most of the students are unable to

659 mathematize a familiar physics situation using DC and, if they are, they cannot express

660 either the reasons that have led them to use DC or the meaning of the differential ex-

661 pression they write.

662 We believe that this situation will affect students’ perception of how they are supposed

663 to use DC in physics. To obtain information on this perception, we wrote two comple-

664 mentary statements: one refers to what students perceive from their teachers and the other

665 refers to their own actions when using calculus. We asked students to express their degree

666 of agreement with each of these two statements according to a Likert scale from 1 to 5 (1

667 Totally agree—2 Agree—3 Neutral—4 Disagree—5 Totally disagree).
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668 The wording of the two statements and the results obtained by grouping the responses

669 given by students into three categories (1–2 Agree, 3 Neutral, and 4–5 Disagree) are shown

670 in Table 5.

671 According to Table 5, 47 % of secondary students perceive that their teacher does not

672 expect them to understand the use of DC and, indeed, 44 % of them refuse to understand it.

673 This perception is even more widespread among freshmen: 60 % of them perceive that

674 their teacher does not expect them to understand the use of DC, and 66 % of them refuse to

675 understand it. Although this growth does not reach as far as university students in higher

676 years, it is a significant fact that 41 % of them still perceive that the teacher does not expect

677 them to understand the use of DC, and 54 % refuse to understand it (Table 6).

678 We can conclude that the percentage of students who perceive that what is expected of

679 them is to use DC without understanding it and only to use it mechanically is always

680 greater than that of students who do not share that perception, independently of the

681 statement and the subgroup of students.

682 This situation, particularly at university level, would be unsustainable if it were not for

683 an unspoken agreement between teachers and students: although differential calculus is

Table 5 Wording and results for the statements related to students’ perception of how they are supposed to

use differential calculus in physics

Statement 1: I realize that the teacher uses differen�al calculus because he needs it for developing the 

problem, but he doesn’t expect us to understand it

Statement 2: When differen�al calculus is used in demonstra�ons and when addressing problems in 

physics, I don’t pay any a�en�on because I know beforehand that I’m not going to understand and I only 

listen to the formula obtained at the end

47

60

41

18

17

22

35

23

37

0% 20% 40% 60% 80% 100%

High school (N=108)

1st U. (N=116)

≥2nd U. (N=63)

Agree Neutral Disagree

44

66

54

19

14

14

37

20

32

0% 20% 40% 60% 80% 100%

High school (N=108)

1st U. (N=116)

≥2nd U. (N=63)

Agree Neutral Disagree

AQ6
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684 used, the teacher does not expect his or her students to understand it, and nor do the

685 students aspire to understand it; what matters is that the students know how to apply the

686 rules. The following extracts from interviews illustrate this lack of understanding among

687 students and a generalized mechanical attitude.

688690

691 Extract 6. Julia, teacher in training

692 In: Did you learn when your physics teachers or textbooks used differential calculus?

693 J: I learnt how to perform calculus, but not what it actually was, I’ve never learnt that695

696 Extract 7. Sergio, a bright upper high school pupil

697 S: Seeing all that on the board is a shock, at first sight it’s horrendous; of course it puts you off.

698 In: Why do you think that is?

699 S: We are all for being practical, and seeing so many operations well, it frightens you a little, but it

doesn’t really because finally what’s important is the result, from a practical point of view. The same

thing happens to me, but then I get home and I manage to do it
701

702 Extract 8. Juan, a bright upper high school pupil

703 J: The truth is, when there are some integrals—for example, some that have got a ‘‘little zero’’ in the

middle that I don’t know what they’re about—and I can see them, but I don’t study them because I

can waste too much time trying to understand them

704 In: And the others?

705 J: If I ‘‘get’’ them quickly, yes

706 In: But didn’t you say you don’t know their meaning?

707 J: Yes, but I know how to do them

708

709 8 Summary and Implications

710 In this study, we have shown four conceptions of the differential as used in physics: as a

711 merely formal instrument, as an infinitesimal increment, as an infinitesimal approximation

712 and as a linear estimate of the increment. We have assessed each of these according to how

713 useful they are in helping in the mathematization process of physics situations using

714 differential calculus, a process that generally leads to the use of differentials. The con-

715 clusion, according to the explicit assessment criteria that we have established [5], is that

716 the last two conceptions, especially that of a linear estimate of the increment, are the more

717 suitable. However, global analysis of different results obtained using different instruments

718 supports the claim that the main conception of students in physics contexts, especially

719 university students, is the one that identifies the differential with an infinitesimal incre-

720 ment; this constitutes an obstacle to students’ ability to mathematize. We have come to this

721 conclusion from the students’ direct answers when they are asked about the meaning of the

Table 6 Open question on the meaning of the differential

A radioactive substance is one whose nuclei are being transformed into other nuclei or particles, that is,

they are disintegrating. If we call N the number of nuclei of a radioactive substance at an instant t, this

number will decrease in an interval of time due to the number of disintegrations that have taken place

The law of radioactive disintegration refers to the number of disintegrated nuclei in a certain radioactive

substance over an interval of time, and its initial mathematical expression is the following: dN = -

k�N�dt, with k being a characteristic constant of each radioactive element

In your own words, and as clearly as possible, explain the physical meaning of dN that is deduced from

the above mathematical expression
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722 differential in a physics context (61 %, see Table 4), from the reasons they give to justify

723 the use of differentials (69 %, see Table 1), as well as from their difficulties in identifying

724 those cases in which it is necessary to use differential calculus, difficulties that are asso-

725 ciated with this conception of the differential (89 %, see Table 2).

726 Furthermore, the data seem to indicate that students perceive that all that is expected of

727 them is a mechanical use of differential calculus in physics. The percentage of students

728 who hold this perception is always greater than that of students who do not hold it, no

729 matter what their academic level or the instrument used to obtain data.

730 Although we have not proved that there is a cause and effect relationship between the

731 prevailing conception of the differential in students and their perception of what is

732 expected of them, we think that the two results are linked. In effect, as we have ex-

733 plained, the idea of the differential as an infinitesimal increment is inappropriate for the

734 mathematization process of physical situations by calculus. The fact that this is the

735 prevailing conception in students can only be explained by concluding that the use of

736 calculus is focused on an operational process (isolate a variable, replace it, solve

737 derivatives and integrals …) on a mathematical expression that has already been written,

738 in order to get a result, neglecting the process that begins with a physical analysis of the

739 situation at hand and leads to that starting expression. This claim is consistent with the

740 results of different studies about the algorithmic approach of the teaching and use of

741 calculus. In this context, it seems reasonable for students to perceive that they may only

742 use calculus in a mechanical way.

743 In our opinion, if the aim is to teach students the mathematization process when they use

744 calculus in physics, and to change their perceptions, the conception of the differential that

745 is usually used should be changed. To students who are familiar with the idea of the

746 infinitesimal increment, it may be easier to promote this change to the conception of the

747 differential as an infinitesimal approximation. In the case of students who not only are

748 going to start learning about differential calculus but will also be using it to do physics, we

749 think that, even though the idea of an infinitesimal approximation could be valid, the idea

750 of a linear estimation of the increment is better because it allows one to see a clearer

751 relationship between physics analysis and the written differential expressions.

752 Anyway, it is necessary to avoid approaching physics problems and theoretical devel-

753 opments as if the initial steps of mathematization were self-evident or a mechanical re-

754 sponse to cues like ‘infinitesimal’ or ‘elemental’. For our part, we are working on the

755 design and implementation of physics teaching sequences for upper high schools that

756 systematically incorporate the conception of the differential as a linear estimation, to help

757 students to use differential calculus with understanding and good sense.

758 Acknowledgments We would like to thank the reviewers for careful reading and insightful suggestions
759 that greatly improved this manuscript.
760

761 Appendix: Document and Guidelines for the Semi-Structured Interview

762 PROBLEM STATEMENT: We know that the density of air (q) decreases with height

763 (h) according to the following equation: q = 1.29�(1–0.000125�h). That equation is written

764 for the International System, that is, if h is written in metres, density is obtained in kg/m3.

765 The value h = 0 represents sea level. What would be the mass of a cylindrical column of

766 air measuring 1 m2 at the base that rises 2000 m above sea level?
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768768 1. Why do you take that step? (Be it the step from increment to differential or from

769 incremental quotient to differential quotient)

770 2. What is the meaning of that expression? (We insist on searching for an explanation

771 that goes beyond the use of key words or literal reading)

772 3. What could be the value of dm, dV…? (If they answer with a numerical value, we

773 check on its meaning and functional nature)

774 4. How must that expression be read? Is it correct to isolate the differential? (We are

775 referring to the expression of the derivative, and want to know if they consider it as a

776 true differentials quotient)

777 5. What is the meaning of those integrals? (They may adhere to the idea of the anti-

778 derivative, or go further and identify Riemann sums)

779 6. Why is the result of that integral precisely that? (We will inquire to see if they are

780 capable of justifying why the integral of a differential is a macroscopic increment, or

781 why infinite sums are necessarily calculated using anti-derivatives)

782 7. Do you understand properly when your teacher or the textbook use differential

783 calculus in physics lessons?

784 8. Where have you best learnt the use and meaning of differential calculus, in physics or

785 maths lessons?

786 9. In general, do you think that the use of differential calculus makes students like physics

787 more or less? Why do you think so? And do you think that is the case for you too?

788

789
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842 Fı́sica.Análisis de la situación actual y propuesta para su mejora (PhD dissertation). Madrid: U.
843 Autónoma.
844 Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in integration. Inter-
845 national Journal of Mathematical Education in Science and Technology, 40(2), 201–211.
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