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1 Introduction

The zeros of exponential polynomials is a topic which appeared in the first
third of the twentieth century in relation to the development of the theory
of differential equations. At this point we must quote Wilder [14]. Here it
can be found one of the first formulae to determine the number of zeros of
an exponential sum inside a rectangle of the critical strip where its zeros are
located. On the line which Wilder had indicated are the works of Tamarkin
[11, 12] and Langer [6] on the zeros of certain functions in connection with some
general problems of the expansion theory for linear differential equations (see
[11, p. 66]). Analogous results can be found in [13], where Turan attributes to
Pólya [10] a formula for the number of the zeros of an exponential sum where
the coefficients are algebraic polynomials. Also, certain ideas considered by
Tamarkin, Wilder and Langer were developed in the sixties by Dickson [3, 4].

Similar formulae on the number of zeros of functions much more general
than exponential polynomials are provided in Levin’s book [7]. For instance, if
the spectrum of an almost-periodic function f(z) is contained in the set of the
vertexes of a segment of the imaginary axis, the formula is, for sufficiently large
values of |y1| and |y2|,

N(x1, x2, y1, y2) =
d

2π
(x2 − x1) +O(1), (1.1)

where d is the length of the segment and N(x1, x2, y1, y2) denotes the number
of zeros of f(z) inside the rectangle x1 ≤ x ≤ x2, y1 ≤ y ≤ y2.

Recently, for the partial sums

ζn(s) =

n∑
k=1

k−s,
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with s = σ + it a complex variable and n a real number greater than or equal
to 2, Gonek and Ledoan prove in [5, Theorem 2] the formula∣∣∣∣Nn(T )− T

2π
log [n]

∣∣∣∣ < n

2
, (1.2)

which determines the number of zeros Nn(T ) of ζn(s) for the special case when
these zeros have ordinates in [0, T ]. Here [x] is used to denote the largest integer
not exceeding the real number x. Therefore, it is worth to note that the term
O(1) of formula (1.1) may depend on f(z) such as the result of Gonek-Ledoan
makes explicit for the sequence of functions ζn(s).

As we have just seen, in the extensive literature on the related question with
the topic of the zeros, the formulae for the number of zeros in certain regions,
mainly rectangles, have a common thing: all them contain either the error term
O(1) or a bound which expresses the maximum error with respect to the exact
number of zeros inside those regions. For the partial sums of the Riemann zeta
function ζn(s), with n ≥ 2 an integer, we established in [9, Theorem 6] a formula
for the number of their zeros inside certain rectangles in the critical strip. In
fact, we proved the existence of infinitely many rectangles {Rn,T } bounded by
the lines y = 0 and y = T , T > 0, such that the number of zeros, Nn(T ), of
ζn(s) inside each Rn,T satisfies

Nn(T ) =

[
T log n

2π
+ Ωn

]
, with |Ωn| < 1.

In this paper we deal with the problem of the existence of rectangles in the
critical strip of every ζn(s) for which the error in the formula for the number of
zeros can be reduced to 0. In terms of the last paper of Gonek and Ledoan [5],
the question would be expressed as follows: Are there rectangles in the critical
strip given by the lines y = 0 and y = T for which the formula (1.2) is exact? We
have just proved that the answer is yes; in fact, we demonstrate the existence
of infinitely many values of T where the zeros of every partial sum ζn(s) inside
the corresponding rectangles can be counted by the formula

Nn(T ) =

[
T log n

2π

]
. (1.3)

It is worthwhile to remark that this result improves that of [9, Theorem 6].

2 The formula

For each integer n ≥ 2, ζn(s) is an entire function of order 1, exponential
type lnn, and it has infinitely many zeros not all of them are situated on the
imaginary axis, except for the case n = 2 [9] whose zeros zk are explicitly given
by

zk =
(2k + 1)πi

ln 2
, k ∈ Z. (2.1)
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Therefore, n = 2 is the the trivial case, and we will assume that n > 2.
On the other hand, since for any t we have

lim
σ→−∞

ζn(σ + it)nσ+it = 1 (2.2)

and
lim
σ→∞

ζn(σ + it) = 1, (2.3)

there exist two values of σ, σn1
< 0 < σn2

, such that

|ζn(s)ns − 1| < 1 for all s with Re s ≤ σn1

and
|ζn(s)− 1| < 1 for all s with Re s ≥ σn2

.

Therefore the functions ζn(s) have all their zeros comprised in vertical strips
Sn, called critical strips, defined by

Sn := {s = σ + it : an ≤ σ ≤ bn} ,

where the bounds
an := inf {Re s : ζn(s) = 0}

and
bn := sup {Re s : ζn(s) = 0}

have been estimated by means of the expressions

−n log 2 + o(1)

and

1 +

(
4

π
− 1 + o(1)

)
log log n

log n

by Balazard and Velazquez-Castañon [2] and Montgomery [8], respectively.

Remark 1 We first take a rectangle, denoted by Rn,T , defined by the right-lines
x = a′n, x = b′n; y = 0 and y = T , where a′n and b′n are arbitrary real numbers
satisfying a′n < an, b′n > bn, and T > 0 is so that ζn(s) has no zero on the line
y = T . The values of T for which formula (1.3) is valid will be specified in the
proof of the next theorem.

Theorem 2 For every integer n ≥ 2, there exist infinitely many rectangles
Rn,T such that the number of zeros, Nn(T ), of the function ζn(s) inside each
one of them is given by the formula

Nn(T ) =

[
T log n

2π

]
.
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Proof. For n = 2, we consider a rectangle R2,T with T ∈
[

2πk

log 2
,
π(2k + 1)

log 2

)
for some integer k ≥ 0. Then k ≤ T log 2

2π
< k +

1

2
, therefore

[
T log 2

2π

]
= k.

Noticing (2.1) the number of zeros inside R2,T satisfies

N2(T ) = k,

and this means that the formula (1.3) follows. Therefore, from now on we
assume that n > 2. Consider a rectangle Rn,T ; we observe that ζn(s) is never 0
on the boundary of Rn,T , therefore we can apply the argument principle [1, p.

87] on it. For a given 0 < ε <
1

6
, by virtue of (2.2) and (2.3), we determine two

values a′′n, b′′n, with a′′n < a′n and b′′n > b′n, satisfying

|ζn(s)ns − 1| < 1

6
sin ε for all s with Re s = a′′n, (2.4)

and

|ζn(s)− 1| < 1

6
sin ε for all s with Re s = b′′n. (2.5)

Let R′n,T be a new rectangle defined by the right-lines x = a′′n, x = b′′n; y = 0,
y = T . Noticing Re s ≤ a′n and Re s ≥ b′n are zero-free regions, we conclude
that ζn(s) has the same number of zeros inside both rectangles Rn,T and R′n,T .
Then, for the above ε, we claim that there exist infinitely many values of T such
that the variation of the argument of ζn(s) on the boundary of R′n,T , denoted
by V A(ζn(s);R′n,T ), satisfies

V A(ζn(s);R′n,T ) = T log n+ θ, with |θ| < ε. (2.6)

Indeed, by writing
ζn(s) = e−s logn (ζn(s)ns) ,

and according to (2.4), we infer that the variation of the argument of ζn(s) on the
side of the rectangle R′n,T defined by the line x = a′′n, denoted by V A(ζn(s);x =
a′′n), is given by

V A(ζn(s);x = a′′n) = T log n+ α, with |α| < ε

3
. (2.7)

Now, from (2.5), we conclude that the variation of the argument of ζn(s)
on the side of the rectangle R′n,T defined by the line x = b′′n, denoted by
V A(ζn(s);x = b′′n), satisfies

|V A(ζn(s);x = b′′n)| < ε

3
. (2.8)

On the other hand, because ζn(s) > 0 for all real s, the variation of the
argument of ζn(s) on the side of the rectangle R′n,T defined by the line y = 0,
denoted by V A(ζn(s); y = 0), is

V A(ζn(s); y = 0) = 0. (2.9)
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Finally, it only remains to prove that there exist infinitely many values of T
such that the variation of the argument of ζn(s) on the side of the rectangle
R′n,T defined by the line y = T , V A(ζn(s); y = T ), satisfies

|V A(ζn(s); y = T )| < ε

3
. (2.10)

Indeed, let {p1, p2, ..., pkn} be the set of all prime numbers less than or equal
to n; noticing for each integer 1 ≤ m ≤ n there exist non-negative integers lmj
such that

logm =

kn∑
j=1

lmj log pj , (2.11)

the functions Re ζn(s) and Im ζn(s) can be considered as polynomial in

eσ ln pj , cos(t log pj), sin(t log pj), j = 1, ..., kn.

Given the preceding ε, by continuity, there exists δ > 0 such that for any real
number σ ∈ [a′′n, b

′′
n] one has

|Re ζn(σ + it)− Re ζn(σ)| < ε, (2.12)

provided that
|cos(t log pj)− 1| < δ, |sin(t log pj)| < δ (2.13)

for all j = 1, ..., kn. Given δ > 0, determine a positive number η < ε so that for
any ηj satisfying |ηj | ≤ η, the conditions (2.13) to be fulfilled, that is

|cos(ηj log pj)− 1| < δ, |sin(ηj log pj)| < δ, for all j = 1, ..., kn. (2.14)

Now, since for any s = σ + it

Im ζn(s) = −e−σ log 2 sin(t log 2)− ...− e−σ logn sin(t log n),

by using (2.11) we can write, for σ ∈ [a′′n, b
′′
n],

Im ζn(s) =

kn∑
j=1

sin(t log pj)fj(t, σ), (2.15)

where fj(t, σ) is a uniformly bounded function on R × [a′′n, b
′′
n]. Let M > 0 be

such that |fj(t, σ)| ≤M for all j = 1, ..., kn. Define a positive number

λ = min

{
η

log pkn
,

5
36ε

M log(p1...pkn

}
(2.16)

and let us take

αj =
2π

ln pj
, βj = 0, 1 ≤ j ≤ kn, and λ.
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Then, as the numbers
1

αj
are linearly independent over the rationals, by ap-

plying a lemma of Kronecker and Bohl [11, p. 68], there exists a positive real
number l such that any real interval of the form

(pl, (p+ 1)l) , p ∈ Z,

contains an interval Ip of length λ which contains at least one point of each set

Aj :=

{
2πq

log pj
: q ∈ Z

}
, 1 ≤ j ≤ kn.

Let T be an arbitrary point of some Ip with p ≥ 0. For each j ∈ {1, 2, ..., kn}
determine γj ∈ Ip ∩ Aj and define ηj = T − γj . Since pkn ≥ 3, because (2.16)

we can assure that |ηj | ≤ η, and according to each γj =
2πq

log pj
, with q integer,

by substituting the values of ηj into (2.14), we get

|cos(T log pj)− 1| < δ, |sin(T log pj)| < δ, for all 1 ≤ j ≤ kn,

and, consequently, (2.12) is true for t = T . Then, according to Re ζn(σ) > 1 for
all σ ∈ R, one has

Re ζn(σ + iT ) = Re ζn(σ) + (Re ζn(σ + iT )− Re ζn(σ)) ≥ 1− ε, (2.17)

for all σ ∈ [a′′n, b
′′
n].

About the imaginary part of ζn(s), by setting s = σ + iT with σ ∈ [a′′n, b
′′
n]

in (2.15), because of (2.16), we have

|Im ζn(σ + iT )| ≤M
kn∑
j=1

|sin(ηj log pj)| ≤M
kn∑
j=1

|ηj log pj | ≤

≤Mλ log(p1...pkn) ≤ 5

36
ε. (2.18)

From (2.17) and (2.18), it deduces that the variation of the argument of ζn(s)
on the side of the rectangle R′n,T defined by the line y = T , V A(ζn(s); y = T ),
satisfies

V A(ζn(s); y = T ) ≤ 2 arctan

( 5
36ε

1− ε

)
.

Now, recalling that we have chosen ε so that 0 < ε <
1

6
and taking into account

that arctanx ≤ x, for all x ∈ R, the above inequality implies that

V A(ζn(s); y = T ) ≤
5
18ε

1− ε
<
ε

3

and then (2.10) is true, as claimed. Now, according to (2.7), (2.8), (2.9) and
(2.10), it follows (2.6) for any point T of every Ip with p ≥ 0 and, in consequence,
the formula (1.3) is true.
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Sci. Paris, Ser. I 347, 343-346 (2009)

[3] Dickson, D. G.: Asymptotic distribution of zeros of exponential sums, Publ.
Math. Debrecen 11, 297-300 (1964)

[4] Dickson, D. G.: Zeros of exponential sums, Proc. of the Amer. Math. Soc.,
Vol. 16, No. 1, 84-89 (1965)

[5] Gonek, S.M., Ledoan, A.H.: Zeros of partial sums of the Riemann Zeta-
function, Int. Math. Res. Not. 10, 1775-1791 (2010)

[6] Langer, R. E.: On the zeros of exponential sums and integrals, Bull. Amer.
Math. Soc. 37, 213-239 (1931)

[7] Levin, B. J.: Distribution of Zeros of Entire Functions, Amer. Math. Soc.,
Providence (1980)

[8] Montgomery, H.L.: Zeros of approximations to the zeta function, Studies
in Pure Mathematics: to the memory of Paul Turán, Birkhäuser, Basel,
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