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Abstract. In this paper it is showed that, given an integer number
n > 2, each zero of an exponential polynomial of the form wiaj +
waas + ...+ wnai, with non-null complex numbers w1, wa,...,w, and
ai,az,...,an, produces analytic solutions of the functional equation
wy f(a1z) + waf(azz) + ... + wnf(anz) = 0 on certain domains of C,
which represents an extension of some existing results in the literature
on this functional equation for the case of positive coefficients a; and
wy.
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1. Introduction

The motivation of this paper arises from the study of the functional equation
fl@)+f2x)+ ...+ f(nz) =0, x>0, neN,n > 2, (1.1)

introduced in the literature by Mora, Cherruault and Ziadi in 1999 [3], and
used for modeling certain processes related to combustion of hydrogen in a
car engine for small values of n [4].

From a theoretical point of view, this study is focused on the search of
basic solutions of the functional equation

f)+fR22)+...4+ f(nz) =0, ne N,n > 2. (1.2)
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on the complex domain Q = C\ (—o0,0]. As these solutions are analytic on
Q, the real and imaginary part of their restrictions on (0,00) form a family
of continuous solutions of functional equation (1.1).

In this sense, there exists a strong connection [4, 7, 8] between the
solutions of (1.1) (or (1.2)) and the zeros of the partial sums of the Riemann
zeta function defined as

1 1
Cn(2) ::1+27+--~+§’
Some of the most relevant properties of these exponential functions are shown
in [4, 5, 6].
On the other hand, in a recent paper [1], the authors study the more
general equation

neNn>2.

flz)+ flarz) + ...+ flayx) =0, 2 >0, (1.3)

where 0 < a1 < az < ... < apy are positive real numbers and N € N with
N > 2. For example, they prove that the set of continuous solutions of (1.3)
is an infinite dimensional vector space [1, Theorem 3.1].

In this paper, from the process used for functional equations (1.1) and
(1.2), we will firstly construct explicit solutions for equation (1.3) and the
more general cases

wy fla1z) + wa f(asz) + ...+ wy flapz) =0, z > 0,
and
wy f(ar1z) + waf(azz) + ...+ wpflanz) =0, z€ C\ (—o0,0],

where the a;’s are positive real numbers and the w;’s are non-null complex
numbers. Thus the functions (,(z), that determine continuous solutions for
the case (1.1), will be replaced by other generic exponential polynomials
whose zeros will provide a vector space of basic solutions of the functional
equations above.

Secondly, we will extend this process to the most general case where the
a;’s are non-null complex numbers in order to find analytic solutions of the
functional equation on certain domains of C.

Thirdly, we will define a binary relation on the functional equations
above which will determine equivalence classes verifying the following prop-
erty: two equivalent functional equations will have the same solutions and
they will be associated to two exponential polynomials with the same set of
ZEros.

2. A first generalization

Let 0 < a; <ag < ...<a, ben > 2 positive real numbers and w; € C\ {0},
j=1,2,...,n.In this section we are going to focus on the functional equation

wi fla1z) + waf(agz) + ...+ wy flapz) =0, >0, (2.1)
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which, in the complex plane, can be written as
wy f(a12) + waf(azz) + ...+ wyflanz) =0. (2.2)
Let F(z) be a solution of (2.2) on some complex domain containing the
positive real axis, then g(z) := F(x + i0), > 0, is a solution of functional
equation (2.1) and the functions of the form
cReg(z) + dImg(x)

are real solutions of (2.1) for arbitrary real numbers ¢, d. Conversely, if f(x)
is a solution of (2.1), then the functions of the form F(z) := Af(x) + Bif(y),
with z = z + iy, z,y > 0, and A\, 8 € C, are complex solutions of equation
(2.2).

Therefore, in order to find a vector space of basic solutions of (2.2),
consider the continuous homomorphism ¢(z) := 2® with @ € C. Thus it
must satisfy

wrp(a1z) + wap(asz) + ... + wyp(anz) =0,
ie.
wiafz® + weagz® + ...+ wpanz® =0
or, equivalently,
2%wraf + waa§ + ...+ wpah] = 0.

Hence, ¢(z) := 2% is a solution of (2.2) when « is a zero of the exponential

polynomial P, (z) of real frequencies log aq,logas, . . ., log a, and complex co-
efficients wy, wa, ..., wy, that is P,(a) = 0 where
P, (2) := wia] + wead + ... +wpal. (2.3)

Consequently, given «,, ; a zero of P, (z), the power functions
e O, _ ,0n,jLogz
fug(2) = 203 = g Loz,

where Log z is the principal branch of the logarithm, are the key of the
existence of solutions of our functional equations. Observe that the functions
fn,j(z) = e*milo8= are defined on the domain Q := C\ (—o0, 0].

Particularly, for z = & > 0, a solution of (2.1) is given by f, j(z) =
x®3, where a,, ; is a zero of the exponential polynomial (2.3). Therefore, if
Qp j = Qn,j + ibm]‘, then

fn,j ($) _ xa",jJribn,j — pOn,i eib"’j logw’
and we obtain real solutions of (2.1) of the form
xi (ccos(by,;logx) + dsin(b, jlogx)), ¢, d € R.

Some results concerning the distribution of the zeros of the exponential
polynomials P, (z) of the form (2.3) can be seen in [6]. For example, it was
shown that there exist two real numbers x1,zs such that all the zeros of
P, (z) are in the strip {z : 1 < Rez < z2} [6, Lemma 5].

Now, we will formalize this process through the vector space A(f2) of
the analytic functions defined on 2 = C\ (—o0,0] and the vector subspace
Vi, 1 > 2, of the analytic solutions defined on € of functional equations (2.2).
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We firstly show that V), is invariant under a certain operator on the space

A(9).

Lemma 1. In the space A(R2), the subspace V,,, n > 2, is invariant under the
linear operator D defined by D(f) := zf’, where [ is the derivative of f.

Proof. Let f be a function of V,, and let g denote the function D(f). Then
wig(a12) +wag(azz) + ... + wpg(anz) =
wiarzf'(a12) + waaszf'(azz) + ... + wpanzf'(anz) =

2(wy fa12) +waf(agz) + ... +wnf(anz)) = 0.
Therefore g € V,, and, consequently, D(V,,) C V,. O

Theorem 2. Let 0 < a1 < az < ... < an be n > 2 positive real numbers
and w; € C\ {0}, j = 1,2,...,n. The proper vectors of the operator D on
the space A(Q) are solutions of functional equation (2.2) if and only if the
corresponding proper values are the zeros of exponential polynomial (2.3).

Proof. Let f be a proper vector of D corresponding to a generic proper value
A. Thus D(f) = \f and f satisfies the equation

zf =M,
whose solution is
f(z) = K2,
with K an arbitrary constant. Now, the expression
wy f(a12) + waf(agz) + ...+ wofanz) = K2Mwia} + wead + ...+ wpad)

vanishes for any z € ) if and only if

wlai‘ + wgag‘ +..+ wna;\L =0,
that is, if and only if ) is a zero of P,(2) = w;e?'°8%1 4 wqe?l0892 4 4
wpe? 128 Hence, the theorem follows. O

Consequently, from the preceding results, we obtain the following im-
portant results.

Corollary 3. Let 0 < a1 < as < ... < a, ben > 2 positive real numbers
and w; € C\ {0}, j =1,2,...,n. For each n > 2, the functions f, ;(z) =
eni L8 2 " yith o, ; belonging to the set of the zeros of P,(z), defined in
(2.3), are analytic solutions of functional equation (2.2) on S).

Corollary 4. Fiz an integer number n > 2, let 0 < a1 < as < ... < an be
positive real numbers and w; € C\ {0}, j = 1,2,...,n. Thus every zero of
the exponential polynomial P, (z) = w;e* logar 4 qpoe?logas 1 4 g, e?logan
generates a vector space of real continuous solutions of functional equation

2.1).
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Particularly, given a zero of P(z) = 14710801 fezlogaz 1 4 ezlogan,
the family of functions on the interval (0, c0) of the form

{cRe(z%) + dIm(z*™) : ¢,d € R}
is a vector space of continuous solutions of functional equation (1.3) studied
in [1].
Furthermore, an easy consequence of the previous corollary is that every
real continuous solution f(x) of (2.1) defines a function

flx), ifz>0
h(z)=1< 0, ifx=0
f(=x),ifx <0

which is a continuous solution, except possibly at the point 0, of the functional
equation

wy f(arx) + waf(agx) + ...+ wyflapx) =0, x € R.

Finally, for the particular case that the w;’s are positive real numbers,
we shall show that any solution of functional equation (2.2) cannot be analytic
at the origin, except the trivial solution f = 0, and the functions f, ;(z) =
z%mi with o, j belonging to the set of zeros of P,(z) are linearly independent
in the vector space A(f2).

Proposition 5. Let 0 < a1 < as < ... < ap be n > 2 positive real numbers
and w; >0, j =1,2,...,n. Let f(z) be any non-trivial complex solution of
functional equation (2.2). Then f(z) is not analytic at 0.

Proof. Assume that there exists a solution f(z) of (2.2) which is analytic at 0
and, therefore, analytic on an open set U containing 0. Hence, by considering
the derivatives of all orders of f(z) on U, we have

w1l f (a12) + waeall f (ag2) + ... + wnpa™ f (anz) = 0
for each non-negative integer m. In particular, for z = 0 we deduce that
(w1al* + wead + ... 4+ wpa™) F™(0) =0

and, therefore, £(™)(0) = 0 for all integer m > 0. Consequently, f = 0 and
the proposition follows. O

Proposition 6. Let 0 < a1 < as < ... < a, ben > 2 positive real numbers and
w; >0, j =1,2,...,n. Then the analytic solutions f, ;j(z) = 2% of (2.2),
with o, ; belonging to the set of zeros of Pn(z) = w1e?198% 4 woe?loga2 4
oo wpe?lo89n are linearly independent in the vector space A(£)).

Proof. From Corollary 3, observe that the functions f, ;(z) = 2% with o, ;
a zero of P,(z), are analytic solutions of functional equation (2.2) on €. Let
Qn 1,002, .., Qn g, be m distinet zeros of P,(z) with a,,; = an,; + by j,
j =1,2,...,m. Observe that, since P,(z) # 0 for all z € R, then b, :=
max{|b, ;| : j =1,2,...,m} > 0. Also, we can determine ¢, > 1 such that
bplogt, < m. Then, we have that —m < b, jlogt, <m, j =1,2,...,m, and
therefore the principal argument of ¢," is by, jlogty, foreach j =1,2,...,m.
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Now, consider the numbers c; := =t j=1,2,...,m,andlet g1,92,...,9m
denote the power functions z%m1, z%m2 . . z%.m respectively. Thus the de-
terminant

gi(c1)  ga(cr) - gml(er) 1 1 1
gi(c2)  galc2) -+ gmlea) dy dy - dnm
D= . . . - . . . )
gi(cm)  g2(cm) -+ gm(cm) di't dyTt o dpt
where d; := ta™?, i =1,2,...,m, is of Vandermonde type and so

D= 1T (dy — d;).

k>j(k,j=1,...,m)

Finally, since the d;’s are distinct because they have different arguments
or absolute values, we deduce that D # 0 and the functions f, ;(z) are linearly
independent. (]

In particular, we deduce that the set of continuous solutions of particular
case (1.3) is an infinite dimensional vector space, that was also proved in [1,
Theorem 3.1].

3. More general cases
In this section we will handle the more general functional equation
wy f(a12) +waf(agz) + ...+ wpf(anz) =0, z € C, (3.1)

where the w;’s and also the a;’s are non-null complex numbers and n > 2 is
an integer number. Our first purpose is to extend the result of Corollary 3 to
this equation.

In this manner, initially, by considering the principal branch of the loga-
rithm function, denoted by Log z, some explicit analytic solutions of (3.1) on
a certain domain included in C\ (—oo, 0] will be generated by the exponential
polynomials

Qn(z) = wia] +weaj + ... + wyal,. (3.2)

Observe that if a; > 0, j = 1,2,...,n, (the case of functional equation
(2.2)) and z € C\ (—00,0], then ajz € C\ (—o0,0]. Now, if the a;’s are non-
null complex numbers (not necessarily positive real numbers), this condition
is not assured and we must take neighborhoods of a given point in order to
find analytic solutions of (3.1) on a certain domain included in C\ (—o0, 0].

Theorem 7. Let n > 2 be an integer number and aj,w; € C\ {0}, j =
1,2,...,n. Thus for each zy € Q such that a;zy ¢ (—00,0] forj =1,2,...,n,
the functions fp j(2) = e®ni L8 with o, ; belonging to the set of the ze-
ros of Qn(z), defined in (3.2), are analytic solutions of (3.1) on a certain
neighborhood of zg.



On the solutions of wy f(a12) + waf(agz) + ... + wpf(anz) =0 7

Proof. Let Ry denote the set (—o0,0]. Fix zp € @ = C\ R, such that
a;zo ¢ R, and define M := max{|a1|, |as|,...,|a,|} > 0 and

d = min{d(z9, Ry ), d(a120, Ry ), d(az2z0, Ry ), - - - ,d(anzo, Ry )} > 0,

where d(-, Ry ) is the distance function from a point to the set Ry . Thus, by
taking ¢ := min{d, £} > 0, if 2 € D(z9,¢) := {2 € C: |z — 20| < &} we have
|z — 20| < e <dand|ajz —a;z| < aje < Me <dforj=1,2,...,n. Hence
D(zg,€) C Q.

Finally, if f,, j(2) = e®»i1°8% where ay, ; is a zero of Q,(z), and z €
D(zp,€), then

wi fnj(@12) + wafn j(a2z) + ... +wpfr j(anz) =
wi(a12)% + wa(agz)™ + ...+ wy(apz)*™ =
ZOmd [wla(f"’j + wgag"’j + ...t wpaimi] =

Zomd Qn(an,j) =0
and the result follows. O

Observe that the theorem above requires that zp € Q with a;zp ¢
(=00,0] for j = 1,2,...,n, Now, we will generalize this result by obtain-
ing analytic solutions of (2.3) on certain neighborhoods of any point zy # 0.
So, given 6 € R, let log, z denote the branch of the logarithm function such
that the argument of z is in [0, 0 + 27), that is log, z = log || + i argy 2, with
argy the unique argument of z in [f, 6 + 27). Recall that the function log, z
is analytic on C\ Ry, where Ry is the ray {re? : r > 0}.

Theorem 8. Let n > 2 be an integer number and aj,w; € C\ {0}, j =
1,2,...,n. Thus for each non-null compler number zy, there ezists a real
number 6y such that the functions f, ;(z) = e’ 19800 % wyith oy, j belonging
to the set of the zeros of Qn(z), defined in (3.2), are analytic solutions of
(3.1) on a certain neighborhood of zy.

Proof. Fix zp € C\ {0} and choose 0y € [—m, ) such that 6y # Arg(zy) and
0o # Arg(ajzg) for j =1,2,...,n. Now, by following the proof of Theorem
7, we will demonstrate that there exists € > 0 such that D(zp,e) C C\ Ry,.
Indeed, let M := max{|a1],|az|,...,|an|} > 0 and

d = min{d(zo, R, ), d(a120, Re,), d(azz0, Re,), - - -, d(anz0, Rg,)} > 0

and take ¢ := min{d, &} > 0, then if z € D(z9,€) we have |z — 29| < e < d
and |ajz — a;20| < aje < Me < d and the result follows.
Finally, if f, j(z) = e 1980y #  with ay,,; belonging to the set of the
zeros of Qn (%), and z € D(zp,¢) then
wi fnj(@12) + wafn j(a2z) + ...+ wp fr j(anz) =
wy e 19860 (12) gy eomi108eg (a22) Ly, can logg, (anz) _

ean,j IOgGD Z[UJlean'j 10g90 ay + wzean,j IOgeo az + ...+ wnean,j lOgeo an] —

Z%md Qn(an,j) =0
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and, therefore, the functions f,, ;(z) are analytic solutions of (3.1) on D(zo, €).
(]

In order to extend this process, let P : C\ {0} x C\ {0} — RT xR
denote the application defined as

P(z1,22) = P(r1e" r9e"2) := (r1r9, B1 + Ba),
where z; and z; are non-null complex numbers expressed in the form z; =
riePi with r; > 0 and 8; = arg_,, z; € [~m,7), j = 1,2. So, now we consider
the functional equation
wy f(P(a1, 2)) +waf(Plag, z))+...+w, f(P(an,2)) =0, z € C\ {0}, (3.3)

where the w;’s and the a;’s are non-null complex numbers and f is an appli-
cation of the form f: Rt x R — C.

We will also use the function log” : RT x R — C defined as log™(r, 8) :=
log r + if.

Theorem 9. Let n > 2 be an integer number and a;,w; € C\ {0}, j =
1,2,...,n. Thus the functions f,; : R" x R — C defined as f, ;(r,) :=
e@n.i 108" (1B) " yith o belonging to the set of the zeros of the exponential
polynomial Q,(z), defined in (3.2), are continuous solutions of functional
equation (3.3) on all the domain C\ {0}.

Proof. Let a; = |aj|eiﬂi, where 8; = arg_, a; is the principal argument of
aj, 7 =1,2,...,n. Consider f, ;(r,B) = e (r8) | where Qi j is a zero of
Qn(2) and take z = re’# € C\ {0} with 8 = arg__ z, then

wi fn,;j(Pla1, 2)) +wafnj(Plaz, 2)) + ...+ wp fnj(Plan, 2)) =
wyetns 108" (a1InB148) |y can s log” (azlrfa+) |y
w,, €% log™ (lan|r,Bn+B) —
wy e 1os(ar|n)+iBiB)] 4 o), pan jllog(lazlr)+i(B2+A)] 4 4
Wy enilog(lan|P)+i(Ba+8)] _

0. (log T+if) [wlean,jaog lar[+61) 4 ypyemi(loglazl+ifa) L 4
w,y e (108 |an|+mn>} —

e (log r+ip) [wleo‘w Loga + U}26a"‘j Logaz NI
Wy, ¥ Log an] _
an j(logr+i _
e%n.i(log ﬁ)Qn(an,j) =0

and the theorem follows. O

4. Equivalence classes of functional equations

Now we will define a binary relation on the class of generic functional equa-
tions of the form (3.1).
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Definition 10. For each integer number n > 2, let F,, be the set of all func-
tional equations of the form (3.1) with n terms. We will say that two func-
tionals equations in F,,

wy f(a12) + waf(azz) + ...+ w,flanz) =0, z € C,
and
v1f(b12) +vaf(boz) + ...+ v, f(bpz) =0, z € C,
are equivalent when there exist v € C and ¢ € C\ {0} such that v; = cw; and
b; = aje? for each j =1,2,...,n.

Note that the binary relation defined above on the class F,, is clearly
an equivalence relation.

We showed in Theorems 7 or 8 that the zeros of the exponential polyno-
mials @y, (z) of the form (3.2) provide solutions of functional equation (3.1) on
certain domains of the complex plane. Now we will prove that two exponen-
tial polynomials which are associated to two equivalent functional equations
have the same set of zeros.

In this sense, given @, (z) an exponential polynomial of the form (3.2)
let Z(Q,,) denote the set {z € C: Q,(z) = 0} of the zeros of @, ().

Proposition 11. For each n > 2, two equivalent functional equations in JF,
have associated two exponential polynomials with the same set of zeros.

Proof. Let
wy f(a12) +waf(azz) + ...+ wpf(anz) =0, z € C,
and
vif(biz) +v2f(b22) +... +0nf(bn2) =0, 2 € C,

be two equivalent functional equations in F,, and ¢,v € C, with ¢ # 0, such
that v; = cw; and b; = a;e” for each j = 1,2,...,n. Thus, from Theorems 7
and 8, their associated exponential polynomials are

Q(2z) = wi1af + weal + ... + wpal
and

R(z) = v1b5 + v2b3 + ... + v, b2,
respectively. Now, by taking the conditions of the coefficients into account,

note that R(z) = ce?*Q(z) and, since ce?* has no zeros, then the sets Z(Q)
and Z(R) are the same. O

As a corollary, the sets of the analytic solutions of equivalent func-
tional equations, that are generated by the associated exponential polynomi-
als Qn(z) of the form (3.2), are the same.

Corollary 12. Given an integer number n > 2, the sets of solutions of the
form f, j(2) that appear in Theorems 7 or 8 of two equivalent functional
equations in F, are the same.

The converse of Proposition 11 is also true.
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Proposition 13. Two exponential polynomials of the form (3.2) with the same
set of zeros have associated two equivalent functional equations in F,, for some
integer number n > 2.

Proof. Suppose that Q(z) and R(z) are two exponential polynomials so that
Z(Q) = Z(R) ={z1,22,...,21,...} and their zeros have associated the same
multiplicity. Then, by Hadamard factorization theorem [2, Theorem 4.4.3],
we have

Q(z) = zkeAQZ+BQH(z) (4.1)
and

R(2) = zkeARZ+BRH(z) (4.2)
with k the order of the zero at z = 0, Ag, Ar,Bg,Br € C and H(z) =

z . .
H E; () for some integer number h depending on the exponent of con-
1>1 &
vergence of {z}, where

- ifh=0
En(z) = (1—z)exp(z+§+--~+%) ifth>1"

Furthermore, from (4.1) and (4.2), we have

R(Z) Apz+B
Q(Z): eARZ+BRe Q Q7

ie.

Q(z) = ¢""cR(2),
where ¢ = eBe=Br and v = Ag — Ag. Therefore, if Q(z) is of the form

wia] + weaj + ... +wpal,
which is associated to the functional equation
wy f(a12) +waf(azz) + ...+ wpf(anz) =0, z € C, (4.3)
then
R(z) = cwrafe”® + cwqaze™ + ... + cwpale’®

and it is associated to the functional equation

v1f(b12) +vaf(be2) + ...+ v, f(bnz) =0, 2z € C, (4.4)
with v; = cw; and b; = a;e” for each j = 1,2,...,n. Consequently, functional
equations (4.3) and (4.4) are equivalent in F,, and the result follows. O

Furthermore, the equivalent functional equations in F,, have the same
set of solutions defined on all domain C.

Proposition 14. For each integer number n > 2, two equivalent functional
equations in F,, have the same solutions defined on C.
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Proof. Let
wif(ar2) + waf(asz) + ...+ wpf(anz) =0, z € C, (4.5)

and
v f(b12) + vaf(baz) + ...+ vnf(bpz) =0, 2 € C, (4.6)

be two equivalent functional equations in F,, and ¢, € C, with ¢ # 0, such
that v; = cw; and b; = a;e” for each j = 1,2,...,n. Firstly, let fi(z) be a
solution of (4.5), defined on C, then f;(z) satisfies (4.6) if and only if

cwy fi(a1€7z) + cwa fi(aze?z) + ... + cwy, f1(ane’z) = 0,
which, by replacing z by %, is equal to
wy fi(a12) + wafi(azz) + ...+ wy fi(anz) =0,

which is true. Conversely, let f2(z) be a solution of (4.6), defined on C, then
f2(2) satisfies (4.5) if and only if

Un

L f(bre2) + 2 f(boeTN2) o T f(be2) =0,
which, by replacing z by ze?, is equal to

v1 fa(b12) + vafa(bez) + ...+ vn fa(bnz) =0,

which is true. O

Given n > 2, let
wy f(a12) + w2 f(agz) + ...+ w,flanz) =0, 2 € C,

be a functional equation in F,, and @, (z) = wiaf + waaj + ... + wpa? the
exponential polynomial associated to it. As you can see above, the (analytic
and non-analytic) solutions defined on C of equivalent functional equations
in F,, are the same. For example, the functions

eoniloBz if z £ 0
gnﬂ‘()_{o if2=0"

with «y, ; belonging to the set of the zeros of @, (%), are solutions defined
on C of the functional equation above, but they are also solutions of any
equivalent functional equation

v1f(b12) +vaf(baz) + ... + v f(bpz) =0, 2 € C,

with v € C and ¢ € C\ {0} such that v; = cw; and b; = a;e” for each
i=1,2,...,n
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