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Abstract. In this paper it is showed that, given an integer number
n ≥ 2, each zero of an exponential polynomial of the form w1a

z
1 +

w2a
z
2 + . . . + wna

z
n, with non-null complex numbers w1, w2, . . . , wn and

a1, a2, . . . , an, produces analytic solutions of the functional equation
w1f(a1z) + w2f(a2z) + . . . + wnf(anz) = 0 on certain domains of C,
which represents an extension of some existing results in the literature
on this functional equation for the case of positive coefficients aj and
wj .
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1. Introduction

The motivation of this paper arises from the study of the functional equation

f(x) + f(2x) + . . .+ f(nx) = 0, x > 0, n ∈ N, n ≥ 2, (1.1)

introduced in the literature by Mora, Cherruault and Ziadi in 1999 [3], and
used for modeling certain processes related to combustion of hydrogen in a
car engine for small values of n [4].

From a theoretical point of view, this study is focused on the search of
basic solutions of the functional equation

f(z) + f(2z) + . . .+ f(nz) = 0, n ∈ N, n ≥ 2. (1.2)
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on the complex domain Ω = C \ (−∞, 0]. As these solutions are analytic on
Ω, the real and imaginary part of their restrictions on (0,∞) form a family
of continuous solutions of functional equation (1.1).

In this sense, there exists a strong connection [4, 7, 8] between the
solutions of (1.1) (or (1.2)) and the zeros of the partial sums of the Riemann
zeta function defined as

ζn(z) := 1 +
1

2z
+ . . .+

1

nz
, n ∈ N, n ≥ 2.

Some of the most relevant properties of these exponential functions are shown
in [4, 5, 6].

On the other hand, in a recent paper [1], the authors study the more
general equation

f(x) + f(a1x) + . . .+ f(aNx) = 0, x > 0, (1.3)

where 0 < a1 < a2 < . . . < aN are positive real numbers and N ∈ N with
N ≥ 2. For example, they prove that the set of continuous solutions of (1.3)
is an infinite dimensional vector space [1, Theorem 3.1].

In this paper, from the process used for functional equations (1.1) and
(1.2), we will firstly construct explicit solutions for equation (1.3) and the
more general cases

w1f(a1x) + w2f(a2x) + . . .+ wnf(anx) = 0, x > 0,

and

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C \ (−∞, 0],

where the aj ’s are positive real numbers and the wj ’s are non-null complex
numbers. Thus the functions ζn(z), that determine continuous solutions for
the case (1.1), will be replaced by other generic exponential polynomials
whose zeros will provide a vector space of basic solutions of the functional
equations above.

Secondly, we will extend this process to the most general case where the
aj ’s are non-null complex numbers in order to find analytic solutions of the
functional equation on certain domains of C.

Thirdly, we will define a binary relation on the functional equations
above which will determine equivalence classes verifying the following prop-
erty: two equivalent functional equations will have the same solutions and
they will be associated to two exponential polynomials with the same set of
zeros.

2. A first generalization

Let 0 < a1 < a2 < . . . < an be n ≥ 2 positive real numbers and wj ∈ C \ {0},
j = 1, 2, . . . , n. In this section we are going to focus on the functional equation

w1f(a1x) + w2f(a2x) + . . .+ wnf(anx) = 0, x > 0, (2.1)
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which, in the complex plane, can be written as

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0. (2.2)

Let F (z) be a solution of (2.2) on some complex domain containing the
positive real axis, then g(x) := F (x + i0), x > 0, is a solution of functional
equation (2.1) and the functions of the form

cRe g(x) + d Im g(x)

are real solutions of (2.1) for arbitrary real numbers c, d. Conversely, if f(x)
is a solution of (2.1), then the functions of the form F (z) := λf(x) + βif(y),
with z = x + iy, x, y > 0, and λ, β ∈ C, are complex solutions of equation
(2.2).

Therefore, in order to find a vector space of basic solutions of (2.2),
consider the continuous homomorphism ϕ(z) := zα with α ∈ C. Thus it
must satisfy

w1ϕ(a1z) + w2ϕ(a2z) + . . .+ wnϕ(anz) = 0,

i.e.
w1a

α
1 z

α + w2a
α
2 z

α + . . .+ wna
α
nz

α = 0

or, equivalently,

zα[w1a
α
1 + w2a

α
2 + . . .+ wna

α
n] = 0.

Hence, ϕ(z) := zα is a solution of (2.2) when α is a zero of the exponential
polynomial Pn(z) of real frequencies log a1, log a2, . . . , log an and complex co-
efficients w1, w2, . . . , wn, that is Pn(α) = 0 where

Pn(z) := w1a
z
1 + w2a

z
2 + . . .+ wna

z
n. (2.3)

Consequently, given αn,j a zero of Pn(z), the power functions

fn,j(z) := zαn,j = eαn,j Log z,

where Log z is the principal branch of the logarithm, are the key of the
existence of solutions of our functional equations. Observe that the functions
fn,j(z) = eαn,j Log z are defined on the domain Ω := C \ (−∞, 0].

Particularly, for z = x > 0, a solution of (2.1) is given by fn,j(x) :=
xαn,j , where αn,j is a zero of the exponential polynomial (2.3). Therefore, if
αn,j = an,j + ibn,j , then

fn,j(x) = xan,j+ibn,j = xan,jeibn,j log x,

and we obtain real solutions of (2.1) of the form

xan,j (c cos(bn,j log x) + d sin(bn,j log x)) , c, d ∈ R.
Some results concerning the distribution of the zeros of the exponential

polynomials Pn(z) of the form (2.3) can be seen in [6]. For example, it was
shown that there exist two real numbers x1, x2 such that all the zeros of
Pn(z) are in the strip {z : x1 < Re z < x2} [6, Lemma 5].

Now, we will formalize this process through the vector space A(Ω) of
the analytic functions defined on Ω = C \ (−∞, 0] and the vector subspace
Vn, n ≥ 2, of the analytic solutions defined on Ω of functional equations (2.2).
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We firstly show that Vn is invariant under a certain operator on the space
A(Ω).

Lemma 1. In the space A(Ω), the subspace Vn, n ≥ 2, is invariant under the
linear operator D defined by D(f) := zf ′, where f ′ is the derivative of f .

Proof. Let f be a function of Vn and let g denote the function D(f). Then

w1g(a1z) + w2g(a2z) + . . .+ wng(anz) =

w1a1zf
′(a1z) + w2a2zf

′(a2z) + . . .+ wnanzf
′(anz) =

z(w1f(a1z) + w2f(a2z) + . . .+ wnf(anz))
′ = 0.

Therefore g ∈ Vn and, consequently, D(Vn) ⊂ Vn. �

Theorem 2. Let 0 < a1 < a2 < . . . < an be n ≥ 2 positive real numbers
and wj ∈ C \ {0}, j = 1, 2, . . . , n. The proper vectors of the operator D on
the space A(Ω) are solutions of functional equation (2.2) if and only if the
corresponding proper values are the zeros of exponential polynomial (2.3).

Proof. Let f be a proper vector of D corresponding to a generic proper value
λ. Thus D(f) = λf and f satisfies the equation

zf ′ = λf,

whose solution is

f(z) = Kzλ,

with K an arbitrary constant. Now, the expression

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = Kzλ(w1a
λ
1 + w2a

λ
2 + . . .+ wna

λ
n)

vanishes for any z ∈ Ω if and only if

w1a
λ
1 + w2a

λ
2 + . . .+ wna

λ
n = 0,

that is, if and only if λ is a zero of Pn(z) = w1e
z log a1 + w2e

z log a2 + . . . +
wne

z log an . Hence, the theorem follows. �

Consequently, from the preceding results, we obtain the following im-
portant results.

Corollary 3. Let 0 < a1 < a2 < . . . < an be n ≥ 2 positive real numbers
and wj ∈ C \ {0}, j = 1, 2, . . . , n. For each n ≥ 2, the functions fn,j(z) =
eαn,j Log z, with αn,j belonging to the set of the zeros of Pn(z), defined in
(2.3), are analytic solutions of functional equation (2.2) on Ω.

Corollary 4. Fix an integer number n ≥ 2, let 0 < a1 < a2 < . . . < an be
positive real numbers and wj ∈ C \ {0}, j = 1, 2, . . . , n. Thus every zero of
the exponential polynomial Pn(z) = w1e

z log a1 +w2e
z log a2 + . . .+wne

z log an

generates a vector space of real continuous solutions of functional equation
(2.1).
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Particularly, given a zero of P (z) = 1+ez log a1 +ez log a2 + . . .+ez log an ,
the family of functions on the interval (0,∞) of the form

{cRe(xαn,j ) + d Im(xαn,j ) : c, d ∈ R}
is a vector space of continuous solutions of functional equation (1.3) studied
in [1].

Furthermore, an easy consequence of the previous corollary is that every
real continuous solution f(x) of (2.1) defines a function

h(x) =

 f(x), if x > 0
0, if x = 0
f(−x), if x < 0

which is a continuous solution, except possibly at the point 0, of the functional
equation

w1f(a1x) + w2f(a2x) + . . .+ wnf(anx) = 0, x ∈ R.
Finally, for the particular case that the wj ’s are positive real numbers,

we shall show that any solution of functional equation (2.2) cannot be analytic
at the origin, except the trivial solution f ≡ 0, and the functions fn,j(z) =
zαn,j with αn,j belonging to the set of zeros of Pn(z) are linearly independent
in the vector space A(Ω).

Proposition 5. Let 0 < a1 < a2 < . . . < an be n ≥ 2 positive real numbers
and wj > 0, j = 1, 2, . . . , n. Let f(z) be any non-trivial complex solution of
functional equation (2.2). Then f(z) is not analytic at 0.

Proof. Assume that there exists a solution f(z) of (2.2) which is analytic at 0
and, therefore, analytic on an open set U containing 0. Hence, by considering
the derivatives of all orders of f(z) on U , we have

w1a
m
1 f

(m)(a1z) + w2a
m
2 f

(m)(a2z) + . . .+ wna
m
n f

(m)(anz) = 0

for each non-negative integer m. In particular, for z = 0 we deduce that

(w1a
m
1 + w2a

m
2 + . . .+ wna

m
n )f (m)(0) = 0

and, therefore, f (m)(0) = 0 for all integer m ≥ 0. Consequently, f ≡ 0 and
the proposition follows. �

Proposition 6. Let 0 < a1 < a2 < . . . < an be n ≥ 2 positive real numbers and
wj > 0, j = 1, 2, . . . , n. Then the analytic solutions fn,j(z) = zαn,j of (2.2),
with αn,j belonging to the set of zeros of Pn(z) = w1e

z log a1 + w2e
z log a2 +

. . .+ wne
z log an , are linearly independent in the vector space A(Ω).

Proof. From Corollary 3, observe that the functions fn,j(z) = zαn,j with αn,j
a zero of Pn(z), are analytic solutions of functional equation (2.2) on Ω. Let
αn,1, αn,2, . . . , αn,m be m distinct zeros of Pn(z) with αn,j = an,j + ibn,j ,
j = 1, 2, . . . ,m. Observe that, since Pn(x) 6= 0 for all x ∈ R, then bn :=
max{|bn,j | : j = 1, 2, . . . ,m} > 0. Also, we can determine tn > 1 such that
bn log tn < π. Then, we have that −π < bn,j log tn < π, j = 1, 2, . . . ,m, and
therefore the principal argument of t

αn,j
n is bn,j log tn for each j = 1, 2, . . . ,m.



6 J. M. Sepulcre and T. M. Vidal

Now, consider the numbers cj := tj−1n , j = 1, 2, . . . ,m, and let g1, g2, . . . , gm
denote the power functions zαn,1 , zαn,2 , . . . , zαn,m respectively. Thus the de-
terminant

D =

∣∣∣∣∣∣∣∣∣
g1(c1) g2(c1) · · · gm(c1)
g1(c2) g2(c2) · · · gm(c2)

...
...

. . .
...

g1(cm) g2(cm) · · · gm(cm)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
d1 d2 · · · dm
...

...
. . .

...
dm−11 dm−12 · · · dm−1m

∣∣∣∣∣∣∣∣∣ ,
where dj := t

αn,j
n , j = 1, 2, . . . ,m, is of Vandermonde type and so

D =
∏

k>j(k,j=1,...,m)

(dk − dj).

Finally, since the dj ’s are distinct because they have different arguments
or absolute values, we deduce thatD 6= 0 and the functions fn,j(z) are linearly
independent. �

In particular, we deduce that the set of continuous solutions of particular
case (1.3) is an infinite dimensional vector space, that was also proved in [1,
Theorem 3.1].

3. More general cases

In this section we will handle the more general functional equation

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C, (3.1)

where the wj ’s and also the aj ’s are non-null complex numbers and n ≥ 2 is
an integer number. Our first purpose is to extend the result of Corollary 3 to
this equation.

In this manner, initially, by considering the principal branch of the loga-
rithm function, denoted by Log z, some explicit analytic solutions of (3.1) on
a certain domain included in C\(−∞, 0] will be generated by the exponential
polynomials

Qn(z) = w1a
z
1 + w2a

z
2 + . . .+ wna

z
n. (3.2)

Observe that if aj > 0, j = 1, 2, . . . , n, (the case of functional equation
(2.2)) and z ∈ C \ (−∞, 0], then ajz ∈ C \ (−∞, 0]. Now, if the aj ’s are non-
null complex numbers (not necessarily positive real numbers), this condition
is not assured and we must take neighborhoods of a given point in order to
find analytic solutions of (3.1) on a certain domain included in C \ (−∞, 0].

Theorem 7. Let n ≥ 2 be an integer number and aj , wj ∈ C \ {0}, j =
1, 2, . . . , n. Thus for each z0 ∈ Ω such that ajz0 /∈ (−∞, 0] for j = 1, 2, . . . , n,
the functions fn,j(z) := eαn,j Log z, with αn,j belonging to the set of the ze-
ros of Qn(z), defined in (3.2), are analytic solutions of (3.1) on a certain
neighborhood of z0.
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Proof. Let R−0 denote the set (−∞, 0]. Fix z0 ∈ Ω = C \ R−0 such that
ajz0 /∈ R−0 and define M := max{|a1|, |a2|, . . . , |an|} > 0 and

d := min{d(z0, R
−
0 ), d(a1z0, R

−
0 ), d(a2z0, R

−
0 ), . . . , d(anz0, R

−
0 )} > 0,

where d(·, R−0 ) is the distance function from a point to the set R−0 . Thus, by
taking ε := min{d, dM } > 0, if z ∈ D(z0, ε) := {z ∈ C : |z − z0| < ε} we have
|z − z0| < ε ≤ d and |ajz − ajz0| < ajε ≤ Mε ≤ d for j = 1, 2, . . . , n. Hence
D(z0, ε) ⊂ Ω.

Finally, if fn,j(z) = eαn,j Log z, where αn,j is a zero of Qn(z), and z ∈
D(z0, ε), then

w1fn,j(a1z) + w2fn,j(a2z) + . . .+ wnfn,j(anz) =

w1(a1z)
αn,j + w2(a2z)

αn,j + . . .+ wn(anz)
αn,j =

zαn,j [w1a
αn,j
1 + w2a

αn,j
2 + . . .+ wna

αn,j
n ] =

zαn,jQn(αn,j) = 0

and the result follows. �

Observe that the theorem above requires that z0 ∈ Ω with ajz0 /∈
(−∞, 0] for j = 1, 2, . . . , n, Now, we will generalize this result by obtain-
ing analytic solutions of (2.3) on certain neighborhoods of any point z0 6= 0.
So, given θ ∈ R, let logθ z denote the branch of the logarithm function such
that the argument of z is in [θ, θ+ 2π), that is logθ z = log |z|+ i argθ z, with
argθ the unique argument of z in [θ, θ + 2π). Recall that the function logθ z
is analytic on C \Rθ, where Rθ is the ray {reiθ : r ≥ 0}.

Theorem 8. Let n ≥ 2 be an integer number and aj , wj ∈ C \ {0}, j =
1, 2, . . . , n. Thus for each non-null complex number z0, there exists a real
number θ0 such that the functions fn,j(z) = eαn,j logθ0 z, with αn,j belonging
to the set of the zeros of Qn(z), defined in (3.2), are analytic solutions of
(3.1) on a certain neighborhood of z0.

Proof. Fix z0 ∈ C \ {0} and choose θ0 ∈ [−π, π) such that θ0 6= Arg(z0) and
θ0 6= Arg(ajz0) for j = 1, 2, . . . , n. Now, by following the proof of Theorem
7, we will demonstrate that there exists ε > 0 such that D(z0, ε) ⊂ C \ Rθ0 .
Indeed, let M := max{|a1|, |a2|, . . . , |an|} > 0 and

d := min{d(z0, Rθ0), d(a1z0, Rθ0), d(a2z0, Rθ0), . . . , d(anz0, Rθ0)} > 0

and take ε := min{d, dM } > 0, then if z ∈ D(z0, ε) we have |z − z0| < ε ≤ d
and |ajz − ajz0| < ajε ≤Mε ≤ d and the result follows.

Finally, if fn,j(z) = eαn,j logθ0 z, with αn,j belonging to the set of the
zeros of Qn(z), and z ∈ D(z0, ε) then

w1fn,j(a1z) + w2fn,j(a2z) + . . .+ wnfn,j(anz) =

w1e
αn,j logθ0 (a1z) + w2e

αn,j logθ0 (a2z) + . . .+ wne
αn,j logθ0 (anz) =

eαn,j logθ0 z[w1e
αn,j logθ0 a1 + w2e

αn,j logθ0 a2 + . . .+ wne
αn,j logθ0 an ] =

zαn,jQn(αn,j) = 0
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and, therefore, the functions fn,j(z) are analytic solutions of (3.1) on D(z0, ε).
�

In order to extend this process, let P : C \ {0} × C \ {0} 7−→ R+ × R
denote the application defined as

P (z1, z2) = P (r1e
iβ1 , r2e

iβ2) := (r1r2, β1 + β2),

where z1 and z2 are non-null complex numbers expressed in the form zj =
rje

iβj with rj > 0 and βj = arg−π zj ∈ [−π, π), j = 1, 2. So, now we consider
the functional equation

w1f(P (a1, z)) +w2f(P (a2, z)) + . . .+wnf(P (an, z)) = 0, z ∈ C\{0}, (3.3)

where the wj ’s and the aj ’s are non-null complex numbers and f is an appli-
cation of the form f : R+ × R→ C.

We will also use the function log∗ : R+×R→ C defined as log∗(r, β) :=
log r + iβ.

Theorem 9. Let n ≥ 2 be an integer number and aj , wj ∈ C \ {0}, j =
1, 2, . . . , n. Thus the functions fn,j : R+ × R → C defined as fn,j(r, β) :=

eαn,j log
∗(r,β), with αn,j belonging to the set of the zeros of the exponential

polynomial Qn(z), defined in (3.2), are continuous solutions of functional
equation (3.3) on all the domain C \ {0}.

Proof. Let aj = |aj |eiβj , where βj = arg−π aj is the principal argument of

aj , j = 1, 2, . . . , n. Consider fn,j(r, β) = eαn log∗(r,β), where αn,j is a zero of
Qn(z) and take z = reiβ ∈ C \ {0} with β = arg−π z, then

w1fn,j(P (a1, z)) + w2fn,j(P (a2, z)) + . . .+ wnfn,j(P (an, z)) =

w1e
αn,j log

∗(|a1|r,β1+β) + w2e
αn,j log

∗(|a2|r,β2+β) + . . .+

wne
αn,j log

∗(|an|r,βn+β) =

w1e
αn,j [log(|a1|r)+i(β1+β)] + w2e

αn,j [log(|a2|r)+i(β2+β)] + . . .+

wne
αn,j [log(|an|r)+i(βn+β)] =

eαn,j(log r+iβ)
[
w1e

αn,j(log |a1|+iβ1) + w2e
αn,j(log |a2|+iβ2) + . . .+

wne
αn,j(log |an|+iβn)

]
=

eαn,j(log r+iβ)
[
w1e

αn,j Log a1 + w2e
αn,j Log a2 + . . .+

wne
αn,j Log an

]
=

eαn,j(log r+iβ)Qn(αn,j) = 0

and the theorem follows. �

4. Equivalence classes of functional equations

Now we will define a binary relation on the class of generic functional equa-
tions of the form (3.1).



On the solutions of w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0 9

Definition 10. For each integer number n ≥ 2, let Fn be the set of all func-
tional equations of the form (3.1) with n terms. We will say that two func-
tionals equations in Fn,

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C,

and

v1f(b1z) + v2f(b2z) + . . .+ vnf(bnz) = 0, z ∈ C,
are equivalent when there exist γ ∈ C and c ∈ C \ {0} such that vj = cwj and
bj = aje

γ for each j = 1, 2, . . . , n.

Note that the binary relation defined above on the class Fn is clearly
an equivalence relation.

We showed in Theorems 7 or 8 that the zeros of the exponential polyno-
mials Qn(z) of the form (3.2) provide solutions of functional equation (3.1) on
certain domains of the complex plane. Now we will prove that two exponen-
tial polynomials which are associated to two equivalent functional equations
have the same set of zeros.

In this sense, given Qn(z) an exponential polynomial of the form (3.2)
let Z(Qn) denote the set {z ∈ C : Qn(z) = 0} of the zeros of Qn(z).

Proposition 11. For each n ≥ 2, two equivalent functional equations in Fn
have associated two exponential polynomials with the same set of zeros.

Proof. Let

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C,

and

v1f(b1z) + v2f(b2z) + . . .+ vnf(bnz) = 0, z ∈ C,
be two equivalent functional equations in Fn and c, γ ∈ C, with c 6= 0, such
that vj = cwj and bj = aje

γ for each j = 1, 2, . . . , n. Thus, from Theorems 7
and 8, their associated exponential polynomials are

Q(z) = w1a
z
1 + w2a

z
2 + . . .+ wna

z
n

and

R(z) = v1b
z
1 + v2b

z
2 + . . .+ vnb

z
n,

respectively. Now, by taking the conditions of the coefficients into account,
note that R(z) = ceγzQ(z) and, since ceγz has no zeros, then the sets Z(Q)
and Z(R) are the same. �

As a corollary, the sets of the analytic solutions of equivalent func-
tional equations, that are generated by the associated exponential polynomi-
als Qn(z) of the form (3.2), are the same.

Corollary 12. Given an integer number n ≥ 2, the sets of solutions of the
form fn,j(z) that appear in Theorems 7 or 8 of two equivalent functional
equations in Fn are the same.

The converse of Proposition 11 is also true.
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Proposition 13. Two exponential polynomials of the form (3.2) with the same
set of zeros have associated two equivalent functional equations in Fn for some
integer number n ≥ 2.

Proof. Suppose that Q(z) and R(z) are two exponential polynomials so that
Z(Q) = Z(R) = {z1, z2, . . . , zl, . . .} and their zeros have associated the same
multiplicity. Then, by Hadamard factorization theorem [2, Theorem 4.4.3],
we have

Q(z) = zkeAQz+BQH(z) (4.1)

and

R(z) = zkeARz+BRH(z) (4.2)

with k the order of the zero at z = 0, AQ, AR, BQ, BR ∈ C and H(z) =∏
l≥1

Eh

(
z

zl

)
for some integer number h depending on the exponent of con-

vergence of {zl}, where

Eh(z) =

{
1− z if h = 0

(1− z) exp
(
z + z2

2 + . . .+ zh

h

)
if h ≥ 1

.

Furthermore, from (4.1) and (4.2), we have

Q(z) =
R(z)

eARz+BR
eAQz+BQ ,

i.e.

Q(z) = eγzcR(z),

where c = eBQ−BR and γ = AQ −AR. Therefore, if Q(z) is of the form

w1a
z
1 + w2a

z
2 + . . .+ wna

z
n,

which is associated to the functional equation

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C, (4.3)

then

R(z) = cw1a
z
1e
γz + cw2a

z
2e
γz + . . .+ cwna

z
ne
γz

and it is associated to the functional equation

v1f(b1z) + v2f(b2z) + . . .+ vnf(bnz) = 0, z ∈ C, (4.4)

with vj = cwj and bj = aje
γ for each j = 1, 2, . . . , n. Consequently, functional

equations (4.3) and (4.4) are equivalent in Fn and the result follows. �

Furthermore, the equivalent functional equations in Fn have the same
set of solutions defined on all domain C.

Proposition 14. For each integer number n ≥ 2, two equivalent functional
equations in Fn have the same solutions defined on C.
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Proof. Let

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C, (4.5)

and

v1f(b1z) + v2f(b2z) + . . .+ vnf(bnz) = 0, z ∈ C, (4.6)

be two equivalent functional equations in Fn and c, γ ∈ C, with c 6= 0, such
that vj = cwj and bj = aje

γ for each j = 1, 2, . . . , n. Firstly, let f1(z) be a
solution of (4.5), defined on C, then f1(z) satisfies (4.6) if and only if

cw1f1(a1e
γz) + cw2f1(a2e

γz) + . . .+ cwnf1(ane
γz) = 0,

which, by replacing z by z
eγ , is equal to

w1f1(a1z) + w2f1(a2z) + . . .+ wnf1(anz) = 0,

which is true. Conversely, let f2(z) be a solution of (4.6), defined on C, then
f2(z) satisfies (4.5) if and only if

v1
c
f(b1e

−γz) +
v2
c
f(b2e

−γz) + . . .+
vn
c
f(bne

−γz) = 0,

which, by replacing z by zeγ , is equal to

v1f2(b1z) + v2f2(b2z) + . . .+ vnf2(bnz) = 0,

which is true. �

Given n ≥ 2, let

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C,

be a functional equation in Fn and Qn(z) = w1a
z
1 + w2a

z
2 + . . . + wna

z
n the

exponential polynomial associated to it. As you can see above, the (analytic
and non-analytic) solutions defined on C of equivalent functional equations
in Fn are the same. For example, the functions

gn,j(z) =

{
eαn,j Log z if z 6= 0
0 if z = 0

,

with αn,j belonging to the set of the zeros of Qn(z), are solutions defined
on C of the functional equation above, but they are also solutions of any
equivalent functional equation

v1f(b1z) + v2f(b2z) + . . .+ vnf(bnz) = 0, z ∈ C,

with γ ∈ C and c ∈ C \ {0} such that vj = cwj and bj = aje
γ for each

j = 1, 2, . . . , n.
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