
 

 

 

 

PUBLICADO EN THE JOURNAL OF MATHEMATICAL BEHAVIOR 

 

Fernández, C., De bock, D., Verschaffel, L. & Van Dooren, W. (2014). Do students 

confuse dimensionality and “directionality”? The Journal of Mathematical Behavior, 36, 

166-176. 

HTTP://DX.DOI.ORG/10.1016/J.JMATHB.2014.07.001 

 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32325439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jmathb.2014.07.001


DO STUDENTS CONFUSE DIMENSIONALITY AND “DIRECTIONALITY”? 

Ceneida Fernández
a
, Dirk de Bock

b
, Lieven Verschaffel

b
, & Wim Van Dooren

b
 

  
a
University of Alicante (Spain) 

b
University of Leuven (Belgium) 

Ceneida Fernández (corresponding author) 

Ceneida.fernandez@ua.es 

Departamento de Innovación y Formación Didáctica. Universidad de Alicante. Ap. de Correos, 

99. 03080. Alicante. España. Tel: +34965903400 ext. 2028. 

 

Dirk de Bock 

Dirk.debock@kuleuven.be 

KU Leuven, Faculty of Economics and Business, Center for Business Management Research, 

Warmoesberg 26, B-1000 Brussels, Belgium, Tel: +3216604250. 

 

Lieven Verschaffel 

Lieven.verschaffel@ppw.kuleuven.be 

KU Leuven, Faculty of Psychology and Educational Sciences, Center for Instructional 

Psychology and Technology, Dekenstraat 2 - box 3773, B-3000 Leuven, Belgium, Tel: 

+3216326258. 

 

Wim Van Dooren 

Wim.vandooren@ppw.kuleuven.be 

KU Leuven, Faculty of Psychology and Educational Sciences, Center for Instructional 

Psychology and Technology, Dekenstraat 2 - box 3773, B-3000 Leuven, Belgium, Tel: 

+3216325755. 

 

Abstract. The aim of this research is to understand the way in which students struggle with the 

distinction between dimensionality and “directionality” and if this type of potential confusion 

could be a factor affecting students’ tendency towards improper linear reasoning in the context 

of the relations between length and area of geometrical figures. 131 9th grade students were 

confronted with a multiple-choice test consisting of six problems related to the perimeter or the 

area of an enlarged geometrical figure, then some interviews were carried out to obtain 

qualitative data in relation to students’ reasoning. Results indicate that more than one fifth of 

the students’ answers could be characterized as based on directional thinking, suggesting that 

students struggled with the distinction between dimensionality and “directionality”. A single 

arrow showing one direction (image provided to the students) seemed to strengthen the 

tendency towards improper linear reasoning for the area problems. Two arrows showing two 

directions helped students to see a quadratic relation for the area problems.  

Keywords. Dimensionality, linear reasoning, area and perimeter, secondary level. 

 

 

mailto:Ceneida.fernandez@ua.es
mailto:Dirk.debock@kuleuven.be
mailto:Lieven.verschaffel@ppw.kuleuven.be
mailto:Wim.vandooren@ppw.kuleuven.be


  

1. INTRODUCTION 

We report a study aimed at expanding our scientific knowledge on a systematic error that is 

committed by numerous students of a variety of ages in very diverse mathematical and 

scientific domains, namely the unwarranted application of proportionality or linearity in 

non-linear problem situations, a tendency sometimes referred to as the “illusion of linearity” 

(Van Dooren, De Bock, Janssens, & Verschaffel, 2008). Research has shown that this tendency 

is persistent to change by instruction. Van Dooren, De Bock, Hessels, Janssens, and 

Verschaffel (2004) developed and implemented a lesson series with the aim to break 9th 

graders’ tendency to give linear responses in non-linear situations, more specifically in the 

context of the relationships between the linear measures of a figure and its perimeter, area and 

volume. They found that non-linear relations and the effect of enlargements on area and volume 

remained intrinsically difficult and counterintuitive for many students even after extensive 

instructional attention.  

However, in the same study, it was shown that students who, by the end of the lesson series, 

finally understood that the length-area relationship is quadratic, suddenly started to doubt about 

the nature of the linear length-perimeter relationship. The authors exemplified this with a 

striking question raised by a student in the final lesson:  

“I really do understand now why the area of a square increases 9 times if the sides are tripled 

in length, since the enlargement of the area goes in two dimensions. But suddenly I start to 

wonder why this does not hold for the perimeter. The perimeter also increases in two 

directions, doesn’t it?” (Van Dooren et al., 2004, p. 496).  

This quote suggests that the student struggled with the distinction between dimensionality and 

“directionality” (the perimeter of a square is one-dimensional, but it has two “directions”). Of 

course, “directionality” is not a genuine mathematical term, but we use it for referring to the 



different directions a geometrical (plane) figure can have. For example, a triangle has three 

directions, a square has two directions (if we assume that parallel sides have the same 

direction), and a regular pentagon has five directions. In this study we investigate if the 

potential confusion between dimensionality and “directionality” could be a factor affecting 

students’ tendency towards improper linear reasoning. 

In the next section we first present an overview of the literature on the illusion of linearity. We 

focus on the domain of geometry where previous studies have evidenced that students tend to 

treat the relations between length and area or between length and volume as linear instead of, 

respectively, quadratic and cubic. Second, we summarize the scarce literature on the concept of 

dimensionality since it plays an important role in the principle governing the relation between 

the perimeter and the area of an enlarged or reduced geometrical figure. Although studies on 

this concept are rare, it is shown that students commonly struggle with understanding 

dimensionality. 

2. THEORETICAL AND EMPIRICAL BACKGROUND  

2.1. The illusion of linearity 

Linearity is a powerful tool to model real-life situations, even if these situations are only 

approximately linear. For that reason, one major goal of mathematics education at all levels is 

to obtain both procedural fluency and conceptual understanding of linearity in its variety of 

forms and applications (Cramer, Post, & Currier, 1993; Kalchman, & Koedinger, 2005). 

However, the educational attention that goes to linearity at numerous occasions in students’ 

school careers, along with the intrinsically simple and intuitive nature of the linear model 

(Rouche, 1989), has a serious drawback:  It may lead to a tendency in students to see and apply 

linearity anywhere, thus also in situations that are not linear at all. Already in 1983, Freudenthal 



  

warned for that pitfall: “Linearity is such a suggestive property of relations that one readily 

yields to the seduction to deal with each numerical relation as though it were linear” (p. 267).  

Examples of the misuse of linearity can be found at different age levels and in various 

mathematical and scientific domains (Fernández, Llinares, Van Dooren, De Bock, & 

Verschaffel, 2012; for a review, see Van Dooren, De Bock, Janssens, & Verschaffel, 2008). For 

instance, in a study on arithmetic word problems solving by Cramer, Post and Currier (1993), 

32 out of 33 pre-service elementary school teachers answered by means of a proportion 

(9/3 = x/15) to the problem “Sue and Julie were running equally fast around a track. Sue 

started first. When she had run 9 laps, Julie had run 3 laps. When Julie completed 15 laps, how 

many laps had Sue run?” More recently, Van Dooren, De Bock, Hessels, Janssens, and 

Verschaffel (2005) observed that Flemish primary school pupils’ performance on linear word 

problems considerably improved from 3rd to 6th grade. But they also observed that during the 

same period, pupils’ tendency to over-use linear methods to non-linear problems increased 

accordingly: Whereas in 3rd grade 30% of all non-linear problems were solved linearly, this 

percentage increased until 51% in 6th grade. This tendency has been confirmed by Fernández, 

Llinares, Van Dooren, De Bock, and Verschaffel (2011) with Spanish secondary school 

students: Whereas 7th and 8th grade students were more successful in solving non-linear 

problems, 9th and 10th grade students were more successful in solving linear ones. 

Furthermore, a (re-)analysis of both well-known and less-known probabilistic misconceptions 

by Van Dooren, De Bock, Depaepe, Janssens, and Verschaffel (2003) showed that these are 

often interpretable in terms of improper applications of linearity. A typical example is students’ 

belief that the probability of at least one success in a game of chance is directly proportional to 

the number of trials. In the domain of calculus, an example of the over-use of linearity related to 

university students was provided by Esteley, Villarreal, and Alagia (2004): 62% of students 

involved in a first calculus course responded linearly with respect to the increase of the height 



as a function of time, instead of taking into account the exponential character of this growth 

process in the problem: “If a plant measures 30 cm at the beginning of an experiment, and its 

height increases 50% monthly, how much will it measure after 3 months?”.  

This paper focuses on students’ misuse of linearity in geometry. In this domain, one of the 

best-known and most frequently investigated cases relates to application problems about the 

effect of an enlargement or reduction of a figure on its area or volume. The principle governing 

this type of problems is that an enlargement or reduction with factor k enlarges all lengths (and 

thus also the perimeter) with factor k, the area with factor k
2
, and – for a solid – the volume with 

factor k
3
. A crucial aspect in understanding this principle is the insight that these factors only 

depend on the dimensions of the magnitudes involved (length, area, and/or volume) and not on 

the type of figure (square, triangle, circle, cube,…). When the sides of a triangle are tripled, the 

perimeter of the triangle is tripled too, but its area is multiplied by 9. According to Freudenthal 

(1983), this mathematical principle is “so fundamental, that, phenomenologically and 

didactically, it should be put first and foremost. This fact rather than formulae for 

circumferences, areas and volumes, should be primary” (p. 267). 

2.2. Empirical research within the domain of geometry 

During the last two decades, students’ tendency to treat relations between length and area or 

between length and volume as linear instead of, respectively, quadratic and cubic, has been 

extensively studied (e.g., De Bock, Verschaffel, & Janssens, 1998; Gagatsis, Modestou, Elia, & 

Spanoudes, 2009; Modestou, Gagatsis, & Pitta-Pantazi, 2004; Tierney, Boyd, & Davis, 1990). 

Tierney et al. (1990) observed in their research on the area concept in prospective elementary 

school teachers that “in responding to questions about the effect of halving or doubling the 

lengths of the sides of a square, most students said that the area was also halved or doubled” 

(p. 308).   



  

In two exploratory studies by De Bock et al. (1998), 7th and 10th grade students were 

administered paper-and-pencil tests with linear and non-linear word problems related to 

lengths, perimeters and areas of different types of plane figures (squares, circles, and irregular 

figures). An example of a (non-linear) area problem is the following: “Farmer Carl needs four 

hours to fertilise a square piece of land with a side of 200 m. How many hours would he 

approximately need to fertilise a square piece of land with a side of 600 m?” More than 90% of 

the 7th graders and more than 80% of the 10th graders failed on area problems because they 

applied linear methods. It was also observed that the type of geometrical figure involved in the 

problem had an influence on the tendency to give linear answers: Students performed better on 

problems about a regular figure than on problems about an irregular figure.  

Gagatsis et al. (2009) presented geometrical word problems concerning the perimeter, area and 

volume of different figures to 653 students of grades 9 and 10. Problems were presented in 

three groups and each group of problems was accompanied by a given number. Students had to 

choose the problem that was appropriate for the given number. Each group of problems 

consisted of one “appropriate-usual problem”, which was appropriate for the given number, 

one “pseudo-proportional problem”, where linear reasoning would lead to the given number, 

and one “unusual problem”, which had many solutions. Results showed a strong tendency in 

the 9th grade students to apply linearity. For these students the pseudo-proportional problems 

were almost of the same nature as the appropriate-usual problems. However the 10th grade 

students started to differentiate their ways of interpreting and understanding this kind of 

problems.  

Other studies focussed on attempts to break the “illusion of linearity”. The intervention study 

by Van Dooren et al. (2004) that was already mentioned in the introduction has shown that even 

after instruction, the illusion remains a persistent obstacle for many students. By the end of a 

concentrated and systematic instructional action, some students who finally understood that the 



length-area relationship is quadratic, suddenly started to doubt about the nature of the linear 

length-perimeter relationship, likely because of their struggling with the distinction between 

dimensionality and “directionality” (see the quote in the introduction). Therefore, we wondered 

if the confusion between dimensionality and “directionality” could be a factor affecting 

students’ tendency towards improper linear reasoning. In the next section we present a 

theoretical and empirical background related to the concept of dimensionality. 

2.3. Dimensionality  

Although dimensionality is crucial to many parts of mathematics and science, research about 

this concept is rare. Freudenthal (1983) stated that “dimension is an indispensable tool if 

magnitudes and their mutual relations are at stake” (p. 266). He pointed out that in measuring 

magnitudes it is critical to know what kind of magnitudes they are (length, area, volume…), and 

at this point the dimension has an important role: What dimensions does the object to be 

measured have? Moreover, it should be stressed for didactical reasons that “the behavior of 

geometric measures under geometrical multiplication depends on the dimension” (p. 267). 

Area measurement is particularly interesting because it involves the coordination of two 

dimensions. There is extensive evidence that both primary and secondary school students have 

inadequate understanding of area and area measurement. For example, Carpenter et al. (1988) 

showed that almost half of a sample of 7th grade students could calculate the area of a rectangle 

when given both dimensions; however, only 13% applied their knowledge of the area formula 

to a square, even when they knew that the sides of a square are equal. Anderson and Cuneo 

(1978) concluded from their experiments that 5-year-old children use an adding rule to 

calculate perceived area from perceived height and width. In this erroneous rule for judging 

area (height + width rule), the two dimensions are combined additively instead of 

multiplicatively.   



  

The experiential origin of the area formula is the action of physically covering a rectangle with 

unit squares. But whereas this action is one-dimensional and involves an iterative additive 

process, the formula is two-dimensional and multiplicative. Outhred and Mitchelmore (1996) 

showed that when students were drawing squares (the unit to measure the rectangle’s area) to 

cover a rectangle, many first graders did not see the importance of joining the units so that there 

were no gaps, and drew units individually. Until students began to join the units in two 

dimensions, they did not usually align rows and columns. Before drawing arrays using only 

lines, some students drew lines across the width of the rectangle to indicate rows and marked 

off the units in each row individually while others drew some individual units (usually the top 

row and the left column) as a guide for drawing the array. So, drawing lines in one dimension 

appeared to be a precursor to recognise rows as composite units. Such recognition helped 

students to perceive that squares could be constructed by joining lines in the other direction, and 

hence realise the two-dimensional structure of an array. In another study, Outhred and 

Mitchelmore (2000) focused on understanding the relationship between the size of the array 

and the linear dimensions of the rectangle in which it is enclosed. They found that, although the 

fact that the number of units in the array must depend on the measurements of the sides may 

seem self-evident to adults, it is clearly not obvious to children. 

Mathematics education researchers have suggested that understanding area measurement and 

interpreting the area formula for a rectangle presumes multiplicative reasoning about the two 

lengths (Battista, Clements, Arnoff, Battista, & Van Auken Borrow, 1998). Huang (2010) 

concluded that young students do not seem to completely comprehend the meanings of the 

operation of multiplication and this weakness may hinder students’ further understanding of the 

area formula for a rectangle. Therefore, it is noteworthy that to understand an array structure, 

which is generated from the process of iterating a square unit on the region of a rectangle, an 



advanced connection between the work of tiling the dimensions of a rectangle to rectangular 

arrays and multiplication is required (Huang, 2010, p. 119).  

2.4. Problem statement 

There is quite some evidence showing that students struggle to understand dimensionality. A 

major claim underlying the present study is that one reason for that struggle is that students 

confuse the dimensions of an object or magnitude with its “directions”. As we said in the 

introduction section, we use the term “directionality” for referring to the different directions a 

geometrical plane figure can have. For instance a square has two directions (if we assume that 

parallel sides have the same direction) but the perimeter is one-dimensional. We have not 

encountered any previous research making this claim. Therefore, in this study, we will 

empirically investigate the existence and impact of this potential confusion.  

So, the aim of this research is to unravel the extent to which and the way in which students 

struggle with the distinction between dimensionality and “directionality” and how this may 

affect their tendency towards improper linear reasoning in the context of the relations between 

length and area of enlarged geometrical figures. 

3. METHOD AND HYPOTHESES 

For the purpose of this study, a collective paper-and-pencil test was administered to 131 9th 

grade secondary school students (14-15-years-olds) from four Spanish schools. To obtain 

qualitative information on students’ reasoning, we afterwards conducted individual interviews 

of 21 new and randomly chosen 9th grade students from three different schools. These 

interviews were audiotaped. As we applied a multiple-choice response format for the test 

problems, without asking any justification, the interviews provided us with valuable 

information about students’ reasoning processes.  



  

3.1. Design of the paper-and-pencil test 

The test consisted of six problems related to the perimeter and the area of an enlarged figure: 

Two problems were about an equilateral triangle (one related to its perimeter and the other to its 

area), two problems were about a square (again, one related to its perimeter and the other to its 

area), and two problems were about a regular pentagon (again, one related to its perimeter and 

the other to its area). For each problem, students had to choose the correct answer from three 

given alternatives. Independent of whether it was an area or a perimeter problem, each problem 

was accompanied with the same answer alternatives. The first and second alternatives 

(alternatives a and b in the test) were selected taking into account the common difficulties of 

students when they relate lengths and areas and the third (alternative c) was selected taking into 

account the idea of “directionality”.  

 Alternative a (linear) was based on the linear reasoning that if the sides of a figure are 

doubled, the perimeter is doubled (correct) and the area is doubled too (incorrect).  

 Alternative b (quadratic) was based on the claim that if the sides of a figure are doubled, 

student may think that the perimeter is multiplied by four (incorrect) and the area too 

(correct).  

 Alternative c (directional) was based on the idea of directionality. For instance, if the 

sides of an equilateral triangle are doubled (three directions), the perimeter or area of 

the enlarged figure will become 3 × 2 = 6 times larger (incorrect).  

Problems were formulated in a missing-value format, just like in previous investigations on 

students’ improper linear reasoning (De Bock et al., 1998; Fernández et al., 2012) and we asked 

for the perimeter or the area in an indirect way, i.e. by using a variable that is proportionally 

related to the perimeter or area. Previous research elicited no significant differences between 



students’ performance on proportional or non-proportional problems involving direct or 

indirect measures (Van Dooren, De Bock, De Bolle, Janssens, & Verschaffel, 2003). 

Furthermore in all problems we used regular figures. Examples of the two items about an 

equilateral triangle are given in Figure 1.   

 

Figure 1: Area and perimeter problems related with the equilateral triangle 

As we were interested in how “directionality” would affect students’ answers, we designed 

three different versions of the test (test conditions): D1, D2, and D3. Each test condition 

differed with respect to the images that were shown to the students. In the D1 condition, one 

arrow with two heads was provided (Figure 1). In the D2 condition, two double-headed and 

perpendicularly oriented arrows were provided and, finally, in the D3 condition no arrows were 

given (Figure 2). Our hypotheses were, first, that the single arrow in the D1 condition might 

help students to apply a linear relation for the perimeter problems (Hypothesis 1A), but might at 

the same time strengthen the tendency towards improper linear reasoning for the area problems 



  

(Hypothesis 1B). Second, we hypothesized that the two arrows in the D2 condition might help 

students to apply the quadratic relation for the area problems (Hypothesis 2A), but put them on 

the wrong track for the perimeter problems (Hypothesis 2B). Third, in the D3 condition, 

because of the absence of any extra arrow(s), only the different directions in the figure might 

lead to responses in which the number referring to these different directions is used (Hypothesis 

3). Fourth, we wondered if the type of figure (triangle, square, or pentagon) would have an 

effect on the occurrence of directional answers. 

 

Figure 2: Images given in the different versions of the test (test condition) 

Participants were randomly divided in the three test conditions: Forty-three participants 

answered the D1 version of the test, 44 the D2 version, and 44 the D3 version. In each 

condition, problems were put in six different orders. The three versions of the tests as well as 

the different orders were randomly distributed among the participants. Students received 

between 10 and 15 minutes to complete the test, which was sufficient for all of them.  

3.2. Design of the interview 

The interview consisted of three phases. In the first phase, the 21 students who participated in 

the interview had to solve individually the paper-and-pencil test described in section 3.1, and 

immediately afterwards they were asked to provide justifications for their answers to the six 

problems (second phase). Seven participants were interviewed with the D1 version, seven with 

the D2 version, and seven with the D3 version of the test. After the student had provided the 



requested justifications, the third phase proceeded in two different ways depended on how they 

behaved in phase 2: 

 If the student had not provided any directional justification, we tried to get more explicit 

information about his thinking by confronting him with the answer of another student: 

“A classmate has chosen alternative c for this problem, do you think it is correct?” 

and, if he answered negatively, we proceeded with a follow-up question: “Why do you 

think this classmate has chosen that alternative?”. We asked these questions for all six 

items. 

 If the student had provided directional justifications, we gave him two extra problems 

(one area and one perimeter problem) using a new geometrical figure: a parallelogram 

where the number of dimensions (two dimensions) coincides with the number of 

directions (two directions). These extra problems were given in the format of the test 

that the student had previously solved (D1, D2 or D3 version). In Figure 3 we show the 

perimeter problem for the D1 version.  

 

Figure 3:  Perimeter problem about a parallelogram (D1 condition of the test) 



  

3.3. Analysis 

The answers from group of 131 9th grade secondary school students on the collective 

paper-and-pencil test were classified as linear (if a student chose alternative a), as quadratic (if 

a student chose alternative b), or as directional (if a student chose alternative c). Results were 

statistically analysed by means of a repeated measures logistic regression analysis using the 

generalized estimating of equations (GEE).  

Data from the 21 interviews were analysed descriptively and qualitatively, since the limited 

number of participants in the three interview conditions did not allow a systematic statistical 

analysis. All interviews were transcribed and then, we selected and analysed the transcripts in 

which students gave justifications for directional answers.The main goal of the interviews was 

to provide us with qualitative information about the nature of students’ directional reasoning. 

Particularly, these data were meant to support the results obtained from the statistical analysis 

of the test results and for providing us with fine-grained information about students’ confusion 

between dimensionality and “directionality”. 

4. RESULTS 

We first present the results of the statistical analysis describing the general trends in students’ 

success rates on the perimeter and area problems in each test condition; presenting the effects of 

the test condition on linear, quadratic and directional answers and linking these results to our 

three hypotheses; and discussing the effect of the type of figure on linear, quadratic and 

directional answers. Second we present the results obtained from the interviews. 

 

 



4.1. Results of the collective paper-and-pencil test  

4.1.1. Description of the general trends 

Table 1 shows the percentages of students’ correct answers for each type of problem and test 

condition. Students were generally much more successful on perimeter problems (66.8%) than 

on area ones (15.2%). The repeated measures logistic regression analysis revealed that the 

variable type of problem (area or perimeter problems) had a significant main effect on students’ 

success showing that this difference was significant, χ²(1, N=131)=53.843, p<0.001, in the 

sample as a whole as well as in each of the three test conditions. Although there was not a 

significant type of problem and test condition interaction effect, χ²(2, N=131)=1.521, p=0.467, 

Table 1 suggests that students were more successful on area problems in the D2 condition 

(18.2%) than on area problems in the D1 condition (10.8%) and in the D3 condition (16.7%). 

Table 1. Percentages of students’ correct answers for each type of problem (A= Area problems, 

P = Perimeter problems) and test condition (D1, D2, and D3) 

 

 D1 D2 D3 

A 10.8 18.2 16.7 

 

<
 

<
 

<
 

P 60.5 62.1 78.0 

 

4.1.2. Effects of test condition on linear, quadratic and directional answers 

Table 2 shows the percentages of linear, quadratic, and directional answers for the three test 

condition. Results clearly confirm students’ tendency towards improper linear reasoning. As 

shown in Table 2, 66.7% of the answers on the area problems in the D1 condition, 57.6% of the 

answers on the area problems in the D2 condition, and 65.9% of the answers on the area 

problems in the D3 condition were linear ones.  



  

Table 2. Percentages of linear, quadratic and directional answers in the three test condition 

(correct answers are in bold).  

 D1 D2 D3 

Answer P A Total P A Total P A Total 

Linear 60.5 66.7 63.6 62.1 57.6 59.8 78.0 65.9 72.0 

Quadratic 17.0 10.8 13.9 11.4 18.2 14.8 7.6 16.7 12.1 

Directional 22.5 22.5 22.5 26.5 24.2 25.4 14.4 17.4 15.9 

 

As we hypothesized (Hypothesis 1B), the single arrow in the D1 condition seemed to 

strengthen the tendency towards improper linear reasoning: Students gave more linear answers 

on the area problems in the D1 condition (66.7%) than on the area problems in the D2 condition 

(57.6%), however pairwise comparisons showed that this difference was not significant 

(p=0.147). Furthermore, and contrary to Hypothesis 1A, the D1 condition did not seem to help 

students to apply a linear relation for the perimeter problems: Students gave more linear 

answers on the perimeter problems in the D2 condition (62.1%) and in the D3 condition (78%) 

than on the perimeter problems in the D1 condition (60.5%). So, the effect of the single arrow 

on the use of linear answers on the perimeter problems proved to be negative.     

In contrast, the two double-headed arrows in the D2 condition seemed to be helpful to find the 

correct answer on the area problems: Students gave more quadratic answers on the area 

problems in the D2 condition (18.2%) than on the area problems in the D1 condition (10.8%) 

but, once again, this difference was not significant (p=0.061) (Hypothesis 2A). Furthermore, 

the repeated measures logistic regression analysis revealed a significant type of problem (area 

vs. perimeter) and test condition (D1, D2, or D3) interaction effect on the incorrect choice for 

the quadratic answer, χ²(2, N=131)=19.080, p<0.001, due to the fact that students gave 

significantly less incorrect quadratic answers on the perimeter problems in the D2 condition 

(11.4%) than on the perimeter problems in the D1 condition (17.0%). So, contrary to 



Hypothesis 2B, the two doubled-headed arrows did not put students on the wrong track for the 

perimeter problems. 

Furthermore, 21.3% of all answers were directional (mean of the three test condition; 22.5% in 

the D1 condition, 25.4% in the D2 condition, and 15.9% in the D3 condition). Although this is 

not a high percentage, especially given that it was obtained in a multiple-choice testing setting, 

it suggests that in about one fifth of the cases participants may have struggled with the 

distinction between dimensionality and “directionality”. However, contrary to our Hypothesis 

3, this result was independent from the test condition, since the different ways in which the 

problems were presented in the three conditions did not significantly influence students’ 

tendency to respond directionally (χ²(2, N=131)=2.917, p=0.233). We will explore this further 

in the interview data. 

 

4.1.3. Effect of the type of figure on linear, quadratic and directional answers 

We also analyzed the effect of type of figure (triangle, square, or pentagon) on the occurrence 

of directional answers. Table 3 shows the percentages of linear, quadratic and directional 

answers for each of the three types of figures (there are no significant differences between the 

different test conditions). 

Table 3: Percentages of linear, quadratic and directional answers for each figure 

 Linear Quadratic Directional 

Triangle 68.32 19.85 17.56 

Square 60.31 14.12 25.57 

Pentagon 66.79 13.36 19.85 

 

The repeated measures logistic regression analysis showed that the variable type of figure 

(square, pentagon, or triangle) had a significant effect on the occurrence of directional answers, 



  

χ²(2, N=131)=23.301, p<0.001. Pairwise comparisons indicated that both the square-pentagon 

and the square-triangle difference were significant (while the pentagon-triangle difference was 

not significant): Students gave more directional answers for the square figure (25.57%) than for 

the pentagon or triangle (19.85% and 17.56%, respectively).  

4.2. Results of the interview 

The answers of the 21 participants on the six problems of the paper-and-pencil test supported 

the results of the collective paper-and-pencil test with respect to the directional answer, since 

10 out of the 21 interviewed students (two who were interviewed with the D1 version, four with 

the D2 version and four with the D3 version) strongly tended to the directional alternatives. 

Four of these 10 students always opted for the “directional” answer (on the area and perimeter 

problems for all the figures), three of them gave directional answers on the perimeter problems 

of all the figures, two of them gave directional answers on the perimeter problem about the 

square, and one gave directional answers on the perimeter and area problems about the square. 

So 37 of the 126 answers (21 students × 6 problems) were directional (i.e., 29.4% of all 

answers). The remaining 11 students gave linear or quadratic answers. 

Furthermore, students’ explanations provided evidence supporting their struggle with the 

distinction between dimensionality and “directionality”. The explanations of the 10 students 

who had chosen for alternative c (directional answer) in some (six students) or all problems 

(four students) were based on “the number of sides”, referring to the number of directions (the 

justifications of all of the 37 directional answers), as illustrated in an interview excerpt of 

student A who chose alternative c (directional answer) for all problems: 

Interviewer: Why did you choose alternative c (6 × 5 × 2 = 60 kg) for that problem? 

[Interviewer refers to the problem: To fertilise a piece of land in the form of a regular 

pentagon with a side of 60 m, a farmer needs 6 kg of fertilizer. If the farmer has to 



fertilise a piece of land in the form of a regular pentagon with a side of 120 m, the 

amount of fertilizer he will need is approximately…] 

Student A: Because 120 m is the double of 60 m. So we have to take the double of 6 kg 

and multiply this by the number of sides of the pentagon (five sides).  

Interviewer: And why did you choose alternative c (300 × 3 × 2 = 1800 kg) in that 

problem? [Interviewer refers to the problem: The weight of an iron fence around a lawn 

in the form of an equilateral triangle with a side of 8 m is 300 kg. Then the weight of an 

iron fence of the same type around a lawn in the form of an equilateral triangle with a 

side of 16 m is approximately…]  

Student A: Because 16 is the double of 8, so if the weight of an iron fence is 300 kg 

initially, we have to take the double and then multiply this by the three sides of the 

equilateral triangle. 

Interviewer: And why did you choose alternative c (200 × 2 × 3 = 1200 kg) in that 

problem? [Interviewer refers to the problem: The weight of an iron fence around a lawn 

in the form of a square with a side of 6 m is 200 kg. Then the weight of an iron fence of 

the same type around a lawn in the form of a square with a side of 18 m is 

approximately…]  

Student A: Because 18 is the triple of 6, so if the weight of an iron fence is 200 kg 

initially, we have to take the triple and then multiply this by the two sides that the square 

enlarges”. 

Student A seems to think the perimeter’s and the area’s increase depends on the number of sides 

of that figure (different directions) instead of taking into account that the perimeter is a 

one-dimensional magnitude and the area is a two-dimensional magnitude. 

Another illustration can be found in the following interview excerpt of student B who chose 

alternative c (directional answer) for the perimeter problems, but gave correct (quadratic) 

answers on the area problems.  

Interviewer: why did you choose alternative c (300 × 3 × 2 = 1800 kg)? [Interviewer 

refers to the problem: The weight of an iron fence around a lawn in the form of an 

equilateral triangle with a side of 8 m is 300 kg. Then the weight of an iron fence of the 

same type around a lawn in the form of an equilateral triangle with a side of 16 m is 

approximately…] 

Student B: As 16 is the double of 8, we have to multiply 300 kg by two and by three 

because the triangle has three sides. 



  

Interviewer: why did you choose alternative b (6 × 2
2
 = 24 kg)? [Interviewer refers to 

the problem: To fertilise a piece of land in the form of a regular pentagon with a side of 

60 m, a farmer needs 6 kg of fertilizer. If the farmer has to fertilise a piece of land in the 

form of a regular pentagon with a side of 120 m, the amount of fertilizer he will need is 

approximately…] 

Student B: You have to obtain the area is that the square meters so as 120 is the double 

of 60, you have to multiply the 6 kg by 2
2
 to obtain the area of the new regular pentagon. 

So, student B seems to understand that the area of a regular pentagon gets four times larger if 

the sides are doubled (because it has two dimensions (square meters)), but at the same time he 

seems to think that the perimeter’s increase depends on the number of sides of that figure 

(different directions) instead of taking into account that the perimeter is a one-dimensional 

magnitude. 

Furthermore, as explained in section 3.2, we made use of a new figure, the parallelogram, 

which also has two dimensions and “two directions”. The four students who gave directional 

justifications on all six problems of the paper-and-pencil test also gave directional justifications 

on the problems (perimeter and area) about a parallelogram. The three students who only gave 

directional justifications on the perimeter problems of all the figures also gave a directional 

justification on the perimeter problem about the parallelogram. The two students who only gave 

directional justifications on the perimeter problem about the square also gave a directional 

justification on the perimeter problem about the parallelogram. Finally the student who only 

gave a directional justification on the perimeter and area problems about a square also gave 

directional justifications on the perimeter and area problems about a parallelogram. Therefore, 

all students who had given a directional justification on the problems about the square 

(perimeter or/and area) gave a directional justification on the problems about the parallelogram. 

So, students seem to give more directional answers on figures where the number of directions 

and dimensions coincide such as the square and the parallelogram.   



Finally we report the reactions of the 11 students who had answered the six problems linearly or 

quadratically and were confronted with the answer of another student: “A classmate has chosen 

alternative c (directional answer), do you think is it correct?” and “Why do you think this 

classmate has chosen that alternative?”  All of them said that this answer was not correct, and 

the arguments of four of them about why this classmate had chosen alternative c (directional 

answer) were also explicitly based on the figure’s directions. The other seven students could 

not explain why this classmate had chosen that answer. The next excerpt shows the explanation 

of student C who argued that this classmate based his answer on the (number of) sides of the 

figure. 

Interviewer: You have chosen alternative a (linear answer) on this problem. Why? 

[Interviewer refers to the problem: The weight of an iron fence around a lawn in the 

form of a regular pentagon with a side of 9 m is 500 kg. Then the weight of an iron fence 

of the same type around a lawn in the form of a regular pentagon with a side of 18 m is 

approximately…]  

Student C: Because 18 is the double of 9, so the weight of the iron fence would be the 

double of 500 kg so 500 kg is multiplied by two. 

Interviewer: A classmate has chosen alternative c. Do you think is this correct? 

Student C: No. 

Interviewer: Why do you think has this classmate chosen that answer?   

Student C: Mmmm….because maybe she thinks that she has to multiply by all the sides 

that the figure enlarges. 

Student C seems to understand that the perimeter of a regular pentagon gets two times larger if 

the sides are doubled because the perimeter is a one-dimensional magnitude. When we asked 

him if he thought that alternative c was correct, he responded negatively and explained that 

“maybe his classmate had multiplied by all the sides of that figure”. 

The results of the individual interviews endorsed the results obtained by the collective 

paper-and-pencil test with respect to directional thinking, since the interviewed students 

strongly tended to the directional alternatives and typically gave more directional answers on 



  

problems about figures for which the number of directions and dimensions coincide such as the 

square and the parallelogram. Furthermore, their explanations evidenced their struggle with the 

distinction between dimensionality and “directionality”. 

5. CONCLUSIONS AND DISCUSSION 

Previous research has shown students’ tendency to improperly apply linearity even after 

adequate instruction. However, it was reported that some students who finally understood that 

the length-area relationship is quadratic, suddenly started to doubt about the nature of the linear 

length-perimeter relationship (Van Dooren et al., 2004). So we wondered if these students 

struggled with the confusion between dimensionality and “directionality” and if that confusion 

could be a factor affecting students’ tendency towards improper linear reasoning. The results of 

the present study, firstly, confirm a linear tendency in students’ answers on problems involving 

length and area of similar plane figures, as observed in several previous studies (De Bock et al., 

1998; Gagatsis et al., 2009; Modestou et al., 2004). However, even though previous studies 

have shown that a multiple-choice response format diminishes the tendency to respond linearly 

(Vlahovic-Stetic, Pavlin-Bernardic, & Rajter, 2010), it seems that this alternative response 

mode did not radically break students’ tendency to give linear responses on area problems. 

Secondly, as we were interested in how “directionality” would affect students’ answers, we 

designed three different versions of the test (D1, D2, and D3 condition) that differed in the way 

images were provided to the students (one arrow with two heads, two double-headed and 

perpendicularly oriented arrows, or no arrows, respectively). One of our hypotheses was that 

the single arrow (D1 condition) might help students to apply a linear relation for the perimeter 

problems, but might at the same time strengthen the tendency towards improper linear 

reasoning for the area problems. Results show that the single arrow with two heads (showing 

one direction) in the D1 condition seemed to strengthen the tendency towards improper linear 



reasoning (Hypothesis 1B): Students gave more linear answers on the area problems in the D1 

condition than on the area problems in the D2 condition. However, it seems that it did not help 

students to apply a linear relation for the perimeter problems (Hypothesis 1A). Furthermore, we 

hypothesized that the two arrows in the D2 condition might help students to apply the quadratic 

relation for the area problems, but put them on the wrong track for the perimeter problems. 

Results indicate that the two arrows (showing two directions) in the D2 condition helped 

students to apply a quadratic relation for the area problems (Hypothesis 2A) since students gave 

more quadratic answers on the area problems in the D2 condition than on the area problems in 

the D1 condition. However, the two arrows did not put students on the wrong track for the 

perimeter problems: The D2 condition did not foster students to apply a quadratic relation for 

the perimeter problems (Hypothesis 2B). It appeared that the single arrow had a negative effect 

on students’ answers since it did not help them to apply the linear answer on the perimeter 

problems and strengthened their tendency towards improper linear reasoning on the area 

problems. On the other hand, the two arrows had a positive effect on students’ answers because 

it helped to apply a quadratic relation on the area problems and did not foster to apply a 

quadratic relation for the perimeter problems.  

Thirdly, the statistical analysis did not show a significant effect of the test condition or a 

significant interaction effect of type of problem (area/perimeter) and test condition on students’ 

choice for the directional answer. So, contrary to Hypothesis 3 (in the D3 condition, because of 

the absence of any extra arrow(s), only the different directions in the figure might lead to 

responses in w hich the number referring to these different directions is used), students gave 

directional answers independently of the test version. However, about one fifth of the answers 

were directional, suggesting that in a significant number of cases students struggled with the 

distinction between dimensionality and “directionality”. This latter result was confirmed by 

interview data, which clearly revealed that in a substantial number of cases (29.4% of the 



  

answers), students’ reasoning about why they had chosen the directional alternative was indeed 

based on “the number of sides of each figure” (referring to the directions of the figure). So, in 

these cases students’ reasoning was focused on the “directions of the figure” instead of on the 

dimension of the perimeter (one-dimensional) or the area (two-dimensional).  

Finally, a main effect of the type of figure was observed: Students gave more directional 

answers on problems about a square than on problems about a pentagon or triangle. So, it seems 

that students struggle more with the distinction between dimensionality and “directionality” in 

figures where the number of directions and dimensions coincide. These are the cases of the 

square - and for the interview also the parallelogram - which have two dimensions but also “two 

directions”. All students who had given a directional justification on the problems about the 

square (perimeter or/and area) gave a directional justification on the problems about the 

parallelogram during the interview. However, the issue “why some students only gave 

directional answers on the perimeter or/and area about the square and parallelogram” deserves 

further investigation.  

In order to obtain more fine-grained information about students’ directional reasoning, some 

other aspects of the current study deserve further investigation too. As we used a simple 

multiple-choice response format for the problems in which the directional answer was present, 

we may have elicited directional reasoning. So the question remains if students would also 

reason directionality if they were not offered this alternative as a possible answer. Another 

question relates to the images provided to students. In this study it seemed that the images did 

not influence students’ directional reasoning. Would it happen if we did not provide any 

representation of the geometrical figures? So a “D4 condition” wherein any geometrical figure 

was provided could be added to our test. Finally, as the interview took place after students had 

solved the paper-and-pencil test, it could happen that students’ verbalisations did not reflect 

their actual thinking during the solution of that test. At a more fundamental level, one could 



even raise the question if students would be able to verbalise their “directional” thinking at all, 

given that they may not have direct access to it. So it could be that the directionality in their 

thinking may play at an implicit level or that it may not have played at all, but be a post hoc 

rationalization.  

The results of this study are relevant for educational practice. Since secondary school students 

tend to confuse between dimensionality and “directionality”, it is a challenge for their teachers 

to help them to focus their attention on the idea of dimensionality when they are teaching the 

concepts of perimeter and area of a plane figure. So the distinction between dimensionality and 

“directionality” should become part of (future) teachers’ pedagogical content knowledge 

(Shulman, 1986). In other words, it is important that (future) teachers are aware of students’ 

confusion between dimensionality and “directionality” when they are taking instructional 

decisions. Therefore teacher training programs should take this information into account to 

provide opportunities to (future) teachers to improve their pedagogical content knowledge 

about this delicate issue.   
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