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ABSTRACT

Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar
parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only
rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of
model atmospheres.
Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of
massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We
further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results
with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra.
Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the
quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further
use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative
pressure, and, as a consequence, the derived spectroscopic masses.
Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when
neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible
microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the
spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low
mass-loss rates.

Key words. stars: early-type – stars: mass-loss – stars: winds, outflows – stars: atmospheres – stars: fundamental parameters –
stars: massive

1. Introduction

The initial mass of a star determines its evolutionary path, and is
thus considered one of the most fundamental stellar parameters.
Yet stellar masses derived for massive stars via spectral analy-
ses are generally prone to large uncertainties, greatly hampering
an accurate calibration of stellar masses with their spectral types
and evolutionary status. The so-called “mass discrepancy” prob-
lem, which arises when comparing stellar masses obtained from
spectroscopy, to orbital, wind, and evolutionary models, has
been of concern to stellar physicists for a few decades (Herrero
et al. 1992; Repolust et al. 2004; Massey et al. 2012). While re-
cent studies suggest a solution of this problem over the years
(Weidner & Vink 2010; Markova & Puls 2015), discrepancies
still exist, especially in the range of giants to supergiants.

In principle, orbital masses are independent of stellar atmo-
sphere models and are therefore considered to be more robust
(e.g., Torres et al. 2011). However, orbital masses are only at-
tainable in the rare case of binary systems with well-constrained
inclination, usually owing to eclipses. Immense progress has
also been made in the field of asteroseismology, which allows
the measurement of stellar masses with very high accuracies
from observed stellar pulsations. Unfortunately, the high vari-
ability in the outer layers of massive stars make the study of
their pulsational behavior very difficult, often hindering an effec-
tive implementation of asteroseismological methods to massive

stars (see recent review by Aerts 2015, and references therein).
Indeed, spectroscopy remains the primary method to infer stellar
masses for the majority of the massive stars.

The spectroscopic mass of a star is derived from its radius R∗
and surface gravity g∗ via M∗ = G−1 g∗ R2∗, and therefore any
uncertainties in R∗ and g∗ propagate into uncertainties in M∗.
Except for the rare case where the angular diameter of a star can
be directly measured, R∗ is derived from the luminosity L and
effective temperature Teff of the star via the Stefan-Boltzmann
relation R∗ = (4πσSB)−1/2 L1/2 T−2

eff
. Since the effective temper-

ature can in principle be constrained with decent accuracy, the
main cause for uncertainty in the stellar radius is the error in
the distance d, which propagates in the error in L, according to
R∗ ∝

√
L ∝ d. If the distance is well constrained and thus the

spectroscopic radius is known, the stellar mass M∗ is directly
proportional to g∗ and thus all uncertainties in the gravity deter-
mination propagate directly into mass uncertainties.

The gravity g∗ is by no means a directly measurable quantity.
It is derived by comparing synthetic spectra from model atmo-
spheres with observations. The surface gravity of a star deter-
mines the stratification of its atmospheric pressure, and most
prominently affects the pressure-broadened wings of hydrogen
and helium lines. The determination of g∗ thus relies on both
the pressure broadening theory adopted, as well as the model
atmosphere.
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Different broadening theories can lead to systematic differ-
ences of ∼0.15 dex in inferred log g∗ values, which alone cor-
responds to ∼40% error in the inferred spectroscopic mass. It
is an even harder task, however, to constrain the systematic er-
rors that arise because of different assumptions and techniques in
stellar atmosphere codes. The radiative pressure in massive stars
depends on the stellar parameters as well as the opacity, which
in turn depends on the elements, abundances, atomic data, and
line Doppler widths. As we illustrate in this study, g∗ is highly
model-dependent, and systematic errors can easily occur if the
radiative pressure is not fully and consistently accounted for.

Two domains can be distinguished in the atmosphere of a
massive star: a hydrostatic domain, where gravity is balanced by
pressure (e.g., gas pressure, radiation pressure), and a wind do-
main, where the outward pressure exceeds gravity and the matter
is accelerated.

The spectra of O- and B-type stars are mostly formed in the
outer layers of their quasi-hydrostatic domains. For the model-
ing of such stars, a detailed treatment of the hydrostatic regime is
imperative. Specifically, the contribution of line and continuum
transitions to the total radiative pressure in the quasi-hydrostatic
domain is far from negligible. Proper knowledge of the velocity
field in the layers close to the stellar surface is a key ingredient
for a better understanding of a variety of theoretical and observa-
tional phenomena (see, e.g., Hamann 1981; Cidale & Ringuelet
1993; Owocki & Puls 1999; Cantiello et al. 2009; Shenar et al.
2014).

In this paper, we thoroughly document the current calcula-
tion of the radiative pressure in the Potsdam Wolf-Rayet (PoWR)
code (see, e.g. Gräfener et al. 2002; Hamann & Gräfener 2003)
and illustrate the importance of accounting for it consistently.
While we focus on the PoWR code, the major concepts and
equations are representative of the majority of current state-of-
the-art stellar atmosphere codes, as we illustrate in a brief com-
parison. We further discuss and quantify the large impact of a
proper hydrostatic treatment on inferred stellar parameters, and
particularly on the stellar mass M∗. We demonstrate the sensi-
tivity of the radiative pressure to the Doppler width of spectral
lines and to the iron abundance. Lastly, we compare our results
with the plane-parallel TLUSTY O-grid models from Lanz &
Hubeny (2003), which are widely used for the analysis of hot
stars with negligible winds.

The structure of this paper is as follows: in Sect. 2, we briefly
summarize the main assumptions of the PoWR code and thor-
oughly discuss the treatment of the quasi-hydrostatic domain.
The outcome of our test calculations are shown and discussed
in Sect. 3. In Sect. 4, we compare our spectra with correspond-
ing TLUSTY models, before drawing the general conclusions in
Sect. 5.

2. The PoWR code

2.1. The basics

The Potsdam Wolf-Rayet models describe atmospheres of spher-
ically symmetric stars with a stationary outflow1. To achieve a
consistent solution, the equations of statistical equilibrium and
radiative transfer are iteratively solved to yield the population
numbers without the approximation of a local thermodynamic
equilibrium (non-LTE). The radiative transfer is solved in the co-
moving frame, which avoids simplifications such as the Sobolev

1 For Wolf-Rayet stars, model grids are available online at
http://www.astro.physik.uni-potsdam.de/PoWR/

approximation. After an atmosphere model is converged, the
synthetic spectrum is calculated via a formal integration along
emerging rays. Some description of the PoWR code can be
found in Gräfener et al. (2002) and Hamann & Gräfener (2004).
The temperature stratification is updated iteratively to ensure en-
ergy conservation in the expanding atmosphere, as described in
Hamann & Gräfener (2003). Recently, the PoWR code has been
extended by the so-called thermal balance-method, which goes
back to ideas of Hummer & Seaton (1963) and Hummer (1963)
and is described in detail for stellar atmospheres by Kubát et al.
(1999) and Kubát (2001). This method provides better numerical
stability in optically thin domains.

In the comoving frame calculations during the non-LTE it-
eration, we assume that the line profiles are Gaussians with
a constant Doppler broadening velocity 3dop, which approxi-
mately accounts for the thermal and turbulent velocity. A con-
stant broadening velocity is a well-established simplification in
comoving frame methods. While PoWR uses directly a veloc-
ity 3dop as input, the “Comoving Frame General” (CMFGEN)
code requires three input parameters Tdop, Adop, and 3T, which

are then combined to a constant velocity 3dop =

√
2 kBTdop

mHAdop
+ 32T

(see, e.g., Martins et al. 2002, CMFGEN description). In the
FASTWIND2 code a velocity similar to PoWR has to be given
and is referred to just as mircroturbulence 3turb (Puls et al. 2005).

The value of 3dop is chosen such that it approximately re-
flects the order of the averaged thermal speed combined with the
microturbulence, i.e.,

3dop ≈
√
3̄2th + 32turb. (1)

For O and B stars typical values for 3dop range between 10
and 30 km s−1. Only for stars without photospheric lines, such
as classical Wolf-Rayet stars, higher values can be chosen to
speed up the calculations without changing the emergent spec-
trum. The influence of 3dop on an O-star model spectrum is dis-
cussed and illustrated in Sect. 3.4.

Pressure broadening is neglected during the comoving frame
calculations, which is sufficient for the current applications
of the PoWR models. For stars with considerably higher val-
ues of log g∗, e.g., subdwarfs, specific codes, such as the
Tübingen Model-Atmosphere Package (TMAP) (e.g., Werner
et al. 2003) exist which include this effect. Some codes, such
as the TLUSTY code, have the option to switch on pressure
broadening in the iteration if needed. In the formal integration
in PoWR, detailed thermal, microturbulent and pressure broad-
ening are accounted for in a depth-dependent manner.

The basic parameters of a PoWR model are the stellar tem-
perature T∗, luminosity L, mass-loss rate Ṁ, surface gravity g∗
and the chemical abundances. The stellar temperature T∗ is de-
fined as the effective temperature of a star with the luminos-
ity L and radius R∗ (referred to as the “stellar radius”), defined
at the Rosseland continuum optical depth τmax = 20. The total
Rosseland optical depth τRoss(R∗) including lines is larger. To en-
sure τmax = 20 at the inner boundary, the velocity 3min = 3(R∗) is
iteratively adjusted. The surface gravity g∗ is defined at the stel-
lar radius R∗ via g∗ = G M∗ R−2∗ . For OB stars, the difference be-
tween the radius where τmax = 20 and the “photospheric radius”
at τRoss = 2/3 is usually very small. However, in supergiants the
effective temperature can differ up to ∼1 kK between these two
points, and this difference in definition is apparent when com-
pared with other studies.

2 Acronym for “fast analysis of stellar atmospheres with winds”.

A13, page 2 of 13

http://www.astro.physik.uni-potsdam.de/PoWR/


A. Sander et al.: Treatment of the quasi-hydrostatic layers in hot star atmospheres

The density stratification in the quasi-hydrostatic domain
follows from an integration of the hydrostatic equation, thor-
oughly discussed in Sect. 2.2. In the wind domain, the radial
wind velocity 3(r) is usually prescribed in the model by a so-
called β-law

3(r) = 3∞
(
1 − R∗

r

)β
, (2)

where 3∞ is the terminal velocity of the wind, and β is a free
input parameter whose value typically ranges between β = 0.6
and β = 2.0 (e.g., Puls et al. 2008). With the mass-loss rate Ṁ
specified, the density stratification ρ(r) in the wind follows from
the continuity equation

Ṁ = 4πr2
3(r) ρ(r). (3)

In the calculation, we use complex model atoms, with a super-
level approach for iron group elements (see Gräfener et al. 2002,
for details), and an explicit set of quantum levels for all other ele-
ments. The detailed chemical composition for our calculations is
given in Sect. 3, together with the rest of the model parameters.

We do not use any clumping in the models and instead as-
sume a smooth wind. The potential existence of clumping in
the subsonic photosphere is a constant debate in the massive
star community (see, e.g., Runacres & Owocki 2002; Oskinova
et al. 2007; Cantiello et al. 2009; Sundqvist & Owocki 2013).
While clumping would significantly affect the derived absolute
stellar parameters in any case, the goal of this work is to demon-
strate effects that are independent of any clumping formalism.
Therefore, we refrain from assuming a particular clumping ap-
proximation and calculate our test models (see Sect. 3) with a
smooth wind.

2.2. The quasi-hydrostatic domain

The Potsdam Wolf-Rayet (PoWR) model atmosphere code was
originally developed for WR stars where the emergent spec-
trum is formed almost exclusively in the stellar wind. For these
objects, it is sufficient to treat the quasi-hydrostatic domain of
WR stars with a simple barometric formula using a constant
scale height

Hc :=
RT∗
µ

+ 32turb

geff R∗
, (4)

in units of R∗ while ensuring a smooth transition of the veloc-
ity field and its gradient between the two quasi-hydrostatic do-
main and the wind. Here, geff is the gravity corrected for radia-
tive pressure in the hydrostatic domain (see details below), µ the
mean particle mass (including electrons) in units of the hydro-
gen atom mass mH, and 3turb the turbulent velocity, which is a
free input parameter. The parameter R denotes the specific gas
constant for hydrogen, i.e., R = kB/mH.

For a proper treatment of O- and B-star atmospheres, the
barometric formula with a constant scale height is not an ap-
propriate solution of the hydrostatic equation. The hydrostatic
equation is one of the fundamental equations of stellar structure.
For massive stars, one has to account for the outward radiative
force acting against gravitation, yielding the radial stratification
of pressure P(r) in the hydrostatic domain,

dP
dr

= −ρ(r)g(r) [1 − Γ(r)] . (5)

Here, ρ(r) is the mass density, g(r) = G M∗/r2 the gravity,
and Γ(r) the ratio between the outward radiative acceleration and
gravitational acceleration. The term [1 − Γ(r)] describes the ef-
fective reduction of the gravity due radiative pressure, as dis-
cussed below.

With the assumption of an ideal gas, the pressure P can be
expressed by

P(r) = ρ(r)
[RT (r)
µ(r)

+ 32turb

]
(6)

= ρ(r)
[
a2(r) + 32turb

]
, (7)

where T is the electron temperature. In the second line we further
introduce the sound speed

a(r) :=

√
RT (r)
µ(r)

(8)

in order to simplify the expression. The turbulent velocity 3turb
is a free depth-independent input parameter reflecting a possible
microturbulence. While in the formal integral the microturbu-
lence is combined with the actual thermal velocity of each ele-
ment to obtain the precise depth-dependent Doppler broadening
velocity, it is not directly connected to the value of 3dop used in
the comoving-frame calculation. To avoid physically inconsis-
tent situations, the value of 3dop should be higher than for 3turb.
So far this has been ensured by the user, but we are planning
to implement a more detailed treatment of microtubulence in the
comoving-frame calculations, also allowing for depth-dependent
changes.

The current implementation allows us to compare our
OB-type models with those of other stellar atmosphere codes, as
they adopt similar approaches (cf. Table 1). Stellar atmosphere
analyses with several codes (see, e.g., Massey et al. 2013) have
demonstrated that microturbulent velocities of the order of 10
to 20 km s−1 help to reproduce the observed spectral lines in cer-
tain parameter regimes. It is an ongoing debate whether such
velocities represent a real turbulent motion in the photosphere,
as originally suggested for hot stars by Struve & Elvey (1934)
and prominently reintroduced by Hubeny et al. (1991), or if they
are rather a “fudge factor”. Related to this open question is the
discussion whether such a turbulent term should be included
in the hydrostatic equation or not. In the PoWR code the term
is included, but because of its currently depth-independent im-
plementation there are no additional derivatives occuring and it
merely leads to an offset of the sound speed.

For simplicity, we will set 3turb = 0 km s−1 in the following
calculations, but the full result can always be recovered by re-
placing a2 with a2 + 32turb. Upon dividing Eq. (5) by −ρ, the term
on the left side, which we will refer to as

apress(r) := −1
ρ

dP
dr

(9)

describes the outward acceleration due to gas pressure and tur-
bulent motion. Thus the hydrostatic equation can be written as

apress(r) = g(r) [1 − Γ(r)] , (10)

illustrating that in the hydrostatic domain the outward acceler-
ation due to gas pressure has to balance gravity reduced by the
radiative acceleration. In a strictly hydrostatic domain, we have
therefore no net velocity, i.e., no stellar wind.
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Table 1. Characteristics of different stellar atmosphere codes concerning their treatment of the (quasi-)hydrostatic regime.

PoWR CMFGEN FASTWIND TLUSTY

Radiative transfer comoving frame comoving frame CMF/Soboleva static (obs. frame)

Blanketing full full approximative full

Temperature stratification
obtained by

radiative equilibriumb or
thermal balance

radiative equilibriumb,c thermal balance radiative equilibriumb

Photosphere quasi-hydrostatic quasi-hydrostatic quasi-hydrostatic hydrostatic

(ρ, 3)-update consistent injectionsd start iterationse 3 ≡ 0, ρ consistent f

Radiative acceleration
used in hydrostatic Eq.

full arad full arad acont approximationg full arad

3turb parameter in hydro-
static Eq.?

yes yes no yes

Domain connection continuous d3/drh 0.75 3sonic
i 0.1 3sonic (adjustable) no wind domain

Notes. (a) Comoving frame (CMF) method for main elements, Sobolev approximation for trace elements. Details are given in Puls et al. (2005).
(b) In PoWR and TLUSTY, the radiative equilibrium is considered in two different flavors, the so-called integral form, 4π

∫
κν (S ν − Jν) dν = 0,

and the flux consistency 4π
∫

Hνdν = σSBT 4
eff

(Hubeny & Lanz 1995a; Hamann & Gräfener 2003). CMFGEN instead only uses the integral form
(Hillier 2003). (c) In CMFGEN, the thermal balance is called “electron energy balance” (EEB) and used to check convergence and superlevel
assignments, but not explicitly for temperature corrections (Hillier & Miller 1998; Hillier 2003). (d) After convergence of the statistical equations,
the stratification in the quasi-hydrostatic part is adjusted and the model calculation is “restarted” from a gray temperature distribution. The total
number of these “restarts”, which are also referred to as “injections”, must be specified beforehand. (e) At the start of a model an iteration is
done for the quasi-hydrostatic domain, where a Rosseland optical depth based on LTE opacities is calculated along with the calculation of the
temperature and density stratification. The details are explained in Santolaya-Rey et al. (1997). ( f ) The hydrostatic equation is part of the set of
linearized equations, which are solved consistently in every iteration (Hubeny & Lanz 1995b). (g) The continuum acceleration is approximated by
a nonintegral term with a parameterized Rosseland opacity (Santolaya-Rey et al. 1997). (h) The continuous velocity gradient is the standard option
in PoWR to find a connection point. Alternatively, the user can specify that the connection point is forced at 3 = f · 3sonic. (i) Models before ∼2013
used 3 = 0.5 3sonic for the connection point (Massey et al. 2013).

For an accurate description of an expanding stellar atmo-
sphere, i.e., with 3 , 0, one would have to use the hydrodynamic
equation, which can be written for a stationary, symmetric out-
flow in the following form:

1
ρ

dP
dr

+ 3
d3
dr

= −g(r) [1 − Γ(r) ]. (11)

This means there is only one additional term in Eq. (11) com-
pared to the hydrostatic Eq. (5). This inertia term amech(r) := 3 d3

dr
is of fundamental importance in the outer wind, but becomes
negligible quickly below the sonic point. This also holds for a β-
type velocity law with β > 0.5 where amech approaches zero for
r → R∗. Thus in the subsonic domain the hydrodynamic Eq. (11)
transitions into the hydrostatic form (5) and we obtain a quasi-
hydrostatic stratification.

In such a quasi-hydrostatic situation, we can still have a non-
vanishing velocity, even though its value is subsonic and, as we
will see in the comparison with purely hydrostatic models in
Sect. 4, negligible for the observed spectrum. Furthermore this
small velocity still fulfills the equation of continuity (3). This can
be used to obtain the consistent solution for the velocity field in
the quasi-hydrostatic domain. First, we replace the pressure gra-
dient in apress with the help of Eq. (7),

apress = −1
ρ

dP
dr

(12)

= −da2

dr
− a2

ρ

dρ
dr
· (13)

We then eliminate the density in the second term by using the
equation of continuity (3) and thus write

apress = −da2

dr
− a2r2

3
d
dr

(
1

r23

)
(14)

= −da2

dr
+

2a2

r
+

a2

3

d3
dr
· (15)

Finally, by combining Eqs. (10) and (15), we obtain an equation
for the velocity gradient in the quasi-hydrostatic regime,

d3
dr

=
3

a2

[
GM∗

r2 (1 − Γ(r)) − 2a2

r
+

da2

dr

]
· (16)

In principle, given a value 3(R∗) = 3min at the inner boundary,
one can obtain the velocity field in the quasi-hydrostatic part via
direct integration of this equation. In practice, we transform this
equation and split off the main exponential trend as this turned
out to work better in terms of numerical stability. Thus our solu-
tion for the quasi-hydrostatic velocity field is

3(r) = 3min
a2(r)

a2(R∗)
R2∗
r2 exp

(
r − R∗

Hc
− b(r)

)
, (17)

with a yet to be determined function b(r). We now calculate the
derivative of Eq. (17) with respect to r,

d3
dr

= −23
r

+ 2
3

a2

da2

dr
+ 3

[
1

Hc
− db

dr

]
, (18)

combine this with Eq. (16), and obtain

−2
r

+
1
a2

da2

dr
+

1
Hc
− db

dr
=

GM∗
a2r2 (1 − Γ(r)) − 2

r
+

1
a2

da2

dr
· (19)

1
Hc
− db

dr
=

GM∗
a2r2 (1 − Γ(r)). (20)
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The righthand side of Eq. (20) is now defined as H(r)−1, as
it is analogous to the definition of Hc (Eq. (4)). Thus the nu-
merical integration of the velocity gradient is replaced by the
integration of

db
dr

=
1

Hc
− 1

H(r)
· (21)

The required boundary value b(R∗) = 0 follows from the inner
boundary, where it is required in Eq. (17) that 3(R∗) = 3min.

So far, we did not discuss what enters Γ(r) and thus H(r). In
general, the letter Γ is used to describe a ratio between a radiative
acceleration and gravity. The most common use is the so-called
“electron gamma”,

Γe =
athom(r)
g(r)

=
σe

4πcmHG
qion(r)

L
M∗

, (22)

which accounts only for the radiative pressure because of scat-
tering of free electrons. Note that r2 cancels out in the last ex-
pression, since the acceleration because of Thomson scattering
is defined as

athom(r) :=
σeL

4πcmHr2 qion(r), (23)

with the ionization parameter,

qion(r) = mH
ne(r)
ρ(r)

=
ne(r)

ntot(r)A· (24)

The mean atomic mass A is constant in an atmosphere model.
The two density factors can be replaced by the slowly varying
mean particle mass µ(r) = A

(
1 +

ne(r)
ntot(r)

)−1
such that

qion(r) =
1
µ(r)

− 1
A , (25)

illustrating that qion is nearly constant throughout the atmo-
sphere. As a consequence, Γe has only a very weak radial
dependence3.

While Eq. (22) is the common definition for Γ in the context
of the Eddington limit, it is only a fraction of the total outward
radiative acceleration arad. Apart from the Thomson opacity cor-
responding to scattering of free electrons, additional opacities
originate in line (bound-bound) and continua (bound-free, free-
free) transitions, contributing to the total radiative acceleration.
arad is thus separated into three parts:

arad = athom + alines + atrue cont. (26)

The last term atrue cont refers to the acceleration originating from
bound-free and free-free continuum transitions. As the electron
opacity also forms a continuum, these two terms are combined
and referred to as the “continuum”. In contrast, the term without
electron scattering is sometimes called the “true continuum”. To
avoid any confusion, we will adopt this notation in the following.

Similar to Eq. (22), we can thus define a Γ, which corre-
sponds to the total acceleration,

Γrad(r) :=
arad(r)
g(r)

=
1
g(r)

4π
c

1
ρ(r)

∞∫
0

κν(r) Hν(r) dν, (27)

3 Instead of using qion, one also finds the specific electron-scattering
coefficient se = neσe/ρ in the literature (e.g., Mihalas 1978).

where κν and Hν are the opacity and Eddington flux at the fre-
quency ν, respectively, and c is the speed of light. This “full”
Γrad is then used in the quasi-hydrostatic domain. A similar ap-
proach was also adopted by Lanz & Hubeny (2003) in their
plane-parallel TLUSTY code, which is widely used for calcu-
lating photospheric spectra of static atmospheres.

In contrast to Γe, which is already known at the start of a
non-LTE model atmosphere calculation, with the exception of
the exact value of qion(r), the full Γrad has to be calculated iter-
atively. The radiative acceleration is calculated from the popu-
lation numbers, which in turn depend on the radiation field and
also on the density which itself is connected to Γrad via the hydro-
static equation. To ensure a consistent solution, the velocity field
in the quasi-hydrostatic domain is constantly updated as soon
as the hydrostatic equation is violated by more than 5%. This
turned out to be sufficient in all test cases, as long as Γrad(r) < 1
in the quasi-hydrostatic part. In reality, values larger than unity
in the (quasi-)hydrostatic domain would reflect additional phys-
ical phenomena occurring in the photosphere (e.g., subphoto-
spheric convection, Cantiello et al. 2009), which are not han-
dled by our model atmospheres. The plane-parallel TLUSTY
code treats only values of Γrad ≤ 0.9 in the hydrostatic equa-
tion (Lanz & Hubeny 2003) as the hydrostatic equation fails for
values larger than unity and numerical instabilities already occur
when Γrad gets close to this limit. We use a similar approach in
PoWR for the quasi-hydrostatic equation, i.e., the value of Γrad
is limited to 0.9 for our velocity calculations.

2.3. The quasi-hydrostatic treatment in different stellar
atmosphere codes

A couple of non-LTE stellar atmopshere codes are used in the
field of hot and massive stars. Widely used are CMFGEN (Hillier
& Miller 1998), FASTWIND (Santolaya-Rey et al. 1997),
and, in case of negligible stellar winds, TLUSTY (Hubeny
& Lanz 1995b). While these codes have a lot of similari-
ties in their concepts, they also differ in certain approaches,
such as their treatment of the radiative transfer or their su-
perlevel approach. Recent comparisons between CMFGEN and
FASTWIND (Massey et al. 2013) for particular objects have
shown a good agreement in the derived temperatures, but also
revealed that the surface gravities derived with FASTWIND are
abound 0.12 dex lower than with CMFGEN. As the derived
surface gravities are directly connected to the treatment of the
quasi-hydrostatic layers, it is of major interest to understand the
difference between the codes in this regime.

Table 1 provides an overview of the features affecting
the quasi-hydrostatic treatment of PoWR, CMFGEN, and
FASTWIND together with the completely hydrostatic treatment
in TLUSTY. The latter provides an interesting test case in the
limit of negligible mass-loss rates, which will be further dis-
cussed in Sect. 4, where we compare spectra from TLUSTY
models with those from PoWR. In CMFGEN, TLUSTY model
atmospheres can also be used as a start approach.

The most striking difference in the quasi-hydrostatic treat-
ment between the different wind codes (PoWR, CMFGEN,
FASTWIND) is the update mechanism of the density and ve-
locity stratification:

– In PoWR, we update the velocity field as described in
Sect. 2.2 as part of the main iteration as soon as the hy-
drostatic equation is violated by more than 5% or the speci-
fied value of τmax is missed by more than a specified ετ. For
each update, Γrad(r) is applied in the hydrostatic equation,
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using arad(r) from the comoving frame (CMF) calculations.
With the new velocity field given, the stratification is updated
according to the equation of continuity (3).

– In CMFGEN (Hillier & Miller 1998), the hydrostatic do-
main is first taken from a TLUSTY model or an old
CMFGEN model, but can be updated with regards to the
hydrostatic equation after a first convergence of the popula-
tion numbers and the radiation field. After each such strat-
ification update, sometimes referred to as “injection”, the
model iteration has to be continued to reachieve conver-
gence (see, e.g., Martins et al. 2012, for a brief description).
Similar to PoWR, the radiative acceleration used in the hy-
drostatic equation is taken from the CMF radiative transfer
calculations.

– In FASTWIND (Santolaya-Rey et al. 1997), the line con-
tributions are instead neglected in the quasi-hydrostatic do-
main and uses an approximate handling for the continuum
acceleration, including both Thomson and true continuum
term. This simplification allows FASTWIND to set up the
quasi-hydrostatic domain in an iteration right at the start of a
model, in line with the goal of the code of being significantly
faster than PoWR and CMFGEN.

Furthermore, all three wind codes use a different criterion for
the connection point between the quasi-hydrostatic and the wind
domain. While FASTWIND and CMFGEN use a fixed fraction
of the sound speed to define this connection point, PoWR puts
the condition of a smooth velocity gradient between the two
regimes.

Instead of treating only the quasi-hydrostatic part consis-
tenly, one could also aim at a hydrodynamically consistent treat-
ment throughout the whole model atmosphere, i.e., including
the wind domain. These calculations are typically not included
in state-of-the-art stellar atmosphere codes, especially as a pre-
scribed β-law provides a good approximation for the outer wind
regime of OB stars. A self-consistent calculation of the ve-
locity field in the whole stellar atmosphere has been imple-
mented as a nonstandard option in PoWR in order to discuss
WR winds (Gräfener & Hamann 2005, 2008). However, such
models require much longer computation times and this option
is not required for the purpose, in which we focus on the quasi-
hydrostatic regime. The implementation presented here is com-
pletely sufficient in achieving a self-consistent stratification of
the quasi-hydrostatic layers. Nevertheless, a revised implemen-
tation of completely hydrodynamically consistent model atmo-
spheres in the PoWR code will be addressed in detail in a future
work.

2.4. The effective gravity

The hydrostatic Eq. (5) can be written in an even shorter form
with the definition of the effective gravity,

geff(r) :=
GM∗

r2 [1 − Γ(r)] . (28)

To avoid any confusion, we will use ggrav(r) instead of g(r) with
g∗ = ggrav(R∗) to denote the full gravity from here on. The effec-
tive gravity geff is a fundamental fitting parameter for O- and
B-stars when comparing models with observations. The pure
gravitational acceleration ggrav(r) = GM∗r−2, from which the
stellar mass is derived, can only be calculated if Γrad is known.
Therefore, ggrav is model dependent. In these models an accu-
rate treatment of the complete radiative pressure is required.

Correcting the observed geff for Thomson pressure Γe only ne-
glects a large part of the radiative pressure, and leads to an un-
derestimated stellar mass, as we will demonstrate in Sect. 3.
In the cases of negligible radiative pressures only do log ggrav
and log geff become indistinguishable. Otherwise, spectroscopic
masses are underestimated if calculated directly via R2∗ geff/G.

As the shape of a spectral line like Hδ depends on geff and
not ggrav, there is a parameter degeneracy. A star with a weaker
radiative pressure will produce the same line profiles as a star
with a higher radiative pressure and a higher gravity.

One of the major reasons for a strong model dependency of
the stellar mass is the large impact of the opacity on the radiative
pressure. It is significant which opacities are taken into account
in the model. Neglecting elements such as Fe or Ne will result
in a lower Γrad and is not legitimate, even if the corresponding
element is not under consideration in the intended analyses. The
inferred stellar mass therefore depends not only on the adopted
stellar parameters, but also on the details of the model atoms.

The adopted Doppler broadening velocity 3dop used in the
comoving-frame calculations also has a significant impact:
larger velocities allow atoms to absorb photons in a wider fre-
quency range, and thus generally increase the radiative pressure
in the atmosphere.

Even though geff(r) and Γrad(r) are calculated for each depth
point in the PoWR code to fulfill the hydrostatic equation, there
is a need for a certain “reference value”, which can be used
for comparisons. As the emergent spectrum is mainly formed
at τRoss ≈ 2/3 in the photosphere, the first idea would be to
use geff at this value. However, such a fixed point might already
be located in the wind. Therefore we define a weighted mean
of Γrad as

Γrad :=

τsonic∫
τmax

Γrad(τRoss) e−τRoss dτRoss. (29)

The upper limit of the integral τsonic usually denotes the optical
depth of the sonic point. However, we do not allow that this value
drops below 0.1, even in the rare cases where the actual sonic
point would be in such a regime. The calculated value of Γrad is
used to relate log geff and log g∗ = log ggrav(R∗) via

log geff = log g∗ + log
(
1 − Γrad

)
. (30)

The radial dependence of Γrad for a supergiant test model is il-
lustrated in Fig. 1, where it is plotted against the total Rosseland
opacity. It is evident that in the quasi-hydrostatic regime not
only the line transitions, but also the atomic continuum transi-
tions cannot be neglected, while this quickly changes as soon as
we enter the supersonic domain, where Γcont consists only of Γe.
One can see that the calculated value of Γrad is indeed represen-
tative for the difference between ggrav and geff in the photosphere.
Values of Γrad for a series of test models are shown and discussed
in Sect. 3.

The reference radius for all values of geff given in this work
is R∗. However, other radii are also used in the literature, typi-
cally R 2

3
= R

(
τRoss = 2

3

)
or the radius of the sonic point Rs. The

latter roughly indicates the outer end of the quasi-hydrostatic
domain. It is therefore interesting to check how much the values
of geff and ggrav are affected when referring to different radii. As
this effect is largest for supergiants, we examine an O-star model
with T∗ = 32.5 kK, log L/L� = 5.6, log ggrav(R∗) = 3.25 and
log Ṁ = −5.75 [M�/yr]. For this model, we have R 2

3
= 1.06 R∗
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Fig. 1. Radial dependence of Γrad (red, solid line, upper panel) for our
supergiant test model, plotted over the Rosseland optical depth τRoss.
The mean value obtained with Eq. (29) is indicated as a dashed-dotted
line. For comparison, Γe and the total continuum contribution Γcont are
also shown. Lower panel: difference between ggrav and geff is illustrated:
the red solid curve marks the actual difference at each optical depth,
while the dashed-dotted line denotes the difference using Γrad. The gray
dashed vertical line denotes the location of the sonic point.

and the sonic point is located at Rs = 1.11 R∗, leading to dif-
ferences of 0.05 dex and 0.09 dex in log g. Especially the lat-
ter value is approximately what can be achieved by accurate
fitting of high quality spectra and, therefore, we have to take
the reference radius into account when analyzing these objects.
This effect is lower for giants and dwarfs, namely on the order
of 0.03 dex and 0.01 dex for the sonic point, respectively.

In the literature, the term geff may not always have the same
meaning. Especially when dealing with observations, it is often
not clearly stated whether values termed as log g have been cor-
rected for radiative acceleration. Values that have been corrected
for centrifugal acceleration in a statistical sense are sometimes
labeled as “true” gravities gtrue or gc with the relation

gc = g +
(3 sin i)2

R∗
· (31)

(Repolust et al. 2004). The term labeled as g in this equation is
sometimes called geff (e.g., Massey et al. 2013). We would like
to stress that this is not identical to our definition of the effective
gravity in this work. The variable g in (31) refers to the gravita-
tional acceleration specified in a non-rotating stellar atmosphere
model, which has not been reduced by radiative acceleration.
As such, g would be referred to as ggrav, following the notation
of this work. Caution is therefore adviced when dealing with
the term “effective gravity”, as its definition might differ signifi-
cantly between different authors.

3. Results and discussion
3.1. Test model details
To illustrate the impact of accounting for the full radiative pres-
sure consistently, we calculate a set of PoWR models for a fixed

Table 2. O-star test model parameters.

Luminosity class I III V
T∗ [kK] 32.5
log geff [cm s−2]a 2.47 3.02 3.79
log ggrav [cm s−2]a 3.25 3.50 4.00
Γrad 0.83 0.67 0.39
Γe 0.40 0.22 0.07
R∗ [R�] 20.0 14.1 8.1
log Ṁ [M� yr−1] −5.75 −6.25 −7.1
log L [L�] 5.60 5.30 4.82
M∗ [M�] 25.9 23.0 24.1
β 0.8
3∞ [km s−1] 2000
3turb [km s−1] 10
3dop [km s−1] 20

XH
b 0.704

XHe
b 0.282

XC
b 2.78 × 10−3

XN
b 8.14 × 10−4

XO
b 7.56 × 10−3

XMg
b 6.45 × 10−4

XAl
b 5.56 × 10−5

XSi
b 6.96 × 10−4

XP
b 6.10 × 10−6

XS
b 4.79 × 10−4

XFe
b,c 1.34 × 10−3

Notes. (a) Values refer to the consistent models. Comparison model re-
sults are given in Table 4. (b) Solar abundances, as obtained by Grevesse
& Sauval (1998), specified here as mass fractions. (c) Fe includes also
the further iron group elements Sc, Ti, V, Cr, Mn, Co, and Ni. See
Gräfener et al. (2002) for relative abundances.

temperature of T∗ = 32.5 kK, which corresponds to a late O-star.
For this temperature, we calculate three types of models with dif-
ferent surface gravities, corresponding to the luminosity classes I
(supergiant), III (giant), and V (dwarf). As we focus on the
quasi-hydrostatic part, we adopt only schematic parameters for
the wind, i.e., all models have the same terminal wind velocity
of 3∞ = 2000 km s−1. The outer model boundary is set to 100 R∗.
The velocity field in the wind domain can be prescribed by a
β-law with β = 0.8 (see Eq. (2)), which is accurate enough for
our purposes as we do not want to analyze the outer wind. The
luminosities are “typical” representatives of their class accord-
ing to Martins et al. (2005). We chose the surface gravities sim-
ilarly, but with slight adjustments of up to 0.1 dex, correspond-
ing to the closest grid point in the TLUSTY O-star model grid
(Lanz & Hubeny 2003) for a later comparison (see Sect. 4). We
adopted mass-loss rates from Vink et al. (2000), and the wind
is assumed to be smooth (no density contrast, i.e., D = 1 in the
notation of Hamann & Koesterke 1998). The chemical composi-
tions are taken to be solar. Here, we use the abundances inferred
by Grevesse & Sauval (1998) instead of the newer ones obtained
by Asplund et al. (2009) to have identical values to those used in
the TLUSTY O-grid. All parameters of the models are compiled
in Table 2.

For each of the three luminosity classes, we calculate three
models, which we refer to as (a), (b), and (c) in the following,
making nine models in total period. Models (a) and (b) have
a fixed ggrav, which corresponds to the respective luminosity
class and differ only in the treatment of the radiative acceler-
ation in the quasi-hydrostatic part: models (a) are only calcu-
lated with Γe, while models (b) include the full Γrad, i.e., they
account for the complete radiative pressure. Typical examples
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Fig. 2. Acceleration stratification for a model with a consistent quasi-
hydrostatic domain (type (b) models). The wind acceleration (thick red
diamond line) is compared to the repulsive sum of inertia and gravi-
tational acceleration g(r) (black line). All terms have been normalized
to g(r).
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Fig. 3. Same as Fig. 2, except with a velocity law in the quasi-
hydrostatic domain accounting only for Γe (type (a) models). While
the wind domain is not affected, the acceleration balance in the quasi-
hydrostatic part is significantly different.

are shown in Figs. 2 and 3, where we plot the acceleration strat-
ifications for a dwarf (class V) model. One can see that Fig. 2
shows the consistent (b)-model, where the sum of the total ra-
diative acceleration and gas pressure equals gravitation in the
quasi-hydrostatic domain. The result of the (a)-model is shown
in Fig. 3. Now only Γe and gas pressure are taken into account
for the hydrostatic equation and thus the sum of the total radia-
tive acceleration and gas pressure is larger than the local gravity
in the subsonic part. The outer parts of both models are very
similar as both use the same prescribed β-velocity law.

In models (c), like in models (a), we account only for the
Thomson term Γe in the quasi-hydrostatic domain, but instead
of specifying log ggrav, we specify the effective gravity log geff

and adopt its value from the corresponding model (b), calculated
from Eq. (30). An overview of the basic similarities and differ-
ences between all three model types is given in Table 3. Since
models (b) and (c) of a given luminosity class have the same

Table 3. O-star test model type overview.

Model type (a) (b) (c)
ggrav fixed2 fixed2 calculated
Γ1 Γe Γrad Γe
geff calculated calculated3 fixed3

Notes. (1) Γ value used to relate ggeff and ggrav; (2) type (a) and (b) models
within the same luminosity class have the same ggrav; (3) a type (c) model
has the same ggeff as the type (b) model of the same luminosity class.

effective gravity, the wings of pressure-broadened lines are ex-
pected to be identical in both models. However, because of dif-
ferent treatment of the quasi-hydrostatic domain, the actual sur-
face gravities ggrav and spectroscopic masses M∗ implied from
both models will differ.

3.2. Comparison with fixed ggrav

Figure 4 illustrates the impact of accounting for the full radia-
tive pressure on prominent Balmer lines (left to right: Hδ, Hγ,
Hβ, Hα) for dwarfs (upper panels), giants (middle panels), and
supergiants (lower panels). The impact of either including only
the Thomson term Γe (model a, blue dashed lines) or includ-
ing the full radiative term Γrad (model b, red solid lines) can be
seen in the line wings. Because of their larger outward pressures,
the quasi-hydrostatic domains of models (b) are less dense than
those of models (a), and, as a consequence, the line wings ob-
tained by models (b) are narrower. For the same reason, the value
of geff is always smaller in models (b) compared to models (a)
(see below).

A further inspection of Fig. 4 reveals that the difference be-
tween models (a) and (b) increases with luminosity class. A
look at Eq. (27) reveals that lower values of log ggrav will in-
crease Γrad, which is indeed much larger for the supergiant than
for the dwarf. Even though the difference between Γrad and Γe is
not getting much stronger with lower log ggrav, as Γe also changes
proportional to R2∗, both values are significantly larger for the
supergiant and thus the difference in the derived geff value in-
creases, which is reflected in the increasing line wing difference
in Fig. 4.

Even for our dwarf models (log ggrav = 4.0, upper panels),
where the dashed and solid lines can only barely be distin-
guished, we obtain a difference of ∆log geff = 0.21 dex when
accounting for the full radiative pressure via Γrad (log geff = 3.97
for model (a) vs. log geff = 3.78 for model (b)). For our gi-
ant models (log ggrav = 3.5, middle panels) the difference in-
creases to 0.37 dex (3.39 vs. 3.02). Finally, for the supergiant
models (log ggrav = 3.25, lower panels), a formidable difference
of 0.56 dex (3.03 vs. 2.47) is obtained. Even though the impact
on the spectral appearance of the hydrogen lines might not be
particularly striking in Fig. 4, the differences in the correspond-
ing values of log geff are quite remarkable.

3.3. Comparison with fixed geff

In the models (a) and (b) discussed above, we specify ggrav,
T∗, and L, and therefore the radii, the spectroscopic masses are
known a priori. When dealing with observations, however, it
is geff, and not ggrav, which is empirically measurable. Thus, one
would fix the effective gravity that best reproduces the observa-
tion, and let the actual gravity ggrav be a model output. Based on
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Fig. 5. The Hγ and Hβ lines (left and right panels, respectively), as
obtained from models (b) and (c) (red solid and green dotted lines, re-
spectively), both with an effective gravity of log geff = 2.47. Although
the strengh of the line wings is the same, the two models imply masses
and gravities, which strongly differ because of the different treatment of
the radiative pressure (cf. Table 4).

the detailed physics implemented in the model atmosphere, the
gravity ggrav and the spectroscopic mass M∗ follow from log geff.
This scenario is reflected in models (b) and (c), which are calcu-
lated with identical effective gravities, but with a different treat-
ment of the radiation pressure in the quasi-hydrostatic domain.
Figure 5 shows the Balmer lines Hγ (left panel) and Hβ (right
panel) as obtained from the supergiant models (b), which ac-
count for Γrad (red solid line), and (c), which only include Γe
(green dotted line). As both models have the same geff, the line
wings obtained from both models can hardly be distinguished.
However, some differences are seen in the line cores and in the
helium and metal lines.
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Fig. 6. Velocity stratification for three supergiant test models: the
consistent quasi-hydrostatic model (b) (red solid) is compared to a
model (a) (blue dashed) with the same ggrav, but where only Γe is taken
into account in the quasi-hydrostatic part (blue). The third model (c)
(green dotted) shares geff with model (b), except it accounts only for Γe
and thus has a different ggrav.

To illustrate the effect of this different treatment, we show the
velocity stratification for all three supergiant models in Fig. 6.
All models agree in the outer part where we have prescribed
the β-law. However, in the inner part it becomes evident that
fixing geff indeed leads to relatively similar velocity stratifica-
tions with both the consistent Γrad-approach and the Γe-approach,
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Table 4. Deduced stellar masses with different quasi-hydrostatic ap-
proaches.

Luminosity class I III V

log geff [cm s−2]a 2.47 3.02 3.79
log ggrav(Γe) [cm s−2]b 3.00 3.25 3.82
log ggrav(Γrad) [cm s−2] 3.25 3.50 4.00
M∗(Γe) [M�]b 14.5 12.9 16.2
M∗(Γrad) [M�] 25.9 23.0 24.1

Notes. (a) The effective gravity (cf. Sect. 2.4) is fixed for all models here.
(b) These values are derived from models that were calculated as if only
the Thomson radiative pressure would enter the hydrostatic equation.

which is reflected in the agreement of line profiles between the
models (b) and (c). If one fixes instead the more fundamen-
tal parameter ggrav, the resulting velocity stratification is sig-
nificantly different in the inner part, if accounting only for Γe,
including a huge difference in the radial location of the sonic
point. These discrepancies explain the spectral differences be-
tween models (a) and (b) shown in Fig. 4.

Despite the similarities between the models (b) and (c)
seen in the line wings and in the velocity law, their values of
log ggrav and M∗ differ significantly. Table 4 shows the values
of log ggrav and M∗ for the dwarf, giant, and supergiant mod-
els. As could be anticipated from Eq. (30), the models that ac-
count for the full radiative pressure (models (b)) have larger
values for log ggrav and M∗ because their Γ, which is used to re-
late geff and ggrav, is larger in these models. The spectroscopic
masses deviate by roughly a factor of two. Interestingly, there
is no clear trend for increasing deviation with increasing lu-
minosity class. Intuitively, one might expect that the deviation
would have to be larger for the supergiant model, compared to
the dwarf model, as we obtained it in spectral comparison of the
models (a) and (b) which were shown in Fig. 4. However, the
calculation of the (c) models is quantitatively different from the
(a) models. Even though both consider only Γe for obtaining the
velocity field in the quasi-hydrostatic part, the (c) models are
specifically designed to reproduce the geff-value obtained with
the full Γrad, while the (a) models have a completely different
approach, with the ggrav-value being identical to the (b) mod-
els. In fact, we can estimate the masses of the (c) models with an
easy calculation. Starting from the requirement that both, (b) and
(c) models should have the same geff, it immediately follows via
Eq. (28) that

M(c)
∗

(
1 − Γ(c)

e

)
= M(b)

∗
(
1 − Γ

(b)
rad

)
. (32)

The small superscripts indicate the value from the correspond-
ing model family, i.e., M(c)

∗ is short for M∗(Γe) in the (c) models.
As we do not know Γ

(c)
e in advance, since it contains M∗(Γe)

itself by definition (22), we need to replace it with a value
from the (b) model. Because the luminosity L is the same in
the (b) and the (c) models and the ionization parameter qion only
changes marginally, we can deduce from Eq. (22) that the prod-
uct of Γe and M∗ will be approximately the same for both mod-
els. Hence we get an expression that allows us to replace Γ

(c)
e

with the known Γ
(b)
e , i.e.,

Γ(c)
e ≈

M(b)
∗

M(c)
∗

Γ(b)
e . (33)
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Fig. 7. Left panel: spectrum around Hγ for the hydrostatically consistent
supergiant test model (red solid line) is compared to a similar PoWR
model calculated without iron group elements (black dotted line). Right
panel: same test model is calculated with a higher Doppler broadening
velocity 3dop (green dashed line) and compared to the original.

Using that in (32) yields

M(c)
∗ − M(b)

∗ Γ(b)
e ≈ M(b)

∗
(
1 − Γ

(b)
rad

)
(34)

M(c)
∗ ≈ M(b)

∗
[
1 −

(
Γ

(b)
rad − Γ(b)

e

)]
. (35)

This means that masses of the (c) models only depend on the
difference between Γrad and Γe in the consistent (b) models, not
on the absolute values. The difference is comparable for all three
luminosity classes, and so is the mass deviation in Table 4.

3.4. Blanketing and Doppler velocity influence

It is unfortunate that the spectroscopic mass greatly depends on
various parameters adopted in the calculation. Two important ex-
amples will be discussed here. The first is the importance of the
iron group elements. Since they are a dominant source for opac-
ity in the atmosphere of a massive star, their abundances signifi-
cantly affect the radiative pressure, and thus the inferred spectro-
scopic mass. Therefore iron group elements have to be included
in model atmosphere calculations, even if these models are only
used to analyse spectral regimes without visible iron lines. The
effect, which is called “line blanketing”, does not only affect the
temperature stratification, but also the density structure of a stel-
lar atmosphere. This is illustrated in left panel of Fig. 7, where
we compare the Hγ line from our supergiant model (see Table 2
for parameters) to that of an identical model without iron. It im-
pressively demonstrates that neglecting elements, which greatly
contribute to the total opacity, is not legitimate. When the iron
elements are not included, the radiative pressure is smaller, and
the line wings appear broader in the synthetic spectrum, lead-
ing to an underestimation of the gravity by ≈0.3 dex. These ele-
ments should thus be included in any consistent calculation, even
if there is no observational abundance indicator. Using “typical”
abundances from the local region or similar objects will usually
cause a smaller error than neglecting such elements completely.

Another quantity that is of major influence on the spectral ap-
pearance of OB star atmosphere models is the adopted Doppler
broadening velocity 3dop. This velocity is used in the comov-
ing frame calculations and reflects the combined influence of
the thermal and microturbulent velocities. While the thermal ve-
locity is calculated for each element as a depth-dependent man-
ner in the formal integral, the comoving frame calculations are
currently using a constant 3dop for all elements. For the spectral
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appearance of Wolf-Rayet atmospheres the value of 3dop is of
minor importance, but it has a notable impact on the spectra of
our OB models, as it affects the total radiative pressure in the
atmosphere. This is illustrated in the right panel of Fig. 7, where
we again compare the region around Hγ for our supergiant test
model, but now compare with a model that has been calculated
with a larger Doppler velocity. In the O-star regime, the value
of 3dop = 20 km s−1 has proved to be sufficient. This demon-
strates that it is imperative to choose a 3dop reflecting the true
thermal and turbulent velocity in the stellar atmosphere, despite
the significantly longer computing times in the comoving frame
calculations that come along with smaller values of 3dop.

4. Comparison with TLUSTY

The TLUSTY code (Hubeny & Lanz 1995b) provides plane-
parallel model atmospheres. The synthetic spectra that can be
calculated from these models, e.g., with the SYNSPEC program
from the same authors, are widely used for the analysis of pho-
tospheric spectra of OB-type stars. In the following section, we
compare PoWR and TLUSTY model results. In all cases where
spectra based on TLUSTY models are shown, they were ob-
tained with the SYNSPEC code and are labeled as TLUSTY4.

While both PoWR and TLUSTY are non-LTE codes, a ma-
jor difference is that the PoWR models include the stellar wind.
PoWR therefore adopts a spherical geometry, while TLUSTY
assumes a plane-parallel geometry. As thoroughly discussed by
Lanz & Hubeny (2003), the assumption of static, plane-parallel
atmospheres is a fairly solid approximation for the photospheres
of OB stars, which show negligible signs of stellar winds and
curvature effects. One can therefore expect that in the limit of
negligible mass-loss rates and small scale heights (see Eq. (4)),
the PoWR spectra would be close to the TLUSTY results. To
check that PoWR models of OB-type stars with negligible winds
show a good agreement with the corresponding TLUSTY mod-
els, we dedicate this section to a comparison of dwarf, giant,
and supergiant PoWR models with their TLUSTY counterparts,
focusing on the pressure-broadened Balmer lines. In all cases,
PoWR models with the consistently treated quasi-hydrostatic
domain are used, i.e., those models that we referred to as type (b)
above.

Since we calculated the models used in Sect. 3 with “typi-
cal” O-star mass-loss rates, they are not expected to provide a
very close agreement with the TLUSTY models. The discrep-
ancies are most prominent in the Hα line for the supergiant and
giant models, while small differences are also found in the other
Balmer lines. In Fig. 8, we illustrate the effect of reducing the
mass-loss rate. It is evident that the spectral appearance con-
verges in the limit of small mass loss, and it is at this limit where
we expect to obtain the closest agreement with TLUSTY mod-
els. Furthermore, the sequence of models illustrates that the ab-
sence of emission lines is not sufficient to deduce that mass loss
is negligible.

Another PoWR feature, which would hinder a compari-
son with the TLUSTY models, is frequency redistribution by
Thomson scattering (Mihalas 1978). Given their large thermal
velocities (∼1000 km s−1), free electrons can scatter photons
to significantly different wavelengths. Hence, photons that are
trapped in an optically thick line core can be Doppler-shifted to
the line wing or adjacent continuum, from which they can freely

4 The models from the TLUSTY O- and B-star grids (including their
SYNSPEC spectra) can be obtained from the TLUSTY website at
http://nova.astro.umd.edu/

Hβ

log Ṁ:
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Fig. 8. Profiles of the Hα and Hβ lines from PoWR models with dif-
ferent Ṁ. In the limit of low mass-loss rates, the wind effect on the
spectrum becomes negligible. For an easier comparison of the line
wings, the electron redistribution (see Fig. 9) is switched off in these
simulations.
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Fig. 9. Line profiles of Hγ and Hδ for the same supergiant PoWR model.
The red line denotes the spectrum that is obtained when switching off
the electron redistribution in the formal integral, while the black line
indicates the “normal” output, which includes the redistribution of free
electrons.

emerge and become visible as an excess emission. Especially
at lower surface gravities and in spectral domains with a high
density of spectral lines, the effect of frequency redistribution
often results in a noticeable pseudocontinuum. When the syn-
thetic flux is normalized relative to the continuum, this has the
appearance of a continuum offset in the normalized spectrum. To
illustrate this effect, Fig. 9 shows the Hδ and Hγ lines (left and
right panels, respectively) for the consistent supergiant model
including frequency redistribution (black solid line) and without
(red solid line). Since TLUSTY does not account for this effect,
we disable it for the sake of comparison. However, we stress that
the importance of this effect has been demonstrated in various
studies5 (Hummer & Mihalas 1967; Auer & Mihalas 1968).

The upper, middle, and bottom panels of Fig. 10 show a com-
parison between the TLUSTY (black, dashed line) and PoWR
(red, solid line) for the dwarf, giant, and supergiant models, re-
spectively, where we compare the first four Balmer members
(from left to right: Hδ, Hγ, Hβ, Hα). The PoWR model pa-
rameters are identical to those compiled in Table 2, but with
a negligible mass-loss rate of log Ṁ = −9.0 [M� yr−1] and a

5 It may seem arbitrary to rectify the synthetic flux using the contin-
uum before accounting for the redistribution. However, the redistributed
flux varies significantly around spectral lines, while the “unredistributed
continuum” is a slowly varying function of λ and therefore much more
appropriate for normalization. Moreover, electron scattering contains
vital information regarding the physics in the stellar atmosphere, and
should not be removed by normalization.
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negligible mass-loss rates (log Ṁ = −9 [M� yr−1]), small terminal velocities (500 km s−1), and large radii, to avoid wind and curvature effects.

small terminal velocity of 500 km s−1. Furthermore, the radii of
all stars were set to large values to diminish possible curvature
effects and to approach a plane-parallel geometry.

It is evident that a very good agreement in the line wings is
obtained between the PoWR and TLUSTY models for all three
luminosity classes. In particular, the wings of the Balmer lines
are barely distinguishable. Hence, the application of either mod-
els would result in practically the same surface gravity, provided
that the mass loss is really negligible. Interestingly, pressure
broadening in the TLUSTY O-grid models from Lanz & Hubeny
(2003) uses analytical approximations to numerical calculations
(cf. Hubeny et al. 1994, Appendix B), while PoWR performs
interpolation over pressure broadening tables (Lemke 1997) for
hydrogen lines. Given the good agreement, both methods seem
to be adequate for the studied parameter regime, i.e., nondegen-
erated stars.

While a comprehensive comparison between PoWR and
TLUSTY along all spectral lines is beyond the scope of the cur-
rent paper, we note that there are significant differences regard-
ing helium and metal lines. Not only does their strength differ by
up to a factor of two between TLUSTY and PoWR, but some-
times – as visible in the supergiant comparison – they may even
appear in emission from one code, and absorption from the other.
Because of the non-LTE conditions, even small differences in the
stratification can have large effects on such weak lines, e.g., be-
tween two PoWR models differing only slightly in their tempera-
ture or gravity. Indeed, we find similar discrepancies in the small
lines. This can be seen in Fig. 4, where we compare the Γrad-
and Γe-model spectra. Therefore one has to be careful deduc-
ing parameters, e.g., abundances, from only one particular line.

Instead, several lines of more than one ionization stage should
be compared if available.

5. Summary and conclusions

We present a set of stellar atmosphere models calculated with
the most recent version of the PoWR code, using different ap-
proaches for the quasi-hydrostatic regime. In the limit of small
mass-loss rates, we also compared the PoWR models to the
plane-parallel TLUSTY atmospheres.

We conclude that a proper treatment of the quasi-hydrostatic
regime is imperative for OB-type star modeling. For a consis-
tent solution, the full radiative acceleration has to be taken into
account, including line and continuum contributions.

The spectroscopic masses will be severely underestimated,
by a factor of roughly 2, if models are used that account only for
the radiation pressure on free electrons in the quasi-hydrostatic
domain. This holds for all luminosity classes.

Omitting elements that significantly contribute to the to-
tal opacity compromises the density stratification in the quasi-
hydrostatic domain, and consequently leads to an inconsistent
stellar masses. Specifically neglecting important elements, such
as Fe, in the models is by no means legitimate.

The effect of mass loss on the spectra of typical OB stars may
seem subtle, but even small mass-loss rates can change the line
profile and thus might affect deduced gravities. The absence of
emission lines in an observation does not imply negligible mass
loss.

In the limit of small mass-loss rates and vanishing curvature
effects, the emergent spectra of the PoWR model atmospheres
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generally agree very well with TLUSTY models calculated with
the same stellar parameters.
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