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Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nano-
structures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s
equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others
previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett
model, we provide a general analytical expression of the electromagnetic fields that can propagate along the
direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on
the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic
composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of
diffraction. © 2013 Optical Society of America
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1. INTRODUCTION
Diffractive broadening is a natural process of wave fields
involving an increment of the beam width as it propagates
in free space [1,2]. This diverging process occurs nearer the
beam waist as long as it is tighter confined in the transverse
direction of propagation [3]. However, such a direct relation-
ship between field localization and diffraction is not so ob-
vious. In the late 1980s, Durnin and co-workers proposed a
way to excite Bessel beams (BBs) overcoming diffraction
in free space [4,5]. BBs are traveling wave fields in homo-
geneous dielectric media with a prescribed propagation con-
stant along the direction of propagation, and concurrently
its transverse pattern follows a Bessel function of the first
kind. Since intensity is confined around a characteristic
axis despite diffraction effects, soon they were coined
“diffraction-free beams.” In fact, the BB beam size is not fully
free from diffraction since its FWHM will be greater than half
a wavelength. Potential applications of BBs include optical
manipulation [6,7], femtosecond laser submicrochannel ma-
chining [8,9], and nonlinear microscopy in dense media
[10]. Recent progress in theory and applications of BBs
may be found in [11] and [12].

Transferring such ideas to optically structured media is
strikingly easy to do but still barely explored [13–16]. One rea-
son for this is that undivided attention was given to guided
modes due to their key role in telecommunications. Struc-
tured or not, a host medium cannot route a wave field in
the linear regime by fundamentals. Therefore, nondiffracting
beams confined in periodic arrangements might be inter-
preted as out-of-plane focal waves [17].

If we turn our attention to plasmonic nanostructures,
launching of BBs in the form of standing surface modes
around a metal–dielectric interface through total internal

reflection has been reported [18,19]. Excitation of plasmonic
nondiffracting beams propagating with curvilinear trajectory
also is possible by means of corrugations and holes drilled
onmetallic films [20,21]. One may ask whether a 1D projection
of the conical angular spectrum of a 2D diffraction-free
solution could yield a surface wave of similar characteristics.
In this regard, the answer is negative [22]. Nevertheless,
coupled surface plasmons polaritons (SPPs) appearing in
complex metamaterials enable a satisfactory approach to
generate propagating purely plasmonic BBs. In particular,
we theoretically confirmed that a metal–dielectric stratified
medium may sustain diffraction-free localized beams, even
including losses in the materials [23,24]. Grazing propagation
is not sustained by canalization [25], but it depends on the
waveform itself. More importantly, the assistance of
SPPs leads to subwavelength beam sizes that may be con-
served for propagation distances much longer than a wave-
length [26].

In this paper, we provide a step forward in the analysis of
nondiffracting subwavelength fields sustained in complex
plasmonic nanostructures. We will demonstrate the existence
of localized nondiffracting beams propagating in a wire
medium. Particularly, wire metamaterials are gaining interest
and recognition in the metamaterials science [27]. Based on
the Maxwell–Garnett model, homogenized composites may
sustain hybrid BBs having a two-ring-shaped spatial spectrum.
This finding is confirmed by numerical simulations using the
finite element method (FEM). Practical limits are reported for
excellent agreement with the previous analytical estimations.
In particular, we observe that moderate filling fractions of the
metallic composite may lead to nonresonant SPPs-driven
spots of light propagating with a beam size that remains far
below the limit of diffraction.
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2. DIFFRACTION-FREE BEAMS IN 2D
STRUCTURED NONMAGNETIC MEDIA
We consider a structured material in two dimensions in such a
way that the optical properties of the medium change in the
xy plane, but they are conserved along the z axis. As a
consequence, the relative permittivity of the isotropic inhomo-
geneous metamaterial is denoted by ϵ�x; y�. Also we assume
that monochromatic beam propagation is driven along
the axis of symmetry, which is the z axis. We focus on non-
diffracting beams, which may be understood as solutions of
Maxwell’s equations having a transverse waveform that
remains unchanged at different xy planes, except maybe by
a phase-only term depending on z. As a result, we finally
may write the magnetic field H � h�x; y� exp�iβz − iωt�,
where ω � ck0 is the time-domain frequency and β is the
on-axis spatial frequency of the wave field.

For convenience, we set the 3D vector field h � ht � hzz,
where ht � hxx� hyy includes both transverse components,
and hz is considered the on-axis component of the wave field.
If the optical system is free of external sources, the wave
equation,

∇ × �ϵ−1∇ ×H� � k20H; (1)

might be further simplified by using the wave field h. For in-
stance, the transverse wave field fulfills a much simpler wave
equation:

�ϵk20 − β2 �∇2
t �ht � −ϵ−1∇tϵ × �∇t × ht�; (2)

which is independent of the on-axis component hz. Here
∇t � x∂x � y∂y and ∇2

t � ∂2x � ∂2y. Equation (2) represents a
set of differential equations coupling hx and hy and assuming
that ϵ varies transversally. As a consequence, nondiffracting
solutions of the wave in Eq. (2) includes hybrid-polarized
solutions. On the other hand, for the on-axis scalar wave field,
we use ht from Eq. (2) and the Gauss’ law for magnetism to
obtain hz � �iβ�−1∇tht.

In this study, we consider wires of radius r, whose permit-
tivity is denoted by ϵm. For the sake of clarity, first we disre-
gard losses in the metal and therefore ϵm < 0. We assume a
periodic squared distribution of these wires in a way that a
stands for the lattice period along the x axis and the y axis,
as shown in Fig. 1. Note that a ≥ 2r. The host medium has a
positive dielectric constant ϵd. In our system, a given wire axis
is parallel to the unit vector z; therefore we set ϵ�x; y� � ϵm in
the metallic rods and ϵ�x; y� � ϵd in the host medium. Finally,
we assume that the monochromatic beam propagates along
the wires without defocusing.

3. BESSEL BEAMS IN EFFECTIVE
UNIAXIAL MEDIA
We may simplify our problem by considering the effective
medium approximation (EMA) [28–30]. Under this approach,
the wire metamaterial is modeled as an anisotropic medium.
In this case, the metal–dielectric compound behaves like a
uniaxial crystal whose optic axis is oriented along the z axis.
As a consequence, ϵ�x; y� is transformed into a dyadic permit-
tivity ϵ̄ � ϵ⊥�x ⊗ x� y ⊗ y� � ϵ∥z ⊗ z. Here, the parameters,

ϵ⊥ � ��1� f �ϵm � �1 − f �ϵd�ϵd
�1 − f �ϵm � �1� f �ϵd

; (3)

ϵ∥ � f ϵm � �1 − f �ϵd; (4)

are taken from the Maxwell–Garnett (MG) theory [31], being
f � πr2∕a2 the metal filling fraction in the wire medium.

We point out that the MG theory can be substituted by some
other homogenization approaches in the long-wavelength
limit, which can be found elsewhere, to elucidate the effective
refractive indices of the structure [32]. Nevertheless, we will
show that the MG theory provides satisfactory results on the
condition that the lattice period, a, is significantly lower than
the penetration depth in the conductor, c∕ωp, being ωp the
plasma frequency of the metal. In turn, a becomes much lower
than the wavelength λ0 � 2π∕k0.

Note that nondiffracting beams propagating in uniaxial
anisotropic media have already been analyzed, assuming they
travel along (also orthogonally to) the optical axis of the crys-
tal [33]. In the present section, we review the main attributes
of these BBs.

A. TE Bessel Beams
Under the assumptions taken from the EMA and given above,
hz satisfies the Helmholtz equation in two dimensions,

�k2t �∇2
t �hz � 0; (5)

where the in-plane wavenumber of the wave field, kt, is typi-
fied here as

kot �
��������������������
ϵ⊥k20 − β2

q
; (6)

provided that ϵ⊥ > 0 and β ≤ �����
ϵ⊥

p
k0. Note that this is a wave-

number, kot , corresponding to ordinary waves (o waves)
propagating in a uniaxial crystal of permittivity ϵ̄. In
other words, these wave fields are transverse electric (TE)
modes, since the on-axis component of the electric field van-
ishes. Solutions using Bessel functions come out naturally by
setting ∇2

t in a cylindrical coordinate system, which is
∇2

t � ∂2r � r−1∂r � r−2∂2ϕ. Solving the Helmholtz wave equa-
tion for the o waves yields

Fig. 1. Periodic array of nanowires made of a metal with dielectric
constant ϵm, distributed in a squared lattice, and hosted in a dielectric
medium with permittivity ϵd. The radius of the wires is r, and the lat-
tice constant is a. Beam propagation is driven along the wire’s axis,
which is the z axis.
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hoz�r;ϕ� �
kot
β

X∞
m�−∞

Amψ
o
m�r;ϕ�; (7)

where Am denotes a complex-valued constant,

ψo
m�r;ϕ� � exp�imϕ�Jm�kot r�; (8)

and Jm�·� is a Bessel function of the first kind. Equation (7)
gives a complete solution provided that hoz does not diverge
at r � 0.

Apart from that, it is useful to express the Bessel wave field
in the form of a plane-wave Fourier expansion. In particular,

ψo
m�r;ϕ� � �−i�m

Z
2π

0
exp�imθ� exp�ikot r�dθ: (9)

Note that a point r � xr cos ϕ� yr sin ϕ is set in the polar
coordinate system. Equation (9) stands for a equienergetic
superposition of 2D plane waves, modulated azimuthally by
a phase-only linear term, whose wave vector kot � xkot cos θ�
ykot sin θ has the wavenumber kot given in Eq. (6). Since the
magnetic field H includes the on-axis spatial frequency β,
the TE BBmay be considered a conical distribution of owaves
whose revolution axis is set along the z axis, as shown in
Fig. 2(a). The angular spectrum of hoz, P2�θ�, may vary in phase
and in amplitude, as illustrated in Fig. 2(b).

The transverse components of the magnetic field may be
obtained by means of the Gauss’ law for magnetism. They
are simply written as

hot � −
1
2

X∞
m�−∞

Am�i�ψo
m�1 − ψo

m−1�x� �ψo
m�1 � ψo

m−1�y�: (10)

We point out that the transverse field of the TE modes also
satisfies the following wave equation:

�
ϵ⊥k20 − β2 � ϵ⊥

ϵ∥
∇2

t

�
ht � iβ

�
1 −

ϵ⊥
ϵ∥

�
∇thz; (11)

which may be applied broadly, not only for o waves.

B. TM Bessel Beams
Nontrivial solutions of Maxwell’s equations exist involving
hz � 0, which is the transverse magnetic (TM) mode. These
solutions are associated with extraordinary waves (e waves)
in the effective uniaxial medium. In this case, the transverse
spatial frequency kt follows the expression

ket �
�������������������������������
ϵ∥k20 − β2ϵ∥∕ϵ⊥

q
; (12)

as may be deduced straightforwardly from Eq. (11) by means
of the substitution ∇2

t → −k2t and setting hz � 0. Note that
ket �

������������
ϵ∥∕ϵ⊥

p
kot ; that is, ket differs from kot in the uniaxial

medium as illustrated in Fig. 2(b). In addition, ket and kot exist
in the domain 0 ≤ β ≤ �����

ϵ⊥
p

k0 for all positive permittivities.
Interestingly, if ϵ∥ < 0 < ϵ⊥ characterizing an hyperbolic

metamaterial [34], o waves are purely evanescent, but ket
is unbounded in the domain

�����
ϵ⊥

p
k0 < β. Otherwise, if

β <
�����
ϵ⊥

p
k0, e waves cannot propagate and decay exponen-

tially in the metamaterial. In conclusion, the hyperbolic re-
gime prevents the hybridization of the polarization states of
BBs. A thorough analysis of spatial dispersion of o waves
and e waves in the wire medium will be given below.

Dispersion relation for TM modes is also inferred from
the wave equation corresponding to the electric field,
E � e�x; y� exp�iβz − iωt�. In particular, we have

�
ϵ⊥k20 − β2 � ϵ⊥

ϵ∥
∇2

t

�
ez � 0 (13)

for the on-axis component of the electric field. Formally, such
a wave equation is the same as that given in Eq. (5), after a
convenient substitution kot → ket and hz → ez, thus exhibiting
the same typology of solutions. Therefore we may write

eez�r;ϕ� �
ket
β

X∞
m�−∞

Bmψ
e
m�r;ϕ�; (14)

where Bn stands for a complex-valued constant and
ψe
m�r;ϕ� � exp�imϕ�Jm�ket r�. Now the magnetic field of the

associated Bessel waves is given by

het � � 1
2ZB

X∞
m�−∞

Bm��ψe
m�1 � ψe

m−1�x� i�−ψe
m�1 � ψe

m−1�y�;

(15)

where ZB � Z0β∕ϵ∥k0 is the intrinsic impedance of the BB,
and Z0 is the impedance of free space. From the Ampere’s
law, we finally confirm that ∇t × ht � −izezβ∕ZB.

C. Spatial Spectrum of Bessel Beams
A relevant feature of the BB waveform is in relation with its
spatial spectrum. From a mathematical point of view, the
transverse spatial spectrum of the wave field is retrieved
by applying the 2D Fourier transform (2D-FT) to its compo-
nents. By definition, the 2D-FT of a function g�r� is derived
from

Ffgg�kt� �
ZZ

g�r� exp�−iktr�d2r: (16)

By means of the Bessel function closure in Eq. [35], we
arrive at the following result:

Ffψm�r;ϕ�g � �2π�2k−1t �−i�m exp�imθ�δ�kt − jktj�; (17)

where the frequency kt � xkx � yky is set in the polar coordi-
nate system, �jktj; θ�, and δ is the Dirac delta function. This is

kx

ky

kz

Β

kx (a.u.)

k y
 (a

.u
.)

Θ
P2 (Θ)

P1 (Θ)

(a) (b)

k
t
e

k
t
o

Fig. 2. (a) Conical distribution of wave vectors in agreement with the
plane-wave Fourier expansion of BBs in effective uniaxial media.
(b) Annular-shaped spectrum of TM BBs, P1�θ�, and TE BBs, P2�θ�.
The arrows illustrate the angular dependence of the spectra.
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also straightforwardly deduced from Eq. (9). Note that the
spectral content of the function ψm is localized along an
annulus of radius jktj � kt, independently of its order m, as
illustrated in Fig. 2(b).

Let us now consider the 2D spatial spectrum of the mag-
netic fields, hot and het , given in Eqs. (10) and (15), respectively.
Every component of these wave fields in the Fourier domain
consists of a single ring, possibly varying with the angular
coordinate. In other words, the isofrequency curve exhibits
circular symmetry; this is in contrast to transverse spectra that
can be found in arrangements studied elsewhere [14,15].
The axisymmetry of the modal fields is caused by the homog-
enization of the wire medium, which is valid in the long-
wavelength approach. Otherwise, nonlocal effects will arise
leading to fine wave structures near the metallic elements,
as we will see below. Finally, since the value of kot differs from
ket given a propagation constant β, hybrid-polarized solutions
involving the simultaneous contribution of hot and het would
provide a spatial spectrum having a bi-annular pattern, as
depicted in Fig. 2(b).

4. SPATIAL DISPERSION IN WIRE MEDIA
In the EMA, the dyadic permittivity ϵ̄ of the effective uniaxial
medium is governed by the permittivities of the dielectric and
conducting materials in the composite, but also depends
strongly on the metal filling fraction f . This effect may lead
to dispersion regimes of a different nature, either elliptic
dispersion or hyperbolic dispersion, by simply tuning the fill-
ing fraction of the metal. To illustrate this effect, we will con-
sider ϵd < jRe�ϵm�j valid for visible and lower frequencies. For
numerical purposes, we particularly introduce silver wires
in an alumina matrix. The permittivities of silver and alumina
at the wavelength λ0 � 700 nm are ϵAg � −20.4 (neglecting
losses) and ϵAl2O3

� 3.1, respectively, which are taken from
experimental data [36].

Figure 3 shows the effective permittivities ϵ∥ and ϵ⊥ given
by Eqs. (3) and (4) for our silver-alumina composite. For
low filling fractions, both permittivities are positive, satisfying
ϵ∥ < ϵd < ϵ⊥. As long as f increases, ϵ⊥ grows significantly;
contrarily ϵ∥ decreases in linear proportion to f . Therefore,
birefringence is negative in the wire medium, and it
varies vigorously along with f in the elliptic regime. In fact,
ϵ∥ > 0 for

0 ≤ f <
ϵd

ϵd − ϵm
: (18)

In the numerical simulation, Eq. (18) is rewritten as
0 ≤ f < 0.132, where f is bounded by a relatively low value
of the filling fraction, which is caused by the relatively low
ratio ϵd∕jϵmj. As a consequence, the on-axis permittivity
becomes negative for moderate and high filling fractions.
On the other hand, ϵ⊥ is maintained positive up to much higher
filling fractions:

0 ≤ f <
ϵm � ϵd
ϵm − ϵd

: (19)

This yields 0 ≤ f < 0.737 for our metal–dielectric composite.
Figure 3 shows that ϵ⊥ may reach extremely high positive val-
ues in the interval 0.132 ≤ f < 0.737, where ϵ∥ is negative,
leading to hyperbolic dispersion. Note that the filling fraction
is limited by its maximum value, fmax � π∕4 ≈ 0.78, which
occurs when adjacent wires are put into contact in the
squared arrangement, a � 2r. Near this upper bound, the wire
medium behaves like an effective anisotropic conductor.
Finally, it should be mentioned that there is an upper limit
on the filling fraction imposed by the applicability of the
Maxwell–Garnett formula, which is known to be valid for
lower filling fractions only [37].

As mentioned previously, BBs driven by o waves [see
Eq. (10)] can exist only if β <

�����
ϵ⊥

p
k0. Instead, the singular

dispersion regimes exhibited by e waves allow the existence
of BBs with a propagation constant that ideally may take any
positive value, 0 ≤ β < ∞. However, it depends strongly on
the sign of ϵ∥, as illustrated in Fig 4. For instance, if ϵ∥ > 0
then β <

�����
ϵ⊥

p
k0 for the existence of extraordinary waves.

Moreover, since ket �
������������
ϵ∥∕ϵ⊥

p
kot and birefringence is negative

(ϵ∥∕ϵ⊥ < 1) in the elliptic regime, TE BBs will be tighter con-
fined than TM modes. On the contrary, solutions of Maxwell’s
equations involving β >

�����
ϵ⊥

p
k0 are consistent with EMA pro-

vided that ϵ∥ < 0 (and obviously ϵ⊥ > 0). Assuming a suffi-
ciently high value of β, we infer that ket ≈ β

���������������jϵ∥j∕ϵ⊥
p

for TM
polarization, which is an asymptotic behavior included in
Fig 4. In this case k0 ≪ ket < β, and therefore the spot size
of the BB clearly surpasses the limit imposed by diffraction.

Fig. 3. Variation of ϵ⊥ and ϵ∥ in terms of the filling fraction, by using
the Maxwell–Garnett model, for silver wires hosted in alumina at
λ0 � 700 nm. Inset: Schematic illustration of the anisotropic medium
that homogenizes the wire plasmonic crystal of Fig. 1.
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In practical terms, however, it is much easier to excite BBs
with moderate and low propagation constants. We point
out that deeply subwavelength nondiffracting beams also
may propagate with low β under TE polarization within the
regime of indefinite permittivity. Specifically, if ϵ⊥ takes high
values, happening near fmax, then kot ≈

�����
ϵ⊥

p
k0 ≫ k0.

At this point, we emphasize that BBs propagates with no
distortion of its transverse pattern precisely due to the singu-
lar characteristics of the spatial distribution of this wave field.
This self-focusing mechanism differs from canalization (also
known as self-guiding), which lies in the existence of a flat
dispersion curve within a broad spatial spectrum. For TM
modes, the canalization regime occurs when ϵ∥ → ∞, leading
to β � �����

ϵ⊥
p

k0 [25]. Based on the EMA, a wire medium cannot
become an anisotropic crystal with an infinite permittivity
along the anisotropy axis. Nevertheless, canalization in wire
media has been reported elsewhere [38]. In this case, self-
guiding can be derived from the strong nonlocality observed
in microwaves, but it cannot be realized at an optical range
where metals lose their conducting properties.

5. NUMERICAL EXAMPLES
We have numerically simulated wave propagation of BBs
directed along the effective optic axis of a silver-alumina wire
medium at a moderate propagation constant, β � 0.8k0, being
λ0 � 700 nm. That is β � 7.18 μm−1. In Figs. 5(a) and 5(b), we
plot jhexj2 and jhoxj2 taken from Eqs. (15) and (10), respectively.
Specifically we considered an Ag-Al2O3 composite with a fill-
ing fraction f � 0.1. In this case, the MG model provides the
effective permittivities ϵ⊥ � 4.07 and ϵ∥ � 0.75. Since both
permittivities are positive, elliptic dispersion governs ewaves.

For convenience, first we used B1 � ZB and B−1 � ZB (in
arbitrary units) to evaluate the wave field hex. The remaining
coefficients Bm are zero. This BB is characterized by a trans-
verse spatial frequency ket � 7.12 μm−1. As a result, the central
hot spot of the BB shows an FWHM of 454 nm along the x axis.
In the perpendicular direction, the beam slightly compresses
leading to a certain transverse anisotropy, as is evident in
Fig. 5(a), which is not related with the effective medium
but the asymmetry of the field distribution itself. We conclude
that the BB width is on the order of the wavelength. In this
case, light concentration around the beam axis is weaker than
that obtained in an all-dielectric compound (f � 0), as high-
lighted in Fig. 4.

On the other hand, the amplitudes A1 � −i and A−1 � i
(also in arbitrary units) are set for the evaluation of the field
hox. For TE modes, we estimated kot � 16.6 μm−1 for f � 0.1,
leading to superresolving hot spots of 110 nm FWHM on

the x direction. Contrarily to e waves, this is clearly a sub-
wavelength effect. In this case, additionally, wave confine-
ment is lower along the y axis, as shown in Fig. 5(b).

For the sake of completeness, let us write the x component
of the vector field hot plotted in Fig. 5(b) in terms of a
plane-wave Fourier expansion. Using Eqs. (9) and (10), we
finally have

hox�r;ϕ� �
Z

2π

0
P2�θ� exp�ikot r�dθ; (20)

where

P2�θ� � 1� cos 2θ; (21)

as expressed in arbitrary units. Therefore, the conical distri-
bution of TE plane waves leading to the BB shown in Fig. 5(b)
is not flat; the variation of this angular spectrum is apodized
by the wave function P2�θ�. Note that such an angular distri-
bution is different, specifically

P1�θ� � 1 − cos 2θ; (22)

for the example given above in TM polarization [see Fig. 5(a)].
Next we consider an increase of the filling fraction up to

f � 0.2, still maintaining the propagation constant β fixed.
As expected, ewaves cannot be observed due to its hyperbolic
dispersion regime, where ϵ∥ � −1.6, and the relatively high
value of ϵ⊥ � 5.41 (see Fig. 4). Precisely, the latter leads
to TE BBs with ultra-high spatial frequency, namely
kot � 19.6 μm−1. Although not represented graphically, the
field jhoxj2 has the same waveform as shown in Fig. 5(b)
but resized in inverse proportion to its transverse wavenum-
ber kot . As a result, the central peak has an FWHM as short as
93 nm along the x axis. This fact demonstrates that our BBs
potentially feature deep-subwavelength hot spots under prac-
tical standards.

6. FULL-WAVE MODES WITH TRANSVERSE
CONFINEMENT
Let us consider solving numerically the Maxwell’s equations,
equivalently to find the solutions of the wave in Eq. (2) in
order to obtain the exact wave fields that are associated with
the nondiffracting beams analyzed above. Wave localization
will be given at the point r � �0; 0� in the transverse section
of the wire medium shown in Fig. 1. In the majority of numeri-
cal simulations, the beam axis will be set at the center of a
silver wire. However, we will also examine the differences
found when relocating the beam axis at midpoint between
two adjacent wires.

Next we will verify the validity of the above analytical ap-
proach obtained from the EMA for the periodic squared array
of nanowires. For this purpose, we conveniently perform a
modal expansion. According to the Floquet–Bloch theorem,
the magnetic field of a wave mode in a 2D periodic medium
with invariant spatial frequency β along the z axis may be writ-
ten in the form

HkB � hkB �r� exp�ikBr� exp�iβz − iωt�; (23)

where hkB�x; y� is a field with the same periodicity of the
medium, and kB � �kBx; kBy� is the in-plane Bloch k vector.

Fig. 5. Wave field jhxj2 for BBs associated with (a) e waves and (b) o
waves propagating in a homogenized Ag-Al2O3 medium (f � 0.1) pro-
vided that β � 0.8k0. We represent the fields for B1 � ZB � B−1 and
A1 � −i � −A−1, respectively. Box dimensions of the contour plots
are 2 μm × 2 μm.
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For convenience, we impose the complex vector function to
have a given normalization, namely

Z
a∕2

−a∕2
dx

Z
a∕2

−a∕2
dyjx · hkB �x; y�j2 � 1; (24)

and also that x · hkB will take a real and positive value at the
origin. Nondiffracting beams propagating in wire media may
be expressed as a linear combination of the wave modes given
in Eq. (23). In particular, Bessel-like solutions will be repro-
duced following a Fourier expansion in the terms of Eqs. (9)
and (20).

We focus on solving kB and hkB�r� provided that the propa-
gation constant β is a parameter given in our problem. To that
end, we used a commercial FEM package (COMSOLMultiphy-
sics). In particular, a routine was programmed in the RF mod-
ule that allows us to obtain the Bloch modes hkB for a fixed
value of β. Along these lines, we found the complete set of
pairs �kBx; kBy�, and their corresponding wave functions
hkB , satisfying the Maxwell’s equations for the default β. This
procedure let us depict the spatial spectrum in the kB plane; in
other words, the isofrequency curve provided the on-axis
frequency β. If the EMA remains valid, we expect that the
isofrequency curve draws two branches of circular symmetry
and with radii kot and ket .

First we consider a silver-alumina wire medium with filling
fraction f � 0.1, where the diameter of the Ag wires is
d � 2r � 5 nm. In this case, the lattice period is a � 14 nm.
Note that the wire diameter is substantially lower than the
penetration depth of silver, which is estimated as 24 nm
(ωp � 12.9 fs−1), and therefore the metal becomes transpar-
ent. Consequently, this configuration is expected to give accu-
rate results in agreement with the EMA. Using our routine
based on the FEM for β � 0.8k0, we obtained the isofrequency
curve shown in Fig. 6(a). In this case, the isofrequency curve
has two branches approaching circles of radius kB1 �
7.16 μm−1 and kB2 � 16.6 μm−1. We point out that these values
come very near ket and kot , respectively, predicted by the EMA
for the TM and the TE polarization. The changes in the radial
coordinate for different azimuthal angles are negligible within
its corresponding branch. In Fig. 6(b), we also represent the
field intensity jx · hkB j2 of Bloch modes in a unit cell for three
different kB vectors. A dipolar distribution is evident, occur-
ring also for jy · hkB j2 (not shown in the figure). For modes in
the branch q � 1 (of lower spatial frequency), the orientation
of the field distribution is conserved at different angles θ.
On the contrary, its orientation follows that of the spatial
frequency kB for the second branch, q � 2. However, the var-
iations of the field intensity are small and localized very near
the wire boundaries.

In view of these results, we previse the formation of non-
diffracting beams with Bessel waveforms like those shown in
Figs. 5(a) and 5(b). Hereunto we will proceed similarly with
the plane-wave Fourier expansion given in Eqs. (9) and (20).
This integral transformation sets forward a BB waveform by
means of a complete set of plane waves. In the periodic wire
medium, however, Bloch modes will play such a role. For the
TM BB shown in Fig. 5(a), we would obtain an equivalent
waveform by properly superposing Bloch modes with wave
vectors kB1, which lie on the spectral branch near the annulus
of radius kB1. Also we used the second branch with Block

wave vectors kB2, placed close to the ring of radius kB2, in
order to reproduce the BB in TE polarization sustained in
the EMA. The x component of the wave field ht for both
BBs are evaluated numerically by

hxq�r� �
Z

2π

0
�x · hkBq �r��Pq�θ� exp�ikBqr�dθ; (25)

where q � 1 is used to reproduce a wave field in association
with the TM BB, and q � 2will correspond to the TE BB. Note
that this integral transform includes an infinite set of Bloch
modes. For numerical purposes, however, we have chosen
a finite subset of modes that are evenly spaced along with
the angular coordinate θ. Finally, depending of the case, we
found that the resulting nondiffracting beams have a small
but not negligible contribution of the electric/magnetic field
along the z axis, thus not a single one of the BBs is either
purely TE or TM polarized.

In Fig. 6(c), we plot the intensity of the wave function hxq,
for q � 1 and q � 2, resulting from the superposition of Bloch
modes given in Eq. (25). The envelope of the fields is in ex-
cellent agreement with the wave fields derived from our ana-
lytical approach and shown in Figs. 5(a) and 5(b). However,
abrupt changes around the metallic cylinders are evident. For
q � 1, we estimate that the nondiffracting beam has an FWHM
as short as 389 nm along the x axis, which is slightly below the

Fig. 6. (a) Isofrequency curve for the Ag-wire medium hosted in
Al2O3 (f � 0.1 and d � 5 nm) assuming β � 0.8k0. The insets illus-
trate the angular dependence of the two branches. (b) Normalized in-
tensity of the x component of the field hkB for Bloch modes pointed as
A, B, and C in the isofrequency curve. Units are set in dB. (c) Field
intensity jhxqj2 resulting from Eq. (25) for nondiffracting beams asso-
ciated with e waves (q � 1) and o waves (q � 2).
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FWHM of the TM BB propagating in the effective medium
[see Fig. 5(a)]. On the other hand, q � 2 leads to a FWHM
of 108 nm as derived from Fig. 6(c), which continues to be
clearly subwavelength and extremely close to the data
obtained from the EMA [see Fig. 5(b)].

Next we considered an increase of the filling fraction up to
f � 0.2, maintaining the propagation constant β � 0.8k0 and
the diameter d � 5 nm. Now the lattice period is a � 9.9 nm.
From our numerical FEM simulations, shown in Fig. 7(a), we
observe that only a single ring of radius kB2 � 19.6 μm−1 re-
mains, which is in practice the same frequency estimated by
the EMA, which is kot . Again the variation of the radius is small;
however, these deviations are approximately doubled in mag-
nitude when they are compared with the case f � 0.1. The
FWHM of the central hot spot measured along the x axis
is 89 nm [see Fig. 7(b)], which is close to 93 nm measured
from Fig. 5(b).

7. EFFECTS OF WIRE DIAMETER AND
METAL DISSIPATION
The EMA proves good agreement with FEM simulations pro-
vided that the wire diameter remains further down the pen-
etration depth in the metal. Otherwise, severe deviations
may arise. In Fig. 8(a), we show the isofrequency curve of
a metal–dielectric metamaterial composed of silver wires of
diameter d � 50 nm, assuming that the beam propagation
constant remains β � 0.8k0. In general, curvature varies at dif-
ferent orientations of the Bloch wave vector kB. For all prac-
tical purposes, this effect might be considered of minor
importance, and thus we would expect the formation of wave-
forms that resemble the fields derived from the EMA. The
most outstanding fact of the isofrequency curves is that the
Bloch vector kB for the branch q � 1 (f � 0.1) increases in
radius significantly. As a result, the nondiffracting beams re-
sulting from Eq. (25) will display a central spot of reduced
FWHM. Finally, the Bloch modes shown in Fig. 8(b) within
the unit cell of the periodic structure disclose dipolar fields
with enhanced localization at the boundary of the wires.

Figure 9 shows the intensity jhxqj2 evaluated by means of
the integral transform in Eq. (25), which corresponds to non-
diffracting beams propagating at a frequency β � 0.8k0 in a
wire medium of f � 0.1 with Ag diameter d � 50 nm. Subfig-
ures (a) and (b) correspond to Fourier expansions using the
branches q � 1 and q � 2 of the isofrequency curve shown in

Fig. 8(a), respectively. Looking at the envelope of the wave
field takes one back to the Bessel profiles depicted in Fig. 5,
which are estimated by the EMA. Driven by SPPs, however,
the wave field is clearly confined near the metal/dielectric
interfaces. In addition, we put special emphasis on the beam
compression of the nondiffracting beam for q � 1 in compari-
son with the estimation given by the EMA.

If the FWHM of the diffraction-free beam reaches the diam-
eter of the metallic cylinders in the squared array, the spatial
distribution of thewave field varies significantly alongwith the
origin of the coordinate system, r � �0; 0�. To illustrate this
effect, Fig. 10 shows the intensity of the field hx2, which is
evaluated bymeans of Eq. (25) and corresponds to nondiffract-
ing beams evolving at an on-axis spatial frequency β � 0.8k0 in
our Ag-Al2O3 compound. In this case, the metal filling fraction
comes up to f � 0.2, but the wire diameter d � 50 nm remains
unaltered. When the origin is set at the center of a wire, the
central spot exhibits a dipolar structure with a minimum of
intensity at r � �0; 0�. However, if the origin is relocated atmid-
point of two adjacentwires, the field is confined and intensified
around the beam axis. Such a strong field enhancement has
been widely exploited in gap optical antennas [39].

Inclusion of material losses also will modify the field pat-
tern of the nondiffracting beam. In our case, this occurs if

Fig. 7. (a) Isofrequency curve for a metallic compound of f � 0.2
and a wire diameter of d � 5 nm. Again the propagation constant
is β � 0.8k0. The inset illustrates the angular dependence of the single
branch. (b) Wave field jhx2j2 corresponds to a nondiffracting beam
that gets connected with the TE BB in the EMA.

Fig. 8. (a) Isofrequency curve for the Ag-Al2O3 compound at a
propagation constant β � 0.8k0. The case of a wire diameter d �
50 nm (dashed lines) is compared with EMA estimations (solid lines).
(b) Intensity jx · hkB j2 for Bloch modes at wave vectors set by the
points A, B, and C. Scaling is set in dB.

Fig. 9. Transverse profile of the intensity jhxqj2 corresponding to a
nondiffracting beam of β � 0.8k0 propagating in a wire medium of
f � 0.1 with cylinder diameter d � 50 nm in the cases: (a) q � 1
and (b) q � 2.
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we consider the permittivity of silver to be complex, which is
ϵAg � −20.4� i1.29 [36]. Let us now discuss the most relevant
aspects concerning dissipation. Assuming that the magnetic
field is expressed in terms of the Bloch modes given in
Eq. (23), thus kB continues to be a real valued wave vector.
As a consequence, the propagation constant becomes com-
plex, β � β0 � iβ00, where β0 and β00 stand for the real part
and the imaginary part of the frequency β, respectively.
Strictly speaking, nondiffracting beams rely on wave fields
whose transverse pattern remains unaltered. Following the
same procedure as above, the isofrequency curve in the kB
plane is evaluated given an on-axis spatial frequency β0 in or-
der to prevent defocusing. For an Ag-Al2O3 compound of the
same characteristics treated above (f � 0.2 and d � 50 nm),
at λ0 � 700 nm and β0 � 0.8k0, the changes determined in the
isofrequency curve are negligible. Nevertheless, although the
Bloch modes of the Fourier expansion in Eq. (25) propagate at
the same spatial frequency along the z axis, we point out that
they experience a characteristic attenuation driven by a
term exp�−β00z�.

In Fig. 11(a), we plot the on-axis intensity jhx2j2 of a
nondiffracting field whose beam axis is set at the center of
a given wire; we have checked that the following conclusions
will apply if the beam axis is displaced laterally. The exponen-
tial attenuation of the beam leads to a decrease in intensity of
44% at a propagation distance of one wavelength; it further
undergoes a considerable reduction in intensity when travel-
ling a distance of 5λ0, remaining only at 8% of its starting
intensity. Note also that the attenuation constant β00 varies
in the modal expansion of Eq. (25). This means that some
Bloch modes decay faster than others. As long as the beam
propagates along the z axis, the spatial spectrum of the beam
undergoes significant changes leading to a transformation of
its transverse profile. Figure 11(b) shows the waveform of
the nondiffracting beam at different transverse planes. In
practical terms, the nondiffracting nature of the beam is con-
served before it is damped by silver losses, occurring within a

few wavelengths. For a longer propagation distance, however,
diffusion driven by dispersion in β00 induces blurring, thus
breaking up wave confinement around the beam axis.

8. CONCLUSIONS
We presented a thorough discussion on diffraction-free local-
ized beams propagating in metal–dielectric nanostructures. In
this study, we considered a periodic squared distribution of
wires at the nanoscale; however, more complex geometries
might be treated similarly. We emphasize that the self-focusing
mechanism under analysis differs from canalization in the
metamaterial. Here, nondiffracting beams propagate with no
distortion of its transverse pattern precisely due to the singular
characteristics of the spatial distribution of this wave field.

For simplicity, first we considered a homogenization ap-
proach for the structured medium. We provided a general,
analytical expression of the electromagnetic fields that can
propagate along the optical axis of the homogenized
composite, keeping its transverse waveform unaltered. The
fields show Bessel waveforms and, set in a plane-wave Fourier
expansion, represent a conical distribution of o waves
(TE modes) and e waves (TM modes). We remark that TE
BBs exhibit ultra-high spatial frequency, potentially featuring
deep-subwavelength hot spots. In a numerical simulation, we
reported a BB with central peak of FWHM as short as λ0∕8.

Fig. 10. Intensity jhx2j2 of diffraction-free beams propagating at an
on-axis spatial frequency β � 0.8k0 in a Ag-Al2O3 compound of metal
diameter d � 50 nm and filling fraction f � 0.2. The origin r � �0; 0�
of the coordinate systems is set (a) at the center of a cylinder and
(b) at midpoint of two adjacent wires. The field profile near the beam
axis is scaled for the sake of clarity.

Fig. 11. (a) Normalized on-axis intensity if silver losses are included
in the numerical simulation. In this case, β � 0.8k0 in a Ag-Al2O3 com-
pound of metal diameter d � 50 nm and filling fraction f � 0.2.
(b) Transverse profile of the wave field as the beam propagates along
the z axis.
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BBs in the hyperbolic wire medium were analyzed under
TE polarization, but not for TM polarization. However, trans-
verse profiles do not differ from those found in elliptic
regimes. At most, higher propagation constants may be
achieved for a given transverse spatial frequency. Beyond a
limiting kt, e waves may only be supported in the medium, po-
tentially leading to extremely high subwavelength beams.

Also we verified the validity of our analytical approach. The
EMA showed good agreement with FEM simulations provided
the wire diameter remains further down the penetration depth
in the metal. When we considered an Ag-Al2O3 composite with
a wire diameter of 50 nm, first we observed a significant com-
pression of quasi-TM BBs. In general, the spatial distribution
of the wave field also varied significantly along with the origin
of the coordinate system. When the origins were set at mid-
point of two wires gap, the field sharply concentrated around
the beam axis. We concluded that composites with moderate f
help nonresonant plasmonic beams along propagating with a
size that remains far below the limit of diffraction.

Finally, we demonstrated that inclusion of material losses
will modify the field pattern of the nondiffracting beam. As
long as the BB propagates, the spatial spectrum of the beam
undergoes significant changes leading to a diffusive transfor-
mation of its transverse profile. In practical terms, however,
the nondiffracting nature of the beam is conserved before it is
damped by metal losses, occurring within a few wavelengths.
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