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Abstract. We present an extension of Eilenberg's variety theorem, a well-known result 
connecting algebra to formal languages. We prove that there is a bijective correspondence 
between formations of finite monoids and certain classes of languages, the formations of 
languages. Our result permits to treat classes of finite monoids which are not necessarily 
closed under taking submonoids, contrary to the original theory. We also prove a similar 
result for ordered monoids. 
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This paper is the first step of a programme aiming at exploring the connections 
between the formations of finite groups and regular languages. The starting point 
is Eilenberg's variety theorem [10], a celebrated result of the 1970's which under­
scores the importance of varieties of finite monoids (also called pseudovarieties) 
in the study of formal languages. Since varieties of finite groups are special cases 
of varieties of finite monoids, varieties seems to be a natural structure to study 
languages recognized by finite groups. However, in finite group theory, varieties 
are challenged by another notion. Although varieties are incontestably a central 
notion, many results are better formulated in the setting of formations . This raised 
the question whether Eilenberg's variety theorem could be extended to a "forma­
tion theorem". 

The aim of this paper is to give a positive answer to this question. To our sur­
prise, the resulting theorem holds not only for group formations but also for for­
mations of finite monoids. We also prove a similar result for formations of ordered 
finite monoids, extending in this way a theorem of [17] . 

Before stating these results more precisely, let us say a word on the aforemen­
tioned research programme and give a brief overview of the existing literature. One 
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of our ultimate goals would be to give a complete classification of the Hall vari ­
eties as defined by Steinberg in [25] and studied by Auinger and Steinberg [1-3] . 
Such a classification was given in [4] for varieties of finite supersolvable groups. 
A key tool of this paper is the operation H --+ Gp * H , where Gp is the variety of 
finite p-groups and H is a variety of groups. The second step of our programme 
[6] has been precisely to study this operation, and the corresponding operation on 
languages, when H is a formation. The definition of a Hall variety can be readily 
extended to formations and as we said earlier, formations are a more flexible tool 
than varieties in finite group theory. Our hope is that it might be easier to describe 
the Hall formations than the Hall varieties. 

Let us come back to the present paper. A variety of finite monoids is a class of 
finite monoids closed under taking submonoids, quotients and finite direct prod­
ucts. Eilenberg's theorem states that varieties of finite monoids are in bijection 
with certain classes of recognizable languages, the varieties of languages. The 
most famous instances of this correspondence are two early results of automata 
theory: star-free languages are associated with aperiodic monoids [20] and piece­
wise testable languages correspond to .1-trivial monoids [23]. But many more re­
sults are known and there is a rich literature on the subject. We refer the reader 
to [7, 18, 19] for an account of recent progress and a comprehensive bibliography. 
In the case of groups, only a few varieties of languages have been investigated. 
They correspond to the following varieties of finite groups: abelian groups [ 10], 
p-groups [ 10, 29, 30], nil potent groups [10, 28], soluble groups [26, 30] and super­
soluble groups [8]. 

Several attempts were made to extend Eilenberg's variety theory to a larger 
scope. For instance, ordered syntactic sernigroups were introduced in [17]. The re­
sulting extension of Eilenberg's variety theory permits to treat classes of languages 
that are not necessarily closed under complement, contrary to the original theory. 
Other extensions were developed independently by Straubing [27] and Esik and 
lto [ 11] and more recently by Gehrke, Grigorieff and Pin [ 13]. 

A formation of groups is a class of finite groups closed under taking quotients 
and subdirect products. The significance of formations in group theory is apparent 
since they are the first remarkable step in the development of a generalised Sylow 
theory. Thus it was Gaschiitz who began his pioneering work on the subject in 
1963 [12] with a paper which has become a c lassic. Since that time the subject has 
proliferated and has played a fundamental role in studying groups [5, 9]. To our 
knowledge, the notion of formations of finite algebras was considered for the first 
time in [21 , 22, 24] and has never been used in finite sernigroup theory. 

Just as formations of finite monoids extend the notion of a variety of finite 
monoids, formations of languages are more general than varieties of languages. 
Like varieties, formations are c lasses of regular languages c losed under Boolean 
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operations and quotients. But while varieties are closed under inverse of mor­
phisms, formations of languages enjoy only a weak version of this property - see 
Property (Fz)- and thus comprise more general classes of languages than varieties. 
Nevertheless, our main result shows that an appropriate extension of Eilenberg's 
variety theorem still holds for formations. 

Our paper is organised as follows. Formations of monoids are introduced in 
Section I. Section 2 gives the definitions and basic results on formal languages 
needed in this paper. Formations of languages are defined in Section 3. Our main 
result, the Formation Theorem, is presented in Section 4. Its counterpart for or­
dered monoids is the topic of Section 5. Instances of the Formation Theorem are 
given in Section 6: in particular, we give two descriptions of the formation of lan­
guages corresponding to the formation generated by the group As, the alternating 
group of degree 5. 

In this paper, all groups are finite. All monoids are either finite or free. 

1 Formations of monoids 

Recall that a monoid M is a subdirect product of the product of a family of mo­
noids (Mi)iEI if M is a submonoid of the direct product fl iE / M i and if each 
induced projection Jri from M onto M i is surjective. In this case, the projections 
separate the elements of M , in the sense that, if Jri (x) = Jri (y) for all i E I , then 
x = y . It is a well-known fact that this property characterizes subdirect products 
(see for instance [14, p. 78]). 

Proposition 1.1. A mono id M is a subdirect product of a family of monoids ( Mi )i El 

if and only if there is a family of surjective morphisms (M ---+ Mi )i El which sep­
arate the elements of M. 

Being a subdirect product is a transitive relation, in the following sense: 

Proposition 1.2. Let M be a subdirect product of a family of monoids (Mi)iEI · 

Suppose that, for each i E I , Mi is a subdirect product of a family (Mi,J )) El; . 

Then M is a subdirect product of the family (Mi ,J )iE I ,)El ; . 

Proof The projections Jri,J : M i ---+ Mi,J separate the elements of Mi and the 
projections Jri : M ---+ Mi separate the elements of M. It follows that the projec­
tions Jri,J o Jri : M ---+ Mi ,J separate the elements of M. o 

The next proposition states, in essence, that every subdirect product of quotients 
is a quotient of a subdirect product (see [22, the proof of Lemma 3.2]). 



1740 A. Ballester-Bolinches, J.-E. Pin and X. Soler-Escriva 

Proposition 1.3. Let N be a subdirect product of a family of "!!!._noids ( Mi )i El· 

Suppose that, for each i E I , Mi is the quotient of a mono id M i. Then N is a 
quotient of a subdirect product of the family (M i)iE I· 

Proof We use the following notation. We denote by M the product of the family 
(Mi ) iE / and by lri : M ~ Mi the projections. Similarly, M denotes the product 
of the family (Mi )iE/ and Jri is the projection from M to M i. For each i E I , let 
Yi : M i ~ M i be the quotient morphism and Jet y : M ~ M be the product of 
these morphisms. Finally, let N = y- 1 (N). 

y Yi 

By construction, N is a submonoid of M. To prove that N is a subdirect product, 
it suffices to verify that, for each i E I and for each mi E M i' there is an e lement 
m E N such that Jrj (m) = mi. Let mi = Yi (mi ). Since N is a subdirect product 
of the family (Mi)iEJ, there is an element n of N such that Jri(n) = mi. For 

j i= i ' let mj be an element of M j such that Yj (mj) = 1lj (n). Finally let m be 

the element of M defined by ii i (m) = mi and ii j (m) = m j for j i= i . Then the 
formulas 

n i(y(m)) = Yi(iii(m)) = Yi(mi) = mi = ni(n) 

and for each j i= i, 

show y(m) = n. Consequently, m belongs to N and satisfies Jri (m) = mi. 0 

The notion of a formation is a standard tool of group theory that has been ex­
tended to general algebraic systems by Shemetkov and Skiba [22]. However, its 
use in finite semigroup theory seems to be new. 

A formation of monoids is a class of finite monoids F satisfying the two condi­
tions : 

(i) any quotient of a monoid of F also belongs to F , 

(ii) the subdirect product of any finite family of monoids ofF is a lso in F. 

If S is a set of finite monoids, the formation generated by S is the smallest for­
mation containing S. The following result is well-known for formations of groups 
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[9, 11.2.2, p. 272] and was extended by Shemetkov and Skiba to general algebraic 
systems [22, Chapter I, Lemma 3.2] (see also [I 5]). For the convenience of the 
reader, we give here a self-contained proof in the case of monoids. 

Proposition 1.4. The formation generated by a class S of monoids consists of all 
quotients of subdirect products of members of S. 

Proof Let F be the class of all quotients of subdirect products of members of S. 
It suffices to prove that F is a formation. It is clearly closed under quotient. Let 
us prove that it is closed under subdirect products. Let M be a subdirect product 
of a finite family (Mi )iel of monoids Mi of F. Each Mi is a quotient of a sub­
direct product Ni of members of S. By Proposition 1.3, M is also a quotient of a 
subdirect product N of the monoids Ni . Now, Proposition 1.2 shows that N is a 
subdirect product of members of S. Therefore M belongs to F. o 

A variety of finite monoids is a class of finite monoids closed under taking 
submonoids, quotients and finite direct products. It follows that a formation is a 
variety if and only if it is closed under taking submonoids. Therefore a formation is 
not necessarily a variety. For instance, the formation generated by As is known to 
be the class of all direct products of copies of As ([9, Il.2.13]). Other very natural 
examples are given in the next proposition and its corollary. 

Recall that a monoid M has a zero if there is an element 0 in M such that, for 
all x E M , x O = 0 = Ox. 

Proposition 1.5. Let F be a formation of groups. The finite monoids whose minimal 
ideal is a group of F constitute a formation, which is not a variety, even ifF is a 
variety of groups. 

Proof Let E be the class of finite monoids described in the proposition and let 
M E E. If N is a quotient of M , the minimal ideal of N is a quotient of the 
minimal ideal of M. Since M belongs to E , its minimal ideal is a group of F. It 
follows that the minimal ideal of N is also a group of F. Consequently, E is closed 
under quotients. 

Let M be a subdirect product of a finite family (Mi )iel of monoids of E. Then 
there is a family of smjective morphisms (ni : M ---+ Mi )iel which separates the 
elements of M. Let I be the minimal ideal of M and let Gi be the minimal ideal 
of Mi. By definition ofE, Gi is a group ofF. Let ei be the identity of Gi. If e is an 
idempotent of I , then Jri (e) is an idempotent of Gi and thus is necessarily equal 
to ei . Since the family (ni)ie/ separates the elements of M, I contains a unique 
idempotent and hence is a group G. Each Jri induces a surjective group morph ism 
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from G onto Gi and this family of morph isms separates the e lements of G . There­
fore G is a subdirect product of the Gi and thus belongs to F. Consequently, M is 
in E and hence E is a formation of monoids. 

We claim that the variety of finite monoids V generated by E is the variety of 
all monoids. Indeed, let M be a finite monoid. Then the monoid M 0 obtained by 
adjoining a zero to M belongs to E and thus M , which is a submonoid of M 0 , 

belongs to V. In particular, E is not a variety of finite monoids. o 

Corollary 1.6. Finite monoids with zero constitute a formation, which is not a 
variety of finite monoids. 

Proof Apply Proposition 1.5 to the trivial formation of groups. D 

Corollary 1.6 gives rise to a large collection of examples of formations. 

Corollary 1.7. The monoids with zero of a given formation of monoids constitute 
a formation. 

2 Languages 

A language is a subset of a free monoid A*. Let us say that a monoid mor­
phism cp : A* -+ M recognizes a language L of A* if there is a subset P of M 
such that L = cp- 1 ( P ). It is equivalent to say that L is saturated by cp, that is 
L = cp- 1 (cp(L )) . If cp is surjective, we say that cp fully recognizes L. By extension, 
one says that a language is [fully ] recognized by a mono id M if there exists a mor­
phism from A* into M which [fully] recognizes L. 

The results presented in the remainder of this section are more or less folklore 
(see [1 0, 16, 18] for references). However, we include their proofs for two reasons. 
First, to keep the article self-contained. Secondly, requiring all morphisms to be 
surjective induces some subtle differences with the standard statements, making 
references to the existing li terature more difficult. 

Let us start with an e lementary but useful result. 

Proposition 2.1. Let L be a language of A* and let cp : A* -+ M be a morphism 

recognizing L. Thenforeach language R of A*, one has cp(Ln R ) = cp(L)ncp(R ). 

Proof The inclusion cp(L n R ) ~ cp(L ) n cp(R ) is clear. To prove the opposite 
inclusion, consider an element s of cp(L ) n cp(R ). Then one has s = cp(r) for 
some word r E R. It follows that rE cp-1 (s), wherefore rE cp-1 (cp(L)) and fi­
nally r E L since cp-1 (cp(L)) = L. Thus r E L n R and s E cp(L n R ), which 
concludes the proof. D 
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We shall also need an important consequence of the universal property of the 
free monoid (see [ 16, p. I 0]). 

Proposition 2.2. Let 1J : A* ---+ M be a morph ism and~ : N ---+ M be a surjective 
morphism. Then there exists amorphism rp : A* ---+ N such that 1J = ~ o rp. 

2.1 Syntactic morphism 

Recall that the syntactic monoid of a language L of A* is the quotient of A* by 
the syntactic congruence of L , defined on A* as follows: u "'L v if and only if, 
for every x, y EA*, 

xvy E L {:} xuy E L. 

The natural morphism 1J : A* ---+ A*/"' L is the syntactic morphism of L. Note 
that 1J fully recognizes L. Further, 17 has the following property. 

Proposition 2.3. Let L be a language of A* and let rJ : A* ---+ M ( L) be its syn­
tactic morphism. A surjective morphism rp from A* onto a monoid M fully rec­
ognizes L if and only if there is a surjective morphism rr : M ---+ M(L) such that 
rJ = Jf 0 rp. 

A* 

I\ 
M - - !! - .. M(L) 

In other words, the syntactic monoid is a quotient of any monoid fully recog­
nizing L and thus is the smallest monoid fully recognizing L. 

More generally, given a subset P of a monoid M , the syntactic congruence of 
P is the congruence defined on M as follows: u "'P v if and only if, for every 
x,y E M , 

xvy E P {:} xuy E P 

The next result explains the behaviour of syntactic congruences under surjective 
morph isms. 

Proposition 2.4. Let rr : M ---+ N be a surjective morphism of monoids. Let P be 
a subset of Nand let Q = rr - 1 (P). Then for all u , v E M, u "'Q v if and only if 
rr(u) "'P rr(v). 
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Proof Suppose that u "-"Q v and let us prove that ;r(u) "-"P ;r(v). By symme­
try, it suffices to prove that, for all (s, t) E N x N, the condition s;r (u)t E P im­
plies sn(v) t E P. Since n is surjective, one has s = rr(x) and t = rr(y) for some 
x, y E M. Therefore if sn(u)t E P , one gets n(xuy) = n(x)n(u)n(y) E P 
and thus xuy E Q. Since u "-"Qv, it follows that xvy E Q and thus n(xvy) = 

sn(v)t E P. Thus rr(u) "'P n(v). 
Suppose now that rr(u) "'P ;r(v) and let us prove that u "-"Qv. By symme­

try, it suffices to prove, for all (x, y) E M x M , that xuy E Q implies xvy E Q. 
Suppose that xuy E Q. Then 

n(xuy) = rr(x)rr(u)rr(y) E ;r(Q) = P. 

Since rr(u) "-"P n(v), it follows that 

rr (x)rr(v)rr(y) E P , 

whichgivesxvy E rr-1(P) = Q. Thusu "-"Qv . D 

A subset P of M is called disjunctive if the congruence "'P is the equality 
relation. It follows readily from the definition that a subset P of M is di sjunctive 
if and only if its complement in M is disjunctive. We shall need the following 
elementary proposition. 

Proposition 2.5. Let P be a disjunctive subset of a mono id M and y : A* --+ M be 
a surjective morphism. Then y is the syntactic morphism of the language y-1 ( P). 

Proof Let L = y - 1 (P). By construction, y fully recognizes L. Therefore, the 
condition y(u) = y(v) implies u "'L v. Conversely, ifu "-"L v, then y(u) "'P y(v) 
by Proposition 2.4 and thus y(u) = y(v). This proves that y is the syntactic mor­
phism of L. o 

A frequently asked question is whether any monoid is the syntactic monoid 
of some language. The answer is negative in the general case (see Example 2.8 
below), but it is positive for groups. 

Proposition 2.6. Let n be a surjective morphism from A* onto a group G. Then n 
is the syntactic morphism of the language n-1 (!). 

Proof Let L = ;r- 1 (1) . We claim that G is the syntactic group of L. Indeed, let 
u, v E G* and suppose that u "'L v . Then, for every x , y E G*, rr(xuy) = 1 if 
and only if rr(xvy) = 1. Take for y the empty word and for x a word such that 

rr(x) = n(u)- 1• We get n(xuy) = 1 and hence n(xvy) = 1. But n(xvy) = 
n(xv) = rr(x)rr(v) = rr(u)- 1rr(v) and thus rr(u) = rr(v). This proves the claim 
and the propos ition. D 
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Corollary 2.7. Every group is the syntactic monoid of some language. 

Example 2.8. Consider the 4-element monoid M = {I, a, b, c}, where I is the 
identity and the multiplication is defined by x y = y for all x, y E M \ { 1}. Then 
M contains no disjunctive subset and hence cannot be the syntactic monoid of any 
language. 

2.2 Operations on languages 

Simple operations on languages have a natural algebraic counterpart. We study in 
this order complement, intersection, union, inverse of surjective morphisms and 
left and right quotients. We denote by L c the complement of a language L of A*. 

Proposition 2.9. Let L be a language of A*. If L is fully recognized by a mono­
id M , then U is also fully recognized by M. 

Proof Let rp : A* ---+ M be amorphism [fully] recognizing Land let P = rp(L) . 
Then L = rp- 1 (P) and hence A* \ L = rp- 1 (M\ P). Thus M recognizes U. o 

Let (Mi) 1 ~i~n be a family of monoids and, for I ::S i ::S n, let rp; : A* ---+ M; be 
a surjective monoid morphism. The product of these morphisms is the surjective 
morphism 

rp : A*---+ Im(rp) s; M1 x · · · x Mn 

definedbyrp(x) = (rpi(x), ... ,rpn(x)). 

Proposition 2.10. The mono id Im(rp) is a subdirect product of the family of mono­

ids (Mi )I~i~n· 

Proof Let M = Im(rp). By construction, M is a submonoid of the direct prod­
uct M1 x · · · x Mn. Let n; : M ---+ M; be the natural projection. One has by con­
struction rp; = Hi o rp and thus n; is surjective. It follows that M is a subdirect 
product. o 

Proposition 2.11. Let L 1, .. . , Ln be languages of A* and let, for 1 ::S i ::S n, M; 

be a monoidfully recognizing L;. Then the sets n~~~~n Li and U1~i~n L ; are 
fully recognized by a subdirect product of the monoids Mi. 

Proof By hypothesis, each language L; is fully recognized by a morphism rp; 
from A* onto a monoid M;. Setting P; = rp;(L;), one gets L; = rpj 1 (P;). Let 
rp : A* ---+ M be the product of these morphisms. Proposition 2. 10 shows that M 
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is a subdirect product of the monoids Mi. Then the formula 

n Li = rp- 1((P1 X .•• X Pn) n M) 
l ~i~n 

shows that the intersection n I ""i ""n Li is fully recognized by M . Since union and 
intersection interchange under complementation, Proposition 2.9 shows that M 

also fully recognizes the set U1""i""n Li. o 

Corollary 2.12. Let L 1, ... , Ln be languages of A* and let, f or 1 ~ i ~ n, Mi 
be the syntactic monoid of Li. Then the syntactic monoid of nl""i""n Li and 
U 1 ""i ""n L i is a quotient of a subdirect product of the monoids Mi . 

Proof By Proposition 2.11, the languages n,""i""n Li and U1""i""n L i are fully 
recognized by a subdirect product M of the monoids Mi, and by Proposition 2.3, 
their syntactic monoid is a quotient of M. o 

Proposition 2.13. Let a : A* --+ B* be a monoid morphism and let L be a lan­
guage of B* recognized by amorphism rp f rom B* onto a monoid M. Then rp o a 
recognizes the language a- 1 (L ). In particular, if rp is the syntactic morphism of L, 
then rp o a is the syntactic morphism of a- 1 (L ). 

Proof Since cp recognizes L , one has L = rp- 1 (rp(L)) and hence 

If rp o a is surjective, it fully recognizes a- 1 (L). 
The second part of the statement follows from Proposition 2.5. 0 

Recall that, for each subset X of a monoid M and for each e lement s of M , the 
left [right] quotient s-1 X [X s- 1] of X by s is defined as follows: 

s -l X = { t E M I s t E X} and X s- I = { t E S I t s E X}. 

More generally, for any subset K of M , the left [right] quotient K - 1 X [X K - 1
] 

of X by K is 

K-1 X = U s - 1 X = {t E M I there exists sE K such that st EX}, 
sE K 

X K - 1 = U X s- 1 = {t E M I there exists s E K such thatts E X}. 
sE K 
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Proposition 2.14. If a morphism fully recognizes a language L of A*, it also fully 
recognizes the languages K - 1 L and L K - 1 for every language K of A*. 

Proof Let cp be a morphism from A* into a monoid M [fully] recognizing L and 
let P = cp(L) and R = cp(K). We claim that cp-1 (R-1 P) = K - 1 L. Indeed, one 
has the following sequence of equivalent statements: 

u E cp-1 (R- 1 P) {::::::::? cp(u) E R- 1 P 

{::::::::? there exists r E R such that rcp( u) E P 

{::::::::? there exists k E K such that cp(k )cp(u) E P 

{::::::::? there exists k E K such that k u E cp - 1 
( P) 

{::::::::? there exists k E K such that ku E L 

{::::::::? u E K - 1 L. 

Thus cp [fully] recognizes K - 1 L. A similar proof works for LK- 1• 

2.3 Regular languages 

0 

A language is recognizable (or regular) if it is recognized by a finite deterministic 
automaton. This is equivalent to saying that the language is recognized by some 
finite monoid or that its syntactic monoid is finite. It is a well-known fact that a 
language is regular if and only if it has finitely many left (or right) quotients. 

As a preparation to our main result, we now prove two results interesting on 
their own right. The first one follows essentially from [10, formula (4.2), p. 199]. 

Proposition 2.15./f L is a recognizable language, every language recognized by 
the syntactic morphism of L belongs to the Boolean algebra generated by the 
quotients of L. 

Proof Let 17 : A* --+ M be the syntactic morph ism of L. Since L is recognizable, 
M is finite . Let P = ry( L) and let u be an element of M . We claim that 

{u} = n u (2.1) 

{(x,y)EM 2 ixuyEP} {(x,y ) EM 2 1 xuyf. P} 

Let R be the right hand side of (2.1). It is clear that u belongs to R. Let now r 
be an element of R. Then, by construction, the conditions xuy E P and x ry E P 
are equivalent. It follows that u "' p r . Since M is the syntactic monoid of L, the 
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syntactic congruence"" p is the equality. Thus r = u, which proves (2. 1 ). Since 
'7-l commutes with Boolean operations and quotients, '7- l (u) is a Boolean com­
bination of quotients of L. 

If K is a language recognized by ry, then K = T/-l ( Q) with Q = 17 ( K ). There­
fore, since 

K = '7-I(Q) = U '7-l(u), 
uEQ 

the language K belongs to the Boolean algebra generated by the quotients of L. o 

Proposition 2.16. Let ({J : A* --+ M be a sutjective morphism and let, for each 
sE M, Ms be the syntactic monoid of the language ({J- 1(s). Then each Ms is a 
quotient of M and M is subdirect product of the monoids Ms. 

Proof Let s E M and let '7s : A* --+ Ms be the syntactic morphism of f{J- 1 (s). 
Since ({J fully recognizes f{J- 1 (s), there exists by Proposition 2.3 a surjective mor­

phism TCs : M --+ Ms such that TJs = TCs o ([J . 

We claim that the projections TCs separate the e lements of M . Let x, y E M and 
letu , v be words of A* such thatf{J(u) = x and({J(v) = y. If ns(x) = ns(y), then 
'1s ( u) = '1s ( v) and thus u ""rp- 1 (s) v . It follows by Proposition 2.4 that 

({J(u) "'{s} ({J(v), 

that is x ""{s} y . This property holds for all s E M and for s = x, gives in partic­
ular x "'{x} y . Since !x i E {x}, one gets ly l E {x}, that is x = y, which proves 
the claim. Therefore M is subdirect product of the monoids Ms. o 

3 Formations of languages 

A class of regular languages 'C associates with each finite alphabet A a set 'C (A*) 
of regular languages of A*. A formation of languages is a class of regular lan­
guages :F satisfying the following conditions: 

(F I) for each alphabet A, F (A*) is closed under Boo lean operations and quo­
tients, 

(F2) if L is a language of F(B*) and 17: B*--+ M denotes its syntactic mor­
phism, then for each monoid morph ism a : A* --+ B * such that 17 o a is sur­
jective, the language a-1 (L) belongs to F (A*). 

Observe that a formation of languages is closed under inverse of surjective mor­
phisms, but thjs condition is not equivalent to (F2). However, one could also use 
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another condition: 

(F~) if L is a language of F(B*) and q;: B* ---+ M is amorphism fully recog­
nizing L , then for each monoid morphism a : A* ---+ B * such that q; o a is 
surjective, the language a-l (L) belongs to F(A*). 

Proposition 3.1. Conditions (F2) and (F~) are equivalent. 

Proof Since the syntactic morphism of a language fully recognizes this language, 
it is clear that (F~) implies (F2). 

Suppose that (F2) holds and let q; : B * ---+ M be a morphism fully recognizing a 
language L. Let 1J : B* ---+ N be the syntactic morphism of L. By Proposition 2.3, 
there is a surjective morphism n : M ---+ N such that 1J = n oq;. Let a : A* ---+ B* 
be a monoid morphism such that q; o a is surjective. Then 1J o a = n o (q; o a) and 
thus 1J o a is surjective. It follows by (F2 ) that a-1 (L) belongs to F(A*), which 
proves (F~). o 

Let us now give an alternative definition of a formation of languages. 

Proposition 3.2. A class of regular languages F is a formation of languages if 
and only if it satisfies conditions (F 1) and (F3): 

(F3) if L is a language of F(B*) and K is a language of A* whose syntactic 
monoid is a quotient of the syntactic monoid of L, then K belongs to F (A*). 

Proof Let F be a class of regular languages. We first show that if F satisfies 
(F1) and (F3), then it also satisfies (F2 ). Let L be a language of :F(B*) and let 
1J : B * ---+ M be its syntactic morphism. Let a : A* ---+ B * be a morphism such 
that 1J o a is surjective. By Proposition 2.13, the morphism 1J o a is the syntactic 
morphism of a-1 (L) and it follows from (F3) that a-1 (L) belongs to F (A*) . 

Let us show now that if F satisfies (F 1) and (Fz), it also satisfies condition (F3). 
Let L be a language of F ( B *) and Jet 1J : B * ---+ M be its syntactic morphism. 
Let n : M ---+ N be a surjective morph ism and Jet K be a language of A* whose 
syntactic monoid is N . Let q; : A* ---+ N be the syntactic morphism of K and let 
y = n o IJ . Finally, let 

By construction, this language is recognized by 1J and by Proposition 2.15, it be­
longs to the Boolean algebra generated by the quotients of L. It fo llows by (F 1) 

that R belongs to F (B*). Since A* is a free monoid and since y is surjective, there 
exists a morphism a : A*---+ B* such that y oa = q; . Our notation is summarized 
in the diagram be low. A double-head arrow indicates a surjective morphism. 
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A* 

1\ 
B* YJ M JT N 

~ 
y 

Since cp is the syntactic morph ism of K , the set cp( K ) is disjunctive in N and by 
Proposition 2.5, y is the syntactic morphism of R. Since y o a is equa l to rp, it is 
surjective and Condition (F2) shows that cx- 1 (R) belongs to$' (A*) . But 

a - 1 (R) = cx - 1 (y - 1 (rp(K ))) = rp- 1 (rp(K )) = K . 

Thus K belongs to$' (A*), which proves (F3). 0 

Notice that a similar result holds for varieties of languages in Eilenberg's sense. 
Recall that a variety of languages is a class V of regular languages satisfying the 
following conditions: 

(V J) for each alphabet A, V (A*) is closed under Boo lean operations and quo­
tients, 

(V2) if Lis a language ofV(B*), then for each monoid morphism a: A*~ B*, 
the language a-1 (L) belongs to V(A*) . 

The counterpart of Proposition 3.2 for varieties is the following: 

Proposition 3.3. A class of regular languages V is a variety of languages if and 
only if it satisfies conditions (V 1) and (V 3): 

(V 3) if L is a language of V(B*) and K is a language of A* whose syntactic 
monoid divides the syntactic monoid of L, then K belongs to V(A *). 

Proof Suppose that V is a variety of languages and let V be the associated variety 
of monoids. If L is a language of V(B*), then its syntactic monoid M belongs 
to V. Therefore, if the syntactic monoid of K divides M , it also belongs to V and 
by the Variety Theorem, K belongs to V(A*) . 

Suppose now that V is a class of languages satisfying (V 1) and (V 3). We claim 
that V satisfies (V2). Let L be a language of V(B*) and let a: A*~ B * be a 
monoid morphism. T hen the syntactic monoid of a - 1 (L) divides that of Land 
thus by (V3), the language cx-1(L) belongs to V(A*). o 
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4 The Formation Theorem 

To each formation of monoids F, let us associate the class of languages :F (F) 
defined as follows: for each alphabet A, :F(F)(A*) is the set of languages of A* 
fully recognized by some monoid ofF, or, equivalently, whose syntactic monoid 
belongs to F. 

Proposition 4.l.IfF is a formation ofmonoids, then :F (F) is a .formation of lan­
guages. 

Proof Propos itions 2.9, 2. L I and 2.14 show that, for each alphabet A, the set 
:F (F) (A*) is closed under Boo lean operations and quotients. Proposition 2.1 3 
shows that the second condition defining a formation of languages is also satis­

fied. o 

We are now ready to state the main result of this section. Given a formation of 
languages :F, let us denote by F( :F) the formation of monoids generated by the 
syntactic monoids of the languages of :F . 

Theorem 4.2 (Formation Theorem). The correspondences F ---+ :F (F) and :F ---+ 
F (:F) are two mutually inverse, order preserving, bijections between formations 

of monoids and formations of languages. 

Proof We first prove that F(:F(F)) =F. Let F ' = F(:F(F)). Let M be a monoid 
of F and let cp : A* ---+ M be a surjective morphism. By Proposition 2.16, M is 
a subdirect product of the syntactic monoids Ms of the languages cp-1 (s), for 
s E M . Each M s is a quotient of M and thus belongs to F. It follows that cp -l (s) 
belongs to :F(F)(A*) and that Ms belongs to F'. Consequently, M belongs to F'. 
This proves the inclusion F ~ F'. 

To prove the opposite inclusion, consider a monoid M of F'. Then M is a 

quotient of a subdirect product of a finite family (Mi) 1 ""i""n of syntactic monoids 
of languages of :F (F). Since a language belongs to :F (F) if and only if its syntactic 
monoid belongs to F, each Mi belongs to F and thus M belongs to F .. Thus F' = F. 

We now prove that :F (F (:F)) = :F . Let :F' = :F (F(:F)). If L is a language 
of :F , then its syntactic monoid belongs to F(:F) by definition and thus L belongs 
to :F' . This proves the inclusion :F ~ :F'. 

Consider now a language L of :F' (A*) and let cp : A* ---+ M be its syntactic 
morphism. Since M belongs to F(:F), it is a quotient of a subdirect product N of 

a finite family (Ni )ie/ of monoids, each monoid Ni being the syntactic monoid of 
a language Li of :F (A7) , for some alphabet Ai. Let cpi : A7 ---+ Ni be its syntactic 
morphism. Let 8 be the surjective morphism from N onto M and l the injective 
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morph ism from N into ni El Ni. We also denote by Jri the natural projection from 
Tii e/ Ni onto Ni and we set Yi = Jri o t. Since N is a subdirect product, each map 
Yi is surjective. Finally, let f3 : B* ---+ N be a surjective monoid morphism. 

Our notation is summarized in the diagram below. 

Since CfJi is smjective, Proposition 2.2 shows that there is a monoid morphism 
ai : B* ---+ Aj such that (/Ji o ai = Yi o {3. Then ai is not necessary surjective, but 
CfJi o ai is surjective. By the same type of argument, there is a monoid morphism 
a :A* ---+ B* such that cp = 8 o f3 o a. 

We need to show that L belongs to F(A*). Let P = cp(L). Since cp is the syn­
tactic morphism of L , one has 

L = cp- 1(P). 

Let Q = 8- 1 (P) and let m = (mi)ie/ be an element of N. Then the following 
formula holds: 

iEl iEl 

Now, since CfJi is the syntactic morphism of the language L i, Proposition 2.15 
shows that the language cpj 1 (mi) belongs to the Boo lean algebra generated by 
the quotients of L i . Since L i belongs to F(A7), one also has cpj 1 (mi) E F(A7) . 
Since the morphism CfJi o ai is equal to Yi o {3, it is surjective and by (F2) the 
language aj 1 (cpj 1 (mi)) belongs to F(B*). It follows now from (4.1) and (F1) 

that {3- 1 (m) belongs to F(B*). Further, since 

{3- 1 (ri (P)) = {3 - l (Q) = u {3- 1 (m), 

mEQ 

one gets 
{3 - 1 (r 1 (P)) E .F(B *). 
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Finally, 
L = q; - 1 (P) = a - 1 (/3 - 1 (o-1 (P))) 

and since the morphism o o f3 o a is equal to q;, it is surjective, and thus by (F~) the 
language L belongs to $'(A*). Thus $' = $''. o 

As a consequence of the previous theorem, we obtain Eilenberg's variety theo­
rem. 

Corollary 4.3. The restriction of the correspondences F ---+ $'(F) and F ---+ F( F) 
to varieties of monoids and to varieties of languages are two mutually inverse 
bijections. 

Proof Let V be a variety of monoids. Then V(V) is a formation of languages. To 
show that V(V) is a variety of languages it is enough to see that V(V) satisfies 
condition (V 3). Let L be a language of V(V)(B*). Then the syntactic monoid 
M(L) of Lis in V. Now, if K is a language of A* whose syntactic monoid M(K) 
divides M(L), then M(K) E V. It follows that K E V(V)(A*). 

Consider now a variety of languages V. Let us prove that V(V) is a variety 
of monoids. Let M be a monoid of V(V) and let T be a submonoid of M. Let 
<p: B* ---+ M and r : A*---+ T be two surjective monoid morphisms. By Proposi­
tion 2.2, there is a morphism a : A* ---+ B * such thatt or = q; o a, where L denotes 
the inclusion map from T into M. For each t E T the following equalities hold: 

r- 1(t) = r - 1(t-1(t)) = a - 1(q;-1(t)). 

On the other hand, q;- 1 (t) is a language of B * fully recognized by M and M be­
longs to V(V) . Thus, by Theorem 4.2, <p- 1 (t) E V(V(V))(B*) = V(B *) . Now, 
since V is a variety of languages, we obtain that a - 1 (q; - 1(t)) E V(A*). There­
fore, the syntactic monoid M 1 of r-1 (t) belongs to V(V), for each t ET. Since 
by Proposition 2.16, T is a subdirect product of the family of monoids (M1)tET· 

we conclude that T E V(V). o 

5 Positive formations and ordered monoids 

A generalization ofEilenberg's variety theorem was proposed by the second author 
in [1 7]. This result provides a bijective correspondence between the varieties of 
finite ordered monoids and the so-called positive varieties of languages. We show 
in this section that the Formation Theorem can be extended in a similar way. To 
keep this paper to a reasonable size, we give only the definitions required to state 
the main result. The proof can be readily adapted from the proof of Theorem 4.2 
by using the arguments of [17]. The reader is referred to [17-19] for more details 
on positive varieties. 



1754 A. Ballester-Bolinches, J.-E. Pin and X. Soler-Escriva 

5.1 Positive formations of languages 

A positive variety of languages is defined by relaxing the definition of a variety of 
languages: only positive Boolean operations (union and intersection) are allowed­
no complement. It is therefore natural to define a positive formation of languages 
as a class of regular languages :F satisfying (F2) and 

(F{) for each alphabet A, :F (A*) is closed under finite union, finite intersection 
and quotients. 

Examples of positive formations of languages will be given in Section 6. 

5.2 Ordered monoids 

An ordered monoid is a monoid equipped with a stable partial order relation, usu­
ally denoted by ~ . A morphism of ordered monoids is a morphism of monoids 
which preserves orders. 

A subset I of an ordered monoid is an order ideal if x E I and y ~ x imply 
yE/. 

We say that (S, ~) is an ordered submonoid of an ordered monoid (T, ~) if S 
is a submonoid of T and the order on S is the restriction to S of the order on T. 
Similarly, (T, ~) is a quotient of (S, ~) if there exists a surjective morphism of 
ordered monoids cp : (S, ~) --+ (T, ~). 

Given a family (Mi)iel of ordered monoids, the product Tiie/ Mi is the or­
dered monoid defined on the set Tiie / Mi by the law (si)iei(s;)iei = (sisDiei 
and the order given by (si )iel ~ (sDie/ if and only if, for all i E I , Si ~ s; . 

An ordered monoid M is a subdirect product of a family of ordered monoids 
(Mi)iel if M is an ordered submonoid of the product Tii e / M; and if each in­
duced projection from M onto M; is surjective. 

A formation of ordered monoids is a class of finite ordered monoids closed 
under taking quotients and finite subdirect products. 

5.3 Recognition by ordered monoids 

Let L be a language of A* and let M be an ordered monoid. Then L is fully 
recognized by M if and only if there exist an order ideal I of M and a surjective 
monoid morphism cp from A* into M such that L = cp- 1(/). 

Let 1J: A*--+ M be the syntactic morphism of Land let P = ry(L). The syn­
tactic order ~P is defined on M as follows: u ~P v if and only if for all x, y E M , 

xvy E P ::::} xuy E P. 

The partial order ~P is stable and the resulting ordered monoid (M, ~P) is called 
the ordered syntactic monoid of L. 
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5.4 The Positive Formation Theorem 

To each formation of ordered monoids F , let us associate the class of languages 
:F (F) defined as follows: for each alphabet A, :F (F)(A *) is the set of languages of 
A* fully recognized by some ordered monoid ofF, or, equivalently, whose ordered 
syntactic monoid belongs to F. 

Proposition 5.1./fF is a formation of ordered monoids, then :F(F) is a positive 
formation of languages. 

Given a poshive formation of languages :F, let us denote by F( :F) the formation 
of ordered monoids generated by the ordered syntactic monoids of the languages 
of :F. We are now ready to state the Positive Formation Theorem: 

Theorem 5.2 (Positive Formation Theorem). The correspondences F ~ :F (F) 
and :F ~ F(:F) are two mutually inverse, order preserving, bijections between 
formations of ordered monoids and positive formations of languages. 

6 Examples 

This section presents three instances of the [Positive] Formation Theorem. The 
first two examples were first considered in [13]. The third example is related to 
group theory. 

6.1 Languages with zero and nondense languages 

A language with zero is a language whose syntactic monoid has a zero, or equiv­
alently, a language recognized by a monoid with zero. By Corollary 1.6, finite 
monoids with zero constitute a formation. The Formation Theorem now gives im­
mediately: 

Proposition 6.1. The class of recognizable languages with zero is a formation of 
languages. 

In particular languages with zero form a Boolean algebra. 
A language L of A* is dense if, for every word u E A*, L n A *uA * =/= 0. The 

language A* is called the full language. The c lass N :J) of regular nondense or full 
languages was first considered in [13]. 

Proposition 6.2. The class N :D is a positive formation of languages. 

Proof Let L 1 and Lz be two nondense languages of A*. Then there exist two 
words u,, uz E A* such that L, nA* u, A* = 0 and LznA*uzA* = 0. It follows 
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that 

Thus L1 n L2 and L1 U L2 are nondense. If L1 =A*, then L1 n L 2 = L2 and 
L 1 U L2 = A*. Thus .N D(A *)is closed under finite union and finite intersection. 

Let L be a nondense language. Then there exists a word u E A* such that 
L n A*uA* = 0. Let x, y E A*. We claim that x-1 L y-1 n A*uA* = 0. Other­
wise, there exist two words s, t such that sut E x-1 Ly-1 . Therefore xsuty E L, 
a contradiction, since L n A*uA* = 0. Thus x-1 Ly-1 is nondense. If L =A*, 
thenx-1Ly-1 =A* forallwordsx,y E A*. Therefore.ND(A*) is closed un­
der quotients. 

Let L be a language of .N D(B*) and let TJ: B* --+ M denotes its syntactic 
morph ism. Let a : A* --+ B * be a monoid morph ism such that TJOa is surjective. If 
L is the full language B *, then a - 1 ( B *) is the full language A*. If L is nondense, 
there exists a word u E B* such that B*uB* n L = 0. Let x = TJ(u) . Since rJ 

fully recognizes L, one has by Proposition 2.1 

0 = TJ( B* u B* n L) = TJ( B*uB*) n TJ(L) = M x M n rJ(L). 

Since TJ o a is surjective, there is a word v E A* such that TJ(a(v)) = x . We 
claim that A *vA * n a- 1 (L) = 0. Indeed suppose that A *vA * n a-1 (L) contains 
a word w. Then a(w) E Land thus TJ(a(w)) E TJ(L). Furthermore, one has 

TJ(a(w)) E TJ(a(A*vA*)) = M x M. 

This leads to a contradiction since M x M n TJ(L) is empty. Thus a-1 (L) is non­
dense and .N D satisfies CF2). o 

Theorem 9.2 of [13] can now be rephrased as follows, via the Positive Forma­
tion Theorem: 

Proposition 6.3. The formation of ordered monoids corresponding to .N D con­
sists of all finite ordered monoids with 0 in which 0 is the top element of the order. 

6.2 The formation generated by A 5 

Let F be the formation generated by As, the alternating group of degree 5, and let 
:F be the associated formation of languages. By [9, Il.2.13] F is known to be the 
class of all direct products of copies of As. 

By definition, a language belongs to :F if and only if its syntactic monoid is 
a group of F . Therefore, a language L of A * is in :F (F)(A *) if and only if its 
syntactic monoid is a direct product of copies of As. 
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The group As can be generated for instance by one of the sets A {a, b} or 
B = {c, d, e }, where a, b, c, d and e are the permutations of the set {I, 2, 3, 4, 5} 
defined as follows: 

a= c = (1 2 3), b = (2 4)(3 5), d = (1 4 2), e = (1 52). 

These two sets of generators define the automata .A and :B represented in Figures 1 
and 2. Taking 1 as initial and unique final state, a simple computation shows that 
.A recognizes the language of A* 

K = (b + a(ba*b)*a(ba*b)*a)* 

and that :B recognizes the language of B * 

L = (c(d + e)*cB + d(c +e)* dB+ e(c + d)*eB)*. 

a 

b 
Figure 1. The minimal automaton A of K. 

By construction, F is the formation of languages generated by K, or by L. There­
fore, one should be able to express K from L (and L from K) by using (F t) and 
(F2 ). This is actually quite simple. 

Let cp : A* __.,. As be the syntactic morphism of K and let 1/1 : B* __.,. As be 
the syntactic morphism of L. Let also a : A* __.,. B* and f3 : B* __.,. A* be the 
morphisms defined respectively by a(a) = c anda(b) = cdec2 and by f3(c) =a, 
f3(d) = aba 2baba and f3(e) = a2 baba2b. A short computation shows that 

cp = 1fr o a and 1fr = cp o f3 . (6.1) 
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Figure 2. The minimal automaton :B of L . 

Now, one has cp(K ) = 1/f(L) and this subset P of As consists of all permutations 
fixing the element 1. It follows that K and L are related by the formulas 

a- 1 (L) = a- 1 (1/1- 1 (P )) = (1/1 o a )- 1 (P ) = cp- 1 (P ) = K , 

{3- I (K ) = {3- I (cp- I (P )) = (cp o {3)- I (P ) = 1/1- I (P ) = L . 

Further (6.1) shows that a [.8 ] satisfies (F2) with respect to L [K]. This gives 
another proof that K and L generate the same formation of languages. 

Let V be the variety of groups generated by As and let V be the associated 
variety of languages. The cyclic group C2 is a subgroup of As and thus belongs 
to V. But the description ofF given above shows that C2 is not in F . It follows 
that the language (A 2 )* of all words of even length of A* is in V(A*), since its 
syntactic monoid is equal to C2, but is not in F (A*) . It would be a challenge to 
prove this result without the Formation Theorem. 

7 Conclusion 

We proved a Formation Theorem which extends Eilenberg's variety theorem. This 
result allows one to study classes of regular languages which do not form varieties 
of languages, and in particular, languages recognized by groups belonging to a 
given formation. Indeed, many formations which are not varieties arise naturally 
in the structural study of the groups. For instance, given a class X of simple non­
abe lian groups, the class of groups with all composition factors in X is a formation 
which is not a variety. If attention is focused on soluble groups, the class of all 
soluble groups whose 2-chief factors are not central is a formation which is not 
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subgroup-closed either. On the other hand, there are important res ults which are 

well-known for varieties of groups and are still open for a general formation. One 

of the most remarkable examples concerns with the formation or varie ty generated 

by a group. It is known that a variety generated by a group contains only finitely 

many subvarie ties [24]. The corresponding problem for formations is one of the 

most famous open questions in the theory. It would be interes ting to explore the 

language theoretic counterpart of this problem. 
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