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Abstract—Limited by visual percepts elicited by existing visual
prothesis, it’s necessary to enhance its functionality to fulfill some
challenging tasks for the blind such as obstacle avoidance. This
paper provides a new methodology for obstacle avoidance in
simulated prosthetic vision by modelling and classifying spatio-
temporal (ST) video data. The proposed methodology is based
on a novel spiking neural network architecture, called NeuCube
as a general framework for video data modelling in simulated
prosthetic vision. As an integrated environment including spiking
trains encoding, input variable mapping, unsupervised reservoir
training and supervised classifier training, the NeuCube consists
of a spiking neural network reservoir (SNNr) and a dynamic
evolving spiking neural network classifier (deSNN). First input
is captured by visual prothesis, then ST feature extraction is
utilized in the low-resolution prosthetic vision generated by the
prothesis. Finally such ST features are fed to the NeuCube to
output classification result of obstacle analysis. Experiments on
collected video data and comparison with other computational
intelligence methods indicate promising results. The proposed
NeuCube-based obstacle avoidance methodology provides useful
guidance to the blind, thus improving the current prothesis and
hopefully benefiting the future prothesis wearers.

Index Terms—visual prothesis, obstacle avoidance, simulated
prosthetic vision, spiking neural network, NeuCube.

I. INTRODUCTION

EGENERATIONS of photoreceptor cells such as retinitis

pigmentosa and age-related macular degeneration are
devastating causes of vision loss. To restore vision to the
blind, implantation of protheses may become a treatment
option in the encouraging neuroengineering field. Protheses
first transmit image data to an information processing unit.
After electrode array gets stimulation patterns, surviving neu-
ral cells in the visual pathway can be electrically activated
and visual perception can be stably evolved [1], [2], [3]. Such
electrically induced visual sensations are called “phosphenes”,
conveying limited but useful visual information to the blind.
Discernable phosphenes are usually generated in the following
three locations: the visual cortex [4], the optic nerve [5], and
the retina [6].

Many technical factors such as implant packaging, electrode
manufactory and biocompatibility limit the maximum number
of implantable electrodes, leading to a low resolution visual
perception with poor understanding. Faced with such a low
sampling resolution resulting in a rigorous constraint to the
information expressed by pixelized images, researchers find
it necessary to optimize image content in order to assist the
prothesis wearers to perform better in visual tasks. More
and more researches are concentrated on the how the im-
plant recipient interprets visual information from electrical
stimulation by simulation of prosthetic vision. In [7], the

number of individual Chinese characters needed for accurate
recognition by blind Chinese subjects is explored. Zhao et al
[8] found out that distortion, dropout percentage, and pixel
size have impact on the recognition of Chinese characters.
At the same time, many image processing strategies are
proposed in simulated prosthetic vision. Parikh et al [9] first
applied saliency-based method and provided cues for region of
interest detection in simulated vision. By exploring different
face detection methods, Wang et al [10] concluded that such
image processing methods can highlight useful information
thus improving visual perception of prothesis wearers. Han
et al [11] utilized feature extraction and image enhancement
strategy to improve the accuracy and efficiency of object
recognition. Aimed at highlighting the main object of a normal
image, two different ways of pixelization [12] proved to be
beneficial in daily object recognition tasks.

According to [13], there are already numerous navigation
systems and tools for visually impaired individuals, among
which white cane and dog guides are the most popular ones.
In order to offer enough information such as speed, volume
and distances to the visually impaired, a category of certain
devices called electronic travel aids have been created. With
the combination of different sensors such as sonars, laser
scanners and cameras, information is gathered in multiple
ways to guarantee the control of locomotion during navigation.
However, the complexity of such systems can not ensure their
reliability, robustness and overall performance, and some of
them require extensive training of users to learn from different
patterns output by the systems.

This study focuses on realizing the goal of obstacle avoid-
ance for the blind based on existing visual protheses. Unlike
previous studies [9], [10], [11], [12] which tried to optimize the
content of phosphenes in order to improve the performances
of visual tasks for the blind, our NeuCube-based obstacle
avoidance system directly tells the blind the classification
result of obstacle analysis, without any interaction between the
prothesis wearers and the systems. As an extension of existing
visual prothesis, the proposed obstacle avoidance method
can make use of the down-sampled signal from information
processing unit of visual prothesis, providing useful guiding
information to the blind. Besides, our system is much simpler
but more stable than the current navigation systems free
of different sensors. To the best of our knowledge, we are
the first to enhance the functionality of visual prothesis by
adding additional analysis on obstacle avoidance. Relatively
high accuracy is obtained owing to the use of spiking neural
network based NeuCube architecture [14], [15] inspired by
how human brain processes ST data. As a result, it’s a natural


https://core.ac.uk/display/323246529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JOURNAL OF KIgX CLASS FILES, VOL. X, NO. X, 2016

Visual Prothesis

o

gt ke

ST Featu res

NeuCube Architecture

Fig. 1.

idea to fulfill the brain-related obstacle avoidance task with the
help of NeuCube, an evolving ST data processing machine.

II. THE PROPOSED METHODOLOGY

As shown in Fig.1, first video input data is captured by
visual prothesis, then we get the down-sampled signal from
the output of prothesis. After that feature extraction strategy
is used to obtain ST features. Finally such features are fed into
NeuCube, which consists of data encoding module, NeuCube
initialization module, unsupervised reservoir training module
and supervised classifier training module, to output classifica-
tion result of obstacle analysis. Details of the proposed model
are given below.

A. ST Feature extraction

Our algorithm is based on the signal from visual prothesis,
thus deemed as an extension of existing prothesis. Fig.2(a)
exhibits two kinds of input video data to be classified, the
one containing no obstacle in the left part and the other one
containing an obstacle in the right part. Fig.2(b) shows the
phosphene generated by the visual prothesis, here we use a
strategy called directly lowering resolution with gaussian dots
(DLR) [16] to simulate such phosphene. In each gaussian
dot, central point’s gray value is taken as the mean value of
each grid, and the gray value of the other points around is
determined by both the gray value of central point and its
distance to the central point. Here only the central point of
each grid is used for later processing.

As is known to us, feature extraction is important in any
recognition algorithm. It’s a challenging task to obtain dis-
criminative features based on such low-resolution phosphenes.
We find out that during normal walking without interference
from any obstacles, only the background changes gradually
in the sight. However, if one walks towards an obstacle, the
size of that obstacle will become larger and larger. Based on
this observation, we extract the global mean gray value of
the down-sampled phosphene from each frame as ST feature.
As shown in Fig.2(c), the ST feature of “no obstacle” class
over time has an irregular pattern because of the changing
of background, while the ST feature of “obstacle” class over
time has a pattern of a relatively monotonous trend. Such two
distinguishable patterns can be utilized for classification.

The shaky camera has always been an unavoidable problem
in first-person videos. As for the prothesis, the same prob-
lem exists during the walking of prothesis wears. There are

The framework of our proposed NeuCube-based obstacle avoidance system.
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Fig. 3. Illustration of multi-scale feature extraction. Features are computed
based on different partitions of input image on different layers.

many complicated methods dealing with video stabilization to
remove camera motion. Here we just use a simple filtering
method to alleviate the shaky effect to a certain extend. The
image content has abrupt and periodic changes during the
process of walking, so an averaging filter among nearby frames
is used to smooth the extracted feature signal. Each feature in a
certain frame is smoothed by those from other nearby frames.
What’s more, the gray value trends of approaching dark and
bright obstacles are totally different. When one approaches a
dark obstacle, the global mean value of each frame has an
decreasing trend since the obstacle gradually fills his sight.
As for bright obstacles, an increasing trend appears. To unite
the two different occasions, we make use of an normalization
step as follows where f(¢) and F'(t) denote the ST feature
before and after normalization, ST features after smoothing
and normalizing are shown in Fig.2(d).

B(t) = [f(t) = f(1)] (D

To fit in with obstacles of different sizes, an multi-scale
strategy is considered as shown in Fig.3. On the first layer,
the global gray value of the whole image is extracted. On the
second layer, the entire image is divided into 4 parts and then
average pooling of each grid is used to compute the average
gray value of each grid. On the last layer, 16 parts are used to
extract such features. Finally in a single frame, 21 ST features
from different scales are extracted and stacked together.

B. data encoding

As spiking neural network can not directly process contin-
uous signal, a data encoding method is necessary to convert
the continuous signal to discrete spike trains. Threshold-based
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Fig. 4. A spiking neural network reservoir (SNNr) of 1000 neurons including
mapped input neurons.

representation method [17] is a common method to realize
such transformation, with an application for artificial retina
sensor. First the gradient of original signal based on adjacent
frames is computed, and then mean value m and standard
deviation s of gradient signal are obtained. Threshold th is
set to a combination of m and s to measure the change of
original signal:

th=m+ as 2)

where « is a parameter controlling the tradeoff between mean
value and standard deviation. Then each temporal signal is
compared with its previous signal, and spikes are generated
based on the gap. Specifically, a positive spike train is gener-
ated where the increasing gap is beyond the threshold, and a
negative spike train is generated where the decreasing gap is

LiLaL |

Different forms of input data. (a)original input image set; (b)phosphene set; (c)original ST feature of input data; (d)ST feature after smoothing and

beyond the threshold. We find that such encoding method is
not robust to noise especially in our application where shaky
camera causes meaningless fluctuations of original signal.
Thus we propose a bi-direction threshold extension method to
make more strict spike-generation rules. Each temporal signal
is compared not only to its previous signal but also to its
following signal:

1, F({t)—F({t—1)>thand
F(t+1)—F(t) > th
S(t)=¢ -1, F{t)—F({t—-1)<—thand 3)
F(t+1)—F(t) < —th
0, otherwise

where S(t) denotes the generated spike train. As shown in
Fig.2(e), positive and negative spikes are achieved based on
the changing pattern of original signal. For the “no obstacle”
class, both positive and negative spikes are included because of
the irregular pattern from ST feature, but the “obstacle” class
contains only positive spikes although fluctuations also exist in
its corresponding ST feature, which indicates that the proposed
encoding method has the ability to measure the major trend of
signal and alleviate the effect of noise. Discriminative spike
trains are generated in this way, which is vital to the following
classification based on spiking neural network.

C. NeuCube Initialization

The size of the SNNr is controlled by three parameters: n,,
Ny, N, Which represent the number of the neurons along z,
y, z directions. The size of the SNNr can vary depending on
the prediction task and the data. In this experiment, a SNNr
of 1000 (10 x 10 x 10) is used. SNNTr is then initialized by the
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Fig. 5. Examples of screenshots from the original video samples.

small world connection rule where each neuron in the reservoir
is connected to its nearby neurons within a distance d, which
is set to the longest distance between any pair of neurons in
the reservoir multiplied by a parameter r. We initialize the
weights of the connections with the product of the inverse of
the distance between them and a random number within [-
1,1]. Besides, 80% of the connection weights are selected to
be positive and the rest 20% are negative.

For some special data such as brain EEG data [18], [19],
there is always prior knowledge about the location of each
collected signal channel, which can be directly used to map the
signal channels into the reservoir. As for our application, there
are only extracted ST features without any prior knowledge.
A graph mapping method [20] is utilized to map the input
variables into the reservoir based on the principle that high
correlated spike trains are mapped to nearby input neurons.
As shown in Fig.4, the yellow dots are the input neurons
representing the different feature channels after mapping.

D. Unsupervised Reservoir Training

After mapping the ST features to SNNr, we train the
SNNr with the temporal components using the Spike Timing
Dependent Plasticity (STDP) learning rule [21]. It is used as
an unsupervised learning phase, intending to encode hidden
ST relationships from the input data into neuronal connection
weights. If neuron j fires before neuron i, the connection
weight from neuron j to neuron i will increase otherwise it
will decrease. This ensures that the time difference in the
input spiking trains, which encode the temporal patterns in
the original input signals, will be captured by the neuron
firing state and the unsymmetrical connection weights in the
IeServoir.

E. Supervised Classifier Training

The second training phase is to train the output classifier
based on the association between class labels and training
samples. Here the dynamic evolving Spiking Neural Networks
(deSNN) [22] is used as an output classifier, owing to its
ability to emphasize the importance of the first spike. For
each training sample, an output neuron is dynamically created
and connected to all the neurons of SNNr. Rank-order (RO)
learning rule [23] is used to initialize the connection weights
based on the assumption that most important information of
an input pattern is contained in earlier arrived spikes, which
is a phenomenon observed in biological systems as well as

an important information processing concept for some spatio-
temporal problems. Specifically, the connection between an
postsynaptic output neuron i and any connected pre-synaptic
neuron j is formulated as:

wj; = Modorder(j) @)

where Mod is a modulation factor, which defines how impor-
tant the order of the first spike is; order(j) is the arriving
order of the spikes to connection j, i among all spikes from
all connection to the neuron i. Once a synaptic weight is ini-
tialized, the synapse becomes dynamic and adjusts its weight
through the Spike Driven Synaptic Plasticity (SDSP) learning
rule [24]. The weight increases its value with a small positive
value (Drift) when a new spike arrives at this synapse and
decreases its value with the same Dri ft when no spike arrives.

ij,i(t) =€j (t) . Drift (5)

where e;(t) = 1 when a spike at synapse j at time t arrives and
(-1) otherwise. For every new test sample, an output neuron is
created and its connection weights to other neurons of SNNr
are calculated. After that, the weights are compared with those
of training samples that were established during the supervised
training process before. Finally the new test sample is labeled
the same as an training sample whose weights are the closest
to those of the test sample.

III. EXPERIMENTAL DESIGN AND RESULTS
A. Design of Experiment

We collected video data by a camera with first-person view
during walking, exactly simulating how the prothesis wearers
walk. A 20° x 20° field of view was adopted based on the
available visual field of a retinal prothesis prototype [25].
20 samples containing obstacles and 20 samples containing
no obstacles were collected, and each sample was about 8s
in duration containing 160 frames. Both indoor and outdoor
scenarios were included, and the obstacles included walls, cars,
trash cans, trees, statues and so forth (examples of screenshots
from the original video samples are shown in Fig.5).

Here the "obstacle” class was considered as positive samples
and “no obstacle” class was considered as negative samples.
For quantitative comparison, we employed three evaluation
metrics, true positive rate (T'PR), true negative rate (T'N R)
and Owerall Accuracy to measure the classification accuracy,
they are computed as follows:

TP
TPR = ————
R TP+ FN ©
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First, nearby neurons have denser connections than neurons
which are far away from each other after training. This indi-
cates that the mapping method in the NeuCube initialization
step really maps the high-correlated spike trains to nearby

Fig. 6. (a)Connection weights in SNNr before training. (b)Connection weights in SNNr after training.
TN
TNR = ———— 7
FP+TN ™
TP+ TN
0 lA = 8
verall Accuracy TPrFP+ 1 EN TN (8)

where T'P counts number of positive samples correctly clas-
sified as positive samples, F'N counts number of positive
samples incorrectly classified as negative samples, F'P counts
number of negative samples incorrectly classified as posi-
tive samples and T'N counts number of negative samples
correctly classified as negative samples. As a result, TPR
measures the classification accuracy of positive samples, T'N R
measures the classification accuracy of negative samples and
Overall Accuracy can be deemed as a mean of TPR and
TN R because the numbers of positive and negative samples
are the same.

B. NeuCube Visualization

Unlike traditional computational intelligence methods for
classification, the proposed NeuCube-based method has a
better understanding of the data and the brain processes that
generated it. As a result, NeuCube has been successfully
utilized for learning, classification and comparative analysis
on EEG data [18], [19] by visualizing the trained SNNr and
analyzing its connectivity and spiking activity. Besides, the
NeuCube visualization also shows its property of evolving,
which means that any previously unknown patterns can be
added to SNNr being learned and recognized without redesign-
ing all the learning process. Such kind of property reflects the
principle of brain cognitive development.

In Fig.6, the connection weights in SNNr before and after
training are visualized. Blue lines mean positive connections
and red lines mean negative connections. For each line,
thickness represents weight value. Also, a brighter neuron
in SNNr has stronger connections with other neurons than
a darker neuron. Some conclusions can be derived to better
understand the data and the evolving NeuCube system.

input neurons. Because high-correlated spike trains are more
time dependent with each other, it’s reasonable to map them
to nearby neurons in SNNr to have similar interactions with
other neurons.

Second, neurons in some parts are generally more brighter
than other parts, which reflects the evolving property of SNNr
because the input data patterns are learned in the reservoir after
training. After the unsupervised reservoir training, neurons
with stronger connections to other neurons indicate more spike
transmissions between neurons’ synapses, thus reflecting the
different importance of different features.

C. The Role of Each Step in the Proposed Methodology

To illustrate the effectiveness of the ST features, more
visual examples are given in Fig.7. Fig.7(a) shows the ST
feature of the “no obstacle” class, while Fig.7(b) shows the
ST feature of the “obstacle” class. ST features are extracted
in different samples and here only one dimension of ST
features are visualized. It is observed that ST features of
“no obstacle” class share irregular patterns on account of
different background. However, the ST features of “obstacle”
class have similar trend of increasing, indicating that they are
appropriate to describe the common properties of approaching
different obstacles. Therefore, the extracted ST features can
help distinguish the two different classes.

We changed different steps of the proposed methodology
to evaluate the role of each step through the above three
evaluation metrics. Different methods varied in feature s-
election, feature post-processing, phosphene resolution and
feature extraction strategy. The proposed method denoted as
“ours” used three layers of feature, smoothing and normalizing
strategy, 24 x 24 phosphene resolution and average pooling
feature extraction. All these methods were compared with the
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Fig. 7.
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(a)ST features of the “no obstacle” class. (b)ST features of the obstacle” class.

ACCURACY EVALUATION WHEN CHANGING D??]EEIEEINT STEPS OF THE PROPOSED METHODOLOGY.
Different Methods Overall Accuracy(%) | TPR(%) | TNR(%)
1d+4d feature 82.25 76.50 88.00
16d feature 86.50 90.00 83.00
without smoothing and normalizing 75.25 68.00 82.50
24 x 24 phosphene resolution 88.75 87.50 90.00
max pooling 62.00 51.00 73.00
Ours 89.75 89.50 90.00

same default parameters. 10-fold cross validation was used
and repeated for 10 times for more convincing and accurate
results.

In the proposed methodology, three layers of features are
used for further processing. We evaluated the performance
of utilizing the combination of first and second layers of
features, which are denoted by ”1d+4d feature” in Table 1.
At the same time, only the third layer of feature which is
denoted by 16d feature” was used for comparison. As shown
in Table 1, neither of the two methods is better than the
proposed method, demonstrating the power of using three
layers of features. The reason lies in that the different layer
varies in different partitions of original image. The more layers
used, the more different sizes of obstacles can be captured
in the proposed features, thus increasing the accuracy of
classification. The reason why we did not use more layers of
features is that the obstacle avoidance task ought to be real-
time, and the computation cost should be as low as possible.
It is observed that the usage of three layers has already
guaranteed a satisfying overall accuracy of nearly 89.75%.

The performance of feature post-processing steps such as

smoothing and normalizing were also tested. Without smooth-
ing or normalizing, the overall accuracy had drop to 75.25%,
which indicates that the proposed smoothing and normalizing
steps removed the effect of shaky camera to a certain extent
and united the two different occasions of approaching dark
and bright obstacles, making the two different patterns to be
classified more distinguishable.

Phosphene resolution is an important factor for different
tasks in prosthetic vision because the resolution determines
the visual information from protheses. The visual contents
received from protheses increase with phosphene resolution,
which is in agreement with researches on minimal amount of
visual information necessary for functional tasks such as visual
acuity [26], mobility [27] and reading [28]. In our experiment,
two normal phosphene resolutions 24 x 24 and 32 x 32 were
tested. Their classification accuracies are quite similar in Table
1, and 32 x 32 resolution is a bit better. This indicates that the
proposed methodology is not very sensitive to the resolution.
Unlike previous studies where image processing strategy is
used to enhance the simulated phosphene so that participants
are required to perform certain tasks based on the phosphene,
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TABLE II
ACCURACY EVALUATION USING DIFFERENT PARAMETERS.
STDP learning Rate | Mod | Drift | Overall Accuracy(%)
0.01 0.4 | 0.025 87.00
0.006 0.4 | 0.001 87.25
0.01 0.675 | 0.001 87.50
0.006 0.95 0.05 88.25
0.001 0.95 | 0.025 89.00
0.006 0.4 0.05 89.25
0.01 0.95 0.05 89.75
0.01 0.4 0.05 90.50
TABLE III
ACCURACY EVALUATION USING DIFFERENT COMPUTATIONAL INTELLIGENCE METHODS.
Classification Methods | Overall Accuracy(%) | TPR(%) | TNR(%)
Adaboost 77.50 75.00 80.00
MLP 32.50 50.00 15.00
SVM 61.25 52.50 70.00
NeuCube 90.50 88.00 93.00

the proposed methodology only extract ST features from it.
Later NeuCube-based classification method outputs results
automatically without any judgement from prothesis wearers.
That’s why the proposed methodology is not much dependent
on the phosphene resolution.

Pooling is a kind of operation which combines nearby
values in real space or feature space through a max or average
operator [29]. The goal of pooling is to achieve a new fea-
ture representation that preserves important information while
discarding irrelevant details. At the same time, the compact
representations obtained lead to better robustness to noise
and clutter. In the proposed methodology, average pooling is
used to compute the average gray value of each grid. Here
we also replaced average pooling with max pooling, where
maximum gray value of each grid was extracted, to evaluate
the classification accuracy. Table 1 reports that max pooling
strategy achieves much lower accuracy than average pooling,
which implies that noise actually exists in each feature grid
and average pooling is a more stable method to extract useful
feature under the circumstance of shaky camera.

D. Parameter Optimization

An important step in obtaining good results from Neu-
Cube is the optimization of parameter values, because the
output classification accuracy depends on parameter settings.
In this experiment, parameter optimization was achieved via
grid search, which is an exhaustive search method based
on different combinations of parameters. After that, the best
classification results as well as the optimal parameters could
be saved and reported. Some prime parameters of NeuCube
are listed as follows:

—Small world connectivity radius. Each neuron of the SNNr
is initialized connected to its neighbouring neurons within this
parameter as distance. In this experiment, we have used a value
of 25.

—The threshold of firing, the refractory time and the poten-
tial leak rate of the LIF neurons. We use leaky integrate and
fire (LIF) neuron model [30] in this experiment. When a LIF
neuron receives a spike, its potential gradually increases with
every input spike until it reaches an established threshold of
firing. Thereafter, an output spike is emitted and the potential
is reset to an initial state for a period of time which is
called refractory time. Between spikes, the potential leaks at
a constant rate called potential leak rate. In our experiments
the three parameters are set to 0.5, 6 and 0.002 respectively.

—STDP learning rate. It’s a parameter to modify the
neuronal connections regarding repetitive arrived spikes to
the synapses. If a neuron fires before another neuron, its
connection weight increases otherwise it decreases by STDP
learning rate.

—Mod: Based on the rank-order learning rule, connection
weight between neuron ¢ to neuron j is computed depending
on a modulation factor Mod and the order of the first incoming
spike.

—Drift: After the initial connection weights are set, the
occurrence of following spikes are considered to update with
respect to time. When a spike arriving from neuron ¢ at time
t after the first one was emitted, the weight increases by the
value of Drift otherwise if no spike arrives it decreases.

In our experiment the performance was relatively stable
when changing the small world connectivity radius, the thresh-
old of firing, the refractory time and the potential leak rate of
the LIF neurons, so the four parameters were fixed empirically.
The rest three parameters including the STDP rate, Mod
and Drift were optimized using an exhaustive search method.
Different combinations of these parameters were tested and
only the results which were closest to the best one were listed
in Table 2. It is observed that the maximum accuracy reaches
to 90.5%.
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E. Comparison with other computational intelligence methods

To prove the validity of the proposed model, it was also
compared with computational intelligence methods such as
Adaboost, multiple layer perception(MLP) and support vector
machine(SVM). Since we had optimized the parameters in
the proposed model, the parameters for each classifier were
also tuned heuristically to obtain the best results from each of
them. For example, the MLP model used 20 hidden nodes,
a learning rate of 0.01 and 500 iterations. The Adaboost
model used 50 iterations and 1 random seed. As for the
SVM classifier, quadratic kernel was chosen as the best kernel
function for the data. What’s more, as the spatio-temporal
data was too large for these three classifiers, such data was
compressed with principal component analysis method (PCA)
for further classification. The result of the experiment is laid
out in Table 3. The proposed NeuCube model achieved the
highest overall accuracy, true positive rate and true negative
rate. As a result, it is safe to say that traditional computational
intelligence methods like Adaboost, MLP and SVM are not
capable of learning from this type of data. The proposed
NeuCube model is good at learning ST features, therefore
relatively high accuracy is guaranteed.

IV. CONCLUSION

This paper has shown a promising and novel way to fulfill
the obstacle avoidance task by modeling and classifying the
ST video data in simulated prosthetic vision. It is observed that
NeuCube is a powerful tool to learn the ST data and therefore
can be successfully used in classifying the “obstacle” and
”no obstacle” occasions for the prothesis wearers. Effective
ST features are first extracted, followed by a data encoding
method converting the changes of signals into spikes. Then
NeuCube initializes its architecture, learns the hidden ST
relationships of input spikes and trains the final classifier
to output classification result of obstacle analysis. Role of
each step is illustrated and new features of both NeuCube
visualization and parameter optimization shows the superiority
of the proposed NeuCube-based methodology. At last, more
satisfying detection accuracy is obtained compared to tradi-
tional techniques like Adaboost, MLP and SVM.
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