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Abstract—Disabled people now expect better quality of 

life with the development of brain computer interfaces 

(BCIs) and neuroprosthetics. EEG 

(electroencephalograph) based BCI research for robot 

arm control mainly concentrates on distinguishing the 

left/right arm movement. But for controlling artificial arm 

in real life scenario with greater degrees of freedom, it is 

essential to classify the left/right arm movement further 

into different joint movements. In this paper we have 

classified the raw EEG signal for left and right hand 

movement, followed by further classification of each hand 

movement into elbow, finger and shoulder movements. 

From the two electrodes of interest, namely, C3 and C4, 

wavelet coefficients, power spectral density (PSD) 

estimates for the alpha and beta bands and their 

corresponding powers were selected as the features for 

this study. These features are further fed into the 

quadratic discriminant analysis (QDA), linear support 

vector machine (LSVM) and radial basis function 

kernelized support vector machine (RSVM) to classify into 

the intended classes. For left-right hand movement, the 

maximum classification accuracy of 87.50% is obtained 

using wavelet coefficient for RSVM classifier. For the 

multi-class classification, i.e., Finger-Elbow-Shoulder 

classification the maximum classification accuracy of 

80.11% for elbow, 93.26% for finger and 81.12% for 

shoulder is obtained using the features obtained from 

power spectral density for RSVM classifier. The results 

presented in this paper indicates that elbow-finger-

shoulder movement can be successfully classified using the 

given set of features.   

 

Keywords-EEG, BCI, wavelet transformation, PSD, 

QDA, LSVM, RSVM 

I.  INTRODUCTION 

Rehabilitative aids have come a long way in the last 

decade. Starting with mere mechanical rehabilitative 

aids, disabled people are now expecting better quality of 

life with the development of brain computer interfaces 

(BCIs) and neuroprosthetics [1].  
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Brain computer interfaces possess immense potential 

to bring the disabled people back to the mainstream of 

life providing means of communication bypassing the 

conventional neuro-muscular pathways.  

Thus BCI based prosthetics can help people with 

devastating disorders like amyotrophic lateral sclerosis, 

brainstem stroke, cerebral palsy, spinal cord injury etc. 

[2] [3]. BCI translates the electrical signals produced in 

the brain due to the electrical activity, that are  

detectable on scalp or cortical surface or within the 

brain, into outputs that communicate the users‘ intent 

without participation of peripheral nerves and 

muscles[4].  

BCI output can drive a word processor, speech 

synthesizer, cursor, robotic arm, wheel chair etc. Healthy 

users might communicate via BCI when conventional 

interfaces are inadequate, unavailable or too demanding 

[5-7].  A variety of brain activities monitoring methods 

provide the basis for brain computer interfaces. These 

include invasive and non-invasive methods like 

electrocorticography (ECoG), functional magnetic 

resonance imaging (fMRI), functional near infrared 

spectroscopy (fNIR), magnetoencephalography (MEG) 

and electroencephalography (EEG). Most research seen 

today in the BCI field is performed with EEG of its non-

invasive technology to detect different characteristic 

signals emitted from brain. Though EEG has inferior 

spatial resolution, it provides better temporal resolution. 

For motor control related BCI research the rolandic 

mu rhythm (7-13 Hz) and central beta rhythm (above 13 

Hz) originating from the sensory motor cortex are 

relevant [8]. During imagination or execution of body 

part movements, event related synchronization (ERS) in 

the gamma band and event related desynchronisation 

(ERD) in the mu and beta bands of the EEG originates 

in our brain. Contralateral to the movement, a decrease 

in mu and beta rhythm occurs with the movement or 

preparation of movement which is referred as ERD 

(event related desynchronisation). There occurs an 

increase in the power of mu and beta rhythms in the 

post movement phase, termed as ERS (event related 

synchronization) [9-14]. 

BCI system consists of modules to acquire brain 

signals, extract key features from them, and classify the 

features into intended classes ultimately aiming to 

translate into device commands. EEG based motor 

control study mainly relies on C3, C4 and Cz, as these 

lie on the scalp above the motor cortex area associated 

with voluntary motor control [15]. Various features like 

the time domain and frequency domain parameters [16-

17], (STFT) [18], wavelet transforms, Spectral estimates 
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[19], statistical parameters [20], Hjorth parameters [21], 

etc. are being used.  Researchers have used various 

intelligent algorithms [22-30]viz. back propagation 

neural network, multilayer perceptron, discriminant 

analysis, support vector machines, vector quantization 

etc. to classify the EEG data in intended categories. 

EEG based BCI research for robot arm control mainly 

concentrates on distinguishing the left/right arm 

movement. But for controlling artificial arm in real life 

scenario with greater degrees of freedom, it is essential 

to classify the left/right arm movement further into 

different joint movements. In this paper we have 

classified the raw EEG signal for left and right hand 

movement, followed by further classification of each 

hand movement into shoulder, elbow and finger 

movement (Fig.1), aiming the ability of the classifiers to 

make composite decision. These classifications will help 

in the realistic development of EEG based BCI control 

of artificial limb.  

This paper is presented in six sections. An 

introduction to features extraction and classification is 

given in section II and III respectively. Section IV 

describes the complete experimental and signal 

processing procedures employed in this study. 

Performance analysis of extracted features and 

classifiers is given in section V, followed by the 

conclusion in section VI. 

II. FEATURE EXTRACTION  

A. Wavelet transformation  

Decomposing a signal into a set of basis functions are 

known as wavelets.  These wavelets are obtained from a 

single prototype wavelet called the mother wavelet by 

dilations, contractions and shifting, which is the 

fundamental approach of wavelet transformation [19] 

[22] [31]. The mother wavelet function Ψa,b(t) is given 

as  

 

                            Ψa,b(t)=1/ a Ψ(t-b/a)                      (1) 

 

where, a,b   R, a>0, and R is the wavelet space and 

‗a‘ and ‗b‘ are the scaling factor and shifting factor 

respectively. The property of wavelet transformation to 

discriminate both temporal and spatial domain 

parameters make it an inevitable tool for feature 

extraction from EEG signals. The time frequency trade-

off encountered by short time Fourier transforms 

(STFT) is being overcome by wavelet transformations 

with their multi-scale  approximation allowing effective 

localization of the signal with various spatio-temporal 

characteristics. Thus for a non-stationary signal like 

EEG, it is an effective analysis tool. The discrete 

wavelet transforms analyzes the signals at different 

resolutions by decomposing the signal into coarse 

approximation and detail information. Each level 

includes two digital filters and two down-samplers by 2. 

The down-sampled outputs of the first high-pass and 

low-pass filters provide the detail D1 and 

approximation A1, respectively. The first 

approximation is further decomposed and the process is 

continued, until the desired level of decomposition is 

obtained. [32-33].   

 
Fig.1. Proposed scheme 

 

B. Power spectral estimates 

Spectral density methods extract information from a 

signal to describe the distribution of its power in the 

frequency domain. The power spectral density (PSD) is 

defined as the Fourier transform (FT) of the signal‘s 

autocorrelation function, provided that the signal is 

stationary in a wide sense [33]. Thus for an EEG signal 

segmenting the complete time series data would be an 

ideal approach.   

The measure for power spectral estimates is 

commonly divided into two methods; Non-parametric 

method and parametric method. The Welch‘s method 

fall into non-parametric method which, divides the 

times series data into overlapping segments, computing 

a modified periodogram of each segment and then the 

PSD estimates is averaged. Let xm(n) = x(n+mN), 

n=0,1,…N-1, denote the mth block of the signal x ∈ 

C
MN

, with M denoting the number of blocks. Then the 

Welch PSD estimate is given by [34] 
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III. CLASSIFIERS 

A. Support Vector Machine 

Statistical learning theory being the basis of support 

vector machines (SVM) provides a new approach to 

pattern recognition. Support vector machines (SVMs) 

are a set of related supervised learning methods used for 

classification and regression [35-36]. They belong to a 

family of generalized linear classifiers. SVM training 

always finds global minimum and its performance 

depends upon the selected kernel, where the user 

chooses only the error penalty parameter. The 

foundations of Support Vector Machines (SVM) have 

been developed by Vapnik [37] and gained popularity 

due to many promising features such as better empirical 

performance. The formulation uses the Structural Risk 

Minimization (SRM) principle, which has been shown 



to be superior, [4], to traditional Empirical Risk 

Minimization (ERM) principle, used by conventional 

neural networks. SRM minimizes an upper bound on 

the expected risk, where as ERM minimizes the error on 

the training data. If the training data is labelled as {xi, 

yi}, i = 1, …. , l,   yi  {−1, 1}, xi   R
d
. Suppose there 

is some hyperplane which separates the positive from 

the negative examples (a ―separating hyperplane‖). The 

points x which lie on the hyperplane satisfy w.x + b = 0, 

where w is normal to the hyperplane, wb / is the 

perpendicular distance from the hyperplane to the 

origin, and w  is the Euclidean norm of w. Let d+ (d−) 

is the shortest distance from the separating hyperplane 

to the closest positive (negative) example. The 

―margin‖ of a separating hyperplane is defined as d+ + 

d−. The aim of linear support vector algorithm is to find 

the hyperplane with largest margin. Let us assume that 

all the training data satisfy the following constraints: 

 

xi. w + b ≥ +1 for yi = +1  (3) 

xi. w + b ≤ −1 for yi = −1   (4) 

 

The above two equations can be combined to obtain 

the following resultant:  

 

yi(xi . w + b) − 1 ≥ 0  i  (5) 

 

Considering the points for which the equality in (3) 

holds, these points lie on the hyperplane H1: xi . w + b = 

1, where w is the normal and wb /1 is the 

perpendicular distance from the origin. Similarly, the 

points for which the equality in Eq. (11) holds lie on the 

hyperplane H2: xi. w + b = −1. Hence d+ = d− = w/1  

and the margin is d+ + d− = w/2 .  

 
Figure 2: Representation of Hyper planes. [9] 

 

When the vectors are separated by non-linear region, 

the SVM uses a kernel function to map the data into a 

different space where a hyperplane can be used for 

separating the vectors. Certain function that 

corresponds to an inner product in some expanded 

feature space is referred to as kernel function. 

According to Mercer‘s theorem, every semi positive 

definite symmetric function is a kernel. Kernel function 

transforms the data into higher dimensional space to 

make it possible for the separation of the vectors (Fig. 

13). The dot product becomes K (xi,xj)= φ(xi) 
T
φ(xj) 

when every data point is mapped into high-dimensional 

space via some transformation Φ:  x → φ(x). The 

kernel matrix, Kij ≡ K (xi, xj), is a Gram matrix (a 

matrix of dot products (Horn, 1985)) in H (i.e. the 

Euclidean Space) [28]. It is necessary to choose l 

training points such that the rank of the matrix Kij 

increases without limit as l increases. The radial basis 

function is given by  
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which defines a spherical kernel where 
tx  is the centre 

and σ, supplied by the user defines the radius. 

B. Quadratic discriminant analysis(QDA) 

QDA is a generalized version of linear discriminant 

analysis (LDA), provided there are only two classes of 

points and the measurements are normally distributed. 

However unlike LDA, the assumption that the 

covariance of each class is identical is not taken into 

consideration in QDA [38-39]. Further, the surface that 

separates the subspaces will be a conic section (like 

parabola, hyperbola, etc.). The discriminant function is 

given by 
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       (7) 

 

where, k=class, X is the set of measurements,
k

is the 

mean vector,  k
is the prior probability and k

is the 

covariance matrix. 

When (7) is multiplied by -2, the discriminant 

function is given by 
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and the discriminant rule is given by 
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where,  xkp / =posterior distribution. Using this rule 

is called the QDA. 

IV. DATA  AND EXPERIMENTAL  PROCEDURE 

The experiment is so designed to make the subject 

move their left-right hand along with moving a 

particular portion of the hand, namely, Finger, Elbow 

and Shoulder in a self paced manner. 

A. Subjects 

Five females and three males (right handed) in the 

age group of 23±2 years were employed as subjects in 

our experiment. The subjects were made to fill up a 

consent form and a simple introduction about the 

research work and stages of the experiment. 

B. Visual Cue 

The experiment consists of 3 sessions with 20 trials 

each conducted on the same day with several minutes 

break in between. The subjects were asked to move the 

right and left hand, according to the visual cue 

displayed on the screen. In each session, the subjects 

wx+b=1 

wx+b=0 

wx’+b=-1 



were also asked to either move their finger, elbow or 

shoulder. In each trial, a blank screen was displayed in 

the first 2 seconds. In the 2
nd

 second a fixation cross ‗+‘ 

was displayed on the screen which indicates the 

beginning of the trial. From the 3
rd

 second onwards, the 

visual cue (left-right arrow) is displayed. At the same 

time, the subject was asked to move their respective 

limb according to the visual cue, until the display is 

blank again. The timing scheme of the visual cue is 

given below in Figure 3. 

 

 
Fig.3. Timing scheme of the experiment 

 

C. Experimental Setup 

The recording of the EEG signal has been done 

through NeuroWin, NASAN India with 19 channel 

Ag/AgCl electrodes at a sampling frequency of 250 Hz 

and band-pass filtered between 0.01 Hz and 35 Hz. 

Only 3 channel electrodes; C3, Cz and C4 were selected 

and the electrodes are placed according to the 

International standard 10-20 system, the left ear was 

selected to be the point for the reference electrode and 

FPz as the ground electrode. The sensitivity of the 

amplifier is set to 100 uV and an additional 50 Hz notch 

filter had been utilized to suppress the line noise. 

D. Preprocessing 

For each subject a total of 60 trials were obtained of 

8 second each. Out of the three electrodes used, C3 and 

C4 are selected for this study as these electrodes have 

greater relevance for extracting information on the left-

right movement. Further, the obtained data was band-

pass filtered using an elliptical filter (order 14) between 

8 and 30 Hz, for removing the noise based on the 

environment and recording techniques, and movement 

related information are mostly obtained in this 

bandwidth. The training and test data were selected 

randomly using the 10 fold cross validation technique 

which would be described later. 

E. Wavelet Features Feature Extraction  

In the present study, Daubechies (db) mother wavelet 

of order 4 is used. After trials with the EEG data, the 

D3 features and D4 features (Table I) i.e., the difference 

of the third and fourth level coefficient for the 

respective electrodes were selected as one of the feature 

components for the final feature vector (C4-C3). Figure 

4 and 5 shows the D3 and D4 wavelet decomposition 

for left-right imagery for C3 and C4 electrode. 

 
TABLE I 

EEG SIGNAL DECOMPOSITION INTO FREQUENCY  
BANDS WITH A SAMPLING FREQUENCY 0F 250 HZ 

 

 

 

 

     
Fig.4a. Left hand movement for C3 electrode                                                       Fig.4b. Left hand movement for C4 electrode 

 

     
Fig.4c. Right hand movement for C3 electrode                                                   Fig.4d. Right hand movement for C4 electrode 

Fig.4. D3 Coefficients for Left/Right movement for C3/C4 electrode 

 

 

 
 

 
 

 

Frequency 

Range 

Decomposition 

Level 

Frequency 

bands 

62.5-125 D1 Noise 

31.25-62.5 D2 Gamma 

15.625-31.25 D3 Beta 

7.8125-15.625 D4 Alpha 

3.91-7.8125 D5 Delta 



 

                 
Fig.5a. Left hand movement for C3 electrode                                                Fig.5b. Left hand movement for C4 electrode 
 

                                                                                                                                                                                                        
Fig.5c. Right hand movement for C3 electrode                                               Fig. 5d. Right hand movement for C4 electrode 

Fig.5. D4 Coefficients for Left/Right movement for C3/C4 electrode 

                                                                                                 

F. Spectral Estimation Method 

For this paper, the Welch approach was applied along 

with a Hamming window of length 125. The PSD 

estimates were obtained for the frequency band of 8-25 

Hz, which comprises both the alpha or mu band (8-12Hz) 

and the central beta band (18-25Hz) for each respective 

electrode. Then the difference of the PSD estimates (1) 

and average power (2) is selected as another feature for 

this study.  

   f  fF
b

af
C3

b

af
CPSD PSDPSD 
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 .      (1)                                                                                                                      

 

where, PSDC3/C4 is the PSD estimates of the respective 

electrodes in [a, b], where a & b is the frequency range (8-

12Hz for alpha band and 18-25 for beta band). Figure 6 

shows the power spectral density for left/right hand 

movement and Figure 7 and 8 shows the power spectral 

density for elbow/finger/shoulder movement for their 

respective hand. 

    

                                        (a)                                                                                              (b) 

Figure 6. Power Spectral Density in (a) alpha band (b) beta band for the difference of two electrodes C3 and C4 for left/right hand movement. (- Left 

Movement; + Right Movement) 

 

    

                                         (a)                                                                                            (b) 

 Figure 7. Power Spectral Density in (a) alpha band (b) beta band for the difference of two electrodes C3 and C4 for elbow/finger/shoulder movement 
for left hand. (‗-‗ Elbow Movement; ‗+‘ Finger Movement; ‗.‘ Shoulder)

 



     

                                           (a)                                                                                       (b) 

Figure 8. Power Spectral Density in (a) alpha band (b) beta band for the difference of two electrodes C3 and C4 for elbow/finger/shoulder movement 

for right hand. (‗-‗ Elbow Movement; ‗+‘ Finger Movement; ‗.‘ Shoulder) 
 

 

V. PERFORMANCE ANALYSIS 

From the preprocessed filtered signal, only the data 

from the time interval t=3 to 7s are taken, marking the 

beginning and the end of the visual cue. From the two 

electrodes of interest, namely, C3 and C4, wavelet 

coefficients, PSD estimates for the alpha and beta bands 

and their corresponding powers were selected as the 

features for this study using the Wavelet toolbox and 

Signal Processing Toolbox in MATLAB. The 

classification ability of the obtained feature vectors can be 

measured through classification accuracy by averaging 10 

times over a 10 fold cross validation. The 10 fold cross 

validation divides the number of samples into 10 disjoint 

sets, where 9 sets are for training and 1 set for testing. 

This procedure is repeated 10 times to obtain an average 

classification result. For our study, we have employed a 

two fold classification; i) left-right movement 

classification, and, ii) finger-elbow-shoulder movement 

classification. The average classification results are given 

in for 8 subjects using QDA and SVM (Linear and RBF-

Kernel) based approaches.  Since SVM is a binary class 

classifier, the one-against-all approach is employed for the 

elbow-finger-shoulder classification, i.e., for example, this 

approach pits the elbow movement with the rest of the 

movement (finger-shoulder movement) and the same for 

the rest of the movements. Table II and III gives the 

classification results for left/right hand movement for their 

respective features, and Table IV and V gives the 

classification results classification results for left/right 

hand movement for their respective features, and Table IV 

and V gives the for elbow/finger/shoulder movement for 

the same. For left-right hand movement, the maximum 

classification accuracy of 87.50% is obtained using 

wavelet coefficient for RSVM classifier.   Also by using 

PSD as the feature set, the maximum classification 

accuracy of 87.35% is obtained for RSVM classifier. 

For the multi-class classification, i.e., Finger-Elbow-

Shoulder classification the maximum classification 

accuracy of 80.11% for elbow, 93.26% for finger and 

81.12% for shoulder is obtained using the features 

obtained from power spectral density for RSVM 

classifier. While by taking the wavelet coefficient as 

feature set, the maximum classification accuracy of 

74.24% for RSVM classifier, 72.43% for LSVM classifier 

and 72.12% for RSVM classifier for elbow, finger and 

shoulder, respectively. In turn QDA gives an average 

classification accuracy, as shown in Table II, III, IV and 

V. All the programming was done in ―offline‖ mode using 

MATLAB environment.  

 
TABLE II 

RESULT OF LEFT/RIGHT CLASSIFICATION FOR WAVELET FEATURES 

 

Subject ID Features

QDA LSVM RSVM

1 .7942+/-.0541 .8333+/-.1700 .8615+/-.0621

2 .6667+/-.0786 .6092+/-.0959 .7610+/-.0539

3 .7667+/-.1956 .7500+/-.0627 .8697+/-.0593

4 .5556+/-.0962 .4078+/-.1138 .5478+/-.0315

5 .5000+/-.2079 .6457+/-.0589 .6392+/-.0852

6 .8326+/-.0222 .6449+/-.0625 .8750+/-.0546

7 .7500+/-.1179 .5721+/-.0607 .7623+/-.0438

8 .7333+/-.1956 .6204+/-.0456 .7352+/-.0500

Classification Accuracy

Wavelet (D3 

& D4 Coeff.)

 
 

TABLE III 

RESULT OF LEFT/RIGHT CLASSIFICATION FOR PSD FEATURES 

 

Subject Features

QDA LSVM RSVM

1 .7717+/-.0567 .7774+/-.0480 .7744+/-.0389

2 .5075+/-.0261 .7749+/-.0457 .8503+/-.0671

3 .7535+/-.0516 .7594+/-.1006 .8024+/-.0747

4 .5909+/-.0511 .6178+/-.1512 .7147+/-.1170

5 .6348+/-.1255 .6851+/-.0735 .6411+/-.0490

6 .7745+/-.0249 .8616+/-.0446 .8735+/-.0853

7 .6176+/-.0732 .7305+/-.0366 .7516+/-.0543

8 .7578+/-.0393 .6071+/-.0444 .8047+/-.0302

Classification Accuracy

PSD (Alpha 

& Beta Band)

 
 

 

 

 

 



 
TABLE IV 

RESULT OF ELBOW/FINGER/SHOULDER CLASSIFICATION FOR WAVELET FEATURES 

 

Subject Features

QDA LSVM-E LSVM-F LSVM-S RSVM-E RSVM-F RSVM-S

1 .6527+/-.0435 .5847+/-.0484 .6112+/-.0302 .6166+/-.0736 .6508+/-.0503 .6368+/-.0548 .5753+/-.0990

2 .4083+/-.2306 .6714+/-.0485 .4648+/-.0752 .4645+/-.0425 .6619+/-.0596 .6383+/-.0269 .6999+/-.0555

3 .7017+/-.1922 .6002+/-.0455 .5284+/-.0606 .5454+/-.0865 .7424+/-.0718 .5025+/-.0668 .6123+/-.0603

4 .4444+/-.3469 .5863+/-.0465 .5793+/-.0381 .4384+/-.0384 .7301+/-.0702 .6329+/-.0539 .6370+/-.0948

5 .3833+/-.2086 .4678+/-.0396 .594+/-.0676 .5079+/-.0656 .6864+/-.0272 .5923+/-.0884 .7212+/-.0914

6 .6080+/-.1041 .5298+/-.0315 .7243+/-.0282 .7086+/-.0551 .6044+/-.0985 .6936+/-.1138 .6833+/-.0157

7 .7300+/-.2236 .6937+/-.1166 .5773+/-.0543 .6229+/-.0512 .6891+/-.0628 .5968+/-.0363 .6704+/-.0344

8 .6900+/-.2049 .5157+/-.0678 .6823+/-.0328 .5420+/-.0295 .6863+/-.0430 .6137+/-.0529 .6272+/-.0633

Classification Accuracy

Wavelet  ( 

D3 & D4 

Coeff.)

 
‗-e‘-elbow classification; ‗-f‘ –finger classification; ‗-s‘- shoulder classification 

 
TABLE V 

RESULT OF ELBOW/FINGER/SHOULDER CLASSIFICATION FOR PSD FEATURES 

 

Subject Features

QDA LSVM-E LSVM-F LSVM-S RSVM-E RSVM-F RSVM-s

1 .5919+/-.0603 .6505+/-.0268 .6820+/-.0741 .6470+/-.0573 .6237+/-.0568 .6701+/-.0626 .6913+/-.0582

2 .4644+/-.0652 .8509+/-.0963 .9093+/-.0780 .6807+/-.0330 .7574+/-.0490 .9326+/-.0307 .8112+/-.0679

3 .6355+/-.0859 .6868+/-.0348 .6311+/-.0886 .6101+/-.0498 .6560+/-.0747 .5682+/-.0983 .6786+/-.0713

4 .3972+/-.0655 .6026+/-.0968 .5808+/-.1542 .5564+/-.0495 .5869+/-.0781 .6653+/-.0339 .6980+/-.0639

5 .4064+/-.0897 .6335+/-.0371 .5942+/-.0459 .5269+/-.1264 .6696+/-.0371 .6212+/-.0491 .7092+/-.0468

6 .6173+/-.0361 .5160+/-.0676 .6325+/-.0542 .6549+/-.0402 .8011+/-.0658 .5623+/-.0975 .7000+/-.0650

7 .4767+/-.0638 .6546+/-.0678 .6785+/-.0395 .6225+/-.0819 .6566+/-.0314 .5864+/-.0919 .6736+/-.0316

8 .5560+/-.0563 .6067+/-.0927 .6828+/-.0616 .6932+/-.0645 .6429+/-.0722 .6256+/-.0626 .6477+/-.0804

Classification Accuracy

PSD (Alpha 

& Beta band)

 
‗-e‘-elbow classification; ‗-f‘ –finger classification; ‗-s‘- shoulder classification 

 
 

 

VI. CONCLUSION 

This work addresses the ability to differentiate the EEG 

signal to its corresponding left-right movement and 

elbow-finger-shoulder movement. Wavelet transform and 

power spectral density estimate are techniques followed in 

this study for feature extraction. The results presented in 

this paper indicates that elbow-finger-shoulder movement 

can be successfully classified using the given set of 

features, and further this opens up newer avenue for 

classifications based on composite decision. Experimental 

results showed that kernelized SVM (RBF-based) showed 

a superior classification result for multi-class 

classification.  

In light of our present findings, our approach for future 

work involves the improvement of the accuracy of the 

classifiers. Also the combination of feature vector is a 

vital step for proper classification, thus newer features are 

needed to be tried out which would be simple, robust and 

require less computational time with higher accuracy, 

which would be more apt to control EEG based BCI 

devices. Future study in this direction will aim at 

techniques for optimizing feature selection, extraction and 

classification methodologies to be implemented in online 

classification of EEG data for BCI research.  
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