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Abstract—Recent advances in the field of Brain-computer In-
terfacing (BCI) has opened wide potentials in neuro-rehabilitative
applications. Electeroencephalography (EEG) is the most fre-
quently used brain measure in BCI research. Mental states are
distinguished from classifiers which uses features extracted from
the raw EEG as inputs. Ensemble classifiers combine a number
of classifiers or learners to improve the classification results. It
is more suited for multi-class classification of time-varying EEG
signal. In this paper, we have used AdaBoost, LPBoost, RUSBoost,
Bagging and Random Subspaces for classification of 3-class motor
imagery EEG data. For this purpose, we have employed adaptive
autoregressive coefficients as features and feed forward neural
network (FFNN) as the base learner of the ensemble methods.
The results show that the classification accuracies of the ensemble
classifiers except RUSBoost performs better than a single FFNN
classifier.

Keywords—Motor imagery, Electroencephalography, Multi-
class classification, Ensemble methods, Adaptive Autoregressive
Parameter, Feed Forward Neural Network.

I. INTRODUCTION

Recent advances in brain-computer interfacing (BCI) have
successfully decoded brain signals of a person to their corre-
sponding mental states. Movement related brain signals, also
known as motor imagery signals, are one of the commonly
researched brain states in BCI [1] which aims to provide reha-
bilitation to persons with physical disabilities, like amyotropic
lateral sclerosis, cervical spinal injury, paralysis and amputee
[2]. Researchers have successfully decoded left-hand, right-
hand, foot and tongue imagery [3] to drive mobile [4] and
humanoid [5] robots, and wheelchairs [6], [7] for such patients.
Electroencephalography (EEG) is the most commonly used
brain measure by researchers in BCI because it is non-invasive,
easy-to-use, easy availability, portability and good temporal
resolution [1], [8].

BCI technology is primarily composed of three com-
ponents: i) pre-processing, ii) features extraction, and, iii)
classification [9]. The pre-requisite of any BCI-driven device
is the good recognition rate of the classifiers for the features

extracted. EEG being a non-stationary, non-gaussian complex
signal [8], requires the use of various time- , frequency- , time-
frequency and non-linear signal processing algorithms, like
wavelet transforms [10], band power estimates [11], adaptive
autoregressive parameters [12], hjorth parameters [13] and
approximate entropy [14], to extract relevant information from
the raw data. These information, known as features are fed
as inputs to the classifiers, which produces the corresponding
brain states as the output. Classifiers like support vector
machine (SVM), linear discriminant analysis (LDA), nave
Bayesian (NB), neural networks (NN) and k-nearest neighbor
(kNN) [15], are known to yield good recognition accuracy for
two class classification, but their performance are not at par
for multi-class classification. To improve the results on multi-
class classification, techniques like one-against-one (OAO),
one-against-all (OAA) and error correction code (ECC) [1]
were implemented with the classifiers.

As the number of classes in a multi-class problem rises,
the number of training sets (of high dimensionality) becomes
comparatively smaller. It is known that classifiers trained on
small training set becomes biased and has large variance
due to the insufficient estimation of related parameters and
thus, such classifiers are termed as ‘weak’. Ensemble classifier
builds many such weak classifiers, known as base learners
and combines the results of these classifiers to yield an
outcome [16]. Some commonly used ensemble methods are
Bagging[17], Boosting[18] and Random Subspaces[19].

Ensemble methods are suited for EEG classification for the
following two reasons. First, the dimensionality of the EEG is
often high and one of the pre-requisites of BCI is to train
the classifier as fast as possible, thus, the training set also
must be small. Second, EEG is a time-varying signal, and thus,
it becomes hazardous to employ a single trained classifier to
recognize the classes of the unknown (incoming) features [16].
In spite of these advantages, ensemble studies has yet to gain
a foothold in BCI research and very few studies exists on this
matter. In this paper, we compare the performance of some
standard ensemble methods: AdaBoost, LPBoost, RUSBoost,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/323246516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bagging and Random Subspaces, to decode three motor im-
agery tasks: elbow-, shoulder- and finger-movement, from their
respective EEG signals. This comparison further facilitates
the selection of appropriate ensemble method for future use
in multi-class EEG classification. Here, we have employed
Adaptive Autoregressive Parameter for features extraction and
Feed Forward Neural Network as the base learner.

The rest of the paper is divided into the following sections:
Section II gives a brief description of the ensemble methods
employed in this study. Section III describes the experiments
undertaken to acquire the EEG signal and its resultant features.
Section IV gives a comparison on the performance of the
ensemble methods employed in this study. Concluding remarks
are mentioned in Section V.

II. ENSEMBLE CLASSIFIERS

To measure and compare the performance of the ensemble
classifiers, we have employed feed forward neural network
as the common base learners. In this section, we review the
ensemble algorithms and the base learner employed in this
study.

A. AdaBoost

The AdaBoost (adaptive boosting) family of algorithm,
developed by Freund and Schapire [20], is the most influen-
tial boosting algorithm. Here, the performance of the weak
(base) learners are enhanced effectively by calling the learner
algorithm repeatedly of different distribution of the training
data, specifically the weights of each training data. Initially the
weights of each training data are uniform. After each iterations,
the easily classified patterns are assigned lower weights and the
difficult patterns are assigned higher weights, thus, increasing
the focus of the learners towards the difficult ones. After every
iterations the base learners prepares a new prediction rule and
after N iterations, N prediction rules are prepared to construct
the final distance discriminant, by which the unknown patterns
can be recognized. The final prediction rule is equal to the
weighted majority vote of all predictors and the final accuracy
of the classifier is effectively boosted. In this study, we have
employed the AdaBoost.M2 extension which employs the one-
against-one strategy for classification and it minimizes the
pseudo-loss of the whole process.

B. LPBoost

LPBoost (linear programming boosting) introduced by
Demiriz et al. [21], is a variant of AdaBoost Algorithm. It
performs multiclass classification by attempting to maximize
the minimal margin of the training set so that a low gener-
alization error is obtained. LPBoost maximizes the minimal
margin iteratively through a sequence of linear programming
problems. LPBoost typically creates ensembles with many
learners having weights that are of smaller order of magnitude
from other learners. At each iteration, the optimization problem
becomes increasingly constrained and thus, slow to solve.

C. RUSBoost

RUSBoost (random under sampling boosting) [22] is a hy-
brid data sampling/boosting algorithm designed to improve the

performance of learners trained on skewed (unbalanced) data.
It employs random undersampling technique which randomly
removes data from the majority class. Initially, the weights of
each training data are selected to be 1/m, where m is the
number of training instances. Then, each learner is iteratively
trained as follows. First, random undersampling is applied to
remove T% of the majority class, until it becomes a minority
in the new temporary training set and a new weight distribution
is prepared. Both the new training set and weight distribution is
passed to the weak learner and the pseudo-loss is calculated.
Next, the weight distribution is updated by the pseudo-loss
and normalized and the updated weights are used for the next
iteration. After N iterations, a weighted majority vote of the
learners is the final result.

D. Bagging

The Bagging predictor (bootstrap aggregrating) proposed
by Breiman [17] integrates the bootstrap sampling technique to
manipulate training data. Bootstrap sampling [23] is employed
to obtain the training subsets for training the base learner.
At each iteration, Ntrain samples are selected randomly with
replacement from the original training set of Ntrain samples
to learn an individual classifier. Uniform majority voting of
classifiers are aggregated to predict the test sample of an
ensemble.

E. Random Subspaces

Random Subspaces, introduced by Ho [19], constructs in-
dividual classifiers from randomly selected feature subspaces.
This method solves the problem of curse of dimensionality and
thus, is applicable for high dimensional dataset. This method
compensates for the possible deficiency of accuracies and thus
merits to a high ensemble diversity [19]. In this method, feature
subspaces are selected at random from the original feature
space, and individual classifiers are created based on those
attributes of the feature subspaces. The outputs from each
individual classifiers are combined by uniform majority voting
to yield the final prediction.

F. Base Learner: Feed Forward Neural Network

Neural Networks [24] mimics the working of the biological
neuron for automated pattern recognition applications. Feed
Forward Neural Networks (FFNN) consists of three types of
layers: input, hidden and output layers. The artificial neurons
in each layer are connected to the neurons of the next layer
only in the forward direction, i.e., signals from the ith layer
can only propagate to layers greater than i. The neurons in
the hidden and output layers receive weighted output from
neurons of the previous layers. The weights are adjusted after
each learning iterations so that the error between observed and
desired output is minimized. For the purpose of this study, the
number of hidden layers selected for all ensembles is 10.

III. EXPERIMENTS AND METHODS

The experiments designed for this study required the sub-
ject to imagine moving their index finger, elbow and shoulder,
when instructed by a visual cue. Seven right-handed subjects
(four female and three male), in the age group of 255 years,
performed the experiment in a single session of 90 trials (30



Fig. 1. Electrode locations of C3 and C4 electrode, based on the International
10-20 Electrode System.

Fig. 2. Timing scheme for a trial in the visual stimuli. In this example, the
subject is instructed to imagine moving his shoulder.

trials for each movement). The motor imagery signals from
the subjects were recorded using a 19 channel EEG ampli-
fier (NeuroWin, Make-NASAN). Based on the nature of the
experiment, we have selected the C3 and C4 electrodes (Fig.
1) for our study because these electrode locations coincides
with the movement activation areas (primary motor cortex,
supplementary motor area and pre-motor area) of the brain
[25]. Further in this section, we discuss about the visual stimuli
designed and the features employed in this study.

A. Design of the visual stimuli

The generic structure of the visual stimuli are as follows:
In the first 30 seconds of a session, the subject is asked to
relax during which the baseline EEG of the subject is recorded,
which is followed by 90 trials of 7 seconds each. Each trial
begins with a fixation ‘+’ for 1 second, as an instruction to the
subject to get ready and focus on the screen. Then, the subject
is instructed to imagine moving their index finger, elbow or
shoulder of their right hand for 4 seconds based on the visual
cue display on the screen. Each trial ends with a blank screen
for 2 seconds during which the subject is asked to relax. An
example of the timing scheme of a trial is shown in Fig. 2.

B. Filtering the EEG signal

It is known from standard literature [1] that motor imagery
signals are dominant in the alpha (8-12 Hz) and central beta
(16-24 Hz) band. Thus, for this study, we have designed an IIR
elliptical filter of bandwidth 8-24 Hz to filter the EEG signals
acquired from the amplifier. An elliptical filter is selected
because it has good frequency domain characteristics of sharp
roll off and good attenuation of the pass- and stop-band ripples.

C. Feature Extraction: Adaptive Autoregressive Parameter

An autoregressive model (AR) is suitable for stationary
signals and thus, it is not a suitable for EEG feature extraction

Fig. 3. Average AAR estimates of the EEG data obtained from channel C3
for finger(-.), elbow(-) and shoulder (–) movement over 10 instances.

as it is a non-stationary signal. For extraction of EEG features,
an AR model is allowed to vary with time which is known
as the Adaptive Autoregressive model (AAR) [26]. An AAR
model is defined as follows,

yk = a1,kyk−1 + a2,kyk−2 + . . .+ ap,kyk−p +Xt (1)

where, Xt is a pure random noise process with zero mean
and variance σ2

x, p is the model order and ai,k are the time-
varying AR parameters, or adaptive autoregressive parameters.

An AR model assumes the EEG to be the filtered white
noise Xt. Xt is the new input to the model, and the past p
samples is used to calculate the rest of the equation. Thus Xt

is called the innovation process and is orthogonal to all past
values. In practice, the AAR parameter ak are only estimated
values âk. If the estimates are near true value, the prediction
error will be close to the innovation process, i.e.

ek = yk − âTk−1yk−1 (2)

Hence, the prediction error is independent of all previous
samples yk−i, i > 0. Based on these assumptions, AAR
estimation algorithms are available. For this study the Least
Mean Square approach [27] was implemented for estimation
and the estimated AAR coefficients âk are used as the features.
After extensive experimentation, the order p of AAR model
is selected as 6. Thus, the feature vector is arranged in the
following fashion: 90 trials × 2 electrodes × 6 coefficients.
Fig. 3 and 4 indicates the average of the AAR estimates over 10
instances of the three movements: finger, elbow and shoulder
for the two electrodes C3 and C4, respectively.

IV. RESULTS AND DISCUSSIONS

The features prepared in the previous section are fed as
inputs to the ensemble classifiers. The aim of the classifiers
is to discriminate the incoming features into one of the three
motor imagery classes: finger movement, elbow movement and
shoulder movement. The performance of the classifiers are
measured over a test sample for each dataset using two metrics:
classification accuracy and computational time taken (C.T.).
For this computation of classification accuracy, we have used
k-fold cross-validation technique [15], where the total dataset
is divided into k different partitions. For k iterations, the k-th



Fig. 4. Average AAR estimates of the EEG data obtained from channel C4
for finger(-.), elbow(-) and shoulder (–) movement over 10 instances.

TABLE I. COMPARISON OF THE CLASSIFICATION ACCURACIES AND
COMPUTATIONAL TIME TAKEN

Subject ID ADA LP RUS Bag RS FFNN
1 97.78 94.44 64.44 87.78 87.78 66.67
2 90.00 94.44 56.67 82.22 82.22 61.11
3 90.00 83.33 65.56 71.11 71.11 70.00
4 96.67 65.56 65.56 88.89 88.89 65.67
5 87.78 81.11 61.11 72.22 72.22 60.00
6 78.89 72.22 57.78 58.89 58.89 57.78
7 78.89 82.22 48.89 68.89 68.89 55.00

Mean 88.57 81.90 60.00 75.71 75.71 62.32
C.T. (sec) 9.95 10.00 9.97 9.79 9.97 8.45

partition of the dataset is used as test dataset and the rest of
the (k-1)-th partition is used as training dataset. The average of
the k accuracies of the classifier is used for comparison among
other classifiers in this study.

Table I shows the comparison of the average classification
accuracies of the five ensemble classifiers: AdaBoost (ADA),
LPBoost (LP), RUSBoost (RUS), Bagging (Bag), Random
Subspaces (RS) and a single FFNN classifier, over k=10.
As noted from Table I, all the ensemble classifiers except
RUSBoost yields better result than a single FFNN classifier.
Also, AdaBoost yields the best results for all the datasets and
shows a rise of 26.25% from a single FFNN classifier.

The computational speed for this study has been measured
in MATLAB version 7.9 environment. The specification of the
system where the computations of the experiment took place
are as follows: Processor- Intel Core i7, 3.40 GHz and 4 GB
RAM. The average computational time taken (C.T.) by the
each classifiers, measured for a single test sample is given
in Table I. It is noted from Table I that AdaBoost takes the
minimum amount of time to perform the computations among
the other ensembles.

We have statistically validated our result by employing
Friedman Test [27]. Here, this test compares the relative
performance of the different ensemble classifier employed.
The null hypothesis here, states that all the algorithms are
equivalent, so their ranks rj should be equal. The Friedman
statistic, is distributed accordingly to χ2

F with k−1 degrees of
freedom.

χ2
F =

12N

k(k + 1)
[
∑
j

r2j −
k(k + 1)2

4
] (3)

where, k is number of classifers for comparison and N is

TABLE II. COMPARISON OF THE CLASSIFICATION ACCURACIES AND
COMPUTATIONAL TIME TAKEN

Subject ID ADA LP RUS Bag RS FFNN
1 1 2 6 3.5 3.5 5
2 1 2 6 3.5 3.5 5
3 1 2 6 3.5 3.5 5
4 1 5.5 5.5 2.5 2.5 4
5 1 2 5 3.5 3.5 6
6 1 2 5.5 3.5 3.5 5.5
7 2 1 6 3.5 3.5 5
rj 1.14 2.36 5.71 3.35 3.35 5.07

the number of datasets. It is noted from Table I that here, k=6
and N=7 and we consider the classification accuracies to be
the basis for ranking, which is shown in Table II.

Now, from Table II, we obtain χ2
F = 28.246 ¿ χ2

6,0.05 =
12.592. So, the null hypothesis, claiming that all the algorithms
are equivalent, is wrong to a level of 5% confidence interval
and, therefore, the performances of the algorithms are deter-
mined by their ranks only. It is clear from Table II, the rank of
AdaBoost is 1, claiming AdaBoost outperforms all the other
classifier algorithms.

V. CONCLUSION

This paper presents a performance analysis on the fol-
lowing ensemble techniques: AdaBoost, LPBoost, RUSBoost,
Bagging and Random Subspaces, with Feed Forward Neural
Network as the base classifier and Adaptive Autoregressive
Parameters as the features. The results, thus obtained, shows
a significant improvement in the accuracy when compared to
a single FFNN classifier. AdaBoost yields the best result in
terms of classification accuracy (88.57%) and computational
time (9.95 sec). The results suggest that ensemble methods
significantly improves the accuracies during multi-class clas-
sification of non-stationary signals like EEG. Further study
in this direction will aim to optimize the feature selection,
extraction and classification techniques to be implemented in
real time application of Brain-Computer Interfacing.
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