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Abstract: Existing methods in neuromorphic olfaction mainly focus on implementing the data 
transformation based on the neurobiological architecture of the olfactory pathway. While the 
transformation is pivotal for the sparse spike-based representation of odor data, classification 
techniques based on the bio-computations of the higher brain areas, which process the spiking data 
for identification of odor, remain largely unexplored. This paper argues that brain-inspired spiking 
neural networks constitute a promising approach for the next generation of machine intelligence for 
odor data processing. Inspired by principles of brain information processing, here we propose the 
first spiking neural network method and associated deep machine learning system for classification 
of odor data. The paper demonstrates that the proposed approach has several advantages when 
compared to the current state-of-the-art methods. Based on results obtained using a benchmark 
dataset, the model achieved a high classification accuracy for a large number of odors and has the 
capacity for incremental learning on new data. The paper explores different spike encoding 
algorithms and finds that the most suitable for the task is the step-wise encoding function. Further 
directions in the brain-inspired study of odor machine classification include investigation of more 
biologically plausible algorithms for mapping, learning, and interpretation of odor data along with 
the realization of these algorithms on some highly parallel and low power consuming neuromorphic 
hardware devices for real-world applications. 

Keywords: biomimetic pattern-recognition; neuromorphic olfaction; electronic nose systems; 
spiking neural networks (SNNs); SNN-based classification 

 

1. Introduction 

Biological sensory architectures found in nature exhibit remarkable computational abilities and 
have the capacity to perform efficiently and accurately, even under noisy conditions [1]. Pursuing the 
idea of replicating the same efficient style of computation, foundational research [2] by Persaud and 
Dodd aimed to develop an artificial olfactory system based on the functional blocks of the biological 
olfactory pathway. While this study introduced the notion of using a sensor array as the sensing 
front-end and established a general architecture for electronic nose (e-nose) systems, the 
implementation of conventional statistical methods to process multivariate time-series sensing data 
imposed limitations due to substantial computational latency, high power requirements, and poor 
classification performance and reliability [3]. 
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The introduction of neuromorphic engineering brought a paradigm shift in the electronic 
sensing domain [4]. The low-power bio-inspired approach significantly reduced the data overhead 
by using a spike-based sparse representation of information, which could be processed much faster 
than traditional methods [5,6]. Promising results obtained by applying neuromorphic concepts for 
vision and auditory sensing stimulated research into neuromorphic olfaction. Furthermore, the 
development of bioinspired learning methods such as spike-timing-dependent plasticity (STDP) and 
advancements in the utilization of spiking neural networks (SNN) for classification of odors based 
on temporal spiking information, reinforced the applicability of this approach for the development 
of robust and real-time electronic nose systems [3,6]. 

Drawing inspiration from the neurobiological architecture of the olfactory pathway, Koickal et al. in 
[7] implemented the first adaptive neuromorphic olfaction chip that consisted of a chemosensor array 
front-end, a signal conditioning module, and an SNN for processing and classification. While this study 
mainly focused on achieving a high degree of bio-realism in emulating its biological counterparts, it did 
not quantify the classification performance of the model, and its application in a real-world scenario was 
not plausible due to several issues such as component mismatch inherent in analogue designs [3,8]. 
Following this research, a number of neuromorphic implementations, such as [9–15], emerged that 
focused on detailed modelling of their biological counterparts, but their practical application was limited 
due to factors such as complexity of the system (e.g., large sensing array from the NEUROCHEM project 
[16]), strict operating constraints, and limited classification performance [3,6]. 

Recent developments in neuromorphic olfaction have focused on leveraging the inherent 
advantages of the spike-based data representation to develop practical e-nose systems where key 
aspects such as data-to-spike encoding techniques, utilization of SNNs for pattern-recognition, and 
implementation of these models on low-power hardware are emphasized [17–22]. However, these 
neuromorphic models have mainly focused on data transformation based on biological spike 
encoding architectures, while overlooking the overall performance of the system to identify target 
odors with minimum computational resources and latency. 

While the biological olfactory pathway plays a crucial role in the generation and transformation 
of odor information, biological studies have indicated that the bio-computations in higher-brain areas 
of the olfactory cortex have profound implications on how odors are classified [23–25]. Hence, 
through this investigation, we focus on utilizing the neuromorphic approach to develop a 3D SNN 
model for pattern recognition in an e-nose system. Contrary to other studies that mainly focus on 
emulating biological techniques for encoding real-valued sensor responses into spiking data 
[7,12,19,21,22], we base our approach on utilizing standard encoding methods and focus on 
implementing a brain-inspired SNN model for classification of spatiotemporal odor information. 
Given the fact that neuromorphic models enable rapid processing [4,6,26], the development of the 
SNN classifier will also focus on exploiting this inherent advantage to minimize the latency incurred 
during the classification task and for better understanding of the data. Another key aspect 
investigated in this study includes the classification of raw sensor responses without the requirement 
for pre-processing or feature extraction to overcome any processing and latency overheads resulting 
from these steps. 

2. Methods and Materials 

2.1. System Architecture 

The bio-inspired classifier model proposed in this study is designed using the NeuCube 
framework [27,28], a 3D brain-inspired evolving connectionist system (ECOS) [29,30]. One of the key 
features of NeuCube, crucial for this implementation, is its unified platform comprising of a data-to-
spike encoder, a spiking neural network reservoir (SNNr) for deep learning of input spike trains, and 
an output/classification module which can generate/evolve new output neurons to accommodate 
new input data or classes of data [31]. Taking inspiration from the biological olfactory pathway and 
based on the aforementioned NeuCube modules, our model is comprised of three key stages of 
electronic nose data processing: transformation, learning, and classification. Promising results have 
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been obtained using NeuCube models for various applications [27,30,32], providing evidence of the 
robust classification capabilities of the SNN framework, even under potentially noisy and 
multidimensional spatiotemporal data. These results make NeuCube one of the ideal candidates to 
explore the applicability of the brain-inspired SNN model for the classification of raw sensor 
responses. A conceptual model diagram of the proposed system is shown in Figure 1. 

 
Figure 1. Structure of the proposed brain-inspired spiking neural network architecture for odor 
classification. The responses from the 12-sensor array are encoded into spiking data and presented to 
an 8 × 8 × 8 3D spiking neural networks reservoir (SNNr). The spiking patterns resulting from the 
computations within the 3D SNNr are used by the output layer consisting of 200 neurons for odor 
identification. 

This study utilizes the benchmark e-nose dataset [33] consisting of real-valued signals recorded 
at 2 Hz over 300 secs using a 12-sensor array exposed to 20 different chemical compounds. Since one 
of the objectives of this work is to overcome the requirement of pre-processing and feature extraction, 
the raw sensor responses along with relative resistance curves and exponential moving averages are 
used as an input to the data-to-spike encoder. Without any pre-conditioning, the optimal encoding 
of task-relevant information from the original sensor response curves, including steady-state and 
transient features, is pivotal to obtain reliable classification results. The sensor responses were 
encoded into spiking data using an encoder with built-in optimization of encoding parameters based 
on the error metrics between the original and reconstructed signals. 

The spiking information is propagated through the 3D SNNr for deep learning and classification 
[27,28,30]. The SNN is initialized as a 3D reservoir, also called the “Cube”, with leaky integrate-and-
fire (LIF) neurons connected in a recurrent structure following the principles of a small-world 
network. Learning within the SNN model is implemented in two phases: In the first phase, the input 
spike sequences are propagated through the network, and an unsupervised learning method, such 
as STDP, is implemented resulting in modifications of the neuronal connections based on the time 
that pre and postsynaptic neurons fire. Based on the neuron’s activation patterns, the SNN learns to 
identify similar odor stimuli. In the next stage, the dynamic evolving SNN (deSNN) [31] and 
supervised learning is implemented as the output classification module, where output neurons are 
trained to classify the input spiking data that activate spatio-temporal patterns in the SNN cube based 
on predefined labels for odor classification. deSNN has an evolving structure, which evolves (creates) 
new output neurons for new data and classes, added incrementally to the system. 

Once the training stage is completed, the connection weights are retained as long term memory, 
and the trained model can be used as a back-end classifier for an electronic nose system, having in 
mind that such a system is adaptive to learn and classify new data in an incremental way by 
generating new output neurons in the deSNN classifier. The SNN model developed using the 
NeuCube framework can be deployed on a cloud or hardware platform, such as the SpiNNaker [27], 
which is one of the crucial aspects for the development of a standalone electronic nose system. 

2.2. Sensing System and Dataset Description 
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The benchmark electronic nose dataset, extracted from the CSIRO Data Access Portal [33], was 
used as an input dataset for the training and testing of the proposed SNN classifier. The 
measurements in the dataset were performed under laboratory conditions using the FOX 3000 
electronic nose (Alpha M.O.S., Toulouse, France). The e-nose system, originally equipped with a 12-
sensor array, comprises of six standard doped tin dioxide (SnO2) and six chromium titanium oxide 
(CTO) sensors and tungsten oxide (WO3) sensors. However, during the experiments (detailed in [34]) 
the CTO and WO3 sensors were replaced with six novel CTO based sensor arrays [35] that include 
five zeolite-coated and one uncoated CTO sensor. The modified array implements an additional 
transformation layer comprising of acid (or sodium) forms of zeolites over the porous CTO sensing 
element that enables the size and shape of odor molecules interacting with the sensor to be limited 
through pore size control and selective permeability [36]. 

During the measurements, the two arrays were housed in different chambers due to their 
different physical properties. The 12-sensor array was exposed to 20 different chemical compounds 
taken from four chemical groups: aldehydes, alcohols, ketones, and esters with five chemicals per 
group. Overall, the dataset consists of 200 data samples with 10 replicates for each sample recorded 
for a total of 300 s at a frequency of 2 Hz. A delay of 240 s was imposed between the samples for a 
cleaning procedure where dry zero grade air was used to remove any residual odor sample from the 
sensor chambers and the sensors were allowed to return to baseline. Additional details regarding the 
sensing system, laboratory conditions, the concentration of odors, and the measurements are 
described in [34]. 

2.3. Data-to-Spike Encoding 

A Java-based data encoding tool included within the NeuCube framework is used to encode the 
temporal odor information into spike trains. The spike encoding stage is critical for this application 
because the original sensor responses consist of both useful information and noise, and without any 
pre-processing or feature extraction, the encoding logic needs to be able to preserve the critical 
discriminative information along with a sparse representation of the sensor response curves. The 
effectiveness of the spike encoding method for classifiers, especially for olfactory systems, is generally 
evaluated based on a comparison between the original and the reconstructed signals using the error 
metrics and the overall SNN output, which in this case is the classification accuracy. 

Among the different encoding schemes based on either rate or temporal coding, the encoder 
within the NeuCube framework uses temporal coding to represent the input information. The spike 
encoding algorithms integrated within the encoder are based on two different approaches: 

1. Temporal contrast, where the temporal changes in the signal are encoded in the form of spike timing. 
2. Stimulus estimation, a bio-inspired encoding method that generates unipolar spike trains to 

represent the original signal. 

The temporal contrast-based encoding methods supported by the encoder include threshold-
based representation (TBR), step-forward (SF) encoding, and moving-window (MW) encoding. Ben’s 
spiker algorithm (BSA) is the only stimulus estimation-based encoding method included in the 
NeuCube framework [27,30,37]. 

Based on the analysis and evaluation of different encoding methods presented in [37], SF 
encoding was chosen for this implementation because of its versatility and robustness. This approach 
is based on encoding the input signal within an interval around a moving baseline with a set 
threshold. Once the initial baseline is set to the initial signal value, a positive or a negative spike is 
generated when the subsequent signal value is either above or below the baseline and the threshold 
value. Along with the spiking output, the baseline is adjusted to the upper or lower limit of the 
threshold interval. Reconstruction of the signal from the spike-encoded data is derived by 
multiplying the encoding threshold by the summation of positive and negative spikes. The 
algorithmic approach for decoding is further explained in [37]. Features such as robust optimization 
and a straightforward decoding process make SF encoding an ideal candidate for this application. 
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Along with SF encoding, the SNN classifier was also tested for unipolar spike trains encoded 
using the BSA encoding method. The implementation of BSA encoding is abstracted from the 
response function of biological neurons and, hence, is the most biologically plausible encoding 
technique among those included within the NeuCube framework. This method utilizes a finite-
impulse response (FIR) filter to encode analogue signals into spike trains. BSA encoding was 
developed with a primary aim of simplifying the decoding process, which is implemented by the 
convolution of spike trains with the filter coefficients. Based on the analysis provided in [37], BSA 
encoding may not be the ideal candidate for encoding rapidly changing signals, which is the case for 
electronic nose systems. However, we utilize this method in order to analyze the SNN-based 
classifier’s output for unipolar spike trains. 

2.4. Learning and Odor Recognition in the Proposed SNN Architecture 

The SNN architecture proposed in this research for deep learning and odor classification is based 
on the NeuCube framework. The NeuCube framework is a spatio-temporal data machine mainly 
developed to model and process spatio-and spectro-temporal brain data [27,28]. The framework 
principally consists of three main functional components: a data encoding module, a 3D SNNr 
module for deep learning, and an output/classification module. 

The process of creating a NeuCube model for a given multivariable dataset takes the following steps: 

1. Encode the multivariate input data into spike sequences: continuous value input information is 
encoded into trains of spikes. 

2. Construct and train in an unsupervised mode a recurrent 3D SNNr, to learn the spike sequences 
that represent individual input patterns. 

3. Construct and train in a supervised mode an evolving SNN classifier to learn to classify different 
dynamic patterns of the SNNr activities that represent different input patterns from the 
multivariate data that belongs to different classes. 

4. Optimize the model through several iterations of steps (1)–(3) above for different parameter 
values until maximum accuracy is achieved. 

5. Recall the model on new data. 

2.5. Experimental Framework 

In this research, we utilized the JNeuCube for the classification experiments and the NeuCubeFX 
for visualization and analysis of the results. Both tools are Java implementations of the NeuCube 
architecture developed at KEDRI (http://kedri.aut.ac.nz) and now available on the cloud 
(www.neucube.io). 

Similar to other machine learning techniques, the accuracy of the NeuCube models depends on 
the correct selection of the parameters for the methods and algorithms implemented. A major issue 
with NeuCube models is the optimization of the numerous parameters, which could be over 20 
depending on the methods and algorithms selected. Besides the optimization of the encoding process, 
we optimized seven of the most important parameters related to the neuron model, the unsupervised 
and supervised learning, and the classifier. Since testing for different values for all possible 
combinations was impractical, we implemented a differential evolution-based (DE) [38] optimization 
process. Table 1 describes the DE and NeuCube parameters used in the optimization process, along 
with their boundary values. 
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Table 1. Differential evolution (DE) and NeuCube parameters involved in the optimization process. 

Method Parameter Description Limits 

DE 

Population size 
Number of candidate solutions (agents), usually 10 

times the dimension of the agents 
70 

Max generations Maximum number of generations 100 
Crossover probability A rate that increases the diversity of the agents 0.7 

Weighting factor 
The differential weight between two agents to a 

third agent 
0.1 

LIF Neuron 
Threshold Threshold voltage value to emit a spike 0.01–0.5 

Refractory time 
The time period during which a neuron rests  

after firing 
2–10 

STDP 
A+ Determines positive synaptic modifications 0.001–0.05 
A− Determines negative synaptic modifications 0.001–0.05 

deSNN 
Drift+ Determines positive synaptic modifications 0.001–0.05 
Drift− Determines negative synaptic modifications 0.001–0.05 

K-Nearest 
Neighbor (KNN) 

k The number of nearest neighbors 3–10 

The objective function was maximizing the average classification accuracy of 10 NeuCube 
models produced with the same set of parameters. For each candidate solution (set of 7 NeuCube 
parameters), the algorithm created 10 NeuCube models with random connection weights (uniformly 
distributed in a range [−0.1, 0.1]) and random location (uniformly distributed in the range [1, number 
of neurons in the hidden layer]) for the inputs. For each model, the algorithm randomly splits 70% of 
the data for training and 30% for testing, ensuring the same number of samples for each class of the 
dataset are selected. In the subsequent stage, each model was assessed using K-fold cross-validation 
on the training set (training accuracy), later fitted using the training set again, and finally evaluated 
for generalization using the testing set (testing accuracy). 

The quality (fitness) of a model was assessed by calculating the average of the training and 
testing accuracy. The aim, by using such an approach, is to produce SNN models that are unbiased 
while tuning their hyperparameters using a 5-fold cross-validation scheme on the dataset for training 
and models that have high generalization using the dataset for testing (unseen dataset). Using only 
the classification performance of the SNN model for the testing set would produce models with high 
predictive skills but poor generalization skills, or models that can only predict the dataset for testing 
(30% of the data). The step-by-step algorithmic implementation for validating each candidate 
solution is shown in Algorithm 1. The validation process ensures that each NeuCube model produced 
has similar accuracy using the same set of parameters. 

Algorithm 1 Differential Evolution 
1: data = read(data) 
2: #tune model hyperparameters 
3: parameters = ... {parameters refer to a population of the DE} 
4: numNeuCubeModels = ... 
5: k = ... 
6: for params in parameters do 
7: paramSkills = list() 
8: for n in numNeuCubeModels do 
9: train, test = split(data) 

10: skills = list() 
11: for i in k do 
12: fold_train, fold_val = cross_validation_split(i,k,train) 
13: model = fit(fold_train, params) 
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14: skill_estimate = evaluate(model, fold_val) 
15: skills.append(skill_estimate) 
16: end for 
17: skill_train = summarise(skills) 
18: model = fit(train) 
19: skill_test = evaluate(model,test) 
20: paramSkills.append((skill_train + skill_test)/2) 
21: end for 
22: paramSkill = average(paramSkills) 
23: end for 

3. Results 

3.1. Input Data Encoding and Optimization 

While, based on the objectives of this study, we primarily used raw sensor responses as input to 
the spike encoder, we also utilized feature-extracted data for spike encoding to compare the overall 
performance of the SNN model. In this case, we used the two most commonly used features 
mentioned in the e-nose literature: 

• Normalized relative resistance features based on the following mathematical model: 𝑅௡௢௥௠ሺ𝑥ሻ = 𝑅௜ −  𝑅଴𝑅௠௔௫ −  𝑅଴ 

where, 𝑅௡௢௥௠ሺ𝑥ሻ is the normalized relative resistance for sensor 𝑥, 𝑅௜ is the measured resistance 
of sensor 𝑥 at instance 𝑖 , and 𝑅଴ and 𝑅௠௔௫ are the baseline and maximum resistances. 

• Exponential moving average, a smoothing technique based on the mathematical model defined 
in [39] and a smoothing factor α = 0.5 selected based on the sampling frequency and its 
implementation shown in [34]. An example of the feature-extracted curves for a 2-Butanone 
sample is shown in Figure 2. 
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Figure 2. Feature sets for 2-Butanone sample. (a) Exponential moving averages. (b) Normalized 
relative resistance. 

These signals are provided as input to the Java-based data-encoding module within the 
NeuCube framework. As discussed in Section 2.3, the continuous time-series input signals are 
encoded into spike trains using the SF and BSA algorithms. A detailed description of the algorithmic 
implementation of these encoding techniques is provided in [37]. The SF encoding utilizes a fixed 
parameter, the threshold value, along with a moving baseline to generate positive or negative spikes. 
The implementation of the BSA algorithm uses a much more complex logic using finite impulse filters 
resulting in three key parameters, the order of the filter, its cut-off value, and the threshold, to 
generate a unipolar spiking output. In order to retain task-relevant information from the original 
sensor responses, it is vital to use the optimum values of these parameters while encoding the sensor 
response signals into spike trains. 

The efficacy of data-to-spike encoding is determined by reconstructing the signal using decoding 
algorithms corresponding to the encoding technique and comparing the recovered responses with 
the original signal. An optimization process is implemented to determine the best-fit values of 
encoding parameters that maximize the accuracy of signal recovery. This is established by calculating 
the error metrics between the original and the reconstructed signals. 

Among the various candidate error metrics, this implementation uses root-mean-square error 
(RMSE) for parameter optimization. RMSE is defined in [37] as 

RMSE =  ඨ∑ (r୲ − s୲)ଶ୒୲ୀଵ N  



Sensors 2020, 20, 2756 9 of 17 

 

where a summation of modelling errors between the original signal, s, and reconstructed signal, 𝑟, 
for a total of 𝑁 time points is calculated and minimized. For SF encoding, an optimum value of the 
threshold parameter is determined using a grid search approach. As the BSA technique depends on 
multiple encoding parameters, a differential evolution (DE) process is implemented for parameter 
optimization. The optimization process is applied on each sensor channel in the 12-element array 
response and for each odor sample. Figure 3 illustrates the spike-encoded data using both SF and 
BSA algorithms for sensor 10 when exposed to a 2-Butanone odor sample. 

 
Figure 3. Spike-encoded data for sensor ten responses when exposed to 2-Butanone. (a) BSA encoding, 
(b) SF encoding. 

3.2. NeuCube Model Optimization 

The DE approach was found to be the most efficient (in terms of the number of iterations and 
accuracy of the solutions) optimization tool for finding the best NeuCube parameters. The models 
implemented using these optimum parameters enable the classification of 20 chemical compounds 
with an overall accuracy greater than 90%. The analysis presented in this section is based on the 
highest overall accuracy result, which was obtained for the classification of the 20-class dataset while 
operating on the SF encoded original sensor responses. 

The optimization process rapidly started producing agents with an overall accuracy greater than 
90% after the 10th iteration. However, the whole population reached that percentage after the 31st 
iteration with a standard deviation of ± 0.6%, which is a good indicator of the stability of the 
optimization process. The algorithm found the best solution (set of parameters) with a 94% overall 
accuracy in the 49th iteration; after that, the population’s overall accuracy average improved very 
little from 93% to 94%. Figure 4 shows the overall accuracy metrics at each iteration of the DE, and 
the summary of the parameters in the last iteration is listed in Table 2. 
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Figure 4. The optimization process of the parameters of the SNN model showing the accuracy 
obtained over 80 iterations. 

Table 2. The values of the seven SNN parameters and their corresponding classification performance 
obtained as a result of the DE optimization process. 

  LIF STDP deSNN KNN  
 Threshold Refractory Time A+ A− Drift+ Drift− K Accuracy 

best 0.03614 6 −0.00072 0.00369 −0.00051 0.01543 1 0.94 
min 0.02836 3 −0.00076 0.00313 −0.00103 0.01056 1 0.92 
max 0.03799 7 0.00123 0.00554 0.00964 0.03389 1 0.94 

average 0.03248 5 0.00054 0.00442 0.00470 0.01764 1 0.93 
std 0.00274 0.95 0.00049 0.00070 0.00255 0.00628 0 0.00 

We can observe that the DE approach generated candidate solutions in which parameter A− of 
the STDP was eight times higher than the parameter A+, thus producing SNNs that could exhibit 
inhibitory behavior, i.e., more negative than positive weights. In the best solution, we can observe 
that it showed a negative value for the parameter A+. Although negative values of A+ or A− have no 
biological meaning in the STDP; in this particular case, a negative A+ and the higher value of A− 
regulated the firing activity preventing saturation and lack of temporal patterns. 

3.3. SNN Modelling 

Similar to any commonly used artificial neural network (ANN) architecture, the NeuCube model 
is arranged in layers. However, some specific properties of the NeuCube suit the processing of spatial 
and temporal data. In this research, the set of 12 sensor signals encoded into spike trains (predictor 
temporal variables) is presented to the input layer. The selection of the input neurons can be either 
done using a brain template, such as for electroencephalogram (EEG), functional magnetic resonance 
imaging (fMRI), and other data [27,28,30], or can be done by a preliminary analysis of the dynamics 
of the input variables so that variables with similar dynamics can be located closer in the 3D SNN 
architecture [40]. Each neuron in the defined input layer of neurons distributes a spike train to the 
neurons in the middle layer of recurrently connected neurons. 

The middle layer is a set of 8 × 8 × 8 leaky integrate-and-fire neuron models (3D SNN) [41] that 
capture deep spatio-temporal relationships among the temporal variables. The connections among 
the neurons follow the principle of small-world networks [42], forming recurrent connections that 
process streams of data and learn temporal patterns as a result of the network’s firing activity. In the 
NeuCube architecture, every neuron in the middle layer is also connected to a neuron in the output 
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layer. Every output neuron and its connections coming from the middle layer represent the spatio-
temporal activity in the SNNr corresponding to a single sample. In this particular case, 200 neurons, 
corresponding to the number of samples in the dataset, formed the output layer. Merging of output 
neurons based on their connection similarity can be applied so that a single output neuron can 
represent not just a single sample but a whole cluster of similar (in space and time) samples [30,31]. 

3.4. Deep, Unsupervised Learning in the NeuCube Model 

After the optimization process, we generated a new SNN model applying the parameters of the 
best solution. The NeuCube has two features for analysis, the firing activity and the recurrent 
connection neurons, which describe temporal and spatial patterns, respectively. In this section, we 
analyze both features before and after the unsupervised training. 

Additionally, we implemented a novel pruning method that removed neurons and their 
connections and did not emit any spike while feeding the SNN with the whole dataset. Removing 
useless elements improved the SNN performance in terms of processing time and memory and 
allowed better visualization of the information trajectories formed during unsupervised learning. 
Samples belonging to the same class shared similar trajectories that were different enough from those 
formed with samples belonging to other classes for classification. Figure 5 shows the complete and 
pruned best NeuCube model before and after training. 

 
Figure 5. NeuCube model (a) before and (b) after training. Functional neurons and connections (c) 
before and (d) after training. Green dots indicate the input nodes, and brighter green dots indicate 
that the node fired a spike at the particular time of the snapshot. Blue and red lines indicate positive 
and negative connections, respectively. Each input odor sample is learned as a deep spatio-temporal 
pattern of connections. 

After the unsupervised training, we observed an expected inhibitory behavior of the SNN 
because the value of A+ was lower than A− even though it was negative. Indeed, on average, the DE 
produced lower values for A+ than A−. Inhibition reduced the firing activity of the reservoir neurons. 
Before training, the 97,902 spikes coming from the input data (200 samples) produced 216,397 spikes 
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(average firing rate = 0.0035), and after training, the same data produced 207,439 spikes (average 
firing rate = 0.0034). 

The firing activity is relevant to the supervised training because it forms the values of the 
connections between the reservoir and the output layer. After feeding the SNN and applying the 
deSNN, the KNN uses those weights for classification. We can assume that most of the weights 
reached negative values due to the low firing rate and a higher value of the Drift− parameter. 

Inactive neurons in the SNNr, which did not have active connections with other neurons, were 
suspended from further use (temporarily pruned), which reduced the size of the reservoir from 512 
to 223 neurons and the number of connections from 10,940 to 2881. This accelerated the processing 
time and reduced the memory use, especially during the supervised training and classification stages. 
As mentioned in Section 3.3, all neurons in the middle layer (reservoir) were connected to every 
neuron (sample) in the output layer. Therefore, the pruned SNN formed 223 instead of 512 output 
connections per sample, a significant reduction of the dimensionality of the space for classification. 
Figure 6 shows the number of positive and negative connections and their distributions before and 
after training. The number of connections that changed after training is listed in Table 3. 

 
Figure 6. NeuCube weights (a) and firing activity (b) before training. Subsections (c) and (d) show 
changes in the weights and firing activity after training. 

Table 3. Weights before and after training. 

Model Total Training Positive Negative 

Complete 10940 Before 
After 

7646 
6228 

3294 
4712 

Pruned 2881 Before 
After 

1960 
747 

921 
2134 

3.5. Classification Performance and Analysis 

Once the optimized parameters were calculated, the SNN-based classifier was tested using a 
balanced 5-fold cross-validation strategy for both cases: the 20-class dataset (identification of 
individual odors) and 4-class dataset (classification based on chemical groups), which enables the 
model to test for generalization and to determine its performance for larger datasets with limited 
class labels. For each scenario, a total of 140 observations were used for training, and the model was 
tested based on the remaining 60 samples. The overall latency observed for training the NeuCube 
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model, including supervised and unsupervised training, was between 3.5 and 4 s. The classification 
performance of the SNN model for each scenario is listed in Table 4. 

Table 4. Classification performance of the 3D SNN classifier. 

No. of Classes. Feature Set Accuracy 
(SF Encoding) 

Accuracy 
(BSA Encoding) 

20 
Original Signals 94.5% 79% 

Exponential Moving Averages 93% 80% 
Normalized Relative Resistance 87.5% 77% 

4 
Original Signals 80% 66% 

Exponential Moving Averages 84% 68% 
Normalized Relative Resistance 74% 60% 

In general, the highest overall accuracy was achieved using SF encoding and for the classification 
of the 20-class dataset. The classifier was able to identify 20 individual odors based on the original 
sensor responses encoded using the SF algorithm with 94.5% accuracy and the highest candidate 
accuracy of 96% during the 5-fold cross-validation. Under similar conditions, the classification rate 
for feature sets, including exponential moving averages and normalized relative resistance, was 93% 
and 87.5%, respectively. The classification results for the 20-class dataset using BSA encoding were 
mostly in the range 77% to 80%, with the best candidate solution of 83% for the exponential moving 
averages feature set. Misclassifications were typically observed for odors that belong to the same 
chemical group involving overlapping or closely positioned features (e.g., acetone and 2-heptanone). 
A maximum processing latency of 950 ms was recorded for a trained NeuCube model to provide an 
identification result. 

Considering these results, we can infer that: 

• The classification results obtained using SF encoding were significantly higher than the results 
obtained using BSA encoding. The bipolar spike trains generated by SF encoding represented 
the signal changes more accurately and enabled the implementation of inhibition within the 
network. Moreover, lower AFR and RMSE resulting from SF encoding ensured that any existing 
noise was suppressed and saturation of the SNN due to excess spikes was avoided. 
Comparatively, BSA encoding resulted in higher RMSE and average firing rate (AFR), thus 
resulting in errors for rapidly changing and plateau characteristics in sensor signals. 
Additionally, BSA encoding generates unipolar spike trains, hence, restricting the use of 
negative connectivity weights (inhibition). 

• One of the aims of this study, to implement classification on the raw sensor responses without 
any pre-processing or feature extraction, was achieved. The SNN model, in fact, obtained the 
highest classification result of 94.5% for the original sensor data in comparison to other feature 
sets. These results indicate that the pattern-recognition performance of the SNN model is robust 
to noise. While feature extraction is useful in representing signal characteristics such as the 
maximum and relative resistance values, they often represent piecemeal information of the 
entire dynamic process that can be crucial for bioinspired classification approaches like the one 
presented in this study. 

Secondary experiments were based on the 4-class dataset for the identification of the chemical 
group of compounds. In this case, a maximum classification accuracy of 84% was achieved using the 
SF encoding for the exponential moving averages feature set. Classification accuracy for other feature 
sets using SF encoding was recorded as between 74% and 80%, whereas feature sets encoded using BSA 
achieved accuracies between 60% and 68%. One of the main reasons for the lower classification rates is 
the lack of differentiating features between the classes. For example, the response characteristics of 
sensor 1 to 6 among all four classes were almost similar. These results indicate that the SNN-based 
classifier is functional, but the classification of the 4-class dataset is a non-trivial problem and would 
require an alternate strategy or enhanced dataset to achieve highly accurate results. 
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Although studies based on traditional machine learning methods for odor classification of the 
same dataset have claimed to have achieved high accuracy [19,34], these methods impose substantial 
computational and power requirements. Moreover, these techniques often require complex 
processing constructs and iterative training, resulting in considerable latency to provide recognition 
results, and the generalization capacity may also be limited [3,18]. Other neuromorphic approaches 
based on the same datasets have either focused on implementing data transformation based on the 
biological olfactory pathway or hardware-friendly application. Hence, these approaches differ vastly 
in terms of encoding techniques and application of SNN for classification, thus making a direct 
comparison impractical. However, when evaluated against the spike-based approach described in 
[17–19], the 3D SNN model produces comparable results even when applied on original sensor 
responses without using any pre-processing or feature extraction. Moreover, a trained NeuCube 
model was able to provide a recognition result within a maximum processing latency of 950 ms on a 
medium specification desktop computer, inclusive of latencies resulting from software-based 
input/output and other programming constructs. A hardware implementation would almost 
certainly result in a reduction in latency to the sub 100 ms range, enabling true real-time response. 

4. Conclusions and Discussion 

In this study, we present a neuromorphic classifier based on brain-like information processing 
principles for implementation in electronic nose systems. This research investigates two critical 
aspects of olfactory data classification: (1) implementation of an SNN model based on the computing 
principles in higher brain areas responsible for the identification of odors and (2) utilizing the raw 
sensor responses for classification without any pre-processing or feature extraction. We demonstrate 
the classification capabilities of a 3D-SNN model implemented using the Java-based NeuCube 
framework by achieving an overall accuracy of 94.5% for the identification of 20 different odor 
compounds from the benchmark FOX e-nose dataset. 

Feature sets, including the original sensor responses, exponential moving averages, and the 
relative resistance curves were encoded into spike trains using the data-to-spike encoding module 
within the NeuCube framework. The SF and BSA encoding techniques were used and parameter 
optimization based on minimizing the RMSE error metric was implemented to ensure that the 
discriminatory odor information was preserved. A differential evolution-based optimization was 
also implemented to obtain optimal NeuCube model parameters that can provide stable and 
maximum classification accuracy with minimum neural resources (number of neurons). 

The classification performance of the SNN model was analyzed under different scenarios, 
including 20-class and 4-class datasets, spiking data encoded using either SF or BSA, and three feature 
sets. In general, the results obtained through this study indicate that the SNN model produced better 
results for SF encoded spiking data while operating on the original sensor responses. Along with 
encoding and neural network parameters, factors such as inhibitory behavior of the neural network 
and exposure to the entire dynamic process of the sensor responses have a direct impact on the 
pattern recognition capabilities of the model. The classification performance of the SNN model, when 
applied to the 4-class dataset, was limited to a maximum of 84%. In this case, the bioinspired 
classification logic could benefit from dimensionality reduction and other feature extraction 
strategies to further improve its performance. 

An important feature of the proposed approach is that the developed system is evolving and can 
be further trained incrementally on new data, including new classes, without using old data. It can 
also be used to apply transfer learning, where a system trained on one set of odor data can be further 
trained on a new set of odor data that contains new information. A further study could explore these 
characteristics of the proposed approach along with exploring different mappings of the input data 
into the 3D SNN architecture for a better interpretation of the model and a better understanding of 
the spatio-temporal patterns captured in the data with reference to human odor perception. 

The spiking models developed using the NeuCube framework can be deployed on SpiNNaker 
[32,43], a neuromorphic hardware platform. Future research based on this study can take advantage of 
the hardware compatibility to further reduce the processing latency, and hence, a real-time low-power 
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classification back-end for an artificial olfactory system can be envisaged. Moreover, the SNN model 
can be also be deployed on the cloud-based platform for applications related to distributed e-nose 
sensing systems. Implementation of the SNN-based classifier for a real-world application and studying 
the model when deployed on a neuromorphic hardware platform are charted for future research. 
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