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Brain-Computer Interfacing has been the most researched technology in neuro-prosthesis in the 

last two decades. Feature extractors and classifiers play an important role in BCI research for the 

generation of suitable control signals to drive an assistive device. Due to the high dimensionality 

of feature vectors in practical BCI systems, implentation of efficient feature selection algorithms 

have been an integral area of research in the past decade. This article proposes an efficient feature 

selection technique, realized by means of an evolutionary algorithm, which attempts to overcome 

some of the shortcomings of several state of the art approaches in this field. The outlined scheme 

produces a subset of salient features which improves the classification accuracy while maintaining 

a trade-off with the computational speed of the complete scheme. For this purpose, an efficient 

memetic algorithm has also been proposed for the optimization purpose. Extensive experimental 

validations have been conducted on two real-world datasets to establish the efficacy of our 

approach. We have compared our approach to existing algorithms and have established the 

superiority of our algorithm to the rest.  

Brain-Computer Interfacing, Feature Selection, Motor Imagery, Memetic 

Algorithm, Differential Evolution, Learning Automata, Power Spectral Density. 

1. Introduction 

It is well-known that intentions for any actions performed by a person originates from the 

brain [24, 25, 27]. Brain-computer Interfacing (BCI) extracts, decodes and translates 

these intentions into control commands to drive an external device for rehabilitative 

applications [3, 20, 30]. Other areas of application of BCI include robotics, 

communication, gaming and virtual reality [13, 15, 16, 33, 44]. Motor imagery 

(movement based) brain signals[12] is one of the most frequently researched field in BCI. 

For the acquisition of brain signals, both invasive and non-invasive means have been 

employed in BCI research which include electroencephalography (EEG), 

magnetoencephalography (MEG), electrocorticography (ECoG), intra-cortical electrodes 

and functional magnetic resonance imaging (fMRI) [28]. Among these, the EEG is 

preferred because it is non-invasive, easily available, portable and has very good temporal 

resolution [12, 33]. The EEG signals during motor imagery experiments are acquired 

from C3 and C4 electrode locations[29] (based on the 10-20 electrode system) because 

they are directly placed above the motor cortex areas of the brain [19].  

A general EEG-BCI module contains the following stages: pre-processing of the raw 

EEG, feature extraction from the EEG and classification of the EEG[23]. Here, time, 

frequency, time-frequency and non-linear signal processing methods are employed for 

feature extraction [12, 33, 38-40] along with linear and non-linear methods as the 

classifiers [2, 32]. Sometimes, the features extracted from the EEG by the BCI have high 

dimensionality [22, 32] which may result in two major drawbacks: (a) increase of the 

computational time of the classifier, and (b) EEG signals have poor signal-to-noise ratio 
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[32] and are susceptible to the inclusion of features which behave as outliers and 

therefore reduce the classification accuracy.Thus during the past few decades researchers 

has included a feature selection stage before the classification stage [23]. This stage 

selects a subset of features from the original feature set having an enhanced 

discriminative power [40]. Some commonly used feature selection algorithms include 

Sequential Forward Floating Search [14], Sequential Forward Search [21], Principal 

Component Analysis [1], Singular Value Decomposition [17], Independent Component 

Analysis [7], Curvilinear Component Analysis, kernel Principal Component Analysis 

[34]. Existing approaches in feature selection suffer from few major drawbacks, which 

are: (a) Sometimes it is seen that even if the variances are good among components, they 

still have low classification performance. It may be due to the fact that the concerned 

algorithm failed to remove the redundant features. Determination and removal of 

redundant features is not possible simply by inspection of the feature set. 

(b) Many of the popular feature extraction techniques perform a linear transformation of 

the original feature set to a vector of low dimensionality for consideration in the classifier 

stage. (c) The optimal number of reduced features to be considered in the classifier stage 

after dimensions reduction is determined by cumbersome experimental validations. The 

reduced features in most cases are a linear transformation of the original feature set. Thus 

even if the feature set used in the classifier stage is reduced we must still measure the 

original features. Here, we have solved the above problems by designing an algorithm to 

choose an optimal set of features from the original feature set itself. So all the features are 

not employed in the classification stage. Here, cumbersome experimental validations are 

avoided and a simple run of the optimizer is sufficient, which also optimizes the classifier 

performance.  

The main contribution of this paper lies in the usage of evolutionary approach to the 

feature selection module, whose best d features are selected from the total feature vector  

D, where d lies between (0,  D]. The algorithm is based on a population of members 

which are represented by two components, namely the Activation Thresholds and the 

Scale Factors. Activation Thresholds determine the corresponding features to be selected 

while the Scale Factors determine the amount by which a particular feature has to be 

scaled. On the basis of these two representations each population member undergoes the 

evolution process to produce fitter (with respect to the cost function) individuals. Another 

significant contribution of the paper is the application of our proposed memetic algorithm 

[35] to optimize the cost function. Memetic algorithms (MA) are population based search 

heuristics that integrate the mutual benefits of natural and cultural evolution. 

Evolutionary algorithms (considering only genetic evolution) often get trapped in a local 

minima. Cultural Evolution, on the other hand, (on integration with genetic evolution) has 
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proved to be more robust in this respect. This paper employs an intelligent optimization 

method which uses Differential Evolution (DE) [31, 37] as the genetic evolution tool and 

Learning Automata (LA) [26] for realizing the cultural evolution phase on two different 

motor imagery EEG datasets. Here, we have employed Power Spectral Estimates for 

feature extraction and Support Vector Machine for classification. 

The rest of the paper is organized as follows. Section II describes our proposed 

framework of feature selection using DE and LA. Section III deals with the experiments 

undertaken to study the performance of our proposed approach. In section IV we compare 

our approach with other feature selection approaches. The concluding remarks are given 

in Section V. 

2.  The Proposed Approach   

The proposed approach aims to reduce the dimensions of a feature vector based on a 

synergistic operation between an evolutionary algorithm and a supervised learning 

classifier. Here, number of trial vectors are formed with different number of features for 

the same data set which constructs a pseudo feature vector from the original dataset such 

that each data point consists only of the selected features. Precision of each possible 

combination of selected features is quantitatively evaluated with the classification 

accuracy obtained by testing the learning classifier. Then, through a mechanism of 

mutation and natural selection, eventually, the best solutions start dominating the 

population, whereas the bad ones are eliminated. Ultimately, the evolution of solutions 

converges when the fittest solution represents a near-optimal partitioning of the data set 

with respect to the employed validity index. In this way, the optimal number of features 

are selected using our proposed framework.  Here, we have employed the use of LA-DE 

algorithm [35] and SVM for this purpose. 

2.1. The LA-DE Algorithm 

  In the proposed framework, the global search mechanism is accomplished by 

successive generations of DE, while the optimal control parameters for individual 

members of the population in every generation is provided from a meme pool [43], for 

given scaling parameter F which is maintained through the generations. A meme is 

defined as a unit of cultural information [43]. The meme selection process [43] is 

controlled by the state transition probability matrix jiS , , where the row indices represent 

the states of the stochastic automata [26] and the column indices represent the actions 

performed by the automata at a particular state. The rows correspond to the population 

members ranked in the order of their decreasing fitness values and the columns 
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correspond to uniform quantized values of the control parameter (i.e. F) in a given range, 

say (0, 2]. In an evolutionary algorithm framework “fitness” signifies the performance of 

a population member with respect to a cost function (see section 2.3). The principles used 

in designing the LA-DE algorithm is outlined below. 

2.1.1. Initialization:  

LA-DE starts with a population of NP D-dimensional parameter vectors, each population 

vector representing a possible solution vector Z


. The population members are initialized 

according to a uniform random distribution along every dimension, within the prescribed 

minimum and maximum bounds: },,,{= 21min Dminminmin zzzZ −−− 


 and 

},,,{= 21max Dmaxmaxmax zzzZ −−− 


 . This ensures that for a reasonable number of vectors, 

the initial population covers the entire search space uniformly. Hence, we may initialize 

the 
thj  component of the 

thi  vector at generation 0=t  as 

 )((0,1)=)( ,, minjmaxjjiminjji zzrandztz −−− −+  (1) 

The state transition probability matrix is initialized with equal values of 0.05 for 20 

quantized levels of the parameter F ( 2021 ,,, FFF  ). This is in accordance with the 

principle of unavailability of a priori information about the environment and assuming all 

actions to be equally likely at the initial stage. 

2.1.2. Adaptive Selection of Meme:  

The next step involves the selection of jF  from the meme pool ( 2021 ,,, FFF  ) (for a 

member of state Si ) such that the cumulative probability of selection of jFF =  through 

1−jF  is greater than a random number r in the range [0, 1] for each population member, 

i.e. 
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where, 
jisp

,
is the state transition probability vector at state Si . Here, Roulette Wheel 

Selection [26] has been used for the selection of potentially useful memes. This entails 

that fitter memes would have higher probabilities of selection, but the memes with poorer 

fitness also manage to survive and contribute some components in the course of 

evolution. Thus this selection mechanism ensures that the diversity of the meme 

population is effectively maintained.  
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2.1.3. Differential Evolution  

    •  Mutation (DE/current-to-best/1): First, DE generates a donor vector )(tVi


 

corresponding to each population member )(tZ i


 by randomly selecting two other 

members )(1 tZ rand −


 and )(2 tZ rand −


, where 

 ))()(())()(()()( 21 tZtZFtZtZFtZtV randrandibestii −− −+−+=


 (3) 

and F is the scaling factor (selected from the meme pool adaptively) which is used for 

linear scaling of the difference vectors during the mutation operation and )(tZbest


is the 

population member with the best fitness. 

    •  Crossover: Following the generation of the donor vectors, crossover operation is 

performed to increase the potential diversity of the population. There are two types of 

crossover (recombination) schemes- binomial and exponential [6, 9]. In the proposed 

realization we have used binomial crossover, where the D components are changed 

whenever a randomly generated number, in the range [0,1] following a binomial 

distribution, is less than or equal to the crossover ratio. Here, a trial vector )(tU i


 is 

generated for each pair of )(tVi


 and )(tZ i


 by (4). 
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where (0,1), jirand is a uniformly distributed random number lying in [0, 1] and Cr is the 

cross-over ratio. 

    •  Selection: The next step of DE decides whether the trial vector )(tU i


or the target 

vector )(tZ i


 is selected for the next generation, according to their fitness. The selection 

process is 

                           ))(())(()(=1)( tZftUfiftUtZ iiii


+  

 ))((>))(()(= tZftUfiftZ iii


  (5) 

where )(xf


is the fitness. 
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2.1.4. Update of state transition probability matrix 

Let a member at state mS  on selection of jF  from the meme pool produces a trial vector 

after mutation and crossover. If the fitness of the trial vector increases, then the state 

transition probabilities are updated according to (6), otherwise it is updated according to 

(7). Here, the linear reinforcement scheme[35], is employed for the updation process, 

which is 

( ) ( )1− tt xfxfIf


, 

 
))(.(1)(=1)(
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    (7) 

where, a ϵ [0,1] is the reward response, b ϵ [0,1] is the penalty response and e is the 

number of actions of the automata process. 

2.1.5. State Assignment 

Following the updation of the state transition probability matrix, we sort the the 

population members in decreasing order of their fitness and assign their corresponding 

states. 

2.1.6. Convergence 

After each evolution, we repeat from step-2 (see section 2.5) until the termination 

conditions are satisfied. The algorithm is stopped if maximum number of generations 

(gen_max) is reached or the cost function falls below a predefined level.  

The overall schematic of the proposed LA-DE algorithm for feature selection is shown in 

Fig. 1. 

Figure 1. 

2.2. Solution Representation and Fitness Evaluation 

  In order to judge the quality of the proposed feature selection method, we 

partition the entire data set into three mutually exclusive partitions 1 , 2  and 3  for 

training, validation and testing, respectively. 1  is employed to train the classifier for 

each population member and 2  is used for fitness function calculation. Finally the 
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optimal set of selected features, obtained as a result of optimization, is tested on 3 . For 

this purpose, k-fold cross-validation technique [2] is employed and the features are 

normalized in the range [0, 10] before partitioning to reduce ambiguity. If CA is the 

classification accuracy for the validation set 2 , then the fitness of the 
thj  population 

member will be given by 

 CAf j 1/=  (9) 

Thus, minimization of this cost equation ensures population members with better 

validation stage classification accuracy to be selected during the evolution phase. 

  For the total set of D features, we represent each member of the population (of NP 

members) participating in evolution as a 2-dimensional vector ),...,(= 21 pjjj wwP   where 

the 
thi  component of the vector, ijw ),1,2,=;,1,2,=[0,1],( NPjDiwij   

represents the Activation Thresholds for the respective features. We state that if a 

particular component is greater than 0.5 then the corresponding feature feat is considered 

for validation and testing in the classifier stage. On the other hand, the 
thj  component of 

the vector, ),1,2,=;,22,1,=[0,1],( NjDDDiww ijij ++  represents the Scaling 

Factors for the respective features. The Activation Thresholds and Scaling Factors 

determine which features are to be included in the final set jS  of optimal features. The 

selection for the 
thi  feature and 

thj  population member is made as follows: 

0.5)>( ijwIf  

i
j

Dii featwfeat  +  

    ji Sfeat                                                        (8) 

else  

     ifeatignore  

Thus an Activation Weight of greater than 0.5 selects a feature for training and validation, 

and in that case the feature is multiplied by the corresponding Scaling Factor. This is 

done to enhance the discriminating power of the classifier. Linear scaling of features 

before classification enables the classifier to discriminate more efficiently along the 

feature axis with bigger scale factors. In this way the weights not only determine which 

feature to select but also the importance of the selected features. As an example we 

consider the weight vector jP  of the 
thj  population member in Fig. 2. Taking =D 6, i.e. 

a total of 6 features, the values of the weights shown indicate that the 1st, 2nd and 3rd 

features are to be selected for training and validation after multiplication with appropriate 



9 

scaling factors while the rest are ignored. Thus the set of selected features for the 
thj  

population member becomes },0.44,0.76{0.68 321 fffS j  . 

Figure 2. 

2.4. Final Feature Selection 

  The optimization continues until a stipulated number of generations have reached or an 

acceptable rate of classification is obtained. After termination, the population member 

with the best fitness is selected for testing 3 . The weights of this vector determine the 

final selection of features. Once again the chosen features are subjected to linear scaling 

by their corresponding weights. This ensures that throughout the process of training, 

validation and testing the features are multiplied by the same scaling factors and hence 

there is no scope of any misrepresentation of data. 

2.5. Pseudo Code 

  The pseudocode for the complete algorithm is given here.  

Step I: Initialize a set of NP vectors each with 2D components initialized randomly 

between 0 and 1. 

 Step II: Select features according to rule (8) for every population member. 

 Step III: Train classifier on 1  with selected feature set. 

 Step IV: Validate on 2  and calculate fitness of population members. 

 Step V: Update population members according to the evolutionary algorithm guided by 

the fitness values calculated above. 

 Step VI:  if MAXgengen <  goto  Step II,  else select member with the best fitness to get 

the final set of features. Here MAXgen denotes the maximum number of generations. 

3. Experiments and Results 

  This section provides details on the experiments undertaken to examine the 

performance of our proposed feature selection algorithm. For this purpose, the 

power spectral density (PSD) estimates of two separate motor imagery datasets 

are employed as features. These features are fed to our proposed LA-DE feature 

selection algorithm to reduce the dimensions of the feature vector. Support Vector 

Machines (SVM) is employed to optimize the results of the LA-DE and validate 

its performance from the recognition accuracy of the given EEG datasets.   
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3.1. Dataset I: Dataset IVa from BCI Competition III 

  This dataset comprises EEG recordings of five healthy subjects (namely, aa, al, av, aw 

and ay) with a sampling frequency of 100 Hz. Details on the motor imagery experiments 

performed by the subjects are given in [12].  As indicated in [12], the visual cues for the 

two motor imageries the subject should perform: Right hand (Class 1) and Right Foot 

(Class 2) are time-locked within 3.5 seconds. In this study, the signals obtained from C3 

and C4 electrodes are filtered using Laplace Filters [12] to reduce the effects from the 

neighboring electrodes.  

3.2. Dataset II: Experimental Data 

  This dataset was constructed from the EEG acquired from nine subjects during a left-

right motor imagery experiment conducted at our lab. EEG signals were acquired using a 

19 channel NeuroWin (manufactured by NASAN) amplifier, with a sampling frequency 

of 250 Hz. Signals from C3 and C4 electrodes were selected to extract relevant 

information on the different movement. Prior to the start of the experiment, the subjects 

were given a small introduction about the research work and stages of the experiment 

involved. The subjects performed the experiments on a single day, consisting of 3 

separate sessions with fifteen minutes relaxation in between.  

The subjects perform the motor imagery tasks based on the visual stimuli shown to them 

during each experimental session. Each session comprises 30 trials, thus for every subject 

a total of 90 trials are obtained. The subjects imagine moving their right and the left hand 

when a right and left arrow is displayed on screen. In each session, a blank screen was 

displayed in the first 10 seconds. In the 10th second a fixation cross “+” was displayed on 

the screen which indicates the beginning of a trial. From the 12th second onwards, the 

visual stimuli is displayed for three seconds to indicate which arm to move. Next, a blank 

screen is shown for 2 seconds during which the subject can relax. This stage also reduces 

the effect of the previous motor imagery performed by the subject on the current one. Fig. 

3 gives a generic structure of the visual stimuli.   

Figure 3. 

First, the acquired EEG is band-pass filtered between 8 to 35 Hz using an IIR elliptical 

filter of order 14, to remove the noise acquired from the amplifier and the environment. 

The elliptical was selected because the filter has a sharper roll off as compared to the 

other filters, requires a small filter order and can independently adjust both the passband 

and stopband ripples, as per the user’s wish. The passband and stopband attenuation is 

expermentally determined to be 1dB and 50dB, respectively. Then from each trial, the 

average of the two seconds of data acquired during the fixation cross period is subtracted 

from the three seconds of the movement stimuli data to remove the effect of background 
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EEG from the motor imagery data. Finally, three seconds of the motor imagery data from 

each trial is selected for feature extraction. 

3.3. Feature Extraction: Power Spectral Density Estimates 

  Spectrum estimation describes the power distribution contained in a signal over 

frequency based on a finite set of data. For our study, we have used the Welch’s 

Periodogram for the spectral estimation of the EEG data. Here, the data segments are 

overlapped and windowed prior to the calculation of the periodogram.The overlapping 

and windowing of the data segments leads to a decrease in the variance and more control 

over the bias/resolution properties of the calculated PSD, respectively. These 

characteristics make this method highly suitable for analysis of a non-stationary signal 

[5]. 

For our study, we have prepared the original feature vector from PSD etimates using the 

welch’s method.  Here, a hamming window of size 125 and 50 for dataset I and II, 

respectively  and 50% overlap were used to obtain the frequency distribution of the 

extracted filtered EEG  over 128 frequency points, for both the electrodes C3 and C4. 

Thus, the total size of the feature vector is 128 features2 electrodes. 

3.4. Feature Selection and Classification Results 

The features extracted from the previous section is fed as inputs to our proposed 

feature selection. According to our algorithm, the best minimum number of 

features are selected which would yield the best result, i.e., classification 

accuracy. Thus, the classifiers used in this study have two functions: First, it is 

used to optimize the LA-DE feature selection and secondly, to validate the 

selection of the features on a test dataset. For this purpose, we have selected 

Support Vector Machines (SVM) [36, 42] with linear kernel as the classifier. 

SVM has earned popularity in recent years because it has good recognition ability 

at high computational speed as compared to other standard classifiers.  

Experiments undertaken further reveals that the parameters in the LA-DE 

algorithm which gives the best performance are as follows: Population Size= 50, 

Scaling Factor= 0.5, Crossover Ratio= 0.9, maximum number of generations= 

10000, stopping criteria= 10 number of same fitness and Reward/Penalty Rate= 

0.01. Table 1 and 2 gives the recognition accuracy of the classifiers before and 

after feature selection for both dataset I and II, respectively. For this purpose, the 

dataset is partitioned into training set and test set using k-fold cross validation 

technique. Here, k is selected as 10 and the accuracies for each subject is 
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measured over 10 runs. As observed from Table 1 and 2, the accuracies of the 

dataset after employing the LA-DE algorithm have significantly improved. 

Table 1. 

Table 2. 

4. Performance Analysis 

  In this section, we examine the performance of the LA-DE algorithm with the following 

competitor algorithms: Particle Swarm Optimatization (PSO) [18], Genetic Algorithm 

(GA) [8] and Kernelized Principal Component Analysis (kPCA) [4] using linear SVM as 

the classifier. The parameters selected for PSO and GA are similar to the one selected for 

LA-DE in section 3.4. For kPCA we have reduced the dimensions of the algorithm to half 

of its original length, i.e., 128. The performance of the algorithms are measured by the 

following parameters: i)recognition accuracy (Acc.), ii) computational time (C.T) and 

features selected (F.S). They are defined below for ready reference. 

Recognition Accuracy (Acc.): The ratio of the number of test data correctly classified by 

the trained classifier to the total number of test data. It is expressed in percentage (%). 

Computational Time (C.T): The total time taken by the feature selection algorithm to 

produce the best result. It is expressed in seconds (sec). 

Features Selected (F.S): The number of features selected after using the feature-selection 

algorithms on the original datasets.   

Each performance measures were calculated on MATLAB 7.9 environment run on a 

computer with the following specifications: Intel Core 2 Duo 1.19 GHz, 3.2 GB RAM 

and Windows platform. Table 3 and 4 provides the results for the comparison of LA-DE 

with its competitors. As observed from Table 3, LA-DE yields the best result in terms of 

accuracy but PSO gives the best result in terms of features selected. But from Table 4 it is 

observed that LA-DE yields the best performance in terms of both accuracy and features 

selected. From both the table it is noted that kPCA requires the minimum amount of time 

but the accuracy obtained is very poor. Maintaining a trade-off between the accuracy, 

computational time and features selected, it is noted from Table 3 and 4 that LA-DE gives 

the best optimal result. 

Table 3. 

Table 4. 

The performance measures of LA-DE is further validated by means of Friedman’s Test 

[10, 11] performed on both datasets I and II. The null hypothesis here, states that all the 

algorithms are equivalent, so their ranks mR  should be equal. The Friedman statistic, 
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is distributed accordingly to 
2

F  with −k 1 degrees of freedom, where k is the number of 

algorithms to be compared and N is the number of parameters used for comparison. In 

this study, we have selected the mean of all the three parameters for both the dataset, thus, 

k=4 and N=6 and Table 5 is the ranking table prepared from Table 3 and 4.  

Table 5. 

From Table 5 we calculate the value of Rj, which is further used in eqn (14) to get 
2

F  = 

22.5  > 
2

4,0.095  = 9.488. So, the null hypothesis, claiming that all the algorithms are 

equivalent, is wrong and, therefore, the performances of the algorithms are determined by 

their ranks only. It is clear from the table that the rank of LA-DE is 1.5, claiming LA-DE 

yields better results than its competitors.  

5.  Conclusion 

  The paper proposes a novel feature selection technique based on Differential Evolution 

and Learning Automata. Experiments have been performed on two datasets using Power 

Spectral Density for features extraction and SVM as the pattern classifier. Comparisons  

have been performed with GA, PSO and kPCA and the results indicate that the proposed 

approach yields better result. A major advantage of the proposed algorithm is that the 

optimal number of relevant features is a direct outcome of the algorithm and does not 

have to be experimentally determined, which saves time of the user. Also, this algorithm 

allows the user to employ other classifiers in place of the ones discussed in this paper. 

The only disadvantage of this algorithm is that the performance of the optimizer may 

degrade due to stagnation. However, this can be easily overcome by running the 

optimizer a number of times (say 10) for the same cost function and then taking the best 

results. This does not affect the computational time as the optimizer works in an offline 

environment. Further study in this direction aims to optimize the feature extraction and 

classification techniques to be implemented in the online classification of the EEG data 

for BCI research, and thus to ultimately develop a complete stand-alone system for an 

EEG driven neuro-prosthetic control for rehabilitation purpose. 
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Figure  1: The proposed feature selection scheme. 
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Figure  2: An example of the vector representation of a particular population member for a dataset 

with 6 features. 
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Figure  3: Timing Scheme Diagram of the Visual Cue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

 

Table  1:   Classification Accuracies (in %) for dataset I (S.D.- Standard Deviation) 

Subjects  aa al av  aw   ay Mean S.D. 

SVM 88.24 95.45 77.78 100 100 92.29 9.43 

LA-DE-SVM 97.06 100 100 100 100 99.41 1.31 
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Table  2:   Classification Accuracies (in %) for dataset II (S.D.- Standard Deviation) 

Subjects  1 2 3  4   5 6 7 8 9  Mean S.D. 

SVM 71.63 62.80 67.12 54.55 49.89 62.16 66.87 69.99 34.10  59.90 11.98 

LA-DE-

SVM 

100 88.89 87.50 88.89 77.78 88.89 100 90.00 70.00  87.99 9.51 
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Table 3. Comparison of the performance measures of LA-DE with other 

algorithms for Dataset I 

Subjects 

LA-DE PSO GA kPCA 

Acc. C.T. F.S. Acc. C.T. F.S. Acc. C.T. F.S. Acc. C.T. F.S. 

aa 97.06 312 134 94.11 454 112 90.29 512 134 82.35 121 128 

al 100 305 119 100 472 125 95.55 520 145 97.78 120 128 

av 100 325 131 94.45 472 123 92.09 534 156 66.67 120 128 

aw 100 305 117 100 472 122 100 520 144 100 121 128 

ay 100 311 128 100 472 120 100 509 130 100 120 128 

Mean 99.41 311.6 126 97.71 468.4 120 95.59 519 142 89.36 120.4 128 
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Table 4. Comparison of the performance measures of LA-DE with other 

algorithms for Dataset II 

Subjects 

LA-DE PSO GA kPCA 

Acc. C.T. F.S Acc. C.T F.S Acc. C.T. F.S Acc. C.T F.S 

1 100 234 129 100 344 127 99.8 370 130 78.89 75 128 

2 88.89 225 123 87.50 350 132 85.55 370 130 60.00 76 128 

3 87.50 234 134 75.00 350 130 80.00 378 135 70.00 75 128 

4 88.89 219 114 80.00 344 127 80.00 376 134 65.12 75 128 

5 77.78 220 119 77.78 356 138 77.78 378 135 66.67 77 128 

6 88.89 220 121 87.50 360 143 85.00 379 137 66.67 75 128 

7 100 226 127 88.89 321 109 90.00 361 121 72.22 74 128 

8 90.00 225 123 88.89 344 127 83.33 384 143 66.67 73 128 

9 70.00 228 126 66.67 363 152 60.00 390 150 60.90 75 128 

Mean 87.99 225.67 124 83.58 348 132 82.38 376.22 135 67.46 75 128 
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Table 5. Ranking Table for performance comparison using Friedman’s Test 

 LA-DE PSO GA kPCA 

Dataset I Acc 1 2 3 4 

C.T 2 3 4 1 

F.S 2 1 4 3 

Dataset II Acc 1 2 3 4 

C.T 2 3 4 1 

F.S 1 2 4 3 

Avg. Rank 1.5 2 4 3 
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