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Abstract 

Current research on neuro-prosthetics is aimed at designing several computational models 

and techniques to trigger the neuro-motor rehabilitative aids. Researchers are taking keen 

interest to accurately classify the stimulated electroencephalography (EEG) signals to 

interpret motor imagery tasks. In this paper we aim to classify the finger-, elbow- and 

shoulder-classification along with left- and right-hand classification to move a simulated 

robot arm in 3D space towards a target of known location. The contribution of the paper lies 

in the design of an energy optimal trajectory planner, based on differential evolution, which 

would decide the optimal path for the robot arm to move towards the target based on the 

classifier output. Each different set of movements consists of a trajectory planner which is 

activated by the classifier output. The energy distribution of wavelet coefficients of the 

incoming EEG signals are used as features to be used as inputs in a naïve Bayesian classifier 

to discriminate among the different mental tasks. The average training classification accuracy 

obtained is 76.88% and the success rate of the simulated robot arm reaching the target is 

85%.   

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/323246503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Keywords – Brain-Computer Interfacing, Electroencephalography, Energy Efficient 

Trajectory Planning, Differential Evolution, Wavelet Transforms, Naïve Bayesian Classifier. 

 

1. INTRODUCTION 

Rehabilitative Engineering has travelled a great distance from mechanical prosthetics to 

neural prosthetics in the last two decades. Such neuroprosthetic aids aim at improving the 

living standard of people suffering from motor, sensory and cognitive failures by providing 

rehabilitative solutions for the same [1]-[3]. In this regard, Brain-Computer Interfacing (BCI) 

[3]-[5] provides the technology to translate the brain signals acquired from the brain to drive 

various assistive and rehabilitative devices. Among various available modalities to measure 

brain signals, Electroencephalography (EEG) is widely used among researchers because it is 

non-invasive, cost effective, portable, and has a good temporal resolution which can be easily 

used to generate control signals for real world application [5], [6]. Various researchers have 

employed the EEG based BCI technology to drive a word processor [7]-[9], speech 

synthesizer [10], [11], keyboard [12] and cursor simulators [13], [14], virtual reality [15], 

[16] and various robotic devices [17]-[19]. 

Movement related BCIs have been extensively researched in the past few decades with 

the aim to provide assistive and rehabilitative solutions to the clinical population suffering 

from neuro-muscular disorders like Amyotropic Lateral Sclerosis (ALS), Spinal Injury, 

Paralysis and amputation [20]-[22]. Movement related signals are characterized by specific 

waveforms at the mu- (8-12 Hz) and central beta- (16-24 Hz) bands, called Event-related 

Desynchronization and Synchronization (ERD/S), respectively [23], [24]. The recognition of 

these waveforms leads to the successful classification of various motor imagery signals. 

In this study, we have used left-right and finger-elbow-shoulder movement EEG signals 

to generate the control signals to drive a simulation of an external (prosthetic) device. For this 

purpose, wavelet transforms [25], [26] have been used to extract the relevant information 

from the EEG signals and the feature vectors comprises of their energy distribution. The 

features are used as inputs to the Naïve Bayesian classifier [27], [28] whose outputs are used 

to move the simulated robot arm. In this study, we have proposed the use of an Energy 

Efficient Technique [29] based on Differential Evolution [30], [31] to plan the optimal 

trajectory path of a simulated arm in 3D space. The subject would send control signals from 

the given list of movements (left finger, left elbow, left shoulder, right finger, right elbow and 

right shoulder) and the energy efficient technique would plan the optimal trajectory path for 
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the simulated arm towards the target. While moving towards an object in space, a number of 

different paths are available to us to reach that object. We have devised a novel approach 

using both the quantized classifier output and the energy efficient technique to move the 

robot arm towards the target using an optimum path (the path which requires the minimum 

energy). This approach finds preference in the sense that in real life implementations an 

energy optimal path is more relevant to control an artificial limb towards targets present at 

fixed positions. 

The rest of the papers are organized as follows: In Section 2 we have our proposed 

algorithm developed in this study to control an artificial arm. Section 3 describes the 

experimental implementation of the developed algorithm followed by a discussion and 

comparison of the results obtained in Section 4. The concluding remarks and future directions 

are discussed in Section 5.  

 

2. THE OPTIMAL TRAJECTORY PLANNER 

For our study, we have designed a robot arm with two links and two movable sections 

each having one degree of freedom to mimic the movement of a 2DOF robot arm in real 

world. Their movements are described by angles θ and   which are defined with respect to 

the co-ordinate system as shown in Figure 1.The first section of length L1 moves in the 

vertical plane as described by θ measured from the +ve z-axis. The vertical plane in which it 

moves is displaced from the x-axis by an angle α. The second section of length L2 moves in 

the horizontal plane as described by   measured from the +ve x-axis. The arm ends in a 

gripper whose co-ordinates are given by 
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Here for our analysis we take, without loss of generality, α = 90°, so that the upper arm is 

entirely confined in the Y-Z plane. 
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Figure 1. Variation of phi (ф) and theta (θ) 

 

2.1. Energy Efficient Trajectory Generation 

Here we have developed an energy efficient method of fitting a smooth trajectory to the 

set of via-points (points between two given location) to move the robot arm towards a target 

from the initial position. Let us consider that we have n+1via-points (including initial and 

final points) that are obtained from EEG control. We fit smooth cubic polynomials for θ and 

φ as functions of time in between each of these points as shown below: 
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where the coefficients are determined partly by a set of boundary conditions and partly by 

energy minimization criterion. 

The boundary conditions for the polynomial between the (i-1)th and ith via-points are as 

follows: 
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where T is the time to move from the (i-1)th to the ith via-point, and i , are the first time 

derivatives of   and  , respectively. Condition of continuity of angular displacements is of 

course necessary, whereas condition of continuity of angular velocity at every via-point 

avoids jerky movement of the arm. At the initial point angular velocities are zero. Using the 

boundary conditions, we get the coefficients as: 
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Evidently the above conditions give three equations for four unknown coefficients, and 

the final equation is provided by the energy term. At any point the mechanical energy of the 

arm will be given by the summation of kinetic and potential energies of each of the arm 

sections as shown below: 

 +=
i ii EPEKE )....(          (5) 
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iCMiii IvmEK .

2
1..

2
1.. 2 +=  

and iii hgmEP .... =  

Here i = angular velocity of ith link, i.e.  =1 and  =2 . 

=iv translational velocity = 
222

iii zyx ++ , where iii zyx ,, are the first time derivatives of 

the co-ordinate of the centre of mass (CM) of the ith link. 

=
iCMI moment of inertia of the ith link about its CM.  

=im mass of the ith link. 

=ih height of the ith link from the ground, which is taken as the reference for zero 

potential energy.  

Upon calculations, the total mechanical energy of the system is found to be equal to 
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In this equation we put the expressions for θ,   and  , ; and replace a2, b2 in terms of a3, 

b3 so that E is now a function of time, and a3, b3. The energy integrated over a single time 

interval will give a measure of the total energy consumed and this is a function of a3 and b3, 

using recursive adaptive Simpson quadrature technique. Thus we can find an optimum value 

of the remaining coefficient by minimizing FK, where 
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This completes description of the entire trajectory subject to smooth motion and 

minimization of energy consumed [32], [33]. 

 

2.2. The Optimization Technique-Differential Evolution 

Like any other evolutionary algorithm, DE starts with a population of NP D-dimensional 

parameter vectors representing the candidate solutions. We shall denote subsequent 

generations in DE by
max0,1,...,G G= .We represent the ith vector of the population at the 

current generation as , 1, ,G 2, ,G D, ,G, ,...,i G i i iX x x x =   . 

The initial population (at G=0)should cover the entire search space as much as possible 

by uniformly randomizing individuals within the search space constrained by the prescribed 

minimum and maximum bounds: 

min 1,min 2,min ,min

max 1,max 2,max ,max

, ,...,  , and

, ,...,

D

D

X x x x

X x x x

 =  

 =  

        (8) 

Hence we may initialize the jth component of the ith vector as 

( ) ( ), ,0 ,min , ,max ,min0,1 .j i j i j j jx x rand x x= + −         (9) 

where ( ), 0,1i jrand is a uniformly distributed random number lying between 0 and 1 and is 

instantiated independently for each component of the ith vector. The following steps are taken 

next: mutation, crossover, and selection (in that order), which are explained in the following 

subsections. 

2.2.1. Mutation 

After initialization, DE creates a donor vector ,i GV corresponding to each population 

member ,i GX in the current generation through mutation using arithmetic recombination. It is 

the method of creation of donor vector that differentiates one DE scheme from another. A 

popular mutation strategy “DE/rand/1” [31] has been adopted in our paper, which is defined 

as 

( )1 2 3, , ,, .i i ir G r G r Gi GV X F X X= + −        (10) 
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The indices 
1

ir , 
2

ir and 
3

ir are mutually exclusive integers randomly chosen from the range 

[1, NP], and all are different from the base index i. The scaling factor F is a positive control 

parameter for scaling the difference vectors. ,best GX is the vector with the best fitness in the 

population at generation G [30],[31]. 

 

2.2.2. Crossover 

To increase the potential diversity of the population, a crossover operation comes into 

play after generating the donor vector through mutation. The donor vector exchanges its 

components with the target vector ,i GX under this operation to form the trial 

vector , 1, , 2, , D, ,, ,...,i G i G i G i GU u u u =   .In our paper we consider binomial crossover where the 

donor vector exchanges its components with the target vector ,i GX for each of the D variables 

whenever a randomly picked number between 0 and 1 is less than or equal to the Cr value. In 

this case, the number of parameters inherited from the donor has a (nearly) binomial 

distribution. The scheme may be outlined as 

( ), , ,
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u

x

  =
= 
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where ( )  , 0,1 0,1i jrand  is a uniformly distributed random number lying between 0 and 

1and is instantiated independently for each jth component of the ith vector.  1,2,...,randj D is 

a randomly chosen index, which ensures that ,i GU gets at least one component from ,i GV . 

 

2.2.3. Selection 

To keep the population size constant over subsequent generations,  the next step of the 

algorithm calls for selection to determine whether the target or the trial vector survives to the 

next generation i.e., at G = G +1. The selection operation is described as follows: 

( ) ( )
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U if f U f X
u
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

= 




        (12) 

where ( )f X is the function to be minimized. So if the new trial vector yields an equal or 

lower value of the objective function, it replaces the corresponding target vector in the next 

generation; otherwise the target is retained in the population. Hence the population either gets 
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better (with respect to the minimization of the objective function) or remains the same in 

fitness status, but never deteriorates. 

The above three processes are repeated till maximum number of generations is reached. 

The parameters selection in the DE algorithm for this study are as follows: scaling factor = 

10, population size = 50, crossover ratio = 0.8, maximum number of generations = 10000, 

stopping criteria = 20 number of same fitness.  

 

3. CONTROL SCHEME AND DATA PROCESSING  

3.1. Control Scheme 

 

Feature Vector Classifier

EOTP-RF

EOTP-RS

EOTP-LE

EOTP-LS

Positional Set-Points for 

RF/RE/RS/LF/LE/LS

RF

RS

LE

LS

Simulated Robot Arm 

Movement

EOTP-LF

EOTP-RE

LF

RE

 

Figure 2. The Proposed Approach to control a robot arm using the Energy Optimized Tranjectory Planner 

(EOTP). 

 

The complete scheme (Figure 2) is summarized as follows: First, we construct the feature 

vector from the acquired EEG signals from C3 and C4 electrode location using the energy 

coefficient of the level 3 and level 4 wavelet detail coefficient. The features are then fed to 

the classifiers to yield the respective output: Right Finger (RF), Right Elbow (RE), Right 

Shoulder (RS), Left Finger (LF), Left Elbow (LE), and Left Shoulder (RS). The classifier 

outputs and their corresponding commands to the simulated robot arm are given in Table 1. 

The classifiers are trained using the previous EEG signals of the given subject. The classifier 

output is fed as control signals to the local trajectory planner (i.e., trajectory planners for each 
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control signal) which simulates the movement of the robot arm based on the proposed energy 

efficient algorithm discussed in the previous section. The trajectory planner plans the most 

energy efficient path based on the output of the classifiers and provides a feedback to the 

subject about the same. The subject would decide the next movement based on the feedback 

and the process would continue until the goal is reached. Also, the local trajectory planner for 

each state would interpolate the position of each link of the robot arm (w.r.t. target position) 

in such a manner so as to minimize the energy consumption.  

Table 1.  Motor Imagery Outputs and their corresponding commands 

Motor Imagery Encoding Motion 

Right Shoulder 1-100 αsp = αsp + 10deg 

Right Elbow 1-200 θsp = θsp + 10deg 

Right Finger 1-300 Release object 

Left Shoulder 2-100 αsp = αsp - 10deg 

Left Elbow 2-200 θsp = θsp - 10deg 

Left Finger 3-300 Grasp object 

No motion 1-000/2-000 no motion 

 

3.2. Experimental Procedure 

The EEG signal has been recorded using a NeuroWin amplifier comprising of 19 channel 

( Fp1, Fp2, F8, F4, Fz, F3, F7, T4, C4, Cz, C3, T5, T6, P4, Pz, P3, T7, O2, O1) Ag/AgCl 

electrodes at a sampling frequency of 250 Hz. The left ear and FPz location is selected as the 

point for reference and ground electrode. The sensitivity of the amplifier is set to 100 µV and 

an additional 50 Hz notch filter had been utilized to suppress the line noise. 

The experiment is so designed to make the subject move the instructed joint 

(finger/elbow/shoulder) of any one of the hand (left/right) in a self-paced manner. Six 

females and seven males (right handed) in the age group of 25±5 years were employed as 

subjects in our experiment. The subjects were made to fill up a consent form and a simple 

introduction about the research work and stages of the experiment were given. 

The training experiment consists of 3 sessions with 60 trials each conducted on the same 

day with fifteen minutes break in between. The subjects imagine moving a specific joint 
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(either Elbow, Finger, Shoulder movement) of either right or left hand based on the 

instructions given on screen. In each trial, a blank screen was displayed in the first 2 seconds. 

In the 2nd second a fixation cross ‘+’ was displayed on the screen which indicates the 

beginning of the trial. From the 3rd second onwards, the instructions are displayed on screen. 

At that instance, the subject moves their respective joint-limb until the display is blank again. 

The timing scheme of the visual cue is given below in Figure 3. 

During the online experimentation, a target appears randomly on screen and based on its 

current location, the subject moves the robot arm based on the motor imagery control 

commands shown in Table 1. Here, on each 500 milliseconds of incoming signal, a feature 

vector is constructed which is fed to the trained classifier to yield the control commands 

based on Table 1. Thus, 125 sample-points are accumulated at each update of half a second. 

These control commands activates the local trajectory planner to move the robot arm towards 

the target.  

 

Figure 3. Timing scheme of the experiment 

 

3.3. Data Processing 

Researchers have verified that movement related signals (in terms of planning, action or 

imagination) originates from the sensorimotor area, pre-motor cortex and primary motor 

cortex and EEG captures the movement related signals from their adjoining locations in the 

scalp, which are centrally located in the scalp[34]. Signals from electrodes C3 and C4 

contains the most information related to left and right hand movement [5] and thus are 

selected in this study to identify the different movements. Another reason for selecting two 

electrodes instead of all nineteen of them is to reduce the computational time required by the 

processor to detect the right output. The signals from the selected electrode are filtered using 

Common Average Reference [5], followed by band-pass filtering using an elliptical filter 

(order 14) between 8 and 25 Hz, to reduce the effect of neighboring electrodes and 

environmental noises, and movement related information are mostly obtained in this 

bandwidth.  

In this study, we have used wavelet transforms for feature extraction the given EEG data.  

Wavelet Transform (WT) has its obvious advantages over techniques based on time-domain 
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or frequency-domain as it provides localized frequency related information at a given time.  

Further details on wavelet transforms are found in [25], [26]. In  our  study,  we have  

selected  the  Daubechies  mother  wavelet of order  4 (db4)  to  decompose  the  EEG  data.  

The percentage energy distribution [35] at third (D3) and fourth (D4) level of decomposition 

are selected to prepare the feature vector because the motor imagery signals are predominant 

at 8 -12 Hz and 16-24 Hz. The final size of the feature vector during both offline training and 

online testing is 2 (electrodes) × 2 (energy components from D3 and D4 components).    

The feature vectors thus constructed are fed to the classifier to classify among the various 

movements. Two levels of classifiers, as shown in Figure 4 are used in this study based on a 

tree formation: first, the left, right hand movements or no movements (Classifier 1) are 

classified followed by the finger, elbow and shoulder classification (Classifier 2 and 3) for 

each limb. The classification in both level has been done using the one-versus-rest (OVR) 

scheme [36], where one movement is classified against rest of the movement. In the offline 

training phase, Naïve Bayesian (NB), Support Vector Machine (SVM), Radial Basis Function 

Support Vector Machine (RSVM), Multilayer Perceptron Support Vector Machine (MSVM), 

k-Nearest Neighbor (kNN), and Linear Discriminant Analysis (LDA) [31] are trained for 

motor imagery state detection and the best performing classifier among these are used in the 

online experimentation of moving the robot arm.  

 

Figure 4. The Classifier scheme (Abbreviations: L- Left movement, R- Right movement, F- 

Finger movement, E- Elbow movement, S- Shoulder movement) 

The performance of the classifier is compared with various other state-of-the-art 

classifiers in Section 4 and its performance is found to be competitive. 

 



12 

4. RESULTS AND DISCUSSION 

The whole experiment is conducted in MATLAB version 7.9 environment. The 

specification of the system in which the experiment was conducted is as follows: Processor- 

Intel Core2Duo, 1.19 GHz, 3.2 GB RAM.  

4.1. Offline Training 

The performance of the trained classifier is measured by the k-fold cross-validation 

technique (Here, k=10) [37], using the training data of 3 sessions. The final predicted output 

is determined by the combination of the outputs from both level of the classification tree. For 

example, if Classifier 1 produces ‘Left’ as an output and Classifier 2 produces ‘Elbow’ as an 

output for a given instance, then the final output will be ‘Left Elbow’. The classification 

accuracy of the final output is the performance metric used in this study. As observed from 

Table 2, the classification accuracy of NB as compared with other standard classifiers (as 

mentioned in Section 3.3) is better. The superiority of NB classifier is further validated 

statistically by applying Friedman’s test [38] on the classifiers with the classification 

accuracy as the basis of ranking.  

The null hypothesis here, states that all the features are equivalent. The Friedman statistic 

distributed according 2

F to with k-1 degrees of freedom, is given by 

                                                 
2

2 212 ( 1)

( 1) 4
F j

j

N k k
R

k k


 +
= − 

+  
         (14) 

where, k is the number of classifiers and n is the number of datasets. From Table 2, it is noted 

that k=6 and N=13 and based on (14), 2

F  =46.598, which is > 2

5,0.05  = 11.07. So, the null 

hypothesis claimed is rejected to a level of 5% confidence level and the classifiers are not 

equivalent. It is evident from Table 2 that NB is ranked one and outperforms the other 

classifiers. Thus, NB classifier is selected for online experimentation of this study.   

 

4.2. Trajectory Planning 

The subject sees the target on the screen and imagines one step of movement towards the 

goal based on the current position of the arm. The classification continues to take place until 

the arm reaches its target or the algorithm reaches its stopping criteria, thus, failing to reach 

the target. The subjects perform the online experiment in 20 different runs and the target 

positions are selected randomly from the following (θ, ) values: (30, 30), (30, 60), (60, 60), 

(60, 90) and (90, 90). The online experimentation is analyzed using the average of the 

following metrics: % of successful hits, % deviation from goal on unsuccessful hit and 
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computational time required to reach the five different target. Table 3 gives the average of 

metrics for 13 subjects. An example of the robotic arm moving towards the target is 

demonstrated in Figure 5. The green dot in the illustrations is the target to be reached.  

Table 2. Classification Accuracies of the classifiers along with their ranking (given in 

brackets) 

Subject ID NB SVM RSVM MSVM kNN LDA 

1 80.00 (1) 72.50 (2) 70.00 (3) 65.71 (6) 66.67 (5) 67.50 (4) 

2 75.00 (1) 70.00 (3) 65.00 (4.5) 55.00 (6) 73.33 (2) 65.00 (4.5) 

3 67.50 (1) 57.50 (5) 62.50 (3) 65.00 (2) 50.00 (6) 60.00 (4) 

4 76.47 (3) 78.38 (2) 80.00 (1) 60.00 (5) 56.67 (6) 69.70 (4) 

5 75.00 (2) 77.50 (1) 70.00 (3) 57.50 (6) 60.00 (5) 62.50 (4) 

6 80.00 (1) 75.00 (3) 77.50 (2) 67.50 (4) 66.67 (5) 60.00 (6) 

7 83.75 (1) 77.00 (2) 75.00 (3) 62.50 (5) 60.00 (6) 71.25 (4) 

8 72.25 (1) 69.00 (3) 70.00 (2) 64.75 (5) 63.33 (6) 66.75 (4) 

9 69.00 (2) 73.50 (1) 67.50 (3) 57.00 (6) 60.50 (5) 63.50 (4) 

10 76.75 (1) 74.50 (3) 75.00 (2) 59.25 (5) 57.75 (6) 64.00 (4) 

11 81.25 (1) 79.25 (2) 77.50 (3) 62.50 (4) 58.00 (6) 60.00 (5) 

12 82.00 (1) 77.50 (2.5) 77.50 (2.5) 66.67 (5) 62.00 (6) 66.75 (4) 

13 80.50 (2) 81.50 (1) 74.75 (3) 72.00 (5) 70.00 (6) 73.50 (4) 

Mean 76.88 74.08 72.48 62.72 61.92 65.41 

Average 

Rank (Rj) 
1.38 2.35 2.69 4.92 5.38 4.27 

 

Table 3. Average of performance metrics for online trajectory planning for 13 subjects 

% of 

successful 

hits  

% deviation 

from goal 

for 

unsuccessful 

hits 

Computational time (in seconds) to reach the goal when target is 

at (θ, φ) position 

(30, 30) (30, 60) (60, 60) (60, 90) (90, 90) 

85 4.75 73 81 87 89 96 
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Figure 5.Illustrations of the trajectory simulation of the robot arm showing six instances during execution of 

movement towards the target (green dot). Initial and final positions are θ, ф =20°,25° and θ, ф = 90°, 60° (a) 

Initial Position (θ=20°, ф =25°), (b) Rotation in ф (θ =20°; ф = 40°),  (c)Final ф attained, further motion in ф 

restricted (θ =30°, ф = 60°), (d) Rotation in θ  (θ =60°, ф =60°), (e) Rotation in θ (θ =70°, Phi=60°) (f) Goal 

reached (green dot), further rotation stopped (θ =90°, ф =60°) 

Table 4 shows the performance of the optimizer relative to two other popular algorithms 

Particle Swarm Optimization (PSO) and Invasive Weed Optimization (IWO) [30] in terms of 

the total number of energy consumed in the trajectory as determined by the algorithms and 

the average number of function evaluations required in doing so. It is seen that DE gives 

superior solution and hence our choice is justified. 

 

 



15 

Table 4.  Efficiency of Optimizer 

 DE PSO IWO 

Units of energy 

consumed 
1.039e+04 1.353e+04 1.228e+04 

Average Number of 

Function Evaluations 
260 390 310 

 

5. CONCLUSION 

In this paper, we have successfully classified three different joint movements (viz. finger, 

elbow and shoulder) along with the left/right upper limbs with an average accuracy of more 

than 70% and simulated the “thought-control” of a robot arm towards a known target subject 

to conditions of minimum cost in energy with a success hit rate of 85%. In our future work, 

we will be concentrating on targets whose locations are not known or when the target 

position is dynamic. Further the energy optimal path planning as devised by our team finds 

particular relevance in practical implementations and armed with the results and performance 

analysis of classifiers and trajectory planners obtained here we aim to ultimately design and 

develop a complete real time BCI system.  
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