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Abstract: 

Brain-computer interfacing is an emerging field of research where signals extracted from the 

human brain are used for decision making and generation of control signals. Selection of the 

right classifier to detect the mental states from electroencephalography (EEG) signal is an 

open area of research because of the signal’s non-stationary and Ergodic nature. Though 

neural network based classifiers, like Adaptive Neural Fuzzy Inference System (ANFIS), act 

efficiently, to deal with the uncertainties involved in EEG signals, we have introduced 

interval type-2 fuzzy system in the fray to improve its uncertainty handling. Also, real-time 

scenarios require a classifier to detect more than two mental states. Thus, a multi-class 

discriminating algorithm based on the fusion of interval type-2 fuzzy logic and ANFIS, is 

introduced in this paper. Two variants of this algorithm have been developed on the basis of 

One-Vs-All and One-Vs-One methods.  Both the variants have been tested on an experiment 

involving the real-time control of robot arm, where both the variants of the proposed 

classifier, produces an average success rate of reaching a target to 65% and 70% respectively. 
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The result shows the competitiveness of our algorithm over other standard ones in the domain 

of non-stationary and uncertain signal data classification. 

Keywords – Real-time control, Interval type-2 fuzzy system, Adaptive neural fuzzy 

inference system, Multi-class classification, Motor imagery  

 

1. INTRODUCTION 

Human-machine interaction (HMI) [1] is rapidly evolving as a potential field of research in 

applied biomedical and cognitive science. In this paper, we have dealt with an emerging trend 

of HMI called brain-computer interfacing (BCI), where the user interacts with a computing 

device or robot directly through mental intentions (or commands), generated as signals, from 

the brain [2].  

A BCI technology is broadly composed of four basic processes, viz., recording the mental 

activity (Signal Acquisition); extraction of the intended action or desired features from that 

activity (Signal Processing); generation of the desired action (Mental state detection); and 

feedback, either through intact sensation, such as vision, or generated and applied by the 

prosthetic device (Feedback) [3]. Each of the aforementioned processes requires highly 

efficient techniques of signal processing, machine learning and control theory whose 

functions are to unveil the information embedded within the brain signals for various 

applications, like in robotics, communication, and gaming [4-7]. But BCI will be most 

helpful in neuro-rehabilitation [8, 9] of physically challenged patients, like those suffering 

from paralysis, Amyotropic Lateral Sclerosis, cerebral palsy, loss of limb [10]. These brain 

signals are extracted, decoded and studied with the help of various brain measures like 

Magnetoencephaography, functional Magnetic Resonance Imaging, Electro-corticography, 

and Electroencephalography (EEG) [11, 12]. In our analysis, we have preferred to use EEG 

signal over other measures because it is portable, easy to use, inexpensive, and has a higher 

temporal resolution [10, 13].  

For every cognitive task performed by the user, a characteristic brain modality is generated 

from the brain at different locations. A BCI technology aims at decoding these brain 

modalities to control a robotic device and the selection of brain modalities for a specific 

control task is an important issue in BCI research. Examples of few frequently used 

modalities are steady-state visually evoked potential (SSVEP), slow cortical potential (SCP), 

P300, event related desynchronization/synchronization (ERD/ERS) and error related 

potential (ErRP) [10, 15]. In the current study, we aim to control the movement of a robot 
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arm using five motor imagery mental commands: Forward, Backward, Left, Right and No 

movement. Using these commands the subject would attempt to move the arm towards a 

randomly positioned target (placed within the reach of the robot arm). ERD/ERS signals 

originates during movement planning, movement imagination or movement execution 

(collectively, referred to as motor imagery signals) [15, 16]. Thus, this modality have 

relevance for control purpose in our present study. 

In this paper, we have also delineated the importance of multiclass classification [17, 18] in 

real world problems and how it can be employed efficiently. In real time scenarios, we often 

come across situations, which requires the classifier to detect more than one mental states. So 

in case of BCI systems, multiclass classification is quite important and has a wide scope of 

usage. 

The brain signals recorded using EEG are non-linear, complex, non-stationary and non-

Gaussian. Thus, they are quite challenging to classify and the problem is nothing but a 

conundrum. Adaptive neural fuzzy inference system (ANFIS) is a neural network [19, 20] 

inspired classifier, which is used to classify complex datasets using fuzzy inference systems. 

ANFIS, is a strong and standard neural fuzzy inference tool but due to its Type-1 fuzzy 

membership pattern, it fails to handle noise and uncertainty in case of chaotic and Ergodic 

signals. Also, ANFIS is dependent and sensitive to the parameter sets defined by the user 

[19]. These shortcomings of the classical ANFIS algorithm inspired us to associate type-2 

fuzzy [21, 22] sets with classical ANFIS for BCI application. 

In this paper, we have proposed two novel classification method based on the fusion of 

interval type-2 fuzzy system with the ANFIS structure for multiclass classification. In 

classical multiclass literature, ‘one vs all’ and ‘one vs one’ methods [10] are commonly used 

among researchers and these methods amalgamates the results of smaller binary classifiers to 

give the final hyperplane. Here, we have used ANFIS architecture for each of the binary 

classifiers and then the outputs of each individual binary classifiers are combined using a 

type-2 fuzzy to yield the final output. 

Here, the EEG features are classified using our proposed type-2 fuzzy sets with the fuzzy 

inference system of ANFIS to minimize the adverse effects of uncertainty. This has made our 

algorithm a better tool to handle and classify EEG signals. It is more robust, efficient, user 

independent and handles the uncertainty of EEG signals much better than the previous model 

(classical ANFIS). Our proposed classifier also shows its competitiveness to discriminate 

between multiple classes as compared to other state-of-art classification algorithms. 
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The rest of the paper is arranged as follows. In section 2, we describe the acquisition 

system and the robot arm used in this paper. In section 3, we discuss on the experimental and 

data processing techniques used for offline classification and online control of the robot arm. 

Our proposed multiclass ANFIS networks and their working procedures are described in 

section 4 of this paper. A discussion on the results of the offline and online experiments using 

our proposed classification algorithm are mentioned in section 5, followed by the concluding 

remarks in section 6. 

 

2. MATERIALS AND CONTROL METHODS 

In this study, the subject controls the movement of a Jaco robot arm [23, 24] using five 

motor imagery signals related to following movement states: forward, backward, left, right 

and no movement. This section gives a brief background on the EEG acquisition system and 

the Jaco Robot arm, followed by a discussion on the control strategy implemented in this 

study. 

2.1. EEG Data Acquisition System: Emotiv Epoc 

The mental states of the users in form of EEG signals are recorded using an Emotiv Epoc 

System. It is a high resolution, multi-channel, wireless neuro-headset which uses a set of 14 

sensors (electrodes) and 2 references. The electrodes are arranged according to the standard 

10-20 electrode system [25] and their locations are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, 

T8, FC6, F4, F8 and AF4 (Fig. 1). The sampling rate of the EEG system is 128 Hz with a 

resolution of 0.51 µV. The system comprises of a built-in digital 5th order sinc filter with a 

bandwidth of 0.2 – 45 Hz and a digital notch filter at 50 and 60 Hz.  

 

Fig. 1. Electrode locations in the Emotiv Epoc system 
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2.2. Jaco Robot Arm 

Jaco Robot Arm, developed by Kinova, is a 6-axis robotic manipulator with a three 

fingered hand. The arm has six degrees of freedom in total with a maximum reach of 90 cm 

radius sphere and maximum speed of 30 cm/sec. It is made of three sensors: force, position 

and acceleration. This arm is suitable for a person with a disability of the upper arm and can 

be placed on a wheelchair. The upper arm of the robot is made of three links which is similar 

to the upper limb of the human body, as shown in Fig. 2. An API is provided from the 

manufacturers which allows greater freedom of control by users [23, 24]. 

 

Fig. 2. Jaco Robot Arm setup in our lab 

2.3. Online Control Scheme 

As mentioned earlier, the subject needs to control the movement of the robot arm towards a 

given target by using five mental (motor imagery) commands: Forward (F), Backward (B), 

Left (L), Right (R) and No movement (N). To stop the movement of robot arm, the subject 

would generate a No Movement command by relaxing. The rest of the commands are 

employed to move the robot arm in their respective directions. For example, if the subject 

wants to move the robot arm in the forward direction, he would need to imagine moving 

forward, which would generate a forward command from the brain signals. The control 

signals generated according to the mental commands are given in Table 1. 

The control scheme, as shown in Fig. 3, requires the subject to first observe the current 

position of the end-link of the robot arm with relation to the target position and then would 

plan the next movement of the robot arm. The motor imagery signals thus generated are 

acquired by the Emotiv acquisition system. Next, the acquired EEG signals are pre-processed 

to remove any noise present in the data. Then a feature extraction algorithm is applied to the 

filtered data to construct the feature vector. The feature vector consists of specific 
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information about the different mental commands, which are based on their characteristic 

ERD/ERS waveform. This feature vector is then fed to the classifier to decode the mental 

state of the subject. The decoded output is used to generate the control signal (as shown in 

Table 1) to move the robot arm in the required direction.  

Table 1. Control signals generated to move the robot arm according to mental 

command generated by the subject 

Mental Command Control signal 

Forward Move robot forward by 10 units 

Backward Move robot backward by 10 units 

Left Turn robot in counter-clockwise direction by 10°  

Right Turn robot in clockwise direction by 10° 

No Movement (Relax) Stop robot movement 

 

Fig. 3. Block diagram of the online control scheme (Abbreviation: F- Forward, B-Backward, L-Left, R-Right, 

N-No movement).  

 

3. EXPERIMENTS AND DATA PROCESSING  

The first step towards movement control of the Jaco robot arm is for the subject to undergo 

training. During this phase, the subject trains itself to generate mental commands needed to 

control the robot arm movement. Also, the dataset accumulated during the training period is 

used to train the classifier. Based on this training, the classifier produces one of the five 

mental commands as outputs which is further used to generate the control signals.  

Eleven right-handed subjects (6 female and 5 male) with normal vision and no prior 

disability or illness have participated in this study. The experiment would require the EEG 

signals to be free from any other unknown environmental stimulus (noise), so the subjects 

would imagine kinesthetic tasks based on a visual stimuli projected on a screen in a well-lit, 

empty, sound-proof, isolated room.  
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Prior to data acquisition, the subjects is informed of the various details of the experiment. 

Then, the subjects are required to fill and sign a consent form. The procedures of the 

experiments conducted abide by the requirements set in the Helsinki Declaration of 1975, 

revised in 2000.  

This section describes the experimental and data analysis techniques applied to undertake the 

training procedure along with the details on online experimentation implemented in this 

study. 

3.1. Stimuli Generation 

A visual stimuli is used in this study to provide instructions to the subject on the mental 

task he has to perform during the training phase. The visual cue contains instructions for five 

mental commands: Forward, Backward, Left, Right and No movement, in form of direction 

of an arrow, as shown in Fig. 4. 

 

Fig. 4. Timing diagram of a motor imagery trial performed by the subject. The direction of the arrows 

provides instruction to the subject. 

The training of each subject is undertaken over seven different sessions and one session is 

performed on a single day. It had been observed that by 7 sessions, each subject had produced 

a consistent EEG response, which resulted in obtaining a training accuracy of more than 80%. 

Each session comprises a total of 100 repetitive trials where each mental tasks is repeated 20 

times. The generic timing structure of each trial is shown in Fig. 4. First, a fixation ‘+’ is 

displayed on screen for one second which is an instruction for the subject to get ready. Next, 

the task instructions in form of arrows are displayed on screen randomly for 3 seconds. 

During this period the subject mentally performs the task given. For generation of the ‘No 

movement’ command, a blank screen is displayed in place of the arrows. Then, a blank 

screen is displayed for 2 seconds during which the subject is allowed to relax. This period 

also prevents the overlapping of consecutive mental states on the EEG signal. 

3.2. Data Preprocessing     

ERD/ERS modalities, generated during mental imagery tasks, are found to be prevalent in 

the µ (8-12Hz) and central β (16-24Hz) bands [10, 25]. For this purpose, we have designed an 

elliptical band-pass filter of order 12, pass-band attenuation of 1dB and stop-band attenuation 
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of 50 dB to extract movement related information in the bandwidth of 8-25 Hz from the raw 

EEG signals. Also, this step allows the removal of environmental and cognitive noises 

(background EEG) from the signal. An elliptical filter is used because of its equi-ripple 

behavior in the pass-band and stop-band and has a steeper roll-off characteristic when 

compared to other standard filters [26].  

After the filtering step, during offline training phase, the EEG data pertaining to 3 seconds 

of motor imagery tasks are extracted from each trial for further processing. Each 3 seconds of 

data are further partitioned into 500 milliseconds data vectors, on which further processing is 

performed. But during online experimentation, after incoming EEG is filtered, data vectors of 

500 milliseconds before the current time is created for processing. Then the data in both 

offline and online cases is normalized to the interval [0, 1]. 

3.3. Feature extraction using multi-fractal detrended fluctuation analysis   

If a time-series signal repeats itself on the subintervals of the signal, then it possesses scale 

invariant structures. For EEG signals, the scale invariant structures of inter-spike interval of 

firing of the neurons are capable of discriminating between the neural activities of brain. 

Alterations in scale invariant structure of bio-signals indicate adaptability of physiological 

processes which can be quantified using Detrended fluctuation analysis (DFA) [27-28]. 

Another salient feature of DFA is that it is not affected by non-stationarity of a signal and can 

measure long range correlations of such signals. But time series with complicated temporal 

behavior necessitate different scaling exponents for different part of the series. In such case 

multi-fractal analysis is performed which provides multiple scaling exponents to completely 

describe the behavior of the time series for different scaling parameters. Thus, mutli-fractal 

detrended fluctuation analysis (MFDFA) allows the formalism of non-stationary signals for 

characterization of the time series [27-28]. The steps required to calculate the MFDFA 

estimates are summarized below:  

Let, xk is a time series of length N of compact support that xk=0 for an insignificant amount 

of values.  

I. First, compute the sequence of summary displacements (Profile) P(i) by 

1

( ) [ ]
i

k

k

P i x x
=

= − , i=1,…,N  (1) 

II. Then, partition P(i) in a number of non-overlapping segments denoted 

by Nl=N/l, of equal length l. The same process is repeated from end to start to 
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the series to consider the small parts that can remain at the end of the series. 

Thus we obtain total 2Nl segments.  

III. In this step, detrend the profile P(i), i=1,…,N, for each segment of 

length l, by applying least square fit on each segment and calculating their 

respective variance, which is given as 
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for v=Nl+1,…,2Nl , where yv(i) is the fitting polynomial in the segment v. 

IV. Then, calculate the qth order fluctuation function by averaging over all 

segments, as follows 
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/22

2

1

1
( ) [ ( , )]

2

l

q
qN

q

vl

F l F l v
N =

  
=  
  

  (3) 

where q can take any value other than zero. To determine the dependency of 

generalized q dependent fluctuations on time scale l, repeat steps II to IV. 

V. Lastly, determine the scaling behavior of the fluctuating functions by 

analyzing the log-log plots of Fq(l) versus l for each value of q.  

( )( ) h q

qF l l     (4) 

Where, h(q) is the q-dependent generalized Hurst exponent. [27]. It is to be 

noted that for long-range power-law corrected series xi, Fq(l) increases as power-

law for large values of l. 
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Fig. 5. An example of the Local Hurst Component (Ht), Probalility distribution (Ph) and Multifractal spectrum 

(Dh) of a motor imagery signal from electrode location FC5.  

In this study, we have used MFDFA of 3rd order fitting polynomial (i.e. yv(i)) and varied q in 

the range -5 to 5 with 101 discreet intervals. An example of the 3rd order local Hurst 

components (Ht), probability distribution of local Hurst components (Ph) and multifractal 

spectrum of local Hurst components (Dh) from electrode location FC5 is illustrated in Fig. 5. 

The feature vector is prepared from the probability distribution of Hurst components and its 

dimension for both offline and online experimentation is 45 (for each electrode).  

4. TYPE-2 FUZZY BASED MULTI-CLASS ANFIS ALGORITHM 

This section begins with background descriptions of multi-class classification, ANFIS 

architecture and interval type-2 fuzzy system. The final sub-section describes our proposed 

algorithm which is a combination of the three methods.   

4.1. Multiclass Classification 

In real world problems, we often face situations, where the observations may belong to 

more than two classes unlike the binary classification or the dichotomies. Under this kind of 

scenario a training data point may belong to one of the N different classes and one’s aim is to 

find an approximation function f of a classifier so that it can predict accurately for an 

unknown entry to which of the N classes it belongs. 
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There exist two widely used state-of-art approaches for the multiclass classification 

problems, which are quite apparent and trivial. The first one is one vs. all (OVA) 

classification approach and the other is one vs. one (OVO) classification approach. 

 

Fig. 6. Multi-class classification using OVA (N=3) 

In OVA approach (Fig. 6), we build N different classifiers where each classifier 

corresponds to each individual classes. This approach reduces the problem into N binary 

classification problems, where each of the binary classifiers discriminates a given class from 

rest of the classes [10, 29]. For example, the thi classifier will give positive results for the data 

points belonging to the thi class and negative result for data points belonging to the other 

1N − classes. If if is hyperplane for the thi classifier, the final multiclass classifier hyperplane 

function can be defined as, 

                   
{1,.., }

( ) arg ( )max i
i N

f x f x


=                           (5) 
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Fig. 7. Multi-class classification using OVO (N=3) 

In OVO approach (Fig. 7), ( 1) / 2N N − binary classifiers to discriminate between data 

points of thi and thj classes [10, 29]. Here, the classifier between thi and thj classes can be 

defined by the hyperplane
ijf , where 

ijf gives positive output for data points belonging to 

class i and negative result for data points in class j . Thus the multiclass problem can be 

defined as finding a hyperplane function ( )f x such that, 

( ) arg ( ( ))max ij
i j

f x f x=                     (6) 

One of the basic problem faced by these methods is the way the piecewise hyper-planes 

constructed by individual OVO and OVA are fused to generate the final output hyper-plane. 

But inefficient fusions often cause discrepancies and high computational complexity. Thus, in 

this study, we have proposed a simple yet efficient approach of incorporating outputs of 

individual dichotomies of OVA and OVO using type-2 inference system, which will be 

explained in the final sub-section. 

4.2. Adaptive Neural Fuzzy Inference System (ANFIS) 

ANFIS is a very popular and efficient adaptive neural network and fuzzy based algorithm 

used in classification problems. It was first proposed by Jang in [19] based on the adaptive 

neural network structures and Takagi-Sugeno model based fuzzy inference systems [30].  

In the ANFIS model, the neuro-fuzzy network model is implemented in such a way that the 

adaptive neural network is used to tune the parameters of fuzzy inference system. Due to 
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adaptive approach of ANFIS it can be used to classify the EEG signal very efficiently and the 

fuzzy layers are used to capture the stochastic nature of the EEG signals. 

Besides that, the analysis of Takagi-Sugeno model based ANFIS shows that there is no 

constraint on the node functions of adaptive network except the piecewise differentiability 

and no constraint on the architecture except it would be feed-forward type.  Due to this 

features, the compatibility and effectiveness of ANFIS model in case of non-stationary, 

complex and stochastic signal like EEG is quite apparent. 

 

Fig. 8.   Architecture of 5 layered ANFIS 

Fig. 8 shows a prototype of the ANFIS used in our work. It contains five layers as 

described briefly below, 

4.2.1. Layer 1 
Every node in this layer is an adaptive node with a node function where x (or y) is the input 

to node I and Ai (or Bi-2) is a linguistic label and output of the layer 1

iO  is the membership 

grade of fuzzy set A (say A1, A2, B1 or B2) and it specifies the degree to which the given input x 

(or y) satisfies the quantifier A. 

1 ( )
ii AO x=                                     (7) 

where, x is the input of the thi node and iA is the linguistic variable associated with the 

transfer function of the corresponding node. Here, we have chosen the membership function 

as a normalized bell shaped curve, given by 

2

1
( )

1

i i
A b

i

i

x
x c

a

 =
 −

+  
 

                        (8) 

where, , andi i ia b c are the parameters corresponding to the node function of the thi node. The 

parameters corresponding to this layer are called the premise parameters or antecedence 

parameters.   
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4.2.2. Layer 2 
Every node in this layer is a fixed node labelled , whose output is the product of all the 

incoming signals, where each node output represents the firing strength of a rule. 

2 ( ) ( )
i ii i A BO w x y = =                            (9) 

where, 1,2,.....,i D=  and D  is the dimension of the corresponding input vectors x and y  .  

4.2.3. Layer 3 

Every node in this layer is a fixed node labelled N, as shown in Fig. 8. The thi node of this 

layer normalizes the firing strength of the previous node with respect to firing strengths of 

others. 

3 i
i i

i

i

w
O w

w
= =


                                 (10) 

4.2.4. Layer 4 
Every node in this layer is an adaptive node shown as square nodes in Fig. 8. The output of 

this node is given by 

4 ( )i i i i i i iO w f w p x q y r= = + +             (11) 

where, iw is the output of thi node of layer 3 and  , ,i i ip q r  are referred as the consequent 

parameters. 

 

Fig. 9. Fuzzy reasoning mechanism for ANFIS 

 

4.2.5.Layer 5 
The single node in this layer is a fixed node which acts as an accumulator and it adds up all 

the outputs coming from the previous layer to give the final classifier function as, 
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5
i i

i
i i i

i i

i

w f

O w f
w

= =





                        (12) 

Thus, by using the above shown architecture we have constructed an adaptive network 

which is functionally equivalent to a type-3 fuzzy inference system. The operation of the 

ANFIS as a type-3 fuzzy inference system and the corresponding mappings are shown in Fig. 

9. 

4.3. Interval Type-2 Fuzzy Inference System 

In the path of evolution of sets and logic, it was seen that classical sets with their binary 

membership functions are unable to correspond the human knowledge with the inference 

systems used to control different processes or logic systems. From this perspective, Zadeh in 

[31] proposed fuzzy sets and logic where each of the fuzzy sets. These fuzzy sets imitate the 

human thought process to handle the uncertainties involved in the input-output system of 

fuzzy inference system. Each of the fuzzy sets contains a continuous membership function 

which describes the possibility of a number to be a member of that fuzzy set. This approach 

showed its effectiveness as an inference system for vast number of applications. But as 

researchers investigate more about the working procedure and uncertainty handling property 

of fuzzy sets, it became quite clear the uncertainty handling property of these type-1 or 

classical fuzzy sets is not up to the mark as type-1 fuzzy sets handle uncertainties by defining 

precise and crisp membership functions [32]. Therefore, the way to define MFs in type-1 

fuzzy logic system (FLS) restricts the ability of type-1fuzzy sets and FLS to model and 

minimize the effect of uncertainties. This problem is actually faced when Type-1 ANFIS is 

implemented on non-stationary and uncertain systems like EEG. 

A type-2 FLS has the potential to outperform a type-1 FLS because a type-2 fuzzy set is 

represented by more parameters than a type-1 fuzzy set [33]. Unlike a type-1 fuzzy set whose 

membership function (MF) is defined precisely, the MF of a type-2 fuzzy set is defined 

blurrily and consisted of a set of admissible type-1 MFs called the footprint of uncertainty 

(FOU) of a type-2 MF [34].Once a type-2 MF is reduced to a type-1 MF, the blurriness of the 

MF will no longer exist and it becomes a precise MF as defined in a type-1 FLS. Therefore, 

type-2 fuzzy logic can be viewed as a generalization of type-1 fuzzy logic, or on the other 

hand, type-2 fuzzy sets and MFs can also be considered as an extension of type-1 fuzzy sets 

and MFs with the increased ability to handle uncertainties existing in MFs and FLS.   
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4.4.Interval type-2 Fuzzy based Multiclass ANFIS algorithm 

In our proposed classification technique, binary ANFIS classifiers are used as the basic 

components of the OVA and OVO approach. Here, an interval type-2 fuzzy logic is used to 

combine the different outputs of the ANFIS classifiers to produce a final optimal result. The 

amalgamation of the three techniques, is coined as Interval Type-2 Fuzzy Logic ANFIS fusion 

(IT2FLF-ANFIS) algorithm. While fusing the results of each individual binary classifier, it is 

observed that different classes have their own distribution around hyper-planes and also the 

accuracy of classification between same two classes may vary depending on problems. This 

uncertainty involved in the variance of error and bias while constructing hyper-planes 

inspired us to use type-2 fuzzy logic fusion methods. Here, the type-2 fuzzy fusion block is 

adopted by us to unite all the piecewise hyper-planes to construct an efficient one with least 

discrepancies and regions of conflicts because type-2 fuzzy sets are more efficient in 

handling uncertainties than type-1 fuzzy sets [35]. The implementation of interval type-2 in 

the two variant approaches: OVA and OVO are explained in the following sub-sections.  

4.3.1. One versus All - Interval Type-2 fuzzy logic-ANFIS fusion (OVA-IT2FLF-ANFIS) 
As mentioned earlier in section 4.1, the OVA approach needs N binary ANFIS classifiers to 

discriminate each classes from corresponding (N-1) classes. The ith classifier constructs the 

hyperplane fi and N such fi’s are combined to generate the final output. 

 

Fig. 10. Ideal representation of the membership functions distribution for distance as inputs to IT2FL 

inference engine 

In OVA-IT2FLF-ANFIS approach, the type-2 fuzzy sets fuses the outputs of each individual 

classifier and its distance from its corresponding hyper-plane fi. For example, say, a data 

point x belongs to class 1, then its distance from its corresponding hyperplane, say, f1 should 

be positive or zero. On the contrary, if the distance is negative, than x will not belong to class 
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1. Now, as the distance becomes more positive, the possibility that x will belong to class i 

will increase and would be independent of the discrepancies introduced by other (N-1) 

classifiers. Thus, the discrete classifier output and the distance from each individual ANFIS 

classifier are used to construct the type-2 fuzzy sets. Here, we have set the base point of 

positive and negative membership function (MF) around -0.25 and 0.25, respectively (as 

illustrated in Fig. 10). The admissible range of the corresponding type-2 MFs is set to 0.1-0.2. 

As the system has N distinct inputs from each of the N classifiers and each of the inputs 

have two possibilities, there will be 2N fuzzy rules where the ith rule is defined as, 

1 2 N

i

IF  is A ,  is A , ,  is A ,

THEN  is O

x x x

x
 (13) 

where, A1, A2, …, AN is {negative or positive} classifier output or distance values and Oi 

in {O1,…,ON}, which is the set of all possible output sets. For simplicity, let the 

consequences of these fuzzy rules consider the distance inputs of N classifiers. Thus, if for 

one data input A1 yields a ‘positive’ value and the other classifiers produces ‘negative’ value, 

then the consequence of the corresponding fuzzy rule will be the output fuzzy set O1. Based 

on the same considerations the consequences of other rules will occur. In the inference part of 

the fuzzy model, we use the product t-norm operation and join it under the max operation and 

supstar composition [36, 37]. Now the resultant output type-2 fuzzy sets are de-fuzzified 

using the center of the set method. The centers of sets are calculated using Karnik-Mendel 

algorithm [38] and the iterative algorithm [37]. The corresponding crisp values will be in the 

range [1, N], which are rounded up to the nearest integer and the final output signify the class 

in which the data point belongs.  

4.3.2.One versus One - Interval Type-2 fuzzy logic-ANFIS fusion (OVO-IT2FLF-ANFIS) 
To implement the OVO approach, the outputs of N (N-1)/2 binary ANFIS classifiers are 

required to get the final output (see Section 4.1). In case of designing the interval type-2 

fuzzy logic based fusion algorithm for OVO (OVO-IT2FLF-ANFIS), distance along with the 

binary classifier output does not qualify as sufficient inputs to the inference engine. As the 

decisions generated by each of the classifiers sometimes may lead to confusions due to 

unwanted overlap between the zones segregated by the classifiers. Thus, the distances of the 

data point from the centroids of each of the classes are also considered as another input. 

These distances help the fusion system to identify the data points which belong to the region 

of confusion, which actually belongs to one of the N classes. The classification system used 

in OVO, which is a bit different from OVA can be mapped with fuzzy linguistic variables 
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[37] distance from the hyper-planes and centroidal distances. The base points of the MFs for 

the distance values have been set similar to the one used in OVA-IT2FLF-ANFIS classifier, as 

the principles to determine the class of an unknown data point using the distance information 

is the same. Similar to the construction of the distance MFs, here, the centroidal distance can 

take two forms- near and far, whose ideal representation is shown in Fig. 11. When the 

distance of a certain data point form the centroid of a certain class becomes ‘near’, the 

possibility that it will belong to that class will be highest and as it becomes ‘far’, it can be 

concluded that the data point does not belong to the corresponding class. 

 

Fig. 11. Ideal representation of the membership functions distribution for centroidal distance as inputs to IT2FL 

inference engine 

As the system has N distinct inputs from each of the N classifiers and each of the inputs have 

two possibilities, there will be 2N(N-1)/2 fuzzy rules where the ith rule can be defined as, 

1 2 N 1 2 N

i

IF  is A ,  is A , ,  is A ,  is C ,  is C , ,  is C

THEN  is O

x x x x x x

x
  (14) 

 where, A1, A2, …, AN is {negative or positive} classifier output or distance values, C1, C2, 

…, CN is {near or far} values and Oi in {O1,…,ON}, which is the set of all possible output 

sets. 

The consequences of these fuzzy rules consider the binary classifier output and distance 

inputs of N classifiers and centroidal distances of data point from centroids of N classes. For 

example, if for one data input, if A1 classifies an output as ‘positive’ and C1 classifies an 

output as ‘near’, and the rest of the A and C classifiers yield ‘negative’ and ‘far’ output, 
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respectively, then the consequence of the corresponding fuzzy rule will be the output fuzzy 

set O1. The other fuzzy rules will also yield the corresponding consequences on a similar 

basis. 

Now, the final inference engine and the defuzzifier or output processing block [39] of the 

used fuzzy fusion model OVA-IT2FLF-ANFIS, is a replicate of the inference and defuzzifier 

unit of OVO-IT2FLF-ANFIS. So, here too, we get an integer in the range [1, N] signifying the 

class in which the data point belongs. 

 

5. RESULTS AND DISCUSSION 

The results of our proposed multi-class classification algorithm and our robot control 

strategy for 11 subjects is discussed in this section. First, we describe the performance of the 

two variants of our multiclass IT2FLF-ANFIS classifier: OVA-IT2FLF-ANFIS and OVO-

IT2FLF-ANFIS and provides a statistical comparison with the following standard classifiers: 

Linear Discriminant Analysis (LDA), k-Nearest Neighbor (kNN), Support Vector Machine 

(SVM) and Naïve Bayesian (NB) [40, 41] using both OVA and OVO method for multi-class 

classification. Then, in the following section we examine the performance of our online 

control strategy using both the proposed classifiers. 

The processing and detection of the mental states from the EEG signals has been done in 

MATLAB 2012b platform run on a computer with the following specifications: Intel core i7 

processor @ 3.25 clock speed, 8GB RAM and 64 bit Windows 7 operating system. 

5.1. Offline training 

The feature vector used for training the classifiers are prepared from the probability 

distribution of the local Hurst component (as mentioned in Section 3.3) from each session (of 

each subject). As each 7 session is made of 100 trials of data, then the final size of the feature 

vector is 700 (trials) × 14 (electrodes) × 45 (features). The total feature vector is then divided 

into two separate datasets: training and validation, using k-fold cross validation technique 

[41]. The performance of the classifiers are determined by the values obtained by the average 

of two metrics: classification accuracy (C.A.) and area under the ROC curve (AUC) [42], 

over 10 runs (k=10). 

The C.A. and AUC of the two proposed OVA-T2FLF-ANFIS and OVO-IT2FLF-ANFIS 

classifiers are given in Table. 2. As noted from the table, the recognition rate for the five 

mental states: Forward, Backward, Left, Right and No movement is more than 80% for both 

the variants of the classifier with Subject 1 producing the best result for both the classifiers 
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(OVA-T2FLF-ANFIS: C.A.= 96%, AUC= 92.86% and OVO-IT2FLF-ANFIS: C.A.= 

99.50%, AUC= 97.37%). It is also noted that OVO method performs slightly better than 

OVA approach in terms of classification accuracy. 

Table 2. Offline performance analysis of the proposed OVA-IT2FLF-ANFIS and 

OVO-IT2FLF-ANFIS classifier for 11 subjects 

Subject ID 
OVA-IT2FLF-ANFIS OVO-IT2FLF-ANFIS 

C.A. AUC C.A. AUC 

1 96.00 92.86 99.50 97.37 

2 86.00 82.50 88.00 80.70 

3 80.00 80.00 80.00 80.00 

4 86.00 85.45 87.50 87.67 

5 92.50 90.00 90.00 90.00 

6 89.25 89.25 94.50 92.34 

7 90.00 89.44 90.00 88.67 

8 85.00 83.23 92.00 88.00 

9 87.50 85.00 88.50 85.00 

10 94.50 92.10 96.75 92.53 

11 91.25 90.00 93.50 93.50 

Mean 88.91 87.26 90.93 88.71 

 

The performance of our proposed OVA-T2FLF-ANFIS and OVO-IT2FLF-ANFIS 

classifier combination has been compared with its competitors: LDA, kNN, SVM and NB 

using Friedman Test [43]. To maintain parity in the comparison process, multi-class 

classification of the competitor algorithms are also done using OVA and OVO approach.  

According to the null hypothesis in this context, all the classifiers are equivalent and hence 

their ranks Rj should be equal. The Friedman statistic is given by  

( )

( )
2

2 2
112

1 4
F j

j

k kN
R

k k


 +
= − 

+   


  (15)

 

with k-1 degrees of freedom is distributed accordingly to 
2

F  with −k 1 degrees of freedom, 

where k is the number of algorithms to be compared and N is the number of parameters used 

for comparison. In this study, the mean of the classification accuracy (over 11 subjects) is 
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considered as the number of parameters, thus, N=1 and k is the number of classification 

algorithms which is 10. 

Table 3 provides the mean classification accuracy for the classification techniques and their 

corresponding ranks based on their accuracy. Using the ranks Rj from Table 3, 2

F is 

calculated as 8.945 for both the features which is greater than 
2

9,0.95 3.325 = . This means that 

for (k-1=10-1=) 9 degrees of freedom one can say the null hypothesis is wrong for a 

confidence level of 95% and hence, the classifiers are not equivalent rather they are ranked 

according to Rj.  This justifies our claim of using our proposed algorithms as the classifier 

rather than other standard classifiers, in this study. 

Table 3. Statistical validation of the proposed OVA-IT2FLF-ANFIS and OVO-

IT2FLF-ANFIS using Friedman test 

Classifier  Algorithm   Classification Accuracy Rank (Rj) 

OVA-IT2FLF-ANFIS 88.91 2 

OVO-IT2FLF-ANFIS 90.93 1 

OVA-LDA 78.57 10 

OVO-LDA 79.43 9 

OVA-KNN 82.67 8 

OVO-KNN 82.13 7 

OVA-SVM 85.16 6 

OVO-SVM 86.25 3 

OVA-NB 85.75 4.5 

OVO-NB 85.75 4.5 

 

5.2. Real-time robot arm control performance (Online testing) 

Following the training of the classifiers, the system is ready to perform online control of 

the Jaco robot arm. The setup of the online experimentation is shown in Fig. 12(a) where the 

yellow ball is target position. The subject controls the directional motion of the robot arm 

using the mental commands, mentioned in Table 1. The subject performed this experiment 

over 20 runs using both the proposed algorithm. In each run, the subject would attempt to 

reach the target using the robot arm. During real-time testing, there was no time constraint 

imposed on the subject and he/she would attempt to reach the target in his/her own time. 

Each run ended with the robot arm either reaching the target or the subject giving up in 
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between. 

The online performance of our proposed classifiers are determined by the following metric: 

i) percentage (%) success rate, and ii) Information Transfer Rate (ITR) [44]. The % success 

rate is defined by the number of times the subject was successful in reaching the target within 

a positional error of 5% with relation to the target. ITR (Bt) represents the bit rate of the 

method. Its representation in bits/min is given as 

( )2 2 2

1 60
log log 1 log

1
t

P
B N P P P

N T

− 
= + + −  

− 
  (16) 

where, N represents the number of possible states which is 5 in the present context and P 

represents the classification accuracy between 0 and 1. T is the time needed to convey each 

action in second/symbol i.e., time interval from the issue of a command to the classified 

output of the same.  

The % success rate and ITR for the two proposed classifier for 11 subjects are shown in 

Table 4. Maintaining parity with the performance during offline training, here too, the OVO-

IT2FLF-ANFIS performs better than the OVA-IT2FLF-ANFIS in terms of their success rate. 

The best result is given by Subject 1 where he reaches the target (within 5% error) 80 % of 

the time, i.e., 18 times over 20 runs with an ITR of 33.70 bits/min. 

It is noted from Table 4 that OVO approach takes much longer to produce an output than 

OVA. Such wide difference in computation may be attributed to the large number of sub-

classifiers the OVO approach employs to yield a result compared to that of OVA (mentioned 

in Section 4.1). Table 4 also includes the average time taken by the subject to reach the target. 

Snapshots of a subject performing the experiment to reach the target using motor imagery 

signals are shown in Fig. 12. 

 

6. CONCLUSION AND FUTURE DIRECTION 

In this paper, two variants of multi-class classification algorithm: OVA-IT2FLF-ANFIS 

and OVO-IT2FLF-ANFIS have been developed towards recognition of motor imagery 

mental states in real time. For this purpose, we devised an experiment in which the subject 

would generate five mental commands: forward, backward, left, right and no movement and 

employed multi-fractal detrended fluctuation analysis to create the feature vector. In the 

initial stages of the experiment, the subjects and proposed classifiers are trained and the 

performance of the training is determined by the classification accuracy and area under the 

ROC curve. An average training accuracy of 88.91% and 90.93% are obtained from 11 
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subjects for the OVA-IT2FLF-ANFIS and OVO-IT2FLF-ANFIS algorithm, respectively. The 

proposed classifiers have also been statistically validated using Friedman Test. 

  Table 4. Online performance analysis of the proposed OVA-IT2FLF-ANFIS and 

OVO-IT2FLF-ANFIS classifier for 11 subjects 

Subject ID 
OVA-IT2FLF-ANFIS OVO-IT2FLF-ANFIS 

% success rate ITR % success rate ITR 

1 75.00 23.47 80.00 33.70 

2 60.00 22.97 80.00 33.11 

3 50.00 24.42 60.00 33.74 

4 60.00 24.38 65.00 32.22 

5 60.00 23.93 70.00 32.30 

6 65.00 23.83 65.00 33.01 

7 70.00 22.53 75.00 33.74 

8 70.00 24.13 70.00 32.50 

9 60.00 22.30 65.00 32.25 

10 70.00 24.00 65.00 33.15 

11 70.00 22.10 75.00 33.12 

Mean 64.50  23.46 70.00 32.98 

Average Time 

Taken by the 

classifier 

137 seconds 198 seconds 

Average Time 

Taken to reach 

target by the 

subjects 

685 seconds 916 seconds 

 

The performance of the real time control is defined by the percent success rate of the 

robot arm reaching the target and information transfer rate. The average success rate obtained 

for the 11 subjects are 64.5% (i.e., approximately 13 successful hits for a total 20 runs) and 

70% (i.e., 14 successful hits for a total 20 runs) for the OVA-IT2FLF-ANFIS and OVO-

IT2FLF-ANFIS algorithm, respectively. The average ITR over 20 runs for 11 subjects is 

23.46 bits/min and 32.98 bits/min for the OVA-IT2FLF-ANFIS and OVO-IT2FLF-ANFIS 

algorithm, respectively. These results suggests that our proposed IT2FLF-ANFIS approach 
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towards multi-class detection is efficient in dealing with non-stationary and uncertain signal 

data classification like EEG. Even though OVO-IT2FLF-ANFIS performs better than OVA-

IT2FLF-ANFIS, implementation of this approach for real time scenario is not feasible 

because of the high computational time the method takes to yield an output. Thus, the OVA 

approach is the preferred method for real time cases. 

 

Fig. 12. Illustrations of a subject attempting to move towards the target (yellow ball). (a) initial position of the 

robot arm, (b) the subject moves the arm forward to align it with the target, (c) the subject moves the robot in 

clockwise direction (mental command: right), (d) the subject again moves the robot in clockwise direction (mental 

command: right) and finally reaches the target 

The pros and cons of the methods make it evident that in spite of using the OVA and OVO 

methods differently as two separate classifiers, we may cluster their results using some 

fuzzy rule base which will make a trade-off between all the multi class handling methods 

and will give a better result with comparably lower computational complexity.  Here, we 

have used only least mean square algorithm for parameter handling of OVO-IT2FLF-ANFIS 

and OVA-IT2FLF-ANFIS but we may replace it by some better optimization algorithms 

and meta-heuristics. So we have a rich future perspective to work with the proposed 

algorithm. Also, in our future studies, we would attempt to control the individual links of the 

robot arm using motor imagery EEG and move towards the development of a BCI-controlled 

prosthetic device for commercial use. 
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