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Resumen: Se presenta un modelo de lenguaje basado en representaciones continuas
de las palabras, el cual se ha aplicado a una tarea de traducción automática es-
tad́ıstica. Este modelo está implementado por una red neuronal recurrente bidi-
reccional, la cual es capaz de tener en cuenta el contexto pasado y futuro de una
palabra para realizar predicciones. Debido su alto coste temporal de entrenamiento,
para obtener datos de entrenamiento relevantes se emplea un algoritmo de selección
de oraciones, el cual busca capturar información útil para traducir un determinado
conjunto de test. Los resultados obtenidos muestran que el modelo neuronal entre-
nado con los datos seleccionados es capaz de mejorar los resultados obtenidos por
un modelo de lenguaje de n-gramas.
Palabras clave: Modelado de lenguaje, redes neuronales recurrentes bidirec-
cionales, selección de datos, traducción automática estad́ıstica.

Abstract: A language model based in continuous representations of words is pre-
sented, which has been applied to a statistical machine translation task. This model
is implemented by means of a bidirectional recurrent neural network, which is able
to take into account both the past and the future context of a word in order to
perform predictions. Due to its high temporal cost at training time, for obtaining
relevant training data an instance selection algorithm is used, which aims to capture
useful information for translating a test set. Obtained results show that the neural
model trained with the selected data outperforms the results obtained by an n-gram
language model.
Keywords: Language modelling, bidirectional recurrent neural networks, instance
selection, statistical machine translation.

1 Introduction

Many natural language processing applica-
tions, such as automatic speech recognition
(ASR), handwritten text recognition (HTR)
or statistical machine translation (SMT), re-
quire the use of a language model, which de-
termines how well a word sequence is formed.
The classical approach, the n-gram language
model, is a count-based technique in a dis-
crete representation space. Thanks to the
smoothing techniques (e.g. Chen and Good-
man (1998)), the n-gram models tackle the
data sparseness problem, and are capable
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of obtaining predictions for non-seen events.
This leads to simple, robust and fast models,
which are may be trained over huge amounts
of data. On the other hand, since words
are treated as indices in a vector, there are
no concepts such as similarity nor seman-
tic relationships between words. In addition,
the n-gram model, only considers few con-
text words: Typically, the order of the n-
gram models ranges from 2 to 5, therefore
the model takes from 1 to 4 context words,
and long-term relationships are lost (Bengio
et al., 2003). In the last years, more com-
plex language models have been successfully
developed. One of these approaches rely in a
distributed representation of words: A real-
valued, dense and low-dimensional represen-
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tation in a continuous space. In these mod-
els, probability estimation is carried out in
this continuous space, typically by means of
a neural network. Furthermore, given the na-
ture of continuous models, the learned func-
tion is inherently smoothed.

The proposed model belongs to this latter
family and aims to overcome the aforemen-
tioned drawbacks of n-gram language mod-
els: First, by projecting the words into a
continuous space, the model profits from a
richer representations of words. Second, by
using a bidirectional recurrent neural net-
work (BRNN), the context of a word is deter-
mined not only by its preceding words, but
also by its following words. This allows the
model to produce more informed predictions.

Since the computational cost of such
model is high, only a subset of the available
training corpora is used to train the model.
This can be seen as an instance of a do-
main adaptation problem, where the goal is
to choose the most adequate sentences for
translating a given test set from a sentence
pool – in this case, the full training cor-
pus. The selection of the training events is
performed using a method belonging to the
so-called feature-decay selection algorithms.
The model is then applied to a SMT task,
rerankingN -best lists of translation hypothe-
ses.

In this paper, we develop an extension
of recurrent neural network language mod-
els, using a bidirectional neural network for
carrying out the probability estimation. We
show that this model can be appropriately
trained for a given test set using a subset
of all available data. This subset of data is
chosen using an instance selection algorithm.
Results show that the neural model combined
with an n-gram language model enhances the
performance of a SMT system.

The paper is structured as follows: In Sec-
tion 2, related approaches are reviewed. In
Section 3 the proposed language model is de-
scribed. Section 4 states the motivation for
selecting training instances. Performed ex-
periments and results are shown in Section 5.
Finally, conclusions about the work are ob-
tained in Section 6.

2 Related work

The use of continuous spaces is nowadays
a hot topic in the language modelling field.
Since Bengio et al. (2003) proposed to per-

form a linear projection from the discrete
to the continuous space and learn the prob-
ability function in this space, many other
works followed these ideas. Bengio et al.
and Schwenk (2013) performed the proba-
bility estimation through a feedforward neu-
ral network. Mikolov (2012) used a recur-
rent neural network (RNN) for that pur-
pose. In his model, there was no projec-
tion layer, words were mapped directly to the
hidden layer. Sundermeyer et al. (2012) com-
bined both models, having a projection layer
connected to a recurrent layer, with LSTM
units. Pascanu et al. (2014) extended the
RNN architecture, which led to deep RNN,
and it was applied to language modelling.
In the field of SMT, neural language mod-
els have also recent applications: Baltescu
et al. (2014) coupled a feedforward neural
language model into a SMT decoder. Wang
et al. (2014) approximated a neural language
model with an n-gram language model, ac-
cording to bilingual information extracted
from the phrase table.

Besides language modelling, continuous
spaces have also been included as additional
information sources in SMT systems. Sun-
dermeyer et al. (2014) used a bidirectional
LSTM network, architecturally similar to the
proposed model, as translation model. De-
vlin et al. (2014) extended the original neu-
ral language model from Bengio et al. (2003),
and developed a neural translation model.
This model could be integrated into a hier-
archical decoder and offered impressive re-
sults. Moreover, full-neural translation sys-
tems have been recently proposed (Bahdanau
et al., 2014; Sutskever et al., 2014), offering
encouraging results: In Luong et al. (2014), a
full-neural system outperformed for the first
time a state-of-the-art phrase-based system.

Instance selection techniques have been
typically applied in the scope of domain
adaptation or active learning. Gascó et al.
(2012) showed that a SMT system trained
with selected sentences outperformed a sys-
tem trained with all available data. In this
case, the selection criterion was to choose
sentences which contained unseen (or seldom
seen) n-grams. Other works used perplexity
as selection criterion (Mandal et al., 2008).
The selection method used in this paper is
an instantiation of that proposed in Biçici
and Yuret (2011), where the goal is to obtain
a selection which maximizes the coverage of
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the target part of the test set.

3 Bidirectional Recurrent

Language Model

3.1 Recurrent neural networks

Recurrent architecture of neural networks are
appropriate to model a temporal-discrete be-
haviour. Given an input sequence xT

1 =
x1, . . . , xT , a RNN produces an output se-
quence yT

1 = y1, . . . , yT , computed as:

ht = fh(xt,ht−1) (1)

yt = fo(ht) (2)

where ht is the hidden state at timestep t,
fh is the hidden state function (e.g. sigmoid
or hyperbolic tangent) and fo is the output
function (e.g. a multi-layer perceptron with
an output layer performing the softmax func-
tion).

RNNs are typically trained via stochastic
gradient descent, using the backpropagation
through time algorithm (Werbos, 1990), to
minimize a cost function under some optimal-
ity criterion, typically cross-entropy between
the output of the system and the training
data probability distribution.

3.2 Bidirectional recurrent neural

networks

A drawback of regular RNNs is that the in-
put sequence is only scanned in one direction,
normally from past to future. In order to
capture both past and future context, bidi-
rectional RNNs were proposed by Schuster
and Paliwal (1997). The main idea is to have
two independent recurrent layers: One layer
process the input sequence in forward time
direction (from 1 to T ), while the other layer
process the input sequence reversed in time
(from T to 1). Since hidden layers have no in-
teraction between them, bidirectional RNNs
can be trained using the same algorithms as
those used for unidirectional RNNs. Follow-
ing prior notation, bidirectional RNN is de-
fined as:

hf
t = fh(xt,h

f
t−1) (3)

hb
t = fh(xt,h

b
t+1) (4)

yt = fo(h
f
t,h

b
t ) (5)

where hf
t is the forward layer and hb

t is the
backward layer. The output is a combination

produced by the output function fo of both
backward and forward layers.

3.3 Bidirectional recurrent

language model

The task of statistical language modelling
consists in estimating the probability dis-
tribution over a sequence of words xT

1 =
x1, . . . , xT . Applying the chain rule, the se-
quence probability p(xT

1 ) = p(x1, . . . , xT ) can
be decomposed as:

p(x1, . . . , xT ) =

T
∏

t=1

p(xt|x1, . . . , xt−1) (6)

In the RNN framework, information about
the history (x1, . . . , xt−1) is represented in
the hidden recurrent layer. Thus, sequence
probability is rewritten as:

p(x1, . . . , xT ) =

T
∏

t=1

p(xt|ht) (7)

As we move to a BRNN, probability is
conditioned by both forward and backward
states:

p(x1, . . . , xT ) =
T
∏

t=1

p(xt|h
f
t,h

b
t ) (8)

In our language model architecture, in-
put words are one-hot vectors, binary vectors
with all elements set to 0 except the index
that represents the input word, which is set
to 1. Those vectors are projected into the
continuous space through a projection layer
and then fed to the BRNN. As architectural
choices of the network, the hidden function
(fh) is the sigmoid function. The output
function (fo) is modelled with a 2-layer per-
ceptron, which its first layer makes use of
the sigmoid activation function and it is fully
connected to the output layer, which makes
use of the softmax cost function in order to
obtain correct output probabilities:

σ(zk) =
exp(zk)

∑

K

k′=1
exp(zk′)

(9)

where zk is the k-th output unit. Each out-
put unit represents a word in the vocabulary,
hence, the output layer is vocabulary-sized.
At test time, the probability of a sentence is
normalized with respect to the length of the
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sentence, in order to prevent benefits to short
sentences (Graves, 2013). Since using the full
vocabulary is computationally unaffordable,
a shortlist is used: Only the most K frequent
words are taken into account. The rest are
mapped to a special token <unk>. Figure 1
shows a scheme of the model.

Input layer

Projection layer

Recurrent layers

Output layer

Output

xt

p(xt+1 = k|hf
t,h

b
t )

intermediate layer

h
f

h
b

zk (k-th output)

Figure 1: Architecture of the bidirectional
language model, similarly depicted as Sun-
dermeyer et al. (2014). Input and output lay-
ers have the size of the vocabulary.

4 Instance selection

Typically, corpora used for training SMT
systems are much larger than the test set.
Therefore, the training set contains noise
and sentences that are irrelevant for a spe-
cific task. Moreover, neural models have a
high time complexity and such large corpora
present computational challenges at training
time. Techniques for selecting the most ap-
propriate set of training sentences for a given
test set are suitable in this scenario. Within
these approaches, feature-decay algorithms
perform the selection of sentences from the
training set aiming to maximize the coverage
of the target language n-grams (features) of
the test set (Biçici and Yuret, 2011).

The target side of the test set is unknown,
only the corresponding source sentences are
available. Since a source sentence potentially
has many translations, performing a selection
which objective is maximizing the coverage of
the source part of the test does not guaran-
tee an adequate coverage of the target part
of the test. For treating this issue, feature-

decay algorithms try to maximize the diver-
sity of the selected instances. The method
provides initial scores to the features, accord-
ing to an initialization function. Iteratively,
the features with highest scores are selected
and scores of these features included in the se-
lection are reduced. Therefore, it is expected
that, in following iterations, different features
will be included in the selection. Particu-
lar choices in the initialization, scoring and
decaying functions provide different selection
methods, such as n-gram coverage or TF-IDF
(Eck et al., 2005).

FDA5, a parametrization of feature-decay
algorithms has been recently proposed (Bi-
cici and Yuret, 2015). In this algorithm, the
selection of the data is performed according
to 5 parameters: The feature initialization
function considers frequency and inverse fre-
quency of the tokens in a feature. Scores of
the features decay following a polynomial and
an exponential factor. Finally, the sentence
scoring function is the sum of all feature val-
ues of a sentence, scaled by a sentence-length
factor.

5 Experiments and results

The model was tested in the Spanish–
English EU translation task – a selec-
tion from the Bulletin of the European
Union (Khadivi and Goutte, 2003). The
Thot toolkit (Ortiz-Mart́ınez and Casacu-
berta, 2014) was used for building the trans-
lation models. The neural language model
was used to rescore N -best lists, which were
obtained executing a weight adjustment pro-
cess, by means of the downhill simplex opti-
mization method (Melder and Nead, 1965),
using BLEU as function to maximize. At
each iteration of the optimization process, a
200-best list was generated and merged with
the list of the previous iteration. The pro-
cess continued until no new elements were in-
cluded in the N -best list. As result, the ma-
jority of the probability mass of translation
hypotheses was included in the N -best list.
The average size of the lists was N = 4300.

5.1 Data selection

For selecting an appropriate number of sen-
tences, different selection sizes were tested.
An n-gram language model was trained over
the target side of the selected data and its
perplexity was computed. We chose a se-
lection which provide a good balance be-
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tween complexity and quality. Figure 2 shows
the relation between the number of source
words selected and the number of training
sentences selected (corpus coverage). If a
word is included in the selection, all the sen-
tences which contain such word belong to the
selection. Figure 3 shows bigram coverage for
the test set, according the number of source
words selected. Finally, Figure 4 shows the
number of out-of-vocabulary (OOV) words in
the test test set with respect to the number of
words selected. It was observed that perform-
ing a selection from one million words ahead,
produced small variations both in test OOV
words and in bigram coverage values.
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Figure 2: Training corpus coverage according
the number of source words selected.
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Figure 3: Relation between the test set bi-
gram coverage of the selected corpus and the
number of source words selected.

Figure 5 reports the perplexity obtained
by different n-gram language models trained
over the selected data. In order to obtain a
fair comparison between language models, for
computing perplexity, all neural and n-gram
language models were trained using the same
vocabulary. 4-gram performed slightly bet-
ter than 5-gram when the full corpus was not
selected. Thus, in following experiments, the
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Figure 4: Number of OOV words in the test
set according the number of words selected.
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Figure 5: Perplexity obtained by different n-
gram language models according the number
of selected words.

order of the n-gram language model was set
to 4. These results corroborated those given
by the OOV words and bigram coverage:
For selections larger than a million of words,
obtaining a humble perplexity enhancement
was expensive, as the number of instances
that should be included rapidly grew.

Therefore for obtaining the reduced cor-
pus, FDA5 considered 1 million words from
the source corpus. Statistics of the selected
instances are shown in Table 1. The ob-
tained corpus contained only a 15% sentences
of the original corpus, but the perplexity of
the models trained over it, for the test set,
was increased just a 6.4% with respect to the
full corpus.

5.2 Language models

The hyperparameters of the neural language
model (size of the projection layer, size of the
recurrent layers and size of the output inter-
mediate layer), were chosen following a per-
plexity minimization criterion. The learning
rate was initially set to 1 and was halved at

A Bidirectional Recurrent Neural Language Model for Machine Translation

113



En Sp

Full
training

set

Sentences 213k
Running words 5.2M 5.9M
Vocabulary 50k 64k

Reduced
training

set

Sentences 33k
Running words 891k 1M
Vocabulary 21k 28k

Test set
Sentences 800

Running words 20k 23k

Table 1: Statistics for full EU corpus, se-
lected instances and test set (k and M stand
for thousands and millions, respectively).
The reduced corpus was obtained selecting
one million words from the source part (Span-
ish) of the training set.

the start of each training epoch if the valida-
tion entropy did not decrease a 0.3% with re-
spect the previous one (Mikolov, 2012). Fol-
lowing Pascanu et al. (2014), the network
was initialized using the standard deviations
of a Gaussian white noise distribution. The
size of the shortlist was set to K = 10, 000.
An analogous unidirectional model was also
trained.

Table 2 shows the perplexities obtained by
the different language models over the test
set. The bidirectional RNN language model
offered a performance similar to that of the n-
gram language model trained with the same
data, while the perplexity of the unidirec-
tional RNN was slightly higher.

Language model Perplexity

Full n-gram 81.7
Reduced n-gram 87.3
Unidirectional RNN 95.6
Bidirectional RNN 87.9

Table 2: Test set perplexity for different lan-
guage models. Full n-gram row refers to an n-
gram trained over the complete corpus. Re-
duced n-gram refers to an n-gram trained
only over the selected instances. Both neu-
ral models are trained over selected instances.
All models were trained using the same vo-
cabulary (10,000 words).

Table 3 shows the BLEU scores obtained
by the different language models for the test
set. The bidirectional model offered a small
improvement with respect the unidirectional

one, but both were worse than the n-gram
language model. The neural language model
was also linearly interpolated with an n-gram
language model. The interpolation coeffi-
cient (λ) was determined by sampling in a
development set. The sampling interval was
[0.1, 0.9], with a step of 0.1. The optimal
value was found at λ = 0.6. This interpo-
lation provided an enhancement of the sys-
tem performance. That means that both ap-
proaches were complementary: Because of
their nature, n-gram language models are ro-
bust modelling local dependencies. The neu-
ral network introduced additional informa-
tion, which was useful in order to enhance the
performance of the system. Although differ-
ences in the results obtained were statistically
non-significant, we observed a trend in them.

Language model BLEU

n-gram 30.8
Unidirectional RNN 30.2
Bidirectional RNN 30.3
Bidirectional RNN + n-gram 31.3

Table 3: Test set BLEU score for the different
language models.

6 Conclusions

In this paper, a neural language model im-
plemented by means of a bidirectional neu-
ral network has been presented. Since the
computational training cost of the model was
high, a subset of the training corpus was se-
lected, using domain adaptation techniques.
The network was successfully trained with
the reduced corpus, obtaining a perplexity
similar to that of an n-gram language model
trained with the full corpus. It was shown
that both neural and n-gram language mod-
els are complementary: The latter model was
focused in local dependencies, while the first
one was able to incorporate additional depen-
dencies. That was supported by the results:
The combination of both models provided en-
hancements with respect the use of the mod-
els solely.

Finally, the bidirectional architecture of
the neural network language model exhibited
a better behaviour than the unidirectional ar-
chitecture, in terms of perplexity and trans-
lation quality.
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