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Abstract 

Conjugate Gradient (CG) method is a technique used in solving nonlinear unconstrained optimization 

problems. In this paper, we analysed the performance of two modifications 𝛽𝑘
𝑌𝐻𝑀and 𝛽𝑘

𝑀𝑅𝑀and compared the 

results with the classical conjugate gradient methods of𝛽𝑘
𝐹𝑅and 𝛽𝑘

𝑃𝑅𝑃 . These proposed methods possesse 

global convergence properties for general functions using exact line search. Numerical experiments show that 

the two modifications are more efficient for the test problems compared to classical CG coefficients. 
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1. Introduction 

Consider the following nonlinear unconstrained optimization problems 

min{𝑓(𝑥) ∶ 𝑥𝜖𝑅𝑛},                                                                                                                            (1) 

where𝑓: 𝑅𝑛 → 𝑅 is a continuous differentiable function that is bounded below. To solve (1), starting 

from an initial point𝑥0𝜖𝑅
𝑛, we obtained the next iterative point as follows 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  ,   𝑘 = 0,1,2,…                                                                                              (2) 

where𝛼𝑘is the step-length and 𝑑𝑘is the search direction defined as; 

𝑑𝑘 = {
−𝑔𝑘 ,                                  𝑖𝑓𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1,              𝑖𝑓𝑘 ≥ 1

                                                                                      (3) 
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The scalar 𝛽𝑘is known as the conjugate gradient parameter and the gradient 𝑔𝑘 = ∇𝑓(𝑥𝑘). Some 

of the classical CG parameters are Fletcher and Reeves (FR) (Fletcher and Reeves,1964)  Polak-

Ribiere-Polyak (PRP) (Polak and Ribiere, 1969; Polyak, 1969) Hestenes-Steifel (HS) (Hestenes and 

Stiefel,1952) Conjugate Descent (CD) (Fletcher, 1980), Liu-Storey (LS) method (Liu and Storey, 

1991). These  parameters and are defined as 

𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘‖
2

‖𝑔𝑘−1‖
2  ,         𝛽𝑘

𝑃𝑅𝑃 =
𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝛽𝑘−1
𝑇 𝑔𝑘−1

 

𝛽𝑘
𝐻𝑆 = 

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

,        𝛽𝑘
𝐶𝐷 =

‖𝑔𝑘‖
2

𝑑𝑘−1
𝑇 𝑔𝑘−1

,  

𝛽𝑘
𝐿𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

−𝑑𝑘−1
𝑇 𝑔𝑘−1

, 𝛽𝑘
𝐷𝑌 =

‖𝑔𝑘
2‖

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

 

 

Most of these classical methods may not generally be convergent but often possess good 

convergence property. Recently, more research has been published on new modifications of CG 

methods. For good references of recent CG methods with significant results, refer to Sulaiman et al. 

(Sulaiman el al, 2018; Sulaiman et al, 2015; Kamilu et al, 2018; Yasir et al, 2018). Thus, in this 

paper, we analyszed the performance of two modifications of CG coefficients and compared the 

perfomance with that of classical CG methods of FR and PRP under exact line search. This is done 

to improve the overall performance of the resulting algorithms. 

2.  Two Modifications and Algorithm 

In this section, we present two modifications known as 𝛽𝑘
𝑌𝐻𝑀  (Saliha et al, 2018)  and 𝛽𝑘

𝑀𝑅𝑀 

(Hamoda et al, 2017) and defined by, 

 

𝛽𝑘
𝑌𝐻𝑀 =

{
 
 

 
 
𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2    𝑖𝑓  0 ≤ 𝑔𝑘

𝑇𝑔𝑘−1 ≤ ‖𝑔𝑘‖
2

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖
‖𝑔𝑘−1‖

𝑔𝑘−1)

‖𝑔𝑘−1‖
2         otherwise

                                                           (4)  

 

𝛽𝑘
𝑀𝑅𝑀 =

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖
‖𝑔𝑘−1‖

𝑔𝑘−1)

‖𝑔𝑘−1‖
2 + |𝑔𝑘

𝑇𝑑𝑘−1|
                                                                                                  (5) 

The following algorithm is a general algorithm for solving unconstrained optimization problems. 

Algorithm 

Step1: Given 𝑥0𝜖𝑅
𝑛,setε > 0𝑑0 = −𝑔0, If ‖𝑔𝑘‖ = 0, then stop. Else, 

Step2: Computing step size by,  

𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼≥0𝑓(𝑥𝑘 + 𝛼𝑑𝑘), 
Step3: Compute 

      𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.  
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Step4: Compute 𝛽𝑘 and generate 𝑑𝑘+1 by (3) 

Step5: Convergence and stopping criteria. Check if‖𝑔𝑘+1‖ ≤ 𝜖stop. Else, Set 𝑘 = 𝑘 + 1go to 

Step 2 

 

3.  Global Convergence of the New Modifications 

In this section, we prove the global convergence of𝜷𝒌
𝒀𝑯𝑴and 𝜷𝒌

𝑴𝑹𝑴under exact line search. We 

begin with the sufficient descent condition. 

3.1 Sufficient Descent Condition 

For sufficient descent condition to hold,  

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖

2  ∀𝑘 ≥ 0 𝑎𝑛𝑑 𝑐 > 0.                                                                                          (6)  
The following theorem is used to show our new modification possess with sufficient descent 

condition under exact line search. 

 

Theorem 1. Let {𝑥𝑘} and {𝑑𝑘}be sequence generated from (2), (3) and the above algorithm, where 

the step size 𝛼𝑘 is determined by the exact line search. Then (6) holds for all k ≥ 0. 

 

Proof.The prove of this theorem can be found in (Saliha et al, 2018; Hamoda et al, 2017). 

3.2 Global Convergence Properties 

In this section, we prove the global convergence properties of the new modification under some 

assumptions. 

 

Assumption 1 

(I) 𝑓(𝑥)  is bounded from below on the level set Rn  and is continuous and differentiable in a 

neighbourhood 𝑁 of the set  𝑁 = {𝑥 ∈ 𝑅𝑛 , 𝑓(𝑥) ≤ 𝑓(𝑥0)} at the initial point x0. 

(II) The gradient 𝑔(𝑥)  is Lipschitz continuous in 𝑁, so there exists a constant 𝐿 > 0 such that  
‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N. 

 

The following Lemma by Zoutendijk (Zoutendijk, 1970) is used to prove the global 

convergence. 

Lemma 1. 

Suppose that Assumption 1 holds true. Consider any CG method of the form (3) where 𝑑𝑘 is the 

search direction. Then, Zoutendijk condition holds, that is, 

∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖
2 < ∞                                                                                                                             (7)

∞

𝑘=0

 

The following theorem is based on Lemma 1. 

 

Theorem 2 

Suppose assumption 1 holds true, consider𝛽𝑘
𝑌𝐻𝑀 and 𝛽𝑘

𝑀𝑅𝑀  methods of the form (2) and (3) 

where𝛼𝑘is obtained using exact line search, then,  
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𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0                                                                                                                          (8) 

Proof.The prove of this theorem can be found in (Saliha et al, 2018; Hamoda et al, 2017).  

 

 

 

4.  Numerical Results 

In this section, we report the detailed numerical results based on the comparisons of our new 

modifications with classical CG Algorithms of FR and PRP. All algorithms are implemented under 

exact line search. We selected 31 test functions from Andrei (Andrei, 2008) with different 

dimensions. We considered 𝜀 = 10−6 and‖𝑔𝑘‖ ≤ 10
−6 to be the stopping criteria as suggested by 

Hillstrom (Hillstrom, 1977). In all cases, we used four initial points. These four initial points lead us 

to test the global convergence of the new modifications. All algorithms are coded on MATLAB 

Version R2014a. The test was run on an Intel(R) Core™ i5-M520 (2.40GHz), 4GB for RAM 

memory and Windows 7 Professional operating system. The Numerical results are based on number 

of iterations and CPU time as presented in Table 1. Also, the performance results of these methods 

are shown in Figure 1 and Figure 2 respectively, using a performance profile introduced by Dolan 

and More (Dolan and Moré, 2002). 

 

Table 1: A list of problem functions. 

No Function Dimension Initial points 

1 Six hump camel 2 -10, -8, 8, 10 

2 Booth 2 10, 25, 50, 100 

3 Treccani 2 5, 10, 20, 50 

4 Zettl 2 5, 10, 20, 30 

5 Ex –rosenbrock 2,4,10,100,500,1000,10000 13, 25, 30, 50 

6 Extended penalty 2,4,10,100 50, 60, 70, 80 

7 Generalized tridiagonal 1 2,4,10,100 30, 35, 40, 45 

8 Shalow 2,4,10,100,500,1000,10000 10, 25, 50, 70 

9 Ex - tridiagonal1 2,4,10,100,500,1000,10000 12, 17, 20, 30 

10 Extended white and holst 2,4,10,100,500,1000,10000 3, 10, 30, 50 

11 Quadrtic QF2 2,4,10,100,500,1000 10, 30, 50, 100 

12 Extended denschnb 2,4,10,100,500,1000,10000 8, 13, 30, 50 
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13 Hager 2,4,10,100 1, 3, 5, 7 

14 Ex-powell 4,8,20,100,500,1000 -1, 1, 7, 11 

15 Extended beale 2,4,10,100,500,1000,10000 -19, 1, 13, 23 

16 Ex –himmelblau 100,500,1000,10000 50, 70, 100, 125 

17 Diagonal 2 2,4,10,100,500,1000 -1, 1, 2, 3 

18 Perturbed quadratic 2,4,10,100,500,1000 1, 5, 10, 15 

19 Sum Squares function 2,4,10,100,500,1000 1, 10, 20, 30 

20 Ex- quadratic penalty 

QP2 

4,10,100,500,1000,10000 17, 18, 19, 20 

21 Raydan1 function 2,4,10,100 1, 3, 5, 7 

22 Generalized tridiagonal 2 2,4,10,100 1, 7, 8, 14 

23 Quadratic QF1 2,4,10,100,500,1000 1, 2, 3, 4 

24 Dixon and Price 2,4,10,100 100, 125, 150, 175 

25 Fletcher 4,10,100,500,1000 7, 11, 13, 15 

26 Ex- maratos 2,4,10,100 5, 10, 12, 15 

27 Leon function 2 2, 5, 8, 10 

28 Extended wood 4 3, 5, 20, 30 

29 Quartic function 4 5, 10, 15, 20 

30 Matyas function 2 5, 10, 15, 20 

31 Colville function 4 2, 4, 7, 10 

 

 

 

 

Figure 1: Performance profile based on number 

of iteration. 

 Figure 2. Performance profile based on 

CPU Time. 



16 Yasir Salih et al./ International Journal of Quantitative Research  and Modeling, Vol 1, No 1, pp. 11-17, 2020 

 

From the above figures, it can be seen that the new modifications are better than the classical 

methods of FR and PRP based on number of iteration and CPU times. The results show that the 

proposed method solves 99.4% and 98% of the test problems respectively. Meanwhile, FR method 

solves about 72% while PRP solves 97% of the test problems. Hence, we can say that 

𝛽𝑘
𝑌𝐻𝑀and𝛽𝑘

𝑀𝑅𝑀are more efficient with robust performance.  

5.  Conclusion 

In this paper, we presented the performance of two new modifications for nonlinear 

unconstrained optimization and compared them with the classical CG coefficient of FR and PRP 

methods under exact line search. These proposed methods possess the global convergence condition 

under some assumptions and satisfy the sufficient descent condition. Numerical results showed that 

the proposed methods outperformed the classical methods of FR and PRP in solving the standard 

unconstrained optimization problems. 

Acknowledgements 

The authors would like to thank Universiti Sultan Zainal Abidin (UniSZA) and Red Sea 
University of Sudan for financial suport. 

References 

Andrei N. (2008). An unconstrained optimization test functions collection. Adv. Model. Optim, 

10(1): p. 147-161. 

Dolan E.D and Moré JJ. (2002). Benchmarking optimization software with performance profiles. 

Mathematical programming, 91(2): p. 201-213. 

Fletcher R and Reeves C M. (1964).  Function minimization by conjugate gradients. The computer 

journal, 7(2): p. 149-154. 

Fletcher R. 1980. Practical methods of optimization. Vol. 1, Unconstrained Optimization.   

Hamoda M, Rivaie M and Mamat M. (2017). A New Nonlinear Conjugate Gradient Method With 

Exact Line Search For Unconstrained Optimization. Journal of Humanities and Applied 

Science (JHAS), pp. 1-16.  

Hestenes MR and Stiefel E. (1952). Methods of conjugate gradients for solving linear systems. Vol. 

49: NBS. 

Hillstrom K.E. (1977). A simulation test approach to the evaluation of nonlinear optimization 

algorithms. ACM Transactions on Mathematical Software (TOMS), 3(4): p. 305-315. 

1977. 3(4): p. 305-315. 



 Yasir Salih et al./ International Journal of Quantitative Research  and Modeling, Vol 1, No 1, pp. 11-17, 2020 17 

Kamilu, K., Sulaiman
, 
I. M., Waziri

, 
M. Y., and Abashar, A. (2018). Another Improved Three Term 

PRP-CG Method with Global Convergent Properties for Solving Unconstrained 

Optimization Problems. Malaysian Journal of Computing and Applied Mathematics. 1(1), 

1-10. 

Liu Y and Storey C. 1991.Efficient generalized conjugate gradient algorithms, part 1: theory. 

Journal of optimization theory and applications, 69(1): p. 129-137. 

Polyak B.T. (1969). The conjugate gradient method in extremal problems. USSR Computational 

Mathematics and Mathematical Physics, 9(4): p. 94-112 

Polak E and Ribiere G. (1969). Note sur la convergence de méthodes de directions conjuguées. 

Revue française d'informatique et de recherche opérationnelle. Série rouge, 3(16): p. 35-

43. 

Saliha, Y., M.A. Hamoda, and M. Rivaiec. (2018). New Hybrid Conjugate Gradient Method with 

Global Convergence Properties for Unconstrained Optimization. Malaysian Journal of 

Computing and Applied Mathematics, 1(1): p. 29-38 

Sulaiman, I. M., Mamat, M., Abashar, A., and Zabidin, S. (2015).  A Modified Nonlinear Conjugate 

Gradient Method for Unconstrained Optimization, Applied Mathematical Sciences 9(54), 

2671 – 2682. 

Sulaiman
, 
I. M., Waziri

, 
M. Y., Olowo

, 
E. S., and Talat

, 
A. N. (2018). Solving Fuzzy Nonlinear 

Equations with a New Class of Conjugate Gradient Method. Malaysian Journal of 

Computing and Applied Mathematics. 1(1), 11-19. 

Yasir, S., Mohamed, A. H., and Rivaie, M. (2018). New Hybrid Conjugate Gradient Method with 

Global Convergent Properties for Solving Unconstrained Optimization. Malaysian Journal 

of Computing and Applied Mathematics. 1(1), 29-38. 

Zoutendijk G. (1970). Nonlinear programming, computational methods. Integer and nonlinear 

programming, 143(1): p. 37-8 

 

 


